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Morphological impact of a storm can be predicted three days ahead

F. Baartb,a,∗, M. van Ormondtb, J.S.M. van Thiel de Vriesd,a, M. van Koningsveldc,a

aDelft University of Technology, Delft, The Netherlands
bDeltares, Delft, The Netherlands

cVan Oord, Rotterdam, The Netherlands
dBoskalis, Papendrecht, The Netherlands

Abstract

People living behind coastal dunes depend on the strength and resilience of dunes for their safety. Forecasts
of hydrodynamic conditions and morphological change on a timescale of several days can provide essential
information to protect lives and property. In order for forecasts to protect they need be relevant, accurate,
provide lead time, and information on confidence.

Here we show how confident one can be in morphological predictions of several days ahead. The question
is answered by assessing the forecast skill as a function of lead time. The study site in the town of Egmond,
the Netherlands, where people depend on the dunes for their safety, is used because it is such a rich data
source, with a history of forecasts, tide gauges and bathymetry measurements collected by video cameras.
Even though the forecasts are on a local scale, the methods are generally applicable. It is shown that the
intertidal beach volume change can be predicted up to three days ahead.

Keywords: Forecasts, Skill, Morphology

1. Introduction

Coastal areas are exposed to extreme natural
conditions, such as storm surges, waves, tsunamis,
and erosion. Providing warnings is one of the ways
to reduce the risk to human life and to allow for5

property to be protected (Day et al., 1969). Al-
though warnings are not always effective (Normile,
2012), when a disaster is imminent, people expect
to be warned (Arceneaux and Stein, 2006).

The need for an improved coastal warning sys-10

tem arose from the disasters that impacted the
United States (Katrina, Sandy) and Europe (Xyn-
thia) (Ciavola et al., 2011b). Improving coastal
warning systems has become possible due to the
improved weather forecasts. Even hard to predict15

variables like precipitation have seen a strong im-
provement. The lead time has improved from 2
days ahead in 2001 to 6.5 days ahead in 2014 (Euro-
pean Centre for Medium-Range Weather Forecasts,
2014). The skill has improved due to higher reso-20
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lution measurements and models and integration of
physical and statistical models (data assimilation).

In order for a coastal warning to be helpful
it needs to be relevant, accurate, provide lead
time, (Baart et al., 2009) and confidence estimates.25

Previous studies have worked on providing rele-
vant warnings by extending operational hydrody-
namic forecast models with forecasts of morpholog-
ical change (Baart et al., 2009; Plant and Stock-
don, 2012; den Heijer et al., 2012b; Vousdoukas30

et al., 2012). Adding morphodynamic processes to
a coastal warning system is relevant because the
failure modes of coastal dunes depend on morpho-
logical change (Sallenger, 2000; Mai et al., 2007).
Most of these studies incorporate confidence (Plant35

and Stockdon, 2012; den Heijer et al., 2012b; Baart
et al., 2011) and accuracy estimates (Plant and
Stockdon, 2012; Vousdoukas et al., 2012), but lack
information about lead time (the time between the
dissemination of a forecast and the onset of an event40

(Verkade and Werner, 2011)).

Here we expand on previous efforts by showing
how many days of lead time a forecast of coastal
change provides during a storm surge. The amount
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of lead time is evaluated by how much the predic-45

tive skill of forecasts improve in the days up to an
imminent storm. We add information about the
confidence by including confidence intervals around
the forecast variables. The extensions to the warn-
ing system described in this paper are part of a50

collective European effort to improve the warning
systems (the Morphological Impacts and COastal
Risks induced by Extreme storm events (MICORE)
project).

Morphological effects of a storm occur at the end55

of a chain of processes, which can be represented by
a chain of numerical models. The last four parts of
the chain, which are commonly used to forecast the
coastal morphology, are shown in Figure 1. Each
of these models is based on assumptions, schema-60

tizations and reductions of the real world (Oreskes
et al., 1994) and can only explain a certain propor-
tion of variance of the quantity for the next link.

The amount of explained variance at the end of
the chain is essential in the response phase. More65

specifically the explained variance as a function of
lead time determines the feasibility of different re-
sponse actions. Given hours, one can close down a
beach, but one needs a lead time of days to evac-
uate a city. In the case of imminent dune failure70

the morphological forecasts describe the relevant
(Morris et al., 2008) process of dune erosion. This
raises the question “How many days ahead can we
still rely on local morphological forecasts during a
storm?”.75

For weather and ocean dynamic forecasts it is al-
ready common practice to study the forecast skill
as a function of lead time (European Centre for
Medium-Range Weather Forecasts, 2010). Figure
2 shows that the forecast skill for the ocean waves80

are lower than the pressure fields, 60% versus 70%
for the 7 days ahead forecast and 92% versus 98%
for the 3 days ahead forecast. The skill for pres-
sure fields and ocean waves eventually determines
at least part of the skill for coastal morphological85

forecasts. Pressure anomalies generate wind and
surge. During a storm, the local wind generated
sea waves and the propagated ocean waves in com-
bination with a surge and high tide can cause severe
coastal erosion.90

In this paper we extend Figure 2 with information
about forecasting skill for water levels and morpho-
dynamic change. The coastal hydrodynamic and
morphological skill as a function of lead time is most
relevant under storm conditions. A local field study95

is appropriate as no morphological forecast or mea-

surement system exists with a global coverage

Figure 2: Skills for pressure, and waves as a function of fore-
cast lead time. Pressures are anomaly correlation (Wilks,
2011) (AC) for the ECMWF 500 hPa forecasts (European
Centre for Medium-Range Weather Forecasts, 2010), waves
are AC for the ECMWF significant wave height forecasts
(European Centre for Medium-Range Weather Forecasts,
2010).

2. Methods

2.1. Study site Egmond (the Netherlands)

The requirements of availability of dune erosion100

events, measurement data and existing near shore
models has resulted in the selection of the Egmond
study site. The Egmond study site, located on
the Dutch coast (Figure 1), has been used in nu-
merous publications (for example Aagaard et al.,105

2005). The video measurement stations have gen-
erated before- and after storm bathymetry measure-
ments over the last decade. The video system was
setup in the CoastView project (Davidson et al.,
2007), based on the Argus system (Holman and110

Stanley, 2007). The morphodynamic forecasts are
relevant for the town of Egmond, as it is an area
with a high risk of dune erosion (den Heijer et al.,
2012a).

2.2. Model setup115

The model chain used to forecast coastal change
(Figure 1) is described in detail in Baart et al.
(2009). The model chain consists of a global wave
model (schematisation: Wave Watch, processes:
waves, model: Wave Watch 3 (WW3)), with a120

nested regional (Dutch Continental Shelf Model
(DCSM), hydrodynamic and waves, Delft3D, (Ge-
braad and Philippart, 1998)) and coastal model
(Dutch “Kuststrook Fijn”, hydrodynamic and

2
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Figure 1: Nested schematization of an operational morphological model. Applied to Egmond, the Netherlands as described by
Baart et al. (2009), extensions described in subsection 2.2.

waves, Delft3D). For this study we replaced the125

water level forecasts by the setup as described by
De Vries (2009) (Delft3D replaced by the similar
SIMONA model engine), which provides a history
of ensemble forecasts. The model chain consists of
solely open source models, making the chain verifi-130

able (Kettner and Syvitski, 2013) and reproducible.
Other researchers can check and reuse the source
code and model schematisations. Replacing model
engines by similar components has become easier
due to the combined effort of the integrated model-135

ing community (for example Peckham et al., 2013;
Voinov et al., 2010).

The last link is the beach model. Four 1D profile
models describe the topography and bathymetry of
the dunes at the Egmond study site. The model140

uses the hydrodynamics (water levels, wave energy
and direction) of the previous step as input. The
numerical model XBeach (Roelvink et al., 2009) is
used to describe the nearshore hydrodynamics and
coastal erosion. The beach model is schematised145

using 1D profiles instead of a 2DH bathymetry. The
main reason for this is to reduce calculation time.
It is believed that for this part of the coast a 1D
approach is sufficient (den Heijer et al., 2012a). For
areas with more complex foreshores a 2D approach150

is thought to be more appropriate (van Geer and
Boers, 2012).

2.3. Storm selection

To answer the question how many days ahead the
morphological effect of a storm can be forecast, mul-155

tiple storms are considered. The forecast system is
setup to predict extreme events. For a represen-
tative sample, one would prefer a large number of
extreme storms (return period ≥ 10 yr). But as

only a decade of data is available, this is not pos-160

sible. The water level records from the Petten tide
gauge (20 km north of Egmond) give a good selec-
tion criterion, as it is the closest tide gauge to the
Egmond study site. A search for the highest water
levels, with a window of three days, results in the165

selection of five storm events (see Table 1).
Besides a high water level, availability of mor-

phologic and hydrodynamic data is important. No
intertidal morphologic estimates have been made
for the 2007-01-18 storm, due to unavailability of170

the video camera system. Therefore, this storm is
only used to determine the hydrodynamic forecast
error and skill as a function of forecast lead time.
This gives a total of four storms, used for the mor-
phodynamic skill evaluation.175

2.4. Boundary conditions and validation data

Water level forecasts, including ensembles, are
available for two nearby stations, at IJmuiden and
Den Helder. Water level observations are also avail-
able for these two sites and for the location Petten180

(locations in Figure 1). The weighting of the en-
semble forecasts and measurements of the IJmuiden
and Den Helder stations are used to create bound-
ary conditions and validation data for the area of
interest. We use the high and low tide estimates185

and ignore any errors in forecast time.
There is no archive of the wave ensemble fore-

casts. The wave time series, as observed at the
IJgeul (13km offshore), provide us with a reason-
able alternative to use as a boundary for the beach190

model. Using the observed waves instead ensem-
ble forecasts of waves could lead to overconfident
confidence intervals around the morphological fore-
casts, since the same wave time series is used for

3



Date Pre Post
2007-11-09 2007-01-01 – 2007-01-06 2007-11-10 – 2007-11-14
2006-11-01 2006-10-26 – 2006-10-30 2006-11-02 – 2006-11-07
2007-01-18 No data No data
2008-03-01 2008-02-27 – 2008-02-29 2008-03-02 – 2008-03-07
2007-03-18 2007-03-14 – 2007-03-17 2007-03-19 – 2007-03-24

Table 1: Selection of pre and post storm profiles for the five storms that resulted in the highest water level at Petten, the
Netherlands.

each ensemble.195

Two datasets provide information for the
bathymetry and topography. The Dutch Annual
Coastal Measurement (JARKUS) dataset (Rijk-
swaterstaat, 2008) provides the base bathymetry
and topography. Pre- and post storm intertidal200

bathymetry is obtained from the Automated Shore-
line Mapper (ASM) archive (Uunk et al., 2010),
a process for extracting shorelines from the Argus
video camera system.

The ASM measurements cover the intertidal205

zone. Along the Dutch coast, the sand that erodes
from the dune is transported through the intertidal
zone towards the sea. After a storm, part of the
sand that eroded remains in the intertidal zone,
causing the volume of the intertidal zone to tem-210

porarily increase. Thus the intertidal shoreline is a
proxy for the storm impact above the dune foot. As
it is the only available pre- and post storm measure-
ment source it is the best available information of
dune erosion. The implied geometric relation be-215

tween the intertidal zone and dune erosion is the
basis of dune erosion models such as DUne eRO-
Sion model (DUROS) (Vellinga, 1986).

Adjustments were made to the process described
by Uunk et al. (2010). The shorelines generated by220

the ASM showed intra-day inconsistencies, which
required an extra manual selection step. In the con-
text of an operational system, a manual selection
step is unsatisfying because it requires human in-
tervention. The overview of selected days for each225

storm event can be found in Table 1. As an es-
timate of the vertical error (Root Mean Squared
Error (RMSE) in m) Uunk et al. (2010) gives an
estimate of this measurement source is in the range
of 0.28 m for supervised applications such as applied230

here.

2.5. Forecast skill

We are assessing the forecast skill as a function
of lead time for two quantities, water level (Equa-
tion 5) and morphodynamic change (Equation 4).235

The equations show that the skill of a forecast is
computed from a forecast, a reference forecast, and
a measurement.

The statistical measures that are used in this pa-
per are listed in Equations 1 through 5. These240

include anomaly correlation (Wilks, 2011) (AC)
based on forecast y, observations o and climate c,
a number of n forecasts, observation pairs with in-
dex k, Mean Squared Error (MSE), the Root Mean
Squared Error (RMSE), the Forecast Skill Score245

(SS). Detailed explanations about the forecast skill
SS (Equation 3) and how it relates to MSE can
be found in Murphy and Epstein (1989) and Wilks
(2011).

MSE =
1

n

n∑
k=1

(yk − ok)2 : o ∈ R (1)

RMSE =
√
MSE (2)

SS = 1− MSEmodel

MSEreference
(3)

SSbathy = 1− MSEmodel

MSEinitial bathymetry
(4)

SSwl = 1− MSEmodel

MSEastronomical tide
(5)

(6)

Deterministic model runs of the chain in Figure 1250

provide the forecasts for the four storm periods.
The forecasts have a lead time from 10 days down
to 1 day.

For a reference forecast we use astronomic tide
and for the morphological forecast we use the ini-255

tial bathymetry (initial Jarkus profile). The compe-
tition between the reference forecast and the model
forecast determine the sign of the skill score. If
the SS goes below 0, the reference (tide, initial
bathymetry) is a better forecast than the model260

forecast.
Verification calculations were done using the

National Center for Atmospheric Research (NCAR)

4



R Project for Statistical Computing (R) verifica-
tion package (Gilleland, 2010). In coastal research265

a Skill of over 0.6 is often used as a criterion for a
good forecast(van Rijn et al., 2003), we’ll use this
even though it’s an over simplified approach (Bos-
boom et al., 2014).

The above provides information about lead time270

and accuracy. To also provide information about
the confidence, we include confidence intervals
around the morphological forecasts as described in
(Baart et al., 2011).

3. Results275

3.1. Hydrodynamics

The amount of lead time of the hydrodynamic
forecasts of the November 2007 storm is seen as a
time series in Figure 3. As the number of days to
the storm decreases the ensemble spread in fore-280

casts converges to a narrow yellow band.

Figure 3: Hydrodynamic ensemble (n=52) forecasts as a
function of forecast lead time for the storm in November
2007.

These timeseries are combined with measure-
ments into Figure 4a which shows the errors of the
forecasts as a function of lead time. As one would
expect the forecast for one to a few days ahead has285

less errors than a forecast several days ahead.

As can be seen from the white line , when a storm
is about to occur, longer forecast lead times result
in a positive forecast errors. An observed positive
surge minus a near zero surge forecast give a posi-290

tive forecast error, as seen in Figure 3.

The hydrodynamic ensemble forecast errors are
shown in Figure 5a. These are comparable to
the deterministic forecast errors, only with more
spread. The ensemble forecasts are based on bound-295

ary conditions with coarser resolution.

3.2. Morphology

The results from the determinstic model runs are
shown in Figure 6. The first thing to note is that,
in the forecast bathymetries, the sand is deposited300

closer to the dunes than observed. This can be
seen in the brown patches that are higher than the
green patches near the dunes and the green patches
that are higher than the brown patches near the
intertidal area −1.5 m to 1.5 m, representing fore-305

cast and observed bathymetry changes. The inter-
tidal volume change is not very sensitive to errors
in beach angles.

The morphological errors are shown in Figure
4b. Comparable to the hydrodynamic forecast er-310

rors, the deterministic morphological forecast er-
rors show an increased average error (white line go-
ing up in Figure 4b ) for longer forecast times. As
the storm approaches the inter tidal volume change
forecasts are more close to the observed volume315

changes. The ensemble errors, shown in Figure 5b,
are computed for the profile closest to the camera.
The errors for this profile are larger than for the av-
erage of the four deterministic profile runs in Figure
4b.320

3.3. Skill and lead time

The forecast skills for the hydrodynamic and
morphodynamic forecasts are presented in Figure
7, combined with the lines from Figure 2. This fig-
ure show that even for forecasts 10 days ahead the325

hydrodynamic skill is positive. The skill is above
0.6 for a water level forecast with a lead time of
seven days.

Based on the deterministic water level fore-
cast, the observed waves and the interpolated330

bathymetry, we hindcast the morphological model
starting from 10 days down to 1 day before the
storm. The morphological forecast skill (Figure 7)
shows that the forecast skill is positive up to five
days ahead and over 0.6 for lead times up to three335

days.

4. Discussion

We have seen that the nested hydrodynamic and
morphological models can predict water levels up to
ten days ahead and volume changes in the intertidal340

zone with a skill over 0.6 up to three days ahead at
the Egmond location under storm conditions. This
analysis was possible because an archive was col-
lected of all previous forecasts. This allows to make

5
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(a) Hydrodynamic deterministic forecast errors as
a function of forecast lead time.
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(b) Morphological deterministic forecast errors (in-
tertidal volume change) as a function of forecast
lead time.

Figure 4: Errors for deterministic hydrodynamic and morphological forecasts as a function of forecast lead time for the 10 days
before the storm surge peaks. White line shows the mean forecast error for surge (4a) and for intertidal volume change (4b).
Gray area shows the 1.96 ∗RMSerror interval. The grey lines show 1.96 ∗ σobserved for intertidal volume change and surge.

(a) Hydrodynamic ensemble forecasts errors as a
function of forecast lead time.
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(b) Morphological ensemble forecast errors (inter-
tidal volume change) as a function of forecast lead
time for ensemble forecasts.

Figure 5: Errors for hydrodynamic and morphological ensemble forecasts as a function of forecast lead time for the 10 days
before the storm surge peaks. White line shows the mean forecast error for surge (5a) and for intertidal volume change (5b).
Gray area shows the 1.96 ∗RMSerror interval. The grey lines show 1.96 ∗ σobserved for intertidal volume change and surge.
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Figure 7: Skills for pressure, waves, waterlevels and mor-
phology as a function of forecast lead time. Pressures are
AC for the ECMWF 500 hPa forecasts (European Centre
for Medium-Range Weather Forecasts, 2010), waves are AC
for the ECMWF significant wave height forecasts (European
Centre for Medium-Range Weather Forecasts, 2010). Water
levels are the SS for the water levels for the regional model,
data de Vries (2009), skill computed in this paper. Morphol-
ogy SS for the intertidal beach volume, this paper.

the meta-forecast, “How do you forecast the qual-345

ity of your forecast?”, which is an essential question
in the confidence in forecasts. The preferred way,
if data storage is limited, is to store output of the
models at locations where measurements are also
available. An alternative, and in itself advisable, is350

to keep track of the exact versions of the software,
input data, schematizations with which the model
was run. This allows the recreation of old forecasts.

The system is nearing the skill level needed to
predict coastal breaches with enough lead time to355

act. A lead time of three days can be enough for
a warning of possible breaching to trigger a prepa-
ration effort. From the three days the calculation
time of several hours needs to be subtracted. An
extra margin (over the 0.6 SS level) should be in-360

cluded to account for the negative effect of provid-
ing false warnings (Breznitz, 1984). The exact time
needed to respond depends on the local conditions
and measures. Property can be quickly moved but
evacuation can take days to prepare.365

The lower skill for the morphological forecasts
is in line with what one would expect from a ba-
sic error propagation theory, where the explainable
variance reduces when one makes longer chains of
models. This can be countered by assimilating at370

multiple steps along the chain.

Several approaches can be used to improve on
these results. The error (MSE) and model per-

formance measures (SS) used here all assume that
the measurements represent a true value. The mea-375

surement errors of the hydrodynamic measurements
are often an order of magnitude smaller than the
forecast errors. Then this is a safe assumption to
make. The morphodynamic measurement errors
(estimated in the order of 0.3 m) are smaller but in380

the same order of magnitude as the forecast eleva-
tion changes (around 1 m, see Figure 6). One could
define performance and error measures that take
measurement error into account (only computing
skill if there is noteworthy morphological change).385

Another alternative is to replace the morpholog-
ical model by a statistical model (Plant and Hol-
land, 2011a; den Heijer et al., 2012b) trained on
numerical simulations. This would have the advan-
tages of the greatly reduced computation times and390

it would make the separation between the statisti-
cal model and the numerical model more explicit.
One of the current disadvantages of the Bayesian
Network approach (as used by Plant and Holland,
2011a,b) is that continuous variables are treated as395

nominal variables resulting in a large number of
parameters. By moving to a probabilistic graph-
ical model that allows for the inclusion of continu-
ous variables, for example a Markov Chain Monte
Carlo (MCMC) model (Gelman et al., 2004), the400

number of parameters can be reduced, allowing for
a greater generalizability. To generalize from mild
storms, for which the model can be trained, to large
storms, for which the model should predict, requires
a parsimonious statistical model.405

There are also efforts to improve the numerical
models and schematisations used. As a result of
these efforts, over the last years the water level fore-
casts skill increased (Verlaan et al., 2005). Opera-
tional models, similar to the one discussed here,410

have been setup accross Europe (Ciavola et al.,
2011a) and the United States of America (Barnard
et al., 2014), also resulting in a better set of default
parameters for the XBeach model. In this study we
have used four year old bathymetry measurement415

techniques and four year old hydrodynamic fore-
casts. As our knowledge, measurement and model-
ing skills have progressed over the last four years,
a logical step would be to repeat this activity for
the later and coming storms in order to assess our420

progression.
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5. Conclusion

This study shows a first estimate of morphologi-
cal forecast skill as function of lead time. Based on
the forecast system for the case study of Egmond425

we estimate that the morphological forecast system
gives a lead time of 3 days for dune erosion and 7
days for water levels under storm conditions.

The lead time is an important measure of the rel-
evance of the forecast system. The usability of the430

system depends on its lead time, as it determines
the feasibility of response measures. When confi-
dent forecasts are given several days ahead it allows
for emergency measures and planned evacuation.

Setting a benchmark is the first step towards im-435

proving it. As seen in the progress made in numer-
ical weather prediction, trying to beat the bench-
mark every year, by making full use of available
computer power, by assimilating to data (van Don-
geren et al., 2008; Smith et al., 2012) and by im-440

proving model formulations, is the way forward.

Acronyms

NCAR National Center for Atmospheric
Research

R R Project for Statistical445

Computing

SS Forecast Skill Score

AC anomaly correlation (Wilks,
2011)

ASM Automated Shoreline Mapper450

JARKUS Dutch Annual Coastal
Measurement

ECMWF European Centre for
Medium-Range Weather
Forecasts455

DCSM Dutch Continental Shelf Model

WW3 Wave Watch 3

MSE Mean Squared Error

RMSE Root Mean Squared Error

MCMC Markov Chain Monte Carlo460

MICORE Morphological Impacts and
COastal Risks induced by
Extreme storm events

DUROS DUne eROSion model
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