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Abstract

Launch vehicle structures are commonly composed of cylindrical and conical shells, which
are inherently sensitive to buckling. The axial compression experienced during launch can
consequently be a sizing load case, so it is important to understand the axial buckling behavior
of these shells. Experimental testing is an essential part of studying this phenomenon because
manufacturing imperfections can cause large discrepancies between theory and reality. In
addition, conical shells have been researched less frequently than cylindrical shells, such that
their behavior is less well understood. Experimental testing of launch vehicle structures is
difficult and expensive due to their large size, hence it is preferred to test reduced-scale shells,
representative of the full-scale ones. In this thesis, a scaling methodology is developed which
allows designing representative reduced-scale conical shells for full-scale composite conical
shells buckling in axial compression.

The conical shells are assumed to have a symmetric, balanced layup with negligible flexu-
ral anisotropy. The scaling methodology is developed using the nondimensional governing
equations, obtained through Nemeth’s procedure, which allows to directly use the coefficients
of the equations as scaling parameters. It also provides a framework to not only compare
the buckling load of the shells of different sizes, but also the displacement upon buckling,
the deformation shape, and the radial displacement. The methodology is set up such that
the reduced-scale design parameters are determined sequentially. The buckling behavior of
the two shells is compared using a semi-analytical approach, linear eigenvalue, and implicit
dynamic finite element analyses. The eigenmode imperfection sensitivity is also evaluated.

The methodology is successfully applied to isotropic, cross-ply, quasi-isotropic, and sandwich
conical shells. The prediction accuracy is mainly affected by not being able to simultaneously
satisfy all scaling parameters, by non-negligible flexural anisotropy and transverse shear, and
by differences in imperfection sensitivity between the full-scale and reduced-scale shells. In
any case, accurate results are obtained for the considered shells. The radial displacement
is most difficult to predict, which is attributed to the membrane prebuckling assumption
and neglecting the presence of imperfections. Finally, it is observed that larger eigenmode
imperfections affect the accuracy, but they do not cause the methodology to fail. For future
work, it is recommended to validate the methodology through experimental testing.
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Chapter 1

Introduction

In recent years, there is a revival of interest in space exploration. This is exemplified by the
Artemis program from NASA [1] and the Mars & Beyond mission from SpaceX [2]. Because
of this increasing interest, the need for reliable and economical launch vehicles is larger than
ever. Launch vehicle structures are typically composed of thin-walled components, such as
cylindrical and conical shells. Truncated conical shells are commonly used between and on top
of cylindrical shells as stage and payload adapters. A sizing load case for the launch vehicle
structure is the axial compression caused by the upward pushing thrust and downward pushing
payload weight. Axial compression can lead to buckling, which causes loss of stability and
consequently to possible mission failure.

Although conical shells are often used for engineering applications, their stability behavior is
not yet fully understood. One of the reasons for this is the large difference between theoretical
predictions and experimental results, which is mainly caused by the presence of imperfections.
These imperfections can be originated by the manufacturing process and are consequently not
known during the design phase. This makes it difficult to account for them, thus resulting in
design approaches, such as the NASA SP-8019 guidelines [3]. These guidelines are based on
tests with isotropic conical shells performed in the 1960s and are considered conservative for
the composite shells used nowadays. New design approaches are therefore being investigated,
such that lighter launch vehicles can be developed.

Experimental testing plays a fundamental role in studying the buckling behavior and the
development of these new design methods. This is, however, challenging and expensive for
large-size components. It is therefore preferred to test reduced-scale conical shells, representa-
tive of the full-scale ones. The design of these reduced-scale equivalents is not straightforward
because the stability behavior is complex and influenced by many parameters, such as the
composite layup, dimensions and material. Scaling of conical shells has not been done much
in the past. The few applications do not rely on a clearly defined scientific basis, such that the
scaling does not cover the complete phenomenon. Scaling approaches have been developed
for other structures, such as plates and cylindrical shells. One of the most promising ones is
scaling through the nondimensional governing equations. The nondimensional nature allows
to use the coefficients of the equations as scaling laws and it simplifies the comparison of
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shells of different sizes. Because the governing equations are used, the buckling phenomenon
is covered as a whole within the limits of its assumptions. As a result, not only the buckling
load, but also the displacement, the deformation shape, and the radial displacement can be
scaled.

The research performed for this thesis focuses on the development of a nondimensional scaling
methodology for conical shells buckling in axial compression. The work is undertaken in a
framework of collaboration between the TU Delft and the NASA Langley Research Center.
First, a literature review is performed to understand the state-of-the-art regarding the stability
behavior of conical shells, as well as regarding scaling methodologies. From this study, the
research objective is defined. Second, the nondimensional governing equations are derived
analytically and the scaling methodology is developed. Third, it is explained which methods
are used for the analysis of the conical shells. This also includes a discussion of how the scaling
methodology is evaluated based on the nondimensional parameters. Next, the methodology
is applied to several cases. In chapter 5 and chapter 6, an isotropic and a cross-ply conical
shell are scaled, respectively. In chapter 7, the scaling of a quasi-isotropic composite shell is
discussed and chapter 8 covers the scaling of a sandwich shell. Finally, the thesis is completed
with the conclusions and recommendations.
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Literature Study

Conical shells are commonly used in engineering applications, such as pipelines, submarines
and launch vehicles. They are often employed as connector pieces between cylindrical shells
of different diameter. The thin-walled construction makes these structures lightweight and,
in combination with the curvature, efficient in carrying in-plane loads. Another consequence
of the small thickness-to-radius ratio is that the shells are sensitive to buckling, which can
lead to loss of load carrying capability. As a result, one of the sizing load cases for launch
vehicle shell structures is the axial compression caused by the downward pushing weight and
the upward pushing thrust. To ensure a safe, yet lightweight design of the launch vehicles,
it is important to understand the stability behavior of these shells. Experimental testing is
essential for this because large discrepancies are observed between theoretical predictions and
experimental results. This is, however, costly and difficult due to the large size of launch
vehicle structures. Scaling methodologies allow to design reduced-scale structures, which are
representative of the full-scale structures and which can be tested in a cheaper and more
convenient way. The development of these methodologies is not straightforward due to the
complexity of the buckling phenomenon.

A literature study is performed on this topic. It sketches the framework in which the thesis
is performed and highlights existing research gaps. First, the theoretical and experimental
research on the stability behavior of conical shells in axial compression is discussed. Second,
commonly used design approaches for conical shells are explained. Third, existing scaling
methodologies for shell structures are elaborated upon. Based on this literature review, the
research objective and questions for the thesis are defined.

2.1 Stability of Conical Shells

Conical shells have been researched remarkably less than cylindrical shells. This is com-
monly attributed to the higher complexity in theoretical analysis and manufacturing pro-
cesses. Therefore, conical shells are sometimes analyzed as equivalent cylindrical shells, based
on the similarities between the two shell types. At the same time, there are important differ-
ences between cylindrical and conical shells, such that this approach is not considered reliable.
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For example, the shells have a different sensitivity to imperfections and the cone angle influ-
ences the stability behavior. It is consequently important to investigate the buckling behavior
of conical shells separately. This section discusses the theoretical and experimental research
performed on this topic. [4, 5]

The structure under consideration is shown in Figure 2.1a: a truncated thin-walled conical
shell compressed by an axial load P . The conical shell is assumed to be made of a composite
material, which is typically used for applications in which weight plays an important role.
The corresponding load-displacement curve is visualized in Figure 2.1b. Upon a certain load,
the critical buckling load Pcr, the structure becomes unstable and starts to buckle. This
can be seen in Figure 2.1b by a sudden drop in load. The buckling behavior is different for
a geometrically perfect shell (subscript "per") than for a shell with imperfections (subscript
"imp"). This difference will be investigated here as well.

𝑃

(a) Truncated conical shell under axial compression
loading.

𝑃

𝑢

𝑃𝑐𝑟,𝑝𝑒𝑟
𝑃𝑐𝑟,𝑖𝑚𝑝 knockdown

(b) Load-displacement curve of the conical shell on
the left.

Figure 2.1: Geometry and load-displacement curve of a truncated conical shell under axial
compression, after [6].

2.1.1 Analytical Work

It was mentioned above that the theory describing the stability behavior of conical shells in
axial compression is complex. More specifically, the behavior is typically described by a set of
nonlinear partial differential equations with variable coefficients. Ventsel and Krauthammer
[7] and Brush and Almroth [8] give clear overviews of shell theories applicable to conical
shells. The nonlinearity and variable coefficients complicate the calculation of the buckling
load considerably. A fast analytical tool is preferred for buckling predictions in the early
stages of the design [9]. In 1956, Seide [10] derived an analytical solution for the buckling
load of an isotropic conical shell in axial compression. The solution Pcr is similar to the
solution of the cylindrical shell Pcyl, and is given by

Pcr =
2πEt2 cos2 α√

3(1 − ν2)
= Pcyl cos2 α . (2.1)

In Equation 2.1, E is the Young’s modulus, t the thickness, ν the Poisson’s ratio and α
the cone angle, measured between the central axis and the inclined surface. This equation
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allows for a fast first-order estimation of the buckling load of the shell. One can see that
this equation does neither depend on the boundary conditions of the conical shell, nor on
the length and radii. It is believed, however, that these parameters have an influence on the
buckling performance. For example, the boundary conditions have a stiffening effect on the
conical shell, such that a shorter shell has a higher buckling load [6, 11]. In addition, Seide’s
equation is only valid for isotropic shells. For composite shells, no closed-form solution is
available [9]. Many authors have attempted to develop new solution methods or to improve
the equation from Seide by taking into account different boundary conditions, statistical test
data, the pre-buckling deformation, etc. A compact summary hereof is given by Khakimova [6]
and Kazemi et al. [12].

2.1.2 Experimental Testing

To gain a better understanding of the real behavior of structures, experimental tests are car-
ried out. These tests allow to validate and improve theoretical work and to reveal unpredicted
phenomena. A typical test setup of a conical shell subjected to axial compression is shown in
Figure 2.2.

Figure 2.2: Experimental setup for testing a conical shell [13].

At the German Aerospace Center DLR, three composite conical shells, named K01, K06, and
K08, were tested in axial compression using the test setup shown in Figure 2.2 [13]. The shell
is shown in the middle in red, the black rings on the top and bottom are aluminum end plates
with resin potting, in which the edges of the shell are embedded. They allow for uniform load
introduction in the shell and for clamping the shell in the machine. During the test, the loads
and displacements are recorded via load cells and displacement transducers,respectively. The
displacement data is not only used for measurements, but also for controlling the test speed.
Buckling experiments are typically displacement controlled, because the load suddenly drops
upon buckling while the displacement still increases. If the test would be force controlled,
the machine would keep on increasing the load, thus damaging the shell. Finally, 18 strain
gauges in a back-to-back configuration are attached to the shell and a DIC system is used to
measure and visualize the out-of-plane displacements.

In 2017, Khakimova [6] gave an overview of the buckling experiments carried out on conical
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shells since 1961. This overview is consistent with the one given by Ifayefunmi [5] in 2014.
According to this list, 19 axial compression buckling experiments have been carried out on
isotropic (metal and plastic) conical shells. Often, these shells are rather thick, such that
they buckle in the plastic regime. Only six tests were performed on composite conical shells,
of which four in axial compression. No more recent literature (after 2017) has been found
documenting buckling experiments on composite conical shells in axial compression. The lack
of test campaigns can be explained by the corresponding costs and difficulties, especially for
large structures, such as launch vehicle components. The amount of effort put into the process
is consequently not always balanced with the usefulness of the test data [14,15].

2.1.3 Discrepancy between Theory and Experiments

When comparing the test data to the theoretical predictions from analytical and numerical
models, large discrepancies are observed. The buckling load found during experiments can
be several factors smaller than the load predicted by shell buckling theory [3,16]. Koiter [17]
was the first one in 1945 to prove for cylindrical shells that geometric imperfections are
responsible for the discrepancy and that the degree of imperfection sensitivity depends on
magnitude and shape of the initial imperfections. This is visualized in Figure 2.1b by the
knockdown arrow, indicating the difference in reaction load for the perfect and imperfect
case. Three imperfection types are typically distinguished: geometric imperfections, loading
or boundary imperfections, and stiffness imperfections [18]. These defects are mainly caused
by the test setup and the manufacturing process. Below, each of the imperfections is shortly
discussed.

Geometric imperfections Geometric imperfections, also called traditional or mid-surface
imperfections, are most commonly researched. Geometric imperfections are typically defined
as the deviation from the best-fit conical shell [18]. The measured imperfections of the K08
shell previously discussed are associated with the adopted ply piece topology during man-
ufacturing and with the potting of the shell in the end rings, which may have deformed
the shell [13]. As explained in subsection 2.1.2, not many conical shells have been tested.
Logically, there is also not much data available on measured geometric imperfections. There-
fore, geometric imperfection data from cylindrical structures is sometimes scaled to a conical
shape and used as measured imperfections input in finite element models. This is, for exam-
ple, done by Di Pasqua et al. [19] and Sleight et al. [20]. It should be noted that this is not
always representative, because imperfection patterns are associated with specific production
processes [21,22].

Loading and boundary imperfections Loading and boundary imperfections are imperfec-
tions caused by the test setup. They are attributed to non-uniform load introduction and
imperfect boundary conditions. An additional difficulty arises for loading and boundary im-
perfections due to the unknown loading condition in reality, versus the loading condition
during tests.

Due to the inclined surface, it is more difficult to accurately model the boundary conditions
for conical shells than for cylindrical shells. In this light, Chryssanthopoulos and Spagnoli [23]
compared two types of edge constraints for a stringer-stiffened conical shell. Both are shown
in Figure 2.3. The cylinder edge condition restricts motion in the direction perpendicular to
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Figure 2.3: Cylinder (left and middle) and ring (right) boundary conditions [23].

the inclined surface, whereas the ring edge condition restricts motion in the direction per-
pendicular to the axis of revolution. The buckling load was similar for both edge constraints
for the conical shell considered. The stiffness, on the other hand, was 15% lower for the ring
than for the cylinder edge condition, resulting in a larger displacement upon buckling. The
prebuckling deformation state is also different for the two cases. The authors recommend
using the ring condition for conical shell design, as it mimics the realistic constraints given
by adjacent structures, such as cylindrical shells. They also note that for conical shells with
other geometric parameters, the effect of the edge condition may be larger, and the buckling
load may be affected.

Stiffness imperfections Stiffness imperfections arise from a non-uniform thickness, from
fiber angle variations, and from deviations from the nominal material properties [24]. Due
to the varying radius of the conical shell, this imperfection is more pronounced than for
cylindrical shells. Its presence is, however, often neglected due to the complexity it brings in
analyses.

For metallic shells, which can be integrally machined or formed from a sheet, the thickness
can be made more or less uniform within the tolerances of the manufacturing process. For a
laminated shell, this is not the case: when plies are laid down next to each other on the large
radius edge, they will overlap when approaching the small radius edge. Consequently, the
thickness, and thus stiffness, will be larger near the small radius than near the large radius.
This causes buckling initiation near the large radius, in contrast to constant stiffness shells,
for which buckling initiates near the small radius, where the stresses are higher [25].

Because of the variable geometry, the fiber angle also varies along the surface of the conical
shell. This logically also creates variations in stiffness [26]. Fibers can be laid down according
to various paths, which determines the angle variation. The most common path is the geodesic
path, which has zero in-plane curvature, meaning it is a straight line when the conical shell
is folded open to a 2D structure [27]. The geodesic path occurs for conical shells made by
filament winding, prepreg hand layup and automated tape layup. When fiber steering is
applied, more complex paths, such as constant angle and constant curvature paths, can be
obtained, which are out of the scope of this literature study [28,29].
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2.2 Design Approaches for Conical Shells

As the imperfections in conical shells are mainly caused by the production process and the
test setup, the severity of their influence on the buckling behavior is not known yet during
the design process. It is, however, necessary to account for it, as large discrepancies with
theory exist. There are several methods available for reliable conical shell design, which will
be elaborated upon here. First, the most commonly used guideline, developed by NASA, is
explained. Second, the group of deterministic approaches is elaborated upon, after which the
stochastic methods are discussed.

2.2.1 NASA SP-8019 Guidelines

In 1968, NASA [3] published lower-bound design guidelines for the design of conical shells in
buckling. Experiments were carried out on isotropic shells, but no effect of the geometry on
the factor relating experiments to theory could be found. Therefore, a lower-bound constant
knockdown factor (KDF) of γ = 0.33 was advised for conical shells with cone angle between
10° and 75°. This KDF is applied to the analytical solution of Seide (see subsection 2.1.1),
such that

Pcr = γPSeide = γ
2πEt2 cos2 α√

3(1 − ν2)
. (2.2)

For conical shells with a cone angle smaller than 10°, the guideline recommends using an equiv-
alent cylinder approach. For orthotropic shells, sandwich shells with orthotropic facesheets
and shells with cone angle larger than 75°, no guideline is provided, because no experimental
data was available. For sandwich conical shells with isotropic face sheets, guidelines are pro-
vided. The guideline consists of formulas to calculate an equivalent stiffness and thickness,
which can then be substituted in Equation 2.2. Due to lack of experimental data, the KDF
is the same as for isotropic conical shells.

The shells used for the development of the SP-8019 guideline were isotropic shells, whereas
nowadays the focus lies more on composites. The imperfection sensitivity of these materials is
not well understood and the production processes are completely different from the processes
for isotropic materials, such as metals. As a result, the required knockdown factor for a
safe design is different from the one for isotropic shells. Recent analytical investigation by
Sleight et al. [20] of conical sandwich shells for example showed that for all evaluated shells,
the KDF was larger than 0.5. In addition, the accuracy of production processes for isotropic
materials has been increased over the years, such that the SP-8019 guidelines might not be
representative for shells produced nowadays. Therefore, other methods are being developed
to provide a safe design guideline for orthotropic shells, as well as alternatives to the NASA
guidelines for isotropic shells [21]. NASA set up a project called the Shell Buckling Knock-
Down Factor (SBKDF) with the goal to develop new guidelines to calculate the KDF of shells
prone to buckling [30]. In Europe, the DESICOS project (New Robust Design Guideline for
Imperfection Sensitive Composite Launcher Structures) has been set up in 2012. This project
focused on the single perturbation load methodology, discussed here as well [31]. Up to now,
no satisfactory alternative has been found. In 2010, the European Cooperation for Space
Standardization still recommended to use the SP-8019 guidelines [32]. As an alternative for
the KDF of γ = 0.33, the guidelines given by the European Convention of Constructional
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Steelwork [33] are suggested. Here, the KDF is calculated in terms of the top radius, thickness
and cone angle of the conical shell.

2.2.2 Deterministic Approaches

Many deterministic approaches have been developed for cylindrical shells, which are also
applied to conical shells or their cylindrical equivalent. Two methods are discussed here and
other commonly researched approaches are mentioned, as they are out of the scope of this
study.

Measured imperfections The first deterministic approach is the inclusion of measured im-
perfections in the model. Not only the mid-surface imperfections, but also the thickness
imperfections can be measured and taken into account [13]. Loading imperfections can also
be measured during the test, as done by Schultz et al. for a sandwich cylindrical shell [34].
These imperfections can be applied as a combination of an axial load and a bending moment,
or as a non-uniform distributed load along the top edge. The advantage of using measured
imperfections is that the perturbations are realistic. The disadvantage is that the imperfec-
tion data is not known during the design phase, so only reference data of other shells can be
used. This data is less representative and hardly available, making this approach less reliable.

Eigenmode imperfections The second method is the inclusion of imperfections in the shape
of eigenmodes in the model. The eigenmodes are obtained from a linear eigenvalue analysis
of the perfect shell and can easily be implemented in the nonlinear analysis, as explained by
Castro et al. for the commercial finite element software Abaqus [35]. The reasoning behind
this method is that imperfections of this shape have a bias towards buckling and thus result in
a conservative design. Sometimes even lower KDFs than the NASA guidelines are obtained,
as found by Wang et al. for cylindrical shells [36]. There is no decisive answer on which and
how many eigenmodes to use, neither on the amplitude. As a result, a lot of variability in
the results is obtained [37].

Other methods Many other methods have been developed, including, but not limited to:

• Single perturbation load approach (SPLA): A lateral concentrated load is applied
to the shell to trigger typical buckling initiation [22,38].

• Worst multiple perturbation loads approach: An optimization is carried out to
find the worst combination of lateral loads in terms of application location and number
of loads. This method is found to be more conservative than the previous method, but
it is not clear how to determine the number of perturbation loads [39].

• Single boundary perturbation approach: A shim is locally added to the boundary
to simulate boundary imperfections [18].

• Single embedded delamination approach: Numerically include a local delamina-
tion in the model to include the effect of this manufacturing defect [36].

• Axisymmetric imperfections: Axisymmetric imperfections are modeled to effec-
tively reduce the membrane stiffness [35].
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These guidelines have been developed for cylindrical shells. Khakimova [6] compared the
NASA SP-8019, SPLA, measured imperfections (MSI) and linear eigenmode imperfections
(LBMI) for a symmetrically laminated conical shell with a cone angle of 45°. The measured
imperfections are the imperfections of four cylindrical shells scaled to the conical shell under
consideration. The perturbation load for the SPLA is applied halfway the conical shell’s height
and perpendicular to the surface. The comparative graph is shown in Figure 2.4. The curve
for the eigenmode imperfection does not converge, such that the KDF is lower than the NASA
SP-8019 guideline for imperfections with an amplitude of 60% of the thickness and larger.
The SPLA is less conservative than the eigenmode imperfection, but more conservative than
the measured imperfections. The SPLA was also applied numerically and experimentally to
the K01, K06 and K08 conical shells discussed in subsection 2.1.2 [16].

Figure 2.4: Knockdown factor for the four design approaches considered by Khakimova [6].

2.2.3 Stochastic Approaches

Stochastic approaches are reliability-based methods, making use of the probability distri-
bution of the parameters influencing the buckling behavior. The objective function of this
stochastic problem is the buckling load, which depends on parameters, such as the imperfec-
tion pattern, material properties and ply orientation. If one wishes to say something about
the probability of the buckling load being above or below a certain value, one needs to take
the integral of the probability density function of these influencing parameters. This inte-
gral cannot be solved analytically, so one either uses a semi-analytical approach, such as
the first-order second-moment analysis, or a purely numerical one, such as the Monte Carlo
method [22,40]. No examples in literature were found applying stochastic approaches to buck-
ling of conical shells. This may be caused by the limited experimental data available, which
makes it more difficult to assume reliable distributions for imperfections. For applications to
cylindrical shells, one may consult references [24,40–42].

2.2.4 Finite Element Modeling Techniques

As experimental testing is expensive and analytical solutions are not available or not able to
predict the buckling behavior accurately, a lot of numerical analyses are performed. Usually,
finite element analyses are performed in commercial software packages such as Abaqus, Nas-
tran and Ansys. This section elaborates on the type of solvers and elements used for modeling
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the buckling behavior of shell structures, as well as the modeling of loads and boundary con-
ditions. Note that the focus lies on the solvers and elements in Abaqus, as this software will
be used for the research.

Solvers Shell buckling is a nonlinear phenomenon, thus nonlinear analyses are required.
This is, however, computationally expensive compared to linear analyses. It is observed that
usually in literature a linear analysis is performed first. This gives a first idea of the buckling
load. If desired, the linear eigenmode can be easily implemented as an initial imperfection in
the nonlinear analysis [35]. There are several nonlinear solvers available in Abaqus. The com-
monly used static nonlinear solver is the Newton-Raphson (with artificial damping) method
and the Riks method. The dynamic solvers can be either explicit or implicit. The dynamic
analysis is capable of following the post-buckling path [32]. The static analysis can follow the
behavior up to the buckling load. It may not fully capture the discontinuous post-buckling
behavior, because it uses tangent lines at the current solution point to find the next solution
point. This can be overcome by adding artificial damping to the Newton-Rapshon iterative
solver.

For conical shells, the Newton-Raphson procedure with artificial damping is most commonly
used as nonlinear solver [13, 16, 19, 43]. In all cases, a damping factor of 10−7 is adopted.
Wagner et al. [18] used the Newton-Raphson solver to model the Vega interstage 1/2, but
as they were not interested in the post-buckling regime, no damping was used. Sleight et
al. [20] analyzed sandwich conical shells using a combination of a nonlinear static analysis
and a nonlinear transient analysis. For research focused on fiber paths and variable stiffness,
only linear eigenvalue analyses are carried out, as they are computationally cheaper [29,44].

Element Types Another important aspect for the numerical modeling of shell buckling is the
choice of the element type. The most commonly used element for analyses of shell structures
is the S4R element, a 4-node quadrilateral shell element with reduced integration. Each node
has six degrees of freedom. The reduced integration is used to avoid shear locking, which
would cause the element to behave overly stiff. Due to the linear interpolation, the transverse
shear estimation may become inaccurate for thicker shells. For this, the quadratic element
S8(R) can be used. This is an 8-node quadrilateral shell element. This element type is also
often used in literature for sandwich shell structure analysis. As a guideline, it is suggested
to use quadratic elements if the thickness is larger than 1/15 of the characteristic length of
the shell. [45]

Di Pasqua et al. [46] performed a convergence analysis for conical shells with various cone
angles, ranging from α = 15° to α = 75°. The element type is selected to be the S8R element,
based on the results from Castro et al. [35] for cylindrical shells. They consequently analyze
conical shells subjected to a lateral perturbation load (SPLA) using the Newton-Raphson
solver with artificial damping. The settings for the solver are given in Table 2.1. These
settings were consequently used by Di Pasqua et al. [19] and Khakimova et al. [16,43] as they
analyzed the same or similar conical shells.

Loads and Boundary Conditions The boundary conditions and loads in the finite element
are usually idealizations of the real ones. For example, the boundary conditions are simplified
as fully simply supported or fully clamped, while in reality this is not achievable. The axial
compression load for the stability problem is usually introduced as a displacement, rather than
a load, similar to the experimental test explained in subsection 2.1.2. Khakimova [6] linked
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Table 2.1: Finite element parameters determined by Di Pasqua et al. [46].

Element type S8R
Number of elements around

140
circumference (top radius)
Damping factor 10−7

Minimum increment size 10−7 (for α = 15°) and 10−6 (other)
Initial increment size 0.001
Maximum increment size 0.001
Maximum number of increments 105

the nodes of the top edge of the conical shell to a reference point through pin constraints.
These constraints act as rigid links, so they do not deform. The axial displacement is then
introduced at the reference point, from which it is propagated to the nodes of the top edge.
Sleight et al. [20] used the same modeling technique for load and boundary conditions for the
sandwich conical shell, but used multi-point constraints.

2.3 Scaling Methodologies for Shell Structures

Although many design approaches have been developed, experimental testing is still a funda-
mental part of the design and study of shell structures. These structures, for example launch
vehicle components, can be rather large, measuring several meters in diameter and length.
This requires equal-size equipment for manufacturing and testing, which is costly and com-
plex. Therefore, it is preferred to test reduced-scale structures. The design of representative
reduced-scale structures can, however, be challenging. The reduced-scale structure should
exhibit the same buckling shape and the buckling load should be scalable to the full-scale
structure. Next to this, the scaled structure must stay within the manufacturing and testing
facility constraints. [47]

This section elaborates on the currently existing scaling methodologies. First, the theory
behind scaling is explained. Then, three scaling methods are explained in detail, after which
other methods are shortly highlighted. This is followed by subsection 2.3.6, which gives exam-
ples of scaling applied to conical shells. The focus of the section will be on shell structures, but
will unavoidably also consider the scaling of beam and plates, which knows a longer history
than the scaling of shells.

2.3.1 Similitude Theory

The science behind representative scaling is the similitude theory. It deals with formulat-
ing the necessary and sufficient conditions for similarity between two or more systems. The
behavior of a system is governed by several parameters, by which the system can also be
mathematically described. These parameters are for example the geometry and material.
Similitude theory establishes the relations between the mathematical descriptions, such that
the full-scale design can be transformed to the reduced-scale design and vice versa [48, 49].
These relations are called scaling laws. Mathematically, it can be put this way. The pa-
rameters describing the full-scale system can be structured in a vector XFS. Similarly, the
parameters of the reduced-scale system can be put in a vector XRS, of same length as XRS.
The two vectors can be related through transformation matrix Λ, such that
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XFS = [Λ]XRS . (2.3)

In its simplest form, the transformation matrix is a diagonal matrix. If there are less scaling
laws than parameters governing the behavior, there is design freedom for the scaled structure.
If the scaling laws are too restricting and conflict with manufacturing or test constraints, one
can opt to disobey one or more scaling laws. This is referred to as partial similarity and
partially similar models. In this case, more design freedom may be obtained, at the expense
of a lower degree of similarity. Depending on which scaling law is relaxed, the obtained
similarity may be acceptable or not; the influence of some scaling parameters is smaller than
that of others [50]. If all scaling laws are fulfilled, complete similarity is obtained.

Similitude theory and scaling know a long history, of which Coutinho et al. [15] give a clear
overview up to 2015. Casaburo et al. [14] also recently published a review of similitude
methods. Both review papers extensively refer back to a review by Simitses et al. [51],
which gives a clear explanation on size effects and similitude through governing equations,
including detailed examples. Casaburo et al. [14] provide historical overviews of the methods,
applications and engineering fields dealing with similitude theory, visualized in Figure 2.5.
The most investigated structures are beams and unstiffened plates. For shells, only cylinders
have been studied. The dimensional analysis method (DA) was the first method developed,
followed by similitude theory applied to governing equations (STAGE). It should be noted
that the theory of similitude existed already three decades earlier, in 1915 [15]. Around
1980, the empirical similarity method (ESM) was studied. More recently, asymptotical scaled
modal analysis (ASMA), energy methods (EM), and asymptotic models for structural-acoustic
research applications (SAMSARA) and sensitivity analyses (SA) were used to design scaled
structures. Similitude theory was first applied to aerospace applications, such as launch
vehicles and space stations, after which other engineering fields followed. Impact engineering
has an extensive research background in scaling, especially through dimensional analysis.

(a) Timeline per method. (b) Timeline per application. (c) Timeline per engineering field.

Figure 2.5: Historical overview of similitude theory [14].

One of the sources of confusion in similitude theory is the difference between scale and size
effect. Simitses et al. [51] extensively discussed this. They define scaling effects as "... the
effect of changing the geometric dimensions of a structure or structural component on the
response to external causes." [51]. A force is an example of an external cause. Size effects,
on the other hand, are concerned with changes in material strength or stiffness due to the
physical scaling process [14]. It is not sure whether the latter effect actually exists and if yes,
which properties it affects [51,52]. Furthermore, the size effect is generally neglected: material
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properties obtained from coupon testing are used as input for large-scale structures design.
For the development of scaling methodologies, the effects are usually also neglected [14].

2.3.2 Dimensional Analysis

The dimensional analysis approach is typically applied when the governing equations are
unknown or difficult to achieve, while all physical variables influencing the system are known
[14,49]. The methodology consists of creating a set of independent dimensionless parameters
according to Buckingham’s Π theorem. This theory summarizes the concepts related to
dimensional homogeneity: if an equation describes a physical phenomenon, then the two
sides of the equation should have the same dimensions. For the scaling methodology, one
establishes nondimensional parameters as products of the variables influencing the system’s
behavior [15, 48]. The obtained parameters are the scaling laws, which are not unique. The
choice of parameters, however, is not arbitrary; some parameters are more convenient to
control when searching for a scaled configuration of a system and are consequently easier
to work with [14]. The analyzer should consequently be experienced and have an in-depth
understanding of the physical problem.

From the 1960s, NASA performed a lot of work on the scaling of launch vehicles and space
stations, mainly focusing on the vibration response. NASA investigated the vibration char-
acteristics of the Saturn I and the Saturn V through scaled models [53, 54]. Penning [55]
reported on the scaling of the second stage of the Saturn V to a 1/20 size system. The most
important scaling laws are found to be the geometric scaling laws and the material scaling
law, stating that the Young’s modulus to density ratio should be the same for full-scale and
reduced-scale structures. The adapter of the third to second stage is a conical shell and is
scaled by approximating it as an equivalent cylindrical shell with the radius equal to the av-
erage radius of the conical shell. The scaling methodology is applied to this cylindrical shell,
such that an equivalent cylindrical reduced-scale shell is obtained. This is then translated
back to obtain a conical reduced-scale shell. The experimental results of this reduced-scale
structure are compared to theoretical predictions for the equivalent cylindrical shell. No
agreement is found and it is concluded that the conical shell undergoes complex motions. No
comparison is made to the full-scale structure. Next to this, NASA has performed several
dynamic scale model tests throughout the years, for example, for the Space Shuttle [56] and
the International Space Station [57,58].

Dimensional analysis has been applied to steel conical shells subjected to impact loading [59].
The input and output parameters are given in Table 2.2. Three equivalent structures are
developed, all with cone angle α = 30°. The height, length, radius and thickness are all
scaled by β, which equals 1, 2 and 4 for the three respective structures. Note that the conical
shells are not truncated but end with a cylindrical head. The cylindrical projectiles are
scaled accordingly. The conical shells are tested at different impact velocities. The impact
velocities at which cracking occurs are compared. It is observed that the small structure
resist perforation better than large structures. This is in agreement with literature on size
effects [51], but not with the scaling laws dictating that the critical impact velocity should
be the same for all sizes. The permanent axial deformation neither follows the scaling law,
but are larger than predicted. These discrepancies are attributed to the influence of material
strain rate sensitivity, fracture and plastic buckling. These three phenomena do not obey the
scaling laws. If their effects are taken into account, the difference between experiment and
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theory is smaller.

Table 2.2: Scaling parameters derived by Jiang et al. [59] using Buckingham’s Π theorem.

Scale factor Input parameters Output parameters
1 Cone angle Strains

Impact velocity Stresses
Material densities (shell and projectile)
Yield stresses (shell and projectile)

β Projectile diameter Impact time
Conical shell height Permanent axial displacement

β2 Impact force
β3 Projectile mass
1/β Strain rate

2.3.3 Similitude Theory Applied to the Dimensional Governing Equations

A second method to design scaled systems is by applying the similitude theory to the di-
mensional governing equations. This method relies on the fact that the behavior of the
full-scale and reduced-scale systems are described by the same set of equations. The variables
of the two systems can be related through a scale factor. By substitution of this relation
(i.e. xFS,i = λixRS,i) into the equation of the full-scale system and imposing that the re-
sult should be the equation of the reduced-scale system, one obtains the scaling laws. The
adopted equations can be the differential equations or the solution equation. As a result,
the methodology can be traced back to the theory, which is convenient to assess its applica-
bility. The derivation of the scaling laws and the application to a specific structure is time
consuming. Clearly worked-out examples of the scaling technique are given by Simitses et
al. [51] and Casaburo et al. [14]. This method has been mainly used for vibration problems,
of which Zhu et al. [60] provide an overview. It has also been extensively applied to laminated
structures [50,51,61–63]. Here, some of these applications are highlighted.

Buckling of Laminated Cylindrical Shells In 1993, Rezaeepazhand and Simitses investigated
the buckling and free vibration behavior of symmetric laminated angle-ply plates [61]. Three
years later, they applied this approach to symmetric, cross-ply laminated cylindrical shells
in axial compression [62]. They assume that the material behaves linearly elastic, such that
there is no size effect. It is also assumed that all shells are free from imperfections, or that
imperfections affect the shells in the same way. The authors used the Donnell-type kinematic
relations to establish the buckling equations of the simply supported cylindrical shell.

To obtain complete similarity between full- and reduced-scale shells, several scaling laws
must be followed. First, ply-level scaling should be fulfilled. This means that the material
properties and stacking sequence are identical, but with a different number of plies, namely
[+θ, −θ]s and [+θn, −θn]s. Here, θ is the ply angle, subscript n the number of plies and
subscript S indicates symmetry. The different stacking sequences are visualized in Figure 2.6.
Second, there must be geometric similitude, meaning the radius, length and thickness are
scaled by the same factor. Consequently, the curvature parameter Z = L2

Rt is the same for
both structures.
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Figure 2.6: The three possibilities for distortion in stacking sequence [63].

These scaling laws are rather restricting and give limited design freedom. The use of partially
similar models is also investigated by the authors. They allowed distortion in one of the
parameters at a time, while keeping the other scaling laws fulfilled. The distorted parame-
ters are the number of plies, stacking sequence, length, cylinder radius, total thickness, and
material properties. Accurate predictions of the full-scale shell by the reduced-scale shell are
obtained for distortion of the first three parameters, but not for distortion of the last three
parameters.

For the disturbance in the stacking sequence, the opposite layup was considered for the
reduced-scale shell, which corresponds to general ply scaling in Figure 2.6. The prediction
accuracy increases as the number of plies of the reduced-scale shell increases. which is shown
in Figure 2.7. The triangles show the behavior of the reduced-scale shell, the dots show
the behavior of the full-scale shell and the circles show the prediction of the behavior of
the full-scale shell by the reduced-scale shell. Although a disturbance in length does not
affect the prediction accuracy, the curvature parameter Z is also affected by this change. It
is known that the imperfection sensitivity is affected by the curvature parameter, which is
not investigated in this research. Furthermore, for large distortions in length, the reduced-
scale structure has a different mode shape than the full-scale structure. The poor prediction
accuracy for a disturbance in radius is shown in Figure 2.8: the data points of the predicted
buckling load (circles) and theoretical buckling load (dots) do not coincide.

Tabiei and Simitses [63] extended the work of Rezaeepazhand and Simitses to axially com-
pressed cylindrical shells with initial imperfections. The introduced imperfections are a
weighted sum of several linear buckling modes. The buckling equations and scaling laws
are identical to the ones used by Rezaeepazhand and Simitses [62]. The results are obtained
through a finite element analysis in Abaqus. For the case of complete similarity (ply-level
scaling), the same imperfection sensitivity, quantified through the knockdown factor, is ob-
served for varying number of plies. The end-shortening, however, is not scaled: the calculated
shortening depends on the number of plies. A distortion in stacking sequence is applied using
sublaminate scaling (see Figure 2.6). Almost the same imperfection sensitivity is observed
for varying number of plies. The variation of end-shortening with the number of plies is not
investigated for this case. Unfortunately, the effect of distortions in geometric parameters,
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Figure 2.7: Prediction accuracy of the
buckling load for a disturbance in stacking

sequence and number of plies [62].

Figure 2.8: Prediction accuracy of the
buckling load for a disturbance in

radius [62].

which is known to affect the sensitivity to imperfections, is not studied in this paper.

Ungbhakorn and Wattanasakulpong [64] investigated the structural similitude for the buck-
ling and vibration behavior of anti-symmetric cross-ply laminated cylindrical shells through
similitude theory. Due to the anti-symmetry, the extension-bending coupling matrix B is
non-zero, which is different from the case studied in the papers discussed above. The same
equations and scaling laws are used, with the addition of the scaling laws related to the B
matrix. In case complete similitude is obtained, the accuracy of the scaling law is high in
terms of the buckling load and mode shapes. If the effect of the scaling parameter related
to the B matrix is ignored, partial similarity is obtained, but the prediction accuracy is still
high with a maximum discrepancy of 1% for the buckling load. The buckling mode shape
is correctly predicted in four out of six cases. In contrast, if the A or D matrix effects are
ignored, the accuracy reduces by 33% and the buckling mode is predicted correctly one out
of twelve times. The influence of ignoring the B matrix effect is larger if the number of plies
reduces. This is attributed to the stronger influence of the B matrix (i.e. of the asymme-
try) if there are less plies. Distortions in material properties do not give accurate buckling
predictions, in line with the findings of Rezaeepazhand and Simitses [62].

Modular Approach In 2018, Coutinho et al. [65] noticed that new scaling laws are derived
each time depending on the assumptions of the specific application. This is time-consuming
and a general approach, which makes a minimum of assumptions, would be more convenient.
They therefore develop a modular approach with three levels for a generalized plate. The
first level consists of six modules, each containing the scaling laws corresponding to a set of
equations, which are kept as general as possible by making few assumptions. Examples of the
equations in the modules are the strain-displacement relations and the equations of motion.

On the second level, the scaling laws of the six modules are combined. In case a multi-
body structure is considered, the scaling laws for the interaction between the different bodies
are derived on the third level. This is done by imposing continuity of internal forces and
displacements at the interfaces. The authors successfully apply the approach to a stiffened



18 Literature Study

plate under uniform pressure and pinned along the edges. The scaling laws for the stiffeners
are derived by simplifying the plate equations to beam equations and deriving the scaling
laws from there. Three reduced-scale configurations are explored and they all yield excellent
results when numerically compared in finite element software, as can be seen in Figure 2.9.

Figure 2.9: Comparison of the actual and predicted transverse displacement [65].

An extension of this approach to other structures, such as shells and solid bodies, would enable
scaling of large and complex structures. Additionally, the inclusion of partial similitude, which
was not considered yet, would make the method more versatile.

2.3.4 Similitude Theory Applied to the Nondimensional Governing Equations

The third scaling methodology makes use of nondimensional governing equations. As these
equations are intrinsically independent of the size of the structure, shells of different size can
be easily compared and the coefficients of the equations can be used as scaling parameters.
These parameters should be equal for full-scale and reduced-scale systems to obtain similarity.
Note that the parameters are not unique and that they depend on the way the equations
are made nondimensional. Experience and insight by the designer aid in determining the
most convenient nondimensionalization procedure. Compared to the method discussed in
subsection 2.3.3, this method requires more effort to determine the scaling parameter, but
the design of the reduced-scale systems is more straightforward. This method has not been
applied a lot in the past, but is discussed here because of the promising recent developments.
Four applications were found, which are all discussed here.

Solar Sail System In 2004, Canfield et al. [66] developed similarity rules for a solar sail
system. They approximated the sail as a thin plate with transverse loading and the booms as
beams. The governing equations as well as the boundary conditions of the plate and beams
are made dimensionless, from which scaling parameters are obtained. The interaction between
the sail and booms imposes additional scaling laws. The nondimensional scaling parameters
are set equal for full-scale and reduced-scale structures such that scaling laws are obtained
of similar type as the ones obtained for similarity through dimensional governing equations.
The scaling laws are used for the design of square solar sails with a side length of 20, 30,
and 40 meters, based on a design with a side length of 10 meters. The comparison is made
through a numerical analysis to predict the out-of-plane deflection of the sail and the lateral
deflection of the boom. The material is kept the same for all structures. The 10 meter system
was able to predict the deflections for the three larger systems within 0.6%.
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Free Vibration of a Stiffened Cylindrical Shell Torkamani et al. [67] investigated the free
vibration of an isotropic, orthogonally stiffened cylindrical shell. The full-scale shell has Ω-
shaped stiffeners and Z-shaped ribs. For the scaling analysis, the stiffeners are smeared out
over the shell by averaging the effect of the stiffeners. From the governing equations, the
nondimensional frequency is obtained in terms of nondimensional parameters representing
the geometry, loading, stiffness ratios, etc. Through substitution of the full-scale variables
in the frequency equation of the reduced-scale shell, scaling laws are derived. These are of
similar type as the ones derived by Canfield et al. for the solar sail.

First, a replica model is evaluated. This reduced-scale shell is identical to the full-scale
shell, but geometrically scaled down by a factor 3. A modal analysis is performed in finite
element software and the first ten natural frequencies are compared. In the finite element
model, the stiffeners are applied as discrete elements. The predictions by the reduced-scale
structure are all within 1% of the frequencies obtained for the full-scale structure. As the
production of small and thin Ω- or Z-shaped stiffeners can be difficult, the authors investigated
the possibilities of introducing changes into the design. First, the effect of using equivalent
T-shaped stiffeners is evaluated. The frequency is predicted within 3% if the cross-section
properties are kept identical to the ones of the original reduced-scale stiffeners. The material
of the T-stiffeners can be changed without loss in accuracy such that larger stiffener cross-
sectional areas are possible.

Finally, it is investigated if the number of stiffeners can be reduced to increase the cross-
sectional area of the stiffeners. This results in an error of larger than 10% for two of the
compared modes. This error is attributed to the number of stringers being exactly twice the
number of circumferential half-waves in the reduced-scale shell. As a result, there is a fre-
quency difference between the symmetric and anti-symmetric mode shapes, causing a change
in natural frequency. Furthermore, it is important to note that the assumption of smearing
does not hold anymore if the number of stiffeners is low, thus limiting the applicability of the
latter approach.

An experimental comparison is made between a full-scale aluminum alloy shell with Ω-shaped
stiffeners and Z-shaped ribs and a reduced-scale steel alloy shell with T-shaped ribs and
stiffeners, which is geometrically scaled by a factor 3. The first six frequencies of the full-scale
shell are evaluated and predicted within 7% by the reduced-scale shell. Torkamani et al. show
with this research that the design freedom obtained due to the number of scaling laws being
smaller than the number of variables, can be used smartly. For example, the manufacturing
process can become easier and faster, thus reducing cost while increasing accuracy.

Blended Wing Body Aircraft Section Under Internal Pressure and Compression Loading
Hilburger et al. [68] investigated sub-scale structural designs of a section of a blended wing
body aircraft subjected to internal pressure and a spanwise compressive load. The structure
under consideration consists of a cuboid, representing the center body, and a semicylinder,
representing the leading edge structure. The full-scale structure is made of a sandwich struc-
ture with a honeycomb core and quasi-isotropic carbon fiber facesheets. The equations and
scaling laws are derived from first order shear deformation plate theory, which is applied to
each component of the structure.

The nondimensionalization procedure developed by Stein [69] and Nemeth [70] is used here.
The idea of this procedure is to make the variables of the problem dimensionless, to minimize
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the number of independent parameters describing the behavior, and to avoid inserting a direc-
tion of preference into the equations. The equations are made dimensionless by introducing
nondimensional coordinates and parameters. As this is a multi-body structure, continuity at
the interface must be ensured, which introduces additional equations and thus scaling param-
eters into the analysis. An example of a nondimensional parameter is the nondimensional
out-of-plane displacement W ,

W =

(
A11A22 − A2

12√
A11A22D11D22

)1/2

w , (2.4)

which is a stiffness-weighted function of the dimensional displacement w, depending on the
extensional stiffness values Aij and the flexural stiffness values Dij . This nondimensionaliza-
tion procedure is more complex and more computationally expensive than the one adopted
by Canfield et al. [66] and Torkamani et al. [67]. On the other hand, it allows to decouple
the structural properties, such that convenient scaling parameters are directly obtained from
the equations.

Two reduced-scale structures are developed: one completely similar and one partially simi-
lar. The completely similar structure is geometrically scaled down to 1/12 of the full-scale
structure and also has a sandwich configuration. The partially similar structure is also geo-
metrically scaled to 1/12 and has a monolithic configuration. It has distortions in four out
of ten parameters. The normal stress Q and displacement of the cover panel δ1 and the aft
spar δ2 are compared in Figure 2.10. These results are obtained through a nonlinear finite
element analysis. The full-scale response is indicated by superscript fs, the sandwich reduced-
scale design prediction by superscript s and the monolithic reduced-scale design prediction
by superscript m. The normal stress prediction is accurate for both reduced-scale designs.
The sandwich structure also predicts the displacements exactly, as expected due to the com-
plete similarity. The monolithic structure underestimates both displacements. Analyzing the
distorted parameters, it is observed that they are related to the transverse shear properties,
which are much larger for the monolithic structure. This indicates a higher stiffness, which
propagates as a lower displacement prediction for the full-scale shell. If the monolithic design
is adjusted such that complete similarity is obtained, the results are improved.

These results indicate that the accuracy of partially similar designs greatly depends on the
parameter that is distorted. A sensitivity analysis can point out which scaling laws can be
relaxed without loosing too much accuracy for a certain output. It is noted that the sensitivity
not only depends on the scaling parameter, but also on the evaluated variable as well as the
load case. Furthermore, even if complete similarity is obtained according to the scaling
parameters, discrepancies can arise due to simplifications in the applied governing equations.
The equations might not account for certain phenomena, which can become significant for
the reduced-scale structure. It is therefore important to be aware of the assumptions made
in the derivation of the equations.

Axial Buckling of a Sandwich Cylindrical Shell Finally, Uriol Balbin et al. [47] studied the
scalability of cylindrical shells buckling in axial compression. The structure under considera-
tion is a sandwich cylindrical shell with a honeycomb core and carbon fiber face sheets. This
shell is a simplified subscale structure of a launch vehicle that has been tested by NASA [34].
The nondimensional buckling equations of the Donnell-Mushtari-Vlasov theory are used. The
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Figure 2.10: The theoretical and predicted response of the cover panel and aft spar of the
blended wing body [68].

derivation of these equations for a general shell are derived by Nemeth [70]. The equations
are made specific for a cylindrical shell in axial compression by Schultz and Nemeth [71]. It
is assumed that the initial imperfections, bending-twisting anisotropy, and transverse shear
deformation can be neglected. The derived scaling parameters have a similar structure as the
ones for the blended wing body. As the governing equations are different for a shell than for a
plate, the combination of variables most convenient for the nondimensionalization is different.
For example, the nondimensional out-of-plane displacement is given by

W =
w

4
√

a11a22D11D22
. (2.5)

Here w is the dimensional out-of-plane displacement, aij are the extensional compliances
and Dij are the flexural stiffnesses. Remarkable to note is that the scaling parameters are
decoupled, such that reduced-scale configurations can be found in a sequential, rather than
iterative, process.

Two full-scale designs are considered with the same dimensions but different stacking sequence.
For both designs, reduced-scale structures are created with two different stacking sequences:
[θ/ − θ]s and [θ/0/ − θ]. Four reduced-scale shells are designed for each full-scale shell. There
are fewer scaling parameters than design parameters, so there is some design freedom: the
radius is set to a convenient size for testing. The assumptions regarding the negligible flexural
anisotropy and transverse shear are verified for all shells. The [θ/0/ − θ] reduced-scale shells
are excluded from the analysis because the former assumption does not hold. For two out of
the four remaining reduced-scale designs, the latter assumption is not valid, such that they are
also excluded from the analysis. As a result, for each full-scale design, only one reduced-scale
design remains.

The two full-scale shells and their respective reduced-scale shells are consequently modeled
in finite element software Abaqus. A linear buckling analysis shows that the first full-scale
shell and its reduced-scale version have the same axisymmetric buckling mode. The buckling
mode of the second full-scale shell and its reduced-scale version are slightly different: the
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full-scale shell has a checkerboard pattern, but the reduced-scale shell has a skewed checker-
board pattern. Next, the nonlinear nondimensional load-displacement curve is obtained from
an implicit dynamic analysis. This is shown in Figure 2.11. There is excellent agreement be-
tween the full-scale and reduced-scale shells for displacement, load and stiffness. The largest
discrepancy of 3.88% is observed for the buckling load prediction of the second full-scale shell.
Finally, a preliminary failure check is performed. Facesheet failure and shear crimping are
evaluated and are not expected to occur prior to buckling.

Figure 2.11: The nondimensional load-displacement responses for the full-scale shells
(baselines) and their reduced-scale equivalents (scaled) [47].

This application shows the complexity of the scaling process: not only the scaling parameters
should match, but the assumptions made for the governing equations should hold for both
structures. Furthermore, additional considerations such as minimum core thickness for manu-
facturing, the possibility of failure and the influence of the vicinity of the boundary conditions
on the buckling behavior are to be taken into account. Next to this, the sequential determi-
nation of the reduced-scale design variables is promising, because it avoids time-consuming
iteration. Furthermore, once the reduced-scale shells are designed, they can easily be com-
pared to their full-scale equivalent because they have exactly the same equations.

2.3.5 Other Methods

Next to the methods discussed above, there are some less conventional methods available for
scaling. They are discussed in this section.

Since the early 2000, the energy methods have been studied. This comprises a method based
on the principle of conservation of energy and a method called the asymptotical scaled modal
analysis (ASMA). The former considers systems as a whole and applies similitude theory to the
energy conservation equation. This method has been applied to vibration problems of shallow
shells with various stacking sequences by Ungbhakorn and Singhatanadgid [72]. The same
scaling laws are obtained as in [64], discussed above. The method has also been successfully
applied to stiffened cylindrical shells by Yu and Li [73]. This method is convenient for multi-
body structures, because the systems are considered as a whole. On the other hand, it
requires a lot calculation effort, especially for complex systems. The latter method, ASMA, is
a method for a faster vibration analysis for large structures, especially for high frequencies. A
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generalization of ASMA has been developed by De Rosa et al. [74] and is called the similitude
and asymptotic models for structural-acoustic research applications (SAMSARA) [14].

Next to this, there are empirical similarity methods for rapid prototyping. The methods
consist of testing two specimens: one with simple geometric features produced using rapid
prototyping and another simple specimen produced with the actual production process. Their
state vectors are measured to obtain a state transformation. This transformation matrix can
then be used to relate more complex structures produced by the two methods to each other.
As a result, mock-ups of complex structures can be made using alternative, faster production
processes. The advantage of this method is that the transformation matrix is empirical, and
thus already takes into account manufacturing flaws. The disadvantage is that production
and testing are needed for establishing the similarity rules. [65, 75]

Other methods exist, such as the energy distribution approach and the statistical energy
analysis, but are not discussed here for sake of brevity and because they are more focused on
highly dynamic responses, such as vibrations. Furthermore, methods can be combined with
each other or with sensitivity analyses, as was done by Hilburger et al. [68]. More information
on these methods can be found in [14,65].

2.3.6 Scaling of Conical Shells

Two applications of dimensional analysis to conical shells were found, as already discussed in
subsection 2.3.2. The other methods discussed above are not found to be applied to conical
shells. Additionally, in several review papers [14,15,51,60], conical shells are not mentioned.
Although similitude through governing equations seems to not have been applied to conical
shells, scaling of conical shells has been done in the past. This section gives an overview of
the cases found in literature.

Sleight et al. [20] studied the imperfection sensitivity of conical sandwich composite shells
in axial buckling. Two structures are considered, representing two NASA launch vehicle
components: the Space Launch System Universal Stage Adapter (SLS USA) and the Space
Launch System Payload Attach Fitting (SLS PAF). The former has a small cone angle, the
latter a large one. Several combinations of facesheet layups and core thicknesses are combined
and for each design, a half-height configuration is developed. The half-height design can be
understood as the bottom half conical shell of the full-height design. The materials, stacking
sequence, core thickness, bottom radius, and cone angle are the same as the full-scale structure
design.

The full-scale and reduced-scale designs are numerically tested in Abaqus. Measured imper-
fections (scaled from a cylindrical shell) are applied with an amplitude varying from 0x to 10x
the measured values. Comparing the results of the half-height configurations to the full-height
ones, it is concluded that the buckling loads are almost identical. Furthermore, knockdown
factors are calculated by dividing the nonlinear result with imperfections of all magnitudes by
the linear result without imperfections. They are also more or less identical for reduced-scale
and full-scale structures. The half-height structure sometimes has a higher knockdown factor
than the full-height structure, which would result in an unconservative design if its result
is used for full-scale design. The buckling mode of the two structures are not identical for
full-height and half-height shells. The radial displacements upon buckling are in the same
order of magnitude.
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This scaling method yields very good results compared to the computational effort it requires.
From a testing perspective, this method may not be a useful solution, as there is no circum-
ferential size reduction. However, the production time and cost would be reduced, because
the same mold could be used for both structures. Next to this, there is no scientific rationale
behind the method given and the buckling mode is not accurately predicted.

Yilmaz et al. [76] developed a similarity approach for the buckling of ring-stiffened isotropic
conical shells with high cone angle. They introduced two nondimensional parameters, the
equivalent radius-to-thickness ratio and a rigidity parameter of the stiffening ring. The au-
thors develop three conical shells with identical nondimensional parameters. They do this for
three different cone angles. They consequently nonlinearly model the shells in finite element
software. The obtained buckling load is divided by the buckling load obtained from Seide’s
formula (Equation 2.1) to find a knockdown factor. It is observed that the knockdown factor
is more or less constant for shells with the same cone angle and nondimensional parameters.
The authors successfully applied their approach to conical shells with cone angle 70°, 75° and
80°. Only the knockdown factor is compared, not the buckling shape.

2.4 Conclusions, Research Aim and Objective

Conical shells are commonly used in engineering applications, such as launch vehicles. A sizing
load case for these structures is axial compression, because it can lead to loss of stability and
consequently loss of load carrying capability. Therefore, it is important to understand the
buckling behavior of composite conical shells in axial compression. The behavior is, however,
described by a complex mathematical problem, which does not allow for a straightforward,
accurate analytical solution. Additionally, large discrepancies between test and theory are
observed. These are attributed to imperfections, categorized into geometric, stiffness and
loading and boundary condition imperfections. To account for the discrepancy during the
design, the NASA SP-8019 guidelines have been developed for isotropic shells, which are
found to be overly conservative in many cases and are not applicable to composite conical
shells. Other approaches have been discussed as well, namely the deterministic and stochastic
approaches. Although these approaches give insight in the buckling behavior, they do not
always effectively balance the level of conservatism.

To bridge the gap between the design table and reality, experimental testing is still an in-
evitable part of conical shell development. This is, however, expensive and difficult for large
structures and consequently not frequently done. A solution to the size problem is to test
representative smaller-scale structures. The design of these reduced-scale structures is done
through scaling methodologies, which are based on similitude science. It has mainly been
applied to highly dynamic systems and vibration problems. Various methods for scaling are
discussed.

The dimensional analysis method is applied less and less to aerospace applications, as prefer-
ence is given to methods which can be traced back to equations [15]. In-depth understanding
of the problem is key to determine convenient scaling parameters. Similitude theory applied
to dimensional governing equations has been applied to stability problems, mainly for plates
and cylindrical shells. Satisfactory results are obtained for both completely and partially
similar configurations. The scalability of the imperfection sensitivity has not been researched
extensively yet. A disadvantage of this method is that the reduced-scale system design and
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the comparison of results are time-consuming. The most promising method makes use of the
nondimensional equations. It has been used much less, probably because the nondimensional
equations are less known and complex to achieve. On the other hand, once the equations are
derived, the design of the reduced-scale systems and the comparison between the different
systems is straightforward.

The scaling of more complex structures, such as multi-body structures, conical shells, and
spherical shells, is not done much. For conical shells, the scaling applications found in litera-
ture do not rely on an extensive scientific basis. As a result, the methodology scales only part
of the phenomenon and the accuracy and the number of scaled parameters remain limited.
In addition, if laminate full-scale structures are scaled, the stacking sequences are often not
realistic, thus limiting the practical use of the methodology. Finally, the scalability of the
imperfection sensitivity should be examined in more detail. Especially for shell structures,
the influence of imperfections on real structure behavior cannot be neglected.

This thesis aims to develop a scaling methodology for the stability behavior of composite
conical shells in axial compression. The nondimensional governing equations will be used,
because it allows to directly derive the scaling laws from the equations and to compare the
response of the shells in a straightforward way. The applicability and prediction accuracy
of the methodology are evaluated through finite element models. Additionally, the effects
of assumptions and geometric imperfections on the prediction accuracy are assessed. The
objective of this research, therefore, is

To develop an analytical scaling methodology for the buckling behavior of com-
posite conical shells in axial compression by means of nondimensionalization of
the governing equations and a finite element model comparison as verification.

The following research questions are answered to reach this objective:

• What are the nondimensional scaling parameters making up the scaling methodology?

• How well do the reduced-scale models predict the buckling behavior of the full-scale
model in terms of buckling load and mode shape?

• How do the assumptions in the governing equations limit the reduced-scale model design
and their prediction accuracy?

• How do geometric imperfections affect the accuracy of the scaling methodology?
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Chapter 3

Analytical Derivation of Governing
Equations and Scaling Methodology

The scaling methodology will make use of the nondimensional form of the equations governing
the stability behavior of composite conical shells in axial compression. Therefore, these equa-
tions should be derived before the scaling methodology can be developed. This chapter covers
this part of the research, as well as a discussion of the employed semi-analytical solution. The
approach for the derivation is visualized in Figure 3.1. As a first step, the geometry and sign
conventions are detailed. This consists of, on one hand, sketching a broader framework by
outlining the concepts of general shell theory and, on the other hand, specifying the conven-
tions for the conical shell. This allows to define the kinematic and constitutive equations.
Next, the dimensional governing equations are derived and written in a stress function formu-
lation. These are consequently used for two purposes: the development of a semi-analytical
solution and the nondimensionalization for which the approach established by Nemeth for a
general shell is used [77]. This is followed by a discussion of the step-by-step procedures of
the scaling methodology.

Scaling 

methodology

Kinematic 

equations
Total 

potential 

energy

Equilibrium 

equations

Stability 

equations

Stress 
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formulation
Nondimension-

alization

Constitutive 
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Figure 3.1: Flow chart for the derivation of the scaling methodology and the semi-analytical
solution.

3.1 General Shell Theory

First, concepts from general shell theory are outlined in order to understand the equations
which are later used for the conical shell. A shell is defined as a body bounded by two surfaces,
between which the distance (i.e. the thickness) is much smaller than the in-plane dimensions
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of the surfaces [7]. A shell can be distinguished from a plate through its curvature, which
gives the shell its efficient load carrying capability. The behavior of a general shell is typically
described in a curvilinear (x, y, z) coordinate system, where x and y run parallel to the
principle lines of curvature. The z-direction is oriented such that a right-handed coordinate
system is created. The radii of curvature are given by Rx and Ry for the respective in-plane
axes, as can be seen in Figure 3.2. The in-plane dimensions are given by L1 and L2, the
thickness by t.

𝑦
𝑥

𝑧
𝐿2 𝐿1
𝑅𝑥 𝑅𝑦𝑡

Figure 3.2: General shell geometry and curvilinear coordinate system.

In the nineteenth century, Love [78] presented an approximation shell theory based on linear
elasticity. Use was made of the Kirchhoff hypothesis for plate bending theory, as well as some
assumptions specific for shells [7]. More specifically, it is assumed that

• lines normal to the mid-surface of the shell remain straight and normal to the mid-
surface and do not extend during deformation,

• the through-thickness normal stress σzz is negligible with respect to the other stress
components,

• the shell is thin, and

• displacements are small compared to the thickness.

The first two assumptions are part of Kirchhoff’s hypothesis, the latter two were added by
Love for the shell theory. The first assumption allows to neglect the through-thickness strains
and suggests a state of plane strain. The combination with the second assumption, however,
suggests a state of plane stress. These two states can only coexist if the Poisson’s ratio is
zero, which is usually not the case. This contradiction is known to be present, but it does
not affect the accuracy of the theory to a critical extent. For the thinness criterion, a lower
limit of Li

t = 20 (i = 1, 2) is typically adopted. Because of the last assumption, the nonlinear
terms in the strain-displacement relations vanish in comparison with the linear terms. [7]

Based on these assumptions, a general linear theory for thin shells can be derived. This
theory is still rather complex and does not account for the large displacements observed
during buckling. Donnell [79], Mushtari [80] and Vlasov [81] made additional simplifications
and accounted for these larger displacements. It is assumed that
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• the shell is in a plane stress state, which requires that the transverse shear forces Qx

and Qy have a negligible influence on the in-plane equilibrium, and

• the out-of-plane displacement w dominates the bending response, in comparison to the
in-plane displacements u and v.

The second assumption here contradicts the last assumption made for the Kirchhoff-Love
hypothesis. This is needed to cover the buckling phenomenon. To account for this, the
nonlinear expressions are added back to the strain-displacement relations. In addition, this
assumption puts constraints on the type of shell to which the theory can be applied. More
specifically, the shell should be shallow or, if it is a closed shell, its displacement components
should be rapidly varying functions of the coordinates in the deformed state [7, 8]. The
conical shell analyzed here falls in the second category. Schultz and Nemeth translated this
requirement to the requirement that the deformation should have "more than approximately
three circumferential waves" [71].

3.2 Conical Shell Structure

The conical shell under consideration is shown in Figure 3.3. The coordinate system consists
of the curvilinear (x, y, z) coordinates, in line with the general shell coordinate system in
Figure 3.2. As a result of the curvilinear system, a differential arc length dS between two
neighboring points on the shell surface can be described as

(dS)2 = (Axdx)2 + (Aydy)2 = (dx)2 + (dy)2 . (3.1)

In the equation above, Ax and Ay are the coefficients of the first fundamental form of the
surface, which both equal 1, Ax = Ay = 1, for this set of coordinates [77].

𝑦, 𝑣𝑧, 𝑤 𝑥, 𝑢 𝑟(𝑥) 𝑅2𝑅1 𝐻
𝐿𝛼𝑥 = 0 𝑥 = 𝐿

𝑡

Figure 3.3: Geometry and sign convention for the coordinate system and displacements.

The meridional coordinate x ranges from x = 0 at the small radius end to x = L at the
large radius end. The corresponding displacement is called u. The circumferential coordinate
y ranges from y = 0 to y = 2πr(x), where r(x) is the varying radius. The corresponding
displacement is called v. Usually, an angle coordinate θ is used instead of y, such that
y = r(x) θ. This is not done here, because the nondimensionalization requires all coordinates



30 Analytical Derivation of Governing Equations and Scaling Methodology

to be expressed in units of length. The through-thickness outward normal coordinate z ranges
from z = −t/2 to z = t/2, where t is the thickness, which is identical to the thickness definition
of the general shell in Figure 3.2. As a result, z = 0 at the mid-surface of the shell. The
corresponding displacement is called w. The thickness is assumed to be constant.

As shown in Figure 3.3, the slant length is given by L, which corresponds to dimension L1

in the general shell convention given in Figure 3.2. The height is given by H and the cone
angle by α. The radius of the conical shell varies from R1 at the small end to R2 at the large
end. The varying radius r(x) corresponds to dimension L2 in the general shell convention of
Figure 3.2. The variation of the radius with the meridional coordinate is given by

r(x) = R1 + x sin α . (3.2)

The conical shell conventions in Figure 3.3 have been linked to the general shell conventions in
Figure 3.2 in terms of dimensions and coordinate system. In addition, the radius of curvature
in x-direction is given by Rx → ∞ and the radius of curvature in y-direction Ry = r(x)

cos α . This
can be understood as the radius normal to the shell’s surface.

3.3 Derivation of the Dimensional Governing Equations

This section covers the derivation of the stability equations for a conical shell in axial com-
pression. First, the kinematic relations are explained, after which the constitutive equations
are discussed. Then, the equilibrium equations are derived, from which consequently the sta-
bility equations are found. For the derivation, use is made of the derivation by Nemeth [77],
in which the equations for a general shell are derived. The particularization for the conical
shell is verified with references [25,82].

3.3.1 Kinematic Equations

The kinematic equations define the relations between the strain and displacement components.
In accordance with the Kirchhoff-Love hypothesis, the kinematic relations for the thin shell
are given by

{ǫ(x, y, z)} = {ǫ(x, y)} + z {κ(x, y)} , (3.3)

where

• {ǫ(x, y, z)} is the strain vector, {ǫ(x, y, z)} = {ǫxx, ǫyy, γxy}T ,
• {ǫ(x, y)} is the membrane strain at the mid-surface (i.e. the reference surface at z = 0),
• {κ(x, y)} is the change of curvature of the mid-surface.

It is assumed that the conical shells are free from imperfections. The nonlinear mid-surface
strains and change of curvature according to the Donnell-Mushtari-Vlasov general shell theory
[77] in the adopted coordinate system are consequently given by

{ǫ} =





ǫxx

ǫyy

γxy




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

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u,x + w
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+ 1
2w2

,x
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2w2

,y

u,y + v,x + w,x w,y





(3.4)



3.3 Derivation of the Dimensional Governing Equations 31

and

{κ} =





κxx

κyy

κxy
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. (3.5)

Substituting the radii of curvature of the conical shell, yields

{ǫ} =
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ǫyy

γxy
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(3.6)

and

{κ} =
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κxx
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. (3.7)

In the equations above, and in the following, the subscripts ( ),x and ( ),y denote the derivatives
with respect to the axial and circumferential coordinates.

3.3.2 Constitutive Equations

The conical shell is assumed to be made of a composite material and it is assumed that
each ply can be approximated as an orthotropic layer. In addition, it is assumed that failure
and damage do not occur and that the material behaves linearly elastic. Classical laminate
theory is applied. For an orthotropic ply under plane stress conditions, the stress in the ply
{σply} = {σ11, σ22, τ12}T and strain in the ply {ǫply} = {ǫ11, ǫ22, ǫ12}T are related through

{σply} = [Qply] {ǫply} (3.8)

where [Qply] is the stiffness matrix. It is given by

[Qply] =




E11

1−ν12ν21

ν12E22

1−ν12ν21
0

ν12E22

1−ν12ν21

E22

1−ν12ν21
0

0 0 G12




(3.9)

where E11 is the longitudinal modulus (in the fiber direction), E22 is the transverse modulus
(perpendicular to the fiber direction) and G12 is the in-plane shear modulus. ν12 and ν21 are
the major and minor Poisson’s ratio, respectively. [83]

To obtain the ply properties in the general (x, y, z) coordinate system, a transformation must
be carried out. The transformation matrix [T ] is defined as

[T ] =




cos2 θ sin2 θ 2 sin θ cos θ

sin2 θ cos2 θ −2 sin θ cos θ

− sin θ cos θ sin θ cos θ cos2 θ − sin2 θ




(3.10)
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where θ is the ply angle which is measured positively from the x-axis to the y-axis. As a
result, the stress, strain, and stiffness in the general coordinate system can be obtained using

{σ} = [T ] {σply} , (3.11a)

{ǫ} = [T ]−T {ǫply} , (3.11b)

[Q] = [T ]−1 [Qply] [T ]−T . (3.11c)

It is more convenient to work with the forces and moments per unit width than with stresses.
Therefore, their relation given by

{
{N}
{M}

}
=

∫ t/2

−t/2
{σ}

{
{1}
{z}

}
dz (3.12)

is used to express the forces and moments per unit width as a function of the strain. In the
equation above {N} = {Nxx, Nyy, Nxy}T represents the membrane forces per unit length and
the bending moments per unit length are given by {M} = {Mxx, Myy, Mxy}T .

By substitution of the stress-strain relationships into Equation 3.12, and rewriting the con-
tinuous integral as a discrete sum across the plies, one obtains
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(3.13)

where

Aij =
n∑

k=1

Q
(k)
ij · (zk − zk−1) , (3.14)

Bij =
1

2

n∑
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Q
(k)
ij · (z2

k − z2
k−1) , (3.15)

Dij =
1

3

n∑

k=1

Q
(k)
ij · (z3

k − z3
k−1) , (3.16)

and where Q
(k)
ij is the (i, j) element of the stiffness matrix [Q] of the kth ply of the laminate.

zk and zk−1 are the through-thickness top and bottom location of the kth ply.

The equation above can be simplified by making assumptions on the nature of the laminate.
It is assumed that the layup is symmetric, such that B = 0, and that the layup is balanced,
such that A16 = A26 = 0. The latter means that for every +θ ply, there is a −θ ply. Next to
this, it is assumed that the bending-twisting coupling is negligible, such that D16 = D26 = 0.
It is not possible to achieve zero D16 and D26 entries with a symmetric layup, unless a cross-
ply layup is used, but it is aimed to minimize these two flexural anisotropy parameters. This
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is achieved by placing θ and −θ plies close to each other [83]. As a result, the equations
simplify to the equations for an orthotropic laminate, given by





Nxx

Nyy

Nxy

Mxx

Myy

Mxy





=




A11 A12 0 0 0 0
A12 A22 0 0 0 0
0 0 A66 0 0 0
0 0 0 D11 D12 0
0 0 0 D12 D22 0
0 0 0 0 0 D66








ǫxx

ǫyy

γxy

κxx

κyy

κxy





. (3.17)

Due to the varying radius, thickness differences may arise from overlaps. Furthermore, the
fiber angle of the plies varies along the meridional and/or circumferential coordinate, depend-
ing on the manufacturing technique. As a result, the thickness and stiffness properties are
a function of the coordinates. For simplicity, these effects is not considered in the analysis
here: the thickness, the membrane stiffness matrix A and the flexural stiffness matrix D are
assumed to be constant for the whole conical shell. In addition, it is assumed that the plies
are perfectly bonded to each other.

The scaling methodology will not only be applied to composite conical shells, but also to
isotropic conical shells. This gives insight in the prediction accuracy of the methodology
for a simplified case, which satisfies the laminate assumptions automatically (i.e. symmetry,
balance and negligible flexural anisotropy). An isotropic shell can be understood as a one-layer
composite with thickness t, Young’s modulus E = E11 = E22, Poisson’s ratio ν = ν12 = ν21

and shear modulus G = G12 = E
2(1+ν) . Consequently, the elastic matrices are given by

[A] =
Et

1 − ν2




1 ν 0
ν 1 0
0 0 1−ν

2


 (3.18a)

and

[D] =
Et3

12(1 − ν2)




1 ν 0
ν 1 0
0 0 1−ν

2


 (3.18b)

3.3.3 Equilibrium Equations

The equilibrium equations are derived using the principle of stationary total potential energy.
This implies that the first variation of the potential energy must equal zero, i.e. δΠ = 0 [25,84].
The total potential energy Π is given by

Π = U + V (3.19)

where U denotes the internal strain energy and V the energy due to the external loading.
The internal strain energy is given by

U =
1

2

∫

C
{σ}T {ǫ} dC (3.20)
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in which C denotes the volume. The integral over the thickness can be carried out using
Equation 3.12, such that

U =
1

2

∫

x

∫

y

(
Nxxǫxx + Nyyǫyy + Nxyγxy + Mxxκxx + Myyκyy + Mxyκxy

)
dy dx . (3.21)

The energy due to external loading V is given by

V = −
∫

x

∫

y
(quu + qvv + qww) dy dx

−
∫

y

(
N̂xxu + N̂xyv + Q̂w + M̂xxw,x

)
dy

∣∣∣∣
x=L

x=0

(3.22)

where qu, qv and qw are the external distributed loading in the axial, circumferential, and
normal directions, respectively. N̂xx, N̂xy , Q̂ and M̂xx are the axial, torsional, shearing forces
and the bending moment, respectively, applied at the two ends of the conical shell, where
x = 0 and x = L. Here, only axial compression is considered, such that the energy due to
external loading simplifies to

V = −
∫

y

(
N̂xxu

)
dy
∣∣∣
x=L

x=0
. (3.23)

Summarizing, the total potential energy is given by

Π =
1

2

∫

x

∫

y
(Nxxǫxx +Nyyǫyy + Nxyγxy + Mxxκxx + Myyκyy + Mxyκxy

)
dy dx

−
∫

y

(
N̂xxu

)
dy
∣∣∣
x=L

x=0
.

(3.24)

The equilibrium equations can be found by evaluation of the Euler-Lagrange equations of the
calculus of variations [84] given by

∂F

∂u
− ∂

∂x

∂F

∂u,x
− ∂

∂y

∂F

∂u,y
= 0 , (3.25a)

∂F

∂v
− ∂

∂x

∂F

∂v,x
− ∂

∂y

∂F

∂v,y
= 0 , (3.25b)

∂F

∂w
− ∂

∂x

∂F

∂w,x
− ∂

∂y

∂F

∂w,y
+

∂2

∂x2

∂F

∂w,xx
+

∂2

∂y2

∂F

∂w,yy
+

∂2

∂x∂y

∂F

∂w,xy
= 0 . (3.25c)

In the equations above, F is the integrand of the total potential energy. More specifically,

Π =

∫

x

∫

y
F (u, u,x, u,y, v, v,x, v,y, w, w,x, w,y, w,xx, w,yy, w,xy) dy dx . (3.26)
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Substitution of the kinematic relations and the constitutive relations into the energy expres-
sions allows to express F in terms of the displacements, namely

F =
1

2

[
A11

(
u,x +

1

2
w2

,x

)2

+ A22

(
v,y +

cos α

r(x)
w +

1

2
w2

,y

)2

+ 2A12

(
u,x +

1

2
w2

,x

) (
v,y +

cos α

r(x)
w +

1

2

1

r2(x)
w2

,y

)

+ A66 (u,y + v,x + w,xw,y)2
]

+
1

2

[
D11w2

,xx + D22w2
,yy + 2D12 w,xxw,yy + D66(−2 w,xy)2

]
.

(3.27)

The first derivatives of F with respect to the displacements and their derivatives are taken
and substituted into Equation 3.25. This yields to the following equilibrium equations, in
agreement with the general shell equilibrium equations [77].

Nxx,x + Nxy,y = 0 , (3.28a)

Nxy,x + Nyy,y = 0 , (3.28b)

Mxx,xx + 2Mxy,xy + Myy,yy − cos α

r(x)
Nyy + Nxx w,xx + Nyy w,yy + 2Nxy w,xy = 0 . (3.28c)

3.3.4 Stability Equations

The stability equations are determined using the perturbation technique, also called the
method of adjacent equilibrium [8, 77]. Prior to buckling, the shell is assumed to be in a
primary equilibrium state, described by displacement field (up, vp, wp). Near the point of
buckling, it is assumed that there exists an adjacent equilibrium state, (ũ, ṽ, w̃), sufficiently
close to the primary equilibrium state, such that ũ, ṽ, and w̃ are infinitesimally small. In
addition, it is assumed that the conical shell is in a membrane state prior to buckling. This
implies there is no out-of-plane displacement, wp = 0, and that the derivatives of wp are also
zero. This linearizes the strain-displacement relations. The total displacements are given by

u = up + ũ , (3.29a)

v = vp + ṽ , (3.29b)

w = 0 + w̃ . (3.29c)

Consequently, the mid-surface strains and change of curvatures are given by

{ǫ} = {ǫp} +
{

ǫ̃
}

(3.30a)

and
{κ} = {0} + {κ̃} (3.30b)

where



36 Analytical Derivation of Governing Equations and Scaling Methodology

{ǫp} =





u,x

v,y

u,y + v,x





, (3.31)

{
ǫ̃
}

=





ũ,x

ṽ,y + cos α
r(x) w̃

ũ,y + ṽ,x





, (3.32)

and

{κ̃} =





−w̃,xx

−w̃,yy

−2 w̃,xy





. (3.33)

Note that products of the variations are neglected in accordance with the assumption that
the variations are infinitesimally small [77]. The membrane forces and the bending moments
per unit length are

{
{N}
{M}

}
=

{
{Np}
{Mp}

}
+





{
Ñ
}

{
M̃
}



 . (3.34)

The constitutive equations of the variations are consequently given by





{
Ñ
}

{
M̃
}



 =

[
A 0
0 D

]{{
ǫ̃
}

{κ̃}

}
. (3.35)

No increment is applied to the external load. As the new state should still be in equilibrium,
Equation 3.34 is substituted into the equilibrium equations in Equation 3.28. As a result,

(
Np

xx + Ñxx

)
,x

+
(
Np

xy + Ñxy

)
,y

= 0 , (3.36a)

(
Np

yy + Ñyy

)
,y

+
(
Np

xy + Ñxy

)
,x

= 0 , (3.36b)

(Mp
xx +M̃xx

)
,xx

+ 2
(
Mp

xy + M̃xy

)
,xy

+
(
Mp

yy + M̃yy

)
,yy

− cos α

r(x)

(
Np

yy + Ñyy

)

+
(
Np

xx + Ñxx

)
w̃,xx +

(
Np

yy + Ñyy

)
w̃,yy + 2

(
Np

xy + Ñxy

)
w̃,xy = 0 .

(3.36c)

The terms related to the primary equilibrium state can be isolated to satisfy equilibrium for
this state. As a result, the stability equations are obtained. The terms of quadratic degree and
higher in the variations are neglected in accordance with the assumption that the variations
are infinitesimally small. The stability equations, in agreement with the stability equations
for a general shell [77], are given by

Ñxx,x + Ñxy,y = 0 , (3.37a)
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Ñxy,x + Ñyy,y = 0 , (3.37b)

M̃xx,xx + 2M̃xy,xy + M̃yy,yy − cos α

r(x)
Ñyy + Np

xxw̃,xx + Np
yyw̃,yy + 2Np

xyw̃,xy = 0 . (3.37c)

Because of the assumed membrane state, the primary membrane forces for a conical shell
axially compressed by load P [8] are given by

Np
xx =

P

2πr(x) cos α
, (3.38a)

Np
yy = 0 , (3.38b)

Np
xy = 0 , (3.38c)

such that the stability equations simplify to

Ñxx,x + Ñxy,y = 0 , (3.39a)

Ñxy,x + Ñyy,y = 0 , (3.39b)

M̃xx,xx + 2M̃xy,xy + M̃yy,yy − cos α

r(x)
Ñyy + Np

xxw̃,xx = 0 . (3.39c)

3.3.5 Stress Function Formulation

To make the stability equations nondimensional, a stress function φ̃ is introduced [77], defined
by

Ñxx = φ̃,yy , (3.40a)

Ñyy = φ̃,xx , (3.40b)

Ñxy = −φ̃,xy . (3.40c)

Substitution of Equation 3.40 in the stability equations in Equation 3.39, shows that the first
two stability equations are automatically satisfied. The third stability equation is written in
terms of φ̃ and w̃ making use of the stress function definition and the constitutive equations
of the orthotropic laminate, such that

D11 w̃,xxxx + 2(D12 + 2 D66)w̃,xxyy + D22 w̃,yyyy +
cos α

r(x)
φ̃,xx − Np

xxw̃,xx = 0 . (3.41)

As the first two stability equations have been eliminated, a compatibility equation is in-
troduced to guarantee the continuity of the shell at mid-surface during deformation. The
compatibility equation is obtained by eliminating u and v from the kinematic equations given
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in Equation 3.6. Therefore, ǫxx is differentiated twice with respect to y, ǫyy twice with respect
to x and γxy once with respect to x and once with respect to y.

ǫxx,yy = u,xyy + w,x w,xyy + w2
,xy , (3.42a)

ǫyy,xx = v,yxx + w,y w,xxy + w2
,xy +

(
cos α

r(x)
w

)

,xx

, (3.42b)

γxy,xy = u,xyy + v,xxy + w,y w,xxy + w2
,xy + w,xx w,yy + w,x w,xyy . (3.42c)

Displacements u and v are eliminated by substituting the expressions for u,xyy and v,yxx from
the first two strains, respectively, into the shear strain expression,

ǫxx,yy + ǫyy,xx − γxy,xy = w2
,xy − w,xx w,yy +

(
cos α

r(x)
w

)

,xx

. (3.43)

It is assumed that for shallow shells the curvatures are mildly varying [77], such that
(

cos α

r(x)
w

)

,xx

=
cos α

r(x)
w,xx . (3.44)

As a result, the compatibility equation is given by

ǫxx,yy + ǫyy,xx − γxy,xy = w2
,xy − w,xx w,yy +

cos α

r(x)
w,xx . (3.45)

Applying the perturbation technique to the equation above and satisfying the equation for
the primary equilibrium state, allows to determine the buckling compatibility equation,

ǫ̃xx,yy + ǫ̃yy,xx − γ̃xy,xy = 2 w̃,xy wp
,xy − wp

,xx w̃,yy − w̃,xx wp
,yy +

cos α

r(x)
w̃,xx (3.46)

where the terms of quadratic degree are already omitted. Neglecting the primary out-of-plane
displacement wp and its derivatives, yields

ǫ̃xx,yy + ǫ̃yy,xx − γ̃xy,xy =
cos α

r(x)
w̃,xx . (3.47)

To express this equation in terms of the stress function φ̃, use is made of the inverted form
of the buckling constitutive equations

ǫ̃xx = a11 φ̃,yy + a12 φ̃,xx , (3.48a)

ǫ̃yy = a12 φ̃,yy + a22 φ̃,xx , (3.48b)

γ̃xy = −a66 φ̃,xy , (3.48c)

where aij indicate the coefficients of the inverted form of the membrane constitutive equations,
i.e. [a] = [A]−1. For asymmetric laminates, [a] also depends on the [B] and [D] stiffness
matrices.

Substituting this result in the buckling compatibility equation, yields

a22 φ̃,xxxx + (2a12 + a66) φ̃,xxyy + a11 φ̃,yyyy =
cos α

r(x)
w̃,xx . (3.49)
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3.3.6 Summary: Dimensional Governing Equations

Summarizing, the buckling problem is now described by the stability equation,

D11 w̃,xxxx + 2(D12 + 2 D66)w̃,xxyy + D22 w̃,yyyy +
cos α

r(x)
φ̃,xx − Np

xxw̃,xx = 0 , (3.50)

and the compatibility equation,

a22 φ̃,xxxx + (2a12 + a66) φ̃,xxyy + a11 φ̃,yyyy =
cos α

r(x)
w̃,xx . (3.51)

3.4 Semi-analytical Solution

The governing equations described above have variable coefficients, such that a solution to the
buckling problem is not easily obtained. It was already discussed in the literature study that
there is no closed form buckling solution for composite conical shells in axial compression. It
is, however, convenient to have a semi-analytical solution at hand to calculate the buckling
load without having to run expensive finite element analyses. A semi-analytical solution
has been developed by Schiffner [85] (in German) and by Zhang [86] for the buckling of
orthotropic conical shells, which will be used in consequent analyses. Because the solution is
rather elaborate, it is shortly explained in this section how it is derived. For clarity, some of
the notations of Zhang are changed to the conventions used here.

For the derivation of the semi-analytical solution, Zhang makes use of a (s, θ) system, which
is shown in Figure 3.4. Because of this different coordinate system, the varying radius r(s) is
given by

r(s) = s sin α . (3.52)

The meridional coordinate s ranges from s1 at the small radius edge to s2 at the large radius
edge. Circumferential angle coordinate θ ranges from 0 to 2π.

The governing equations are derived using the same assumptions and in a similar way as in
section 3.3. As a result, the stability behavior is described by equations similar to Equa-
tion 3.50 and Equation 3.51, but in the different coordinate system. To reduce the number
of variable coefficients, a change of variables from s to ζ is introduced, given by

s = s1eζ . (3.53)

In addition, the stiffness and compliance parameters are made nondimensional using an
isotropic equivalent, namely

a∗
ij = E11t aij , (3.54a)

D∗
ij =

12(1 − ν2
12)

E11t3
Dij . (3.54b)

Consequently, a skewed buckling pattern is assumed, which satisfies the boundary conditions
that the out-of-plane deformation is zero at the edges. Applying the method of undetermined
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𝑤𝑢 𝑟(𝑠)
𝑅2𝑅1

𝐿𝛼𝑠 = 𝑠1 𝑠 = 𝑠2

𝑡
𝑠

𝜃 𝑣
Figure 3.4: Coordinate system and conical shell used for the semi-analytical solution, based

on [86].

coefficients to the compatibility equation, the solution for the stress function is found. Finally,
Galerkin’s procedure is applied and a solution is found, given by

λm,n =
c(4k2 + 1) tan α

(1 − e−ζ0)s1t(1 + 2k2)

[
t2(1 − e−2ζ0)γD∗,m,n

16c2
+

s2
1ζ0(1 + k2)

2γa∗,m,n tan2 α

]
(3.55)

where

γD∗,m,n = D∗
11(k2 − 2) + D∗

22

[
1 +

(1 − n2)2

1 + k2

]
+ 2 (D∗

12 + 2D∗
66) n2 , (3.56a)

γa∗,m,n = a∗
11(1 − n2)2 + (a∗

11 + a∗
22) k2 + a∗

22k4 + (2a∗
12 + a∗

66) n2k2 , (3.56b)

c =
√

3(1 − ν2
12) , (3.56c)

k =
mπ

ζ0
, (3.56d)

n =
n1

sin α
, (3.56e)

ζ0 = ln
s2

s1
. (3.56f)

In the equations above, n1 is the number of circumferential full waves and m is the number
of meridional half-waves. The solution given in Equation 3.55 is minimized with respect to
these two parameters, which characterize the buckling mode (m, n). The relative buckling
load λm,n is then converted to the buckling load Pcr using

Pcr = λm,n · 2πE11t2 cos2 α

c
. (3.57)
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3.5 Nondimensionalization of the Governing Equations

In section 3.3, the stability and compatibility equation for an orthotropic conical shell in
axial compression are derived. These two governing equations, given by Equation 3.50 and
Equation 3.51, are now made nondimensional. The nondimensionalization procedure defined
by Nemeth for a general shell [77] is followed and applied to the case of the conical shell. If
the nondimensional coefficients in the resulting equations are equal for two or more conical
shells, the equations describing the buckling behavior are identical. As a result, the buckling
behavior is expected to be identical for those two or more shells.

The equations are made nondimensional by introducing nondimensional coordinates z1 = x/L
and z2 = y/r(x). The varying radius of the conical shell is consequently expressed as

r(z1) = R1 + L z1 sin α . (3.58)

3.5.1 Compatibility Equation

The nondimensional coordinates z1 and z2 are introduced into the compatibility equation,

Equation 3.51, and the equation is multiplied with L2 r2(z1)
√

a11 a22
, such that

a22

L4

L2 r2(z1)√
a11 a22

∂4φ̃

∂z4
1

+
2 a12 + a66

L2 r2(z1)

L2 r2(z1)√
a11 a22

∂4φ̃

∂z2
1∂z2

2

+
a11

r4(z1)

L2 r2(z1)√
a11 a22

∂4φ̃

∂z4
2

=
cos α

r(z1) L2

L2 r2(z1)√
a11 a22

∂2w̃

∂z2
1

.

(3.59)

Upon rewriting,

α2
m

∂4φ̃

∂z4
1

+ 2µ
∂4φ̃

∂z2
1∂z2

2

+
1

α2
m

∂4φ̃

∂z4
2

=
cos α r(z1)√

a11 a22

∂2w̃

∂z2
1

(3.60)

where two nondimensional membrane coefficients are introduced. The membrane parameter
αm and the membrane orthotropy parameter µ are respectively given by

αm =
r(z1)

L

(
a22

a11

)0.25

(3.61a)

and

µ =
2 a12 + a66

2
√

a11 a22
. (3.61b)

In order to make the equation of order one, the equation is multiplied by 1√
D11 D22

. Conse-

quently, the newly defined nondimensional stress function Φ̃, given by

Φ̃ =
φ̃√

D11 D22
, (3.62)
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can be substituted in the compatibility equation. Furthermore, the out-of-plane displacement
w̃ is replaced by its nondimensional counterpart W̃ defined by

W̃ =
w̃

(a11a22D11D22)0.25 . (3.63)

The nondimensional compatibility equation is given by

α2
m

∂4Φ̃

∂z4
1

+ 2µ
∂4Φ̃

∂z2
1∂z2

2

+
1

α2
m

∂4Φ̃

∂z4
2

=
√

12 Z2
∂2W̃

∂z2
1

, (3.64)

where the equivalent Batdorf-Stein parameter Z2 is defined by

Z2 =
r(z1) cos α√

12 (a11a22D11D22)0.25 . (3.65)

3.5.2 Stability Equation

The nondimensional coordinates z1 and z2 are introduced into the stability equation, Equa-

tion 3.50, and the equation is multiplied with L2 r2(z1)
√

D11 D22

, such that

D11

L4

L2 r2(z1)√
D11 D22

∂4w̃

∂z4
1

+ 2
D12 + 2 D66

L2 r2(z1)

L2 r2(z1)√
D11 D22

∂4w̃

∂z2
1∂z2

2

+
D22

r4(z1)

L2 r2(z1)√
D11 D22

∂4w̃

∂z4
2

+
cos α

r(z1) L2

L2 r2(z1)√
D11 D22

∂2φ̃

∂z2
1

− Np
xx

L2

L2 r2(z1)√
D11 D22

∂2w̃

∂z2
1

= 0

. (3.66)

Upon rewriting,

α2
b

∂4w̃

∂z4
1

+ 2β
∂4w̃

∂z2
1∂z2

2

+
1

α2
b

∂4w̃

∂z4
2

+
r(z1) cos α√

D11 D22

∂2φ̃

∂z2
1

− Kxx
∂2w̃

∂z2
1

= 0 , (3.67)

where two nondimensional flexural coefficients are introduced, as well as the nondimensional
loading parameter. The bending parameter αb, the flexural orthotropy parameter β and the
loading parameter Kxx are respectively given by

αb =
r(z1)

L

(
D11

D22

)0.25

, (3.68a)

β =
D12 + 2 D66√

D11 D22
, (3.68b)

Kxx =
Np

xxr2(z1)√
D11 D22

. (3.68c)

Multiplying the equation with (a11a22D11D22)0.25, such that W̃ can be introduced and sub-
stituting Equation 3.62, gives the following nondimensional stability equation

α2
b

∂4W̃

∂z4
1

+ 2β
∂4W̃

∂z2
1∂z2

2

+
1

α2
b

∂4W̃

∂z4
2

+
√

12 Z2
∂2Φ̃

∂z2
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= 0 . (3.69)
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3.5.3 Summary: Nondimensional Governing Equations

The nondimensional equations to describe the stability behavior of an orthotropic conical
shell in axial compression have been determined. They are summarized below for clarity.

The compatibility equation,
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, (3.70)

and the stability equation,
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= 0 . (3.71)

In the equations above, the membrane parameter αm and bending parameter αb are given by

αm =
r(z1)

L

(
a22

a11

)0.25

, (3.72a)

αb =
r(z1)

L

(
D11

D22

)0.25

. (3.72b)

The membrane orthotropy parameter µ and flexural orthotropy parameter β are defined as

µ =
2 a12 + a66

2
√

a11 a22
, (3.72c)

β =
D12 + 2 D66√

D11 D22
. (3.72d)

The equivalent Batdorf-Stein parameter Z2 is specified as

Z2 =
r(z1) cos α√

12 (a11 a22 D11 D22)0.25 , (3.72e)

and the loading parameter Kxx, making use of Equation 3.38a, is given by

Kxx =
Np

xxr2(z1)√
D11 D22

=
P r(z1)

2π cos α
√

D11 D22
, (3.72f)

3.5.4 Particularization for Isotropic Conical Shells

It was already mentioned in subsection 3.3.2 that the scaling methodology will also be applied
to an isotropic conical shell. This allows to evaluate the prediction accuracy of the method-
ology for a conical shell which automatically satisfies the assumptions regarding symmetry,
balance and negligible flexural anisotropy parameters. Because of the simplified constitutive
equations, the nondimensional coefficients can be simplified as well. The governing equa-
tions are still given by Equation 3.70 and Equation 3.71. Making use of the isotropic elastic
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stiffnesses given in Equation 3.18, the membrane parameter αm and bending parameter αb

become identical and equal to

αmb = αm = αb =
r(z1)

L
. (3.73a)

The orthotropy parameters µ and β simplify to

µ = β = 1 , (3.73b)

and the equivalent Batdorf-Stein parameter Z2 becomes

Z2 =
r(z1) cos α

t

√
1 − ν2 . (3.73c)

Finally, the loading parameter Kxx simplifies to

Kxx =
P r(z1)

2π cos α

12(1 − ν2)

Eh3
. (3.73d)

3.6 Scaling Methodology

The nondimensional governing equations of the symmetrically laminated, balanced composite
conical shell in axial compression are found in the previous section. If the parameters in these
equations are identical for two different shells, it is expected that their stability behavior up
to the buckling point is identical. More specifically, it is expected that they have the same
nondimensional buckling load and displacement, as well as the same deformation shape. In
order to find these combinations of shells with identical parameters, a scaling methodology is
created. The methodology aims to find an equivalent reduced-scale conical shell for a given
full-scale conical shell. First, this methodology is set up for an isotropic shell, for which
certain simplifications hold. Second, the methodology is set up for a composite shell with a
symmetric, balanced layup with negligible flexural anisotropy.

3.6.1 Isotropic Conical Shells

The simplifications in the nondimensional parameters for isotropic conical shells are explained
in subsection 3.5.4. Because the orthotropy parameters equal unity and the membrane and
bending parameters are identical, there are less constraints on the reduced-scale shell design.
The loading parameter Kxx will not be used for scaling, but will be used to evaluate the
methodology by comparing Kxx for the full-scale and the reduced-scale conical shells. As
a result, there are only two distinct parameters constraining the reduced-scale shell design,
namely αmb and Z2. These parameters, however, are linear functions of the meridional coor-
dinate z1. In order to satisfy the parameters at each meridional location, they are matched
at the two extremes, z1 = 0 and z1 = 1. The same holds for loading parameter Kxx. As a
result, the following parameters are found,

αmb,z1=0 =
R1

L
, (3.74a)
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αmb,z1=1 =
R1 + L sin α

L
, (3.74b)

Z2,z1=0 =
R1 cos α

t

√
1 − ν2 , (3.74c)

Z2,z1=1 =
(R1 + L sin α) cos α

t

√
1 − ν2 , (3.74d)

Kxx,z1=0 =
P R1

2π cos α

12(1 − ν2)

Eh3
, (3.74e)

Kxx,z1=1 =
P (R1 + L sin α)

2π cos α

12(1 − ν2)

Eh3
. (3.74f)

Using these parameters, one can derive intuitive scaling rules such that there is full similarity,
meaning that all scaling parameters are satisfied. If Equation 3.74a is identical for full-scale
and reduced-scale shells, then it can be derived from Equation 3.74b that the cone angle α
should also be identical for the two shells. Consequently, Equation 3.74c or Equation 3.74d
can be used to determine the radius-to-thickness ratio, given the material has been chosen.
These two equations will yield the same result, if all scaling parameters are satisfied. Similarly,
Equation 3.74e and Equation 3.74f will yield the same load P .

Based on the reasoning above, the sequential methodology outlined in Figure 3.5 should be
followed to scale a conical shell, isotropic or composite, to a fully similar isotropic conical
shell. It is assumed that the geometry and the nondimensional parameters of the full-scale
shell are known.

1. Choose material 
(𝐸, 𝜈)

2. Set cone angle 𝛼
equal to cone angle of 

full-scale shell

3. Choose one 
dimension of 𝐿, 𝑅1, 𝑅2 4. Determine other 2 

dimensions from 𝐿, 𝑅1, 𝑅2 using 𝛼𝑚𝑏 5. Determine thickness 𝑡 using 𝑍2
Thickness too small? Increase 

chosen dimension

Figure 3.5: Scaling methodology procedure for isotropic conical shells.

Following this procedure, one finds a reduced-scale conical shell, fully similar to the full-scale
conical shell. One can consequently analyze the buckling behavior of this reduced-scale conical
shell and use Equation 3.74e and Equation 3.74f to estimate the buckling load of the full-scale
conical shell. From the methodology, it becomes clear that there is some design freedom:
the material and one of the dimensions (length, radius or thickness) can be chosen freely.
Therefore, if the available test equipment allows for different cross-sectional sizes or lengths,
but the manufacturing facility cannot produce very thin shells, it may be of interest to choose
the thickness instead of the length or radius. The latter two parameters are then derived using
Equation 3.74a to Equation 3.74d. Finally, it is noted that the scaling methodology allows
for a sequential determination of the design parameters of the reduced-scale conical shell. No
iteration is required to match the scaling parameters, which limits the computational effort.

3.6.2 Composite Conical Shells

This section discusses the scaling methodology for a composite conical shell with a symmetri-
cally laminated, balanced layup. The nondimensional parameters are given in Equation 3.72.
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This time, no further simplifications can be applied. To match the parameters dependent on
z1 for every point on the conical shell, the values at z1 = 0 and at z1 = 1 are used, in line
with the isotropic shell.

It can be seen that Equation 3.72c and Equation 3.72d only depend on material and stacking
sequence properties. As a result, they can be used first to determine the layup of the reduced-
scale conical shell. Next, it can be seen that Equation 3.72a and Equation 3.72b at z1 = 0
depend on two components: the radius-to-length ratio and the layup details. The latter
has been fixed already, so αm and αb can be used to find a radius-to-length ratio of the
reduced-scale shell. Subsequently, the cone angle can be determined using Equation 3.72a
and Equation 3.72b at z1 = 1. Finally, Equation 3.72e at z1 = 0 and at z1 = 1 can be used
to determine the radius and the length. This results in the methodology given in Figure 3.6
to scale a conical shell, which can be isotropic or composite (symmetric, balanced layup
with negligible flexural anisotropy), to a reduced-scale composite (symmetric, balanced layup
with negligible flexural anisotropy) conical shell. It is assumed that the geometry and the
nondimensional parameters are known for the full-scale shell.

1. Choose material 
(𝐸11, 𝐸22, 𝐺12, 𝜈12)

2. Determine 
(symmetric, balanced) 

layup using 𝜇 and 𝛽 3. Determine ratio 
𝑅1𝐿

using 𝛼𝑚 and 𝛼𝑏 at 𝑧1 = 0 4. Determine cone 
angle 𝛼 using 𝛼𝑚 and 𝛼𝑏 at 𝑧1 = 1 5. Determine 𝑅1 and 𝐿

using 𝑍2
Size too large? Reduce layup 

thickness

Check if flexural 
anisotropy parameters 

are negligible

Figure 3.6: Scaling methodology procedure for composite conical shells.

The radius-to-length ratio determined in step 3 is only used to determine the cone angle α
of the reduced-scale shell. The length and top radius are determined using the equivalent
Batdorf-Stein parameter, because this parameter, also called the curvature parameter, is
typically used to characterize the effect of geometry on the buckling behavior [70].

Following the methodology, it becomes clear that this problem is overly constraint: there are
more scaling rules than reduced-scale conical shell properties to be chosen. More specifically,
there are eight scaling rules, while there are only five shell properties to be determined: the
material, stacking sequence, cone angle, small or large radius, and length. Furthermore, there
are additional constraints from assumptions and for example, available materials. This is
why it is suggested in the methodology to take the average value of the two equations if they
cannot be satisfied simultaneously. This approach results in a sequential scaling methodology,
such that the effort required for the reduced-scale design remains limited.

There is one type of laminate scaling for which some of the scaling rules from Equation 3.74
become linearly dependent, and thus redundant. This type of scaling is called ply-level
scaling, which has been applied to cylindrical shells by Tabiei and Simitses [63]. Ply-level
scaling entails that the full-scale structure with stacking sequence [θn/γn/...]S is scaled to
a reduced-scale structure, made of the same material, with stacking sequence [θm/γm/...]S
with m < n. This also implies that the geometry is scaled by a factor m

n and that the cone
angle of the two structures is identical. This type of scaling is investigated to evaluate the
methodology for composite conical shells which satisfy all scaling parameters exactly.



Chapter 4

Analysis and Evaluation Methods

The scaling methodology has been set up in the previous chapter. It is evaluated by applying
it to different conical shells. This allows to determine its strengths and limitations. The
approach for this is visualized in Figure 4.1. First, it should be decided which full-scale
(FS) shell will be scaled. Second, the reduced-scale (RS) conical shell is designed using
the methodology. The full-scale conical shells and additional constraints for the reduced-
scale designs are discussed in section 4.1. Third, the buckling behavior of the two shells is
analyzed. The three methods used for this are explained in section 4.2. The details on the
finite element modeling techniques are elaborated upon in section 4.3. Recall it is assumed
that no failure occurs prior to buckling. This is checked when analyzing the buckling behavior,
and is discussed in section 4.4. Finally, the scaling methodology is evaluated by comparing the
buckling behavior of the two shells using the nondimensional parameters. This is explained
in section 4.5.

Decide which FS 

conical shell to 

scale

Design RS conical 

shell using the 

methodology

Analyze buckling 

behavior of FS and 

RS conical shells

Evaluate prediction 

accuracy of scaling 

methodology

Figure 4.1: Flow chart for the evaluation of the scaling methodology. (FS = full-scale, RS =
reduced-scale)

4.1 Conical Shell Details

As explained above, the design of the full-scale conical shells are detailed here. Additional
constraints for the reduced-scale shells are also highlighted. Finally, the properties of the
materials used for the shells are tabulated.

4.1.1 Full-Scale Reference Conical Shells

In order to evaluate the scaling methodology, it should be applied to large full-scale conical
shells. Two conical shell structures from the Space Launch System (SLS) are used as ref-
erences, visualized in Figure 4.2. The SLS is a heavy-lift launch vehicle in development by
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NASA [87]. The structures considered here are representatives of the Universal Stage Adapter
(USA) and the Payload Attach Fitting (PAF). The dimensions are taken from reference [20].
The structures analyzed in [20] are sandwich composite shells. For the evaluation of the
scaling methodology, the material and stacking sequence are adjusted in order to capture the
possibilities and limitations of the methodology. The geometry of the SLS USA and SLS PAF
are given in Table 4.1. The main difference between the two shells lies in the cone angle. They
are both considered here, in order to investigate the effects of the cone angle on the scaling.

Table 4.1: Geometry description of the SLS USA and PAF structure [20].

Cone angle Length Small radius Large radius
α [deg] L [mm] R1 [mm] R2 [mm]

SLS USA 15 4996 2910 4203
SLS PAF 45 4831 787 4203

USA

PAF

Figure 4.2: The Space Launch System in Block 1B Crew configuration, with Payload Attach
Fitting (not visible from outside) and the Universal Stage Adapter [88].

4.1.2 Constraints for Reduced-Scale Conical Shells

The reduced-scale conical shells, which are designed to represent the reference full-scale shells,
are subject to constraints from the scaling methodology. In addition, the test facility and
manufacturing techniques put limitations on the design freedom of the reduced-scale shells.
Typical test equipment sizes are assumed, such that the reduced-scale shells are constraint by
the values given in Table 4.2. The limitations originating from the manufacturing technique
and facilities are for example the ply angle accuracy and thickness accuracy for isotropic
shells. These constraints are assumed to be out of the scope of this research and are therefore
not taken into account. If there are concerns about the achievability of the reduced-scale
conical shells, they are mentioned in their respective sections.
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Table 4.2: Test equipment constraints for the reduced-scale conical shells [47,89].

Max height H [mm] Max radius R2 [mm] Max compressive load Pcr [kN]

1000 400 2500

Finally, recall that it is assumed that the flexural anisotropy is negligible. In subsection 3.3.2
it is explained how D16 and D26 can be kept low. Although these design guidelines are taken
into account, the flexural anisotropy may be not negligible or the guidelines may conflict with
the scaling parameters and test facility requirements. It is therefore checked if D16 and D26

are small with respect to D11, D12, D22 and D66. Kassapoglou [83] used a threshold of 15%
to verify this assumption for the buckling of plates. This will be used as a reference value.

4.1.3 Material Properties

The properties of all the materials considered in the research are summarized here. The scaling
methodology is applied to isotropic, monolithic and sandwich composite conical shells.

• Isotropic material: Aluminum alloy 2024-T4

For the isotropic conical shells, the aerospace graded aluminum alloy 2024-T4 is as-
sumed. The relevant properties are summarized in Table 4.3.

Table 4.3: Material properties of aluminum alloy 2024-T4 [90].

E [MPa] ν [-] σy [MPa] ρ [kg/m3]

73100 0.33 324 2780

• Composite facesheet material: IM7-8552 carbon fiber

For the monolithic shells and the facesheets of the sandwich composite shells, the prop-
erties of Hexcel IM7-8552 carbon fiber are used. They are given in Table 4.4 and
Table 4.5.

Table 4.4: Stiffness material properties of IM7/8552 carbon fiber [91].

E11 [MPa] E22 [MPa] ν12 [-] G12 [MPa]

149916 9370 0.36 5310
G13 [MPa] G23 [MPa] ρ [kg/m3] tply [mm]

5310 2655 1580 0.18

Table 4.5: Strength (F ) and strain (E) material properties of IM7/8552 carbon fiber. Strength
values are obtained from [91], strain values derived from strength and stiffness properties.

F t
11 [MPa] F c

11 [MPa] F t
22 [MPa] F c

22 [MPa] F12 [MPa]

2530 1724 64 286 91
St

11 [µǫ] Sc
11 [µǫ] St

22 [µǫ] Sc
22 [µǫ] S12 [µǫ]

16876 11500 6830 30523 17137
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• Core material: Aluminum honeycomb 3.1 pcf 1/8 inch-5056-.0007

The core of the sandwich composite shells is assumed to be made of hexagonal 5056
aluminum alloy honeycomb. The properties are summarized in Table 4.6. Note that
the strength properties are not given, because core failure is not considered in the finite
element models.

Table 4.6: Material properties of aluminum honeycomb 3.1 pcf 1/8-5056-.0007 [47].

E11 [MPa] E22 [MPa] ν12 [-] G12 [MPa]

6.7 6.7 0.3 1.5
G13 [MPa] G23 [MPa] ρ [kg/m3]

138 310 49.7

4.2 Analysis Methods

The buckling behavior of the conical shells is analyzed in three ways. This section explains
these three approaches and their relevance.

4.2.1 Semi-analytical Solution

As a first step, the buckling behavior of the conical shells is analyzed using the semi-analytical
solution given in section 3.4. This gives a first, fast indication of the buckling behavior in terms
of the buckling load Pcr (see Equation 3.57) and buckling mode (m, n). The obtained buckling
load Pcr is substituted in Equation 3.72f to obtain the nondimensional loading parameter Kxx,
which can be compared for full-scale and reduced-scale shells. The predicted buckling modes
are also compared.

The semi-analytical solution makes the same assumptions as the governing equations used for
the scaling methodology. As a result, if all scaling parameters are satisfied, it is expected that
the loading parameter, obtained with the buckling load from the semi-analytical solution,
is identical for full-scale and reduced-scale shells. At the same time, it is expected that the
semi-analytical solution overestimates the buckling load, because of the membrane prebuckling
assumption, which linearizes the prebuckling solution, and the assumption on the deformation
shape. The latter assumption results in not capturing buckling modes which do not fit the
assumed shape. If these modes correspond to lower buckling loads, they are not found.

4.2.2 Linear Eigenvalue Analysis

As a second evaluation, a linear eigenvalue analysis is carried out in finite element software
Abaqus. The subspace solver is opted over the Lanczos solver, because only the first few
eigenmodes (i.e. less than 20) are of interest [45]. The eigensolver solves the system given by

(
KM + λiKG

)
ui = 0 (4.1)

where KM is the material stiffness matrix and KG is the geometric stiffness matrix. The i-th
eigenvalue is given by λi with corresponding eigenvector ui. The eigenvalue λi is the value of
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λ for which the total stiffness matrix (i.e. the term between the brackets) becomes singular.
The obtained eigenvalue is the scale factor with which the applied load should be multiplied
to obtain the buckling load. The corresponding buckling mode is given by the eigenvector ui.

This analysis is linear and can consequently not capture the nonlinear behavior prior to buck-
ling. At the same time, it takes into account the flexural anisotropy and puts no constraint on
the possible deformation shape, so it is expected to be more accurate than the semi-analytical
solution.

4.2.3 Implicit Dynamic Analysis

Lastly, a nonlinear analysis is performed, which can capture the nonlinearity before buckling
as well as the postbuckling regime. It is decided to use a dynamic analysis, rather than a
static analysis, because it is better at capturing the drop in stiffness right after buckling. The
system given by

Mü + Cu̇ + Ku = f (4.2)

is solved. Here, M is the mass matrix, C the damping matrix and K the total stiffness
matrix. u and f are the displacement and external force vector, respectively.

The implicit solver is chosen over the explicit one for its computational efficiency. The model
is set up such that real testing conditions are mimicked. To that end, a quasi-static application
analysis is performed, in which the backward Euler operator is used for time integration [45].
The compression is applied as a displacement. This implies that a displacement rate has to be
determined which balances the solution accuracy and the computational effort. This analysis
allows to not only evaluate the buckling load, but also the deformation shape during the load
application. Nonlinearity before buckling and the postbuckling behavior can be captured.

4.3 Finite Element Modeling Techniques

The last two analyses are performed in finite element software Abaqus. The approach for
modeling the buckling phenomenon has to be determined. Here, the mesh size, the element
type, load and boundary condition application, and other settings are elaborated upon. The
mesh size and some of the implicit dynamic analysis settings depend on the shell size and other
shell properties under consideration. This implies that the modeling techniques have to be
determined for each analyzed shell separately. Here, all modeling techniques are determined
for the full-scale SLS USA structure made of the isotropic aluminum alloy with a thickness
of 4.5 mm. The geometry and material details can be found in Table 4.1 and Table 4.3,
respectively. The same approach is followed for conical shells of different size and properties.

4.3.1 Mesh Convergence Study

In order to find an appropriate mesh size, a mesh convergence study is carried out. Four
mesh sizes are compared, namely 200 mm, 100 mm, 50 mm and 25 mm. The comparison is
carried out using a linear eigenvalue analysis with SC8R elements (see subsection 4.3.2). The
1 N reference load and the boundary conditions are applied as described in subsection 4.3.3.
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Figure 4.3: The structured mesh with size 200 mm.

As there are no irregularities in the geometry, such as cutouts, it is opted for a structured
(regular) mesh, which is shown in Figure 4.3 for a mesh size of 200 mm.

The results are shown in Table 4.7. It should be noted that all analyses are carried out on
the same computer (64-bit Intel® Core i5-4670 3.40 GHz CPU processor) and with the same
settings, such that the CPU times can be compared. It can be seen that the CPU time
increases drastically for decreasing mesh size. The obtained eigenvalues show convergence.
Next to the eigenvalues, the first three eigenmodes are compared, shown in Figure 4.4. All
mesh sizes result in the same buckling mode shape, but rotated around the central axis. It is
decided to use the 50 mm mesh for the consequent analyses. This mesh gives a good balance
between computational effort and accuracy of the eigenvalue and eigenmode. It is checked
whether there are sufficient elements in each buckling half-wave to accurately represent the
mode. This is shown in Figure 4.5. It can be seen that there are approximately five to six
elements in one half-wave, which is above the minimum of three elements to capture the
sinusoidal shape.

4.3.2 Element Type

Two element types are compared, namely the linear 4-node conventional shell element with
reduced integration, S4R, and the linear 8-node continuum shell element with reduced in-
tegration, SC8R. These shell elements are considered because they are typically used for
structures which have a very small thickness dimension compared to the other dimensions.
They both follow the first-order shear deformation theory. The S4R element discretizes the
shell to a reference surface, whereas the SC8R element is three-dimensional and has thus two
nodes through the thickness. Furthermore, the nodes of the S4R element have six degrees of
freedom, while the nodes of the SC8R element only have the three translational degrees of

Table 4.7: Mesh convergence study results for the full-scale isotropic conical shell. The
difference with the smallest mesh size value is given between brackets.

Mesh size [mm] 200 100 50 25
Force eigenvalue 1 [kN] 5883 (+10.3%) 5575 (+4.50%) 5404 (+1.29%) 5335
Force eigenvalue 2 [kN] 5886 (+10.3%) 5575 (+4.50%) 5404 (+1.29%) 5335
Force eigenvalue 3 [kN] 5886 (+10.3%) 5577 (+4.52%) 5406 (+1.32%) 5336
CPU time [s] 47.0 (-98.5%) 80.6 (-97.4%) 490.7 (-83.9%) 3051
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(a) Mesh size of 200 mm. (b) Mesh size of 100 mm. (c) Mesh size of 50 mm. (d) Mesh size of 25 mm.

Figure 4.4: The first eigenmode of the full-scale isotropic conical shell for various mesh sizes,
showing radial displacement.

Figure 4.5: Close-up of the first buckling mode, showing the 50 mm mesh deformation.

freedom. The SC8R elements can be stacked on top of each other to obtain more detailed
results through the thickness. This part of the behavior is not of specific interest, so only one
element through the thickness is considered here.

The element type comparison is carried out using a linear eigenvalue analysis. The converged
mesh of 50 mm is used, as well as the load and boundary condition application method as
described in subsection 4.3.3. Both the load and the displacement eigenvalues are compared.
In the latter case, the concentrated force is replaced by a reference displacement of 1 mm.
The results are summarized in Table 4.8. The eigenvalues from the two analyses differ by
a maximum of 1.37%. The SC8R element analyses require slightly less CPU time than the
S4R element analyses. Next, the eigenmodes corresponding to the first three force eigenvalues
are shown in Figure 4.6 for both element types. All three modes are nearly identical for the
two element types, they are rotations of more or less the same mode around the central axis.
Based on this analysis, no significant difference between the two element types is observed. It
is decided to use the SC8R element for consequent analyses, because the behavior is similar
and the CPU time is slightly lower. This difference may become larger for the more expensive
nonlinear analyses.

4.3.3 Load and Boundary Condition Application

The load and boundary conditions are applied to reference points, which are tied to the edge
nodes using rigid body tie constraints, as visualized in Figure 4.7. This constraint connects
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Table 4.8: The first three force and displacement eigenvalues of the full-scale isotropic conical
shell for the S4R and the SC8R element models. The difference between the two elements is

given between brackets.

Element type S4R SC8R
Force eigenvalue 1 [kN] 5332 5404 (+1.35%)
Force eigenvalue 2 [kN] 5332 5404 (+1.35%)
Force eigenvalue 3 [kN] 5333 5406 (+1.37%)
CPU time [s] 497.8 490.7 (-1.43%)
Displacement eigenvalue 1 [mm] 3.910 3.953 (+1.10%)
Displacement eigenvalue 2 [mm] 3.910 3.953 (+1.10%)
Displacement eigenvalue 3 [mm] 3.912 3.954 (+1.07%)
CPU time [s] 497.2 486.7 (-2.11%)

all degrees of freedom of the nodes and the reference points through rigid body links. This
application method is chosen because it allows for easy postprocessing. The compression is
applied as a concentrated force or as a displacement in the reference point connected to the
small radius edge nodes. It is oriented in the axial direction. Clamped boundary conditions
are used, meaning that all degrees of freedom are constraint in the reference point connected
to the large radius edge nodes. The small radius reference point is constraint in all degrees
of freedom, except for the axial translational direction. These are idealizations of the loading
and boundary conditions in reality.

4.3.4 Sensitivity Analysis for Implicit Dynamic Analysis

When performing an implicit dynamic analysis, several parameters have to be determined.
Together, they should yield a converged result. For the quasi-static application, the initial,
minimum and maximum increment size must be decided, as well as the maximum total
number of increments, the time period and the displacement rate. The maximum number
of increments is set to 105. The initial and maximum increment size are set to 0.01 s and
the minimum increment size is set to 10−7 s. The time period and displacement rate are
used for the sensitivity analysis. Three different velocities are considered, namely 1, 2, and 5
mm/s. The total time period is derived from here such that a displacement of 5 mm (slightly
larger than the linear displacement eigenvalue of 3.95 mm) is reached at the end of the step.
The rest of the model is the same as for the linear analyses. These dynamic analyses are
compared to a nonlinear static analysis, for which the model is also built up in the same way.
The maximum number of increments and the minimum increment size are also set to 105

and 10−7 s, respectively. The initial and maximum increment size are set to 0.001 s. These
settings are in line with the ones used by Di Pasqua et al. [46] for the analysis of a composite
conical shell.

Figure 4.8 shows the load-displacement curves for all of these analyses and Table 4.9 gives the
obtained buckling loads and displacements and the corresponding CPU time. The buckling
load of the implicit dynamic analyses and the nonlinear static analysis show convergence. For
increasing displacement in the postbuckling regime, all analyses converge to the same load
value, except for the analysis with a displacement rate of 1 mm/s. The difference in results
between the 2 mm/s and 1 mm/s analyses is very small, but the CPU time of the former is
almost half of the latter. It is therefore decided to use the implicit dynamic analysis with a
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(a) First eigenmode of the
S4R element model.

(b) Second eigenmode of the
S4R element model.

(c) Third eigenmode of the
S4R element model.

(d) First eigenmode of the
SC8R element model.

(e) Second eigenmode of the
SC8R element model.

(f) Third eigenmode of the
SC8R element model.

Figure 4.6: Comparison of the first three eigenmodes of the full-scale isotropic conical shell for
the S4R and the SC8R element models, showing radial displacement.

displacement rate of 2 mm/s for further analyses. The other settings are as described above.
As a result, a minimum of 250 steps is used to complete the analysis. Additional smaller
steps are taken by the solver to reach convergence if the increment size of 0.01 s is deemed
too large.

Table 4.9: Comparison of nonlinear buckling load solutions for the full-scale isotropic conical
shell. The difference with the nonlinear static analysis is given between brackets.

Implicit dynamic analysis Nonlinear
5 mm/s 2 mm/s 1 mm/s static analysis

Buckling load [kN]
5180 5079 5028 5051
(+2.55%) (+0.554%) (-0.455%)

Buckling 3.826 3.745 3.705 3.721
displacement [mm] (+2.822%) (+0.645%) (-0.430%)

CPU time [s]
4017.8 5794.8 10412 11497
(-65.1%) (-49.6%) (-9.44%)

4.4 Failure Assessment

In the derivation of the scaling methodology, it is assumed that damage does not occur prior
to buckling. This assumption is checked for the evaluated conical shells. For isotropic shells,
this is done by comparing the von Mises stress to the yield strength, given in Table 4.3. For
composite shells, the first ply failure criteria available in Abaqus are evaluated at incipient
buckling [45]. The strength and strain values of the composite material are given in Table 4.5.
The failure index IF should stay below 1 to not have failure. The following criteria are
considered.
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𝑷

Figure 4.7: Schematic representation of the small radius reference point (orange), the tie
constraints (blue) and the load application (red).
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Figure 4.8: Sensitivity of the implicit dynamic analysis to displacement rate and to initial
increment size for the full-scale isotropic conical shell.

• Maximum strain criterion. The failure index is calculated as

IF = max

(
ǫ11

S11
,

ǫ11

S22
,

∣∣∣∣
ǫ12

S12

∣∣∣∣
)

, (4.3)

where S11 = St
11 if ǫ11 > 0 and S11 = Sc

11 otherwise. Accordingly, S22 = St
22 if ǫ22 > 0

and S22 = Sc
22 otherwise.

• Maximum stress criterion. The failure index is calculated as

IF = max

(
σ11

F11
,

σ11

F22
,

∣∣∣∣
σ12

F12

∣∣∣∣
)

, (4.4)

where F11 = F t
11 if σ11 > 0 and F11 = F c

11 otherwise. Accordingly, F22 = F t
22 if σ22 > 0

and F22 = F c
22 otherwise.
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• Tsai-Hill criterion. The failure index is calculated as

IF =
σ2

11

F 2
11

− σ11σ22

F 2
11

+
σ2

22

F 2
22

+
σ2

12

F 2
12

, (4.5)

where F11 = F t
11 if σ11 > 0 and F11 = F c

11 otherwise. Accordingly, F22 = F t
22 if σ22 > 0

and F22 = F c
22 otherwise.

• Tsai-Wu criterion. The failure index is calculated as

IF =

(
1

F t
11

+
1

F c
11

)
σ11 +
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1
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+
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F c
22

)
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. (4.6)

• Hashin criteria. The failure indices are calculates as follows.

For fiber tension, if σ11 ≥ 0,

IF =

(
σ11

F t
11

)2

+

(
σ12

F12

)2

, (4.7a)

or for fiber compression, if σ11 < 0,

IF =

(
σ11

F c
11

)2

. (4.7b)

For matrix tension, if σ22 ≥ 0,

IF =

(
σ22

F t
22

)2

+

(
σ12

F12

)2

, (4.7c)

or for matrix compression, if σ22 < 0,

IF =

(
σ22

2F13

)2

+

[(
F c

22

2F13

)2

− 1

]
σ22

F c
22

+

(
σ12

F12

)2

. (4.7d)

The failure indices are calculated and the results are evaluated: which ply and which location
on the shell are critical according to each failure criterion. In addition, the strain distribution
of the critical ply according to the maximum strain criterion, is analyzed.

Finally, for sandwich conical shells, core failure due to shear crimping is evaluated. The
equation presented by Bert and Reese [92] for cylindrical shells is adjusted for conical shells.
This yields the shear crimping load

PSC = 2πR1 cos α
G13 (tfacesheet + tcore)

2

tcore
(4.8)

where G13 is the shear modulus of the core, tfacesheet is the thickness of one facesheet and tcore

is the core thickness. To ensure that shear crimping occurs after buckling, PSC > Pcr.
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4.5 Nondimensional Comparison

Once the analyses detailed above are performed for the full-scale and reduced-scale shell, the
results should be compared. It is evaluated whether the reduced-scale shell is capable of
predicting the behavior of the full-scale shell. This is checked through the nondimensional
parameters linking the two shells. This section explains which parameters are compared and
how this is done.

4.5.1 Scaling Parameters

First, the parameters used for scaling, given in Equation 3.72, are compared. If all parameters
are used for the design of the reduced-scale shell, it is expected that these are identical. Due
to the rounding of dimensions and due to conflicting parameters, differences may arise. These
differences are calculated and discussed.

4.5.2 Nondimensional Load-displacement Curves

Second, the nondimensional loads and displacements are compared. This is done for the three
evaluation methods, namely the semi-analytical solution, the linear eigenvalue analysis, and
the implicit dynamic analysis. For the nondimensional load, use is made of Equation 3.72f.
For the nondimensional displacement,

U =
u L√

a11a22D11D22
(4.9)

is used, which can be found by making the strain-displacement equations nondimensional [70].
Here, u is the displacement in the meridional direction, while the displacement obtained in
the finite element models is in axial direction. Therefore, a coordinate transformation should
be performed from the cylindrical system in Abaqus to the curvilinear system used for the
analytical work, both shown in Figure 4.9. This transformation is given by

{
x
z

}
=

[
sin α − cos α
cos α sin α

]{
rcyl

zcyl

}
. (4.10)

Due to the boundary conditions, the radial displacement is zero at the edges, such that u =
− cos α u3. This can be substituted in Equation 4.9 to find the nondimensional displacement
in meridional direction. Consequently, the nondimensional load-displacement curves can be
drawn for the two shells and the results can be compared. In addition, the nondimensional
stiffness, given by Kxx

U , is studied.

4.5.3 Deformation Shapes

Finally, the deformation shapes during the analyzed regime can be compared. First, the
deformation shapes at several instances during the load application are visually compared.
More specifically, the shapes prior to buckling, upon buckling and after buckling are compared.
Although the postbuckling regime is not part of the scaling methodology, it is interesting to see
if the two shells behave the same after buckling as well. In addition, the deformation shapes
predicted by the semi-analytical solution and the linear eigenvalue analysis are compared.
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𝑧, 𝑤𝑥, 𝑢
𝑧𝑐𝑦𝑙, 𝑢3𝑟𝑐𝑦𝑙 , 𝑢1

Figure 4.9: The cylindrical coordinate system in Abaqus (green) and the analytical coordinate
system (blue).

Second, the postbuckling deformation shape is quantified in terms of the number of merid-
ional half-waves m and circumferential full waves n, given by (m, n), and the (dimensional)
magnitude of the radial displacement is evaluated. The latter gives an idea of the difference
in size between full-scale and reduced-scale shells. The ratio of minimum to maximum ra-
dial displacement is compared for the two shells as well. Finally, the nondimensional radial
displacement is also compared. This is calculated using

W =
w

4
√

a11a22D11D22
, (4.11)

where w is the displacement in z-direction, which can be calculated using Equation 4.10 [70].
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Chapter 5

Scaling of Isotropic Conical Shell

This chapter discusses the application of the scaling methodology to an isotropic conical shell.
This allows to evaluate the methodology for a simplified case, which intrinsically satisfies the
laminate assumptions. First, the full-scale shell is described and the reduced-scale shell is
designed using the scaling methodology. Second, the two shells are analyzed. Finally, the
results are compared nondimensionally.

5.1 Conical Shell Designs

This section elaborates on the designs of the isotropic full-scale and reduced-scale shells. The
full-scale shell is first described, after which the reduced-scale shell is designed using the
scaling methodology.

5.1.1 Full-Scale Conical Shell Description

As discussed in section 4.1, the SLS USA and PAF structures are used as full-scale reference
shells. Here, the full-scale conical shell has the SLS USA geometry and is assumed to be
made of aluminum 2024-T4, of which the properties are given in Table 4.3. The thickness is
assumed to measure 4.5 mm. The geometry of the conical shell is described in Table 5.1.

5.1.2 Reduced-Scale Conical Shell Design

The full-scale isotropic conical shell is scaled to a smaller conical shell. The procedure de-
scribed in subsection 3.6.1 is followed. First, it is decided to use the same material for the
reduced-scale conical shell as for full-scale shell, namely aluminum 2024-T4, of which the prop-
erties are given in Table 4.3. Second, the cone angle α is set equal to the full-scale cone angle
of 15°. Third, the large radius R2 is set equal to 400 mm (9.52% of the full-scale large radius),
which is a size compatible with many test machines as described in subsection 4.1.2. Fourth,
the length and thickness are determined using Equation 3.74a and Equation 3.74c. Because
the same material is used, all dimensions are scaled by the same factor, namely to 9.52% of
the full-scale values. This results in the dimensions given in Table 5.1. Figure 5.1 shows the
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Figure 5.1: Visualization of the full-scale (blue, left) and reduced-scale (red, right) isotropic
conical shells. Full-scale is 73x smaller than in reality, reduced-scale is 36x smaller than in reality.

relative size of the two shells. It should be noted that the thickness is small and that the
required accuracy of 0.01 mm may both be difficult to achieve with common manufacturing
equipment.

Table 5.1: Geometry descriptions of the full-scale (FS) and reduced-scale (RS) isotropic conical
shells.

Cone angle
Length L [mm]

Small radius Large radius Thickness
α [deg] R1 [mm] R2 [mm] t [mm]

FS 15 4996 2910 4203 4.5
RS 15 476 277 400 0.43

5.2 Buckling Analyses

With the design of the conical shells determined, their buckling behavior is analyzed using
the three methods described in section 4.2.

5.2.1 Semi-analytical Solution

As a first step, the buckling behavior of the two conical shells is analyzed using the semi-
analytical solution. For both shells, the semi-analytical solution predicts a (2,14) buckling
mode, which has two meridional half waves and 14 circumferential full waves. The obtained
buckling loads measure 5336 kN for the full-scale shell and 48.71 kN for the reduced-scale
shell.

5.2.2 Linear Eigenvalue Analysis

The two shells are modeled with a linear eigenvalue analysis in Abaqus. The modeling tech-
niques used for the full-scale shell are explained in section 4.3. For the reduced-scale shell, the
same approach is taken, but a new mesh convergence study is required. Because the shell is
approximately one-tenth of the full-scale shell, the mesh sizes considered here are one tenth of
the ones used for full-scale structure, namely 20 mm, 10 mm, 5 mm and 2.5 mm. The results
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are very similar to the full-scale mesh convergence results and are therefore not repeated here.
The mesh size of 5 mm yields converged results and is consequently used for further analyses.
The other modeling techniques are identical to the ones of the full-scale conical shell.

The results of the linear eigenvalue analyses (force and displacement eigenvalues) are given
in Table 5.3. The buckling modes are visualized in Figure 5.2. These are different from the
modes predicted by the semi-analytical solution. It may be the case that the semi-analytical
solution cannot capture this buckling mode due to the assumed shape. Another possible
explanation for the difference is that the eigenvalues are very close together, such that the
obtained eigenmode is affected by numerical errors and rounding. In addition, the semi-
analytical solution does not impose boundary conditions on the conical shells, whereas the
model for the eigenvalue analysis has clamped boundary conditions. This may increase the
buckling load and change the mode.

(a) Full-scale conical shell. (b) Reduced-scale conical shell.

Figure 5.2: First eigenmode of the isotropic conical shells, showing radial displacement.

A linear static analysis is performed for both shells as well. This allows to compute the linear
stiffness of the conical shell, which can be used to compare the linear eigenvalue analysis and
the implicit dynamic analysis to. A compression load of 6000 kN is applied to the small radius
reference point for the full-scale shell. For the reduced-scale shell, a load of 60 kN is applied.

5.2.3 Implicit Dynamic Analysis

Next, an implicit dynamic analysis is performed. The details of the analysis are discussed
in chapter 4 for the full-scale shell. For the reduced-scale shell, the same sensitivity analysis
is performed, but with displacement rates equal to one-tenth of the displacement rates used
for the full-scale shell. More specifically, velocities of 0.5 mm/s, 0.2 mm/s and 0.1 mm/s
are investigated. The desired final displacement is 0.5 mm, which is slightly larger than the
linear buckling displacement of 0.385 mm. These rates and this final displacement are chosen
such that the minimum total number of increments required per analysis is identical to the
minimum total number of increments per analysis of the full-scale shell (i.e. 250 increments).
It is assumed that all other modeling parameters can be kept the same as for the full-scale
conical shell.

The results of the sensitivity analysis are visualized in Figure 5.3 and the buckling loads,
buckling displacements and CPU time are reported in Table 5.2. The implicit dynamic
analyses of 0.2 and 0.1 mm/s show strong nonlinearity prior to buckling, such that the buckling
displacement predicted by these analyses is larger than the linear buckling displacement. This
phenomenon is commonly referred to as a load plateau and is caused by extremely stable
behavior originating from the numerically idealized geometry [93]. As a result, the numerical
shell model shows an axisymmetric deformation pattern, visualized in Figure 5.4, in which
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the radial displacement continues to increase and remain stable. This is not realistic, because
there are always imperfections present in the real structure. Therefore, a small imperfection
is added to avoid this numerical error. More specifically, an imperfection in the shape of the
first eigenmode is introduced with an amplitude of 1% of the thickness. This is done using
the *IMPERFECTION keyword in Abaqus [35,45]. It is decided to use the implicit dynamic
analysis of 0.2 mm/s, because it shows convergence with respect to the 0.1 mm/s analysis.

Table 5.2: Comparison of nonlinear buckling load solutions for the reduced-scale isotropic
conical shell. The difference with the nonlinear static analysis is given between brackets.

Implicit dynamic analysis Nonlinear static
0.5 mm/s 0.2 mm/s 0.1 mm/s analysis

Buckling load [kN]
50.82 51.03 51.03 49.03
(+3.65%) (+4.08%) (+4.08%)

Buckling 0.391 0.403 0.402 0.372
displacement [mm] (+5.02%) (+8.19%) (+8.00%)

CPU time [s]
4668 8996 9375 10078
(-53.7%) (-10.7%) (-6.98%)
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Figure 5.3: Sensitivity of the implicit dynamic analysis to displacement rate for the
reduced-scale isotropic conical shell.

Because the eigenmode imperfection is applied to the reduced-scale shell, it is also applied to
the full-scale shell to be able to compare the two shells. The results of the imperfect shells are
summarized in Table 5.3. The load-displacement curves of the imperfect shells are compared
to the ones of the imperfection-free shells in Figure 5.5. As expected, the load plateau does
not occur. The stiffness is similar for the imperfection-free and imperfect case for the full-
scale shell. For the reduced-scale shell, the stiffness is also similar up to the initiation of the
load plateau. The reduction in buckling load is large for both shells. To quantify this, the
knockdown factor is calculated as
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Figure 5.4: Stable axisymmetric deformation shape prior to buckling due to the idealized,
imperfection-free geometry.

KDF =
Pcr,imperfect

Pcr,linear
. (5.1)

For both shells, the knockdown factor equals 0.88. This is already a large reduction for an
imperfection with an amplitude of only 1% of the thickness. This is in agreement with results
from literature on conical and cylindrical shells. Typically, the reduction in buckling load is
very large for small imperfections, but becomes more gradual for larger imperfections [6,94].

Table 5.3: Buckling load and displacement for the isotropic conical shells.

Buckling load Pcr [kN] Buckling displ. ucr [mm]

Semi-analytical FS 5336 n.a.
solution RS 48.71 n.a.
Eigenvalue FS 5404 3.95
analysis RS 51.17 0.385
Implicit dynamic FS 4766 3.52
analysis RS 45.03 0.342

Table 5.3 summarizes the results of the performed analyses for the two isotropic shells, which
are also visualized in Figure 5.5. For both shells, the linear analysis and the implicit dynamic
analyses predict approximately the same stiffness, indicating a good correlation between all
analyses. Prebuckling nonlinearity is present, but limited for both shells. The semi-analytical
solution assumes a membrane prebuckling solution, such that the nonlinearity introduced by
the boundary conditions is not taken into account. The difference in results between the linear
eigenvalue and the implicit dynamic analyses is mainly caused by the applied imperfection.

The scaling methodology assumes that the shells are elastic, meaning that they cannot un-
dergo plastic deformation. It is therefore checked by comparing the von Mises stress at
incipient buckling to the yield strength, reported in Table 4.3. Right before buckling, the
stress in the imperfect full-scale conical shell never exceeds 79.5 MPa. The von Mises stress
in the reduced-scale shell reaches a maximum of 80.4 MPa prior to buckling. These values
are well below the yield strength of 324 MPa, thus ensuring that the shell will buckle before
undergoing plasticity.
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(a) Full-scale conical shell.
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(b) Reduced-scale conical shell.

Figure 5.5: Load-displacement curves of the imperfection-free and imperfect isotropic conical
shells.

5.3 Comparison of the Full-Scale and Reduced-Scale Conical Shells

Finally, the full-scale and reduced-scale conical shell can be compared to assess the accuracy of
the scaling methodology for this isotropic conical shell. First, the nondimensional parameters
are compared. Second, the nondimensional buckling loads and the load-displacement curves
are evaluated. For the nonlinear comparison, the results of the imperfect shells are compared.
Third, the deformation shapes are compared.
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5.3.1 Scaling Parameters

The nondimensional scaling parameters are compared in Table 5.4, where slight differences are
observed. The largest difference measures 0.373% and occurs for the Batdorf-Stein-equivalent
parameter at the small radius end. These small differences are caused by the rounding of the
dimensions of the reduced-scale conical shells to a manufacturable accuracy.

Table 5.4: The nondimensional scaling parameters of the full-scale and reduced scale isotropic
conical shells.

Membrane-bending Batdorf-Stein Membrane Flexural
parameter αmb equivalent orthotropy orthotropy

parameter Z2 parameter µ parameter β
z1 = 0 z1 = 1 z1 = 0 z1 = 1 z1ǫ[0, 1] zǫ[0, 1]

FS 0.5824 0.8413 589.6 851.7 1 1
RS 0.5819 0.8403 587.4 848.6 1 1
∆ (-0.0859%) (-0.119%) (-0.373%) (-0.364%) (0.0%) (0.0%)

5.3.2 Nondimensional Load-Displacement Curves

Next, the nondimensional load-displacement curve is compared, as shown in Figure 5.6. For
simplicity, only the nondimensional loads Kxx calculated using the equation for z1 = 0 are
visualized in the figure. The nondimensional buckling load and displacement for the full-scale
and reduced-scale shells are also given in Table 5.5 for the three analyses.

The difference in accuracy between the prediction at z1 = 0 and at z1 = 1 is negligible. This
makes sense, because the scaling parameters at both meridional locations are satisfied. The
semi-analytical nondimensional load is nearly identical for the two shells. The small differ-
ence is caused by the rounding of the dimensions of the reduced-scale shell. The prediction
accuracies obtained with the eigenvalue analysis and the nonlinear analysis are very close
together, indicating little influence from nonlinearity and imperfections on the methodology.
Indeed, the effect of the 1% eigenmode imperfection is identical for the two shells in terms of
the knockdown factor, which measures KDF=0.88 for both shells. The discrepancies between
full-scale and reduced-scale shells may be caused by slight differences in the numerical models.
The nondimensional stiffness is predicted accurately, with a maximum difference of 1.73%. In
the postbuckling regime, the load-displacement curves of the two shells converge to a differ-
ent nondimensional load value. This does not come as a surprise, because the postbuckling
equations are not taken into account in the scaling methodology.

5.3.3 Deformation Shapes

The buckling mode predictions of the semi-analytical solution are identical, namely a (2,14)
mode. The linear eigenvalue analyses predict similar modes, see Figure 5.2. Figure 5.7 and
Figure 5.8 display the nonlinear deformation shapes of the two conical shells at various points
throughout loading. The displayed shapes correspond to the blue crosses in Figure 5.6. The
deformation shapes look similar for the two shells. Prior to buckling, the linear eigenmode
can easily be recognized. Upon buckling, the deformation shapes are slightly different. This is
in line with the load-displacement graphs, which are not coincident here. After buckling, the
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Table 5.5: Comparison of nondimensional buckling load, displacement and stiffness for the
isotropic conical shells.

Buckling load Kxx
Buckling

Stiffness Kxx/U
displ. U

z1 = 0 z1 = 1 z1 ǫ [0, 1] z1 = 0 z1 = 1

Semi- FS 4106.9 5931.9 n.a. n.a. n.a.
analytical RS 4090.7 5910.1 n.a. n.a. n.a.
solution ∆ (-0.394%) (-0.368%)
Eigenvalue FS 4160 6008 10073 0.4130 0.5964
analysis RS 4296 6207 10243 0.4194 0.6060

∆ (+3.27%) (+3.32%) (+1.69%) (+1.55%) (+1.61%)
Implicit FS 3668 5298 8960 0.4094 0.5913
dynamic RS 3781 5463 9082 0.4163 0.6015
analysis ∆ (+3.08%) (+3.11%) (+1.36%) (+1.69%) (+1.73%)
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Figure 5.6: Nondimensional load-displacement curve of the (imperfect) isotropic conical shells,
using Kxx at z1 = 0..

deformation shapes are similar, but not identical. The full-scale shell has a (2,14) deformation
shape, whereas the reduced-scale shell has a (2,13) pattern. This can also be seen in the load-
displacement graph, because the two shells converge to a different load. In addition, the waves
of the full-scale shell are positioned a bit lower than the ones of the reduced-scale shell. This
difference may be caused by the discrete increment steps taken in the finite element analysis,
such that the nondimensional displacement is slightly different for the two shells.

Figure 5.9 shows the dimensional postbuckling deformation shapes. The radial displacement is
also scaled by more or less a factor 10. The ratio of maximum to minimum radial displacement
equals -0.459 and -0.463 for full-scale and reduced-scale shells. This is within 1% of each
other. The scalability of the radial displacement is analyzed by evaluating its nondimensional
form. The minimum and maximum values are compared in Table 5.6. Larger differences
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are observed than for the load-displacement graphs, but the results are in the same order
of magnitude. For the equations used for the scaling methodology, a membrane prebuckling
shape is assumed and the presence of imperfections is not taken into account. This has an
effect on the radial displacement of the two shells, thus creating the difference.

(a) Before buckling, for
U = 5000.

(b) At buckling, for
U = 8960.

(c) After buckling, for
U = 12742.

Figure 5.7: Deformation shapes (radial displacement) of the imperfect full-scale isotropic
conical shell at the points indicated in Figure 5.6.

(a) Before buckling, for
U = 5000.

(b) At buckling, for
U = 9082.

(c) After buckling, for
U = 12758.

Figure 5.8: Deformation shapes (radial displacement) of the imperfect reduced-scale isotropic
conical shell at the points indicated in Figure 5.6.

(a) Full-scale conical shell. (b) Reduced-scale conical shell.

Figure 5.9: Comparison of the dimensional postbuckling deformation shape. Reduced-scale
shell is 5x enlarged compared to the full-scale shell for visibility.
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Table 5.6: Comparison of the minimum and maximum nondimensional radial displacement for
the isotropic conical shells.

Minimum radial Maximum radial
Ratio Wmax/Wmindisplacement Wmin displacement Wmax

FS -38.2 17.3 -0.453
RS -41.8 19.1 -0.457
∆ (+9.42%) (+10.4%) (+0.883%)

5.4 Concluding Remarks

This chapter covers the application of the scaling methodology to an isotropic conical shell.
The prediction accuracy of the reduced-scale conical shell was good: the nonlinear buckling
load and displacement of the full-scale shell were overestimated by 3.08% and 1.36%. These
results are satisfactory, especially because an imperfection was applied and it did not cause the
methodology to fail. More specifically, a knockdown factor of KDF=0.88 was found for both
shells. At the same time, the imperfection has an amplitude of only 1% of the thickness and
is of similar shape for the two shells, so it cannot be concluded that the methodology is robust
against all kinds of imperfections. This could be investigated further through the application
of different and larger imperfections, for example, the inclusion of measured imperfections.

The deformation shapes are accurately predicted, especially up to buckling. In the postbuck-
ling regime, the two load-displacement graphs converge to a different nondimensional load.
The postbuckling deformation shapes are slightly different: a (2,14) shape for the full-scale
shell and a (2,13) shape for the reduced-scale shell. The postbuckling behavior is not taken
into account in the methodology, so this result is not surprising. The nondimensional radial
displacement was in the same order of magnitude for the two shells, but differences of up to
10.4% were observed. This shows that this parameter is more difficult to predict than the
buckling load and displacement. This was explained by the membrane assumption made in
the methodology and the presence of the imperfection.

Overall, it can be concluded that the application of the scaling methodology to the isotropic
conical shell was successful. It should be noted, however, that this result cannot be extracted
to all isotropic conical shells. It was for example assumed that the curvatures are mildly
varying. This assumption may not be valid for conical shells with larger cone angles. In
addition, the manufacturability should be kept in mind. The thickness of the reduced-scale
conical shell is small, which may complicate the production of this shell.



Chapter 6

Scaling of Cross-Ply Composite
Conical Shells

In the previous chapter, the scaling methodology was successfully tested for isotropic conical
shells. The methodology is now applied to a composite conical shell which satisfies the
laminate assumptions. In addition, scaling is done in a way such that all scaling parameters
are satisfied. More specifically, this means that a cross-ply layup is applied in combination
with ply-level scaling. The chapter is built up in the same way as for the isotropic shells.

6.1 Conical Shell Designs

The designs of the full-scale and reduced-scale cross-ply shells are discussed here.

6.1.1 Full-Scale Conical Shell Description

Similar to the isotropic shell scaling, the full-scale conical shell considered here is based on
the SLS USA. Again, the dimensions are the same as the original structure, but the material
and stacking sequence are changed. More specifically, the full-scale conical shell is assumed
to be made of IM7/8552 carbon fiber, of which the properties are listed in Table 4.4 and
Table 4.5. The stacking sequence is decided to be [02/902]3S . This stacking sequence is opted
for because it allows for ply-level scaling (see Figure 2.6 and subsection 3.6.2) and because it
is symmetric, balanced and has zero flexural anisotropy, satisfying all laminate requirements.
The geometry is summarized in Table 6.1.

6.1.2 Reduced-Scale Conical Shell Design

The full-scale cross-ply composite conical shell is scaled to a smaller conical shell. The proce-
dure described in subsection 3.6.2 is followed and ply-level scaling is used. First, it is decided
to use the same material for the reduced-scale conical shell as for full-scale conical shell,
namely IM7/8552 carbon fiber. Second, the layup is determined. The full-scale conical shell
has a layup in which there are always two plies of the same angle next to each other. By
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Figure 6.1: Visualization of the full-scale (blue, left) and reduced-scale (red, right) cross-ply
composite conical shells. Both shells are 73x smaller than in reality.

applying ply-level scaling, the same layup structure is used but with only one ply of the same
angle every time. As a result the layup becomes [0/90]3S . Note how this is equivalent to
reducing the thickness of each ply by a half. Third, the radius-to-length ratio is determined
using Equation 3.72a and Equation 3.72b at z1 = 0. They both yield a radius-to-length ratio
of 0.5825. Using the same equations but for z1 = 1, the cone angle is found to equal 15°,
identical to the full-scale cone angle. Finally, the radius and length are determined using
Equation 3.72e, resulting in a top radius of 1.455 m and a meridional length of 2.498 m.
The obtained radius and length satisfy the radius-to-length ratio requirement from step 3.
These results are summarized in Table 6.1. As explained in subsection 3.6.2, the dimensions
are scaled by the same factor as the thickness, so in this case by a factor 2. This limits the
usefulness of ply-level scaling, because the reduced-scale shell size remains large. In addi-
tion, stacking sequences in which many plies with the same orientation are placed next to
each other are rarely used in reality to avoid rapid damage propagation. The structures are
visualized in Figure 6.1.

Table 6.1: Geometry description of the full-scale (FS) and reduced-scale (RS) cross-ply
composite conical shell.

Cone angle
Length L [mm]

Small radius Large radius Stacking
α [deg] R1 [mm] R2 [mm] sequence [deg]

FS 15 4996 2910 4203 [02/902]3S

RS 15 2498 1455 2102 [0/90]3S

6.2 Buckling Analyses

The buckling behavior of the full-scale and reduced-scale conical shells is analyzed using the
three methods described in section 4.2.

6.2.1 Semi-analytical Solution

The buckling load of the two shells is estimated using the semi-analytical solution. The results
are summarized in Table 6.2. For both shells, a (8,21) buckling mode is predicted.
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6.2.2 Linear Eigenvalue Analysis

Next, linear eigenvalue analyses are performed. As the full-scale structure size is identical to
the full-scale isotropic shell, the same mesh of 50 mm is used. The other analysis settings
are also identical. For the reduced-scale shell, a mesh convergence check is performed. The
mesh sizes considered for the check are half the size of the mesh sizes of the full-scale study:
100 mm, 50 mm, 25 mm and 12.5 mm. The other modeling techniques are kept the same
as for the isotropic shells. The convergence results are very similar. Mesh convergence is
obtained for the mesh size of 25 mm, which will consequently be used. The results can be
found in Table 6.2. The semi-analytical solution and the linear eigenvalue are only 1.01% and
1.90% apart for full-scale and reduced-scale shell, respectively. This indicates good correlation
between the two solutions. The semi-analytical prediction is lower than the linear eigenvalue
analysis, which may be caused by the difference in boundary conditions. The finite element
model has clamped boundary conditions, whereas semi-analytical solution does not impose
any condition on the boundary. The linear eigenmodes are shown in Figure 6.2 and are
similar, but the full-scale deformation shape is more skewed than the reduced-scale shape.

(a) Full-scale conical shell. (b) Reduced-scale conical shell.

Figure 6.2: First eigenmode of the cross-ply composite conical shells, showing radial
displacement.

6.2.3 Implicit Dynamic Analysis

Next, the implicit dynamic analysis is carried out to capture the nonlinear behavior and the
postbuckling regime. For the isotropic conical shell, the displacement rate, time period and
initial increment size were set such that 250+x steps were used to complete the analysis,where
the extra steps x are due to increment cutbacks due to buckling. For the analysis of the
cross-ply composite shells, it is aimed to have approximately the same number of steps.
Therefore, the time period and the initial increment size are kept at 2.5 s and 0.01 s. For
the full-scale shell, the linear buckling displacement was found to be 1.34 mm, so the implicit
dynamic analysis is set such that 1.7 mm is reached at the end of the time period. Thus,
the displacement rate is set to 0.68 mm/s. The other analysis settings are the same as for
the isotropic conical shell. Following the same reasoning, a displacement rate of 0.34 mm/s
is used for the reduced-scale shell.

The load-displacement curves of the implicit dynamic analysis are visualized in Figure 6.3.
For both shells, the stiffness is very similar to the linear stiffness. The nonlinear buckling
load is larger than the linear prediction for both shells, which can also be seen in Table 6.2.
This is unexpected and therefore, additional analyses are run with a displacement rate half of
the original ones for a period of 5 s (so 500 + x steps). For both shells, the buckling load and
displacement are within 1% of the original values and are consequently considered converged.
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The difference with the linear result may be caused by a stiffening effect of the nonlinear
prebuckling deformation. The buckling values are given in Table 6.2. Note how the buckling
displacements of full-scale and reduced-scale shells differ by approximately a factor 2, like the
geometry, and how the buckling loads differ by approximately a factor 4.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Displacement [mm]

0

250

500

750

1000

1250

1500

1750

2000

2250

Lo
ad

 [k
N

]

Semi-analytical solution
Linear static analysis
Linear eigenvalue analysis
Implicit dynamic analysis

(a) Full-scale conical shell.
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(b) Reduced-scale conical shell.

Figure 6.3: Load-displacement curves of the cross-ply composite conical shells.

6.3 Failure Assessment

Next, it is checked if failure occurs after buckling. The failure indices at incipient buckling
are all well below 1, as can be seen in Table 6.3. Failure is therefore not expected prior to
buckling. According to the Hashin criteria, the indices for both fiber and matrix damage are
smaller than 0.01 in all plies of both shells and are therefore not reported. For the reduced-
scale shell, the critical ply is the innermost ply (i.e. ply 1), which is a 0° ply. For the full-scale
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Table 6.2: Buckling load and displacement for the cross-ply composite conical shells.

Buckling load Pcr [kN] Buckling displ. ucr [mm]

Semi-analytical FS 1874 n.a.
solution RS 468.5 n.a.
Eigenvalue FS 1926 1.34
analysis RS 477.4 0.669
Implicit dynamic FS 1977 1.38
analysis RS 485.7 0.681

shell, the different criteria predict a different critical ply, namely the innermost and outermost
plies (i.e. ply 1 and 24), both 0° plies. The maximum failure index in the other, noncritical
ply is always within 3% of the one in the critical ply. The first and last ply are furthest away
from the mid-surface, such that they experience the most bending strain. It is therefore not
surprising that these are the critical plies. The critical location is identical for all indices and
for the two shells and occurs close to the top edge, but not at it, as indicated in Figure 6.4.
This is in line with the expectations. Typically, reinforcements in the form of extra plies are
added close to the boundaries to avoid preliminary failure in this region.

The strains in the inner and outer plies are given in Table 6.4. The critical ones, yielding to
the maximum failure index, are indicated in bold face. It can be seen that the strains in the
full-scale and reduced-scale shells are similar, but slightly larger for the full-scale shell. Both
analyzed plies have 0° orientation. As a result of the axial compression, the strain in fiber
direction ǫ11, aligned with the meridional direction, is negative and the strain in transverse
direction ǫ22, aligned with the circumferential coordinate, is positive.

Table 6.3: Maximum failure indices at incipient buckling for the cross-ply composite conical
shells.

Failure criteria FS RS
Max strain 0.029 (ply 1, 0°) 0.028 (ply 1, 0°)
Max stress 0.029 (ply 24, 0°) 0.028 (ply 1, 0°)
Tsai-Hill 0.029 (ply 24, 0°) 0.028 (ply 1, 0°)
Tsai-Wu 0.024 (ply 1, 0°) 0.023 (ply 1, 0°)
Hashin <0.01 <0.01

Table 6.4: Maximum strain values at incipient buckling in the inner and outer plies for the
cross-ply composite conical shells.

FS RS
ǫ11 [µǫ] ǫ22 [µǫ] ǫ12 [µǫ] ǫ11 [µǫ] ǫ22 [µǫ] ǫ12 [µǫ]

Inner ply (0°) -330.7 43.5 180.5 -323.5 31.3 114.9
Outer ply (0°) -330.5 53.4 47.5 -318.0 38.3 33.1

6.4 Comparison of the Full-Scale and Reduced-Scale Conical Shells

With the analyses performed, the full-scale and reduced-scale shells can be compared nondi-
mensionally to evaluate the scaling methodology.
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(a) Full-scale conical shell. (b) Reduced-scale conical shell.

Figure 6.4: Maximum strain criterion plot of ply 1 (0°) of the cross-ply composite conical shells.

6.4.1 Scaling Parameters

The nondimensional parameters are reported in Table 6.5. All the values agree perfectly, in
line with the expectation for ply-level scaling. The rounding of the dimensions does not affect
the accuracy in this case.

Table 6.5: The nondimensional scaling parameters of the full-scale and reduced scale cross-ply
composite conical shells.

Membrane Bending Batdorf-Stein Membrane Flexural
parameter αm parameter αb equivalent orthotropy orthotropy

parameter Z2 parameter µ parameter β
z1 = 0 z1 = 1 z1 = 0 z1 = 1 z1 = 0 z1 = 1 z1 ǫ [0, 1] z ǫ [0, 1]

FS 0.5825 0.8413 0.6516 0.9411 658.2 950.7 7.505 0.1790
RS 0.5825 0.8413 0.6516 0.9411 658.2 950.7 7.505 0.1790
∆ (0.0%) (0.0%) (0.0%) (0.0%) (0.0%) (0.0%) (0.0%) (0.0%)

6.4.2 Nondimensional Load-Displacement Curves

Next, the nondimensional load-displacement curves are compared, shown in Figure 6.5. The
nondimensional load, displacement and stiffness are summarized per analysis in Table 6.6.
The buckling load according to the semi-analytical solution match perfectly. The results of
the eigenvalue analyses are also excellent, with differences below 1%. The implicit dynamic
analysis results are also very good. The largest discrepancy occurs for the buckling load and
measures 1.73%. The nondimensional stiffness is predicted very well. These differences may be
caused by assumptions made in the scaling methodology, such as the membrane prebuckling
shape, but also from discrepancies in the finite element models. The load-displacement curves
have a similar shape and also converge to the same postbuckling load. The initial postbuckling
path is slightly different due to the different buckling load. Recall from the dimensional
analysis in section 6.2 that the buckling load is scaled by a factor 4. Looking at Equation 3.72f,
this makes sense. In the numerator of the loading parameter there is the radius, which is scaled
by a factor 2. In the denominator, the square root of two flexural stiffnesses is taken. These
are both scaled by a factor 23, as a result of the cubic thickness dependency. Consequently,
the load is multiplied with a factor 2√

23·23
= 1

4 .
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Table 6.6: Comparison of nondimensional buckling load, displacement and stiffness for the
cross-ply composite conical shells.

Buckling load Kxx
Buckling

Stiffness Kxx/U
displ. U

z1 = 0 z1 = 1 z1 ǫ [0, 1] z1 = 0 z1 = 1

Semi- FS 1708 2466 n.a. n.a. n.a.
analytical RS 1708 2466 n.a. n.a. n.a.
solution ∆ (0.0%) (0.0%)
Eigenvalue FS 1755 2535 4268 0.4111 0.5940
analysis RS 1740 2513 4251 0.4093 0.5912

∆ (−0.849%) (−0.868%) (−0.402%) (−0.443%) (−0.451%)
Implicit FS 1801 2602 4389 0.4103 0.5928
dynamic RS 1770 2557 4327 0.4091 0.5909
analysis ∆ (-1.72%) (-1.73%) (-1.40%) (-0.340%) (-0.325%)

6.4.3 Deformation Shapes

For the semi-analytical solution, the buckling mode was predicted to be (8,21) for both coni-
cal shells. The linear buckling modes, shown in Figure 6.2, are also very similar, except that
the full-scale deformation pattern is more skewed. The nonlinear deformation shapes at three
instances are compared in Figure 6.6 and Figure 6.7. Prior to buckling, the resemblance is
excellent. Upon buckling, the deformation of full-scale and reduced-scale shells are similar,
but not identical. This deformation shape is similar to the predictions by the semi-analytical
solution and the linear eigenvalue analysis. After buckling, the deformations are nearly iden-
tical as well. Both shells have a (3,20) deformation shape. The magnitude of the radial
displacement is shown in Figure 6.8. In line with the geometry and axial displacement, the
radial displacement is approximately scaled by a factor 2. The ratio of maximum to mini-
mum radial displacement equals -0.478 and -0.479 for full-scale and reduced-scale shell. The
scalability of the radial displacement is analyzed by evaluating its nondimensional form. The
minimum and maximum values are compared in Table 6.7. The results are excellent, they
match perfectly.

Table 6.7: Comparison of the minimum and maximum nondimensional radial displacement for
the cross-ply composite conical shells.

Minimum radial Maximum radial
Ratio Wmax/Wmindisplacement Wmin displacement Wmax

FS -17.1 8.08 -0.473
RS -17.1 8.09 -0.473
∆ (0.0%) (+0.124%) (0.0%)

6.5 Effect of Large Cone Angle

During the derivation of the compatibility equation, it was assumed that the curvature is
mildly varying with the shell coordinates. For small cone angles, this assumption is expected
to hold, because the radius of the conical shell varies with sin α, which is small for small α.
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Figure 6.5: Nondimensional load-displacement curve of the full- and reduced-scale cross-ply
composite conical shells, using Kxx at z1 = 0.

(a) Before buckling, for
U = 2333. (b) At buckling, for U = 4389. (c) After buckling, for U = 5399.

Figure 6.6: Deformation shapes (radial displacement) of the full-scale cross-ply composite
conical shell at the instances indicated in Figure 6.5.

(a) Before buckling, for
U = 2333. (b) At buckling, for U = 4327. (c) After buckling, for U = 5399.

Figure 6.7: Deformation shapes (radial displacement) of the reduced-scale cross-ply composite
conical shell at the instances indicated in Figure 6.5.

For larger cone angles, however, this assumption must be checked and the effect on the scaling
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(a) Full-scale conical shell. (b) Reduced-scale conical shell.

Figure 6.8: Comparison of the dimensional postbuckling deformation shape. Relative size of
the two shells is as in reality.

should be evaluated. Therefore, the Payload Attach Fitting (PAF) of the SLS is analyzed,
which has a cone angle α of 45° [20]. The geometric dimensions and layup of the full-scale and
reduced-scale conical shells are detailed in Table 6.8. The same material and layup are used
as for the cross-ply SLS USA conical shell previously discussed. Moreover, ply-level scaling
is applied. The two conical shells are compared using the semi-analytical solution, a linear
eigenvalue analysis, and an implicit dynamic analysis.

Table 6.8: Geometry description of the cross-ply composite SLS PAF conical shells.

Cone angle
Length L [mm]

Small Stacking
α [deg] radius R1 [mm] sequence [deg]

FS 45 4831 787 [02/902]3S

RS 45 2419 394 [0/90]3S

As this is another structure than the previously investigated SLS USA conical shell, a new
mesh convergence study is performed using the linear eigenvalue analysis. For the full-scale
shell, convergence is achieved for the mesh of 50 mm. Similarly, for the reduced-scale conical
shell, a mesh size of 25 mm yields convergence. For the implicit dynamic analysis, the same
reasoning is applied as in subsection 6.2.3 for the SLS USA. Based on the linear buckling
displacement, the displacement rates for the full-scale and reduced-scale shells are determined
to be 1.2 mm/s and 0.6 mm/s, respectively. Because of the different geometry, the results are
checked by performing an additional analysis with displacement rates of 0.75 mm/s and 0.375
mm/s. The results of the two analyses are within 1% of each other for both the full-scale
and the reduced-scale shell. It is therefore concluded that the results are converged. The
dimensional results for the two conical shells are summarized in Table 6.9. Good correlation
is observed between the three analysis types for both shells. It is checked if failure occurs
after buckling. Prior to buckling, the failure indices for full-scale and reduced-scale shell never
exceed 0.077 and 0.076, respectively.

The full-scale and reduced-scale shells are compared nondimensionally. The scaling parame-
ters are all satisfied within 0.15%. The buckling load, displacement and stiffness are given in
Table 6.10 and Figure 6.9. The agreement between full-scale and reduced-scale shells is very
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Table 6.9: Buckling load and displacement for the cross-ply composite SLS PAF conical shells.

Buckling load Pcr [kN] Buckling displ. ucr [mm]

Semi-analytical FS 1103 n.a.
solution RS 275.8 n.a.
Eigenvalue FS 1053 2.28
analysis RS 259.8 1.14
Implicit dynamic FS 1074 2.33
analysis RS 262.6 1.15

good across all analyses. The differences for the scaling parameters and the semi-analytical
solution can be attributed to rounding of the dimensions of the reduced-scale shell. The same
semi-analytical buckling mode (8,12) is predicted for the two shells. The accuracy of the lin-
ear reduced-scale prediction is good as well with errors of 1.17% and 0.507% for the buckling
load and displacement, respectively. The linear buckling modes are not shown here but they
are similar to the deformation shapes at buckling shown in Figure 6.10b and Figure 6.11b.
They are nearly identical as well.

The same conclusions can be drawn for the implicit dynamic analysis, for which errors of
2.12% and 1.52% are observed for load and displacement prediction, respectively. The load-
displacement paths do not converge to the same postbuckling load. The postbuckling defor-
mation shapes in Figure 6.10 and Figure 6.11 are also slightly different: the full-scale shell has
a (2,12) deformation shape, whereas the reduced-scale shell has a (2,11) shape. The defor-
mation shapes before and at buckling are similar for the two shells. The radial displacements
are not shown here, but the nondimensional minimum and maximum values are compared
in Table 6.11. The difference is larger than for the SLS USA. This can be explained by the
different postbuckling path and deformation shape. The reduced-scale shell minimum and
maximum values are more pronounced than the ones of the full-scale shell.

Table 6.10: Comparison of nondimensional buckling load, displacement and stiffness for the
cross-ply composite SLS PAF conical shells.

Buckling load Kxx
Buckling

Stiffness Kxx/U
displ. U

z1 = 0 z1 = 1 z1 ǫ [0, 1] z1 = 0 z1 = 1

Semi- FS 371.4 1983 n.a. n.a. n.a.
analytical RS 371.8 1986 n.a. n.a. n.a.
solution ∆ (+0.119%) (+0.134%)
Eigenvalue FS 354.4 1893 5135 0.06902 0.3686
analysis RS 350.3 1871 5108 0.06858 0.3663

∆ (−1.17%) (−1.16%) (−0.526%) (−0.637%) (−0.624%)
Implicit FS 361.7 1932 5246 0.06895 0.3683
dynamic RS 354.1 1891 5167 0.06853 0.3660
analysis ∆ (-2.10%) (-2.12%) (-1.51%) (-0.609%) (-0.624%)
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Figure 6.9: Nondimensional load-displacement curve of the full- and reduced-scale cross-ply
composite SLS PAF conical shells, using Kxx at z1 = 0.

(a) Before buckling, for
U = 2829. (b) At buckling, for U = 5246. (c) After buckling, for U = 6748.

Figure 6.10: Deformation shapes (radial displacement) of the full-scale cross-ply composite
SLS PAF conical shell at the instances indicated in Figure 6.9.

(a) Before buckling, for
U = 2829. (b) At buckling, for U = 5167. (c) After buckling, for U = 6748.

Figure 6.11: Deformation shapes (radial displacement) of the reduced-scale cross-ply
composite SLS PAF conical shell at the instances indicated in Figure 6.9.
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Table 6.11: Comparison of the minimum and maximum nondimensional radial displacement for
the cross-ply composite SLS PAF conical shells.

Minimum radial Maximum radial
Ratio Wmax/Wmindisplacement Wmin displacement Wmax

FS -26.9 12.9 -0.482
RS -28.9 13.8 -0.476
∆ (+7.43%) (+6.98%) (-1.24%)

6.6 Concluding Remarks

This chapter discusses the scaling of a cross-ply laminated conical shell. By using ply-level
scaling, all scaling parameters and all assumptions could be satisfied. This scaling technique
can be understood as reducing the ply thickness by a constant factor, by which the geometry
is also scaled. Instead of actually reducing the ply thickness, the number of identical adjacent
plies is reduced. The semi-analytical solution prediction accuracy is excellent, both for buck-
ling load and deformation shape. This verifies the nondimensional equations and the scaling
methodology. The linear eigenvalue analysis and implicit dynamic analysis predictions are
very accurate for all compared parameters. Although postbuckling is not taken into account
in the scaling methodology, the load-displacement curve is similar in this regime as well.
The deformation shapes are identical for the whole analysis and the minimum and maximum
nondimensional radial displacements agree excellently.

In addition, the assumption of the mildly varying curvature was checked using the scaling of
a conical shell with cone angle α = 45°. This was successful and the prediction accuracy of
the analyzed parameters was similar to that of the small cone angle shell. The postbuckling
behavior was not identical for the two shells; the deformation shape was slightly different and
the radial displacement was not scaled with the same accuracy as the other parameters.

These results show that the scaling methodology is capable of scaling cross-ply composite
conical shells. This layup type satisfies all laminate requirements (i.e. symmetry, balance
and negligible flexural anisotropy). The buckling load, displacement, deformation shape and
radial displacement were scaled accurately. Although these results are satisfactory, the prac-
tical use of this scaling remains limited. Cross-ply stacking sequences are hardly used for
applications, let alone cross-ply stacking sequences where several same angle plies are adja-
cent. Additionally, it is not recommended to have many same angle plies next to each other
to avoid rapid damage propagation. As a result, the size of the reduced-scale shell will still
be rather large, because the geometry is scaled by the same number as the thickness. The
analysis is, however, still relevant, because it shows the accuracy of the scaling methodology
in the ideal case, so when the laminate assumptions and all scaling parameters are satisfied.



Chapter 7

Scaling of Composite Conical Shell

In the previous chapters, the scaling methodology has been applied to isotropic and cross-ply
composite conical shells. Although these analyses verify the scaling methodology, they are
not relevant for other, more realistic composite shells. Ply-level scaling can only be applied to
laminates with adjacent identical plies, which are typically avoided to prevent rapid damage
propagation. Therefore, this chapter discusses the application of the methodology to a quasi-
isotropic composite conical shell without using ply-level scaling. First, the conical shell designs
are elaborated upon, after which the buckling behavior is analyzed and it is checked if material
failure occurs after buckling. Then, the full-scale and reduced-scale results are compared in
their nondimensional form.

7.1 Conical Shell Designs

The design of the full-scale composite shell is discussed in this section. Furthermore, it is
explained which reduced-scale configurations can be designed for this full-scale shell and how
these designs are found using the methodology.

7.1.1 Full-Scale Conical Shell Description

The SLS USA is analyzed again, of which the geometry is detailed in Table 4.1. The original
stacking sequence is a sandwich composite with a 1 inch (i.e. 25.4 mm) aluminum honey-
comb core and a quasi-isotropic facesheet layup, [45/90/-45/0]S [20]. A monolithic composite
stacking sequence is created which results in a buckling load similar to the one of the original
sandwich laminate. To limit the computational effort, this comparison is made using the
semi-analytical solution. Because the facesheets are quasi-isotropic, the monolithic composite
layup also uses a quasi-isotropic basis. The IM7/8552 carbon fiber is used as material for the
full-scale shell.

It should be noted that reference [20] uses a different ply thickness (i.e. tply = 0.135 mm) than
the ply thickness adopted here (i.e. tply = 0.18 mm). For the determination of the equivalent
monolithic composite, the original, smaller ply thickness is used for the sandwich shell, such
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that the results could be compared to the results in the paper. For the monolithic composite
shell, the thickness of 0.18 mm is used, to be consistent with the other shells analyzed here.
The stacking sequence [45/90/-45/0]7S results in a semi-analytical buckling load 2.7% lower
than the semi-analytical buckling load of the sandwich structure. The structure details are
summarized in Table 7.1.

7.1.2 Reduced-Scale Conical Shell Design

There are several options for the design of the reduced-scale conical shell. More specifically,
the shell can be made of an isotropic material, or from a composite material. In the latter case,
one can opt for a monolithic or a sandwich laminate. The sandwich design is not considered
here, because if large reductions in size are desired, the reduced-scale core thickness will also
be very small, which leads to unproducible designs. For the monolithic composite, the same
material is used as for the facesheets of the full-scale shell. Aluminum alloy 2024-T4, specified
in Table 4.3, is assumed to be used for the isotropic shell.

With the material chosen, the first step in the scaling methodology is completed, see Figure 3.5
and Figure 3.6. For the composite shell, the next step is to determine the layup. The number
of stacking sequence options is immense, so choices have to be made to limit this. At the
same time, this is the only design freedom for composite reduced-scale shells, so it should
be used smartly: it influences the geometry and size of the shell. Below, it is explained
which limitations are set and how strictly they are enforced. The resulting layup designs are
also discussed. Afterwards, it is exemplified how one of the designs is obtained using the
step-by-step scaling procedure. Finally, all reduced-scale shell designs are summarized and
discussed.

Imposed Limitations and Layup Designs

Below, the considerations for the reduced-scale layup choice are explained, together with how
strictly the limitations are followed.

1. Symmetry and balance requirement. These requirements are strictly enforced, in
agreement with the assumptions made in the scaling methodology.

2. Layup types. One can combine various ply orientations in one layup, but the analysis
here is limited to two layup types.

a. Same layup basis as full-scale shell. For this full-scale shell, this means that a
[45/90/-45/0] basis is repeated and mirrored, such that the symmetry and balance
requirements are satisfied.

b. One variable ply angle θ. Repetitions and inversions of the ply group [θ, −θ] are
combined to yield a symmetric, balanced layup. The choice for only allowing one
ply angle variable is made to limit the total number of variables to be determined.

3. Flexural anisotropy assumption. This assumption is not strictly enforced, because
through experience with the methodology, it is observed that it would limit the design
options too much. Designs with and without negligible flexural anisotropy are consid-
ered, such that the results can be compared and the influence of the assumption can be
evaluated.
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4. Conform to common test equipment sizes. Once the layup is determined and
the shell is designed, it is checked if the shell would complies with common lab test
equipment constraints, as detailed in Table 4.2. This is also not strictly enforced for
the same reason as given for the flexural anisotropy.

Based on these considerations, three composite designs are created. In addition, an isotropic
reduced-scale shell is designed. This shell automatically satisfies the symmetry, balance and
flexural anisotropy requirements. As a result, the shell is designed such that it would conform
to common test equipment sizes. The four designs are listed below.

A. Same layup basis as full-scale shell. The ply group [45/90/-45/0] is used as layup
basis. To satisfy the symmetry and balance assumptions, the group is mirrored, such
that a [45/90/-45/0]S layup is obtained. The flexural anisotropy parameters and the
size of the shell are checked later.

B. [θ/-θ/0]S. This layup considers one variable ply angle. The symmetry and balance
requirements are satisfied. For this design, priority is given to the test equipment size
over the flexural anisotropy assumption. The 0° ply is added because it reduces the
flexural anisotropy parameters, while still satisfying the size constraints set by test
equipment. The flexural anisotropy is, however, not negligible.

C. [θ/-θ]S3. This layup also considers only one variable ply angle and the symmetry and
balance requirements are satisfied. In contrast to configuration B, the priority is given to
the flexural anisotropy assumption over the test equipment size. The flexural anisotropy
is negligible, but the shell does not comply with common test equipment constraints.

D. Isotropic. This shell intrinsically satisfies the symmetry, balance and flexural anisotropy
requirements. The size is chosen such that the reduced-scale shell fits in common test
equipment.

Step-by-Step Application of the Methodology

Below, it is explained how configuration B is found using the scaling methodology in Fig-
ure 3.6.

1. Choose material. As explained before, the same material is used for the reduced-scale
shell as for the full-scale shell.

2. Determine (symmetric, balanced) layup using µ and β. The layup structure has
been chosen already. The variation of the orthotropy parameters with the ply angle θ is
shown in Figure 7.1. The full-scale values for µ and β are indicated with black horizontal
lines. The reduced-scale values of these parameters are calculated for θ ranging from 0°

to 90°. For θ = 16°, the reduced-scale orthotropy parameters are both approximately
equal to the full-scale values. Note that the ply angle is rounded to an integer value for
manufacturing considerations.

3. Determine ratio R1

L
using αm and αb at z1 = 0. Based on the membrane parame-

ter in Equation 3.72a, the radius-to-length ratio should be 0.308. Based on the bending
parameter in Equation 3.72b, it should be 0.304. Therefore, a value of 0.306 is used for
the next step.
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Figure 7.1: Variation of the orthotropy parameters with ply angle for a [θ/ − θ/0]S layup.

4. Determine cone angle α using αm and αb at z1 = 1. Based on the membrane
parameter (Equation 3.72a), the cone angle should be 8.01°. Based on the bending
parameter (Equation 3.72b), it should be 7.62°. Only integer values of the cone angle
are considered, so α = 8°.

5. Determine R1 and L using Z2. From the equivalent Batdorf-Stein parameter (Equa-
tion 3.72e) at z1 = 0, the top radius is found to be 253 mm. Similarly for z1 = 1, the
length is found to be 808 mm. This results in a R1

L = 0.313, which is slightly higher
than the values required to satisfy αm and αb in step 3.

The same procedure is applied for configurations A and C. For configuration A, the layup
is already fixed, so the values of µ and β cannot be tailored to match the full-scale values
anymore. They are therefore not part of the design procedure in this case, so step 2 is
skipped. For configuration C, two ply angles are found in step 2 which satisfy the µ and
β requirements. As a result, there are two designs based on configuration C. The isotropic
design of configuration D is obtained by following the methodology shown in Figure 3.5. The
large radius is set to approximately 400 mm, from which the other dimensions are derived.

Final Reduced-Scale Shell Designs

The designs in Table 7.1 are created. All shells satisfy the symmetry and balance requirements.
The large radius of configuration A is too large to fit in common test equipment. In order
to reduce the radius, a thinner layup would be required. This is, however, not possible while
complying with the symmetry and balance requirements. Priority is given to the laminate
requirements, so the design is not altered. Configuration B, on the other hand, fits in common
test equipment. Configurations C.i and C.ii are both too large, as expected. Only one of these
two configurations will be analyzed further, because they are similar. Configuration C.i is
excluded from the analysis, because it exceeds both the maximum height requirement of 1000
mm and the maximum radius requirement of 400 mm. Lastly, configuration D fits in common
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test equipment. It should be noted that thickness is small and the accuracy up to 0.01 mm
may be difficult to achieve.

Table 7.1: Geometry description of the full-scale (FS) quasi-isotropic composite conical shell
and its reduced-scale (RS) configurations.

Config. Cone angle Length Small radius Large radius Stacking
α [deg] L [mm] R1 [mm] R2 [mm] sequence [deg]

FS 15 4996 2910 4203 [45/90/-45/0]7S

RS A 16 625 387 559 [45/90/-45/0]S
RS B 8 808 253 365 [16/-16/0]S
RS C.i 8 2607 816 1179 [15/-15]S3

RS C.ii 29 847 924 1335 [75/-75]S3

RS D 15 472 275 397
Isotropic,
t = 0.94 mm

7.2 Buckling Analyses

This section discusses the buckling analyses. In the subsequent steps, the least promising
reduced-scale configurations are eliminated from the analysis to limit the computational cost.

7.2.1 Semi-analytical Solution

The full-scale shell and the reduced-scale configurations A, B, C.ii, and D are analyzed using
the semi-analytical buckling solution. In addition, it is checked if the flexural anisotropy
parameters are negligible. The results are given in Table 7.2. The buckling mode of the
full-scale shell is correctly predicted by all reduced-scale configurations. The buckling load
prediction is accurate for all shells, except for configuration A. Recall that parameters µ and
β were not taken into account for the design of this shell. The µ parameter is identical to
the full-scale value, but β differs by 44.3%. This large discrepancy explains the low buckling
load prediction accuracy. This result is also in agreement with Rezaeepazhand et al. [95]
for cylindrical shells, who found that the accuracy of this type of layup scaling reduces for
large differences in laminate thickness. Because of this low prediction accuracy, configuration
A is excluded from further analysis. Furthermore, configuration B is excluded based on its
high flexural anisotropy parameters. Configurations C.ii and D are analyzed with linear finite
element models.

7.2.2 Linear Eigenvalue Analysis

Mesh convergence studies are performed for the three analyzed shells. This results in a mesh
size of 50 mm for the full-scale shell, a size of 12 mm for configuration C.ii, and a size of
5 mm for configuration D. The linear buckling loads and displacements are summarized in
Table 7.3. Both parameters are well predicted by the two reduced-scale shells. The buckling
modes, shown in Figure 7.2, are nearly identical to the full-scale linear buckling mode. Con-
figuration C.ii will be analyzed with a nonlinear analysis, because it is most interesting: it has
a different cone angle, stacking sequence type and radius-to-length ratio than the full-scale
shell and it has non-zero, but negligible, flexural anisotropy. These are all parameters which
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Table 7.2: Semi-analytical solution and flexural anisotropy results for the different
configurations. The difference in Kxx with the full-scale value is given between brackets. Note

that i, j = 1, 2.

Config.
Buckling Buckling Nondimensional D16

min(Dij)
D26

min(Dij)load [kN] mode (m, n) buckling load Kxx

FS 20173 (15,0) 1807 9.42% 9.42%
RS A 325.3 (15,0) 1553 (-14.1%) 63.4% 63.4%
RS B 103.6 (15,0) 1834 (+1.49%) 178% 20.5%
RS C.ii 829.4 (15,0) 1859 (+2.88%) 1.48% 14.1%
RS D 232.9 (15,0) 1858 (+2.82%) 0.0% 0.0%

are known to influence the buckling response and imperfection sensitivity. The isotropic shell,
configuration D, is interesting from a practical perspective, but poses less challenges on the
scaling methodology. A size comparison of the reduced-scale shell and configuration C.ii is
shown in Figure 7.3.

Table 7.3: Linear eigenvalue results for the different configurations. The difference in Kxx and
U with the full-scale value is given between brackets.

Config.
Buckling Buckling Nondimensional Nondimensional
load [kN] displ. [mm] buckling load Kxx buckling displ. U

FS 20289 8.43 1817 4399
RS C.ii 829.7 4.65 1859 (+2.31%) 4505 (+2.41%)
RS D 235.0 0.821 1875 (+3.19%) 4527 (+2.91%)

(a) Full-scale shell. (b) Configuration C.ii. (c) Configuration D.

Figure 7.2: First eigenmode of the full-scale quasi-isotropic composite conical shell and its
reduced-scale configurations, showing radial displacement.

7.2.3 Implicit Dynamic Analysis

The full-scale conical shell and reduced-scale configuration C.ii are analyzed with an implicit
dynamic analysis. For the former, a displacement rate of 4.32 mm/s is used, for the latter
2.38 mm/s. The other settings are identical to the ones determined in section 4.3. The results
are visualized in Figure 7.4 and summarized in Table 7.4. It can be seen that an eigenmode
imperfection of 1% of the thickness is added. This is done to avoid the load plateau observed
for the reduced-scale shell. This results in a knockdown factor KDF=0.900 for the full-scale
shell and KDF=0.871 for the reduced-scale shell.
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Figure 7.3: Visualization of the full-scale (blue, left) quasi-isotropic conical shell and its
reduced-scale configuration (red, right). Both shells are 73x smaller than in reality.

Table 7.4: Buckling load and displacement for the full-scale quasi-isotropic composite conical
shell and its reduced-scale configuration.

Config. Buckling load Pcr [kN] Buckling displ. ucr [mm]

FS 18265 7.67
RS C.ii 723.8 4.08

7.3 Failure Assessment

Next, it is checked if failure occurs after buckling. The failure indices at incipient buckling are
all well below 1, as can be seen in Table 7.5, so failure is not expected. For the reduced-scale
shell, the innermost ply (i.e. ply 1) is critical, which has a 75° orientation. This ply is located
furthest away from the mid-surface and consequently experiences the highest bending strains.
It is therefore not surprising that this is the critical ply. According to the Hashin criterion,
the critical index is caused by fiber tension. The shell experiences circumferential tension due
to the Poisson’s effect, which explains this prediction. For the full-scale shell, ply 4, which is
the innermost 0° ply, is critical. This ply experiences compression in the fiber direction due
to the axial loading, in combination with bending due to the deformation. The compression
behavior of the composite is mainly governed by the matrix and the fiber-matrix interface.
As a result, the corresponding strength and failure strain are low, thus causing this ply to
be critical. The critical location is identical for all indices and for the two shells and occurs
near the top edge, but not at it. This is in line with the expectations. Typically, pad-ups are
added in this region as a reinforcement.

The strains in the four inner plies are given in Table 7.6. These plies are observed to have
the highest strains. The critical ones, yielding to the maximum failure index, are indicated
in bold face. Note that these are not necessarily the highest strains, but the highest relative
to the failure strain in that direction. From ply 2 and 4 of the full-scale shell, it can be seen
that strains are negative in meridional direction and positive in circumferential direction, as
expected due to the axial compression. In addition, the shear strain is small for ply 2 and 4,
and large for ply 1 and 3, which is in line with the expectation seen the load case. The fiber
direction of the inner 0° ply is critical for this shell. The explanation for this was given above.
For the reduced-scale shell, the shear strain in ply 1 (75°) is critical. Strain contour plots
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(a) Full-scale conical shell.
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(b) Reduced-scale conical shell configuration C.ii.

Figure 7.4: Load-displacement curves of the full-scale quasi-isotropic composite conical shell
and its reduced-scale configuration.

of the critical ply are shown in Figure 7.5. The critical location, close to the edge, can be
clearly seen here. Buckling initiation can be recognized as well, creating deformation waves,
and thus locally higher strains. These are especially visible in Figure 7.5e.
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Table 7.5: Maximum failure indices at incipient buckling for the full-scale quasi-isotropic
composite conical shell and its reduced-scale configuration.

Failure criteria FS RS C.ii
Max strain 0.201 (ply 4, 0°) 0.208 (ply 1, 75°)
Max stress 0.201 (ply 4, 0°) 0.208 (ply 1, 75°)
Tsai-Hill 0.201 (ply 4, 0°) 0.281 (ply 1, 75°)
Tsai-Wu 0.200 (ply 4, 0°) 0.232 (ply 1, 75°)

Hashin
0.0403 (ply 4, 0°) 0.0430 (ply 1, 75°)
fiber compression fiber tension

Table 7.6: Maximum strain values at incipient buckling in the four inner plies for the full-scale
quasi-isotropic composite conical shell and its reduced-scale configuration.

FS RS C.ii
θ [deg] ǫ11 [µǫ] ǫ22 [µǫ] ǫ12 [µǫ] θ [deg] ǫ11 [µǫ] ǫ22 [µǫ] ǫ12 [µǫ]

Ply 1 45° -1079 -1105 3183 75° 320.2 -5922 3568
Ply 2 90° 862.2 -2332 -789.3 −75° 312.7 -5770 -3499
Ply 3 −45° -1085 -1061 -3164 −75° 308.0 -5622 -3382
Ply 4 0° -2312 859.7 770.8 75° 309.6 -5476 3258

7.4 Comparison of the Full-Scale and Reduced-Scale Conical Shells

The full-scale and reduced-scale shells are compared nondimensionally. First, the scaling
parameters are evaluated, followed by the load-displacement graphs. The deformation shapes
are also compared.

7.4.1 Scaling Parameters

The nondimensional parameters are reported in Table 7.7. The agreement is good for all
parameters and especially for the Batdorf-Stein equivalent parameter. The difference in or-
thotropy parameters is caused by the rounding of the ply angle to an integer value, as well as
averaging the result to minimize the error with respect to both parameters. The difference
in bending parameter is due to the rounding of the cone angle to an integer value and due to
not using the radius-to-length ratio as output from this parameter.

7.4.2 Nondimensional Load-Displacement Curves

Next, the nondimensional load-displacement curves are compared, shown in Figure 7.6. The
nondimensional load, displacement and stiffness are summarized per analysis in Table 7.8. The
nondimensional buckling loads of full-scale and reduced-scale shells match well according to
the semi-analytical solution. The linear eigenvalue analysis gives a similar prediction accuracy.
The implicit dynamic analysis results are even more accurate. The largest discrepancy occurs
for the buckling displacement and measures 1.22%. The nondimensional stiffness is predicted
very well. The load-displacement curves have a similar shape and converge to the same
postbuckling load. The initial postbuckling path is different, but only during the load drop.
The imperfection sensitivity differs slightly: for the full-scale shell, a knockdown factor of
KDF=0.900 is observed and for the reduced-scale shell, KDF=0.871.
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(a) Full-scale shell ply 4 (0°), ǫ11 [µǫ]. (b) Reduced-scale shell ply 1 (75°), ǫ11 [µǫ].

(c) Full-scale shell ply 4 (0°), ǫ22 [µǫ]. (d) Reduced-scale shell ply 1 (75°), ǫ22 [µǫ].

(e) Full-scale shell ply 4 (0°), ǫ12 [µǫ]. (f) Reduced-scale shell ply 1 (75°), ǫ12 [µǫ].

Figure 7.5: Strains in the critical plies at incipient buckling for the full-scale quasi-isotropic
composite conical shell and its reduced-scale configuration.

It is surprising that the implicit dynamic analysis gives a more accurate prediction than the
semi-analytical solution and the linear eigenvalue analysis. This is believed to be caused by a
combination of errors. The semi-analytical prediction gives an overestimation of the buckling
load of 2.88% due to the differences in scaling parameters. The linear eigenvalue analysis
also overestimates the buckling load, but by 2.32%. The difference in overestimation with the
semi-analytical solution of −0.56% (2.32%−2.88%) can be explained by the small, but non-
zero flexural anisotropy of the two shells and by slight differences in the finite element models.
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Table 7.7: The nondimensional scaling parameters of the full-scale quasi-isotropic composite
conical shell and its reduced-scale configuration.

Membrane parameter αm Bending parameter αb

z1 = 0 z1 = 1 z1 = 0 z1 = 1

FS 0.5825 0.8413 0.5657 0.8171
RS C.ii 0.5800 0.8377 0.5800 0.8377
∆ (-0.428%) (-0.424%) (+2.52%) (+2.52%)

Batdorf-Stein eq. Membrane orth. Flexural orth.
parameter Z2 parameter µ parameter β

z1 = 0 z1 = 1 z1 ǫ [0, 1] z1 ǫ [0, 1]

FS 266.9 385.5 1.000 1.058
RS C.ii 266.8 385.3 0.9432 1.031
∆ (-0.0429%) (-0.0389%) (-5.68%) (-2.55%)

The implicit dynamic analysis underestimates the buckling load by 0.85%. Thus, there is a
difference of −3.17% (−0.85%−2.32%) with the eigenvalue prediction. This is attributed to
the difference in imperfection sensitivity between the two shells. The difference in buckling
load between the linear and nonlinear prediction is larger for the reduced-scale shell than
for the full-scale shell. As a result, the overestimation observed for the eigenvalue prediction
is counteracted by the larger imperfection sensitivity of the reduced-scale shell. In short,
it can be concluded that the inclusion of phenomena which are not included in the scaling
methodology, such as flexural anisotropy and imperfection sensitivity, change the prediction
accuracy. They do not necessarily reduce the similarity between the two shells, because the
effects of the phenomena on the prediction accuracy partially balance each other out.

Table 7.8: Comparison of nondimensional buckling load, displacement and stiffness for the
full-scale quasi-isotropic composite conical shell and its reduced-scale configuration.

Buckling load Kxx
Buckling

Stiffness Kxx/U
displ. U

z1 = 0 z1 = 1 z1 ǫ [0, 1] z1 = 0 z1 = 1

Semi- FS 1807 2609 n.a. n.a. n.a.
analytical RS C.ii 1859 2685 n.a. n.a. n.a.
solution ∆ (+2.88%) (+2.88%)
Eigenvalue FS 1817 2624 4399 0.4130 0.5965
analysis RS C.ii 1859 2685 4505 0.4127 0.5960

∆ (+2.32%) (+2.32%) (+2.41%) (−0.0726%) (−0.0838%)
Implicit FS 1636 2363 4006 0.4084 0.5899
dynamic RS C.ii 1622 2343 3957 0.4099 0.5921
analysis ∆ (-0.856%) (-0.846%) (-1.22%) (+0.367%) (+0.373%)

7.4.3 Deformation Shapes

For the semi-analytical solution, the buckling mode was predicted to be (15,0) for both conical
shells. The linear buckling modes, shown in Figure 7.2, are also very similar, except for the
rotation around the central axis. The nonlinear deformation shapes at three points during
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Figure 7.6: Nondimensional load-displacement curve of the full-scale quasi-isotropic composite
conical shell and its reduced-scale configuration, using Kxx at z1 = 0.

loading are compared in Figure 7.7 and Figure 7.8. The agreement is very good for all
instances. Both shells have a (2,11) postbuckling deformation shape. The magnitude of
the radial displacement is shown in Figure 7.9. The ratio of maximum to minimum radial
displacement equals -0.458 and -0.452 for full-scale and reduced-scale shells, respectively. This
is within 1.4% of each other.

(a) Before buckling, for U = 2503. (b) At buckling, for U = 4006. (c) After buckling, for U = 5121.

Figure 7.7: Deformation shapes (radial displacement) of the full-scale quasi-isotropic composite
conical shell at the instances indicated in Figure 7.6.

The scalability of the radial displacement is analyzed by evaluating its nondimensional form.
The result is shown in Figure 7.10. The minimum and maximum values are compared in
Table 7.9. The results are good, the values match within 4.07% and the ratios of minimum
to maximum displacement differ by 6.92%. These differences are larger than the differences
found for the buckling load and meridional displacement, but are still acceptable. Similar
to the isotropic shell, this may be caused by the membrane prebuckling assumption and
neglecting the presence of imperfections in the methodology. In addition, the comparison is
made for a deformation shape in the postbuckling regime, which is not accounted for in the
methodology. Overall, the nondimensional radial displacement is well predicted for the whole
shell, as can be seen in Figure 7.10. Only near the top edge, there are some differences.
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(a) Before buckling, for U = 2503. (b) At buckling, for U = 3957. (c) After buckling, for U = 5123.

Figure 7.8: Deformation shapes (radial displacement) of the reduced-scale composite conical
shell at the instances indicated in Figure 7.6.

(a) Full-scale conical shell. (b) Reduced-scale conical shell.

Figure 7.9: Comparison of the dimensional postbuckling deformation shape. Reduced-scale
shell is 1.55x enlarged compared to the full-scale shell for visibility.

Table 7.9: Comparison of the minimum and maximum nondimensional radial displacement for
the full-scale quasi-istropic composite conical shell and its reduced-scale configuration.

Minimum radial Maximum radial
Ratio Wmax/Wmindisplacement Wmin displacement Wmax

FS -26.1 11.7 -0.448
RS -26.9 11.2 -0.417
∆ (+3.07%) (-4.07%) (-6.92%)

7.5 Concluding Remarks

The scaling of a quasi-isotropic composite conical shell is discussed in this chapter. For the
reduced-scale shell, several designs were developed, considering the laminate assumptions and
test equipment constraints. The most promising reduced-scale configuration was selected,
based on the flexural anisotropy assumption and the semi-analytical prediction accuracy.
Configuration C.ii was analyzed in detail and has a larger cone angle and radius-to-length
ratio than the full-scale shell and an angle-ply symmetric layup. Although these parameters
are known to affect the buckling response and imperfection sensitivity, the predictions were
accurate. Failure is not expected to occur prior to buckling for the full-scale shell, nor for
the reduced-scale shell. Good prediction accuracies are obtained for the buckling load and
displacement for all three analyses. The scaling methodology neglects several phenomena
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Figure 7.10: Nondimensional radial displacement comparison for the full-scale quasi-isotropic
composite shell and its reduced-scale configuration (U = 5121).

to simplify the procedure, such as the flexural anisotropy and the presence of imperfections.
Inclusion of these phenomena in the comparison shows that they affect the prediction accuracy,
but they do not cause the methodology to fail. More specifically, the prediction errors created
by these phenomena can partially balance each other out, such that accurate predictions are
obtained.

The deformation shapes and stiffness were also accurately predicted. The nondimensional
radial displacements are similar as well, but less accurate than the buckling load and dis-
placement. This is explained by the presence of the imperfection, the membrane prebuckling
assumption, and the fact that the comparison is made in the postbuckling regime, which is
not taken into account in the methodology.

The bottom diameter of configuration C.ii is too large to fit in common test equipment. There
is a difficult balance between the test equipment constraints and the requirement on flexural
anisotropy. If one wishes to obtain a small reduced-scale shell, the thickness has to be scaled
accordingly. As a result, the reduction in size depends on the size and laminate of the full-scale
shell, as well as the limitations from test equipment. To have negligible flexural anisotropy,
there must be sufficient plies, thus requiring a larger thickness and consequently a larger
geometry. The application in this chapter shows that the design space of the reduced-scale
shell is heavily limited by these contradicting requirements.

Finally, the full-scale layup is very thick (56 layers) and therefore not very lightweight. A
sandwich laminate, as the original SLS USA structure has, is more lightweight and thus a
more realistic design.



Chapter 8

Scaling of Sandwich Composite
Conical Shell

The application of the scaling methodology to a quasi-isotropic composite in the previous
chapter was successful. Nevertheless, it was not the original structure that was being scaled,
but a thick, monolithic composite equivalent. The original structure, as discussed in reference
[20], is a sandwich composite conical shell. The scaling of the original structure is investigated
in this chapter. The designs of the full-scale and reduced-scale shells are first explained. Next,
the buckling behavior is evaluated, followed by the nondimensional comparison. The effect of
larger imperfections is discussed afterwards and the chapter is ended with concluding remarks.

8.1 Conical Shell Designs

First, the designs of the full-scale and reduced-scale conical shells are discussed. Several
reduced-scale shells are designed using the methodology from section 3.6.

8.1.1 Full-Scale Conical Shell Description

The SLS USA is analyzed again, now with the original sandwich stacking sequence taken from
reference [20]. In the paper, various core thicknesses and facesheet layups are considered.
Here, it is decided to use the one with a 1 inch (i.e. 25.4 mm) core and with a quasi-
isotropic facesheet layup, [45/90/-45/0]S . For the core, aluminum honeycomb is used with
the properties given in Table 4.6. The facesheets are made of IM7/8552 carbon fiber, detailed
in Table 4.4. The structure details are given in Table 8.1.

8.1.2 Reduced-Scale Conical Shell Design

Similar to the reduced-scale shells in chapter 7, there are many options for the design of the
reduced-scale conical shell. Isotropic and monolithic composite designs are considered here
as well. For the former, aluminum alloy 2024-T4 is assumed to be used. For the latter, the
same material is used as for the facesheets of the full-scale shell. The layup type is still to be
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decided. Although the full-scale shell is a sandwich shell, this layup type is not considered
for the reduced-scale shell. To obtain small reduced-scale conical shells, large reductions in
core thickness are required, which may lead to unproducible designs.

Imposed Limitations and Layup Designs

For the reduced-scale shell designs, the same approach is used as for the quasi-isotropic shell
of chapter 7. To reduce the number of possible stacking sequences, the limitations listed in
subsection 7.1.2 are imposed. This results in the following four designs.

A. Same layup basis as the full-scale shell, but without the core. The ply group
[45/90/-45/0] is used as a layup basis. It is opted to use the same layup as the full-scale
shell, but leaving out the core. This results in a [45/90/-45/0]S2 layup. The symmetry
and balance requirements are satisfied. The flexural anisotropy parameters and the size
of the shell are checked later.

B. [θ/-θ]S layup. This layup considers one variable ply angle. It is the thinnest layup
which satisfies the symmetry and balance requirements. Logically, this will also result
in a small geometry. Priority is thus given to the size constraints, rather than the
negligible flexural anisotropy.

C. [θ/-θ]mS layup. This layup also considers only one variable ply angle. The symmetry
and balance requirements are satisfied. Compared to configuration B, it is aimed with
this configuration to reduce the flexural anisotropy parameters as much as possible,
while still complying with the size constraints. The value of m is used to balance the
effects of these two limitations.

D. Isotropic. This shell automatically satisfies the symmetry, balance and flexural anisotropy
requirements. The size is chosen such that the reduced-scale shell fits in common test
equipment.

The four design options above are explored. The scaling methodologies in Figure 3.5 and
Figure 3.6 are used for the isotropic and composite shells, respectively. The step-by-step
application procedure is similar to the one given in subsection 7.1.2. For configuration A, the
layup is already fixed, so step 2 of the methodology is omitted. Therefore, µ and β are not
used for the reduced-scale design. For configuration C, it is observed that as m increases,
the thickness increases, such that the reduced-scale size increases. At the same time, the
flexural anisotropy parameters become smaller with respect to the other flexural parameters
for increasing m. As a result, the size constraints from test equipment and the flexural
anisotropy requirement pose contradicting demands on the reduced-scale design. The value
of m is maximized, thus minimizing the flexural anisotropy, while still complying with the
size constraints. For the isotropic reduced-scale shell, the thickness is chosen to measure 2
mm, from which the other parameters are derived. This results in a shell which complies with
common test equipment constraints.

Final Reduced-Scale Shell Designs

The reduced-scale designs are summarized in Table 8.1. All shells fit in typical lab test
equipment. Note that for configurations B and C, two ply angles θ were found in step 2.
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To limit the computational effort, it is decided to only analyze configurations B.i and C.i, so
configurations B.ii and C.ii are discarded. They have a larger cone angle than the full-scale
shell. This has already been analyzed in chapter 7, so now the opposite is examined.

Table 8.1: Geometry description of the full-scale sandwich conical shell and its reduced-scale
configurations.

Cone angle Length Small radius Large radius Stacking
α [deg] L [mm] R1 [mm] R2 [mm] sequence [deg]

FS 15 4996 2910 4203
[45/90/-45/0]S
and tcore = 25.4 mm

RS A 15 305 178 257 [45/90/-45/0]S2

RS B.i 8 140 44 140 [15/-15]S
RS B.ii 29 46 50 72 [75/-75]S
RS C.i 8 841 263 380 [15/-15]6S

RS C.ii 29 228 249 360 [75/-75]5S

RS D 15 216 126 182
Isotropic,
t = 2 mm

8.2 Buckling Analyses

The full-scale conical shell and the four remaining reduced-scale shells are first analyzed with
the semi-analytical solution. Based on these results, two configurations are selected to be
modeled in finite element software.

8.2.1 Semi-analytical Solution

The semi-analytical solution, like the scaling methodology, does not account for transverse
shear effects, which may be significant for sandwich shells due to their compliant core.
Nonetheless, the solution is used for the full-scale conical shell, because it gives an indication
of the methodology accuracy within the limitations of its assumptions. The core is treated as
a ply. The results are given in Table 8.2, together with the flexural anisotropy parameters.
The buckling mode is identically predicted by the full-scale shell and by configurations A,
B.i, and C.i. Configuration D predicts a different mode, which is equal to the second mode
predicted for the full-scale shell. Furthermore, the second buckling mode of configuration D
is equal to the first mode of the full-scale shell. These modes are within 0.01% of each other
for both shells. A small difference in scaling parameters could have caused this.

All reduced-scale designs correctly predict the buckling load. Configuration A is less accurate
than the other shells, but the result is still acceptable. This may be caused by neglecting
the orthotropy parameters µ and β in the design, as the layup was already fixed a priori.
The flexural anisotropy parameter ratios are different for all shells. For configurations A,
B.i, and C.i, they are not negligible. Based on these results, it is decided to numerically
model configurations A and C.i. Configuration A is chosen because it performs well and
because it remains an interesting option due to the stacking sequence. Configuration B.i is
very small, because the layup is very thin, but this causes the flexural anisotropy parameters
to be very large. Therefore, configuration C.i is opted over option B.i: the flexural anisotropy
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parameters are smaller and it still complies with constraints from common test equipment.
Although configuration D predicts the buckling load accurately, the option is less interesting
because it is an isotropic shell.

Table 8.2: Semi-analytical solution and flexural anisotropy results for the different
configurations. The difference in Kxx with the full-scale value is given between brackets. Note

that i, j = 1, 2.

Config.
Buckling Buckling Nondimensional D16

min(Dij)
D26

min(Dij)load [kN] mode (m, n) buckling load Kxx

FS 27596 (7,0) 399.8 0.08% 0.08%
RS A 1618 (7,0) 384.7 (-3.78%) 19.3% 19.3%
RS B.i 66.49 (7,0) 401.0 (+0.296%) 226% 23.7%
RS C.i 2393 (7,0) 399.4 (-0.100%) 37.6% 3.95%
RS D 1054 (2,7) 400.1 (+0.0750%) 0.0% 0.0%

8.2.2 Linear Eigenvalue Analysis

The full-scale shell and configurations A and C.i are modeled with a linear eigenvalue analysis.
The core of the full-scale shell is modeled as a ply. Mesh convergence studies are performed,
resulting in mesh sizes of 50 mm, 3 mm, and 7 mm for the full-scale shell, configuration
A, and configuration C.i, respectively. The analysis results are given in Table 8.3. The
nondimensional buckling load and displacement predictions are accurate for both shells. The
observed discrepancies may be caused by differences in flexural anisotropy and transverse
shear stiffness, next to the differences in scaling parameters. The buckling modes are different
from the predicted linear buckling mode of the full-scale shell, see Figure 8.1. Because both
configurations give good predictions for the buckling load and displacement, they will both
be analyzed with a nonlinear analysis, together with the full-scale shell. The three shells are
visualized in Figure 8.2 to give an idea of the difference in size.

Table 8.3: Linear eigenvalue results for the different configurations. The difference in Kxx and
U with the full-scale value is given between brackets.

Config.
Buckling Buckling Nondimensional Nondimensional
load [kN] displ. [mm] buckling load Kxx buckling displ. U

FS 25825 37.3 374.2 901.2
RS A 1544 2.23 367.1 (-1.90%) 881.4 (-2.20%)
RS C.i 2336 1.90 389.8 (+4.18%) 920.2 (+2.11%)

8.2.3 Implicit Dynamic Analysis

The three shells are modeled with a nonlinear analysis. A load plateau is observed for all
three shells, so an eigenmode imperfection with an amplitude of 1% of the thickness is applied.
Based on the sensitivity analysis in subsection 4.3.4, the minimum number of increments is
set equal to 250 with an increment size of 0.01 s. To this end, displacement rates of 19.2
mm/s, 1.14 mm/s and 0.976 mm/s are used for the full-scale shell and configurations A and
C.i, respectively. The load-displacement curves are shown in Figure 8.3. The buckling loads
and displacements of all analyses are summarized in Table 8.4. For the full-scale shell, the
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(a) Full-scale shell. (b) Configuration A. (c) Configuration C.i.

Figure 8.1: First eigenmode of the full-scale sandwich composite conical shell and its
reduced-scale configurations, showing radial displacement.

Figure 8.2: Visualization of the full-scale (blue, left), reduced-scale A (red, middle) and
reduced-scale C.i (pink, right) conical shells. Full-scale is 65x smaller than in reality,

reduced-scale shells are 30x smaller than in reality.

knockdown factor KDF=0.955. For configuration A, KDF=0.903 and for configuration C.i,
KDF=0.866. This result is in agreement with Orifici and Bisagni [94] for cylindrical shells,
who found that sandwich cylindrical shells are less imperfection sensitive than monolithic
composite cylindrical shells. In addition, it is known that the imperfection sensitivity is also
affected by the length-to-radius ratio: longer shells, such as configuration C.i, experience
less stiffening effect from the boundary conditions and are consequently more imperfection
sensitive [6]. Next, it is noted that the applied eigenmode imperfection is different for the full-
scale shell than for the reduced-scale shells. Shells are not equally sensitive to all eigenmode
imperfections, such that different knockdown factors can be found for different eigenmodes
with the same amplitude [6]. Finally, the stacking sequence is also known to affect the
imperfection sensitivity [96, 97]. These findings may explain the difference in knockdown
factors between configurations A and C.i.

The difference in buckling load between the linear prediction and the nonlinear prediction with
a 1% thickness imperfection is large for all shells analyzed in this research. The knockdown
factors are consistently found to be around 0.900, except for the sandwich conical shell.
Although this result is in agreement with literature [6,94,97], an additional check is performed.
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Configuration A is modeled with explicit dynamic analyses, once without imperfections and
once with the 1% eigenmode imperfection. The load plateau is not expected to occur for this
analysis type. An analysis of 0.5 s is run with a displacement rate of 5 mm/s, applied with
a smooth step in the first 0.005 s. No mass scaling is applied. It is checked if the kinetic
energy remains below 10% of the internal strain energy to ensure that the dynamic effects
remain small [45]. For the perfect shell, the knockdown factor measures KDF=0.973. The
load-displacement curve perfectly follows the curve of the implicit dynamic analysis up to
buckling. For the imperfect shell, a knockdown factor of KDF=0.904, as good as identical
to the implicit result. The stiffness and buckling displacement also agree perfectly. For both
analyses, the ratio of kinetic to internal energy does not exceed 10%, except during the first
instances of loading and after buckling. The results are therefore considered verified.

Table 8.4: Nonlinear buckling load and displacement for the full-scale sandwich composite
conical shell and its reduced-scale configurations.

Config. Buckling load Pcr [kN] Buckling displ. ucr [mm]

FS 24673 36.4
RS A 1394 2.04
RS C.i 2071 1.71

8.3 Failure Assessment

It is checked if failure occurs after buckling. For the full-scale shell, core failure is evaluated by
checking if the critical shear crimping load is higher than the buckling load using Equation 4.8.
Shear crimping is expected at a load of 69124 kN, which is well above the buckling load of
24673 kN. Additional analysis should be performed to ensure that no other sandwich failure
mechanisms, such as facesheet wrinkling and dimpling [93], occur prior to buckling.

The maximum failure indices right before buckling are summarized in Table 8.5 per criterion.
For the full-scale conical shell, failure is almost occurring; the first four criteria are close to,
but below, 1. The Hashin criterion predicts a lower index. Four out of five criteria predict
ply 4 to be the critical ply (the inner 0° ply), whereas the Tsai-Hill criterion predicts the
highest failure index in the innermost ply (45°). The failure index in ply 4, however, is only
1% lower than in the critical ply. If this shell would be manufactured, material failure has to
be investigated in more detail. One could, for example, use multiple SC8R elements through
the thickness in order to capture the transverse shear effects in more detail. For the scope
of the current analysis, this is not relevant and not further examined. For reduced-scale
configuration A, the indices are also high, but well below 1, with a maximum of 0.910. For
configuration C.i, failure is definitely not expected prior to buckling. The maximum failure
index for this shell is 0.569. In line with the previously analyzed shells, the maxima of the
three shells occur near the top edge, at the first meridional deformation wave. This is the
location of maximum radial displacement. Typically, pad-up reinforcements are added here
to avoid preliminary failure at this location.

The maximum strains for the four inner plies of the three conical shells are given in Table 8.6,
because these plies are the most critical. It can be seen that the critical ply is different for
each shell, which is due to the different layups. The full-scale shell and configuration A have
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(a) Full-scale conical shell.
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(b) Reduced-scale conical shell, configuration A.
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(c) Reduced-scale conical shell, configuration C.i.

Figure 8.3: Load-displacement curves of the sandwich composite conical shells.
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Table 8.5: Maximum failure indices at incipient buckling for the full-scale sandwich composite
conical shell and its reduced-scale configurations.

Failure criteria FS RS A RS C.i
Max strain 0.936 (ply 4, 0°) 0.852 (ply 1, 45°) 0.536 (ply 2, −15°)
Max stress 0.934 (ply 4, 0°) 0.852 (ply 1, 45°) 0.450 (ply 24, 15°)
Tsai-Hill 0.952 (ply 1, 45°) 0.910 (ply 1, 45°) 0.500 (ply 2, −15°)
Tsai-Wu 0.987 (ply 4, 0°) 0.858 (ply 4, 0°) 0.569 (ply 1, 15°)

Hashin
0.873 (ply 4, 0°) 0.677 (ply 4, 0°) 0.228 (ply 24, 15°)
fiber compression fiber compression matrix tension

a similar strain distribution, because they have a similar layup. The strains in configuration
C.i are different because of the different geometry and layup.

The critical strain in the full-scale shell occurs in the fiber direction of a 0° ply, similar
to the full-scale shell in chapter 7. The same explanation as given in section 7.3 holds. For
configuration A, the shear strain in the inner 45° ply is critical. The positive sign of the strain
indicates that this ply is critical due to the circumferential tension caused by the Poisson’s
effect. The critical ply of configuration C.i is a −15° ply. The transverse, matrix-dominated
direction of this ply mainly experiences tension, against which the matrix is not very effective.
This is also the critical damage type according to the Hashin criterion. The strain plots of the
plies with the critical strain are visualized in Figure 8.4. The critical location can be identified
near the top edge for all three shells, based on the critical strain direction plot. This is the
location of the first meridional wave where the maximum radial displacement occurs. In
addition, the eigenmode imperfection shape can be recognized in the strain distributions.

Table 8.6: Maximum strain values at incipient buckling in the four inner plies for the full-scale
sandwich composite conical shell and its reduced-scale configurations.

FS
θ [deg] ǫ11 [µǫ] ǫ22 [µǫ] ǫ12 [µǫ]

Ply 1 45° -3347 -3304 15473
Ply 2 90° 4618 -10827 -840
Ply 3 −45° -3276 -3320 -15412
Ply 4 0° -10766 4617 830

RS A
θ [deg] ǫ11 [µǫ] ǫ22 [µǫ] ǫ12 [µǫ]

Ply 1 45° -4045 -4672 14607
Ply 2 90° 3976 -10267 -2993
Ply 3 −45° -4117 -3688 -13782
Ply 4 0° -9475 3941 2483

RS C.i
θ [deg] ǫ11 [µǫ] ǫ22 [µǫ] ǫ12 [µǫ]

Ply 1 15° -2703 3611 4021
Ply 2 −15° -2644 3660 -3878
Ply 3 15° -2591 3591 3911
Ply 4 −15° -2524 3642 -3777
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(a) FS ply 4 (0°), ǫ11 [µǫ]. (b) RS A ply 1 (45°), ǫ11 [µǫ]. (c) RS C.i ply 2 (-15°), ǫ11 [µǫ].

(d) FS ply 4 (0°), ǫ22 [µǫ]. (e) RS A ply 1 (45°), ǫ22 [µǫ]. (f) RS C.i ply 2 (-15°), ǫ22 [µǫ].

(g) FS ply 4 (0°), ǫ12 [µǫ]. (h) RS A ply 1 (45°), ǫ12 [µǫ]. (i) RS C.i ply 2 (-15°), ǫ12 [µǫ].

Figure 8.4: Strains in the critical plies at incipient buckling for the sandwich composite conical
shells.

8.4 Comparison of the Full-Scale and Reduced-Scale Conical Shells

The three shells have been analyzed, so now the results can be compared using the nondi-
mensional parameters. First, the scaling parameters are compared. Next, the nondimensional
load-displacement curves are analyzed. Finally, the deformation shapes are examined.

8.4.1 Scaling Parameters

The values of the scaling parameters of each conical shell are given in Table 8.7. For configura-
tion A, the largest differences occur for the bending parameter αb and for flexural orthotropy
parameter β. This makes sense, because the stacking sequence of configuration A is not de-
signed using parameters µ and β. The consequence hereof is mostly visible in the flexural
parameters, because flexural stiffnesses have a cubic dependency on the distance to the mid-
surface, thus exaggerating the effect of the mismatch, compared to membrane parameters.
For configuration C.i, the largest discrepancies are observed for the orthotropy parameters,
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which are only affected by the layup. This error is caused by the rounding of the ply angle θ to
an integer value. If θ = 14.6° instead of θ = 15°, the errors for µ and β would be below 0.2%.
This accuracy in ply angle is, however, not realistic for current manufacturing techniques.

Table 8.7: The nondimensional scaling parameters of the full-scale sandwich composite conical
shell and its reduced-scale configurations.

Membrane parameter αm Bending parameter αb

z1 = 0 z1 = 1 z1 = 0 z1 = 1

FS 0.5825 0.8413 0.5824 0.8412
RS A 0.5836 0.8424 0.5606 0.8093
∆ (+0.196%) (+0.136%) (-3.73%) (-3.79%)
RS C.i 0.5882 0.8500 0.5882 0.8500
∆ (+0.988%) (+1.04%) (+1.00%) (+1.05%)

Batdorf-Stein eq. Membrane orth. Flexural orth.
parameter Z2 parameter µ parameter β

z1 = 0 z1 = 1 z1 ǫ [0, 1] z1 ǫ [0, 1]

FS 57.41 82.93 1.001 1.000
RS A 57.49 82.98 1.000 1.103
∆ (+0.130%) (+0.0702%) (-0.0569%) (+10.3%)
RS C.i 57.32 82.83 0.9432 1.031
∆ (-0.169%) (-0.121%) (-5.73%) (+3.10%)

8.4.2 Nondimensional Load-Displacement Curves

Next, the buckling loads and displacements are compared. Figure 8.5 shows the nondimen-
sional load-displacement curves. The buckling values are summarized in Table 8.8. It can be
seen that configuration A is not very accurate, with underestimations of 7.34% and 8.47%
for the buckling load and displacement, respectively. Configuration C.i is more accurate,
with underestimations of 3.33% for the load and 5.83% for the displacement. The stiffness,
however, is predicted more accurately by configuration A than by configuration C.i.

To explain these differences, it is important to also look at the predictions by the semi-
analytical solution and the linear analysis. For the former solution, configuration A performed
worse than the other reduced-scale shells. This is attributed to neglecting the orthotropy pa-
rameters µ and β during the design, which propagated to errors in the bending parameter
αb as well. Configuration C.i gave a very accurate prediction using this solution. The lin-
ear eigenvalue prediction from configuration A was more accurate than the semi-analytical
solution, but still underestimating. Configuration C.i performed worse, overestimating the
buckling load and displacement of the full-scale shell. This could be caused by the inclusion
of the flexural anisotropy, which is not negligible for either of the reduced-scale shells, in
contrast to the full-scale shell. The transverse shear effects, which may be significant for the
sandwich shell, can also be a source of discrepancy.

The implicit dynamic analysis includes nonlinearity, as well as an eigenmode imperfection due
to the loading plateau. The load-displacement graphs show large reductions in buckling load
due to the imperfection. Both reduced-scale shells underestimate the buckling load of the
full-scale shell. When compared to the linear results, this implies a difference in imperfection
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sensitivity. Because configuration A was already underestimating the buckling load, the
accuracy got worse. For configuration C.i, the linear overestimation was compensated by the
large imperfection sensitivity, such that the nonlinear prediction is slightly underestimating
the buckling load.

Table 8.8: Comparison of nondimensional buckling load, displacement and stiffness for the
full-scale sandwich composite conical shell and its reduced-scale configurations.

Buckling load Kxx
Buckling

Stiffness Kxx/U
displ. U

z1 = 0 z1 = 1 z1 ǫ [0, 1] z1 = 0 z1 = 1

FS 399.8 577.5 n.a. n.a. n.a.
Semi- RS A 384.7 555.4 n.a. n.a. n.a.
analytical ∆ (-3.78%) (-3.83%)
solution RS C.i 399.4 577.2 n.a. n.a. n.a.

∆ (-0.100%) (-0.0522%)
FS 374.2 540.5 901.2 0.4152 0.5997

Eigenvalue RS A 367.1 529.9 881.4 0.4165 0.6012
analysis ∆ (-1.90%) (-1.96%) (-2.20%) (+0.313%) (+0.250%)

RS C.i 389.8 563.3 920.2 0.4236 0.6122
∆ (+4.18%) (+4.22%) (+2.11%) (+2.02%) (+2.08%)
FS 357.5 516.3 880.3 0.4061 0.5865

Implicit RS A 331.4 478.4 805.7 0.4113 0.5938
dynamic ∆ (-7.30%) (-7.34%) (-8.47%) (+1.28%) (+1.24%)
analysis RS C.i 345.6 499.4 829.0 0.4169 0.6024

∆ (-3.33%) (-3.27%) (-5.83%) (+2.66%) (+2.71%)

8.4.3 Deformation Shapes

The semi-analytical solution predicted a (7,0) buckling mode for the three shells. It was
already discussed in subsection 8.2.2 that the linear eigenmodes were different for the reduced-
scale shells compared to the full-scale shell. The reduced-scale shells have a skewed and twisted
deformation shape, such that the waves are oriented diagonally across the conical shells. The
deformation waves of the full-scale shell are oriented horizontally.

Next, the deformation shapes during the loading regime are analyzed. Figure 8.6, Figure 8.7
and Figure 8.8 show the deformation shapes of the full-scale and configurations A and C.i
at three points during loading. It can be seen that the prebuckling and buckling shapes
are heavily influenced by the eigenmode imperfection. Because the first eigenmodes are
different, the prebuckling and buckling deformation shapes are different. The postbuckling
deformation shape of the full-scale shell shows an irregularity: there is a location with only one
meridional half-wave, instead of two, which is also more radially displaced than all the others.
This makes it difficult to express the deformation shape in an (m, n) format. Configuration
A and C.i both have a (2,7) deformation shape. The full-scale shell has a similar shape,
except for the irregularity. This difference can also be recognized in the load-displacement
graph: configuration A and C.i converge to the same postbuckling load, while the full-scale
postbuckling load is slightly lower.
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Figure 8.5: Nondimensional load-displacement curve of the full- and reduced-scale sandwich
composite conical shells, using Kxx at z1 = 0.

(a) Before buckling, for U = 500. (b) At buckling, for U = 880. (c) After buckling, for U = 1130.

Figure 8.6: Deformation shapes (radial displacement) of the full-scale sandwich composite
conical shell at the instances indicated in Figure 8.5.

(a) Before buckling, for U = 500. (b) At buckling, for U = 806. (c) After buckling, for U = 1130.

Figure 8.7: Deformation shapes (radial displacement) of the reduced-scale configuration A
conical shell at the instances indicated in Figure 8.5.

The radial displacement in the postbuckling regime is compared as well. The dimensional
results are shown in Figure 8.9. The ratios of maximum to minimum radial displacements
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(a) Before buckling, for U = 500. (b) At buckling, for U = 829. (c) After buckling, for U = 1130.

Figure 8.8: Deformation shapes (radial displacement) of the reduced-scale configuration C.i
conical shell at the instances indicated in Figure 8.5.

are equal to -0.464 for all shells. The nondimensional radial displacement is compared in
Figure 8.10. The minimum and maximum values are given in Table 8.9. The local dimple in
the full-scale shell is much larger than the waves of the reduced-scale shells. Consequently,
there are large discrepancies between the nondimensional radial displacements, up to 31.5%.
The overall distribution is similar for all three shells. Configuration C.i shows slightly more
deformation near the top edge than the full-scale shell and configuration A.

(a) Full-scale conical shell. (b) Reduced-scale conical shell A.
(c) Reduced-scale conical shell

C.i.

Figure 8.9: Comparison of the dimensional postbuckling deformation shape. Reduced-scale
shells A and C.i are respectively 8x and 6.5x enlarged compared to the full-scale shell for visibility.

Table 8.9: Comparison of the minimum and maximum nondimensional radial displacement for
the full-scale sandwich composite conical shell and its reduced-scale configurations.

Minimum radial Maximum radial
Ratio Wmax/Wmindisplacement Wmin displacement Wmax

FS -18.1 7.87 -0.435
RS A -12.4 5.47 -0.441
∆ (-31.5%) (-30.5%) (+1.38%)
RS C.i -12.5 5.69 -0.455
∆ (-31.4%) (-27.7%) (+4.69%)
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Figure 8.10: Nondimensional radial displacement comparison for the sandwich composite shells
(U = 1130).

8.5 Effect of Larger Eigenmode Imperfections

The discrepancies between the full-scale shell and its reduced-scale configurations were par-
tially attributed to a difference in imperfection sensitivity. This is now further investigated
by applying larger eigenmode imperfections, namely with an amplitude of 10% and 50% of
the shell thickness. The shells are then analyzed using the implicit dynamic analysis with
the same settings as for the 1% eigenmode imperfection analyses. The nondimensional load-
displacement curves are visualized in Figure 8.11. The knockdown factors and the nondimen-
sional buckling values are given in Table 8.10. As expected, the prebuckling stiffness and the
buckling load reduce for increasing imperfection amplitude.

For the 10% imperfection, the prediction accuracy of the two reduced-scale configurations is
better than for the 1% imperfection. The postbuckling path of the shells, however, is different
for this imperfection amplitude and they do not converge to the same postbuckling load. The
load-displacement curves of the shells with a 50% imperfection do not show typical buckling
behavior in the form of a load drop. The reduced-scale configurations still show a slight
increase in load up to the end of the analysis. As a result, comparing the nondimensional
displacement and stiffness upon maximum load does not quantify the prediction accuracy.
This is why these values are in italic face in Table 8.10. When solely looking at the curves in
Figure 8.11, it can be seen that the behavior of the three shells is similar up to a displacement
of approximately U = 550. Beyond this point, the curves separate. The maximum load and
the knockdown factor, however, can still be compared. The prediction accuracy of configura-
tion A is better for the 50% imperfection than for the 1% imperfection. For configuration C.i,
the prediction accuracy is lower, with a difference of 11.2% for the buckling load. It is also
remarkable that for this imperfection amplitude, the imperfection sensitivity of the full-scale
sandwich shell is larger than the reduced-scale monolithic shells in terms of knockdown factor.

This analysis shows that imperfections and the shells’ sensitivity to them affects the prediction
accuracy of the reduced-scale shells. To understand this better, it is important to also know
the nonlinear prediction accuracy without imperfections. This can be investigated through
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other analysis types, such as the explicit dynamic analysis. In addition, the effects of other
imperfections, such as measured imperfections should be analyzed.
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Figure 8.11: Nondimensional load-displacement curve of the full-scale sandwich conical shell
and its reduced-scale configurations for different imperfection amplitudes, using Kxx at z1 = 0.

Table 8.10: Comparison of nondimensional buckling load, displacement and stiffness for the
full-scale sandwich composite conical shell and its reduced-scale configurations.

KDF
Buckling Buckling

Stiffness Kxx/U
load Kxx displ. U

10% eigenmode FS 0.732 273.7 682.1 0.4013
imperfection RS A 0.710 260.7 653.5 0.3989

∆ (-3.01%) (-4.75%) (-4.19%) (-0.598%)
RS C.i 0.707 275.5 672.9 0.4094
∆ (-3.42%) (+0.658%) (-1.35%) (+2.02%)

50% eigenmode FS 0.490 183.4 552.0 0.3322
imperfection RS A 0.513 188.3 904.3 n.a.

∆ (+4.69%) (+2.67%) (+63.8%)
RS C.i 0.523 204.0 1049 n.a.
∆ (+6.73%) (+11.2%) (+90.0%)

8.6 Concluding Remarks

This chapter discusses the application of the scaling methodology to a sandwich conical shell
with quasi-isotropic facesheets. Overall, the application to a sandwich conical shell can be
considered successful. Out of six reduced-scale designs, two were selected to be analyzed in
detail. Failure is expected to occur after buckling for all shells, but for the full-scale shell, the
failure indices are close to 1. It is advised to investigate this in more detail before the shell
would be manufactured, together with additional analyses to assess sandwich failure.
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Configuration A has the same layup as the full-scale shell, but without the core. The predic-
tion by the semi-analytical solution is good, but not excellent. The discrepancy is attributed
to neglecting parameters µ and β during the design. The linear results are accurate, except
for the mode shape. The nonlinear analysis yields a very accurate stiffness prediction, but
discrepancies of 7.34% and 8.47% in buckling load and displacement compared to the full-
scale shell. This is attributed to a combination of neglecting the orthotropy parameters in
the design, the non-negligible flexural anisotropy and the difference in imperfection sensitiv-
ity between sandwich and monolithic shells. The transverse shear effects could also influence
the results, because the full-scale shell has a compliant core, in contrast to the reduced-scale
shell. Inclusion of the flexural anisotropy and transverse shear effects in the methodology
could improve the accuracy. At the same time, they will impose additional constraints, which
can complicate the reduced-scale design. It is therefore recommended to quantify the effects
first, such that accuracy improvements can be estimated. Next, the deformation shapes differ
throughout the analyzed regime due to the shape difference in the eigenmode imperfection.
The postbuckling deformation shape was similar, except for the local dimple for the full-scale
shell. This also causes the radial displacement to be predicted with low accuracy. The results
for the larger imperfections were better than for the 1% imperfection. This is remarkable
and promising for real structures, but it also shows that it is difficult to predict how the real
structures, with real imperfections, will respond. It is therefore recommended to investigate
the prediction accuracy for the shells without imperfections, for example, using an explicit
dynamic solver, as well as for shells with other imperfections, such as measured imperfections.
This will give a more complete picture of how the imperfections affect the prediction accuracy.

Configuration C.i, which has a [15/-15]6S layup, predicted the semi-analytical buckling load of
the full-scale shell very accurately. The linear eigenvalue analysis overestimates the buckling
load, which can be caused by stiffness parameter D16 not being negligible, as well as by the
higher transverse shear stiffness than the sandwich shell. The nonlinear analysis underesti-
mates the buckling load of the full-scale shell again, which was explained by its high sensitivity
to imperfections due to its large radius-to-length ratio and monolithic stacking sequence. The
stiffness, on the other hand, is slightly overestimated, by 2.71%. The prediction accuracy for
the shell with a 10% eigenmode imperfection is very good. For the 50% imperfection, the
load-displacement cure was similar to the one of the full-scale shell up to U = 550. After
this point, configuration C.i continued to withstand higher loads, in contrast to the full-scale
shell. This highlights again the difficulty in predicting the influence of imperfections on the
accuracy.



Chapter 9

Conclusions and Recommendations

In this thesis, the development of a scaling methodology for composite conical shell in axial
compression was researched. The methodology allows to design reduced-scale shells, represen-
tative of full-scale shells, such that experimental tests can be performed on smaller structures.
This is cheaper and more convenient than testing of the original large structures. The work
is undertaken in a framework of collaboration between the TU Delft and the NASA Langley
Research Center. The methodology was derived using the nondimensional stability equations.
This approach allows to scale the buckling phenomenon as a whole and to nondimensionally
compare the full-scale and reduced-scale shells straightforwardly. Here, conclusions from the
research are drawn and recommendations for future work are made.

First, the dimensional governing equations were derived using the Donnell-Mushtari-Vlasov
shell theory for symmetric, balanced composite conical shells with negligible flexural anisotropy.
These equations were made nondimensional using the approach of Nemeth for general shells.
The nondimensional coefficients of these equations were used as scaling parameters for the
methodology. The scaling methodology was set up such that the reduced-scale shell properties
could be determined in a sequential manner. First, the symmetric, balanced layup is deter-
mined, followed by the radius-to-length ratio, then the cone angle and finally the radius and
length. A separate methodology was created for isotropic shells. Due to the simplifications in
the constitutive equations, design freedom for the isotropic reduced-scale shell is achieved. As
a result, one dimension can be chosen freely, from which the others are derived. For composite
shells, there are more scaling parameters than reduced-scale design variables. Nevertheless,
representative reduced-scale conical shells can be found by averaging the outputs from two
scaling laws. If the full-scale shell has a layup with adjacent plies with the same ply angle,
ply-level scaling can be applied, such that all scaling parameters are exactly satisfied. This
entails that a full-scale shell with a [θn/γn/...]S layup is scaled to a reduced-scale shell with
a [θm/γm/...]S layup made of the same material with m < n.

Second, the analysis and evaluation methods were elaborated upon. The geometry of the
Universal Stage Adapter and the Payload Attach Fitting of the Space Launch System were
used as references for the full-scale shells. The full-scale and reduced-scale shells were com-
pared with three analyses: a semi-analytical solution, a linear eigenvalue finite element anal-
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ysis, and a nonlinear implicit dynamic finite element analysis. The first solution makes the
same assumptions as the scaling methodology, thus allowed to verify the methodology within
the limitations of its assumptions. The eigenvalue analysis takes into account the flexural
anisotropy and transverse shear effects. The nonlinear analysis allowed to evaluate the influ-
ence of prebuckling nonlinearity and of imperfections. It was also used to ensure that failure
occurs after buckling and to examine the strain distributions. Not only was the scalabil-
ity of the buckling load investigated, but also that of the displacement upon buckling, the
deformation shape and the radial displacement.

The methodology was applied to four full-scale shells with the same geometry, but different
material and stacking sequence. First, an isotropic shell and a cross-ply shell were scaled. Both
satisfy all laminate requirements and scaling parameters simultaneously. Ply-level scaling was
used for the latter shell. Due to the simplifications for these two shells, the methodology comes
down to geometric scaling, if the same material is used for full-scale and reduced-scale shells.
For the isotropic shell, the scaling factor can be chosen freely. For the ply-level scaled cross-
ply shell, the scaling factor is fixed to m

n . For both shell types, the semi-analytical buckling
load prediction was excellent. Small errors were caused by rounding of the reduced-scale shell
dimensions to producible accuracies. The linear eigenvalue and implicit dynamic predictions
were accurate in terms of buckling load and displacement; the errors were all smaller than
3.4% and 1.8% for the isotropic and cross-ply shells, respectively. Although the postbuckling
behavior is not taken into account in the methodology, it was well predicted for the cross-
ply shells. For the isotropic shell, small discrepancies were observed. The influence of a
larger cone angle was investigated for the cross-ply shell to evaluate the assumption of mildly
varying curvatures. This did not influence the prediction accuracy for any of the evaluated
parameters, except for the postbuckling path and corresponding deformations.

The results for the isotropic shell and the cross-ply shell verify the methodology, but ply-level
scaling cannot be used for most realistic laminates. Therefore, the methodology was applied to
a quasi-isotropic composite shell and a sandwich shell. Several symmetric, balanced laminates
were considered for the reduced-scale shells, from which the best performing were analyzed in
detail. For the quasi-isotropic shell with layup [45/90/ − 45/0]7S , a reduced-scale shell with
a [75/ − 75]S3 layup was designed. It is slightly too large to fit in common test equipment,
but the flexural anisotropy is negligible. For the sandwich shell with a 25.4 mm thick core,
two reduced-scale shells were designed. One has the same layup as the full-scale shell, but
without the core, resulting in a [45/90/−45/0]S2 layup. The other one has a [15/−15]6S layup.
Both reduced-scale shells fit in common test equipment, but do not have negligible flexural
anisotropy. The flexural anisotropy requirement and shell size constraints were observed to
contradict each other through the thickness requirements they impose.

Because there are more constraints than design parameters, the reduced-scale shell dimensions
were determined such that the errors with respect to all scaling parameters are minimized.
The corresponding small discrepancies in scaling parameters propagated to the buckling be-
havior prediction. As a result, the semi-analytical solution predicted the buckling load of the
realistic shells with a lower accuracy than for the isotropic and cross-ply shells, but still all
within 4%. The linear eigenvalue results showed that the inclusion of the flexural anisotropy
affects the prediction accuracy, but not to a large extent for any of the shells. For the sandwich
shell, the difference in transverse shear compliance could also have influenced the results. In
the nonlinear analyses, eigenmode imperfections with a 1% thickness amplitude were applied.
For the quasi-isotropic shell, the difference in imperfection sensitivity actually improved the
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prediction accuracy for buckling load and displacement, counteracting the effects of differ-
ences in scaling parameters and flexural anisotropy. The maximum discrepancy measured
only 1.2%. The deformation shapes were also accurately predicted, even in the postbuckling
regime. The radial displacement was predicted with a 4.1% error. For the sandwich shell,
the difference in imperfection sensitivity was more pronounced because its reduced-scale con-
figurations have monolithic layups, which are more sensitive to imperfections than sandwich
layups. In addition, the imposed eigenmodes were different, such that the nonlinear defor-
mation shapes and radial displacements were also wrongly predicted. The first reduced-scale
shell predicted the nonlinear buckling load and displacement with a maximum error of 8.5%.
The second reduced-scale shell had a maximum error of 5.8%. The stiffness, on the other
hand, was predicted within 2.7% for both shells. For the sandwich shell, eigenmode imper-
fections with amplitudes of 10% and 50% of the thickness were also applied. For the 10%
imperfection, the buckling load and displacement were more accurately predicted than for the
1% imperfection by both reduced-scale configurations. For the 50% imperfection, the typical
buckling behavior with load drop was not observed, thus complicating the comparison.

Generally, it can be concluded that the scaling methodology allows to design reduced-scale
conical shells, which can accurately predict the behavior of their full-scale shell. The stiffness
was accurately predicted in all considered cases with a maximum discrepancy of 2.7%. It may
be difficult in some cases to find a shell of convenient size for testing, which also complies
with the laminate assumptions. The prediction accuracy is believed to be mainly affected
by not being able to satisfy all scaling parameters simultaneously, by non-negligible flexural
anisotropy parameters and by differences in imperfection sensitivity between full-scale and
reduced-scale shells. For sandwich shells, the transverse shear compliance can also affect
the results. Their effects on the prediction accuracy can partially balance each other out,
such that accurate results are obtained, even for larger imperfections and in the postbuckling
regime. Out of the evaluated parameters, the radial displacement was most difficult to predict,
which was attributed to the membrane prebuckling assumption and neglecting the presence
of imperfections in the methodology.

Although the potential of the scaling methodology has been proven, it is important to make
the methodology more applicable to real conical shells. Therefore, the effect of imperfec-
tions on the prediction accuracy should be investigated further. More realistic, measured
imperfections could be applied to evaluate the imperfection sensitivities of the full-scale and
reduced-scale shells. This is especially important if the two shells have a different stacking
sequence or laminate structure, as it was the case for the full-scale sandwich shell. Next, in-
clusion of flexural anisotropy and transverse shear effects could make the methodology more
suitable for other laminate types and for sandwich conical shells, which are commonly used
in launch vehicles. In addition, the effects of stiffness variations, intrinsically present in com-
posite conical shells, should be looked into to evaluate their effect on the scalability. This
could also be extended to include the effects of stiffeners, pad-ups and cut-outs. Finally,
the methodology should be validated through experimental testing of both the full-scale and
reduced-scale shell.
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