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Abstract
AI explainers are tools capable of approximating
how a neural network arrived at a given predic-
tion by providing parts of the input data most rel-
evant for the model’s choice. These tools have
become a major point of research due to a need
for human-verifiable predictions in multiple differ-
ent fields, such as biomedical engineering. Graph
Neural Networks (GNNs) are often used for such
tasks, which led to the development of GNNSub-
net, a tool capable of finding disease subnetworks
on models trained with protein-protein interaction
(PPI) data. This tool has been tested with only a
single GNN architecture, which left a knowledge
gap about the performance of the tool under dif-
ferent models, which can differ significantly in the
way they operate.
Here the question ”How does the explainer perfor-
mance vary with change in architectures of training
models?” is answered.
This paper explores this knowledge gap by train-
ing and evaluating two other models (GCN and
GraphSAGE) to see if the explanation performance
of GNNSubnet changes. The performance is eval-
uated with BAGEL metrics, a tool developed for
XAI analysis. These metrics allow for comparison
of explanations on multiple benchmarks. Three of
these - Fidelity, Validity- and Validity+ - measure
how accurate an explanation was in terms of iden-
tifiying important nodes. The last one - Sparsity -
assesses the nontriviality of an explanation by mea-
suring how few nodes have been identified as im-
portant.
The experimental process shows low performance
changes with different GNN architectures for
accuracy-related metrics - RDT-Fidelity, Validity-
and Validity+, which means that GNNSubnet is
highly generalizable and not tied to a specific GNN
model. However, the Sparsity score differs across
models, with GIN being able to provide the most
concise - and therefore useful - explanations.

1 Introduction
Due to the recent rise of artificial intelligence in correctness-
critical fields, such as biomedical and chemical research, ex-
plainable AI tools have become a major area of research
within the field of AI[1]. In these areas the predictions of
AI can have significant impact on human lives, and therefore
need to be trustworthy[2]. AI explainability techniques have
gained much traction due to their ability to provide parts of in-
put data relevant for the underlying model’s prediction, which
then can be crosschecked with human expertise.

Graph Neural Networks have shown impressive perfor-
mance in analyzing complex structures. Graphs are sets of
objects some of which have a relation to each other, such as
friend networks or road systems. The objects are represented
as vertices (nodes) which are connected to related vertices

with edges. GNNs, when analysing this kind of data, are able
to draw conclusions based on proximity and relation of dif-
ferent items. They have found applications in multiple ar-
eas, such as combinatorial optimization, traffic networks or
recommendation systems[3], but also in fields where explain-
ability is mandated by law[4], such as protein-protein inter-
action (PPI) modeling.

In organisms, proteins create dependent chains which in-
fluence one another, allowing for signal transportation and
complex metabolic processes. This creates a graph-like struc-
ture that can be processed with GNNs to find networks with,
among other things, higher cancer risk. However, similarly to
regular neural networks, GNN models are inherently black-
box and provide little to no information on how they draw
their conclusions, making it difficult to assess the plausibility
and generalizability of the model’s approach[5].

This rise in popularity of trust-critical GNNs has led to de-
velopment of multiple explainability tools for GNNs[2]. One
such tool is GNNSubnet, proposed by Pfeifer et al.[6], built
on top of GNNExplainer [7]. GNNSubnet can be run on GNN
models trained with PPI cancer data. Then, it finds disease
subnetworks in the datasets which were most relevant for the
underlying model’s cancer classification.

The GNNSubnet paper[6] tests the explainer with a graph
isomorphism network (GIN)[8]. However, no information is
provided on GNNSubnet’s performance with other popular
models. The underlying aggregation techniques can make it
easier or more difficult for GNNSubnet to extract causal rela-
tionships, which would significantly impact its performance.
Like GNNExplainer, GNNSubnet can be used with any GNN
architecture, and other GNN models could lend themselves
better for the task of subnetwork detection.

This paper answers the following research question: ”How
does the explainer performance vary with change in archi-
tectures of training models?”. To that goal, multiple GNN
models from different families will be trained and explained
with GNNSubnet, and these explanations will be evaluated
on multiple metrics. This will provide previously unexplored
insight into robustness of GNNSubnet.

The following article is organised as follows: section 2 pro-
vides information about different GNN architectures as well
as descriptions of explainer evaluation metrics. In section 3,
the experimental setup is discussed. Finally, the results are
presented in section 4 and discussed in section 6.

2 Theoretical background
2.1 GNNSubnet
GNNSubnet is capable of uncovering disease subnetworks -
communities in a graph whose features are most responsible
for a model’s decision - based on analyzing the predictions of
a GNN model. Firstly, it optimizes a node mask by sampling
graphs from the input space and assigning importance values
to each node. Then, it performs community detection to find
communities with high importance scores, which are the po-
tential disease subnetwork. The process is explained in detail
in [6].

GNNSubnet was benchmarked with two additional GNN
models: a Graph Convolutional Network (GCN)[9], and



Table 1: Descriptions of mathematical notation used in section 2

Notation Description

h Updated features of a node
ψ Transformation function⊕

Aggregation function
ϕ Combination (update) function
x Node feature vector

N (v) Neighbours of node v
ReLU Rectified Linear Unit function

MEAN Mean aggregation function

GraphSAGE[10].

2.2 Description of GNNs
The input data for a GNN is a graph G in the form of
G = (V,E), where V is a set of vertices and E is a set of
edges between those vertices. Moreover, as is in the case
of data analysed by GNNSubnet, nodes can have additional
(multi-omic) information, such as DNA methylation. Specif-
ically in case of PPI networks analysed here, the nodes rep-
resent proteins and edges represent the interactions between
them. An additional feature of PPI networks is that nodes and
edges remain the same across all graphs, representing the in-
teractions in the human body. The differences in the networks
come from the node features.

Most graph neural networks (including the ones analysed
here) work in a similar framework[3], described underneath.

The graph goes through multiple message passing layers.
In each layer, every node performs local pooling - it trans-
forms the information about each of its neighbours through
some message passing function ψ, and then runs the data
through an aggregation function

⊕
(e.g. mean, sum, max).

Then, the data of the node and aggregated neighbour infor-
mation is combined with another function, ϕ. This process is
repeated multiple times until each node’s information is a rep-
resentation of its data and its spatial relationship with its sur-
roundings. Overall, the equation for each step, as presented
by Bronstein et al. [11] is:

hk
u = ϕ

(
hk−1
u ,

⊕
v∈Nu

ψ(hk−1
u ,hk−1

v )

)
(1)

With hu the information of the node being iterated over, and
hv a neighbour node. The step of getting the neighbour in-
formation and running it through the function

⊕
is usually

referred to as the aggregation step. Then, combining current
node and aggregated neighbour data is referred to as the com-
bine step.

Graph Isomorphism Network
GIN is the model chosen by the creators of GNNSubnet for
the underlying architecture that the explainer was tested on.
This model is remarkable due to it being proven by its au-
thors to be as powerful as the Weisfeiler-Lehman isomor-
phism test[8]. In the paper, Xu et al. also prove that no GNN
can be more powerful than the WL test, making GINs the

most powerful GNNs - in terms of number of graphs they can
distinguish - that can be constructed. The aggregation and
combination formula, as presented by the authors, is:

a(k)v =
∑

u∈N (v)
h(k−1)
u (2)

h(k)v = MLP(k)
((

1 + ϵ(k)
)
· h(k−1)

v + a(k)v

)
(3)

Here, the aggregation step is a sum of all the neigbouring
node values. Then, in the combination step, the aggregated
sum is added to the node value multiplied by some (poten-
tially learnable) scalar, and finally run through a multi-layer
perceptron to obtain the final value.

Graph Convolutional Network
A GCN[9] is one of the simplest types of GNNs, with both
GraphSAGE and GIN having been built on top of the the-
oretical framework of Graph Convolutional Networks. The
equation for a GCN layer is as follows:[8]

h(k)v = ReLU
(
W ·MEAN

{
h(k−1)
u , ∀u ∈ N (v) ∪ {v}

})
.

(4)

The neighbours of the node and the node itself are aggre-
gated by calculating element-wise mean pooling, which is
then multiplied by a learnable matrix, W . Then the result is
put into the rectified linear unit (ReLU) activation function.

GraphSAGE
GraphSAGE stands for SAmple and aggreGatE. Unlike the
other models, it is an inductive learning model - it learns from
a sample of the input data and then generalizes, which allows
it to perform well on evolving graphs with previously unseen
data. The authors propose a few aggregation functions[10].
Here, the variant using the MEAN function is used:[8]

a(k)v = MEAN
({

ReLU
(
W · h(k−1)

u

)
, ∀u ∈ N (v)

})
(5)

h(k)v =W ·
[
h(k−1)
v , a(k)v

]
(6)

In the combine step, the aggregation results and the value
of the current node are multiplied by a learnable weight ma-
trix W to obtain the final result.

In this research the dataset allows for global sampling, so
no neighbourhood sampling was used. Neighbourhood sam-
pling is useful to lower the runtime of the model, which
here was not a major bottleneck. The authors of the Graph-
SAGE paper[10] show that global sampling is the most opti-
mal method for model accuracy.

2.3 Chosen evaluation metrics
GNNSubnet’s explanation performance on different models
is compared using BAGEL benchmarks[5], a tool developed
to analyse the effectiveness of explainers with different met-
rics. Detailed explanation and equations for each of the met-
rics can be found in [12] and [5]. The metrics used are Faith-
fulness, Validity+, Validity- and Sparsity.



Faithfulness and Validity allow for assessing the ”accu-
racy” of the explainer - whether it correctly chooses the im-
portant subnetworks. Sparsity shows how nontrivial the ex-
planation is - that is, how few nodes were marked as impor-
tant. Those metrics together give a good overview of the use-
fulness of the result.

Some other metrics defined in BAGEL, such as sufficiency,
necessitate removing parts of the graph, which makes the PPI
network incorrect, so they are not useful for this dataset.

Faithfulness (RDT-Fidelity)
The Faithfulness metric answers whether the explanation cor-
rectly reflects the model’s decision process. This is achieved
by randomly perturbing all proteins whose importance value
is below a certain threshold. If the values were correctly
identified as unimportant, the model’s prediction should not
change. The specific formula for faithfulness used here is
named RDT-Fidelity, as explained in [5]:

”The RDT-Fidelity of explanation S corresponding to ex-
planation mask M(S) with respect to the GNN f , input X
and the noise distribution N is given by

F(S) = EYS |Z∼N
[
1f(X)=f(YS)

]
. (7)

where the perturbed input is given by

YS = X ⊙M(S) + Z ⊙ (1−M(S)), Z ∼ N , (8)

where ⊙ denotes an element-wise multiplication, and 1 a ma-
trix of ones with the corresponding size and N is a noise dis-
tribution.”

In short, Equation 8 applies a noise mask to all features
below the importance threshold. Then, Equation 7 finds the
average number of times that the explanation of the perturbed
input agrees with the explanation of the old input. The higher
the result is, the better the accuracy of GNNSubnet.

Sparsity
This metric evaluates the nontriviality of an explanation. If an
explainer lists all nodes (proteins) as relevant to the model’s
decision, that is a trivial explanation - no information was
learnt. The more concise the explanation, the better (and ther-
fore higher) the Sparsity value.

Formally, it is defined as the entropy over the normalized
distribution of masks:

H(p) = −
∑
ϕ∈M

p(ϕ) log p(ϕ).[5] (9)

Validity
Validity aims to answer a similar question to faithfulness -
how well the explanation reflects the models workings. How-
ever, instead of using randomised values, baseline values (like
average of the node values) are used. Here we use two vari-
ations of Validity: Validity+, which perturbs the important
nodes and expects high change, and Validity-, which perturbs
the unimportant nodes and expects low change.

V alidity+ =
1

N

N∑
i=1

(f(Gi)yi
− f(G1−mi

i )yi
) (10)

V alidity− =
1

N

N∑
i=1

(f(Gi)yi
− f(Gmi

i )yi
), (11)

Here, f(G)yi is the model prediction for some given graph
i. G1−m is a mask of the graph with unimportant nodes per-
turbed, while Gm is a graph with important node perturbed.
This yields the average of changes over the important and
unimportant predictions for Validity+ and Validity-, respec-
tively.

Finally, the obtained Validity+ scores were put into the fol-
lowing normalization function:

v′ = 1− 2(|0.5− v|) (12)

With v being the result of the Validity+ function.
The normalization was performed since originally, the op-

timal Validity+ score is 0.5, with the score becoming worse
in both directions (i.e. 0.4 is worse than 0.5, and as bad as
0.6). This occurs because of the way the GNN operates on
the perturbed values. If the explainer was entirely correct,
all important nodes will be perturbed to mean values, mak-
ing them look unimportant. This leads to the GNN having to
make a prediction at random, leading to an average score of
0.5. Deviation of this score in either direction means that the
GNN is not guessing, so some important nodes remained in
the graph. The normalization function makes it so that score
of 1 is the most optimal (as v′ is 1 when v is 0.5) and 0 is the
least optimal.

Global and local explanations
The PPI datasets contain large number of graphs with the
same node and edge structure, which only differ in their node
feature information. This allows for two approaches to ex-
plaining a model: global and local explanation.

In a global explanation, the model provides a single node
mask that assigns an importance score to each node. This is
achieved by sampling values from the input data, then opti-
mizing a mask using gradient descent. This way, the final
node mask represents the entire dataset. GNNSubnet was
written to provide global explanations of the dataset it is op-
erating upon.

[13] modified GNNSubnet to acquire local explanations
from the tool. Instead of sampling nodes’ features from mul-
tiple graphs to obtain a single mask, the node masks are
provided for each graph separately (effectively providing N
masks for N graphs). Then, these local explanations can be
aggregated (e.g. using a mean function) to obtain a final re-
sult.

The following study, while focusing on global explana-
tions, also compares both local and global explanations on
each of the three models.

3 Explainer evaluation pipeline
The overview of the experimental process is available in Fig-
ure 1.

3.1 Tools
The two new models being evaluated were programmed as an
extension of the existing codebase of GNNSubnet. The mod-
els were created using the PyTorch-Geometric library, in line
with the authors’ GIN implementation to reduce efficiency
differences. Then, all models were trained using The Cancer
Genom Atlas (TCGA) dataset.



Figure 1: Demonstration of the evaluation process. Each model is
trained with TCGA data, then explained with GNNSubnet. The re-
sulting explanations were processed with BAGEL to provide a com-
parison of the benchmarks.

Table 2: GNN model accuracy on the KIRC dataset. Each model
was trained 10 times. Both GIN and GCN occasionally learnt a
model which always returned the same value, which resulted in val-
idation accuracy of 0.5.

Model Min Mean Max δ

GIN 0.5 0.69 0.85 0.12
GCN 0.5 0.61 0.72 0.09

GraphSAGE 0.80 0.87 0.92 0.03

Once trained, the models are evaluated with GNNEx-
plainer and processed with GNNSubnet’s subnetwork detec-
tion algorithm. Finally, the explainer’s performance was eval-
uated with BAGEL.

3.2 Model training
First, each of the three models discussed in subsection 2.2
were implemented and trained using the KIRC dataset ob-
tained from the TCGA database. The models were trained
over 20 epochs with a learning rate of 0.01. Once trained, the
models achieved accuracies presented in Table 2.

3.3 Explanations and BAGEL Evaluation
The models were linked to GNNSubnet and each trained ver-
sion of the model was processed with two versions of the
explainer - global and local - obtaining 10 explanations for
each of the models on each explainer. Finally, every explana-
tion obtained was evaluated with the BAGEL explainer anal-

ysis tool[5] with four different metrics, explained in subsec-
tion 2.3. The results are shown and discussed in section 4.

4 Results and Discussion
Global explanations
The evaluation of the global explanations of the three models
is available in Table 3. The comparison of mean values can
also be seen in Figure 2.

Despite a significantly higher accuracy of GraphSAGE in
comparison to the other two models, the explanation perfor-
mance is similar across the models, with GraphSAGE being
the best across all metrics but Sparsity and almost tying with
GCN on Validity+.

For RDT-Fidelity, GraphSAGE and GIN both obtain very
high results, close to each other. GCN performed a bit worse,
about one standard deviation under GIN, but the score ob-
tained is still quite high.

GIN performed the worst for Validity+, although with high
variance of the score no clear conclusions can be drawn.

All models achieved very high Validity-, showing their
resilience to random perturbations in unimportant node
features. Especially interesting was GraphSAGE, which
achieved a Validity- score of 1 across all runs, meaning that it
didn’t change a prediction due to the perturbations even once.

Finally, Sparsity was the best for GIN, with a noticeable
dropoff for GraphSAGE and GCN.

Local explanations
The evaluation of the models’ local explanations can be seen
in Table 4. The results are very similar to global explanations,
with all but one value in the table being within one standard
deviation from its global explanation counterpart.

The only difference is in the Sparsity of GCN, which worse
for local explanations. This result did not occur for the other
two models, however.

4.1 Discussion
The results show that all models are explainable, proving the
generalizability of GNNSubnet. The first three metrics are
similar across models, but Sparsity is better for GIN, making
it overall the best model for explainability performance.

High Validity-
Validity- was extremely high for all models, especially
GraphSAGE, for which it achieved a score of 1 across all
runs. This shows that the models are very resistant to small
perturbations in unimportant nodes. Paired with Strong RDT-
Fidelity and good Validity+ scores, it is visible that the ex-
plainer correctly identifies the nodes important for GNN de-
cisions across all models.

Sparsity differences
The logarthmic nature of sparsity means that the difference in
scores between architectures is significant. The reason for
GIN Sparsity being the best can be attributed to it mostly
pooling information from its neighbours. Meanwhile, Graph-
SAGE was trained with global sampling, and GCN’s learn-
able matrixW increases each nodes dependence on the entire
graph structure. This hypothesis could be verified by testing



Table 3: Bagel metric evaluation of each model using global expla-
nations over 10 training attempts (mean/stddev). The models were
trained with KIRC data from the TCGA dataset.

Global Explanations GIN GCN GraphSage
RDT-Fidelity 0.88/0.10 0.77/0.04 0.90/0.10

Normalized Validity+ 0.58/0.26 0.75/0.13 0.74/0.10
Validity- 0.87/0.11 0.89/0.07 1.0/0.0
Sparsity 0.034/0.014 0.025/0.006 0.018/0.006

Table 4: Bagel metric evaluation of each model with local expla-
nations over 10 training attempts (mean/stddev). The only major
difference between the two explanations is Sparsity of GCN (bold
text), which is significantly lower with local explanations.

Local Explanations GIN GCN GraphSage
RDT-Fidelity 0.89/0.05 0.75/0.04 0.83/0.13

Normalized Validity+ 0.49/0.23 0.57/0.10 0.75/0.12
Validity- 0.90/0.05 0.96/0.06 1.0/0.0
Sparsity 0.035/0.008 0.0036/0.0020 0.01/0.004

Figure 2: Radar comparison of mean Validity-, Validity+ and RDT-
Fidelity calculated over global explanations. GraphSAGE shows an
overall superior performance, although not significantly, which can
be attributed partially to its better accuracy.

GraphSAGE with different neighbour sampling sizes, as de-
scribed in section 7.

The reproducibly lower sparsity of local-explanation GCN
compared to all other models (both global and local) shows
that GNNSubnet can occasionally behave unpredictably un-
der specific circumstances, which warrants further research.

5 Responsible Research
Research into the field of biomedical AI, while potentially
extremely beneficial to society, carries significant amount of
risk. The results of this and related pieces of research could
lead to more widespread adoption of explainers, progres-
sively removing human agency from protein-protein inter-
action research, which could have dangerous consequences
if their predictions are incorrect. Moreover, explainability
of protein-protein interaction modelling could be used to

progress research in different fields than disease detection,
such as genetic engineering, which raises major ethical con-
cerns. Our research has been conducted specifically with dis-
ease detection in mind, but any research into biomedical en-
gineering or artificial intelligence can have unexpected con-
sequences and carries risk for society, and as such should be
implemented responsibly.

This research has been conducted with reproducibility and
transparency in mind. The datasets used are listed and
available to the general public and have not been modified.
The code written to benchmark GNNSubnet against different
models is also publicly available. All data used is either syn-
thetic (Barabasi networks) or fully anonymised (TCGA data),
carrying no risk of discovery for patients who are part of the
database.

The authors have no personal or financial affiliation with
people or companies in the biomedical field or with the de-
velopers of GNNSubnet.

6 Conclusion
In order to assess the difference in GNNSubNet performance
with change in underlying architecture, three models were
tested: GIN, GCN and GraphSAGE. The explanation per-
formance for each model was measured using four metrics:
RDT-Fidelity, Validity-, Validity+ and Sparsity. Fidelity and
Validity metrics concerned themselves with assessing if the
explainer chose the correct important nodes for the decision,
while the Sparsity metric informs how concise the result was.

Overall, there is no strong difference in explainability of
different models. The Fidelity and Validity scores were all
similar, with GraphSAGE slightly outperforming the other
models, likely due to its higher accuracy. Such result shows
that GNNSubnet is able to correctly identify disease subnet-
works regardless of the techniques employed by a model.

The only variable factor for the models is Sparsity. Due to
differences in the way that data is aggregated between mod-
els, GNNSubnet requires more features to provide a good ex-
planation for some models, such as GCN, than for others.

The study shows that GNNSubnet is highly generalizable
and can perform well under multiple models with very differ-
ent internal architectures. However, due to its better Sparsity
score, GIN explanations will generally be more concise and
relevant in comparison to the two other models tested. For
future disease subnetwork detection tasks GIN is the recom-
mended architecture of choice.

7 Limitations and Future work
Due to the time constraints of the project, only three architec-
tures were tested, which limits the generalizability of the re-
sults provided. Moreover, on the provided datasets, the mean
accuracy of some models differs significantly. An additional
controlled study would account any potential difference in
metric comparison.

7.1 Models
This paper shows that GNNSubnet is highly generalizable
across the three training models chosen for the experimen-
tal process. However, it does not cover the entire GNN model



space. While the chosen architectures provide a wide range
of approaches to GNN model design, multiple other options
should be tested before certain conclusion can be drawn. Par-
ticularly two areas of GNN research deserve additional re-
search:

Attentional models
Attentional GNNs, such as a Graph Attention Network
(GAT)[14] are able to process variable sized data by focus-
ing on relevant parts of a network. This approach could have
an impact on explainability.

Sampling models
While GraphSAGE samples nodes in a neighbourhood, some
sampling techniques, such as GraphSAINT[15], sample en-
tire subgraphs. This technique was shown by its authors to
rival GraphSAGE in accuracy on multiple models, but due to
a minibatch sampling approach it could raise the error rates
of explainers.

Moreover, in this study, GraphSAGE was tested using
global sampling, which is shown to be the most effective.
However, on many datasets, this sampling technique would
prove ineffective. PPI networks can be extremely big and
complex, which could make sampling techniques necessary
for such tasks. As such, explainability loss under lower neigh-
bourhood sizes should be investigated.

7.2 Sparsity exploration
The study shows that the only metric that varies significantly
between architectures is Sparsity. With mean values ranging
from 0.035 for locally-explained GIN to 0.0036 for locally-
explained GCN on a logarithmic scale, the results vary a lot
in their usefulness. In order to ensure concise and correct
explainer predictions, causes for those differences should be
explored further. For example, the impact of aggregation
globality (such as GraphSAGE sampling size) on Sparsity re-
quires additional research.
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Petar Veličković. Geometric Deep Learning: Grids,
Groups, Graphs, Geodesics, and Gauges. 2021.

[12] Sucharitha Rajesh. Evaluating the explainability of
graph neural networks for disease subnetwork detection.
2024.

[13] Milchi Elena Oana. Modified gnn-subnet: leveraging
local versus global graph neural network explanations
for disease subnetwork detection. 2024.
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