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We implemented a fast Reciprocal Monte Carlo algorithm to accurately solve radiative heat 
transfer in turbulent flows of non-grey participating media that can be coupled to fully 
resolved turbulent flows, namely to Direct Numerical Simulation (DNS). The spectrally 
varying absorption coefficient is treated in a narrow-band fashion with a correlated-k
distribution. The implementation is verified with analytical solutions and validated 
with results from literature and line-by-line Monte Carlo computations. The method is 
implemented on GPU with a thorough attention to memory transfer and computational 
efficiency. The bottlenecks that dominate the computational expenses are addressed, and 
several techniques are proposed to optimize the GPU execution. By implementing the 
proposed algorithmic accelerations, while maintaining the same accuracy, a speed-up of 
up to 3 orders of magnitude can be achieved.

© 2019 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Modeling radiative heat transfer is a challenging task due to the numerical complexity and the associated computational 
costs [1]. For example, radiative heat transfer is a six dimensional problem, which depends on spatial location, propagation 
direction and frequency of the electromagnetic wave. In addition, the calculation of radiative heat transfer poses a daunting 
challenge when it is coupled with convective and conductive heat transfer modes in turbulent flows. The computational 
cost of solving the radiative transfer equation makes it difficult to obtain an accurate description on how radiative transfer 
couples to a participating turbulent fluid flow. As a consequence, a complete view of the interplay between turbulence and 
radiation is missing.

Recently, several studies have addressed the problem with the aid of simplifying assumptions to ease the computational 
burden. In particular, Sakurai et al. [2] used the Optically Thin Approximation (OTA) to study the influence of radiative 
effects in a horizontally buoyant turbulent channel flow. They noticed that large scale buoyant structures are destroyed 
by the presence of non-local radiative heat transfer between walls and fluid. The OTA neglects self-absorption from the 
participating medium, leading to a constant incident radiation throughout the domain. This assumption greatly simplifies 
the description of radiative heat transfer. However, it does not allow the evaluation of incident radiation fluctuations and is, 
therefore, restricted to low values of absorption coefficient, κ , as demonstrated in Ref. [3].

A common approximation employed in solving the radiative transfer equation (RTE) in DNS coupled simulations consists 
in neglecting the spectral dependency of κ by assuming a grey gas. This assumption enables the efficient use of finite 
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difference schemes, such as the discrete ordinates method (DOM), which require a low computational effort and provide 
a high level of accuracy. Examples are given in Refs. [4–8], who have studied the influence of radiative heat transfer in 
turbulent flows using the grey gas approximation, coupled to either DNS or large eddy simulations (LES). These studies 
allow to investigate the effect of radiation on the turbulent temperature field and vice versa, to highlight and quantify the 
dissipative effect of radiative field fluctuations and the impact of Turbulence Radiation Interactions (TRI). However, these 
cases are highly idealized since radiation in real fluids is intrinsically non-grey.

If a spectral description of radiative heat transfer is to be included, the state of art involves the use of a Monte Carlo 
(MC) method. Compared to the above mentioned RTE solution methods, the Monte Carlo method can be considered the most 
accurate and flexible. Its solution time increases mildly with problem complexity, allowing a detailed spectral description or 
the simulations of complex geometries, which are challenging with other methods such as DOM. To the authors knowledge, 
the first instance of a Monte Carlo method coupled with DNS is reported by Wu et al. [9]. They developed a high resolution 
MC method, subsequently used by Deshmukh et al. [4] to study TRI in a statistically one dimensional premixed combustion 
system. In their study, they noticed that absorption TRI intensifies with an increase of optical thickness, while emission TRI 
is always relevant in reactive flows. The calculations were performed on a 643 mesh in a grey gas, but the use of a MC 
method coupled to DNS on finer grids and spectral medium was not investigated. On the other hand, more recently, Zhang 
et al. [10] and Vicquelin et al. [11] performed DNS of radiative channel flow using a MC code coupled to a narrow-band 
correlated-k spectral description. They investigated the effect of different radiative budgets to verify the modification of first 
and second order temperature and velocity statistics. Nonetheless, the computational expenses of the MC method prohibited 
the solution of the radiative heat transfer on a full DNS grid, which required an intermediate interpolation step between flow 
and radiation solution. Overall, the computational expenses of the Monte Carlo solver limit the possibilities of accurately 
solving coupled radiative heat transfer and turbulence together. However, since the Monte Carlo method is “embarassingly 
parallelizable” (i.e., can be divided into a number of completely independent computations), it greatly benefits from the use 
of parallel architectures and in particular from the use of general purpose graphical processing units (GPGPU).

The use of GPUs for computational sciences has become increasingly investigated, especially for large parallelizable prob-
lems that are more efficiently mapped on many GPU parallel multiprocessors [12]. The development of NVIDIA CUDA, a 
versatile GPU programming language, has further popularized GPUs as accelerators alongside CPU computational clusters 
[13]. Several examples of GPU codes are available up to date, ranging from machine learning [14] to imaging [15] and com-
putational biology [16]. Likewise, in the fluid mechanics field, Khajeh et al. [17] and Salvadore et al. [18] have been porting 
a Navier-Stokes solver on GPUs obtaining speedups up to 22 ×. Additionally, many Monte Carlo codes have been developed 
on graphical processing units for many diverse fields and applications such as finance [19] and molecular dynamics [20]. On 
the other hand, to the authors knowledge, the only MC methods applied to the solution of thermal radiation implemented 
on GPU were developed independently by Humphrey et al. [21] for grey gas applications and by Heymann and Siebenmor-
gen [22] for dust radiation around active galactic nuclei. The code of the former showed excellent scaling capabilities up to 
16834 GPUs, proving the feasibility of the GPU MC concept for thermal radiation. The latter focused on the optimization of 
the MC procedure, reaching a speed up of around 100×.

Nonetheless, porting an application to GPU requires the exposure of the parallel portion of the application and algo-
rithmic optimizations to improve the efficiency on a GPU architecture. Therefore, the objective of this work is to develop 
an optimized GPU Monte Carlo implementation, which can enable a fast and accurate solution of radiative heat transfer in 
largely fluctuating temperature fields typical of turbulent flows. We will include the spectral description of the absorption 
coefficient to have a complete and flexible solver. All the challenges involved in implementing an efficient GPU application 
are addressed in order to reduce the computational time and to improve the scaling with problem size.

2. The Monte Carlo method

In this section the details of the Monte Carlo methods are outlined for the sake of completeness. Within a domain 
containing a non grey absorbing and emitting medium, the radiative power emitted by cell i and absorbed within cell j is 
expressed, as in Tesse et al. [23], by

Q R
i→ j =

∞∫
0

κν(Ti)Ibν(Ti)

∫
V i

∫
4π

Nc∑
m=1

τν(i → j,m)

⎡
⎢⎣

l j,m∫
0

κν(T j)e−κν(T j)s j,m ds j,m

⎤
⎥⎦d�dV idν, (1)

where ν is the wavenumber, κν is the spectral absorption coefficient, τν is the spectral transmissivity from cell i to the 
boundary of cell j following the path m, Nc is the number of paths that, from cell i, cross cell j, and l j,m is the distance 
travelled in cell j along the propagation direction. The volume integral V j , as given in ref. [24] has been replaced by the 
integration over the solid angle � and the path length s j,m as done in ref. [23]. The integral in the square brackets represents 
the absorption within cell j, following path m. The analytical solution, considering cell j isothermal and homogeneous, is

αν j,m = 1 − e−κν(T j)l j,m . (2)

The spectral transmissivity τν(i → j, m) is the result of the absorption by the finite volumes and surfaces crossed by path 
m, and can be calculated as
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τν(i → j,m) =
j−1∏
k=i

(1 − ανk,m) ×
Nr∏

c=1

(1 − εw) , (3)

where εw is the wall emissivity and Nr is the number of wall reflections that occurred for path m.
The Monte Carlo method consists in a statistical estimation of the integrals in equation (1) using a large number of sam-

ples that represent different paths and wavelengths. In particular, it is possible to develop probability distribution functions 
defined as

f V = 1

V i
, fθ = sin θ

2
, fφ = 1

2π
, fν = πκν(Ti)Ibν(Ti)

κp(Ti)σ T 4
i

, (4)

where κp(Ti) is the Planck mean absorption coefficient of cell i, while θ and φ are the polar and azimuthal angles, respec-
tively, with d� = sin θdθdφ. Substituting the probability distribution functions in equation (1) leads to

Q R
i→ j = Q R,e(Ti)

∞∫
0

fν

∫
V i

f V

2π∫
0

fφ

π∫
0

fθ Aν,m,i→ j dθ dφ dV i dν , (5)

where Q R,e(Ti) and Aν,m,i→ j are the total radiative power emitted by cell i and the spectral energy fraction emitted by cell 
i and absorbed in cell j through path m, respectively. These are calculated using

Q R,e(Ti) = 4V iκp(Ti)σ T 4
i , (6)

Aν,m,i→ j =
Nc∑

m=1

τν(i → j,m)αν j,m. (7)

A statistical estimation of the integrals in equation (5) involves launching several samples, referred hereafter as “rays” with 
properties sampled from the probability density functions given in (4).

The resulting discretized equation has then the form

˜Q R
i→ j = Q R,e(Ti)

Nr

Nr∑
r=1

Ar,i→ j . (8)

The tilde ∼ denotes a statistical estimator and the subscript r indicates a ray, characterized by its wavenumber ν , and 
direction angles θ and φ (defining the path variable m), which are calculated inverting the following relations

Rν =
ν∫

0

fν ′(T )dν ′ = π
∫ ν

0 κν ′(T )Ibν ′(T )dν ′

κp(T )σ T 4
,

Rθ =
θ∫

0

fθ ′dθ ′ = 1 − cos θ

2
,

Rφ =
φ∫

0

fφ′dφ′ = φ

2π
.

(9)

Rν , Rθ and Rφ are random numbers sampled from a uniform probability distribution function between 0 and 1.
In a reciprocal Monte Carlo formulation, both emitted and absorbed power are statistically estimated as

Q R
i,RM =

Nv+Ns∑
j=1

˜Q R
i→ j

︸ ︷︷ ︸
Q R,e

i

−
Nv+Ns∑

j=1

˜Q R
j→i

︸ ︷︷ ︸
Q R,a

i

, (10)

where Nv + Ns are the numbers of volume and surfaces that interact with cell i. The reciprocal formulation employes the 
following principle

Q R
i→ j,ν

I (T )
= Q R

j→i,ν

I (T )
, (11)
bν i bν j
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to automatically satisfy the reciprocity condition. As a consequence, the above formulation avoids problems of large variance 
in case of low temperature gradients (i.e. non reactive flows) or high optical thickness that are typical of a forward Monte 
Carlo method. Depending on the estimated quantity, it is possible to distinguish between two reciprocity Monte Carlo 
formulations [23]. These are, the Absorption-based Reciprocity Monte Carlo (ARMC) which connects the emission to the 
statistical estimation of the absorbed power, and, vice-versa, the Emission-based Reciprocity Monte Carlo (ERMC) which 
estimates absorption based on the calculation of emitted power. While ARMC results in a lower variance in low temperatures 
zones, characterized by relevant absorption, ERMC is more accurate in the high temperature regions that are dominated by 
emission. The advantage of ERMC is that Q R in i is calculated by the emission of the cell, requiring only the computation 
of the rays leaving the cell itself. The corresponding relation of an ERMC formulation is given as

Q R
i,E RMC =

Nv+Ns∑
j=1

˜Q R
i→ j ·

(
1 − Ibν(T j)

Ibν(Ti)

)
. (12)

In addition, in the ERMC formulation the volumetric heat source [kW/m3] is independent of the emitting cell volume. As a 
consequence, it is possible to emit all rays directly from the center of cell i, avoiding the sampling on f V .

Recently, Zhang et al. [25] developed an optimized ERMC to reduce the variance in the low temperature regions. In 
the cold regions, Q R is dominated by the absorption of radiation which originates from hot zones. Nevertheless, an ERMC 
entails the estimation of absorption based on the emission of the cell itself. Consequently, the wavelength of emission in 
colder regions will be higher than the actual wavelength of the absorbed radiation that follows Wien’s displacement law. 
This leads to a large variance in cold spots, which is characteristic for an ERMC based method. Therefore, ref. [25] proposed 
to sample the wavenumber from the maximum temperature, which corresponds to a larger emission in the domain, using

fν = πκν(Tmax)Ibν(Tmax)

κp(Tmax)σ T 4
max

. (13)

As a result, equation (8) has to be corrected with a prefactor R I , resulting in

˜Q R
i→ j = Q R,e(Tmax)

Nr

Nr∑
r=1

(
κν(Ti)Ibν(Ti)

κν(Tmax)Ibν(Tmax)︸ ︷︷ ︸
R I

)
Ar,i→ j . (14)

2.1. Spectral discretization

In general, gas absorption spectra are characterized by discrete absorption lines, leading to a strong dependency on 
wavelength. In order to store the absorption coefficients and the probabilities associated with a line-by-line spectrum, com-
prised of more than a million spectral points, an excessive amount of memory is required. In addition, the high variability 
of the spectra translates in a lower convergence rate of the Monte-Carlo method. For this reason, we chose a narrow-band 
correlated-k model to couple with the Monte Carlo solver [26]. The narrow-band method constitutes of an accurate spectral 
representation, comparable to a line-by-line description if enough pseudo-spectral points are considered, with significantly 
lower memory requirements. In addition it is naturally adaptable to a simple implementation of species transport and 
wavenumber-dependent scattering, in case multiphase flows are considered. The line-by-line spectrum of common gasses, 
for a wide range of temperatures and pressures, can be found in accurate online spectroscopy databases. For this study, the 
data from HITRAN 2012 [27] and HITEMP 2010 [28] is used to develop the narrow-band pseudo-spectral coefficients.

Since the narrow-band correlated-k model divides the spectrum into narrow bands with assigned quadrature points, 
the wavenumber probability function in equation (4) is discretized using two “discrete” probability functions, one for the 
narrow-band and the other one for the quadrature point. The two variables associated with the wavenumber of the photon 
bundle are thus a narrow band index n and a quadrature point index g ,

ν∫
0

fν ′dν ′ ≈
n−1∑
n′=1

fn′ + fn ·
g−1∑
g′=1

f g′(n) , (15)

where

fn = π�νn Ibn
∑Nq

g′=1 ωg′kn,g′

κpσ T 4
, f g(n) = ωgkn,g∑Nq

g′=1 ωg′kn,g′
, (16)

and ωg and Nq are the Gaussian weights associated with point g and the total number of quadrature points in a narrow-
band, respectively. Since the quadrature points in a narrow-band all represent ideally the same wavenumber, the drawing 
of two independent random numbers is necessary in order to sample n and g ,
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Fig. 1. Schematic displaying the marching ray procedure.

Algorithm 1 ERMC CPU implementation.
1: for cell in Cells do � Loop over all finite volumes
2: QE← 4κP (Tmax)σ T 4

max/numberOfRays � Cell emission Q R,e in equation (8)
3: for ray in Rays do � Loop over rays
4: procedure Initialize

5: Rθ , Rφ, Rn, R g ← Rand(uniform distribution) � Draw random numbers for angles and indices n and g
6: ray.ind ← cell.ind � Initialize the ray with the cell index i,j, and k
7: ray.pos ← cell.center � Initialize ray starting coordinates with cell center coordinates x, y, and z
8: ray.dir ← direction(Rθ , Rφ ) � Find ray direction based on equation (9)
9: ray.transmissivity ← 1.0

10: indDir ← sign(ray.dir) � Ray direction in terms of index i,j, and k
11: n, g ← findWavelength(Rn , R g ) � Binary search on CDF with Rn and CDF(n) with R g
12: Ib1 ← interpBlackbody(n, temperature(ray.ind)) � blackbody intensity of initial cell c
13: R I ← Ib1× interpAbsorpCoeff(n, g , temperature(ray.ind)) � R I in equation (14)
14: R I ← R I / interpBlackbody(n, Tmax) / interpAbsorpCoeff(n, g, Tmax)
15: end procedure
16: procedure March

17: while ray.transmissivity> tol do
18: df ← �p/ray.dir � Determine which face is crossed first (see Fig. 1)
19: ds ← min(dfx, df y , dfz) � Shortest distance is where ray crosses face
20: κ ← interpAbsorpCoeff(n, g, temperature(ray.ind))
21: α ← 1 − exp(−κ × ds) � equation (2)
22: Ib2 ← interpBlackbody(n, temperature(ray.ind))
23: Absorption← QE× ray.transmissivity× α × (Ib2/Ib1 − 1) × R I � equation (14)
24: QR(cell.ind)← QR(cell.ind)− Absorption � radiative heat source of initial cell c
25: ray.pos← ray.pos+ ds × ray.dir � Update ray position
26: ray.ind← ray.ind+ indDir× (ds == [df x, df y , df z]) � Update cell index depending on which face has been intersected
27: ray.transmissivity← ray.transmissivity× (1 − α) � equation (3)
28: end while
29: Absorption← QE× ray.transmissivity× (Ib2/Ib1 − 1) × R I
30: QR(cell.ind)← QR(cell.ind)− Absorption � Dump the residual energy into the initial cell
31: end procedure
32: end for
33: end for
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Table 1
Description of validation cases.

Case κ Temp. Dimensions Domain εw τ / t Comparison

Case 1 1 [m−1] lin1 1D 1 [m] 1 (all walls) 1 / 0.368 analytical solution
Case 2 1 [m−1] parab1 1D 1 [m] 1 (all walls) 1 / 0.368 analytical solution
Case 3 0.5 [m−1] sin 3D 1 [m3] 1 (all walls) 0.5 / 0.607 analytical solution [29]
Case 4 5 [m−1] sin 3D 1 [m3] 1 (all walls) 5 / 0.007 analytical solution [29]
Case 5 H2O 1000 [K] 1D 0.1 [m] 1 (all walls) 0.51 / 0.81 Kim et al. [30]
Case 6 H2O 1000 [K] 1D 1 [m] 1 (all walls) 5.1 / 0.54 Kim et al. [30]
Case 7 CO2 lin2 1D 1 [m] 1 (all walls) 25.5 / 0.82 Cherkaoui et al. [24]
Case 8 CO2 lin2 1D 1 [m] 0, 1 25.5 / 0.82 Cherkaoui et al. [24]
Case 9 CO2 lin2 1D 1 [m] 0.1, 0.1 25.5 / 0.82 Cherkaoui et al. [24]
Case 10 H2O parab1 1D 1 [m] 1 (all walls) 4.98 / 0.49 Line-by-Line MC
Case 11 CO2 parab1 1D 1 [m] 1 (all walls) 22.11 / 0.821 Line-by-Line MC
Case 12 mix parab2 1D 0.2 [m] 1 (all walls) 0.30/ 0.76 Tesse et al. [23]
Case 13 mix parab2 1D 4 [m] 1 (all walls) 5.93 / 0.036 Tesse et al. [23]
Case 14 H2O 3dimens 3D 1 [m3] 1 (all walls) 4.98 / 0.49 Line-by-Line MC

Rn =
n−1∑
n′=1

fn′ , R g =
g−1∑
g′=1

f g′(n). (17)

2.2. Algorithm

To ease the understanding of the GPU ERMC implementation, we first describe a standard CPU implementation in Al-
gorithm 1. The first loop (line 1) is performed over all finite volumes in the computational domain. Each finite volume is 
described by its index (i,j,k), and coordinates of the center and the surrounding faces. For each finite volume, a predefined 
number of rays (numberOfRays) are launched. The variable ray is a data structure that contains the current position 
(pos) of the ray and the index of the corresponding cell (ind), as well as the direction vector (dir) and the current 
transmissivity (transmissivity). The MC method mainly consists of two routines, the initialization (line 4) and the 
marching of the ray (line 16). In the first routine, the necessary random numbers are drawn and the properties of the ray 
are initialized accordingly. To accommodate a narrow-band correlated-k description, two independent random numbers are 
drawn Rn and R g , which lead to two different indices n and g that specify the narrow-band and the quadrature point 
within. Marching the ray consists in finding the distances �px, �p y, �pz , between the current location of the ray and the 
cell faces in direction ray.dir, specified by the angles φ and θ . The minimum distance, ds, determines which plane is 
crossed by the ray first. A schematic is displayed in Fig. 1, for which the ray intersects the x-normal plane first, such that 
the minimum distance ds will be equal to dfx . The radiative power of the initial cell (QR) is then calculated in a recipro-
cal fashion. Furthermore, the new ray position and cell index are updated accordingly. If the transmissivity drops under a 
certain tolerance tol (line 17), the ray is terminated and the remaining energy is dumped into the initial cell (line 29). 
The on-the-fly calculation of the blackbody intensity from Planck’s law is prohibitive due to the excessive computations 
involved. To overcome this issue, the blackbody intensity is precomputed for the narrow band wavelengths and discrete 
points in the required temperature range and then stored in an suitable 2D table. The functions interpBlackbody and
interpAbsorptionCoeff (lines 12-14, 20 and 22) perform linear interpolations of the spectral blackbody intensity and 
the absorption coefficient from the corresponding tables, respectively.

2.3. Verification and validation

To ensure a correct implementation, the algorithm is first verified and validated for a CPU implementation using a 
combination of grey and non-grey gases in 1D and 3D. In total, 14 cases are used which are summarized in Table 1. All the 
cases, 1D and 3D alike, are calculated on a 3D grid. To mimic the one-dimensionality, two periodic directions are employed 
in the 1D cases, over which the results are then averaged. Beside the case names in column 1, the second column shows 
values of the absorption coefficient κ for the grey gas cases (cases 1 to 4), and the names of the non-grey gases (H2O, 
CO2 or mix) for cases 5 to 14. The entry “mix”, found in cases 12 and 13, refers to a mixture of 11.6% CO2 and 15.5% 
H2O at 1 [atm]. All other cases are enclosures filled with a pure substance (molar fraction of 1) at 1 [atm]. The other 
columns indicate the prescribed temperature distribution (linear, parabolic, etc.), the spatial inhomogeneous dimensions (1D 
or 3D), the wall emissivities εw , the global optical thickness and global transmissivity (τ / t), and the source used for the 
verification or the validation. Further details are given in the subsequent discussions of the individual cases.

The grey gas cases 1, 2, 3 and 4 are used to verify the correctness of the ray marching procedure and are compared to 
existing analytical solutions. Although κ 
= f (ν), the spectral (narrow-band) description shown in Algorithm 1 is retained 
with precomputed probability functions based on a grey gas absorption coefficient. Two different geometries are examined, 
namely a 1 [m] parallel slab (1D) and a 1 [m3] cube (3D). The walls are considered black with εw = 1. For the 1D cases, 
two different temperature profiles (lin1 and parab) are considered, given as
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Fig. 2. Verification of the present MC code (lines) for a grey gas in comparison with analytic solution (symbols). Left: case 1, center: case 2, right: circles 
and dashed dotted line case 3, squares and solid line case 4 (both at y = z = 0.5 [m]).

Fig. 3. Validation of the present MC code (lines) for H2O in the isothermal case in comparison with values from [30] (circles). Left: case 5, right: case 6.

lin1: Tm = 500 + 1000x [K], T w1 = 500 [K ], T w2 = 1500 [K], (18)

parab1: Tm = 500 − 2000x2 + 2000x [K], T w1 = T w2 = 500 [K], (19)

where Tm is the temperature of the medium and T w1 and T w2 are the temperatures at the left and right wall, respectively. 
For the 3D cases, the walls are cold (0 [K ]), and the temperature profile is given as

sin: Tm = (sinπx · sinπ y · sinπ z · π/σ)0.25 [K ], (20)

in order to compare the results with the quasi-analytic solution derived by Sakurai et al. [29]. The absorption coefficient for 
the 1D slab has a value of 1 [m−1], while for the 3D domain the two cases have different absorption coefficients of κ = 0.5
and 5 [m−1] (case 3 and 4, respectively). For these four cases, the results are obtained on a 323 grid with 2000 rays per 
cell. Note that for the 1D cases, an averaging was performed along the periodic directions. As can be seen in Fig. 2, the MC 
implementation is accurately able to reproduce the analytic solutions with adequate precision.

To validate the spectral discretization, a combination of isothermal and non-isothermal cases with H2O and CO2 have 
been used. 119 and 139 narrow bands were selected for H2O and CO2, respectively, with each band containing 16 quadrature 
points. The radiative power of a 1D slab filled with water vapour at 1 [atm] and 1000 [K], bounded by two cold black walls 
at a distance of 0.1 (case 5) and 1 [m] (case 6), has been compared with data presented in Kim et al. [30] as shown in Fig. 3. 
The results for the 1D slab filled with CO2 at 1 [atm] and three different wall emissivities (cases 7, 8 and 9) are shown in 
Fig. 4. The temperature profiles for the CO2 cases are linear with the left wall at 295 [K] and the right wall at 305 [K] (lin2). 
The radiative power is compared to data presented in Cherkaoui et al. [24]. In all cases (cases 5-9) the comparison clearly 
demonstrates the high accuracy of the spectral discretization.

Two additional cases (case 10 and 11) are proposed to validate the spectral discretization and the MC implementation 
with a line-by-line version of the present MC code. The radiative power is calculated for H2O and CO2 at 1 [atm] with 
parabolic temperature profiles (equation (19)). The results obtained with the narrow-band correlated-k MC, shown in Fig. 5, 
are in close agreement with the line-by-line benchmark to again prove the correct implementation. Fig. 5 also shows the 
results for the H2O-CO2 mixture (cases 12 and 13) in comparison with the results from Tesse et al. [23]. For these cases the 
temperature profile was set to

parab2: Tm = 500 − 8000(x/L)2 + 8000(x/L) [K], T w1 = T w2 = 500 [K], (21)



8 S. Silvestri, R. Pecnik / Journal of Computational Physics: X 3 (2019) 100032
Fig. 4. Validation of the present MC code for CO2 at 1 [atm] in comparison with results from [24]. Linear temperature profile T = 295 + 10x [K]. T w1 =
295 [K] (lin2). T w2 = 305 [K]. Cases 7, 8 and 9 at the left, right and center, respectively.

Fig. 5. Left and right show the comparison of MC implementation with the line-by-line solution for H20 (left) and CO2 (center) at 1 [atm] with a parabolic 
temperature profile, equation (19). The right figure shows the comparison of the H2O-CO2 mixture with results from Tesse et al. [23]. Circles and dashed-
dotted line: case 13. Squares and solid line: case 12.

Fig. 6. 3D non grey case. Left: temperature profile at z = 0.5 [m] in [K]. Right: radiative power at z = 0.5 [m] in [kW/m3].

with L the length of the domain. Due to the high temperatures involved (Tc = 2500 [K]), the spectrum for the mixture 
was retrieved using the HITEMP 2010 database [28]. The spectra between 0 and 25000 [cm−1] were then divided into 999 
narrow-bands and 16 quadrature points per band for a total of 15984 pseudo-spectral points. As demonstrated in Fig. 5, 
also in case of a mixture, the present MC shows satisfactory agreement with the published literature.

The last validation case (14) consists of 1 [m3] cube with black walls filled with H2O. The temperature profile is given 
by

3dimens: Tm = 500 − 2000 · (x · y · z)2 + 2000 · x · y · z [K], T w = 500 [K]. (22)

Fig. 6 shows the results of the 3D non-grey case compared to a line-by-line version of the current MC. The left contour 
shows the temperature at z = 0.5 [m], while the right plot shows the comparison of the results obtained with the narrow-
band correlated-k method and the line-by-line benchmark at the same location (shown in [kW/m3]). The solution is again 
in excellent agreement with the line-by-line benchmark case.
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Fig. 7. Schematic showing the concept of ray parallelization (left) and domain parallelization (right). This simple example is composed of five control 
volumes (F V 1 − F V 5), five rays per cell (grey lines) and five threads working in parallel (T h1 − T h5).

In the following sections, the 1D H2O parallel slab case with parabolic temperature profile (case 10) will be used as a 
test case to compare the computational performances of the different implementations. As stated before, although the case 
is 1D in nature, it is calculated on a 3D grid with two periodic directions to mimic the computations for a DNS of a fully 
developed turbulent channel flow.

3. GPU implementation

Graphical processing units have an architecture that, differently from CPUs, promote compute bound, highly parallelizable 
algorithms. The smallest parallel GPU units, called threads, run concurrently and are organized in thread blocks. All blocks 
can read and write into a global memory. The global memory is the “main” memory of the GPU, comparable to the heap in 
a C program, and has the slowest I/O access. Threads are grouped into groups of 32, termed “warps”, which are executed 
by a single scheduling unit and thus follow a Single Instruction Multiple Thread (SIMT) execution model. Hence, all threads 
belonging to a particular warp execute the same instruction simultaneously. Due to these features, the objective of porting 
an application from CPU to GPU, is to increase parallelization to favour the SIMT execution. A further level of parallelization 
is obtained by using “streams”. With this GPU feature, a device function, called “kernel” can be subdivided into parallel 
streams that run concurrently and independently, i.e. in a Multiple Instruction Multiple Data (MIMD) fashion, similar to 
multicore CPU computation (MPI parallelization). In compute bound problems, the use of streams is always recommended, 
since parallel MIMD execution is preferred to SIMT execution due to the absence of branch divergence (see section 4.2).

There are two main approaches to parallelize a radiative Monte Carlo algorithm on a GPU. Consider an example with a 
computational domain of five finite volumes (FV), each one sending five rays to march through the overall domain and five 
threads (Th) that can execute the marching of the rays. A schematic of this configuration is outlined in Fig. 7. The algorithm 
can then be parallelized by either ray parallelization or domain parallelization, which are outlined in more detail below.

In the first approach, each thread calculates one ray per finite volume. In this case, within each thread the finite volumes 
are executed in serial, while the rays per cell are parallelized. The solution will, therefore, be obtained by adding the partial 
results of each thread. The drawback of this approach is the continuous use of expensive atomic reductions (different threads 
have to read/write in the same memory location). On the other hand, if an ERMC formulation is employed, it is possible 
to use the second approach, which consists in having a single thread calculate all the rays belonging to an individual 
finite volume. This is possible due to the fact that, in a reciprocal formulation, the only information required to calculate 
the radiative source in a point are the rays leaving the latter. In the schematics of Fig. 7, the ray decomposition and the 
domain decomposition approaches are displayed on the left and on the right, respectively. It is important to note that it is 
also possible to combine the two methods by exploiting the block/thread arrangement. Namely, divide the domain through 
different blocks and implement a ray parallelization for the finite volumes contained by the block. This configuration would 
speed up the necessary atomic reductions by enabling the use of shared memory that can be accessed by the whole block. 
However, shared memory is limited in size and for this reason this approach cannot scale efficiently to larger grids. Given 
these reasons, we conclude that the domain parallelization approach is more suitable for coupling a GPU Monte Carlo code 
with DNS.

Algorithm 2 displays the GPU implementation of the ERMC based on domain parallelization. The implementation closely 
resembles the one displayed in Algorithm 1, with the difference that the routine now consists of two different GPU functions 
(or kernels) highlighted in light blue. The first one is in charge of initiating the calculation on the GPU, which immediately 
returns the control to the CPU, while the second routine retrieves the results. This approach enables a completely asyn-
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Algorithm 2 ERMC GPU implementation.
1: __device__ solution[stream_max][Ncell/stream_max] � global device variable
2: cudaMemcpyAsync(Temperature T, absCoeff κ , Grid, CopyFromCPUtoGPU) � memory copy to device (GPU)
3: for s= 0; s<stream_max do � loop over streams 
4: procedure kickoff(thread t, block b, stream s) � First kernel for stream number s
5: __Shared__ state= cuRandInit � cuRand variable in shared memory
6: tid← threadIdx.x+ blockIdx.x× blockDim.x
7: for idx= tid; idx< Ncells; idx= idx+ blockDim.x× gridDim.x do � Grid-stride loop over the GPU grid structure
8: cell.ind.i← idx/(kmax× jmax) + 1 + s× imax/stream_max � Mapping thread index to mesh
9: cell.ind.j← idx/kmax+ 1 − (cell.ind.i− 1 − s× imax/stream_max) × jmax

10: cell.ind.k← idx− kmax× (cell.ind.j− 1 + (cell.ind.i− 1 − s× imax/stream_max) × jmax+ 1)

11: QE← 4κP (Tmax)σ T 4
max/numberOfRays

12: for ray in Rays do
13: procedure Initialize

14: Rθ , Rφ, Rn, R g ← cuRand(Uniform distribution, state) � As in the CPU algorithm, but with cuRand instead
15: Lines 6 − 14 in Algorithm 1
16: end procedure
17: procedure March

18: Lines 17 − 23 in Algorithm 1
19: solution[s][idx]← solution[s][idx]− Absorption � device global variable that allows asynchronous computations
20: Lines 25 − 30 in Algorithm 1
21: end procedure
22: end for
23: end for
24: end procedure
25: end for
26: Perform other tasks
27: for s= 0; s<stream_max do � loop over streams 
28: procedure return(thread t, block b, stream s) � Second kernel for stream number s
29: tid← threadIdx.x+ blockIdx.x× blockDim.x
30: for idx= tid; idx< Ncells; idx= idx+ blockDim.x× gridDim.x do
31: QR[idx]← solution[s][idx]
32: end for
33: end procedure
34: cudaMemcpyAsync(Solution QR, CopyFromGPUtoCPU) � memory copy to host (CPU)
35: cudaDeviceReset() � clear device memory allocations
36: end for

Table 2
Comparison between standard CPU and GPU implementation.

grid size 163 323 483 643 963 1283 1603

CPU 269.4 s 2921.1 s 13182.7 s 39313.3 s 271844.4 s (920183.3) s (2452230.3) s
GPU 11.8 s 84.8 s 394.0 s 1169.5 s 6143 s 19623 s 47539 s
Speedup 22.8× 34.4× 33.5× 33.6× 44.3× (46.9)× (51.6)×
rays per cell 6 · 102 1.5 · 103 6 · 103 1.5 · 104 3 · 104 6 · 104 1.5 · 105

CPU 369.7 s 961.7 s 3928.6 s 10432.2 s 19661.1 s 39313.3 s 132641.3 s
GPU 14.1 s 31.8 s 119.2 s 294.4 s 585.8 s 1170 s 2916 s
Speedup 26.2× 30.2× 33.0× 35.4× 33.6× 33.6× 45.5×

chronous computation of the GPU and allows to perform other tasks on the CPU (line 26) that would otherwise remain 
idle. Each kernel is executed stream_max times and computes (1/stream_max)th of the domain. The stream loops (lines 
3 and 27) contain only non-blocking statements that enable a parallel stream execution. The core of the domain paral-
lelization consists in mapping the thread index to a specific finite volume (lines 8-10). The for-loop over the computational 
cells is then replaced by a GPU-grid-stride loop that runs over the thread index (line 7) and covers all cells in the domain. 
The random number generation is performed on-the-fly by employing the CUDA library cuRand. The solution is stored in a 
global device variable solution, which is then retrieved by the second kernel once the computations are complete.

The GPU implementation is tested for case 10 (see Table 1, plane parallel slab of 1 [atm] H2O with parabolic temperature 
profile) on a Tesla K40M. The execution speed is benchmarked against the CPU implementation executed on an Intel Xeon 
E5-2680 @ 2.40GHz. Table 2 shows the computational time required as a function of mesh size and number of rays per cell. 
In all the test cases, the maximum allowed number of streams (16) is used, while the number of blocks and threads per 
block are calculated such that the GPU resources are fully utilized. The default values for the parameters that are not varied 
are a grid size of 643 and 6 · 104 rays per cell. The results in Table 2 show that the speedup obtained with a straightforward 
GPU implementation, using domain decomposition, is already relatively high. Nonetheless, with the increase of problem size, 
the speedup does not show a satisfying improvement, reaching values of around ∼ 50×. This apparent limit is caused by 
the finite resources of the GPU. Being a compute bound algorithm, the scarce resource is the amount of registers per thread 
that sets the maximum number of threads running concurrently. If the number of registers is increased, the scheduling 
units serialize the execution of the exceeding warps. As a consequence, no further gain is observed when increasing the 
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Table 3
Execution time with classical versus textured memory approach.

grid size 163 323 483 643 963 1283 1603

classic 11.8 s 84.8 s 394.0 s 1169.5 s 6143 s 19623 s 47539 s
texture 8.5 s 48.6 s 260.0 s 716.0 s 4381 s 12343 s 34047 s
Speedup 1.38× 1.74× 1.52× 1.64× 1.40× 1.59× 1.40×
rays per cell 6 · 102 1.5 · 103 6 · 103 1.5 · 104 3 · 104 6 · 104 1.5 · 105

classic 14.1 s 31.8 s 119.2 s 294.4 s 585.7 s 1170 s 2916 s
texture 9.6 s 20.6 s 74.3 s 180.7 s 358.6 s 714.5 s 1784 s
Speedup 1.47× 1.54× 1.60× 1.63× 1.63× 1.64× 1.64×

mesh size or the number of rays per cells. Note that the values in parenthesis for the CPU execution time in Table 2 are 
extrapolated from the scaling of the other results and, as such represent an estimation only.

4. Algorithm acceleration

A naive GPU implementation, as demonstrated in the section above, is usefull to provide a certain level of speedup, but is 
certainly not enough to address the computational requirements of a DNS simulation. In particular, the main problems and 
bottlenecks of such an algorithm are the slow memory access and the large inactivity of the threads due to the SIMT exe-
cution model. For this reason, we will address these issues by implementing acceleration techniques that will significantly 
reduce the execution time and thus enable a full coupling between DNS and the GPU Monte Carlo code.

4.1. Texture memory

Due to the GPU architecture, memory input and output is heavily affected by the access pattern of the threads. In 
particular, the global memory of a GPU is optimized for coalesced access. A coalesced memory transaction is one in which 
all of the threads in a half-warp access global memory at the same time. That is to say, consecutive threads should access 
consecutive memory addresses in the global memory to obtain efficient memory loads/stores. To avoid penalties associated 
with uncoalesced transactions, it is possible to store variables in registers (the memory associated with the single thread) or 
shared memory, which is fast-access memory common to all threads in a block. Unfortunately, these two memory types are 
severely limited in size (on a tesla K40M shared memory consists of only 49 kB per multiprocessor for a total of ∼ 735 kB). 
Therefore, after all the fast memory resources have been depleted, it is necessary to store the bulk of the variables in the 
global memory. Since most memory fetches depend on the drawing of random numbers, it is not straightforward to predict 
which address consecutive threads might access. As a consequence, coalesced memory transactions are impossible to achieve 
in a Monte Carlo simulation. An easy way to optimize memory input and output is hence to employ texture memory. Texture 
memory is a type of read-only memory, which has been developed for graphical applications. Instead of storing variables 
linearly, as global memory does, texture memory is designed to optimize the spatial locality of memory access. In other 
words, each point is associated to a coordinate, and the most efficient memory fetch occurs when consecutive threads 
access adjacent coordinates in the texture memory instead of consecutive addresses. This scenario is much more likely in 
a domain parallelized Monte Carlo simulation. The input values to access a texture memory location are float coordinates, 
while the value returned from the memory is a linear (or trilinear in case of a 3D texture) interpolation of the adjacent 
values. This feature is extremely useful as it provides fast linear interpolation, which is repeatedly required in a spectral MC 
code (lines 12, 13, 14, 20 and 22 in Algorithm 1).

Variables that were residing in the global memory (temperature, blackbody intensity and absorption coefficient), are 
therefore relocated to the texture memory. The results of the texture memory implementation are shown in Table 3 in 
comparison to the standard GPU implementation. The use of texture memory results in a computational gain for all the 
different settings. Nonetheless, the speedup tends to decrease with mesh size. This behaviour could be caused by the 
reduced spatial locality of memory access for contiguous threads on a finer grid (i.e. the ray travels further, distancing itself 
from the aligned source cells). On the other hand, the speedup increases if more memory transactions are performed (i.e., 
increasing the numbers of rays per cell). While this implementation has been performed for a structured mesh, the benefits 
will be equivalent if the same warp behaviour is ensured on an unstructured grid (adjacent source point for consecutive 
threads).

4.2. Narrow band sorting

The SIMT execution model can lead to a severe performance loss, known as “branch divergence”. A warp executes one 
common instruction at a time, so the threads must wait until the execution is terminated for the entire warp before 
proceeding. For this reason, full efficiency is realized when all 32 threads of a warp follow the same execution path (i.e., 
execute the same instruction at the same time). If threads of a warp diverge due to a data-dependent conditional branch 
(if or while statements), the warp executes all the paths entirely, disabling threads that are not on that path. For the 
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Fig. 8. Example of a marching procedure for different GPU MC schemes. (A): standard MC implementation; (B): reinitialization MC; (C): sorting MC. The 
different rows represent the sequential execution of different threads in a warp. We show here only 5 threads and 5 rays to simplify the scheme, but in 
reality there are 32 threads in a warp and tens of thousand rays per thread. Note that the length of the arrows and the dashed lines (representing marching 
and initialization) are always preserved among the three schemes. On the other hand, the position and direction initialization time (dashed lines) is shorter 
in the last scheme (C ), since the wavelength has already been chosen in the preprocessing step (blue box).

Table 4
Speedup using the narrow band sorting. The values of the speedup are referred to the textured execution times of Table 3.

grid size 163 323 483 643 963 1283 1603

Time 6.4 s 43.2 s 180.8 s 573.0 s 2866 s 9597 s 22189 s
Speedup 1.32× 1.13× 1.44× 1.25× 1.52× 1.29× 1.53×
rays per cell 6 · 102 1.5 · 103 6 · 103 1.5 · 104 3 · 104 6 · 104 1.5 · 105

Time 10.3 s 21.7 s 73.2 s 165.5 s 308.0 s 573.2 s 1313 s
Speedup 0.93× 0.95× 1.01× 1.1× 1.16× 1.25× 1.36×

purpose of correctness, the SIMT execution model can be essentially ignored. However, in terms of code efficiency, thread 
divergence is a serious issue and has to be addressed, particularly in the case of a MC simulation, where the abundant while 
loops and if conditions cause large thread inactivity.

A simple and straightforward approach to reduce inactivity, would be to re-initialize the ray whenever a marching is 
terminated within the warp. On the other hand, re-initializing the ray on a particular thread forces to temporarily disable the 
threads that have not yet completed the marching, serializing the initialization procedure. As a consequence, the execution 
time of multiple initializations might become longer than the benefit obtained by the lower inactivity during the marching 
procedure.

Taking into account the properties of the ray, leads to a more effective solution. For example, when two different threads 
in the same warp are marching rays with different wavelength, they handle different absorption coefficients. The ray with 
a higher κν will complete the marching quicker than the one with lower κν , due to the shorter path length. Since a Monte 
Carlo routine requires random draws of the wavelength based on a probability distribution function, it is a common scenario 
that threads are handling absorption coefficients of different order of magnitude. Due to the SIMT execution model, the time 
required for the warp to complete the current ray tracing is dictated by the thread with the lowest absorption coefficient. 
It is therefore beneficial to have threads handling absorption coefficient of similar value at all times, such that the tracing 
might complete simultaneously. To achieve this, it is necessary to precompute all wavelengths for each ray in each finite 
volume and sort them based on the magnitude of κν . Consequently, threads will always march rays from the lowest to the 
highest κν . While these values might be slightly different for different threads, the order of magnitude of κν will be similar, 
thus significantly reducing the branch divergence of the warp.

The different configurations are outlined in Fig. 8. The first scheme is a standard MC that does not account for any 
branch divergence reduction technique. Scheme B shows a re-inizialization scheme in which, wherever a thread in the 
warp completes the marching, the ray is immediately re-initialized. It is clear that this scheme is successful only if the 
cost of initializing a ray is smaller than the tracing of the shortest ray. This is not the case in a medium with a high 
absorption, where rays can be terminated within 5 steps. Scheme C shows the advantage of reordering the rays based on 
their absorption coefficient which aligns the ray marching executions.
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Fig. 9. Speedup obtained with the narrow-band sorting technique. In the figure on the left, the dashed line connects the points characterized by a mesh 
which is 2n · streams (163, 323 and 643), while the dashed dotted line all the other points.

The results of the tests for a narrow-band sorting algorithm are shown in Table 4 and Fig. 9. The speedup obtained with 
sorting the narrow bands is larger when the grid is not 2n · streams (32, 64, 128). This is caused by an inefficient mapping 
of the grid onto the device resources, which in this case are powers of 2. Indeed, by sorting the narrow bands, it is possible 
to correct the penalties associated with an inadequate mapping. It is possible to notice that the speedup increases with 
increasing the number of mesh points, until it reaches a plateau for large mesh sizes. On the other hand, if the number of 
rays per cell are too small, the advantage of a lower warp inactivity is overshadowed by the cost of the sorting procedure. 
Contrarily, increasing the number of rays per cell leads to an linear growth of the speedup, since the warp inactivity is 
efficiently replaced by the ray marching computation.

It is interesting to notice the difference between the speedup of the narrow-band sorting scheme with respect to mesh 
size and the speedup using a texture memory approach only. While the first one increases, the latter decreases with grid 
size. This difference shows the interplay between memory transactions and computations as the mesh size increases, high-
lighting the larger relative importance of compute statements with increasing mesh size.

4.3. Multigrid

The radiative intensity is absorbed exponentially as function of the absorption coefficient and the travelled distance. 
Therefore, the intensity absorbed by traversing a cube of size �x3 will be roughly proportional to

Iabs ∼ (1 − exp (−κνC�x)) , (23)

with C a constant depending on orientation. Consequently, the intensity of the ray leaving the cell is

Iout = Iin − Iabs ∼ exp (−κνC�x) , (24)

which signifies that, for a low κν , the intensity gradient of the propagating ray will be mild and the required cell size 
�x can be relatively large. Vice versa, if κν is large, a lower �x is necessary to capture the steep intensity gradient. If 
an adequate �x is chosen as a pre-processing step (as it could be done in a grey gas medium) the mesh will be over-
resolved for the rays with low absorption, resulting in an inefficient ray tracing. Nevertheless, since a high κν ray will be 
terminated fairly quickly, it requires a high resolution only on a small zone around the source point. On the contrary, a ray 
with low absorption will propagate far into the domain. By combining these two features of rays with different absorption 
coefficient, it is possible to construct a mesh strategy that optimizes the ray tracing, while retaining a high accuracy. The 

Fig. 10. Schematic showing the concept of the mesh coarsening scheme. The orange lines symbolize the marched rays. Several grids are overlayed one on 
top of each other. The ray falls onto the coarsened mesh when it reaches the maximum number of steps in the current grid. The concept is shown here in 
two dimensions for simplicity.
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Fig. 11. Comparison of the results for the parabolic H2O case for different numbers of overlayed coarsened mesh used. 5 steps are allowed in each mesh. 
a): Radiative heat source, b): standard deviation.

Table 5
Absorbed fraction (p) in seven successive grids with 5 steps per grid. In case less than seven grids are used, the 
last grid absorbs the remaining intensity. For example, if three grids are used for κref = κp , the first grid absorbs 
p1 = 12.4%, the second p2 = 20.3%, while the third the remaining intensity p3 = (100 − 12.4 − 20.3)%.

κref p1 p2 p3 p4 p5 p6 p7

κp (5.07 [m−1]) 12.4% 20.3% 27.6% 25.9% 12.1% 1.6% 0.1%
κmax (98.1 [m−1]) 92.22% 7.73% 0.05% 0.0% 0.0% 0.0% 0.0%
κn (8.80 [m−1]) 20.5% 29.2% 30.2% 16.9% 3.1% 0.09% 0.01%

objective is to have a grid that is fine close to the starting cell and gradually coarser as the ray travels further away from 
the initial point. To obtain this effect, it is possible to overlay several meshes characterized by different cell sizes. The 
temperature values will be interpolated on the coarser meshes from the DNS solution which represents the finest mesh 
level (radiative heat transfer does not introduce new spatial wavenumbers, so the smallest radiative length scales are as 
small as the Batchelor scales). For all finite volumes, the ray tracing commences on the DNS mesh and the ray is allowed 
to step onto the current mesh a fixed number of times. If the ray is not exhausted, it falls into a coarser mesh and so forth, 
until the last mesh is reached. The last (and coarsest) mesh will trace the ray until depletion. The only added overhead is 
the cost of the interpolation onto coarser meshes, which is completely irrelevant compared to the gain in computational 
speed obtained. A similar method, involving patches of interest, was previously implemented by Humphrey et al. in two 
different occasions. Namely, in a parallel CPU Monte Carlo implementation [31] and in a grey gas GPU implementation [21]. 
They used this technique to reduce computation and communication time. On the other hand, we highlight the additional 
benefits that such a method has in a non-grey GPU implementation, other than the reduction of computations. Here, due to 
the SIMT execution model, threads characterized by higher absorption rays will remain inactive, while waiting for the lower 
absorption rays to complete the computations. In this case, it is possible to tailor the method towards a pure reduction of 
thread inactivity by targeting the resolution of the higher impact, high absorption, rays. If this is done, the solution retains 
its accuracy and the parallel efficiency is greatly enhanced.

To optimize the number of steps in subsequent meshes, it is possible to rely on the transmissivity of the grids by 
specifying a fraction of intensity absorbed in the nth grid (pn). As a consequence, the number of steps in the nth grid (sn) 
will be

sn = int

⎛
⎝ ln

(
1 − ∑n−1

m=1 pm

)
κref�xn

− ln
(
1 − ∑n

m=1 pm
)

κref�xn

⎞
⎠ . (25)

Here, κref is a reference absorption coefficient and can be specified in different ways. Using the Planck-mean absorption 
coefficient (κref = κp) is the safest option to ensure unaltered accuracy. If execution speed has to be minimized, the largest 
average narrow-band absorption coefficient in the spectrum (κref = κmax) can be employed. On the other hand, a more 
balanced choice is the average absorption coefficient of the most influential band (κref = κn) calculated as

κn =
Nq∑

g=1

ωgkn,g , where n is the band containing ν =
Nb∑

n′=1

νc,n′ · f ′
n , (26)

Table 6
Speedup using multiple overlayed grids. 5 steps per grid.

grid number 1 2 3 4 5 6 7
Speedup 1× 1.4× 2.6× 4.2× 5.8× 6.6× 7.1×
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Fig. 12. Scaling of the code with grid cells and rays per cell.

and νc,n′ is the central wavenumber of band n′ . Since the wavenumber is sampled from the maximum temperature of the 
considered system, κp , κmax and κn can be calculated from the maximum temperature spectrum only.

In practice, the correct fractions pn that leave the results unaltered are not known a-priori. Therefore, to ensure an 
optimal number of steps, a trial and error procedure has to be employed until the results (both in terms of Q R and σ ) 
are method-independent. It is possible then to assess the implementation of the grid coarsening by calculating the fractions 
pn from equation (25) and use these for future implementations. In addition, more conservative settings (larger pn in finer 
grids) have to be adopted in case of steeper temperature gradients and inhomogeneous cases.

Fig. 10 shows a 2D representation of the mesh coarsening concept, while Fig. 11 shows the solutions of the test case 
employing the multigrid technique. In particular, the results shown in Fig. 11 have been obtained with a maximum of 7
overlayed grids corresponding to 1923 → 963 → 483 → 243 → 123 → 63 → 33. The rays were allowed to travel a maximum 
of 5 steps in each grid, while proceeding until termination on the last one. The absorbed fraction for different choices of 
κref, based on equation (25), is shown in Table 5. When using κp or κn as a reference, the largest absorption occurs in the 
third grid. On the other hand, the rays represented by κmax are absorbed almost completely within the first grid.

As shown in Fig. 11, the results of the test case are unaffected by the grid coarsening technique, both in terms of 
radiative power source and its standard deviation. The speedup obtained, defined as t1/tn , where t1 is the time required for 
completing the calculation with one grid while tn with using n grids, is shown in Table 6. Despite the negligible influence in 
the results, by employing the multigrid technique, it is possible to reduce the computational cost by a factor that is roughly 
equal to the number of grids used. The reduction of thread inactivity using this method is clearly visible by comparing 
Table 5 and Table 6. By changing the implementation from 4 to 7 grids, the intensity fraction that is computed on the 
coarser grids is only 13.9%, 0.0% and 3.2% for κp , κmax and κn , respectively. Nonetheless, the speedup increases by almost a 
factor of 2.

5. Overall performance increase

An overview of the scaling performance using different acceleration techniques is given in Fig. 12 for varying problem 
sizes. Note that the implementations are additive (i.e., sorting employs texture memory allocations and multigrid performs 
also a narrow-band sorting). A coarsening ratio of 2 has been employed for successive grids in the multigrid implementation. 
The smallest allowed mesh had a size of 33, resulting in 3 grids for 163, 4 for 323, 5 for 483 and 643, and 6 grids for 963, 
1283 and 1603. Again, only 5 steps were allowed in each level. The scaling of all implementations is well described by 
power functions of mesh cells N and linear functions of the number of rays R . The grey lines depicted in Fig. 12 take the 
following form

• classic t ∝ N1.32, t ∝ 0.98R ,
• texture t ∝ N1.35, t ∝ 0.96R ,
• sorting t ∝ N1.31, t ∝ 0.7R ,
• multigrid t ∝ N1.05, t ∝ 0.7R ,

Table 7
Comparison between standard CPU implementation and optimized GPU implementation.

grid size 163 323 483 643 963 1283 1603

CPU 269.4 s 2921.1 s 13182.7 s 39313.3 s 271844.4 s (920183.3) s (2452230.3) s
GPU 4.4 s 17.1 s 53.7 s 132.8 s 476.6 s 1262 s 2612 s
Speedup 61.2× 170.8× 245.5× 296.0× 570.4× (729.1)× (938.8)×
rays per cell 6 · 102 1.5 · 103 6 · 103 1.5 · 104 3 · 104 6 · 104 1.5 · 105

CPU 369.7 s 961.7 s 3928.6 s 10432.2 s 19661.1 s 39313.3 s 132641.3 s
GPU 4.1 s 6.3 s 17.1 s 37.5 s 69.9 s 132.4 s 316.0 s
Speedup 90.2× 152.7× 229.7× 278.2× 281.3× 296.9× 419.8×
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Fig. 13. Schematic representing the multi GPU implementation. The domain is decomposed on different nodes. In each node one CPU core communicates 
to the GPUs the entire temperature domain and returns the computed radiative heat source to the CPUs within the node.

Fig. 14. Performance of a multi GPU implementation. a): strong scaling speedup (t1/tn). b): weak scaling efficiency (t1/tn). Circles are results obtained 
without using multigrid and diamonds employing the multigrid technique. t1 is the execution time on 1 GPU and tn is the execution time on n GPUs.

While a texture memory allocation has large benefits for the investigated cases, the computational gain is bound to de-
crease when the grid size increases (as seen in section 4.1) as given by the larger exponent when compared to the classic 
implementation (1.35 > 1.32). On the contrary, with a multigrid scheme it is possible to obtain a quasi-linear scaling Monte 
Carlo code with mesh size (exponent ≈ 1). Moreover, the narrow band sorting procedure allows a scaling greater than ideal 
with respect to the rays per cell (0.7 · R). With more rays being launched, the drawn absorption coefficients fill the whole 
spectrum space efficiently, replacing the inactivity by aligning more effectively the thread marching.

It is demonstrated that, by employing these optimization techniques, it is possible not only to reduce the computational 
time, but also to significantly improve the scaling of the code with problem size. The performances of the optimized GPU 
Monte Carlo code, compared to a serial CPU Monte Carlo implementation executed on an Intel Xeon E5-2680 @ 2.40GHz, 
is shown in Table 7. It has to be reminded that, while texture memory allocation and narrow band sorting only improve 
computational speed on a GPU, multigrid, although less effective, can be also implemented for a code that runs on a CPU, 
leading to an increase of code efficiency. The maximum speedup achieved was 570.4× for a grid size of 963. For the largest 
problems, the CPU computational time was estimated from the scaling. Based on this estimation, we expect a impressive 
increase of speedup, differently from what is observed in Table 2 (potentially we could achieve 938.8× for a 1603 grid).

6. Multi GPU and DNS coupling

The optimized GPU Monte Carlo version can be used to efficiently couple radiative heat transfer with a DNS code in order 
to study the interactions between radiative heat transfer and turbulent mixing. The coupling is implemented with the use of 
MPI libraries that handle communications between CPU cores. Each node has a master core which communicates with the 
available GPUs on the node. Thanks to the reciprocal formulation, the GPUs calculate the radiative source term only on the 
domain handled by the associated node. On the other hand, to perform ray tracing and to avoid boundary communication, 
all GPUs require the complete temperature field. A schematic of the multi GPU implementation is shown in Fig. 13. The 
grey arrows show the communication of the temperature field, while the black arrows show the path of the computed Q R . 
The memory transfer to and from the GPU is completely asynchronous, such that the CPUs proceed to calculate additional 
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Fig. 15. Instantaneous snapshots on a wall-parallel plane (x − z) at y = 1.1 (top) and y = 1.97 (bottom). Left: temperature T [K]. Right: Radiative power 
Q R [kW/m3].

fluid time steps, while the GPUs compute the radiative heat source. As a consequence the CPU computation is completely 
hidden by the radiative power calculation.

The code has been tested on the Cartesius’ cluster located in Amsterdam, The Netherlands, on the accelerator island 
composed of 60 nodes containing 2 Tesla K40M each. The scaling of the code was examined up to 64 GPUs. The results 
are shown in Fig. 14. The strong scaling of the code is calculated by keeping the grid size constant (1923 in this case) and 
increasing the number of GPUs. The quantity shown in Fig. 14(a) is the time required for one time step to complete on 1 
GPU over the time required for N GPUs. As expected by the computational nature of the code, the scaling is almost ideal. 
Moreover, Fig. 14(b) shows the weak scaling efficiency, tested with and without the use of the multigrid scheme. In this 
case the grid size is increased proportionally to the number of GPUs used, with one GPU always computing on a 323 mesh. 
Since the problem size increases with the number of GPUs used, the code greatly benefits from the multigrid scheme, which 
improves the weak scaling efficiency from ∝ G P U−0.2 to ∝ G P U−0.08.

To prove the level of accuracy achievable in an acceptable time span, the radiative power is calculated for a turbulent 
temperature field obtained from a DNS. The DNS represents a fully developed turbulent channel flow with a bulk Reynolds 
number of Re = 7500 and isothermal walls at 955 and 573 [K] at the bottom and top, respectively. The flow is periodic in 
the streamwise and spanwise directions. The radiative properties of the medium are those of water vapour at 1 [atm]. The 
Planck mean absorption coefficient varies roughly from 5.5 [m−1] near the hot wall to 15 [m−1] near the cold wall and, 
therefore, can be considered optically thick. In such conditions, the turbulent radiative power spectrum is characterized by 
short length scales, comparable to the largest wavenumbers of the turbulent temperature spectrum. Therefore, the radiative 
heat source requires to be accurate on the full DNS mesh. The mesh is composed of 1923 elements, while the box dimen-
sions are 2, 2π and 4π [m] in the wall normal (y), span wise (z) and stream wise (x) directions, respectively. 6 · 104 rays 
per cells were used to calculate the radiative power. Snapshots of the radiative field are shown in Fig. 15. The left contours 
show the temperature field (in [K]), while the contours on the right are the calculated radiative power in [kW/m3]. The top 
figures show the fields at a y location of 1.1 [m] (roughly at the center of the channel), while the bottom figures show a 
wall normal plane located near the cold wall (y ≈ 1.97 [m]). As seen from the figures, the radiative field is solved with a 
high accuracy, matching quite closely the turbulent structures of the temperature field as expected for a highly participating 
medium. In addition, as predicted in [8], in the center of the channel, the turbulent radiative field filters the large turbulent 
wavenumbers, due to the action of incident radiation acting on the isotropic temperature structures.

7. Conclusions

A reciprocal Monte Carlo formulation for radiative heat transfer calculation has been ported to GPU using NVIDIA pro-
gramming language CUDA. The naive GPU implementation already showed a speedup of almost two order of magnitude 
compared to a classical CPU implementation. The efforts were focussed on improving the GPU implementation by over-
coming the bottlenecks typical of a Monte Carlo code. In particular, the memory access has been enhanced by employing 
a texture memory for the storage of all read-only variables. This approach allows random memory access and speeds up 
the computation of the constantly required linear interpolations. Furthermore, the warp inactivity has been significantly re-
duced using a combination of narrow-band sorting procedures and a multigrid approach. Using this technique the accuracy 
of the MC solver is retained while the computational expenses are significantly reduced. Therefore, by solving these issues 
a speedup of up to 3 orders of magnitude when compared to the initial CPU implementation, was achieved. In addition 
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the scaling of the code with problem size (grid cells and rays per cells) was thoroughly studied, demonstrating that the 
optimized implementation shows a superior scaling when compared to the classical implementation. Indeed the speedup 
plateau noticed with the standard GPU implementation, is far from being reached even for the largest problems considered.

Moreover, a multi-GPU implementation was performed, showing an efficient strong and weak scaling up to 64 GPUs. 
While the strong scaling is ideal due to the computational nature of a MC code, the weak scaling benefits largely from the 
multigrid approach. The coupling with DNS shows the capability of achieving accurate results also for challenging problems 
as optically thick turbulent flows.

Declaration of Competing Interest

There is no competing interest.

References

[1] M. Modest, Radiative Heat Transfer, 3rd edition, 2013.
[2] A. Sakurai, K. Matsubara, K. Takakuwa, R. Kanbayashi, Radiation effects on mixed turbulent natural and forced convection in a horizontal channel using 

direct numerical simulation, Int. J. Heat Mass Transf. 55 (2012) 2539–2548, https://doi .org /10 .1016 /j .ijheatmasstransfer.2012 .01.006.
[3] P. Coelho, O. Teerling, D. Roekaerts, Spectral radiative effects and turbulence/radiation interaction in a non-luminous turbulent jet diffusion flame, 

Combust. Flame 133 (2003) 75–91.
[4] K. Deshmukh, M. Modest, D. Haworth, Direct numerical simulation of turbulence-radiation interactions in a statistically one-dimensional nonpremixed 

system, J. Quant. Spectrosc. Radiat. Transf. 109 (2008) 2391–2400.
[5] S. Ghosh, R. Friedrich, C. Stemmer, Contrasting turbulence-radiation interaction in supersonic channel and pipe flow, Int. J. Heat Fluid Flow 48 (2014) 

24–34, https://doi .org /10 .1016 /j .ijheatfluidflow.2014 .04 .002.
[6] S. Ghosh, R. Friedrich, Effects of radiative heat transfer on the turbulence structure in inert and reacting mixing layers, Phys. Fluids 27 (2015) 055107, 

https://doi .org /10 .1063 /1.4920990.
[7] A. Gupta, M. Modest, D. Haworth, Large-eddy simulation of turbulence-radiation interactions in a turbulent planar channel flow, J. Heat Transf. 131 (6) 

(2009) 1–8, https://doi .org /10 .1115 /1.3085875.
[8] S. Silvestri, A. Patel, D. Roekaerts, R. Pecnik, Turbulence radiation interaction in channel flow with various optical depths, J. Fluid Mech. 834 (2018) 

359–384.
[9] Y. Wu, M. Modest, D. Haworth, A high-order photon monte carlo method for radiative transfer in direct numerical simulation, J. Comput. Phys. 223 

(2007) 898–922.
[10] Y. Zhang, R. Vicquelin, O. Gicquel, J. Taine, Physical study of radiation effects on the boundary layer structure in a turbulent channel flow, Int. J. Heat 

Mass Transf. 61 (2013) 642–666.
[11] R. Vicquelin, Y. Zhang, O. Gicquel, J. Taine, Effects of radiation in turbulent channel flow: analysis of coupled direct numerical simulations, J. Fluid 

Mech. 753 (2014) 360–401, https://doi .org /10 .1017 /jfm .2014 .368.
[12] J. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. Lefohn, T. Purcell, A survey of general-purpose computation on graphics hardware, in: State 

of the Art Report, Eurographics (2005) 21–51.
[13] NVIDIA Corporation, NVIDIA CUDA C Programming Guide, 2011.
[14] Gpu machine learning, http://www.nvidia .com /object /machine -learning .html.
[15] Gpu medical imaging, http://www.nvidia .com /object /medical _imaging .html.
[16] M. Nobile, P. Cazzaniga, A. Tangherloni, D. Besozzi, Graphics processing units in bioinformatics, computational biology and systems biology, Brief. 

Bioinform. 18 (5) (2016) 870–885.
[17] A. Khajeh-Saeed, J. Perot, Direct numerical simulation of turbulence using gpu accelerated supercomputers, J. Comput. Phys. 235 (2013) 241–257, 

https://doi .org /10 .1016 /j .jcp .2012 .10 .050.
[18] F. Salvadore, M. Bernardini, M. Botti, Gpu accelerated flow solver for direct numerical simulation of turbulent flows, J. Comput. Phys. 235 (2013) 

129–142, https://doi .org /10 .1016 /j .jcp .2012 .10 .012.
[19] V. Cvetanoska, T. Stojanovski, Using high performance computing and monte carlo simulation for pricing american options, in: The 9th Conference for 

Informatics and Information Technology.
[20] Y. Liang, X. Xing, Y. Li, A gpu-based large-scale monte carlo simulation method for systems with long-range interactions, J. Comput. Phys. 338 (2017) 

252–268.
[21] A. Humphrey, D. Sunderland, T. Harman, M. Berzins, Radiative heat transfer calculation on 16384 gpus using a reverse monte carlo ray tracing approach 

with adaptive mesh refinement, in: 2016 IEEE International Parallel and Distributed Processing Symposium Workshops, 2016, pp. 1222–1231.
[22] F. Heymann, R. Siebenmorgen, GPU-based Monte Carlo dust radiative transfer scheme applied to active galactic nuclei, Astrophys. J. 751 (27) (2012).
[23] L. Tesse, F. Dupoirieux, B. Zamuner, J. Taine, Radiative transfer in real gases using reciprocal and forward monte carlo methods and a correlated-k 

approach, Int. J. Heat Mass Transf. 45 (2002) 2797–2814.
[24] M. Cherkaoui, J. Dufresne, R. Fournier, J. Grandpeix, A. Lahellec, Monte Carlo simulation of radiation in gases with narrow-band model and a net-

exchange formulation, J. Heat Transf. 118 (1996) 401–407.
[25] Y. Zhang, O. Gicquel, J. Taine, Optimized emission-based reciprocity monte carlo method to speed up computation in complex systems, Int. J. Heat 

Mass Transf. 55 (2012) 8172–8177.
[26] A. Soufiani, J. Taine, High temperature gas radiative property parameters of statistical narrow-band model for H2O, CO2 and co, and correlated-k model 

for H2O and CO2, Int. J. Heat Mass Transf. 40 (4) (1996) 987–991.
[27] L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, The HITRAN 2012 molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transf. 

130 (2013) 4–50.
[28] L. Rothman, I. Gordon, R. Barber, H. Dothe, R. Gamache, A. Goldman, V. Perevalov, S. Tashkun, J. Tennyson, HITEMP, the high-temperature molecular 

spectroscopic database, J. Quant. Spectrosc. Radiat. Transf. 111 (2010) 2139–2150.
[29] A. Sakurai, T. Song, S. Maruyama, H. Kim, Comparison of radiation element method and discrete ordinates interpolation method applied to three-

dimensional radiative heat transfer, Numer. Heat Transf. 48 (2) (2005) 259–264.
[30] T. Kim, J. Menart, H. Lee, Nongrey radiative gas analyses using the S-N discrete ordinates method, J. Heat Transf. 113 (1991) 946–952.
[31] A. Humphrey, T. Harman, M. Berzins, P. Smith, A scalable algorithm for radiative heat transfer using reverse Monte Carlo ray tracing, in: International 

Conference on High Performance Computing, 2015, pp. 212–230.

http://refhub.elsevier.com/S2590-0552(19)30048-4/bib2FB48C9CBAD0EFBC93359E772B3D75FDs1
https://doi.org/10.1016/j.ijheatmasstransfer.2012.01.006
http://refhub.elsevier.com/S2590-0552(19)30048-4/bib51978D96E635BD894A74C4CE86E22C32s1
http://refhub.elsevier.com/S2590-0552(19)30048-4/bib51978D96E635BD894A74C4CE86E22C32s1
http://refhub.elsevier.com/S2590-0552(19)30048-4/bibD671DA11EBF818530F84A36134A1CD1Es1
http://refhub.elsevier.com/S2590-0552(19)30048-4/bibD671DA11EBF818530F84A36134A1CD1Es1
https://doi.org/10.1016/j.ijheatfluidflow.2014.04.002
https://doi.org/10.1063/1.4920990
https://doi.org/10.1115/1.3085875
http://refhub.elsevier.com/S2590-0552(19)30048-4/bib47EB752BAC1C08C75E30D9624B3E58B7s1
http://refhub.elsevier.com/S2590-0552(19)30048-4/bib47EB752BAC1C08C75E30D9624B3E58B7s1
http://refhub.elsevier.com/S2590-0552(19)30048-4/bibD3CB757121F725FE825A1176031A1C14s1
http://refhub.elsevier.com/S2590-0552(19)30048-4/bibD3CB757121F725FE825A1176031A1C14s1
http://refhub.elsevier.com/S2590-0552(19)30048-4/bib035E65A6633B692C9613B422D00A355Bs1
http://refhub.elsevier.com/S2590-0552(19)30048-4/bib035E65A6633B692C9613B422D00A355Bs1
https://doi.org/10.1017/jfm.2014.368
http://refhub.elsevier.com/S2590-0552(19)30048-4/bibD786034C5653A0F5D8C67FB8855554E1s1
http://refhub.elsevier.com/S2590-0552(19)30048-4/bibD786034C5653A0F5D8C67FB8855554E1s1
http://www.nvidia.com/object/machine-learning.html
http://www.nvidia.com/object/medical_imaging.html
http://refhub.elsevier.com/S2590-0552(19)30048-4/bib04917F3F04BB757BEBEDB460E3C260E3s1
http://refhub.elsevier.com/S2590-0552(19)30048-4/bib04917F3F04BB757BEBEDB460E3C260E3s1
https://doi.org/10.1016/j.jcp.2012.10.050
https://doi.org/10.1016/j.jcp.2012.10.012
http://refhub.elsevier.com/S2590-0552(19)30048-4/bib900DFD999FC81642102BF60DFFC12D5As1
http://refhub.elsevier.com/S2590-0552(19)30048-4/bib900DFD999FC81642102BF60DFFC12D5As1
http://refhub.elsevier.com/S2590-0552(19)30048-4/bib262D4D3F6CF9F553A1DFD5F902426147s1
http://refhub.elsevier.com/S2590-0552(19)30048-4/bib262D4D3F6CF9F553A1DFD5F902426147s1
http://refhub.elsevier.com/S2590-0552(19)30048-4/bib9E6CF82A0792906CE1E1ADEF7C5DCC4Fs1
http://refhub.elsevier.com/S2590-0552(19)30048-4/bibFB6A04D28FF90D7367722CC68A3FA2BAs1
http://refhub.elsevier.com/S2590-0552(19)30048-4/bibFB6A04D28FF90D7367722CC68A3FA2BAs1
http://refhub.elsevier.com/S2590-0552(19)30048-4/bibF03F182160CBED03427F1A0851BF7363s1
http://refhub.elsevier.com/S2590-0552(19)30048-4/bibF03F182160CBED03427F1A0851BF7363s1
http://refhub.elsevier.com/S2590-0552(19)30048-4/bibD0CD2693B3506677E4C55E91D6365BFFs1
http://refhub.elsevier.com/S2590-0552(19)30048-4/bibD0CD2693B3506677E4C55E91D6365BFFs1
http://refhub.elsevier.com/S2590-0552(19)30048-4/bibFF52A0F7BCF459EA0BAEDD547B8AE3E8s1
http://refhub.elsevier.com/S2590-0552(19)30048-4/bibFF52A0F7BCF459EA0BAEDD547B8AE3E8s1
http://refhub.elsevier.com/S2590-0552(19)30048-4/bibC4077302EBA371F02E27683D9452C1B6s1
http://refhub.elsevier.com/S2590-0552(19)30048-4/bibC4077302EBA371F02E27683D9452C1B6s1
http://refhub.elsevier.com/S2590-0552(19)30048-4/bib8F06167A6B8EF7FB773F8B843168BB34s1
http://refhub.elsevier.com/S2590-0552(19)30048-4/bib8F06167A6B8EF7FB773F8B843168BB34s1
http://refhub.elsevier.com/S2590-0552(19)30048-4/bib1287B37E7EFEA97A0CDDD01F25F25636s1
http://refhub.elsevier.com/S2590-0552(19)30048-4/bib1287B37E7EFEA97A0CDDD01F25F25636s1
http://refhub.elsevier.com/S2590-0552(19)30048-4/bibC4AC980837AF730579725B2367A79937s1
http://refhub.elsevier.com/S2590-0552(19)30048-4/bib2781FB37B5696946D6010D01F51EE8E7s1
http://refhub.elsevier.com/S2590-0552(19)30048-4/bib2781FB37B5696946D6010D01F51EE8E7s1

	A fast GPU Monte Carlo radiative heat transfer implementation for coupling with direct numerical simulation
	1 Introduction
	2 The Monte Carlo method
	2.1 Spectral discretization
	2.2 Algorithm
	2.3 Verification and validation

	3 GPU implementation
	4 Algorithm acceleration
	4.1 Texture memory
	4.2 Narrow band sorting
	4.3 Multigrid

	5 Overall performance increase
	6 Multi GPU and DNS coupling
	7 Conclusions
	References


