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A B S T R A C T

This study enhances the molecular analysis of bitumen by transitioning from traditional chemical descriptors,
such as SARA (Saturates, Aromatics, Resins, and Asphaltenes) fractions and elemental compositions, to specific
force field atom types in Molecular Dynamics (MD) models. This shift improves the precision in predicting
material properties critical for bituminous material characterization. Machine Learning Models (MLMs) were
developed to use these atom types as input features, inherently reflecting fundamental chemical characteristics.
Trained on data from over 1,770 LAMMPS simulations of diverse bitumen types and conditions, these MLMs
enable the prediction of properties like density, heat capacity, solubility parameters, and thermal expansion
coefficients without the need for additional MD simulations. The models utilize 30 chemical descriptors corre-
sponding to specific atom types in the PCFF force field, which collectively account for over 95% of the influence
on these properties. By accurately predicting fundamental, thermodynamic, and kinetic properties, the use of
MLMs and force field atom types allows researchers to efficiently tweak the chemical nature of organic molecules
and mixtures to achieve desired properties. With near-instantaneous prediction times, these MLMs offer valuable
insights for advancing bitumen research in the construction and petroleum industries, reducing the need for more
intensive simulation techniques.

1. Introduction

Bitumen consists of a complex mixture of high molecular mass hy-
drocarbons, typically derived from the fractional distillation of petro-
leum at the bottom of distillation columns. Annually, over 100 million
tons are produced, highlighting its industrial significance. Currently,
bitumen attracts considerable research attention due to the demand for
more sustainable and durable binders. Specifically, the development of
bitumens and other heavy oils that remain manageable at lower tem-
peratures is crucial for the oil, gas, and construction industry [1].
Traditionally, research on bituminous materials has been predominantly
experimental. However, the need for more robust and fundamental
characterization and design techniques has driven scientists toward
molecular simulations [2,3]. Nonetheless, employing molecular
methods to study bitumen presents its own set of challenges [4].

The molecular structure of bitumen comprises thousands of highly
variable hydrocarbon molecules—predominantly aromatic, resinous, or
asphaltenic—making bitumen a difficult material to study and charac-
terize [2]. This in turn complicates the establishment of a consistent

molecular structure necessary for simulations [5]. Moreover, molecular
simulations are limited to ensembles no more than a few hundred
molecules in size and no more than a few nanoseconds in length due to
their high computational cost [6]. This limits the use of molecular
modelling techniques to explore material properties that are funda-
mental in nature, but quickly become complicated when trying to cap-
ture mechanical and rheological properties of relevance to large scale
applications akin to those used by Engineers [7]. Nevertheless, the use of
MD has been increasingly popular, as these fundamental properties can
still yield tendencies that aid in the characterization and evaluation of
newer bitumens without the need of extensive experimentation tech-
niques [8].

Multiple efforts have been made to chemically characterize bitumen
and establish correlations between its compositional elements and its
physical properties [9]. These efforts include the fractionation of
molecule groups based on solubility (such as SARA fractionation), per-
forming direct elemental analysis, and employing gel permeation
chromatography (GPC-MS) techniques to assess molecular masses and
their distributions. These methods are often used in combination to

* Corresponding author.
E-mail address: e.i.assaf@tudelft.nl (E.I. Assaf).

Contents lists available at ScienceDirect

Materials & Design

journal homepage: www.elsevier.com/locate/matdes

https://doi.org/10.1016/j.matdes.2024.113327
Received 28 May 2024; Received in revised form 12 September 2024; Accepted 16 September 2024

Materials & Design 246 (2024) 113327 

Available online 19 September 2024 
0264-1275/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

mailto:e.i.assaf@tudelft.nl
www.sciencedirect.com/science/journal/02641275
https://www.elsevier.com/locate/matdes
https://doi.org/10.1016/j.matdes.2024.113327
https://doi.org/10.1016/j.matdes.2024.113327
https://doi.org/10.1016/j.matdes.2024.113327
http://creativecommons.org/licenses/by/4.0/


achieve a more fundamental characterization and differentiation of
bitumen samples. Nonetheless, some of these methodologies, despite
their prevalent use in the bitumen industry, are noted for their lack of
reproducibility, accuracy, or are simply too generalized to effectively
capture the intricate chemical nature of bitumens as required for
detailed molecular simulations. For instance, the Resinous and Asphal-
tenic fractions often contain molecules that are highly aromatic, some-
times more so than those in the Aromatics fraction, which renders the
definition of the Aromatic fraction in SARA fractionation techniques
somewhat ambiguous when applied to strict chemical applications [10].

Nonetheless, research studies have been conducted to link the
chemical characteristics of bitumen with its measured properties, such
as the impact of SARA fractions on the heat capacity of bitumen, aiming
to better understand its behavior in relation to compositional differ-
ences. These studies often struggle to identify relevant or clear trends,
largely due to the ambiguous nature of bitumen characterization. This
challenge is amplified by the fact that molecular models are highly
sensitive to the chemical structures of bituminous molecules and their
complex interactions [11]. Additionally, the high variability of bitumi-
nous materials, along with the increasing need to evaluate a wider range
of types—such as recycled, synthetic, and modified bitumens—further
complicates the identification of b behavioral trends [12]. As a result,
research has entered a continuous cycle of compositional testing to
identify and correlate chemical properties with more general features
using time- and resource-intensive simulations. Their use is necessary, as
lighter models, such as those using empirical correlations like those used
in Equations of State [13], fluid packages, or QSAR/QSPRmethods [14],
are unable to handle the complexity of bituminous molecules [15,16].

There is a significant need to move beyond the parameters obtained
from conventional bitumen characterization tests to enhance the way
fundamental chemical features influence the trends and insights derived
from molecular-level simulations. Additionally, there is a growing
requirement to reduce the reliance on complex molecular simulations
for evaluating changes in material composition, as well as other prop-
erties such as temperature or pressure, to obtain fundamental properties
through computational techniques. Furthermore, there is a strong need
to rapidly assess the impact of various properties on the compositional
and conditional attributes of bitumen [17]. Tackling these needs should
enable researchers working with bitumens to characterize, prepare, and
study the chemomechanics of bituminous materials with minimized use
of MD simulations, while still comprehending how fundamental chem-
ical characteristics affect material properties.

In this paper, we address three specific challenges by implementing a
series of methodological innovations. First, we utilize force field atom
types to describe the fundamental chemical nature of the bituminous
materials modeled, rather than relying on conventional parameters such
as SARA fractions and elemental compositions. This approach aims to
enhance the quality of the insights and trends derived from MD simu-
lations. Second, we develop a series of Machine Learning Models
(MLMs) that capture these fundamental chemical features and predict
material properties, thus eliminating the need to rerun molecular sim-
ulations. Third, we examine how the properties predicted by the MLMs
are affected by changes in the inputs, resulting in a series of insights that
allow scientists to finely tune bituminous molecules based on the ma-
terial properties required.

The outcome provides other scientists with a clear understanding of
how fundamental chemical characteristics influence a series of physical
properties bituminous materials, without the necessity of performing
new simulations.

This manuscript begins by detailing the characteristics of the mo-
lecular modeling simulations used in this study. It covers the selection of
molecules, sample selection, conditioning, and preparation, followed by
a description of the simulation routines and the list of material proper-
ties measured during the simulations. The manuscript then transitions to
a discussion of the machine learning methods employed to develop these
the MLMs of this study. This section includes the selection of features (i.

e., control parameters such as force field atom types) and labels (i.e.,
physical properties to be predicted such as heat capacities), along with a
detailed description of the chosen ML model and its parameters.

The results section presents all properties measured, both computa-
tionally and experimentally, and offers a comprehensive evaluation of
the predictive capabilities of the MLMs on both observed and unob-
served data. It also establishes clear trends between features and labels
that are relevant of the study and characterization of bituminous
materials.

The discussion section analyzes the results to elucidate the impact,
from an engineering perspective, that the features have on the properties
discussed and explores how this information can be used in the design of
bituminous materials. Additionally, it assesses the effectiveness of the
methods used in this study in enhancing bitumen design practices. The
manuscript concludes by providing some demonstrative examples on
how to utilize the MLMs to predict bitumen-related properties and by
summarizing the key insights and trends identified throughout the
study, and it outlines potential areas for improvement to be considered
in future iterations of this research line.

2. Methodology

This section delineates the methodologies employed to fulfill the
objectives of this research. Initially, the 2.1 Molecules Selection and
2.2 Molecular Models Preparation sections discuss the collection and
characterization of various bitumen samples and their conversion into
computational models using a predefined library of molecules. The 2.3
Simulations section details the MD simulations performed. This section
includes a description of the selected force field, input parameters, and
foundational assumptions, along with the initialization process of
models into their final MD configurations. The Simulations section
concludes with an overview of the MD routines used to determine the
material properties selected for the study. The 2.4 Machine Learning
section introduces the integration of machine learning techniques to
construct models that predict the study’s properties using input features
such as force field atom types, molecular masses, and temperatures.

2.1. Molecules selection

The molecular set employed in this study to construct bitumen
models includes 33 molecules, extending the original 12 molecules
identified by Greenfield [18] based on the work of Shisong et al [19].
This expansion incorporates structural modifications that align with the
SARA fractionation and elemental analysis, reflecting compositional
changes observed in bitumen samples tested by our research team sub-
jected to various aging conditions. Aimed at representing a compre-
hensive range of hydrocarbon classes typically found in bituminous
materials—such as alkanes, alkenes, polycyclic aromatics, and non-
aromatics—the collection includes functional groups like phenols,
oxanes, pyridines, thiophenes, and sulfoxides. The selected molecules,
characterized by high molecular masses ranging from 200 to 1000 g/
mol, pronounced aromaticity, and significant planarity, mirror the
complex molecular structures prevalent in bituminous materials.

The molecules in this study are systematically categorized by both
their SARA fraction classification and their degree of aging (0 to 4,
where 0 represents non-aged molecules and 4 signifies those that have
undergone the most aging. Aging is a chemical process involving
oxidation and sulfoxidation due to environmental exposure, crucially
altering the properties of bitumen. This dual categorization, while
introducing complexities into this study, aim to use the extensive
research available on bitumen aging to ensure that the MD simulations
accurately reflect known physical behaviors, especially those relevant to
civil engineering applications [20].

Within the SARA categorization of molecules, the Saturates group
comprises 2 molecules characterized by low molecular mass and mini-
mal aging, typical of light oils and bitumen rejuvenators. The Aromatics
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group contains 6 medium molecular mass molecules with at least 2 ar-
omatic rings, functional groups like aldehydes and ketones through
aging. The Resins group includes 15 modest mass hydrocarbons with
heterocyclic functional groups such as oxanes, pyridines, and thio-
phenes, which undergo extensive oxidative changes, resulting in highly
functionalized, amphiphilic molecules. Lastly, the Asphaltenes group
consists of 10 high molecular mass, highly planar hydrocarbons that
experience substantial aging, leading to increased polarity and influ-
encing the microstructural morphology of bitumen [17]. The skeletal
representation of the molecules, along with their chemical formula,
molecular mass, and estimated density are presented in Table 1. Their
corresponding SMILES notation [21] can be found in file /molecule-
s_selection.docx in the Supplementary Information.

2.2. Molecular models Preparation

Four groups of molecular models are established for this research.
The first group consists of 38 molecular models, each involving mixtures
of a single molecule type to simulate a pure solution of a specific
chemical compound, using the molecules listed in Table 1 (SARA) and
Table 2 (Rejuvenators). The molecular systems in groups (2) through (4)
are designed by selecting different molecules from Table 1 to replicate
the composition of real bituminous blends, differentiated by four char-
acteristics: bitumen source, aging condition, rejuvenator type, and
rejuvenator dosage. To facilitate this, real bituminous samples are
collected, conditioned, and characterized and subsequently, molecular
models are constructed by combining molecules from Table 1 to reflect
the properties observed in the characterized real bitumen samples. The
details of this process are elaborated next.

2.2.1. Sample collection and Preparation

2.2.1.1. Bitumen sources. For this study, three bitumen sources, all with
a 70/100 penetration grade, were selected: types “T”, “N”, and “F”.
These samples were specifically chosen from a wider selection array
based on their differing sulfur content bymass—type “N” at 0.8 %, “T” at
2.8 %, and “F” at 4.5 %. The differentiation in sulfur content is critical as
it distinctly influences the properties of the bitumens, providing clear
discretization among the samples even when bitumens with differing
carbon, hydrogen, and oxygen contents may exhibit similar properties
[22]. Additionally, the sulfur content in bitumens is gaining increased
attention in research, especially as stricter regulations on sulfur levels in
fuels are implemented. These regulations are driving the development of
new bitumens with higher and more varied sulfur contents [23].

2.2.1.2. Aging conditions. Five aging conditions, categorized as
0 through 4, are selected to represent distinct stages in the life cycle of
bitumen: condition 0 is fully fresh from its source (non-aged), condition
(1) is short-term aged, similar to bitumen’s state when exposed to short
but high thermal loads during road construction, and conditions (2), 3,
and 4 simulate long-term aging, reflecting the gradual transformations
that bitumen undergoes after roughly 3, 7, and 12 years of service life,
respectively [24]. To prepare the aging conditions in the laboratory,
non-aged samples are converted to their aged counterparts since
obtaining real-life aged bitumen samples is remarkably challenging
[25]. Level 1 aging is achieved by exposing 1 mm-thick fresh bitumen
samples to 5 h in a Thin-film Oven at 160 ◦C, while Levels 2 through 4
are achieved by further aging Level 1 bitumens in a Pressurized Aging
Vessel for 20, 40, and 80 h respectively at 100 ◦C and 2.1 MPa.

2.2.1.3. Rejuvenator types. Rejuvenators are chemical compounds that
often mimic the molecular structure of specific SARA groups and are
used as additives to modify the properties of aged bitumens. Although
rejuvenation primarily involves a physical alteration rather than a direct
chemical reversal of aging, these compounds are employed in an effort

to revert the effects of aging by restoring the changes in the SARA
composition caused by aging to their original state when the bitumen
was fresh [26].

For this study, four types of rejuvenators have been selected, each
resembling the molecular structures found in four popular rejuvenator
agents used in the bitumen industry: Vegetable Oil (V), Engine Oil (E),
Naphthenic Oil (N), and Aromatic Oil (A) [27]. While rejuvenators
typically consist of a mixture of many molecules—for instance, Engine
Oil is known to contain thousands of different compounds—the
approach here is to use a single molecule type that includes most (if not
all) relevant functional groups present in these compounds. This
simplification aids in better estimating their impact on the bitumen
blend, as shown in multiple research studies involving the study of re-
juvenators [27]. The skeletal representation of the rejuvenator mole-
cules, along with their chemical formula, molecular mass, and estimated
density are presented in Table 2. Their corresponding SMILES notation
can be found in file /molecules_selection.docx in the Supplementary
Information.

2.2.1.4. Rejuvenator dosages. In this study, four rejuvenator dosages are
investigated: 0 %, 5 %, 10 %, and 15 % by mass, labelled as dosage 0, 1,
2, and 3 respectively. These percentages align with those typically used
in practical applications and experimental research [26]. This dosage
range is selected to demonstrate measurable differences in the properties
of the bitumen, observable both experimentally and in MD simulations.

2.2.2. Model fitting
The molecular models, particularly those from Groups (2) through

(4), are developed by fitting specific chemo-physical properties derived
from the experimental characterization of the prepared samples (see the
Sample Collection and Preparation section). These properties include
average molecular mass of the mixture, estimated density by mass and
number, dispersity, SARA composition by mass, elemental composition
by Carbon, Hydrogen, Oxygen, Nitrogen, and Sulfur, Colloidal Index,
and Saturation Degree. The properties are obtained through three
distinct chemical characterization tests: SARA fractionation, Elemental
Analysis, and GPC-MS. A summary of the characterization results ob-
tained for Group (3) samples (“type N”) across all aging conditions is
presented in Table 3.

Molecules from Table 1 and Table 2 are carefully selected and
combined to create molecular mixtures that match the experimentally
obtained chemo-physical properties. This matching is accomplished by
using SciPy’s Minimize function [28] to optimize the selection and
proportion of molecules to minimize the Mean Squared Error (MSE)
between the experimental values and those computed from the virtual
mixture. The fitting process involves the following steps:

1 1 Loading all molecules listed in Table 1 and Table 2 into a Python
environment using the RDKit module [29] to retrieve the chemical
descriptors (e.g., molecular mass) from their SMILES notation.

2 Computing the chemo-physical properties for each molecule, as per
Table 3.

3 Importing the experimental data for each sample to serve as refer-
ence values.

4 Creating an initial array representing the target mixture of mole-
cules, initially containing 3 molecules of each type.

5 Calculating the mixture-wide chemo-physical properties given the
initial array of molecules.

6 Employing SciPy’s Minimize function to iteratively adjust the num-
ber of molecules in the mixture and minimize the MSE between the
estimated mixture properties (yest

i ) and the reference values obtained
using experimental characterization tests (yexp

i ). The MSE is calcu-
lated using Eq. (1), as follows:
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Table 1
Skeletal representation of the molecules employed in constructing the molecular models for this study. Within the Saturates category, (1) squalane and (2) hopane are
depicted. The Aromatics group includes (3) dioctylcyclohexane naphthalene and (4) perhydrophenanthrene naphthalene. In the Resins category, (5) quinolinohopane,
(6) thioisorenieratane, (7) benzobisbenzothiophene, (8) pyridinohopane, and (9) trimethylbenzeneoxane are shown. Lastly, the Asphaltenes category comprises (10)
phenolic asphaltene, (11) pyrrolic asphaltene, and (12) thiophenic asphaltene.

SARA ID Aging Degree

0 1 2 3 4

Saturates 1

 
C30H62 | 422 | 0.803 
C30H62 | 422 | 0.803

− − − −

2

 
C35H62 | 482 | 0.913 
C35H62 | 482 | 0.913

− − − −

Aromatics 3

C35H44 | 464 | 1.030
C35H44 | 464 | 1.030

O

C35H42O | 478 | 1.064 
C35H42O | 478 | 1.064

O

O
O

O
C35H36O4 | 1.173 

C35H36O4 | 1.173

− −

4

 
C30H46 | 406 | 0.916 
C30H46 | 406 | 0.916

O

 
C30H44O | 420 | 0.955 
C30H44O | 420 | 0.955

O

O

 
C30H42O2 | 434 | 0.995
C30H42O2 | 434 | 0.995

− −

Resins 5
N

 
C36H57N | 503 | 0.977 
C36H57N | 503 | 0.977

N
O

 
C36H55NO | 517 | 1.006 
C36H55NO | 517 | 1.006

N
O

O

 
C36H53NO2 | 531 | 1.040 
C36H53NO2 | 531 | 1.040

− −

6

O
 

C26H50O | 414 | 0.893 
C26H50O | 414 | 0.893

O

O

 
C26H48O2 | 428 | 0.930 
C26H48O2 | 428 | 0.930

− − −

7 S

S  
C18H10S2 | 290 | 1.417 
C18H10S2 | 290 | 1.417

S

S

O

 
C18H10S2 | 306 | 1.540 
C18H10S2 | 306 | 1.540

S

S

O

O  
C18H10O2S2 | 322 | 1.68
C18H10O2S2 | 322 | 1.68

− −

8 S

 
C40H60S | 572 | 0.962 
C40H60S | 572 | 0.962

S
O

C40H60OS | 588 | 1.010 
C40H60OS | 588 | 1.010

SO

O

 
C40H58O2S | 602 | 1.040 
C40H58O2S | 602 | 1.040

S
OO

O

 
C40H56O3S | 616 | 1.071
C40H56O3S | 616 | 1.071

−

9 N

 
C40H59N | 553 | 1.007 
C40H59N | 553 | 1.007

N
O

 
C40H57NO | 567 | 1.035 
C40H57NO | 567 | 1.035

N
O

O

C40H55NO2 | 581 | 1.067 
C40H55NO2 | 581 | 1.067

− −

(continued on next page)

E.I. Assaf et al. Materials & Design 246 (2024) 113327 

4 



Table 1 (continued )

SARA ID Aging Degree

0 1 2 3 4

Asphaltenes 10

NH

 
C66H81N | 888 | 1.104 
C66H81N | 888 | 1.104

NH

O

O O

O

 
C66H73NO4 | 944 | 1.188 
C66H73NO4 | 944 | 1.188

NH

O

O O

O

O
OO

 
C66H67NO7 | 986 | 1.254 
C66H67NO7 | 986 | 1.254

− −

11

OH

 
C42H54O | 574 | 1.049 
C42H54O | 574 | 1.049

O
O

O

 
C42H50O3 | 602 | 1.130 
C42H50O3 | 602 | 1.130

O
O

O

OO

 
C42H46O5 | 630 | 1.201
C42H46O5 | 630 | 1.201

− −

12

S

 
C51H62S | 707 | 1.100 
C51H62S | 707 | 1.100

S O

 
C51H62OS | 723 | 1.160 
C51H62OS | 723 | 1.160

S O
O

 
C51H60O2S | 737 | 1.189 
C51H60O2S | 737 | 1.189

S O
O

O

 
C51H56O3S | 751 | 1.220 
C51H56O3S | 751 | 1.220

S O
O

O

O

 
C51H56O4S | 765 | 1.252
C51H56O4S | 765 | 1.252

Table 2
Skeletal representation of the rejuvenator molecules employed in this study, accompanied by their chemical formula, molecular mass, and estimated density.

Rejuvenator

 
Aromatic Oil 

C26H48 | 360 | 0.863 
Aromatic Oil
C26H48 | 360 | 0.863

 
 

Engine Oil 
C22H44 | 308 | 0.812 

Engine Oil
C22H44 | 308 | 0.812

 
Naphthenic Oil 

C30H40 | 401 | 0.984 
Naphthenic Oil
C30H40 | 401 | 0.984

O
O

 
 

Vegetable Oil 
C19H36O2 | 297 | 0.873 

Vegetable Oil
C19H36O2 | 297 | 0.873

Table 3
Summary of the characterization results obtained for Group (3) (type “N”) bitumens across all aging conditions. These serve as the basis for constructing molecular
models that represent each bitumen type and aging conditions examined in this study.

Test type Aging Degree

0 1 2 3 4

SARA Fractionation Saturates 5.8 5.88 5.80 5.80 5.71
Aromatics 63.1 61.88 55.09 49.82 44.28
Resins 26.2 26.47 30.94 34.89 37.73
Asphaltenes 4.90 5.64 7.64 8.59 10.90
Colloidal Index 0.12 0.14 0.19 0.22 0.28

Elemental Analysis Carbon [m%] 85.5 85.2 84.7 84.4 83.7
Nitrogen [m%] 0.66 0.67 0.67 0.65 0.67
Hydrogen [m%] 10.5 10.4 10.3 10.0 9.77
Oxygen [m%] 2.00 2.39 2.99 3.53 4.58
Sulfur [m%] 1.28 1.28 1.27 1.29 1.29

GPC Mass-avg. molar mass [g/mol] 1481 1779 2012 2194 2258
Number-avg. molar mass [g/mol] 889 929 979 1015 1030
Dispersity [:] 1.67 1.91 2.06 2.16 2.19
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MSE =
1
m
∑m

i=1

(
yest
i (x1, x2,⋯, xn) − yexp

i
)2 (1)

wherem is the number of chemo-physical properties to fit, with equal
penalty weights, n is the number of different molecule types in the
mixture, and x represents the count of each molecule type.

7 The process is repeated for all the samples required, essentially those
of Group (2) through (4), with varying aging conditions.

Four main constraints are enforced when generating the plausible
molecular models:

1. The total number of atoms in each mixture must remain within 7000
± 10 %, reducing the relative impact of size differences and
boundary conditions and ensuring similar simulation performance
across all models to facilitate high-throughput operations. This lim-
itation inherently sets a limitation on the total number of molecules,
from 73 to 76, comparing well with other models built in the liter-
ature [11,18].

2. Only molecules that are within the aging level above or below of the
required mixture’s aging condition are selected. For instance, a
mixture representing an aging condition of 3 can only be comprised
of molecules from aging conditions (2) through (4), unless such a
selection cannot produce a valid molecular model. Models of aging
conditions 0 and 4 are forced to use molecules of aging degree 0 or 4,
respectively.

3. The properties of the obtained molecular mixtures must not overlap
within the measured error intervals of other mixtures from different
aging conditions. This condition is especially enforced on the oxygen
content, which varies from 1 % to 5 %, ensuring that each mixture
accurately represents its specified condition and maintains sufficient
discretization to yield statistically valid comparisons.

4. The range of molecule types used in each generated mixture must be
between 8 and 14. Moreover, there must be at least one molecule
from each SARA category. This ensures sufficient variability in the
molecules included while aligning with the typical systems used in
other research articles that model bituminous materials, which
commonly feature an average of 12 molecule types per mixture [18].

Table 4 lists the chemo-physical properties and Table 5 lists the type
and number of molecules from Table 1 required to construct each of the
mixtures for all samples of Groups (4) (of source type “F”). Similarly, File
/model_construction.xlsx in the Supplementary Information provides the
same information for Groups (2) and (3) (from types “T” and “N”). While
the molecular models from Group (1) do not require fitting, they are still
bound to an atom count limit of 7000± 10%, similar to the models from
Groups (2), 3, and 4.

Rejuvenated samples are produced subsequent to the creation of
non-rejuvenated samples: for each non-rejuvenated sample formulated,
rejuvenator molecules from Table 2 are added in accordance with the
four rejuvenator dosages by mass as specified in the study (i.e., 0, 5, 10
and 15 % by mass).

Therefore, considering the variables involved in the study—three
bitumen sources (of types “T”, “N”, and “F”), five aging degrees (0
through 4), four rejuvenator types (1 through 4), and four rejuvenator
dosages (0 through 3)—there are 53 models per bitumen source. This
results in a total of 159 different molecular models for Groups (2)
through (4). When combined with the models of Group (1), which
involve pure mixtures comprised of molecules from Table 1 and Table 2,
the total comes to 197 different molecular models utilized to investigate
the properties of bituminous materials in this study. Special labels have
been created to identify these samples if needed. The label format
“AXXX” is composed of four characters: the first indicates the bitumen
type, the second denotes the aging degree, the third specifies the reju-
venator type, and the fourth represents the rejuvenator dosage. For
example, the label “T4E3” corresponds to a bitumen of type “T,” aged to
degree 4, rejuvenated with Engine Oil at a dosage of 15 % by mass. The
file named /md_samples_information.xlsx presents a thorough compila-
tion of the chemo-physical properties for the samples specifically con-
structed for this study.

2.3. Simulations

2.3.1. Force field selection
The forces governing the motion of atoms in MD simulations are

represented as potential energy functions, where the force and energy
relationship is expressed in Eq. (2),

F = − ∇E (2)

The molecular simulations of this study employ the Polymer Consistent
Force Field (PCFF) [30], where the potential energy (EPCFF) is given by
the sum of 12 interaction types, as shown in Eq. (3),

EPCFF =
∑

Eb+Eia+Eoa+Et+Ebb+Eba+Ebt+Eaa+Eat+Ett+EVDW+Ecoul

(3)

where each interaction term is described in Table 6. The PCFF force field
was chosen for its ability to accurately model complex organic mixtures,
including those present in aromatic, resinous, or asphaltenic mixtures.
Moreover, the PCFF force field has been widely employed in simulating
similar MD systems. All the simulations are performed using the Large-
scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [31].

In the Supplementary Information, Folder /pcff comprises a simu-
lated sample of a bituminous blend. This simulation includes all neces-
sary atom types and input parameters for conducting the study’s
simulations utilizing the PCFF force field. Script /pcff/input.data can be
used to load /pcff/structure.data into LAMMPS.

2.3.2. Initialization
The steps for preparing molecular systems in LAMMPS for subse-

quent simulations are described below:

1. The molecular systems are initialized using SMILES notations
retrieved and processed into stable 3D conformers via the Rdkit
Python module.

2. The initialized molecules are placed into a simulation box at a low
initial density of 0.20 g/cm3, ensuring an even distribution and
minimizing particle overlap by utilizing a low-discrepancy Sobol
distribution method.

3. The PCFF force field parameters and charges are assigned to the
molecules using Rdkit atom descriptor functions (e.g., atom.GetI-
sAromatic()). The atomic positions are optimized to minimize EPCFF

Table 4
Characteristics of the molecular systems built to represent Group (4)’s bitumens
(of type “F”) at 5 aging degrees.

Property Aging Degree

0 1 2 3 4

Total # of molecules 76.0 75.0 74.0 74.0 75.0
Avg. molecular mass
(Mw) [g/mol]

431.7 439.3 446.1 460.8 487.1

Density [g/cm3] 1.019 1.042 1.041 1.051 1.070
Saturates [m/m %] 5.2 5.5 5.1 5.0 4.6
Aromatics [m/m %] 56.5 54.3 48.8 41.1 33.5
Resins [m/m %] 21.9 23.3 25.1 27.3 28.1
Asphaltenes [m/m %] 16.4 16.9 21.0 26.6 33.8
C [m/m %] 83.7 83.2 82.7 82.6 82.0
H [m/m %] 9.7 9.4 9.5 9.4 9.1
O [m/m %] 2.0 2.8 3.0 3.5 4.3
N [m/m %] 0.4 0.4 0.5 0.4 0.4
S [m/m %] 4.1 4.2 4.4 4.1 4.1
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using the conjugate gradients method until both energies and forces
reach a threshold precise to the nearest integer [32].

4. The systems undergo compression to achieve the target density. This
is performed under NVT conditions over 5 ns, using a true strain rate
of 1 %, and applying isotropic deformations to the simulation box
every 1 picosecond elapsed.

5. The systems are subjected to 50 NPT annealing cycles to remove
residual conformational strain, where the temperature is oscillated
sinusoidally by ± 25 % of the set equilibrium temperature over a
cycle period of 1 ns.

6. The systems’ densities are stabilized at the desired equilibrium
temperature and pressure during two successive 50 ns NPT stages.
The final density is calculated based on the average recorded in the
latter NPT stage.

7. To evaluate system stability, dynamics stages are conducted under
NVT and NVE conditions for 50 ns each, with decreasing levels of
control by a barostat or a thermostat. This step checks if the potential
and kinetic energies remain within 5 % of their initial average. Only
systems that meet these criteria are accepted; those that do not are
discarded and the process is repeated from Step 1.

The modified Nose-Hoover integration algorithm [33] utilized to
estimate the motion of the atoms includes a drag factor to reduce
oscillatory effects on controlled temperatures and pressures. The
damping factors for temperature and pressure are set at 500 steps, with a
particle velocity drag coefficient maintained at 1.0. All LAMMPS pro-
cedures are conducted at a constant temperature of (− 60 ◦C) and pres-
sure of 101325 Pa, with a step size of 0.5 fs/step. Periodic boundary

Table 5
Type and number of molecules (from Table 1) needed to build each of the molecular models of Group (4)’s (type “F”) bitumens at 5 aging degrees.

Category Molecule Aging
(mol)

Aging
(sample)

0 1 2 3 4

Saturates Hopane 0 0 2 0 0 0
Squalane 0 4 2 4 4 4

Aromatics Dioctylcyclohexane naphthalene 0 40 37 34 30 22
1 1 1 1 1 0
2 1 0 1 1 2

Perhydrophenanthrene naphthalene 0 1 1 0 0 1
1 2 3 3 2 3
2 0 1 0 0 1

Resins Benzobisbenzothiophene 0 11 1 1 2 0
1 4 15 14 12 13

Pyridinohopane 0 5 4 6 5 4
1 0 1 0 0 0
2 0 0 0 0 2

Quinolinohopane 0 0 0 0 0 0
1 0 0 0 0 0
2 0 0 0 0 0

Thioisorenieratane 0 0 0 0 0 0
1 0 0 0 0 0
2 0 0 0 1 0

Trimethylbenzeneoxane 0 0 0 0 1 0
1 0 0 1 3 7

Asphaltenes Phenolic Asphaltene 0 0 0 0 0 0
1 0 0 0 0 0
2 0 0 0 0 0

Pyrrolic Asphaltene 0 0 0 0 0 1
1 0 1 0 0 0
2 0 0 0 0 0

Thiophenic Asphaltene 0 0 0 0 0 0
1 5 5 6 3 6
2 0 0 0 0 2
3 0 0 0 9 1
4 2 1 3 0 6

Table 6
The PCFF potential energy terms involve symbols i, j, k, l, and m for atom groups,
with variables representing interatomic distances (rij), in-plane angles (θijk), out-
of-plane angles (χijk), and dihedral angles (φijkl). Multiplicity (M), force field
constants (k, r0, θ0, χ0, φ0, s0, ∊ij and ε0), and partial atomic charges (qi) are also
included.

Interaction term Expression

Bond bending Eb =
∑

ij

∑4
M=2

k(m)ij

(
rij − r0ij

)m

In-plane angle bending Eia =
∑

ijk

∑4
M=2

km
a,ijk

(
θijk − θ0(m), ijk

)m

Out-of-plane angle bending Eoa =
∑

ijk
kijk •

(
χijk − χ0ijk

)2

Symmetric torsional angle
bending

Et =
∑

ijkl

∑4
m=1

k(m) ijkl

(
1+cos

(
mφijkl − φ0

(m)ijkl

))

Cross-coupling bond-bond Ebb =
∑

ijkl
kijkl
(
sij − s0, ij

)(
skl − s0, kl

)

Cross-coupling bond-angle Eba =
∑

ijk
kijk
(
rij − r0, ij

)(
θijk − θ0, ijk

)

Cross-coupling bond-torsion Ebt =
∑

ijkl

(
rij − r0ij

)∑3
m=1

k(m) ijklcos
(
mφ(m),ijkl

)

Cross-coupling angle-angle Eaa =
∑

angleijk,
anglejkl

k
(
θijk − θ0,ijk

)(
θjkl − θ0, jkl

)

Cross-coupling angle-torsion Eat =
∑

ijkl

(
θijk − θ0ijk

)∑3
m=1

k(m)ijklcos(mφ(m),ijkl)

Cross-coupling torsion-torsion Ett =
∑

ijklm
kijklmcos(φijkl)cos(φjklm)

Van der Waals (Lennard-Jones)
EVdW =

∑N
i

∑N
i∕=j
∊ij

⎡

⎣2

(
r0ij
rij

)9

− 3

(
r0ij
rij

)6
⎤

⎦

Electrostatic (Coulomb) Ecoul =
1

4πε0

∑N
i

∑N
i∕=j

qiqj

rij
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conditions are implemented in all directions throughout every step. The
resulting systems from Stages 6 and 7 are used for later simulations
performed in this study. Steps 1 and 2 entail the utilization of SMI2PDB
[34], whereas Step 3 involves the use of PDB2DAT [35]. These tools
have been created by our research team to execute the respective tasks
rapidly and effectively.

2.3.3. Production
The following simulation routines, extending from the Initialization

stage, are utilized to measure various properties essential for study, as
outlined in the Labels selection section. These are outlined as follows.

2.3.3.1. Temperature Sweep. In this study, nine different temperatures
were selected for evaluation: − 60, − 20, 0, 25, 60, 120, 135, 160, and
200 ◦C. These temperatures are commonly utilized as benchmarks for
testing bituminous materials in both laboratory and real-world settings.
This range is especially significant as it covers most of the viscoelastic
response envelope of most bitumens, providing a wide number of cases
for assessing the practical applicability of the tested models [36]. To
conduct the temperature sweep, each molecular model is heated and
equilibrated at the specified temperatures. The process begins with the
model initialized at − 60 ◦C (from Step 1 in the Initialization section) and
proceeds as follows:

1. An isothermal NPT dynamics step runs for 5 ns at the initial tem-
perature (T1) to reinitialize the models in LAMMPS.

2. The model is then heated to the next temperature (T2) over 5 ns using
an NPT dynamics step. The increase in temperature from T1 to T2 is
set to complete in 3.5 • 109 steps with a drag factor of 0.5 to ensure a
smooth temperature ramp under isobaric conditions within 5 ns.

3. At T2, the system’s properties are stabilized during two successive
50-nanosecond isothermal-isobaric NPT steps.

4. Two additional dynamics steps, each lasting 5 ns under NVT and NVE
conditions, are conducted without the influence of a barostat or
thermostat to assess stability. Simulations that are not stable at
higher temperatures require their respective model to be constructed
again (Step 1 from Initialization section).

This process, Step 1 through 4, is repeated sequentially for each of
the nine temperatures. During these steps, simulations are configured to
dump LAMMPS-related properties, namely unwrapped and unscaled
atomic positions, velocities, accelerations, forces, stress tensors, and
potential energies. These properties are integral to computing the
study’s properties (detailed in the Labels selection section). Each step
from 1 to 4 captures 1000 evenly distributed data points, ensuring a
comprehensive collection of points throughout all iterations of the
Temperature Sweep test.

2.3.3.2. Cohesive energy density. The Cohesive Energy Density (CED)
quantifies the energy required to separate the molecules in a chemical
system to an infinite distance, essentially measuring the energy neces-
sary to vaporize a sample. It is one of the properties to be studied (and is
essential to compute others) and requires a separate LAMMPS subrou-
tine for its calculation. In bituminous research, the CED is often inter-
preted as a measure of a sample’s viscidity, where higher CEDs
correspond to stiffer (i.e., solid-like) bitumens [37]. The CED is calcu-
lated using Eq. (4),

CED =
Enb

V
(4)

where V is the volume of the molecular model and Enb is the non-bonded
energy. The non-bonded energy in the PCFF force field is given by all the
potential energy contributions from non-bonded interaction terms in Eq.
(3), and is given by Eq. (5),

Enb = EVdW +ECoul + Elong (5)

where EVdW is the Van der Waals energy, ECoul represents the electro-
static energy, and Elong accounts for long-range energetic corrections
needed in MD simulations to address electrostatic forces that extend
beyond the force field’s cutoff distance and periodic boundaries. The
CED is computed using MD simulations by using the autocorrelation
function of Enb as a function of time, as stated in Eq. (6):

CED =
1
V

∫ tf

0
〈Enb(0) − Enb(t)〉dt (6)

where V is the system’s volume, t is the instantaneous time, and tf is the
total simulation time for the simulation. The computation involves two
NVT dynamics routines, each one nanosecond long, following the NVT
routine of Step 4 in the Temperature Sweep. The first routine measures
the initial value Enb(0), and the second assesses Enb(t). Both stages output
1000 data points throughout the simulations.

Separate NVT stages from those run in the 2.3.3.1 Temperature
Sweep are necessary because certain LAMMPS parameters are specif-
ically adjusted to enhance the measurement quality of Enb and enable
faster convergence of the autocorrelation function. These adjustments
include extending the potential energy cutoff from 9.0 to 14 Angstroms
and disabling the impact of Van der Waals and Coulombic forces on
intramolecular atoms very close to each other (i.e., those within 1 and 2
bonds from the parent atom), thus producing a smoother potential en-
ergy surface more reflective of the effects of intermolecular energy in-
teractions, rather than those that are intramolecular [37].

2.4. Machine Learning

2.4.1. Features selection
The input parameters, or features, used to train the MLMs in this

study are based on the chemical composition of the samples (namely
features x1 through x30), their molecular mass (x31), and temperature
(x32). The chemical composition of the samples corresponds to an array
of 30 values, each representing the fraction content (by number) of a
single atom type present in the sample. The atom types are obtained by
combining all the force field atom types present in all the samples tested
in this study, numbered x1 through x30. The atom types and their de-
scriptions are presented in Table 7. The PCFF force field differentiates
atoms not only by their elemental symbol but also by their hybridization
state, degree, ring presence, participation in an aromatic system, and in
some cases (e.g., sulfur atoms), the list of neighboring atoms bonded to
them [30].

Generating an “atom-type” composition formula for each model of
this study (instead of a conventional chemical formula that groups atoms
simply by their element symbol) aids in differentiating the impact that
seemingly “equal” atoms have on the simulations based on their
chemical function (e.g., a hydrogen in an alcohol behaves differently
than one in a terminal carbon [38]). The “atom-type” formula is ob-
tained by applying Eq. (7),

xi,1− 30 =
1
N

(∑
a1,
∑

a2,⋯,
∑

a30
)

(7)

where N is the total number of atoms, and ai corresponds to the number
of a certain atom type in the sample. File /atom_type_formulas.xlsx in the
Supplementary Information displays the “atom-type” formula (x1,⋯,30)
for all the molecular models of this study.

Feature x31, the sample’s average molecular mass, serves to roughly
account for the size of the molecules used in the molecular model. This
feature introduces a size-dependency factor and prevents situations
where the values of x1 through x30 are technically within their bounds
but correspond to molecules that are either too small or well beyond the
size covered by the reference molecules used to train the MLM.
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Additionally, the use of molecular mass as a feature is beneficial because
it is known to significantly affect the properties of organic mixtures,
where higher molecular masses often correspond to thicker, more solid-
like hydrocarbons. The range of values for x31 spans from 200 g/mol to
1000 g/mol, covering the molecular mass of most molecules present in
bituminous materials [39]. Feature x32 corresponds to the equilibrium
kinetic temperature of the sample. Table 11 in the Features Range

section displays the range of values (low to high) that each feature (x1
through x32) covers to train the MLM in this study.

2.4.2. Labels selection
The properties, or labels, correspond to the properties that are to be

predicted by the MLMs. There are 12 properties in total, ranging from
fundamental MD properties like potential energies (total, Van der Waals,

Table 7
List of atom types and their respective description derived from the PCFF force field. These atom types are instrumental in formulating the “atom type” formulas
employed for chemical characterization of MD systems and for training the MLMs of this study. Colors have been preassigned to identify atom types when drawing
molecules.

 Atom 
type 

Color Description Color  Atom 
type Description 

1 hc  Hydrogen bonded to carbon  
16 hn Hydrogen bonded to nitrogen 

2 o=  Oxygen double bonded to O, N, C, S, P  
17 c3 Sp3 carbon with 3 H’s 

3 ho  Hydrogen bonded to oxygen  
18 oh Oxygen in hydroxide ion (OH-) 

4 c_1  Amide, acid and ester carbonyl carbon  
19 cpc Alpha/ipso carbon in aromatic 

ethers (-C-O-C-) 

5 c2  Sp3 carbon with 2 H’s  
20 c=1 Non-aromatic, next to end 

doubly bonded carbon 

6 c5h  Sp3 carbon in 5-membered ring  
21 c3oe Alpha carbon in methyl 

containing ethers (-C-O-CH3) 

7 c0oe  Alpha carbon in ether containing tertiary alkyl 
group (-C-O-C-R3) 

 
22 nh Sp2 nitrogen in 5-or 6- 

membered ring 
8 sp  Sulfur in an aromatic ring (e.g. thiophene)  

23 c0 Sp3 carbon with 0 H’s 

9 na1  Sp3 nitrogen in secondary aliphatic amines  
24 c5 Sp2 aromatic carbon in 5-

membered ring 

10 s'  S in thioketone group  
25 cp Sp2 aromatic carbon with 

partial double bond 

11 oc  Sp3 oxygen in ether or acetals  
26 c_0 Aldehydes and ketones 

carbonyl carbon 

12 cs  Sp2 aromatic carbon in 5 membered rings next 
to S 

 
27 c= Non-aromatic end doubly 

bonded carbon 

13 np  Sp2 nitrogen in 5- or 6- membered ring  
28 c5h1 Sp2 aromatic carbon in 5-

membered ring 

14 o_1  carbonyl oxygen  
29 c1 Carbon in CO 

15 c=2  Non-aromatic doubly bonded carbon  
30 o_2 Ester oxygen 

Table 8
List of 12 properties to be computed using MD simulations and to be predicted by the MLMs of this study.

Group Label Property Expression Notes

Fundamental y1 Potential Energy
(Ep) [kJ/kg]

Ep Obtained from the average of the second NPT run in Step 3 of the 2.3.3.1
Temperature Sweep run.

y2 Van der Waals Energy (EVdW)
[kJ/kg]

EVdW

y3 Electrostatic Energy
(ECoul) [kJ/kg]

ECoul

Volumetric y4 Molar Volume
(Vm) [m3/mol]

Vm =
Mw

ρ
y5 Accessible Volume

(Va) [:]
Va =

Vfree

V
y6 Density

(ρ) [kg/m3]
ρ =

m
V

Kinetic y7 Self-diffusion coefficient
(D) [m2/s] D = limn→∞

|r(t) − r(0) |2

6t
Thermodynamic y8 Cohesive Energy Density

(CED) [kJ/m3]
CED =

1
V
∫ tf
0 〈Enb(0) − Enb(t)〉dt

Obtained from the 2.3.3.2 Cohesive Energy Density run.

y9 Enthalpy of Vaporization (Hv)
[kJ/kg]

Hvap = VmCED + RT

y10 Solubility Parameter (δsol)
[kJ0.5/m1.5] δsol =

̅̅̅̅̅̅̅̅̅
CED
Vm

√

y11 Isobaric Heat Capacity (CP)
[kJ/kg/K] CP =

(
δH
δT

)

P

Obtained by capturing internal energy fluctuations during the 2.3.3.1 Temperature
Sweep run (Step 1 through 3).

y12 Thermal Expansion Coefficient
(β)
[1/K]

β =
1
V

(
δV
δT

)

P
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etc.) to more physically relevant properties (density, heat capacity, etc.).
These properties aim to establish MLMs that can, to a certain extent,
abstract away from the use of MD simulations to predict the properties of
bituminous materials (yi) almost as accurately as the properties often
generated using MD simulations for bitumens or similar materials (yMD

i ).
There is one MLM generated for each label or property yi (for a total of
12), for which each MLMi is given by Eq. (8) as

MLMi = f(x1, x1,⋯x32)i = yi ≈ yMD
i (8)

where xi correspond to a combination of features describing the mo-
lecular system for which the property, yi, is required. The full list of
labels, or properties, along with their expressions and descriptions to be
predicted by the MLMs of this study are presented in Table 8.

2.4.3. Models
The MLMs of this study are generated and trained using a Python

script, using Pandas [40] and Sklearn [41] libraires, that defines and
implements a hybrid predictive model, combining the strengths of both
tree-based and linear interpolation models. It first initializes a Hybrid-
Model class, which utilizes a Random Forest Regressor (RFF) [42] as the
primary predictive model and a Linear Regression model for interpola-
tion capabilities. During prediction, the hybrid model first checks if the
input features match those in the training data. If they do, predictions
are directly made using the tree model. Otherwise, it identifies the two
nearest neighbors using a k-dimensional tree, predicts their values with
the tree model, and interpolates between them based on their distances
to provide the final prediction [43].

To assess the predictive potential of the machine learning models, 20
% of the properties measured through MD simulations are randomly
selected and excluded from the training set. Specifically, out of a total of
1,773 samples (197 samples across a temperature sweep of 9 tempera-
tures), 354 samples are used for evaluating the MLMs’ unobserved
predictive performance, while the remaining samples will serve as input
for training the models. The 20/80 ratio is widely adopted in the liter-
ature for similar MLMs and is expected to perform well with the avail-
able data in this study, given the abundance of data points and how
similar the materials are with respect to the range of input features
selected [44]. The script follows these steps during execution:

1. Data Reading and Preparation: Load the dataset containing the x1,
x1,⋯x32 and yMD

i values for all the simulations of this study into
Panda’s DataFrame objects.

2. Hybrid Model Initialization: Initialize the hybrid model with a RFF
and a linear interpolation model, incorporating a preprocessing
pipeline for data standardization.

3. Model Training: Train both the RFF and interpolation models and
construct a K-dimensional tree to enable nearest neighbor searches.
Determine feature ranges for boundary checking.

4. Prediction and Evaluation: Predict the values of yi using the hybrid
model for 80 % of the training arrays of x1, x1,⋯x32 values used. This
ensures that 20 % of the computed data points remain unobserved by
the MLMs, which are used in Step 6 to corroborate the capacity of the
MLM to predict properties given a combination of features previ-
ously unknown to it.

5. Interpolation Smoothness: The generated MLM is tested with a
finer set of xi values (20 values in between), to ensure that the pre-
dicted values are smooth and continuous (yleft

i < yi< yright
i ).

6. Results Handling and Model Saving: Save the values of xi, yMD
i ,

and yi to a CSV file. The resulting model, MLMi, is serialized and
saved if the R-squared value is above 0.98 and the magnitudes of the
differences between yMD

i and yi are below 5 % for both observed and
unobserved datasets.

All 12 MLM files, created by serializing the HybridModel objects
along with all associated features using Python’s Pickle module, are
located in the /MLMs directory within the Supplementary Information.
These MLM files can be reloaded back into Python and be used to predict
properties by using custom set input features (x1,⋯,x32).

3. Results

This section offers a detailed summary of the study’s results. Section
3.1 Simulated Properties compares the MD simulation results with
experimental observations. Section 3.2 Atom Type Occurrences and
3.3 Features Range explain the relationship between SARA fractions
and force field atom types, and discuss the study’s feature ranges,
showing how atom types can be applied to real bitumens. 3.4 Predic-
tion Potential highlights the predictability of the generated MLMs,
demonstrating their accuracy in forecasting material properties
compared to MD simulations. Section 3.5 Features Importance and
Directionality examines the influence and directionality of each feature
on the measured properties, providing insights into manipulating inputs
to obtain certain outputs. Lastly, section 3.6 Max-Min Features Opti-
mization provides guidance on optimizing the measured properties,
enabling scientists to use specific feature combinations to achieve
desired material characteristics.

3.1. Simulated properties

File /subset_properties.xlsx in the Supplementary Information con-
tains the measured properties (y1 through y12) for all pure rejuvenator
molecular models (for all temperatures). For validation purposes,
Table 9 shows both experimental and computational measurements of 5
physically relevant properties: density, enthalpy of vaporization, solu-
bility parameter, heat capacity, and thermal expansion coefficient. Due
to the lack of experimental data on each sample, information is dis-
played for each SARA fraction and Rejuvenators instead.

3.2. Atom type Occurrences

Table 10 presents the normalized occurrence of each atom type
within the SARA fractions and rejuvenators group. This information
helps clarify the dominant atom types in each SARA fraction, offering
insights into the chemical nature of the material under study. For
example, the table shows that SARA fractionation does not adhere
strictly to chemical fingerprinting principles. Specifically, the aromatic
content in Asphaltenes and Resins is equal to or greater than that of the
Aromatics fraction, suggesting that SARA analysis may not reliably
reflect the chemical composition of the material. Furthermore, the data
in Table 10 indicates that current rejuvenators closely resemble the
characteristics of the Saturates fraction, implying that these compounds
are designed to emulate the chemo-physical behavior of lighter bitumen
fractions.

3.3. Features range

Given that the study sweeps through an array of 197 different bitu-
minous samples, corresponding to those of Groups (1) through (4), and 9
different temperatures, there exists 1773 unique arrays of (x1, x1,⋯x32)
features used as inputs for training the 12 MLMs of this study. Therefore,
the range of values (fromminimum to maximum) covered by the study’s
simulations for each xi are presented in Table 11. These serve to un-
derstand the boundaries of the features covered by this study, and
whether the features of another material to be studied by other re-
searchers lies within these ranges.
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Table 9
Averaged thermodynamic properties obtained from the molecular models corresponding to each SARA fraction and their experimental counterpart.

Experimental (yexp
i ) Computational (yMD

i )

SARA ρ[kg/m3]

[45]

ΔHvap[kJ/kg]

[46–48]

δsol[kJ0.5/m1.5]

[45,48]

Cp[kJ/kg/K]

[49–52]

β[1/K]
(•104)

[51–53]

ρ[kg/m3] ΔHvap[kJ/kg] δsol[kJ0.5/m1.5] Cp[kJ/kg/K] β[1/K]
(•104)

Saturates 850 270–290 509.9 2.0–3.0 5–8 873.5 283.3 494.2 2.82 7.60
Aromatics 1000 300 631.6 1.5–2.0 4–7 1002 338.2 574.4 1.91 6.58
Resins 1050 300 618.9 1.5–2.0 1–4 1060 325.3 580.5 2.06 3.32
Asphaltenes 1070 350–450 575.8 1.0–1.5 0.1–1.5 1068 328.7 588.7 2.19 0.32
Engine Oil 750–900 300 500.2 1.8–2.2 5–10 833.7 330.4 524.8 2.95 7.37
Vegetable Oil 850–930 200–250 489.5 2.0–3.5 8–12 865.4 356.1 555.2 2.67 10.58
Aromatic Oil 950–1000 300 607.8 1.5–2.5 4–8 977.2 349.1 584.2 2.34 7.19
Naphthenic Oil 850–900 300–320 598.0 1.5–2.5 7–10 888.1 300.5 516.3 2.69 8.33

Table 10
Normalized occurrence of each atom type for each SARA category, including their standard deviation. These values aid in identifying a hydrocarbon mixture’s SARA
category based on its composition.

xn Atom Type Saturates Aromatics Resins Asphaltenes Rejuvenator

x1 hc 0.6565 ± 0.0245 0.5558 ± 0.0438 0.5346 ± 0.111 0.518 ± 0.025 0.6296 ± 0.0413
x2 o= 0 0 0.0083 ± 0.0173 0.0032 ± 0.0044 0
x3 ho 0 0 0 0.0009 ± 0.0031 0
x4 c_1 0 0 0 0 0.0044 ± 0.0088
x5 c2 0.1591 ± 0.0209 0.1601 ± 0.0467 0.0968 ± 0.0521 0.1078 ± 0.0142 0.2368 ± 0.0366
x6 c5h 0.0103 ± 0.0146 0 0.002 ± 0.0042 0 0
x7 c0oe 0 0 0.0017 ± 0.0044 0 0
x8 sp 0 0 0.0073 ± 0.0185 0.0008 ± 0.0026 0
x9 na1 0 0 0.0002 ± 0.0002 0 0
x10 s’ 0 0 0.0083 ± 0.0173 0.0032 ± 0.0044 0
x11 oc 0 0 0.0017 ± 0.0044 0 0
x12 cs 0 0 0.0132 ± 0.0372 0.0016 ± 0.0053 0
x13 np 0 0 0.0042 ± 0.0053 0 0
x14 o_1 0 0.0178 ± 0.0201 0.007 ± 0.0085 0.0196 ± 0.02 0.0044 ± 0.0088
x15 c = 2 0 0 0.0027 ± 0.007 0.0019 ± 0.0043 0
x16 hn 0 0 0 0.0019 ± 0.0032 0
x17 c3 0.0847 ± 0.0032 0.0327 ± 0.0067 0.0732 ± 0.0387 0.071 ± 0.0021 0.0259 ± 0.0057
x18 oh 0 0 0 0.0009 ± 0.0031 0
x19 cpc 0 0 0 0.001 ± 0.0032 0
x20 c = 1 0 0 0.0026 ± 0.0058 0 0
x21 c3oe 0 0 0 0 0.0044 ± 0.0088
x22 nh 0 0 0 0.0019 ± 0.0032 0
x23 c0 0.0258 ± 0.0365 0 0.0209 ± 0.0265 0 0
x24 c5 0 0 0.0132 ± 0.0372 0.0201 ± 0.0146 0
x25 cp 0 0.1701 ± 0.0405 0.1631 ± 0.1569 0.1855 ± 0.0137 0.05 ± 0.1
x26 c_0 0 0.0178 ± 0.0201 0.007 ± 0.0085 0.0196 ± 0.02 0
x27 c= 0 0 0.0026 ± 0.0058 0 0.0088 ± 0.0175
x28 c5h1 0.0103 ± 0.0146 0 0.0028 ± 0.0048 0 0
x29 c1 0.0532 ± 0.017 0.0457 ± 0.0209 0.0269 ± 0.0146 0.0409 ± 0.0042 0.0314 ± 0.0353
x30 o_2 0 0 0 0 0.0044 ± 0.0088

Table 11
Minimum and maximum values for all 32 features measured across all 197 samples of this study.

xi Feature xmin
i xmax

i xi Feature xmin
i xmax

i

x1 hc 0.3125 0.674 x17 c3 0 0.101
x2 o= 0 0.063 x18 oh 0 0.010
x3 ho 0 0.010 x19 cpc 0 0.011
x4 c_1 0 0.018 x20 c = 1 0 0.010
x5 c2 0 0.273 x21 c3oe 0 0.018
x6 c5h 0 0.021 x22 nh 0 0.007
x7 c0oe 0 0.013 x23 c0 0 0.054
x8 sp 0 0.067 x24 c5 0 0.133
x9 na1 0 0.001 x25 cp 0 0.563
x10 s’ 0 0.063 x26 c_0 0 0.054
x11 oc 0 0.013 x27 c= 0 0.035
x12 cs 0 0.133 x28 c5h1 0 0.021
x13 np 0 0.011 x29 c1 0 0.081
x14 o_1 0 0.054 x30 o_2 0 0.018
x15 c = 2 0 0.020 x31 Molecular mass [g/mol] 290.4 986.2
x16 hn 0 0.007 x32 Temperature

[K (C◦)]
213.15 (− 60) 473.15 (200)
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3.4. Prediction potential

Table 13 presents scatter plots for properties y1 through y12, showing
predicted values (yi) against measured values (yMD

i ). The plots include
data from both the observed and unobserved datasets used to evaluate
the predictive performance of the MLMs. Ideally, the plots should
exhibit a 45◦ diagonal line, indicating perfect agreement between pre-
dicted and measured values in both observed and unobserved datasets.
The complete list of simulated values along with their respective pre-
dictions, based on the input features for each sample analyzed in this
investigation, is available in the tabulated files located within the
/predictions directory in the Supplementary Information.

3.5. Features importance and directionality

This section elucidates the significance of each feature (x1 through
x32) on the predicted properties (y1 through y12) by the MLMs generated
in this study. Table 12 presents the influential features’ scores across all
12 MLMs, normalized across all 32 features, with the top five most
influential features highlighted in bold. Additionally, Table 12 illus-
trates the directional influence of each feature on an increase in property
yi, denoted by plus and minus signs. This assessment involves testing
intermediary values within the feature range (see Table 11) to determine
whether the influence is ascending or descending. Identifying the most
influential features affecting each property aids in selecting relevant
properties for fine-tuning when predicting the properties of new bi-
tumens, particularly when understanding whether increasing or
decreasing a certain feature xi would increase or decrease the value of yi.
File /features_importance.xlsx contains a comprehensive list of influence
factors, including those whose importance nears zero (< 10− 3).

3.6. Max-Min features optimization

This section focuses on optimizing combinations of input features, x1
through x32, to ascertain the conditions under which each property (y1
through y12) achieves its maximum and minimum values. The employed
algorithm assesses various feature combinations using a differential
evolution strategy, aiming to approach absolute maximum and mini-
mum values. Utilizing SciPy’s differential_evolution [28] function for
optimization, the algorithm imposes penalties for out-of-bounds values
to guide the search within specified property constraints, ensuring
effective optimization of feature combinations for maximizing and
minimizing property values. This analysis serves to provide a set of
precomputed feature combinations to guide researchers in the process of
maximizing or minimizing material properties. For instance, researchers
may be interested in the combination of features needed to design bi-
tumens whose heat capacity is maximized.

Considering that the impact of temperature (x32) is generally un-
derstood (e.g., higher temperature decreases material density), the
analysis is performed solely at 25 ◦C for simplicity, focusing on features
corresponding only to chemical traits. File /max-min_optimization.xlsx in
the Supplementary Information presents a comprehensive list of
different feature combinations, from x1 through x32, yielding the
computed maximum and minimum values for each property yi. Table 14
summarizes these results by including only the top 5 influential features
from the combinations attained, which often account for 95 % of the
cumulative influence over yi.

4. Discussion

In this study, prior to assessing the potential of MLMs to predict
material properties and their application in designing and adjusting
bituminous systems, it is crucial to validate the training data derived
from MD simulations. This validation is conducted by comparing the
MD-generated data with empirical observations. Although it is

challenging to secure experimental data for each of the 1773 samples
individually, it is possible to compare key physical properties such as
densities, heat capacities, thermal expansions, and solubility parameters
for complex mixtures like heavy oils and bitumens, based on their SARA
fractions and common compounds like vegetable oil. This approach does
not allow for individual model validation but is sufficient to confirm
broader trends, thereby supporting the applicability of the findings
using MD.

The results affirm that the MD simulations accurately represent the
magnitude and trends of the observed properties, as detailed in Table 9.
This substantiates the relevance of using this data to train the MLMs.
Notably, the MLMs developed in this study can predict all the MD-
derived properties with an accuracy within 5 %, maintaining consis-
tency with the observed trends, as observed in Table 13.

Given these findings, the discussion section of this paper will not
reiterate the predictive capability of the MLMs, or the quality of the
simulation results, which are already established. Instead, it will focus
on analyzing how specific features (x1 to x32) influence the properties
(y1 to y12) of bitumens. This analysis will guide the optimization of
bituminous material design by varying parameters (force field atom
types, molecular mass, and temperature) to enhance desired properties,
thus benefiting from the predictive potential of the MLMs to design new
bitumens. A brief discussion is presented for each property yi below.

4.1. Potential energy (Ep)

Interpreting the physical implications of variations in potential en-
ergy is challenging due to the multiple interaction terms that contribute
in contrasting ways to the system’s overall potential energy. Addition-
ally, the relationship between potential energy and more relevant
physical properties can be non-trivial. Generally, non-zero potential
energies indicate instability, suggesting non-equilibrium positions that
reflect strain in bonds, angles, or dihedrals due to either over-
compression or under-compression [38]. In systems with multiple
molecules and atom types, a perfect equilibrium position for every
interaction type is unattainable [32].

Nonetheless, lower overall potential energies are associated with
more stable and thermodynamically favorable conformations [54].
Therefore, the objective in adjusting potential energy terms is to identify
thermodynamically stable conformations where the system-wide po-
tential energy is as close as possible to the theoretical absolute equi-
librium under given conditions. Additionally, potential energies can
serve as a critical design element in the construction of new molecules.
Chemically unrealistic modifications to molecules can lead to artificially
high potential energies, suggesting that such modifications either need
to be adjusted or avoided. For example, when simulating progressively
aged molecules, it is crucial to oxidize them in a manner that produces
structures with progressively lower potential energies, ensuring that the
oxidation process remains thermodynamically favorable.

The presence of multiple equilibrium positions and the lack of direct
relatability to physical properties complicate the use of a directionality
index. This complexity arises because the potential energy, given by
EPCFF, comprises numerous interaction potentials with various equilib-
rium positions as seen in Table 5. Consequently, a star (*) is added to
reported values whose directionalities change throughout the feature
range tested.

The most influential features affecting the potential energy of the
molecular systems are features x24 (atom type “c5”), x25 (“cp”), x32
(temperature), x5 (“c2”), and x1 (“hc”) with scores of − 49 %, +23 %, 7
%, 3 %, and 3 %* respectively. While an increase in temperature pre-
dictably raises potential energy [54], its influence (7 %) is by far not the
most significant factor. Over 70 % of the influence is attributed to the
content of “c5” and “cp” atom types, corresponding to the backbones of
5-membered and 6-membered aromatic rings, respectively. Notably, an
increase in 6-membered aromatic rings results in a more energetic
configuration. However, the addition of 5-membered rings, typical of
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Table 12
Scatter plots corresponding to all properties (y1 through y12) depicting predicted values against measured values. Blue dots represent combinations of input features
used to train the MLMs (observed), while black dots denote combinations of features considered unknown (unobserved), thereby denoting the MLMs true prediction
potential.
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resinous and asphaltenic structures containing sulfur and sulfoxidic
groups, results in the largest decrease in potential energy.

This observation is notable because, contrary to the general expec-
tation in organic chemistry, 6-membered rings usually lead to lower
energy (i.e., more stable) conformations. However, in certain featural
compositions specific to bitumens, the addition of 5-membered rings is
greatly favored over 6-membered rings. Unlike six-membered rings,
which are typically planar and symmetrical, five-membered rings can
adopt non-planar conformations, disrupting planarity and reducing
overall strain in the molecule [55]. This flexibility leads to energetically
more favorable configurations, thereby reducing potential energy in
larger polycyclic frameworks like those in resins or asphaltenes. This
observation aligns well with many resinous or asphaltenic structures
reported in the literature, where the presence of 6-membered polycyclic
aromatic regions is often accompanied by 5-membered aromatic rings to
decrease intramolecular strains [56].

The remaining influential features pertain to the content of hydrogens
connected to carbons (feature x0 of atom type “hc”), indicating saturation
degree, and the presence of aliphatic carbons (features x5, x17, x29 of atom
types “c2”, “c3”, and “c1” respectively) found in branches. An increase in
these features mildly decreases the system’s potential energy. However,
this observation can vary, and the addition of these chemical features
should be studied on a case-by-case basis, as the addition of branches
plays an important factor in the packing of the molecules and in the steric
hinderance experienced by their conformations.

To generate systems with potential energies that are negative but
close to zero (indicating near system-wide equilibrium compared to
other bitumens), all features except those related to high saturation and
Sp3 hybridized carbons should be minimized. Specifically, features x24,
x25, x5, and x6 should be set to below 0.009, 0.012, 0.09, and 0.03,
respectively, while ramping up features x1 and x29 (types “hc” and “c1”)
to above 0.65 and 0.02, respectively. However, the nature of such sys-
tems resembles saturates or rejuvenators rather than conventional
bituminous blends.

The range of potential energies spans from − 1000 kJ/kg to 5000 kJ/
kg, with most bitumens having a potential energy around 1550 kJ/kg.
Although this value lacks physical interpretation on its own, it aligns
well with those found in simulated environments reported in the liter-
ature [57]. The values of the features (excluding temperature) necessary
to construct bitumens nearing these extremes are detailed in Table 11.

4.2. Van der Waals energy (EVdW)

Van der Waals interactions involve a single equilibrium position in
their calculations, facilitating the capture of clearer trends. These in-
teractions are less affected by intramolecular strains from bonds, angles,
dihedrals, or impropers, making them less dependent on intramolecular
conformations. Unlike other physical properties, this energy consists of
two components within the Lennard-Jones potential: a repulsive term
with large positive values and an attractive term with smaller negative
values. A system with a stable attractive regime is often preferred, as it
indicates well-separated, equilibrated, and evenly distributed mole-
cules, reflecting both physical stability and numerical stability of the
simulations [54].

The top five most influential features affecting Van der Waals in-
teractions are temperature (+33.5 %) (feature x32), molecular mass
(+11.2 %) (feature x31), and features corresponding to aliphatic chains
(+34 %) (x5 “c2”, x17 “c3”, x23 “c0”, and x29 “c1”), all of which have a
positive influence. Increases in temperature, molecular mass, and
aliphatic chains are fundamentally known to raise Van der Waals en-
ergies in a bituminous system [38]. Larger, more positive values indicate
that the repulsive term is dominating, signifying pronounced steric
hindrance effects and generally less cohesion or compaction among the
molecules. Similarly to potential energy, the use of Van der Waals en-
ergies as a design feature is mostly beneficial when testing the stability
of molecular conformations on customized molecules.

To achieve lower Van der Waals energies in bitumen, all the afore-
mentioned features should be minimized. Aliphatic features should be
set to their minimum range values, and molecular mass should be kept
below 350 g/mol. The range of Van der Waals energies for the molecular
systems in this study spans from − 350 to 100 kJ/kg, which compare well
with other values obtained from the literature [15]. The values of the
features (excluding temperature) necessary to construct bitumens
nearing these extremes are detailed in Table 11.

4.3. Electrostatic energy (ECoul)

Electrostatic energies are approximated by a Coulombic potential in
the PCFF force field, whose dependency on distance is significantly less
aggressive than in the case of Van der Waals energies, and they
continuously decrease with increasing interatomic distance. This char-
acteristic means that these interactions can span much longer distances,
requiring careful interpretation when dealing with systems containing
large molecules and periodic boundary conditions [58]. Higher values of
ECoul indicate the presence of more polarizable features (e.g., heter-
oatomic functional groups) or a higher content of electron delocalization
effects (e.g., polycyclic aromatic rings), though their impact on physical
properties is non-trivial. Consequently, its use as a design feature is
limited to measuring numerical stability and ensuring that the electro-
static influence over Van der Waals interactions remains below 5 %, as
reported in the literature for most heavy oils, bitumens, and other pe-
troleum derivates [57]. This can be used when deciding on the location
of highly polar characteristics in molecules as two highly polar features
placed very close to each other may make ECoul take precedence over
EVdW, a phenomenon not typical in bituminous molecules.

Unlike many other properties, temperature and molecular mass have
negligible impacts on ECoul, implying that only chemical features dictate
it. Moreover, the influence cannot be reduced to a short list of most
influential factors, as these are distributed among a much wider array,
namely 15 chemical features, cumulatively accounting for over 95 % of
the influence. This is expected, given the multiple functional groups and
chemical traits significantly impacting the electrostatics of a molecular
system present in this study. Among the most influential (positively) are
atom types “o_1”, “c_0”, “o=”, “s’”, and “cp”, while negatively influen-
tial are types “c3”, “hc”, and “hn”. This indicates that a more aromatic,
oxidized environment increases the influence of electrostatic forces,
while in a more hydrogenated, reduced environment, these forces are
lower. The range of electrostatic energies for the molecular models in
this study spans from − 500 to 400 kJ/kg. While experimentally ob-
tained values are not available, these compare well to those obtained in
other MD simulations performed in other studies [15]. The values of the
features (excluding temperature) necessary to construct bitumens
nearing these extremes are detailed in Table 11.

4.4. Density (ρ) and molar volume (Vm)

The most influential features affecting the density of the molecular
system are features x1, x32, and x25, accounting for over 80 % of the
influence. Feature x1 corresponds to hydrogens connected to carbon
atoms, of type “hc”, indicative of the system’s saturation degree. An
increase in “hc” content results in a significant decrease in density,
consistent with the low densities (700–900 kg/m3) of highly saturated
hydrocarbons such as Saturates and Rejuvenator fractions in bitumens
seen in Table 4.

Expectedly, feature x32 reflects the impact of temperature, where
increased temperature decreases material density, ensuring that both
the MD simulations and the predictive potential of the MLMs align with
fundamental observations. Feature x25 pertains to the “cp” atom type,
the backbone of 6-membered aromatic rings. An increase in “cp” atoms
significantly increases material density, aligning with the higher den-
sities (above 1000 kg/m3) of highly aromatic compounds seen in
Table 4.
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Features x5, x17, and x29, corresponding to atom types “c2”, “c3”, and
“c1” carbons in branches, have over 12 % influence. Their effects vary
due to saturation degrees: higher saturation (e.g., “c3” carbons) gener-
ally decreases density, while lower saturation (e.g., “c1” carbons) in-
creases it. This matches experimental observations where more reduced
hydrocarbons have lower densities, provided their morphology remains
amorphous. This is because the presence of aliphatic chains, especially
rich in “c3” and “c2” carbons, introduce steric hindrance, reducing
molecular compaction and thereby, the density of the material.

Densities range from ~ 700 kg/m3 to ~ 1400 kg/m3, mostly around
1000 kg/m3. Saturates and Rejuvenators have the lowest densities
(~900 kg/m3), while some resins can reach 1400 kg/m3, consistent with
experimental and computational values in Table 4. To create bituminous
materials with low densities (below 900 kg/m3), resembling light oils
typical of Saturates and Rejuvenators, the saturation degree must be
maximized (feature x1 of atom type “hc” at ~ 0.67), aromatic content
minimized (x25 of atom type “cp” at 0), aliphatic nature maximized (x5
at 0.20 and x17 at 0.06), and molecular mass kept low (x32 between 200
and 500 g/mol). If high molecular masses are required (>1000 g/mol),
then most of the mass contribution should come from “c2” atom types, a
condition only attainable when aliphatic chains are long (e.g., longer
than 5 carbons). Conversely, if high density bitumens are required
(exceeding 1050 kg/m3), x1 should be around 0.33, x25 at 0.52, x5 and
x17 at 0, and molecular mass should be above 500 g/mol.

While other features have a low impact, accounting for less than 5 %
influence, the presence of heteroatoms (e.g., atom of types “sp”, “o=”,
“oc”, or “s’”) increases density slightly. This aligns with observations
that fresh bitumens have densities around 990 kg/m3, while sulfur-rich
and/or aged bitumens reach upwards of 1070 kg/m3 [27]. This can be
attributed to the polarization/electron delocalization effects that these
functional groups bring, especially when located in polycyclic aromatic
regions of a molecule. The feature values (excluding temperature)

necessary to build bitumens nearing high or low densities are found in
Table 11.

Per definition, the most influential feature on the molar volume is the
molecular mass (x31), accounting for over 60 % of the influence.
Excluding the impact of temperature and molecular mass, the remaining
25 % is attributed to the same factors affecting density. The molar vol-
umes range from 0.22 • 10− 3 m3

mol to 0.92 • 10
− 3 m3

mol, with an average of
about 0.51 • 10− 3 m3

mol. These values are consistent with observations of
heavy oil mixtures, bitumens, and other derivatives [59]. Therefore, to
control the molar volume of bitumens, the same factors influencing
density should be considered. However, some features must be carefully
selected as they may result in contrasting influences (e.g., adding long
branches increases molecular mass while decreasing density). The
values of the features (excluding temperature) necessary to build bi-
tumens nearing these extremes are found in Table 11.

4.5. Accessible volume (Va)

While the results for Accessible Volume are closely related to those
for Density, the order, magnitude, and directionality of the influential
factors differ considerably. Over 85 % of the influence on Accessible
Volume is attributed to temperature (feature x32) alone. The next five
most influential features account for 14 % of the influence, with feature
x1 (content of hydrogens connected to carbons, atom type “hc”) being
the most significant among these. The other influential features are
related to molecular mass and aromatic carbons. This indicates that an
increase in temperature significantly increases the empty space acces-
sible to other molecules, while higher molecular mass, highly saturated,
and branched molecules result in lower accessible space.

The accessible volumes for the models in this study range from 9% to
35 %, with the majority of the samples ranging between 12 % and 20 %.

Table 13
List of normalized importance scores for features influencing predicted properties by the studied MLMs. Bold values indicate the top five scores. The sign denotes the
direction of influence on the predicted property (yi) with an increase in the feature (xi). Importance factors nearing zero (< 10− 3) are shown as 0.

Feature y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12

Ep EVdW ECoul Vm Va ρ Dself CED ΔHvap δsol Cp β

x1 hc ¡0.029 − 0.013 − 0.08 0.013 0.05 ¡0.373 0.047 ¡0.138 ¡0.04 ¡0.137 0.678 0.065
x2 o= − 0.003 0.038 0.119 0 0.002 0.001 − 0.003 0.006 − 0.007 − 0.005 − 0.003 0.011
x3 ho 0 0 − 0.006 0 0 0 0 0 0 0 0 0.009
x4 c_1 0 0 0 0 0 0 0 0 − 0.002 0 0 0.003
x5 c2 ¡0.033 0.013 0.012 − 0.011 0.011 ¡0.069 0.012 ¡0.044 − 0.019 ¡0.051 0.044 0.073
x6 c5h − 0.028 0.002 0 0 0 0 − 0.001 − 0.004 − 0.007 0.006 − 0.003 0.013
x7 c0oe 0.004 0.002 − 0.006 − 0.001 0 0 0 − 0.003 − 0.008 − 0.003 − 0.002 0.008
x8 sp − 0.007 − 0.002 − 0.003 0 0 0 0 − 0.002 − 0.003 − 0.002 0.002 0.009
x9 na1 0 − 0.006 0 0 0 0 ¡0.132 − 0.005 − 0.008 − 0.005 0 0.002
x10 s’ − 0.003 0.029 0.108 0 − 0.001 0.001 − 0.002 − 0.006 − 0.01 − 0.005 − 0.003 0.010
x11 oc 0.003 0.001 − 0.009 0 0 0 0 − 0.003 − 0.008 − 0.003 − 0.002 0.008
x12 cs 0 − 0.002 − 0.001 0 0 0 0 − 0.002 − 0.002 − 0.002 − 0.002 0.007
x13 np − 0.026 0.004 − 0.004 0 0 0.002 − 0.001 − 0.001 − 0.004 − 0.001 − 0.002 − 0.016
x14 o_1 − 0.002 − 0.003 0.233 0 0.001 0.001 − 0.001 0.009 0.014 0.011 − 0.006 0.024
x15 c = 2 0 0 − 0.009 0 0 0 − 0.001 − 0.002 − 0.009 − 0.002 − 0.006 0.022
x16 hn − 0.003 − 0.007 − 0.014 − 0.027 0 0 0 − 0.005 − 0.006 − 0.006 − 0.002 0.010
x17 c3 0.011 0.067 ¡0.123 0.079 0.033 0.055 − 0.007 ¡0.044 − 0.036 ¡0.05 − 0.018 0.033
x18 oh 0 0 − 0.008 0 0 0 0 0 0 0 0 0.009
x19 cpc 0 0 0 0 0 0 0 0 0 0 0 0.002
x20 c = 1 0 0.004 0 0 0 0 0 − 0.002 − 0.004 − 0.002 0.001 0.015
x21 c3oe 0 0 0 0 0 0 0 0 − 0.002 − 0.001 0 0.004
x22 nh 0 0.004 − 0.002 ¡0.036 0.004 0 − 0.003 − 0.002 − 0.006 − 0.003 − 0.002 0.023
x23 c0 − 0.013 0.281 − 0.004 − 0.008 0 0.002 − 0.005 − 0.002 ¡0.096 − 0.002 − 0.002 0.012
x24 c5 ¡0.485 0.004 − 0.005 0.004 0.001 0.001 − 0.002 − 0.008 − 0.013 − 0.008 − 0.003 − 0.018
x25 cp 0.228 0.021 0.034 0.045 ¡0.016 0.157 0.007 0.27 0.16 0.22 ¡0.072 − 0.040
x26 c_0 0.002 0.003 0.168 0 0.002 0.004 0 0.007 0.011 0.008 − 0.003 0.020
x27 c= − 0.001 − 0.002 0 0 0 0 − 0.002 − 0.002 − 0.005 − 0.003 0.003 0.026
x28 c5h1 − 0.002 0.009 − 0.002 0.002 − 0.001 0.003 ¡0.394 − 0.004 − 0.014 − 0.005 0.004 0.023
x29 c1 − 0.025 0.034 − 0.029 0.035 0.004 0.003 − 0.002 − 0.008 ¡0.043 − 0.009 − 0.026 0.041
x30 o_2 0 0 0 0 0 0 0 0 − 0.001 − 0.001 0 0.005
x31 Mw 0.025 0.112 0.018 0.68 ¡0.011 0.009 0.025 − 0.005 − 0.01 − 0.006 ¡0.027 − 0.045
x32 T 0.066 0.335 0 0.054 0.854 ¡0.312 0.348 ¡0.411 ¡0.448 ¡0.442 0.08 0.392
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To design bitumen with maximized accessible space (where Vr exceeds
20 %), excluding the effect of temperature, the content of hydrogens
connected to carbons should be increased (x1 > 0.60), the content of sp3

hybridized carbons in chains maximized (x17 > 0.06, x5 > 0.20), and
molecular mass minimized (x31 < 300 g/mol). Conversely, to achieve
low accessible space (where y5 is below 10 %), the opposite adjustments
are necessary. Tuning the accessible space is crucial in characterizing
and designing bituminous materials, as phenomena like aging, weath-
ering, or rejuvenation depend significantly on the Fickian diffusive co-
efficient of other chemical compounds, which increases with accessible
space [27].

The impact of heteroatoms in functional groups, such as phenols,
sulfoxides, pyridines, etc., on the accessible volume is negligible. This is
counterintuitive since functional groups significantly influence the sta-
bility of molecular conformations and are expected to affect volumetric
properties. Typically, the presence of these functional groups increases
material density, suggesting a decrease in accessible volume. However,
the increased polarity introduced by these groups can lead to complex
interactions, such as the formation of soft structures (e.g., hydrogen
bonds), which can mitigate the expected decrease in accessible volume.
Therefore, the overall influence of functional groups on accessible vol-
ume is context-dependent, requiring detailed analysis of the specific
chemical structure and physical conditions of the system. The values of
the features (excluding temperature) necessary to build bitumens
nearing maximum and minimum accessible volumes are found in
Table 11.

4.6. Self-diffusion coefficient (Dself )

The top five most important features affecting the self-diffusion co-
efficient (Dself ) account for over 95 % of the influence. Notably, Feature
x28, corresponding to the content of 5-membered ring carbons (atom
type “c5h”), has a significant negative impact on Dself , with a score of
almost − 40 %. This indicates that a small increase in the content of
cyclopentanes or 5-membered aromatic rings can substantially decrease
the relative motion of the molecules. The substantial decrease in po-
tential energy that features “c5” and “c5h” atom types bring, as
explained in 4.1 Potential Energy, suggests that these features stabilize
the conformation of the molecules, reducing their mobility by poten-
tially decreasing strain and vibratory effects associated with unstable
ring conformations.

The second most influential feature, x32 (temperature), has a positive
impact of + 35 %. This is expected, as an increase in temperature de-
creases density, increases accessible space between atoms, and provides
higher kinetic energy to the particles. It is notable that temperature is
not the most influential feature, indicating that certain chemical traits
can take precedence over temperature in determining the self-diffusive
potential of molecules. Feature x9, corresponding to atom type “na1”,
has a similar effect to Feature x28 but to a lesser extent (− 13.8 %). This
suggests that diffusion is particularly sensitive to the presence of het-
eroatomic functional groups and the features corresponding to such
atom types.

Table 14
Combinations of the top 5 most influential features (x1 being the most influential) that yield a near maximum or a minimum of the properties y1 through y12.

Property (yi) Case Value x1 x2 x3 x4 x5

y1 Ep[kJ/kg] max 4310 x23 0.1039 x24 0.3414 x4 0.1402 x0 0.4546 x5 0.009051
min − 334 x23 0.008684 x24 0.01183 x4 0.08724 x0 0.6714 x5 0.002639

y2 EVdW[kJ/kg] max 3.672 x22 0.04157 x30 903.8 x16 0.06212 x1 0.01565 x28 0.01933
min − 305.2 x22 0.02483 x30 321.6 x16 0.007978 x1 0.05762 x28 0.006819

y3 ECoul[kJ/kg] max 333.4 x13 0.04971 x25 0.03143 x16 0.08982 x1 0.001551 x9 0.05514
min − 425.6 x13 0.01669 x25 0.01734 x16 0.1008 x1 0.002818 x9 0.000944

y4 Vm[m3/mol] max 0.00092 x30 878.4 x16 0.008917 x24 0.1939 x21 0.004894 x28 0.02157
min 0.000223 x30 297.4 x16 0.006336 x24 0.3141 x21 0.002864 x28 0.000217

y5 Va[:] max 0.2118 x0 0.6272 x16 0.06815 x24 0.2051 x30 818.8 x4 0.2082
min 0.1337 x0 0.4001 x16 0.004513 x24 0.4132 x30 321.9 x4 0.01503

y6 ρ[kg/m3] max 1376 x0 0.3147 x24 0.5231 x4 0.01061 x16 0.002264 x30 409.6
min 811.8 x0 0.673 x24 0.05581 x4 0.1914 x16 0.06918 x30 420.9

y7 Dself [m2/s]
(109)

max 5.69 x27 0.001244 x8 0.000115 x0 0.6586 x30 298.3 x4 0.2462
min 0.5979 x27 0.001709 x8 0.000996 x0 0.5943 x30 456.9 x4 0.05799

y8 CED[kJ/m3] max 6.12E+05 x24 0.5299 x0 0.313 x4 0.01516 x16 0.0013 x13 0.0219
min 2.47E+05 x24 0.01938 x0 0.6714 x4 0.188 x16 0.09277 x13 0.00360

y9 ΔHvap[kJ/kg] max 440.5 x24 0.5185 x22 0.02756 x28 0.000434 x0 0.3156 x16 0.00367
min 257.6 x24 0.03386 x22 0.05407 x28 0.07178 x0 0.6687 x16 0.08541

y10 δsol[kJ0.5/m1.5] max 782.3 x24 0.5128 x0 0.3136 x4 0.01272 x16 0.006502 x13 0.03299
min 504.6 x24 0.05064 x0 0.6724 x4 0.202 x16 0.02923 x13 0.002519

y11 Cp[kJ/kg/K] max 3.01 x0 0.6732 x24 0.002845 x4 0.09474 x30 695.3 x28 0.06291
min 1.82 x0 0.313 x24 0.5493 x4 0.04218 x30 336.6 x28 0.00353

y12 β[1/K] max 1.00E-03 x4 0.0736 x0 0.4142 x30 292.5 x28 0.0142 x24 0.3794
min 1.05E-04 x4 0.2516 x0 0.6723 x30 297.1 x28 0.0673 x24 0.0149
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Additionally, molecular mass and x0 (“hc” atom type content) play
smaller, yet positive roles (+2.5 % and + 5 % respectively). While an
increase inmolecular mass is often associated with decreasedmobility of
molecules, in bitumens, lower molecular mass hydrocarbons often
correspond to more branched molecules, which restrict their diffusive
motion through other molecules. Consequently, the influence of feature
x0 is slightly higher and takes precedence over molecular mass when
determining the self-diffusion of molecules rich in “hc” hydrogens (i.e.,
reduced, aliphatic, saturated, and branched characteristics in
hydrocarbons).

The range of self-diffusion coefficients spans from 5.0 • 10− 10 to
1.4 • 10− 8m2/s, with most bitumens having a diffusion coefficient
around 5.0 • 10− 9m2/s. These ranges compare well with those found in
simulated and experimental environments in the literature [60].

To design a bitumen with low self-diffusive behavior (an order of
magnitude lower than the average), excluding temperature effects, one
would maximize the content of 5-membered rings (e.g., x28 > 0.0017),
reduce quinolinic nitrogen (x9) below 0.001, maintain hydrogen-carbon
(x1) below 0.60, have a molecular mass above 450 g/mol, and ensure a
reduction of long aliphatic chains rich in –CH2- carbons (e.g., x5 below
0.06). The values of the features (excluding temperature) necessary to
construct bitumens nearing these extremes are detailed in Table 11.

The dependence of self-diffusion coefficients on temperature is
known to follow an Arrhenius model, and thus, is fundamentally ex-
pected to increase exponentially with temperature [27]. With all other
features unchanged, the predicted values of Dself from a temperature
sweep test ranging from − 60 to 200 ◦C in 10-degree steps also follow an
exponential trend, confirming the realistic prediction potential of the
MLM given the influence of temperature.

4.7. Cohesive energy density (CED) and enthalpy of vaporization (ΔHvap)

The top five most influential factors on the CED and Heat of Vapor-
ization (ΔHVap) are largely attributed to the same features: x1, x5, x17,
x23, x25, x29, and x32, corresponding to atom types “hc”, “c2”, “c3”, “c0”,
“cp”, “c1”, and temperature respectively. Together, these factors ac-
count for over 90 % of the influence. Similar to other properties, these
groups balance hydrogen content (x1 “hc”), the presence of aliphatic
branches (x5 “c2”), x17 “c3”, x23 “c0”, x29 “c1”), aromaticity (x25 “cp”),
and temperature (x32) dependence. An increase in temperature (− 41 %)
and an increase in saturated features (− 25 %) significantly decrease
both CED and dHVap, while the addition of aromatic features results in a
substantial increase in both (~21 %). This is expected, as CED and dHVap

measure the energy required to separate molecules to an infinite dis-
tance (essentially their non-bonded potential energies). Increasing
temperature, saturation features, and reducing intermolecular electron
delocalization effects reduce intermolecular forces, their non-bonded
energy, and thus the CED and ΔHVap.

While both CED andΔHVap are influenced bymostly the same factors,
their order and magnitude of influence differ. This difference arises
because ΔHVap considers the energy differences (as work) done by the
barostat to maintain constant pressure throughout the simulation by
adjusting the simulation’s volume. Consequently, features more influ-
ential on the material’s volumetrics gain precedence. Highly polar
groups (such as those from heteroatoms) cumulatively impact ΔHVap

significantly, up to + 10 %, a trend not seen in the case of the CED. This
trend aligns well with observations, as bitumens rich in heteroatomic
polar groups result of severe aging conditions are stiffer at much higher
temperatures.

The range of ΔHVap extends from 150 kJ/kg to 500 kJ/kg, with most
bitumens hovering around 300 kJ/kg. These values compare well to
those observed for heavy crude oils, bitumens, and oil derivatives of
similar molecular structures, as observed in Table 9. To design a
bitumen with maximized CED, aiming for high cohesion at elevated
temperatures (excluding the temperature feature), the aromatic content

should be increased (e.g., setting feature x25 to 0.52) and saturated
aliphatic branches minimized (x0 to < 0.3, x5 to < 0.015, and x17 to <

0.0013). Additionally, maximizing the content of the heteroatom type
“o_1” to 0.022 (compared to an average of 0.010) further enhances CED.
The addition of oxidative properties (“o_1” type) to increase CED aligns
well with observation in real bituminous samples that have been
severely aged. This combination of features yields a molecular system
with a CED three times higher than the average, as demonstrated in
Table 11, and showcases how high aromaticity, high hybridization, and
strong polarity and electron delocalization effects increase the CED. A
similar approach can be applied when tuning ΔHVap, as shown in
Table 11.

4.8. Solubility parameter (δsol)

The solubility parameter, fundamentally a function of the CED and
Vm, provides valuable insight into the strength of intermolecular in-
teractions and the ability of different systems to mix. This parameter is
critical for assessing whether mixtures of molecules will form a homo-
geneous phase upon mixing [37] and thus can be used to tune the sta-
bility of a mixture of different compounds.

When examining bitumens, smaller differences in solubility param-
eters can be advantageous as it allows materials to be miscible, poten-
tially leading to more stable mixtures. Conversely, higher differences in
solubility parameters may be necessary when the goal is to maintain
intricate morphological characteristics intentionally incorporated into
the bitumen, such as those found in Styrene-Butadiene polymer-modi-
fied bitumens, where the dissolution of Styrene or Butadiene into its
surrounding media (i.e., bitumen) can detrimentally affect the bi-
tumen’s mechanical properties [12].

The most influential factor in the solubility parameter is the system’s
temperature, which has a negative influence of − 44.2 %. This is ex-
pected because an increase in temperature typically decreases the CED
of a material, assuming a negligible decrease in molar volume, and thus
increases the mixing potential of different compounds, as fundamentally
expected [37].

Similar to other properties, much of the remaining influence is
attributed to oxidative characteristics (e.g., atom of types “cp”, “o_1”,
“c1”) typical of 6- and 5-membered aromatic rings, highly polar func-
tional groups, and sp1 and sp0 hybridized carbons, collectively ac-
counting for over + 25 % of influence. Conversely, highly reduced
characteristics, such as atoms of types “hc”, “c2”, “c3”, “c5”, and “c5h”,
contribute negatively with over − 25 % influence.

To design a system with a maximized or minimized δsol (excluding
the temperature influence), one should consider the oxidative and
reduced characteristics. Maximizing the content of aromatic rings and
polar functional groups, while minimizing saturated aliphatic branches
and highly reduced features, will significantly affect the solubility
parameter. This aligns with fundamental chemistry rules, where com-
pounds of similar polarity are miscible.

The solubility parameters measured in this study range from 350 to
800 kJ0.5/m1.5, which correspond well with experimentally obtained
values of 474 to 758 kJ0.5/m1.5 for a variety of oil samples, reported in
Table 9. Moreover, the trends presented align with the findings of Ramos
et al., where oil with higher saturation degrees have a lower solubility
parameter. The range described, while pertaining solely to bituminous
materials, encapsulates nearly the entirety of solubility parameters
observed across multiple petroleum blends. This encompasses a spec-
trum from lighter to heavier compounds, incorporating those distilled
hydrocarbons absent in bitumen (e.g., benzene, ethanol, etc.) [61].
Thus, despite the apparent nominal variance, an increase from 350 to
800 kJ0.5/m1.5 captures the miscibility potential of a diverse array of
hydrocarbons, ensuring that the range studied is well suited for studies
involving bituminous materials and other hydrocarbon mixtures. As a
reference, the solvent used in SARA fractionation tests to separate the
Saturates fraction away from other fractions, n-heptane, has a δsol equal
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to 471kJ0.5m− 1.5, further emphasizing how δsol can be used to tweak the
miscibility potential of different organic compounds using the MD and
the MLM data obtained in this study. Detailed influential design pa-
rameters for optimizing the solubility parameter, to a maximum or to a
minimum, are provided in Table 11.

4.9. Specific heat (CP)

Feature x1, which corresponds to the hydrogens bonded to carbon
atoms (and to some degree, the saturation degree), is by far the most
influential factor, with a score of + 67 %. The remaining four most
influential features are considerably less impactful, each contributing
around 5 %. These features are related to the observation in feature x1,
where an increase in the presence of carbon atoms in highly saturated
branches (features x5, x17, and x29 of types “c2”, “c3”, and “c1”
respectively) and a decrease in the presence of aromatic rings (features
x24 and x25 for types “c5” and “cp”, respectively) result in a higher
specific heat capacity. An increase in the system’s temperature (feature
x32) results in an increase in heat capacity, albeit its impact is around +

8.3 %, which is less than expected. However, this observation aligns well
with the fundamentals of energetics, temperature, and heat capacities
[6]. An increase in molecular mass results in a mild decrease in heat
capacity, which is a generally accepted trend in organic chemistry,
especially in bituminous molecules.

The higher specific heat capacities of more hydrogenated hydro-
carbons are due to the increased degrees of freedom in their molecular
motions. These hydrocarbons have more vibrational, rotational, and
torsional modes, allowing them to distribute energy across additional
modes of motion. In contrast, aromatic compounds have rigid molecular
structures with fewer degrees of freedom. This rigidity restricts energy
distribution to fewer modes, leading to greater temperature changes and
thus lower specific heat capacities.

The heat capacities measured in this study range from as low as
1.1kJ/kg/K to as high as 3.4 kJ/kg/K, while most bitumens heat ca-
pacity hover at around 2.2 kJ/kg/K. These values compare well with
previous findings, reported in Table 8. Moreover, these findings also
indicate that heat capacity is primarily influenced by the presence of
hydrogen-carbon and hydrogen–hydrogen interactions, which aligns
well with the findings of this study, further validating the realism of the
MD simulations and the prediction capacity of MLMs. This indicates that
the Saturates and Rejuvenators fractions have the highest heat capac-
ities, while the Aromatics and Resins fraction are expected to have the
lowest heat capacities. In addition, most oil derivates are observed to
have heat capacities ranging from 2.0 to 4.5kJ/kg/K, ensuring that the
range of heat capacities studied is well suited for use in other studies.

To maximize the heat capacity of bitumens, the saturation degree
(and thus, all features heavily influencing this metric) must be maxi-
mized. Specifically, this involves setting x1 above 0.67, x5 above 0.10,
and maintaining x31 around 650 g/mol. The most influential design
parameters for creating a bitumen sample with either maximized or
minimized heat capacity (excluding the influence of temperature) are
detailed in Table 11.

4.10. Thermal expansion coefficient (β)

Similar to previous cases, the most influential factors on the thermal
expansion coefficient (β) include temperature (+39.2 %), aliphatic
carbons (+15 % for c1, c2, and c3), hydrogen bonded to carbons (+6.5
%), molecular mass (− 5%), and aromatic features (− 4%). The observed
increase in β due to the addition of more reduced hydrocarbon structures
can be explained by these features having less cohesive forces (favoring
expansion) while capturing relatively large amounts of heat (as indi-
cated by their presence bringing a significant increase in heat capacity),
resulting in thermal expansion coefficients.

The thermal expansion coefficients in the molecular models of this
study range from 2.25 • 10− 6 1/K to as high as 2.52 • 10− 3 1/K, aver-
aging around 5.04 • 10− 4 1/K. These values compare well to those
observed for heavy oils and conventional bitumens. To design bitumens
with a relatively low thermal expansion coefficient (< 1 • 10− 4 1/K),
aiming for a material that remains dimensionally stable under varying
temperatures, the content of reduced hydrocarbon features should be
minimized, and the presence of oxidized features should be increased,
including polycyclic aromatics and oxidized functional groups (such as
sulfoxides and carboxyl groups). In essence, this involves reducing fea-
tures that lower densities while favoring an increase in heat capacity.
The values of the features (excluding temperature) necessary to
construct bitumens nearing these extremes are detailed in Table 11.

5. Case studies

5.1. Rejuvenator selection

In this example, the suitability of the four rejuvenators listed in
Table 2 is evaluated for the rejuvenation of the most oxidized and sulfur-
rich bitumen studied, specifically the “F” bitumen type aged to degree 4,
referred to as F400. For simplicity, this evaluation is limited to a tem-
perature of 60 ◦C. The analysis involves predicting the physical prop-
erties of the bitumen sample and of each rejuvenator, and then selecting
the rejuvenator that best matches the bitumen’s properties, with priority
given to matching solubility parameters (δsol) and maximizing the self-
diffusion coefficient (Dself ) between the bitumen and rejuvenator.

Bitumen sample F400 has already been prepared, and its atom type
formula is available in the supplementary file atom_types_formula.xlsx.
The same applies to the rejuvenators, whose atom type formulas are
provided in the same file. Fig. 1 illustrates how Aromatic Oil appears
when its atom types are assigned, and its atom type formula is gener-
ated. These are fed to the MLMs to predict the mixtures’ properties of
Table 8. All 12 properties are generated, taking about 70 ms per
chemical system on a personal computer’s CPU. The predicted proper-
ties for F400 and all four rejuvenators are presented in Table 15.

Aromatic Oil emerges as the most suitable rejuvenator for mixing
with bitumen F400 due to its high value (Dself = 4.15) and a solubility
parameter (δsol = 568.7) that closely matches F400′s (δsol = 559.6),
ensuring both fast diffusion and miscibility. While Vegetable Oil has a
higher diffusion coefficient (Dself = 6.77), which could facilitate faster
mixing, its solubility parameter (δsol = 536.1) is less aligned with F400,
potentially leading to reduced miscibility and stability. Thus, for a
rejuvenator that diffuses and mixes well, Aromatic Oil is the better
choice, though Vegetable Oil might be considered if rapid diffusion is
prioritized over miscibility.

Deepening the designing concept, small but artificial modifications
can be introduced into the molecular structure of Aromatic Oil to in-
crease the density of the rejuvenator (which is currently slightly below
that of water and substantially lower than that of F400 at 60 ◦C), while
retaining the solubility parameter as close as possible to that of F400.
Following the guidelines presented in Section 4.4 for Density and Sec-
tion 4.8 for Solubility Parameter, a single modification can achieve the
target properties needed – by converting the only cyclohexane ring
present in the Aromatic Oil structure into an aromatic ring. This con-
version is depicted in Fig. 1, and its changes are reflected in a new “atom
type” formula.

Upon feeding the Modified Aromatic Oil’s features into the MLMs,
most of the physical properties remain close if not closer to those of
F400, while the density is increased to remain just above that of water –
at 1004 kg/m3 at 60 ◦C – as seen in Table 15.
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5.2. Temperature Susceptibility

In this example, the impact of aging conditions—ranging from
0 (fresh) to 4 (fully aged)—and temperatures of 25 ◦C, 120 ◦C, and
200 ◦C on the density (ρ) and heat of vaporization (ΔHvap) of bitumen of
type “T” is calculated. This analysis highlights the ability of the MLMs to
predict both chemical and environmental changes typical of bituminous
experiments.

To perform this analysis, previously prepared bitumen models from
this study—T000, T100, T200, T300, and T400, representing non-
rejuvenated bitumens with increasing aging levels—are utilized. For
each bitumen sample, the corresponding “atom type” formulas and
molecular masses are input into the MLMs, and descriptor x32 – tem-
perature − is set to 25 ◦C, 120 ◦C, and 200 ◦C. The predictions are
summarized in Table 16.

The MLM predictions reveal that increasing levels of aging lead to a
rise in bitumen density, where the values align well with experimental
findings on aged bituminous samples. As anticipated, density decreases
with increasing temperature, in agreement with fundamental observa-
tions. Similar trends are observed in the computed ΔHvap, where more
energy is required to vaporize highly aged samples. As temperature in-
creases, the energy required for vaporization decreases, consistent with
both experimental observations and fundamental principles.

5.3. Binary mixture

In this example, two different compounds—Squalane and Phenolic
Asphaltene from Table 1—are combined to optimize two contrasting
physical properties: density (ρ) and heat of vaporization (ΔHvap). No
molecular structure modifications are applied; instead, the objective is
to determine the appropriate ratio of each molecule in the mixture to
maximize the value of both ρ and ΔHvap.

The SMILES strings for Squalane and Phenolic Asphaltene are pro-
vided in the file molecules_selection.docx in the Supplementary Infor-
mation. These strings are used to generate the atom type formula for
each molecule and aggregate them into a mixture-wide atomic formula.
This process is depicted in Fig. 2. To this end, ten mixtures, limited to
100 molecules each, are created with increasing amounts of Squalane.
At one extreme, mixture “S0” is composed entirely of 100 Phenolic
Asphaltene molecules, while at the other extreme, mixture “S100”
consists entirely of 100 Squalane molecules. Both densities and heat of
vaporizations are reported for each mixture in Table 17.

Table 17 showcases that beyond Mixture “S40” (40 Squalane and 60
Asphaltene molecules), ΔHvap no longer decreases. In contrast, the ρ
continues to decrease with increasing Squalane content. As a result,
mixtures ranging from “S40” to “S50” maintain both ρ and ΔHvap at
relatively high levels, indicating that a binary mixture with a similar
number proportion of both components is effective. This translates to a
mixture of approximately 30 g of Squalane and 70 g of Phenolic
Asphaltene.

Fig. 1. Identification of the atomic types in both Aromatic and Modified Aromatic Oils used to generate the atom type formula required by the MLMs of this study to
predict material properties.

Table 15
Predicted physical properties for F400 bitumen and all four rejuvenators, including the artificially modified Aromatic Oil.

Feature Property Bitumen Rejuvenator Oil

F400 Engine Vegetable Aromatic Modified Aromatic Oil Naphthenic

y1 Ep[kJ/kg] 2361.0 − 144.1 2.4 2302.9 2388.8 − 121.5
y2 EVdW[kJ/kg] − 161.6 − 246.4 − 250.4 − 164.7 − 161.5 − 202.1
y3 ECoul[kJ/kg] 8.02 3.30 23.32 43.56 35.6 –23.81
y4 Vm[m3/mol] 0.001 0.000 0.000 0.000 0.00039 0.000
y5 Va[:] 0.188 0.223 0.219 0.177 0.169 0.211
y6 ρ[kg/m3] 1021.5 805.05 849.6 968.5 1004.6 868.7
y7 Dself [m2/s] (109) 2.46 6.18 6.77 4.15 3.95 5.53
y8 CED[kJ/m3] 3.14 2.51 2.90E 3.24E 322 2.48
y9 ΔHvap[kJ/kg] 315.8 312.0 340.7 336.8 334.2 293.8
y10 δsol[kJ0.5/m1.5] 559.6 500.0 536.1 568.7 566.7 497.8
y11 Cp[kJ/kg/K] 1.91 2.70 2.51 2.15 1.87 2.38
y12 β[1/K] 0.00019 0.00098 0.00097 0.00036 0.00038 0.00074

Table 16
Predicted densities (ρ) and heat of vaporizations (ΔHvap) for bitumens of type “T” with increasing levels of aging.

Bitumen Type Property ρ[kg/m3] ΔHvap[kJ/kg]
Temperature [◦C] 25 120 200 25 120 200
T000 1010.5 960.5 908.2 330.5 304.6 278.1
T100 1014.9 963.2 916.1 337.4 300.4 280.5
T200 1022.6 976.7 932.4 339.9 308.5 282.7
T300 1045.1 1011.7 977.01 342.1 317.6 297.0
T400 1088.4 1054.8 1020.9 347.7 329.1 305.8

E.I. Assaf et al. Materials & Design 246 (2024) 113327 

19 



These case studies, though simplistic and open to interpretation,
showcase how the MLMs of this study can be used to near-
instantaneously obtain preliminary property estimates, potentially
reducing the time and resources required to arrive at similar
conclusions.

6. Conclusion

The transition from using broad chemical descriptors, such as the
SARA fractions and elemental compositions, to more fundamental
chemical descriptors in MD models of bitumen significantly improves
the ability to capture the impact of different chemical characteristics.
This approach not only simplifies the process but also aids in the
fundamental characterization, preparation, and customization of future
bituminous models. Each feature’s impact on various proper-
ties—whether fundamental, thermodynamic, or kinetic—can be quan-
tified and adjusted to achieve desired material characteristics. The use of
force field atom types is straightforward, as MD methods already dis-
cretize atomistic systems based on relevant chemical characteristics,
reducing ambiguity in feature selection due to their universal and
fundamental nature.

In this study, 30 chemical descriptors, each corresponding to a
unique atom type in the PCFF force field, were examined. It was found
that most material properties are influenced by at most 10 features,
which often overlap across properties, accounting for more than 95 % of
the influence. These features include temperature, molecular mass,
hydrogen content, aromaticity, the presence of 5-membered rings, and
highly polar heteroatomic functional groups. Balancing these features
carefully would have the most significant impact on tuning the prop-
erties studied.

Over 193 models and 1770 separate LAMMPS runs were performed
to obtain the various properties of this study. These models were care-
fully crafted to represent different bitumen types, aging conditions,
rejuvenator types, and rejuvenation dosages, resulting in a

comprehensive array of bituminous materials. This wide range of fea-
tures and properties enhanced the predictive capacity of the MLMs
developed, which were trained to predict all the properties presented in
this study based on input features. This approach provides an effective
and efficient method to abstract away from running continuous MD
simulations with small changes in molecular structures, offering re-
searchers quick insights into the impact of certain feature changes on a
material’s response.

This study focused on 12 material properties, including fundamental
MD properties (e.g., potential energy), volumetric properties (e.g., den-
sity), thermodynamic properties (e.g., heat capacity), and kinetic prop-
erties (e.g., diffusion coefficients). It was found that interpreting the
impact of fundamental MD properties on material behavior is challenging
and often non-intuitive, with multiple directionality trends. However,
these properties are essential for evaluating the numerical stability and
validity of the simulations and the conformational stability of designed
molecules, making them valuable for use in molecular design fields. More
relatable properties, such as density and heat capacity, provide easier
paths to interpret physical trends and are easier to capture due to their
continuous relationships with the study’s features, many of which have
been experimentally assessed in related petroleum studies.

While the MLMs developed in this study can address the impact of
specific molecular features on bitumen properties, establishing a new
solid foundation for using MD simulations and experimental techniques
in bitumen design, future work should capture more relevant properties,
particularly those important in rheological or mechanical studies (e.g.,
dynamic properties and viscosities). Furthermore, using force field atom
types as features requires consistent use of similar force fields between
simulations, as different force fields may use varying rules for identi-
fying atom types.

Additionally, this study employed a simple tree model with inter-
polative capabilities, which worked well given the extensive array of
models covering a condensed range of organic chemistry features.
Future work should include a wider array of compositional features,
study more extreme cases (e.g., very high content of polar groups), and
use MLMs better suited for predicting properties given a less compre-
hensive set of training cases.

Moreover, this study assumes all MD models are fully amorphous,
with no distinct morphological features in the bituminous samples. Bi-
tumens are known to undergo phase separation and form complex,
highly heterogeneous intermolecular features, heavily affecting their
mechanical and rheological properties. Future MLMs should include a
more complex set of features to better characterize the true state of
bituminous materials, given that newer, synthetic bitumens often
involve the use of intermolecular features with highly heterogeneous
morphologies.

Fig. 2. When constructing a molecular mixture, the types of atoms within each molecule are quantified and consolidated into a single formula. This formula
represents the overall chemical composition of the mixture.

Table 17
Densities and heat of vaporizations predicted for all 10 mixtures (“S0” through
“S100”). Bolded are the mixtures whose densities and heat of vaporizations are
both at a maximum.

Mixture ρ[kg/m3] ΔHvap[kJ/kg] Mixture ρ[kg/m3] ΔHvap[kJ/kg]

S0 1004.9 325.8 S60 939.9 303.3
S10 1006. 324.2 S70 937.8 304.2
S20 993.5 323.6 S80 925.3 303.6
S30 980.7 320.3 S90 835.2 303.8
S40 974.4 306.4 S100 812.3 303.5
S50 945.1 304.0 − − −

E.I. Assaf et al. Materials & Design 246 (2024) 113327 

20 



7. Declaration of AI and AI-assisted technologies in the writing
process

During the preparation of this work the author(s) used OpenAI’s
ChatGPT4 to shorten the length of certain sections. After using this tool/
service, the author(s) reviewed and edited the content as needed and
take(s) full responsibility for the content of the publication.

CRediT authorship contribution statement

Eli I. Assaf: Writing – original draft, Writing – review & editing,
Validation, Methodology, Investigation, Formal analysis, Data curation,
Conceptualization. Xueyan Liu: Writing – review & editing, Supervi-
sion, Resources, Project administration, Methodology, Funding acqui-
sition, Conceptualization. Peng Lin: Project administration, Formal
analysis, Data curation, Conceptualization. Shisong Ren: Writing – re-
view & editing, Methodology, Investigation, Data curation, Conceptu-
alization. Sandra Erkens: Visualization, Validation, Supervision,
Resources, Project administration, Methodology, Funding acquisition,
Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

The data related to the chemical characterization of bitumen samples
and the properties assessed through MD simulations are currently
restricted as they are integral to an active research project. The Sup-
plementary Information, however, provides a subset of this data, in-
cludes essential details sufficient to replicate the simulations conducted,
and features the MLMs generated along with their predicted datasets,
which are available for further research into new bituminous materials

Acknowledgements

This paper/article is created under the research program Knowledge-
based Pavement Engineering (KPE). KPE is a cooperation between the
Ministry of Infrastructure and Water Management (Rijkswaterstaat),
TNO, and TU Delft in which scientific and applied knowledge is gained
about asphalt pavements and which contributes to the aim of Rijkswa-
terstaat to be completely climate neutral and to work according to the
circular principle by 2030. The opinions expressed in these papers are
solely from the authors.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.matdes.2024.113327.

References

[1] J.C. Nicholls, D. James, Literature review of lower temperature asphalt systems,
Proceedings of the Institution of Civil Engineers-Construction Materials 166(5)
(2013) 276-285.

[2] L.W. Corbett, Composition of asphalt based on generic fractionation, using solvent
deasphaltening, elution-adsorption chromatography, and densimetric
characterization, Anal. Chem. 41 (4) (1969) 576–579.

[3] Z. Chen, J. Pei, R. Li, F. Xiao, Performance characteristics of asphalt materials
based on molecular dynamics simulation–a review, Constr. Build. Mater. 189
(2018) 695–710.

[4] K. Ohno, K. Esfarjani, Y. Kawazoe, Computational materials science: from ab initio
to Monte Carlo methods, Springer, 2018.

[5] M.L. Greenfield, Molecular modelling and simulation of asphaltenes and
bituminous materials, Int. J. Pavement Eng. 12 (4) (2011) 325–341.

[6] S.A. Hollingsworth, R.O. Dror, Molecular dynamics simulation for all, Neuron 99
(6) (2018) 1129–1143.

[7] D.D. Li, M.L. Greenfield, Viscosity, relaxation time, and dynamics within a model
asphalt of larger molecules, J. Chem. Phys. 140 (3) (2014).

[8] D. Lesueur, The colloidal structure of bitumen: consequences on the rheology and
on the mechanisms of bitumen modification, Adv. Colloid Interface Sci. 145 (1–2)
(2009) 42–82.

[9] S. Ren, X. Liu, P. Lin, Y. Gao, S. Erkens, Molecular dynamics simulation on bulk
bitumen systems and its potential connections to macroscale performance: review
and discussion, Fuel 328 (2022) 125382.

[10] A.M. Kharrat, J. Zacharia, V.J. Cherian, A. Anyatonwu, Issues with Comparing
SARA Methodologies, Energy Fuel 21 (6) (2007) 3618–3621.

[11] M.L. Greenfield, L. Zhang, Developing model asphalt systems using molecular
simulation: final model, University of Rhode Island, Transportation Center, 2009.

[12] W. Wu, M.C. Cavalli, W. Jiang, N. Kringos, Differing perspectives on the use of
high-content SBS polymer-modified bitumen, Constr. Build. Mater. 411 (2024)
134433.

[13] R.J. Angel, Equations of state, Rev. Mineral. Geochem. 41 (1) (2000) 35–59.
[14] M. Karelson, V.S. Lobanov, A.R. Katritzky, Quantum-chemical descriptors in

QSAR/QSPR studies, Chem. Rev. 96 (3) (1996) 1027–1044.
[15] F. Fallah, Molecular Dynamics Modeling and Simulation of Bitumen Chemical

Aging, (2017).
[16] S. Ren, X. Liu, Y. Zhang, P. Lin, P. Apostolidis, S. Erkens, M. Li, J. Xu, Multi-scale

characterization of lignin modified bitumen using experimental and molecular
dynamics simulation methods, Constr. Build. Mater. 287 (2021) 123058.

[17] R. Tian, H. Luo, X. Huang, Y. Zheng, L. Zhu, F. Liu, Correlation Analysis between
Mechanical Properties and Fractions Composition of Oil-Rejuvenated Asphalt,
Materials (basel) 15 (5) (2022).

[18] D.D. Li, M.L. Greenfield, Chemical compositions of improved model asphalt
systems for molecular simulations, Fuel 115 (2014) 347–356.

[19] S. Ren, X. Liu, P. Lin, S. Erkens, Y. Xiao, Chemo-physical characterization and
molecular dynamics simulation of long-term aging behaviors of bitumen, Constr.
Build. Mater. 302 (2021) 124437.

[20] E. Prosperi, E. Bocci, A review on bitumen aging and rejuvenation chemistry:
processes, materials and analyses, Sustainability 13 (12) (2021) 6523.

[21] D. Weininger, SMILES, a chemical language and information system. 1.
Introduction to methodology and encoding rules, J. Chem. Inf. Comput. Sci. 28 (1)
(1988) 31–36.

[22] Q. Shi, J. Wu, Review on sulfur compounds in petroleum and its products: state-of-
the-art and perspectives, Energy Fuel 35 (18) (2021) 14445–14461.

[23] S. Vedachalam, N. Baquerizo, A.K. Dalai, Review on impacts of low sulfur
regulations on marine fuels and compliance options, Fuel 310 (2022) 122243.
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of Bitumeňs än Heavy Oils, Reservoir Minerals, Clays, Dehydrated Clays,
Asphaltenes, and Cokes.

[53] H.W. Bearce, E.L. Peffer, Density and thermal expansion of American petroleum
oils, US Government Printing Office1916.

[54] P.V. Coveney, S. Wan, On the calculation of equilibrium thermodynamic properties
from molecular dynamics, PCCP 18 (44) (2016) 30236–30240.
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