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Abstract

Modified Newtonian Dynamics (MOND) can account for a variety of phenomena on
galactic scales without the need for dark matter, but it cannot fully explain the mass
contained in galaxy clusters. We explore two possible solutions to this problem: relativistic
extensions of MOND, and FEM simulations of the apparent matter distribution in clusters,
utilising the non-linear AQUAL formulation to analyse non spherically symmetric systems.

We consider Covariant Emergent Gravity, and we show that the theory is inconsistent
with the original formulation of Emergent Gravity. Moreover, we show that either the
theory is incompatible with observations, or it presents grave theoretical difficulties. We
then suggest that a covariant formulation of EG can be obtained through a Generalised
Einstein Aether (GEA) theory, which is capable of retrieving the MOND PDE, and is, at
the same time, consistent with observational constraints.

Regarding the FEM simulations of the apparent matter distribution in galaxy clusters,
we construct a sample of 15 clusters from the catalogs of Reiprich and Abell for the
baryonic mass distribution present in galaxy clusters. We choose FEM for its ability to
treat the combination of continuous and discrete mass distributions without the need for
smoothing. This is necessary, as in MOND we cannot apply the principle of superposition
or the weak lensing formalism. We then utilise the FeniCS software package to study
the properties of these clusters. We simulate each cluster with elements up to degree 3,
thanks to a speedup by a factor of ∼ 100 obtained by the use of local mesh refinement for
the serial case. In addition, we run the code in parallel on a single-threaded 8-core CPU,
achieving near optimal weak scaling for the regime of interest.

For the mass distribution in the galaxy clusters, we analyse the distribution of baryons,
Phantom Dark Matter (PDM) and apparent mass both close to the core and around each
galaxy. We find that the PDM tends to clump around the galaxies, regardless of the gas
to galaxy mass ratio. Moreover, we show that both the apparent mass and the PDM can
exhibit negative masses as predicted by Milgrom. Our observations on the density of PDM
around the galaxies match recent observations of small scale weak lensing. In addition,
our results for negative mass distributions provide an opportunity to test a prediction of
MOND that can never be replicated in the dark-matter paradigm, and shed light on the
properties of non-spherically symmetric mass distributions, that have, up to now, not been
studied in the literature for the fully non-linear case.
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Chapter 1

Gravity

This chapter provides a general background for the work presented in the following
chapters. Three main frameworks are described: for the nonrelativistic case, Newtonian
gravity and MOND. Emphasis is placed on their predictions for galactic rotation curves.
For the relativistic case, General Relativity is described. For entropic gravity, the ideas
of Emergent Gravity are introduced, focusing mainly on the approach by Verlinde. After
presenting the Lagrangian formalism, the chapter will end by showing how the first three
theories can be derived using a Lagrangian approach.

1.1. Introduction

In an article published in 1981, one of the most brilliant minds of modern physics made
an optimistic prediction: by the end of the twentieth century, a theory of everything
would be discovered. He speculated that theoretical physics would fulfill its ultimate goal
of describing the universe as a whole. It would do so by means of a single framework
capable of unifying all forces and providing all boundary conditions needed to coherently
describe the evolution of the cosmos through time and space. The author was Stephen
Hawking, and the best candidate for a theory of everything was at the time supergravity
[1].

Almost forty years later, no such theory has been found. Nonetheless, the microscopic
world is described with astonishing precision by QFT (Quantum Field Theory), unifying
the principles of Quantum Mechanics with those of Special Relativity. Meanwhile,
the gravitational dynamics of the planets are governed by the laws of General Relativity.
However, the rules describing the two scales appear fundamentally incompatible, and
Quantum Gravity continues to elude theoretical physicists.

Many unanswered questions remain. The Standard Model of particle physics, uni-
fying all forces other than gravity, cannot precisely predict the mass of the neutrino, and
any evidence corroborating expansions of the model such as Supersymmetry has yet to
be detected. Furthermore, on the scales of galaxies, galaxy clusters and beyond, many
observations fail to match the predictions of General Relativity:

2



1.2 - Newtonian Gravity 3

1. Stars in the outskirts of galaxies move at speeds that far exceed those predicted by
the total galactic mass inferred by observations [2];

2. Galaxies in galaxy clusters move too fast to remain gravitationally bound to each
other [3];

3. The accelerated expansion rate of the universe does not match that stemming from
the vacuum energy predicted by QFT [4].

To cope with the disagreement between theory and observation, two concepts have
been introduced in the current Standard Model of Cosmology (SMC): dark matter
and dark energy. As a result, the model is named Λ-Cold Dark Matter (Λ-CDM),
where Λ indicates dark energy.

Although successful in describing a variety of phenomena, ranging from galactic rota-
tion curves to large scale structure formation, the Λ-CDM model is by no means the only
pathway towards explaining the gravitational anomalies pointed out. Its driving principle
is the postulate that General Relativity is valid at all macroscopic scales, which means
that the observations can only be explained by introducing additional source terms to the
Einstein Equations, such as dark matter and dark energy. On the opposite end of the
spectrum, one could hypothesise that the laws of gravitation that hold on the scale of the
Solar System are the limit of a more general theory of gravity, which can account for all
gravitational behaviour based solely on the observable mass present in the universe (the
so called baryons, such as protons and neutrons).

Theories which follow the latter approach belong to the family of Modified Gravity,
and will be the focus of this work. However, before going into more detail about these, an
overview will now be given of the classical theories of gravity that will be discussed in the
following chapters.

1.2. Newtonian Gravity

1.2.1. Basic Concepts

The same force that accelerates an apple down from its tree is responsible for the motion
of the planets around a star. This was the point of view of Isaac Newton, who considered
gravity as a universal attractive force. The classification of gravity as a force has been
made obsolete by General Relativity. Nevertheless, Newton’s theory was revolutionary,
and is still used nowadays as an excellent approximation of gravitational interaction in
systems where both the masses and relative velocities of the bodies involved are below a
certain threshold.1

The magnitude of the well known attractive force between two massive objects is given
by the inverse square law:

F = G
m1m2

r2
, (1.2.1)

1The weak-gravity, low-velocity limit is defined for velocities v � c, and masses satisfying M/r �
M/rs =⇒ r/rs � 1, where rs = 2GM/c2 is the Schwarzschild radius.
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where F represents the magnitude of the force, m1 and m2 are the masses of the two
bodies, r is their distance, and G is Newton’s gravitational constant G ≈ 6.674 ·10−11 m3

kgs2
.

The force is attractive and directed along the vector connecting the positions of the two
masses.

Another fundamental concept of Newtonian mechanics is Newton’s second law, stating
that a change in momentum is related to an equivalent force:

F =
dp

dt
= m1a, (1.2.2)

where p and a are respectively the magnitudes of the momentum and acceleration. It is
then easy to see that one can obtain the acceleration due to the gravitational force by
equating (1.2.1) and (1.2.2):

G
m1m2

r2
= m1a =⇒ a = G

m2

r2
. (1.2.3)

One can deduce an extremely important principle from this relation:

The acceleration a test particle undergoes due to its gravitational interaction with
a massive object of mass m does not depend on the test particle’s mass or other
physical properties. It depends solely on the mass of the massive object m, the
separation distance r, and a constant G.

A simple consequence of this statement is that all objects on Earth (as well as any
other planet or star, ignoring deviations from the approximation of a perfect sphere) will
feel the same gravitational acceleration. Moreover, to arrive at (1.2.3), it was assumed
that the mass relating force and acceleration is proportional to the mass responsible for
gravitational interaction for some fixed constant C. This apparently innocuous notion
would later become one of the keystones of General Relativity, known as the equivalence
principle. In General Relativity the masses are exactly equal, whereas in Newtonian
gravity one has:

Inertial mass and gravitational mass are proportional, and related by a fixed con-
stant: ma = Cmg.

1.2.2. PDE Formulation: The Newton-Poisson equation

When formally expressing the laws of physics, a powerful tool is the Partial Differen-
tial Equation (PDE). For mass distributions more complicated than two point particles,
one can derive the Newtonian laws of gravitation through the use of the Poisson equation
for gravity:

∇2φ (~r) = 4πGρ (~r) , (1.2.4)
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where ∇2 = ∇ · ∇ is the Laplacian operator, ρ (~r) an arbitrary mass distribution varying
in space and φ (~r) the gravitational potential. It is easy to see that shifting the potential
by an arbitrary constant α leaves (1.2.4) unchanged, as:

∇φ = ∇ (φ+ α) . (1.2.5)

To reconcile the PDE formulation with the classical formula for the gravitational attraction
between two point masses, one can solve (1.2.4) for a point source of mass m in the origin
as follows:

∇2φ (~r) = 4πGmδ (~r) . (1.2.6)

Making the physically sound assumption that the potential vanishes at physical infinity,
one can take a large sphere as the domain Ω and impose the boundary condition:

φ|∂Ω = 0 (1.2.7)

It can then be recognised that in (1.2.6) φ is none other than the Green’s function for
the infinite space Poisson equation. In three dimensions the solution is known, and yields
(see, for example, [5]):

φ = −Gm
r
. (1.2.8)

The following observations can now be made: since gravity is a conservative force, the
force on a test particle can be obtained as the gradient of the potential energy. Given that
the gravitational potential φ has dimension of energy per unit mass, its gradient gives the
force per unit mass, viz. the gravitational acceleration:

~a = ∇φ. (1.2.9)

For a spherically symmetric potential, one has φ = φ (r), and the above reduces to:

a (r) =
∂φ

∂r
=
Gm

r2
, (1.2.10)

where the acceleration is radial. It can hence be seen that the Poisson formulation recovers
the simple case of two-body attraction.

1.3. Rotation Curves

1.3.1. Solar System

On the scale of the Solar System, Newtonian gravity has been extremely successful.
The planetary motions can be calculated with high accuracy, apart from some corrections
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due to General Relativity such as the perihelion precession of Mercury (see, for example,
[6]). An example is given by the rotation curves of the planets around the Sun, which are
in excellent agreement with predictions. Rotation curves describe the velocity of a body in
a gravitational field as a function of its distance from the center of the mass distribution.
Assuming approximately circular orbits,2 one can give a prediction of the velocities based
on the distribution of matter3.

In the Solar system, 99.8 % of the total mass is contained in the Sun, the location of
which can then to good approximation be taken as the center of mass. It follows that it
is reasonable to model the Sun as a point source, and treat the planets as test particles
orbiting around it.4 On the other hand, the ratio between the solar radius rS and its
average distance from Pluto dSP (the farthest planet) is rS/dSP ≈ 10−4.

As previously mentioned, all planets will undergo an acceleration determined solely by
their distance from the Sun and the solar mass M�. Assuming perfectly circular orbits,
one can then equate the gravitational acceleration with the centripetal acceleration:

a = v2/r → v2 = ar. (1.3.11)

The velocity as a function of radial distance is then easily obtained as:

v =

√
GM�
r

, (1.3.12)

with M� the mass of the Sun.

In the Solar System, the inverse square root behaviour is observationally confirmed
to great accuracy [7]. Newtonian predictions match observations for the rotation
curves of the planets.

1.3.2. Galaxies

For galaxies, one could build a simple model in which the mass density is uniform
within a certain radius, and drops to zero beyond it, a useful approximation of the density
of stars and gas dropping to a negligible amount outside of the central core. Although
inexact, such a model should reproduce the qualitative features of the data. In the case
of spherical symmetry, this would be expressed as:

ρ =

{
M
V

r < r0

0 r > r0

V (r)= 4
3
πr3

−−−−−−→

{
3M
4πr3

r < r0

0 r > r0

(1.3.13)

2The orbits of the planets in the solar system are elliptical. However, circular orbits are very good
approximations as because the orbital eccentricities are small. The planet with the largest eccentricity is
Mercury with a value eM ≈ 0.2, whereas the Earth has eE ≈ 0.0167. A perfectly circular orbit has an
eccentricity e = 0.

3The distribution of matter can be observed directly, or inferred indirectly. In the solar system, one
has the former, but on galactic scales and beyond, the latter is the norm.

4The test particle treatment implies ignoring the gravitational force the planets exert on each other.
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Solving the Poisson equation (1.2.4) for the given mass distribution produces the following
accelerations:

g =

{
4
3
Gπrρ r < r0

GM
r2

r > r0,
. (1.3.14)

The rotational velocities immediately follow:

v2 =

{
4
3
Gπr2ρ r < r0

GM
r

r > r0

=⇒ v =


√

4
3
Gπρr r < r0√
GM
r

r > r0,
(1.3.15)

so that two regimes can be identified: inside the mass distribution bodies have velocities
that linearly increase with the distance from the origin as vin ∝ r, and outside of it the

velocities fall with increasing distance as vout ∝
√

1
r
.

While the linear rotation profile is in fact observed in the innermost regions of
galaxies, the inverse square root decay does not match observations. Instead, the
rotation speeds are seen to flatten out.

The first to measure this phenomenon with sufficient accuracy, thus giving reliable
evidence of the tension with the Newtonian prediction, was Vera Rubin in 1970 [8]. Since
then, increasingly precise measurements have confirmed the preliminary results. An ex-
ample is given in fig. 1.3.1, taken from [9] and showing both predicted and measured
rotation curves for the galaxy M33, with a clear disagreement between the two. In order
for the observations to be explained, one of two routes can be taken:

1. The laws of gravitation formulated by Newton should apply to all scales, as also
indicated by the slow-moving, low-gravity regime of GR. The discrepancy between
the prediction and measurement of the rotational velocities is a consequence of ne-
glecting non-radiating matter. This means that the universe is permeated by a non-
baryonic form of matter which interacts exclusively with baryonic matter through
its gravitational pull: this is the hypothesised dark matter.

2. The laws of gravitation are different on the scales of galaxies and galaxy clusters.
The work described in all of the following sections is based on this assumption. Its
implications will begin to be explored in the next section.

These two options can be summarised as follows:

A correct theory of gravity must either modify the source term or the interaction.
The former case gives rise to dark matter, the latter to modified gravity.

For the measurements to be explained in the r > r0 domain, one could hence postulate
a correction to either the mass distribution or to the gravitational acceleration, or to both.
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Figure 1.3.1: The rotation curve of galaxy M33 from [9]. The markers represent the mea-
sured data, with the continuous line giving the best fit. The short dashed and long dashed
lines denote the contributions by star and gas mass distributions respectively, whereas the
dot dashed line denotes the additional contribution by dark matter density to match the
observation.

In the first case, one would need to assume that for r > r0 the mass distribution is not
zero, but follows a special profile:

v =
√
ar ∝ vout =⇒ a =

4Gρπr3

3r2
∝ 1

r
=⇒ ρ ∝ 1

r2
. (1.3.16)

Here, vout is a constant velocity. What was just given is an extremely simplistic solution,
although it captures the essence of the approach, namely, to find a mass density able to
recreate flat rotation curves outside of the visible baryonic matter core of galaxies. More
realistic distributions are, for example, those described in [10], such as:

ρ =
ρ0

r
Rs

(
1 + r

Rs

)2 , (1.3.17)

with ρ0 the density of the visible baryonic matter and Rs a parameter depending on the
structure of the dark matter “halo”.
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1.4. Modified Newtonian Dynamics

1.4.1. Origin and Regimes of Validity

In the previous section, a description was given of the failure of Newtonian gravity to
describe galaxy rotation curves without resorting to exotic, undetected forms of matter. It
is perhaps best to introduce Modified Newtonian Dynamics (MOND) as a possible
solution to this issue, before describing the theory in more detail.

If one accepts that Newton’s laws might not be valid on the scale of galaxies, one can
obtain flat rotation curves by an acceleration of the form:

v =
√
ar ∝ vout → a = |∇φ| ∝ 1

r
. (1.4.18)

For a spherically symmetric potential, this implies:

∂rφ ∝
1

r
=⇒ φ ∝ ln (r) . (1.4.19)

This simple observation was in fact the basis of MOND. The theory was created to repro-
duce observations on galactic scales, especially rotation curves, utilising only the visible
matter distribution, in stark contrast with dark matter theories.

First outlined by Milgrom in 1983 [11] and by Milgrom and Bekenstein in 1984 [12],
MOND was initially expressed as one of two possible forms:

• A modification to Newton’s second law: F → mµ (a/a0) a;

• A modification to Newtonian gravity: a→ aµ (a/a0).

In both cases, µ (x) is a free function of the theory, and a0 is a new constant of nature
with dimension of acceleration, Milgrom’s constant. Although it can be noted that both
formulations would result in the same effect on gravity, the former implies a different
behaviour of all forces of nature. To avoid ambiguity, it should be pointed out that the
latter form is used throughout this work.

The free function, or to be more precise the interpolation function, µ (a/a0) defines
an acceleration scale, and the theory predicts a different dynamics from Newtonian
gravity in the regime of low accelerations.

To see why this is the case, the PDE defining the theory will now be analysed.
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1.4.2. MOND PDE and Interpolation Functions

The equation governing MOND is the non-linear Poisson equation:

∇ ·
[
µ

(
|∇φ|
a0

)
∇φ
]

= 4πGρ, (1.4.20)

where φ is the modified gravitational potential.

The RHS of the MOND equation coincides with that of the Newtonian Poisson
equation. This implies that no additional sources are introduced in the model.

The interpolation function µ(x), crucial to ensure the predictions of the theory match
observations, has the asymptotic behaviour:

lim
x→∞

µ(x) = 1, lim
x→0

µ(x) = x, (1.4.21)

which is satisfied by various forms, proposed in [12] and [13]. The most important are:

1. Standard: µ(x) = x√
1+x2

2. Simple: µ(x) = x
1+x

3. Exponential: µ(x) = 1− e−x

4. Piecewise:

{
x x < 1

1 x > 1
.

Each interpolation function has a different behaviour between the two asymptotes, as
shown in fig.1.4.1. It is hence clear that in the two asymptotes, the LHS of eq. (1.4.20)
takes on the forms:

|∇φ|
a0

� 1 =⇒ ∇2φ = 4πGρ, (1.4.22)

|∇φ|
a0

� 1 =⇒ ∇ ·
[
|∇φ|
a0

∇φ
]

= 4πGρ. (1.4.23)

Equivalently, one can define two asymptotic regimes:

For |∇φ| � a0 MOND reproduces Newtonian gravity. For |∇φ| � a0 one is in the
Deep MOND regime. Milgrom’s constant has the value a0 = 1.2× 10−10m/s2
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Figure 1.4.1: Possible interpolation functions µ (x). The x axis represents the argument
of the function, namely the ratio between the acceleration of a given test particle and the
acceleration scale a0. It can be seen that for x ≈ 6 all interpolations are close to unity,
implying the Newtonian regime µ (x) ≈ 1. Conversely, for x / 0.2 all interpolation are to
good approximation linear, µ (x) ≈ x

1.4.3. The Deep MOND Regime

Stars in the outskirts of galaxies often have accelerations in the Deep MOND regime.
It is hence possible to explain their rotation speeds through the MOND equation. The
PDE for this regime reads:

∇ ·
[
|∇φ|
a0

∇φ
]

= 4πGρ. (1.4.24)

In order to show that this gives a logarithmic potential as in eq. (1.4.19), which is required
to obtain flat rotation curves, one can take the simple case of a test mass outside of a
spherical mass distribution. Treating the mass distribution as a concentrated point source
at the origin, one then obtains:

1

r2

∂

∂r

(
r2

a0

(
∂φ

∂r

)2
)

= 4πmGδ (~r) , (1.4.25)

where m is the total mass of the system. A boundary condition can be derived from the
requirement that the acceleration vanishes at infinity:

∂φ

∂r

∣∣∣∣
r→∞

= 0. (1.4.26)

The above can be solved by repeated integration over a large spherical volume at the
boundary of which the acceleration is taken to vanish. For the LHS one obtains:∫

1

r2

∂

∂r

(
r2

a0

(
∂φ

∂r

)2
)

4πr2dr = 4π
r2

a0

(
∂φ

∂r

)2

+ C, (1.4.27)
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with C an integration constant. For the RHS the integration property of the Dirac Delta
function is used, namely: ∫

V

δ (~r) dV = 1, (1.4.28)

which, after rearranging, yields the complete expression:(
∂φ

∂r

)2

=
1

r2
(mGa0) , (1.4.29)

where the integration constant was set to C = 0. This result shows that the acceleration
has the form:

a =
√
Gma0

1

r
, (1.4.30)

with a corresponding potential:

φ =
√
Gma0 ln r. (1.4.31)

This simple analysis shows that the theory can provide a solution that qualitatively
produces flat rotation curves far from the center of mass in a galaxy.

The value of a0 was chosen to match observations made after analysing a collection of
rotation curve data.

1.4.4. The Baryonic Tully-Fisher Relation

The success of MOND in inferring rotation curves from visible mass alone is remarkable.
Many other predictions are made by MOND, and the most relevant will now be briefly
discussed to highlight its empirical predictive power based solely on visible mass. In 1977,
it was observed that the luminosity5 of a galaxy is correlated to the asymptotic rotational
speed6 of the stars that reside in it [14] . This empirical law was named the Tully-Fisher
relation after the two astronomers who discovered it.

Furthermore, it was later shown by McGaugh that the relation did not hold for Low
Surface Brightness (LSB) galaxies. In this type of galaxy, gas makes up a non-negligible
fraction of the total mass, which can hence no longer be inferred by stellar luminosity alone.
It was instead shown in [15] [16] that, by accounting for the gas mass, one could obtain a
fit for both High and Low Surface Brightness Galaxies.

The baryonic Tully Fisher relates the total baryonic mass of a galaxy to its asymp-
totic rotational velocity as Mb ∝ V 4

r .

The ability of the baryonic Tully-Fisher relation to universally fit galaxy data, regardless
of the ratio of stellar mass to total mass is highlighted in 1.4.2, taken from [15]. In order
to see the connection between this relation and the MOND potential it must be noted

5Luminosity is a measure of the electromagnetic radiation reaching an observer from a source.
6Asymptotically, rotation curves are flat predicted by MOND.
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Figure 1.4.2: The figure on the left gives a representation of the Tully-Fisher relation
after converting luminosity to stellar mass. It is clear that for galaxies with lower stellar
masses the relationship no longer holds. On the other hand, when the gas mass is included
to obtain the total baryonic mass, one can see that the fit is good regardless of the ratio
between stellar mass and gas mass. The markers represent the different techniques used to
obtain the data and are not relevant to the current discussion. Figure taken from [15].

that: for stars away from the galactic center, one can assume that the gravitational pull
can be approximated by that of a point mass of mass Mb, the total mass of the baryons
including stars and gas. The solution from the spherically symmetric case, found in eq.
(1.4.30) of the previous section, can then be used. When the velocity for circular orbits
predicted by this acceleration is calculated, one obtains:

Vr =
√
ar =

(√
GMba0

1

r
r

) 1
2

= (GMba0)
1
4 . (1.4.32)

The baryonic Tully-Fisher relation can be recovered directly by additionally fixing the
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value of the constant of proportionality as:

Mb =
V 4
r

Ga0

. (1.4.33)

Therefore, the baryonic Tully-Fisher relation is extremely important as it confirms the
general concept inferred by rotation curve measurements:

In MOND, gravitational phenomena are entirely determined by baryonic matter.

1.5. General Relativity

Certain aspects of gravity cannot be described by either Newton or MOND. This is due
to the fact that these theories are nonrelativistic: space and time are treated independently.
Phenomena such as the precession of the orbit of Mercury and the bending of light by a
massive body cannot be coherently explained in these frameworks.7 Similarly, cosmology
relies heavily on the principles of relativity.

It can be shown (see for example [6]) that Newtonian gravity is retrieved from Gen-
eral Relativity in the case of slow moving objects and weak-fields (bodies with low mass
densities, with M/r � M/rs, with rs the Schwarzschild radius). As a result, this is an
excellent approximation in the Solar System, but does not match the surroundings of a
black hole or the dynamics of fast moving cosmic rays.

1.5.1. The Metric Tensor

General Relativity (GR) represents a natural extension of Special Relativity (SR).
The latter unifies space and time into a 4D spacetime, which is described by the metric
tensor ηµν . In both theories, the distance between two points is given by the spacetime
interval. For SR, this is given by8:

ds2 = ηµνdx
µdxν = −dt2 + dx2 + dy2 + dz2. (1.5.34)

The above formula describes the flat Minkowski spacetime9. It is valid if no gravitational
effects are present. On the other hand, GR allows for a more general form of the metric
tensor:

7Surprisingly, it was shown in 1804 by von Soldner that in the limit of a vanishing mass, Newtonian
gravity would predict a bending due to the presence of a massive body. This turned out to reproduce the
general relativistic result up to a factor of 2. For a review and English translation, see [17].

8This is in fact the square of the spacetime interval, comparable to r2 in Euclidean space. Unlike in
Euclidean space, the notion of negative path length is well defined, and zero distance can exist for points
which are not coinciding.

9It should be noted that, for the units to agree, the metric should be: ds2 = −c2dt2 + dx2 + dy2 + dz2.
However, from here on, c = 1 is assumed so that space and time have the same dimension.
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General Relativity relates the curvature of the spacetime to the effects associated
with gravity.

1.5.2. The Geodesic Equation

What is described as a force in Newtonian gravity is explained in GR as the motion of
particles on straight lines in the spacetime. These straight lines are called geodesics10, and
their form depends on the metric tensor, which describes the background spacetime. One
can conider geodesics as the shortest path between two points, and make an analogy with
surfaces: for a flat spacetime (analogous to a 2D plane) the geodesics will be equivalent
to the notion of a straight line, and all points in the path will be coplanar. However, for
a curved spacetime (analogous to the surface of a sphere, or a deformed membrane), the
shortest path between two points on a surface will no longer be straight. Nonetheless,
it will be shorter than any other path connecting the starting and ending point. The
statement about particles travelling along geodesics is the equivalent to Newton’s first
law of motion: unless acted upon by a force, a body will move at a constant velocity. In
General Relativistic terms:

Bodies in free fall travel along a geodesic.

It was previously shown in (1.2.3) that, according to Newton, the acceleration a particle
undergoes due to gravity does not depend on its mass. This followed from the equivalence
of inertial and gravitational mass. This equivalence is just as fundamental in GR, and is
referred to as the weak equivalence principle.

To show that unaccelerated particles travel along geodesics, one introduces the co-
variant directional derivative, which quantifies how much a vector (more generally, a
tensor of any rank) fails to stay parallel to itself along a given path.11 A path which keeps
a tensor parallel to itself at all points is therefore the curved space equivalent of keeping
that tensor constant in flat space. Calling the path xµ (λ), dxµ

dλ
is the tangent vector to

the path itself, and the formal requirement is the following:

D

dλ

(
dxµ

dλ

)
= 0. (1.5.35)

This is the geodesic equation. Here, D
dλ

is the covariant directional derivative, which

10Particles only travel along a geodesic when no force is acting on them. Hereby, gravity itself cannot
be classified as a force.

11With the 2D analogy, in a flat space such as a plane all elements of a vector are unchanged when
the vector’s origin is changed. This is not true for curved spaces, e.g. the surface of a sphere: the same
tangent vector at two separate points generally does not point in the same direction. When displacing a
vector, the final direction depends on the path taken.
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vanishes at all points on the path. In synthesis, (1.5.35) states that the tangent vector is
constant along the path.

A constant tangent can be geometrically interpreted as a constant derivative of the
curve representing the path: this can only be the case for a linear function. The
geodesic is hence the curved space equivalent of a straight line.

Eq. (1.5.35) can be rewritten as:

d2xµ

dλ2
+ Γµρσ

dxρ

dλ

dxσ

dλ
= 0. (1.5.36)

The new symbols Γµρσ were introduced in the process. They are called the Christoffel
symbols (also called Christoffels) and quantify the curvature of the spacetime. They
do so by describing how the derivative of a quantity with respect to each coordinate is
affected by the remaining coordinates. For a space with no curvature, the symbols vanish
at all points12 and one simply retrieves the notion that any path along which the second
derivative is zero corresponds to a straight line. Non vanishing Christoffels generalise this
notion to curved space(time)s, so geodesics are no longer restricted to straight lines13. The
Christoffels can be defined through the geodesic equation itself, as given in eq. 1.5.36. In
addition, they can also be defined by using the partial derivatives of the metric tensor gµν ,
as:

Γσµν =
1

2
gσρ (∂µgνρ + ∂νgρµ − ∂ρgµν) . (1.5.37)

1.5.3. The Covariant Derivative

For any differential calculation, one must ensure that the concept of keeping a quantity
constant is well defined. The use of a partial derivative assumes that the components of a
tensor are defined equally at all points in spacetime. In a curved background, it has been
shown above that this assumption no longer holds: one must account for the component of
the variation that stems from parallel transporting the quantity along a geodesic, irrespec-
tive of any change in the quantity itself14. One then introduces a covariant derivative
as follows:

12To be precise, for a flat space one can always choose coordinates where all Christoffels vanish. Curvi-
linear, such as spherical, coordinates in flat space also generate non-zero Christoffels, but these can be
eliminated by choosing a different coordinate system, such as Cartesian.

13This makes intuitive sense along a sphere, on which the shortest path between two points is an arc
rather than a straight line.

14As previously explained, the components of a vector parallel transported on the surface of a sphere
will mix with each other along the path, although the vector itself represents the same quantity. The effect
is clearly coordinate dependent, as changing the coordinate system will restore the original components.
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Differentiation in curved spacetime must ignore any variation that is due exclusively
to the chosen coordinate system. The covariant derivative describes coordinate-
independent variations.

It is then a natural conclusion to define the covariant derivative as the partial derivative
plus a correction accounting for the curvature of spacetime so that the expression is valid
for any coordinate system. The correction is the Christoffel symbol, and the covariant
derivative acting on a 4-vector uα and respective co-vector uα is defined as15:

∇µu
α = ∂µu

α + Γαµνu
ν , ∇µuα = ∂µuα − Γνµαuν . (1.5.38)

What quantity can then give an unambiguous description of the the curvature of a space-
time? To answer this question, one can again refer to the surface of a sphere. One can
take a vector and two independent paths along which it can be moved. The final direction
of the vector will depend on the order in which the two paths are taken. The difference in
the final direction of the vector will give a measure of the curvature of the sphere’s surface.

Generalising this concept, the aim is to quantify the variation due solely to the cur-
vature, and not the influence of an arbitrary coordinate system. It is natural to use the
covariant derivative. Moreover, the difference of the order of the paths taken on the final
direction of the vector is given by the commutator of the two covariant derivatives along
each path. This commutator is known as Riemann Tensor Rρ

σµν :

The Riemann Tensor quantifies the curvature of a spacetime as the coordinate inde-
pendent variation in the value of a tensor, when this tensor is parallel transported
along two infinitesimal paths in a different order.

Mathematically16:

[∇µ,∇ν ]V
ρ = Rρ

σµνV
σ. (1.5.39)

Two important quantities can be derived from the Riemann Tensor: the Ricci tensor Rµν

and the Ricci scalar R. They are defined as:

Rµν = Rλ
µλν , R = Rµ

µ (1.5.40)

15The generalisation to a tensor of rank n is obtained by repeating the process for each of the n indices.
16In reality, another term should be present on the RHS accounting for the torsion of the metric, that

is the rotation of a body travelling along a geodesic. However, in GR all components of the torsion tensor
are zero and the quantity will be neglected for the present discussion.
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1.5.4. The Einstein Equations

Curvature has now been defined. The last step is to explain where it originates from.
To do so, one has to introduce the Einstein Equations17:

Gµν = 8πGTµν . (1.5.41)

The LHS is the divergenceless18 component of the Ricci tensor, the Einstein tensor. It
quantifies the curvature of the spacetime and is defined as:

Gµν = Rµν −
1

2
gµνR. (1.5.42)

The RHS is the Energy-Momentum tensor, generalising the concept of energy (such
as mass or radiation) for a given field.19 In words, (1.5.42) states the following:

Spacetime is curved by the presence of energy.

In the absence of energy, that is to say in vacuum, the following holds for any solution of
the Einstein equations:

Gµν = 0 =⇒ Rµν =
1

2
gµνR. (1.5.43)

To show that this implies that both Rµν = 0 and R = 0, one can use the following relation
for the Kronecker delta δρν :

gµνg
µρ = δρν . (1.5.44)

This then implies that:
gµνg

µν = δµµ = 4. (1.5.45)

Thus, multiplying both sides of eq. 1.5.43 yields:

Rµν =
1

2
gµνR =⇒ Rµνg

µν =
1

2
gµνg

µνR =⇒ R = 2R. (1.5.46)

Finally, since the above can only be true if R = 0, and given that gµν 6= 0, the following
is implied:20

Rµν = R = 0. (1.5.47)

However, the Ricci tensor and Ricci scalar only account for the trace of the Riemann

tensor, which describes the change in the volume of a body in the spacetime. The traceless
component of the Riemann tensor is called the Weyl Tensor Cρσµν , and it accounts for

17G is Newton’s constant, not the trace of the Einstein tensor.
18A divergenceless tensor is needed as the RHS is divergenceless by construction.
19The components of the energy momentum tensor describe energy density and momentum density, as

well as the corresponding fluxes.
20In the expression gµν 6= 0, 0 is the second rank zero tensor, not a scalar.
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the deformation of a body that does not cause a change in its volume. For a spacetime
with n dimensions, it is defined as:

Cρσµν = Rρσµν −
2

n− 2

(
gρ[µRν]σ − gσ[µRν]ρ

)
+

2

(n− 1) (n− 2)
gρ[µgν]σR (1.5.48)

The Weyl tensor gives the inherent curvature of the spacetime that does not originate from
the presence of energy. For example, since it can be non-zero in free space, it describes
the propagation of gravitational waves in vacuum.

1.6. Emergent Gravity

As mentioned in section 1.1, no one has so far managed to provide a framework capa-
ble of quantising General Relativity while avoiding the appearance of non-renormalisable
infinities. On the other hand, in the second half of the twentieth century, the idea that
gravity might be an emergent phenomenon, rather than a force mediated by a quantised
particle, started to be taken seriously. This section gives a brief account of these devel-
opments, leading up to Verlinde’s theory of Emergent Gravity (EG) and its consequent
explanation of the phenomenology attributed to dark matter.

1.6.1. Origin and Formulations

Although extremely successful on an empirical scale, MOND lacks a foundation based
on underlying principles motivating its predictions. The introduction of a low acceleration
regime is postulated rather than derived, and the magnitude of Milgrom’s constant a0 is
set in order to satisfy rotation curve data. Nonetheless, Jacob Bekenstein, one of the two
founders of the theory, was a pioneer in the exploration of the boundary between General
Relativity and Quantum Mechanics with his study of black hole thermodynamics. In [18],
Bekenstein postulated an analog to the classical thermodynamic equation of state,

dE = TdS − PdV, (1.6.49)

with E, T , P and V being energy, entropy, pressure and volume respectively, purely in
terms of the parameters describing a black hole:

dM =

TdS︷︸︸︷
Θdα+

−PdV︷ ︸︸ ︷
~Ω · d~L+ ΦdQ . (1.6.50)

Here ~Ω is the rotational angular frequency, Φ the electric potential, M the mass, and
Θ the analog of the temperature T . All mentioned quantities are scaled by a factor
α, the rationalised area. Jacobson further developed the connection between entropy
and spacetime, deriving the Einstein relations from the thermodynamic equation of state
(1.6.49). However, Jacobson used Killing horizons rather than black hole horizons. He
utilised Rindler coordinates to draw a parallel between the thermal spectrum detected
by an accelerating Rindler observer, and the energy flux flowing across the local Rindler
horizons in the form of heat, with δQ = TδS [19].
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1.6.2. Verlinde’s approach

The main point that Verlinde describes in his first paper about EG [20] is the following:

The concept of gravity is tightly correlated to that of information, and hence entropy.
Gravity is an entropic force.

Quantities related to matter, first and foremost its position, contain information. A
displacement is hence associated with a change in entropy, which determines a reaction
force. An analogy is given as follows: consider a polymer in a heat bath. One can stretch
the polymer by pulling it out of the bath, causing it to be straightened out and reducing its
entropy. In the absence of an external force, the polymer will end up in a state maximising
its entropy, corresponding to being curled up in a random fashion. This entropic reaction
will cause a displacement of the previously straightened polymer leg, hence determining a
force:

An entropic force stems from the tendency of a system to return to a state of
maximum entropy, and is not mediated by a specific field or particle.

This process has a different nature from the force carried by a field, and its quantised
bosonic excitation: entropic forces do not require a quantisation such as that carried out
for all the fundamental forces described by the SM. This is a potential way out of the
theoretical difficulties associated with quantising gravity:

Gravity might not have a quantised force carrier.

Another important association is made regarding the amount of information contained
in a volume of space, through the holographic principle. This states that the information
contained in a (hyper)volume can be determined by the properties of the (hyper)surface
that bounds it. Developing the idea further in [21], Verlinde identifies an elastic phase
of gravity. In this framework, the gravitational potential is described by means of a
displacement field of the form:

ui =
φ

ã0

ni . (1.6.51)

The gravitational potential is indicated by φ, whereas ni is a unit vector in 3D and ã0 is
later equated to a scaled version of Milgrom’s constant, ã0 = 6a0. The strain tensor for
the elastic displacement is also defined as:

εij =
1

2
(∂iuj + ∂jui) . (1.6.52)

This quantity is connected to the gravitational acceleration through the relation:

εijnj = − gi
ã0

. (1.6.53)
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The main result of this approach is a relationship between the apparent dark matter
distribution21 and the gravitational potential depending exclusively on the amount of
baryonic matter22:

(
8πG

a0

ΣD

)2

=

(
d− 2

d− 1

)
∇i

(
φB
a0

ni

)
. (1.6.54)

In the above, ΣD is the surface mass density for the apparent dark matter, and d is the
dimension of the spacetime. The most important observation for a generalisation of the
theory regards the displacement vector:

Effects associated with dark matter can be explained by a gravitational potential
carried by a vector function.

The relevance of this aspect will be made clearer when discussing modifications of GR.
The consequence of (1.6.54) is an acceleration gD due to apparent dark matter which takes
the form:

gD =
√
a0gN =

√
Gma0

1

r
, (1.6.55)

with gN the Newtonian gravitational acceleration. This corresponds fully to the prediction
for a point source in the deep MOND limit, as shown in (1.4.30). An important difference
must, however, be pointed out:

In EG the total acceleration depends on the sum of the baryonic and apparent
DM components: gtot = gB + gD, where the latter only appears after a threshold
acceleration. In MOND, only one acceleration is present, and it depends on the
chosen function F (u) appearing in the Lagrangian.

1.7. Lagrangian Formalism

The equations of motion for a classical particle determine its evolution based on two
variables: its position x and its speed ẋ23. These fundamental quantities can be obtained
through three equivalent formalisms: Newtonian, Lagrangian and Hamiltonian. As

21The assumption that gravity is fully determined by baryonic matter places Verlinde’s theory in the
family of modified gravity theories alongside MOND

22It is shown in chapter 2 that in its current form, this relation does not make the prediction that
Verlinde implies. A correction is suggested alongside this observation. It should also be noted that a0 can
here be used in place of ã0 as the factors cancel on either side.

23A similar analysis can be applied to fields.



22 1. - Gravity

the present work focuses on the Lagrangian approach, a brief overview of this method will
now be given.

1.7.1. Lagrangian and Lagrangian Density

The Lagrangian is a scalar function 24. When working with fields rather than particles,
as will now be the case in this work, one needs to account for the behaviour of the field
in all points in space. To do so, the Lagrangian is defined in terms of a Lagrangian
Density LD:

L =

∫
LD (φ, ∂µφ) d3x, (1.7.56)

with φ the field and ∂µφ its partial derivative25.

1.7.2. Notation and Unit System

For the sake of clarity, standard notation will be defined here. Latin indices run from 1
to 3 and describe three spatial dimensions26. Greek indices denote spacetime indices and
run from 0 to 3:

Ai =
(
A1, A2, A3

)
, Bµ =

(
A0, A1, A2, A3

)
(1.7.57)

Three equivalent notations are used for partial derivatives:

∂φ

∂xµ
= ∂µφ = φ,µ . (1.7.58)

Regarding dimensions, natural units are used. In these units, speed is set to be dimen-
sionless (c = 1), energy to have inverse time dimension (~ = 1), and the other necessary
physical units are inferred using the formula for the Compton wavelength. This relates
relativistic (the speed of light c) and quantum mechanical (the energy of a quantum of
the EM field ~) scales through the equivalence in energy between a photon of wavelength
λ and a particle of mass m:

λ =
~
mc

. (1.7.59)

This implies that:

[time] = [distance] = [mass]−1 , [G] = [mass]−2 (1.7.60)

When necessary, physical quantities will be analysed according to their mass dimension.

24More precisely a Lorentz scalar, invariant under Lorentz transformations. However, a class of theories
breaking Lorentz invariance will be analysed in later sections, so it is best to leave the description general.

25In curved spacetimes, one has to replace the partial by a covariant derivative, or include the Jacobian
in the Lagrangian density. The two methods are equivalent, and the former is used throughout this work.

26The coordinates are not restricted to Cartesian but can equally denote e.g. cylindrical or spherical
coordinates.
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1.7.3. Equations of Motion

To obtain the equations of motion from a Lagrangian, one can use a variational
approach. The goal is to find a path through time that minimises the Lagrangian. This
is done through a functional S called the Action, defined as:

S =

∫
L dt =

∫
LD d4x. (1.7.61)

Setting the variation of the action with respect to the field to zero yields the Euler
Lagrange (EL) Equations Of Motion (EOM)27:

δS

δφ
=
∂LD
∂φ
− ∂µ

(
∂LD
∂ (∂µφ)

)
= 0 , (1.7.62)

where δS
δφ

is the functional derivative. As can be seen, the quantity entering the EOM is
LD rather than L, so the former will be referred to as the Lagrangian L throughout the
rest of this work, as is customary in the literature.

1.7.4. Example EOM

Given that most of the work presented in the following chapters is based on obtaining
the EOM from a Lagrangian, a few examples will now be given for the three theories
discussed above. These show the power of the formalism in defining a self consistent
theory predicting the behaviour of all fields involved with just a few steps.

Newtonian Gravity.— As shown in section 1.2, Newtonian gravity is fully defined
by the Newton-Poisson equation. However, it has not yet been shown how to derive this
expression. One method of doing so is to use the following nonrelativistic Lagrangian LN
for the Newtonian potential field φN :

LN = −

(
ρφN +

(∇φN)2

8πG
.

)
(1.7.63)

The EL equations for φN immediately reproduce the Newton-Poisson equation.

MOND.— As shown in [12], the full modified Poisson equation for the MOND field
φ can be retrieved from the Lagrangian:

LM = −

(
ρφ+

a2
0

8πG
F

[
(∇φ)2

a2
0

])
. (1.7.64)

27Again, covariant derivatives replace partials in curved spacetime.
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Here F (x2) is a free function. It is convenient to make the substitution u = x2. It can
then be seen that (1.7.63) and (1.7.64) coincide for F (u) = u. The reason for this can be
deduced upon derivation of the EL equations, where one can see that:

dF
du

= µ (x) , F (u) = u =⇒ µ (x) = 1. (1.7.65)

On the other hand, the deep MOND regime is obtained for µ (x) = x = u1/2:

dF
du

= u1/2 =⇒ F (u) =
2

3
u3/2 + A, (1.7.66)

where A is a constant of integration. It is important to note the following:

The function F (u) reproduces deep MOND behaviour for F (u) ∝ u3/2, and New-
tonian gravity for F (u) ∝ u.

For any relativistic extension of the theory, it would be necessary to build a Lagrangian
containing a similar term. This aspect will be discussed in more detail in the next chapter.

General Relativity.— Unlike the previous two cases, GR cannot be described by a
single scalar field. Moreover, its EOM do not define a potential, but a spacetime metric.
As shown in section 1.5, two main equations are needed to describe the dynamics of the
spacetime: the geodesic equations and the Einstein equations. However, these equations
originate from separate Lagrangian functions. The Lagrangian LG generating the geodesic
equations can be intuitively explained:

As the geodesics define the shortest path between two spacetime points, the equa-
tions defining them originate from minimising the spacetime interval.

This is expressed as28:

LG = ds2 = gµν
dxµ

dλ

dxν

dλ
(1.7.67)

The EL equations take on a slightly different form, as the dynamic field being described is
in fact the coordinate vector, and the differentiation is carried out with respect to proper
time τ . The full EOM read29:

d

dτ

(
∂L

∂ẋµ

)
− ∂L

∂xµ
=

d2xµ

dτ
+ Γµνρ

dxν

dτ

dxρ

dτ
= 0. (1.7.68)

28To be precise, this expression gives the square of the distance between two points in spacetime.
However, for timelike paths (those of massive particles), extremising the square is equal to extremising
the distance. Geodesics for massless particles are also described by the resulting EOM.

29The following important observation must be made: The LHS has its free index lowered, whereas the
RHS has it raised. However, as the LHS equals zero, raising its index will not change the result. Although
formally incorrect, the relationship holds.
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It can be seen from the above that the Christoffels can be calculated directly from the
EOM.

The other Lagrangian concerns the curvature itself. It emerges that the Einstein
equations are in fact the EOM for the metric tensor, which is the field defining GR. The
only30 independent scalar describing curvature is the Ricci scalar. It follows that it is the
only candidate for the Einstein-Hilbert curvature Lagrangian LEH :

LEH = R. (1.7.69)

1.7.5. The Necessity of a Relativistic Lagrangian

The outstanding experimental success of GR in predicting gravitational phenomena
makes the following clear:

Any complete theory of gravity must match all the confirmed predictions of GR.

It follows that a fully fledged gravitational theory must have a relativistic nature. Con-
sequently, it must be possible to make precise predictions on the relationship between the
spacetime curvature and the presence of energy. It has been shown that these principles
in GR directly follow from the two Lagrangians given above. Moreover, any observation
regarding cosmology cannot be formally treated if not in a relativistic setting. It is hence
of paramount importance to formulate the laws of proposed gravitational theories through
a relativistic, covariant Lagrangian. In the next chapter, this approach will be described
for a theory originating from the principles of EG which is capable of reproducing MOND
phenomenology while being consistent with the GR framework.

1.8. Galaxy Clusters and Gravitational Lensing

So far, MOND has been treated as a single, well defined theory which is derived from
a Lagrangian. However, the PDE originating from the Lagrangian in eq. 1.7.64 is not the
only possible formulation of MOND. There are, in fact, three main formulations which are
of interest:

1. The fully non-linear theory, named AQUAdratic Lagrangian (AQUAL), which
is defined by the modified Poisson equation with interpolation function µ (x). This
is the formulation which we have discussed so far. Since it is derived from a La-
grangian, AQUAL satisfies conservation laws such as the conservation of energy and
momentum.

2. The algebraic (also called pristine) formulation, which does not require the so-
lution of the non-linear PDE. Instead, the MOND acceleration gA is algebraically

30There are others, but they all contain third order or higher derivatives of the metric.
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related to the Newtonian acceleration via:

~gN = µ (| ~gA| /a0) ~gA. (1.8.70)

This formulation is not derived from a Lagrangian and, as shown in [11], it violates
conservation of momentum.

3. The quasi-linear formulation, QUMOND, which provides a middle ground between
the two formulations described above. Although this formulation is derived from
a Lagrangian, and hence satisfies the required conservation laws, the QUMOND
potential φQ is not the solution of a non-linear PDE. Instead, it is the solution to
the Poisson equation with a modified mass density ρ̂, which can be obtained from
the pristine acceleration ~gA:

∇2φQ = ρ̂ = − 1

4πG
∇ · ~gA (1.8.71)

It can be shown that the three formulations are equivalent in the case of a spherically
symmetric mass distribution [22]. More generally, both the pristine formulation and
QUMOND are simplified versions of AQUAL, and they are more tractable both ana-
lytically and numerically. However, the mass distribution in galaxy clusters is inherently
non-spherical, as it contains, in addition to the smooth Intra Cluster Medium (ICM),
up to thousands of galaxies. In order to determine the mass distribution inside a cluster, it
is hence necessary to make use of AQUAL. This is especially true if we study gravitational
lensing, as the correct mass distribution cannot be inferred by the use of QUMOND or
pristine MOND for non-spherically symmetric distributions. However, most of the work
that has been carried out in the analysis of weak lensing for galaxy clusters in MOND has
utilised the pristine formulation, as in [23] and [24]. On the other hand, most of the work
on N-body simulations in MOND has been carried out through the use of QUMOND [25].
In chapter 5, we will analyse the apparent mass distribution inferred from gravitational
lensing measurements which assume the gravitational potential is Newtonian, and we will
also examine the relationships between the dark and baryonic matter components in a
non-spherically symmetric case for a variety of clusters with different ICM and galaxy
distributions.



Chapter 2

Covariant Emergent Gravity: Current Status
and Issues

It has been made clear in the previous chapter that the study of a theory of modified
gravity should be conducted through the Lagrangian formalism. It would be desirable
to recover both the predictions of GR in the relativistic setting and the phenomenology
successfully explained by MOND in the limit of low acceleration. A good candidate to
succeed in this feat is Verlinde’s EG: in [20] the framework is shown to be able to reproduce
Newtonian gravity, and in [21] the MOND phenomenology is recovered using key principles
of GR1. However, the theory lacks a Lagrangian. It cannot, therefore, be analysed through
the same formalism as GR and MOND. The MOND paradigm does not have a universally
accepted relativistic formulation either2.

In [26], Hossenfelder makes an attempt at deriving a Lagrangian for Verlinde’s EG,
capable of reproducing MOND phenomenology. Verlinde’s displacement field is termed
the imposter vector field and indicated by a 4-vector uα. This theory is named Covariant
Emergent Gravity (CEG).

2.1. The CEG Lagrangian

The main claim made in [26] is that EG, as formulated in [21], is internally inconsistent,
meaning that different equations for the same variable, e.g. the main field of interest uα,
give expressions that are not equal to each other in the general case. This is due to the fact
that heuristic arguments are used throughout [20] and [21]. Furthermore, the theory is not
derived from a Lagrangian approach, which would allow for the definition of symmetries,
conserved quantities, and equations of motion for each field present.

1String Theory is also frequently cited, but it is known that GR naturally emerges from most string
theoretic formulations.

2Many relativistic expansions of MOND exist, amongst which BIMOND and TeVeS, but they present
theoretical problems as well as clashing with observations. This point will discussed in the next chapter
in more detail.

27
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2.1.1. Quantities of Interest

In order to provide a theoretically sound background for Verlinde’s theory to formally
make contact with observations, the quantity of interest is the elastic displacement field,
which is directly related to the gravitational potential φ in [21] by:

ui =
φni
a0

. (2.1.1)

The starting point chosen by Hossenfelder to build a Lagrangian is the relationship between
the surface mass density for the apparent DM and the gravitational potential due to
baryonic matter φ: (

8πG

a0

ΣD

)2

=

(
d− 2

d− 1

)
∇i

(
φ

a0

ni

)
(2.1.2)

The apparent DM surface mass density is defined in [21] as:

ΣD =
a0

8πG
ε̃. (2.1.3)

In (2.1.2), d represents the dimension of the spacetime, which in the case of interest
is d = 4, and ε̃ is the largest principal strain of the displacement field3. Plugging the
definition (2.1.3) into (2.1.2), one arrives at:(

8πG

a0

a0

8πG
ε̃

)2

=
2

3
∇i

(
φ

a0

ni

)
. (2.1.4)

This gives an equation for ε̃2:

ε̃2 =
2

3
∇i

(
φ

a0

ni

)
=

2

3
∇iui (2.1.5)

By taking a further covariant derivative on each side, the required formula is obtained:

∇j

(
ε̃2
)

=
2

3
∇j∇i (ui) . (2.1.6)

The strain is a symmetric tensor and is defined equivalently in [26] and [21] (up to an
extra factor of 1

2
in [21]) through4:

εµν = ∇µuν +∇νuµ. (2.1.7)

3ε̃ is defined with a tilde to avoid confusion due to the different definitions given in [26] and [21] and
used throughout this chapter.

4It should be noted that Verlinde repeatedly uses the notation for the covariant derivative without
ever introducing Christoffel symbols. Therefore, he uses partial derivatives, rather than covariant ones.
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Conversely, the quantity ε is defined through different expressions in [21] and [26](hence
the tilde on ε̃ when referring to the quantity from [21]). At this point it should be noted
that from here on, indices will be used in the conventional way for tensor calculus as
defined in section 1.7.2, to avoid confusion when comparing the expressions from [21] and
[26].

Returning to ε̃, Verlinde defines this quantity through the relation5:

ε′ijnj = ε̃ni, (2.1.8)

that is to say, the eigenvalue of the deviatoric stress tensor corresponding to the normalised
eigenvector ni of the displacement field ui [21]. The deviatoric stress tensor, which is the
traceless component of εij, is defined as:

ε′ij = εij −
1

d− 1
εkkδij. (2.1.9)

It is the component of the strain responsible for deformation, but not for (hyper)volume
change. On the other hand, ε is defined in [26] as the scalar contraction of the strain
tensor:

ε = εµµ. (2.1.10)

Nonetheless, for the following calculations one has no choice but to follow the definition
given by Hossenfelder of ε̃2 ≡ χ, which allows for the most general definition of the kinetic
energy of the relevant field uα:

ε̃2 = χ = (∇µu
ν)2 . (2.1.11)

However, (∇µu
ν)2 is not a properly defined tensor, but it can be made formally correct

by defining it as a linear combination of all the possible contractions between the indices
µ and ν of the derivatives, or equivalently of the strain tensor defined in eq. (2.1.7):6

χ = ζ
(
εµµ
)2

+ ι (εµνε
µν) + ξ (εµνσρεµνεσρ) . (2.1.12)

The fully antisymmetric Levi-Cività symbol εµνσρ should not be confused with the strain
tensor εµν , and is defined as (see for example [27]):

εµνσρ =


−1 even permutations of µνσρ

1 odd permutations of µνσρ

0 otherwise

5Again, Verlinde uses all lowered Latin indices.
6Hossenfelder translates all 3D quantities quantities used by Verlinde into 4D quantities with the same

properties and normalisation. It is hence to be expected that the gravitational acceleration is fully defined
by the symmetric 4D strain tensor εµν . Problems with this approach are highlighted at the end of the
chapter.
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As εµνσρ is fully antisymmetric and εµν fully symmetric, their contraction vanishes, giving
the general expression:

χ = ζ
(
εµµ
)2

+ ι (εµνε
µν) (2.1.13)

It can be shown that this approach is in fact equivalent to the one adopted in [26], where
the kinetic term χ = ε̃2 is defined as the sum of all possible contractions giving a quadratic
derivative, with arbitrary coefficients α, β and γ:

χ = α

A︷ ︸︸ ︷
(∇νu

ν)(∇µu
µ) +β

B︷ ︸︸ ︷
(∇µuν)(∇µuν) +γ

C︷ ︸︸ ︷
(∇µuν)(∇νuµ) . (2.1.14)

Although the choice of the constants is not unique, Hossenfelder decides to use:

α =
4

3
, β = γ = −1

2
. (2.1.15)

It can be noted that

εµνε
µν = (∇µuν +∇νuµ)(∇µuν +∇νuµ) =

(∇µuν)(∇µuν) + (∇µuν)(∇νuµ) + (∇νuµ)(∇µuν) + (∇νuµ)(∇νuµ). (2.1.16)

One can then switch the dummy indices µ↔ ν in the first and second terms, obtaining

(∇νuµ)(∇νuµ) + (∇νuµ)(∇µuν) + (∇νuµ)(∇µuν) + (∇νuµ)(∇νuµ) =

2(

B︷ ︸︸ ︷
(∇νuµ)(∇νuµ) +

C︷ ︸︸ ︷
(∇νuµ)(∇µuν)). (2.1.17)

Similarly, from the definition of εµµ = ε (which comes from (2.1.10), and hence lacks the
tilde) one obtains:

(εµµ)2 = (gµνεµν)
2 = (gµν(∇µuν +∇νuµ))2 = ((∇µu

µ +∇µu
µ))2 = 4

A︷ ︸︸ ︷
(∇µu

µ)2 (2.1.18)

These calculations allow us to rewrite the kinetic term as

χ = −1

4
εµνε

µν +
1

3

(
εµµ
)2
, (2.1.19)

which is now entirely in terms of the physically relevant quantity of strain rather than
bare derivatives. It is therefore clear that this is totally equivalent to using (2.1.12) with
coefficients:

ζ =
1

3
, ι = −1

4
. (2.1.20)

It is useful to point out that, in order to achieve a Lagrangian describing a physical
theory which depends on the quantity of strain, as required for the original work in [21],
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the parameters are indeed restricted to β = γ. There is no reason to introduce the
antisymmetric component ξ (εµνσρεµνεσρ), as was done by Lim and Wang in [28] and [29],
since this will always vanish in the Lagrangian. This reflects an important property that
the chosen kinetic term imposes on the theory7:

The framework of CEG can be fully described by the symmetric strain tensor εµν .
Anti-symmetric combinations of the field derivatives can be ignored.

As explained in [26], the choice of the coefficients is different from what one would
obtain from a field describing gauge bosons, the prime example of which is the EM field.
In the latter case, the Lagrangian for the free field is given as:

LEM = −1

4
FµνF

µν (2.1.21)

Here it is important to note the main difference between the postulated imposter field and
the EM field. For the former the relevant physical quantity is given by a fully symmetric
tensor εµν , whereas, for the latter, the quantity of interest is fully antisymmetric, and is
defined as:

Fµν = ∂µAν − ∂νAµ, (2.1.22)

where the 4-vector Aµ is the EM 4-potential (for the generalisation to curved spacetime
partial derivatives are replaced with covariant ones). One then finds from (2.1.21):

LEM = −1

4
(∂µAν − ∂νAµ) (∂µAν − ∂νAµ) = (2.1.23)

−1

4
[(∂µAν) (∂µAν)− (∂µAν) (∂νAµ)− (∂νAµ) (∂µAν)− (∂νAµ) (∂νAµ)] . (2.1.24)

This can be simplified by switching the indices µ↔ ν in the first two terms, giving:

LEM = −1

2
[(∂µAν) (∂µAν)− (∂µAν) (∂νAµ)] . (2.1.25)

Hence, by direct comparison with (2.1.14), it can be seen that for a gauge boson (the
photon in this example) the correct choice of parameters would be proportional to:

α = 0, β = −γ = −1

2
. (2.1.26)

One could have arrived directly at the conclusion that the imposter field would not behave
as a gauge boson by observing that the vanishing of the last term of (2.1.12) for the sym-
metric field εµν would not have occurred for the antisymmetric field tensor Fµν . Therefore,
both the approach taken by Hossenfelder and the one proposed in this work lead in the
same direction as per the choice of the coefficients in the kinetic term χ. For now the
numerical value of the coefficients has been chosen to match Hossenfelder’s, in order to
retrieve the MOND equation, as will be shown throughout the rest of the chapter.

7This is a rather heavy constraint, and it will be shown in the next chapter how it makes the theory
inconsistent with observations.
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2.1.2. The Kinetic Term

Classically, the Lagrangian for a field contains three components, each describing a dif-
ferent energy contribution: kinetic energy, potential energy, and gradient energy8.
The approach taken by Hossenfelder for the kinetic term will now be explained.

To introduce a kinetic term in the Lagrangian, one looks at the Euler Lagrange equa-
tions in a curved background, which amounts to making use of the appropriate metric
tensor, and changing partial derivative to covariant ones:

∂L

∂uµ
= ∂ν

(
∂L

∂ (∂νuµ)

)
→ ∂L

∂uµ
= ∇ν

(
∂L

∂ (∇νuµ)

)
. (2.1.27)

By direct comparison with (2.1.6), with the chosen definition of ε̃2 = χ from (2.1.11), the
RHS of (2.1.27) is recognised as:

∇ν

(
∂L

∂ (∇νuµ)

)
∝ ∇ν (∇ρu

σ)2 . (2.1.28)

This corresponds to:

∂L

∂ (∇νuµ)
∝ δνµ (∇ρu

σ)2 , (2.1.29)

where the Kronecker delta function was introduced, defined as:

δνµ =

{
1 µ = ν

0 µ 6= ν.

It can then be noted that for (2.1.29) to hold, the Lagrangian for the free field has to have
the form:

Lθ ∝ (∇µu
ν)3 = χ3/2. (2.1.30)

The following should be highlighted:

The Lagrangian for CEG utilises a term containing a power of 3/2 for the squared
derivative of the field. This matches the structure of the nonrelativistic MOND
Lagrangian described in section 1.7.4 exactly. Consequently, the retrieval of MOND-
like behaviour in the nonrelativistic regime should not come as a surprise.

8For a particle, we have only the kinetic and potential components.
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2.2. The Effective Metric

For the imposter field to have an impact on the gravitational interactions in a rela-
tivistic setting, one can directly define its relationship with the metric tensor9. In [21],
Verlinde gives the following relation:

hij = δij −
a0

c2
(uinj + ujni) . (2.2.31)

It should be noted that this relation only defines the spatial component of the metric. The
RHS of (2.2.31) is fully symmetric under i→ j since δij = δji, and ui only differs from ni
in magnitude:

ui =
φ

a0

ni. (2.2.32)

This gives the equality:

uinj =
φ

a0

ninj = ujni =
φ

a0

njni. (2.2.33)

Starting from (2.2.31) one should arrive at the expression:

hij = δij − 2
uinj
L

. (2.2.34)

On the other hand, Hossenfelder defines the effective spatial metric h̃ij as:

h̃ij = gij −
uinj
L

. (2.2.35)

The relationship 1/L = a0/c
2 was used and a general spatial metric gij was chosen instead

of a Euclidean one.10 While there is no issue with the substitution δij → kij, the following
must be observed:

There is a factor of 2 that is erroneously not accounted for in the effective metric h̃ij
used by Hossenfelder. The result is that the perturbation caused by the imposter
field on the spatial metric is halved.

However, in the next section, eq. (2.2.35) is used to reproduce the calculations in [26],
after which observations will be made on the results. To arrive at the equations of motion
for uα, the following important assumption is made: since the imposter field is responsible

9In reality, this is not the only approach to introduce additional fields into the framework of GR.
Moreover, theories with multiple metric tensors have also been experimentally disproved. A more thorough
discussion is given in the next chapter.

10The Euclidean metric corresponds to an nxn identity matrix δij , corresponding to an n-dimensional
flat space.
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for the modification of gravity felt by massive particles, the coupling of uα to the energy-
momentum tensor of matter should be governed by the effective metric h̃µν from (2.2.35),
rather than by hµν . This leads directly to the interaction term.11:

Lint = −u
µuν

Lu
Tµν . (2.2.36)

The above is a direct generalisation of the spatial metric to include the 0th component,
and lacks a factor of 2 as in the case of eq. 2.2.35. This approach cannot be justified,
as the metric shown in (2.2.35) is itself the spatial component of a full spacetime metric
given in [21], and does not match the final form given by Hossenfelder:

The effective metric chosen for interaction with matter does not match the spacetime
metric described in Verlinde’s EG.

Tµν is the energy-momentum tensor of normal matter, defined in [26] as:

Tµν = Lmgµν − 2
δLm
δgµν

. (2.2.37)

Lm is the matter Lagrangian, the form of which is unimportant for now. On the contrary,
it should be mentioned that:

The definition of Tµν in [26] contains a mistake, as the functional derivative is used
on the Lagrangian, which is a function rather than a functional.

The correct relation can be given through the matter action Sm =
∫
Lm dt, with Lm the

Lagrangian for the matter field [6]:

Tµν = −2
1√
−g

δSm
δgµν

. (2.2.38)

If one wants to use the Lagrangian rather than the action, Tµν can be found using Noether’s
theorem as (see, for example, [30]):

Tµν = gµνLm −
∂Lm

∂ (∂µAα)
∂νA

α. (2.2.39)

In the above expression, Aµ is the field appearing in the Lagrangian Lm.12 It is important
to point out that the Noether formulation is conserved, but not necessarily symmetric,

11It can be shown that the addition of this term is equivalent to replacing the spacetime metric with
an effective metric in the action for the source term in the Einstein Hilbert action.

12The same approach could be utilised for a scalar field.
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unlike (2.2.38). As observed in [28], the addition of Lint directly modifies the geodesics of
massive particles, which are now obtained from the new action13:

Sm =
m

2

∫
dτgµν ẋ

µẋν → Sm + Sint =
m

2

∫
dτ
(
gµν −

uµuν
Lu

)
ẋµẋν , (2.2.40)

where ẋ denotes dx
dτ

, and τ is the proper time. The statement that two non-conformally14

related metrics are present in the theory directly implies that massive particles move
along geodesics that are different from those along which purely gravitational phenomena
propagate, e.g. gravitational waves. A simple but powerful statement for conformally
related metrics is the following15:

The null geodesics of a given metric gµν are unchanged by a conformal transformation
producing the metric f (φ) gµν , with f an arbitrary function of a chosen field φ.

To show this, one can simply look at the condition for a zero spacetime interval in both
metrics, corresponding to a lightlike connection between two points:

ds2 = gµν
dxµ

dλ

dxν

dλ
= 0 =⇒ f (φ) gµν

dxµ

dλ

dxν

dλ
= 0 ∀ f, φ. (2.2.41)

Conversely, a non-zero spacetime interval will scale by a factor of f (φ), implying that the
timelike (and spacelike) geodesics are affected by the transformation, and hence massive
particles travel along geodesics of the effective metric, and not the background metric. By
analysing the form of the effective metric introduced, one can conclude the following:

In CEG, the background metric gµν and effective metric g̃µν are not conformally
related.

This will have important repercussions for the experimental verification of the theory. In
particular, since photons contribute to the total energy momentum tensor Tµν , it is not
immediately clear which metric should describes the geodesics along which they travel in
CEG. In chapter 3, we explore the two possible options, namely, that their geodesics are
defined by the background or effective metric. We show that the former case leads to
problems in the definition of event horizons, while the latter is incompatible with recent
observations of the concurrent detection of gravitational and EM waves from the same
source.

13When analysing timelike paths one can set λ → τ , where τ is the proper time and ẋµ indicates a
derivative of xµ w.r.t. τ .

14Essentially, two metrics are conformally related to each other if angles are preserved when one is
mapped onto the other.

15The statement uses a scalar field, but the reasoning can be expanded to a function of any tensor field,
provided that the two metrics are proportional to each other.
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2.3. Imposter Field EOM

As the Lagrangian terms for the background metric and normal matter do not include
the imposter field explicitly, it is now possible to calculate the equations of motion for uα

following (2.1.27):
∂L

∂uσ
= ∇µ

(
∂L

∂ (∇µuσ)

)
. (2.3.42)

The total Lagrangian for the vector field is composed of the two components Lint and Lθ,
which describe the interaction of the field with matter and the dynamics of the field itself
respectively:

L = Lint + Lθ = −u
µuν

Lu
Tµν +

mp
2

L2
χ3/2 − λ2mp

2

L4
uµu

µ . (2.3.43)

The LHS of (2.3.42) yields:

∂

∂uσ


A︷ ︸︸ ︷

−u
µuν

Lu
Tµν

B︷ ︸︸ ︷
−λ

2mp
2

L4
uµu

µ


∂A

∂uσ
=

(
−δµσuν − δνσuµ

Lu
+
uµuνuσ

Lu3

)
Tµν =

1

L
(−nνTσν − nµTµσ + nµnνnσTµν) .

The assumption was made that Tµν is fully symmetric (which always holds if it is defined
through (2.2.37)) and nµ = uµ/u was used. Thus, one obtains:

∂A

∂uσ
=
nµ

L
(−2δνσ + nνnσ)Tµν

∂(A+B)

∂uσ
=
nµ

L
(−2δνσ + nνnσ)Tµν −

2λ2mp
2

L4
uσ.

For the RHS of (2.3.42), the only term contributing is χ, which gives:

∂χ3/2

∂ (∇µuσ)
=

3

2
χ1/2 ∂χ

∂ (∇µuσ)
=

3

2
χ1/2 ∂

∂uσ;µ


C︷ ︸︸ ︷

−1

4
ενρε

νρ

D︷ ︸︸ ︷
+

1

3
ε2

 . (2.3.44)

To avoid clutter, the standard notation was introduced:

∂µu
σ = uσ,µ (2.3.45)

∇µu
σ = uσ;µ . (2.3.46)
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Carrying out the differentiation:

∂C

∂uσ;µ
= −1

4

[(
∂ενρ
∂uσ;µ

ενρ
)

+

(
ενρ

∂ενρ

∂uσ;µ

)]
= (2.3.47)

−1

4

[(
δµν δρσ + δµρ δσν

)
ενρ + ενρ (δρσδ

νµ + δµρδνσ)
]

= −εµσ (2.3.48)

∂D

∂uσ;µ
=

1

3

∂ε2

∂uσ;µ
=

8

3
∇αu

αδµσ =
4

3
εδµσ . (2.3.49)

The following differential identity was used:

∂uµ

∂uν
= δµν . (2.3.50)

In addition, the definition of ε was utilised:

εµµ = 2∇µu
µ. (2.3.51)

Plugging these results into (2.3.42), the four equations of motion are obtained as:

3m2
p

2L2
∇µ

[
χ1/2

(
−εµσ +

4

3
εδµσ

)]
=
nµ

L
(−2δνσ + nνnσ)Tµν −

2λ2mp
2

L4
uσ. (2.3.52)

Multiplying both sides by −L, one finally arrives at a form comparable to that given in
[26]:

−
3m2

p

2L
∇µ

[
χ1/2

(
−εµσ +

4

3
εδµσ

)]
= nµ (2δνσ − nνnσ)Tµν +

2λ2mp
2

L3
uσ . (2.3.53)

However, it must be noted that there is a difference in sign for the second term on the
RHS between the result obtained here and that of [26]. This is encouraging, as it is noted
in [31] that a mistake is present in [26], in the calculation of the energy-momentum tensor
in a de Sitter background, and the way to avoid it is, in fact, to assume that the imposter
Lagrangian is incorrect, and should be rewritten as:

Lθ =
mp

2

L2
χ3/2 +

λ2mp
2

L4
(uµu

µ)2 . (2.3.54)

Neglecting the newly introduced power of 2 for the inner product uαu
α, the modification

would hence lead to the equations of motion initially proposed in [26], namely, the second
term on the RHS would become:

2λ2mp
2

L3
uσ → −

2λ2mp
2

L3
uσ. (2.3.55)

Through the above substitution, the EOM shown in eq. (9) of [26] are recovered.
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The observation put forward by [31] to modify the Lagrangian has been motivated
through the derivation presented above. The latter has been carried out indepen-
dently.

However, the correction has no relevance for the connection to the MOND equation since
the mass of the imposter field λ is set to zero, as explained in the next section.

2.4. Nonrelativistic Limit

2.4.1. Assumptions

Following [26], five assumptions are made to obtain a non-relativistic limit to make
contact with MOND:

1. The mass of the imposter field uα can be entirely neglected, so that λ = 0. In [26],
the reason is given a posteriori, after the non-relativistic gravitational potential has
been obtained. It states that the approximation used holds for L2 � r2, with r
the distance between the gravitationally attracted bodies. This certainly holds for
galaxies and clusters, the scale at which the approximation is aimed.

2. The reference frame is chosen to be close to the rest frame of uα, so that the spatial
component of the unit 4-vector in the direction of uα is vanishing:

nα =
uα

u
≈
(
−1,~0

)
(2.4.56)

It is important to note the vagueness of the definition of this quantity in [26], which
is not given in tensorial form but written as n, with no indication of whether it is the
vector or covector form of nα. Since the metric tensor used is of the form − + ++,
there is, in fact, a factor of −1 which is not specified. This will lead, as shown in
this section, to an ambiguity in the calculation. It should be noted that by using
the definition given in [26], one obtains:

φ =

√
−uαuα
L

=
u

L
. (2.4.57)

Alongside (2.4.56), this implies:

u0

u
=

u0

φL
= −1→ u0 = −φL (2.4.58)
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3. The solution is both spherically symmetric and time independent.

4. The energy momentum tensor is assumed to correspond to a pressureless fluid, char-
acterised by Tiµ = 0 and T00 = ρ.16

5. The background is assumed to be that of flat spacetime, so covariant derivatives are
replaced by partial derivatives.

Although these assumptions seem reasonable, the last one is, in fact, not strictly al-
lowed or correct. Replacing covariant derivatives by partial derivatives when working on
flat spacetime is only allowed if working with Cartesian coordinates, as the Christoffels
then vanish. However, generally:

The replacement of covariant derivatives by partial derivatives can only occur in
Cartesian coordinates for flat spacetime. This procedure is not allowed if working
in spherical coordinates, as in this case. Consequently, the calculations contain a
serious mistake.

2.4.2. RHS: The Source Term

First, the RHS of (2.3.53) is worked out, as it contains no derivative terms. By applying
Tiµ = 0 and taking the λ→ 0 limit, one obtains:

n0
(
2δ0
σ − n0nσ

)
T00 = (2.4.59)

−
(
2δ0
σ + nσ

)
ρ =

{
−(2 + 1)ρ = −3ρ σ = 0

0 σ 6= 0
(2.4.60)

where the assumption was made that definition (2.4.56) had the correct index placement.
It can now be seen that the answer differs by a factor of 3 from the one obtained in
[26]. Instead, if one assumes that the definition (2.4.56) is for the covector nα, the RHS
simplifies instead to 3ρ, which would result in a negative mass density. It is thus clear
that the vector form is the correct one. Nonetheless:

The mass density obtained in [26] is wrong by a factor of 3. This will directly impact
the inferred value of a0 when deriving the PDE for the MOND potential φ.

16Pressureless fluids are commonly used in astrophysics and cosmology to represent models of particles
that interact exclusively through gravity. They can give a very good approximation of the structure of
galaxies and clusters.
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2.4.3. LHS: The MOND Term

Before proceeding with the simplification of the LHS involving differentiation, it is
necessary to return to the claim that for flat spacetime one can simply convert covariant
derivatives to partial derivatives. It is true that Minkowski spacetime is, in fact, flat,
and its description in Cartesian coordinates does not produce any non-zero Christoffel
symbols. However, in order to describe a spherically symmetric system, considering only
differentiation with respect to the radial coordinate, spherical coordinates must be used.
Although the spacetime described is the same, there are now non-vanishing Christoffel
symbols, which are listed here for convenience (as can be found, for example, in [32]):

Γrθθ = −r, Γrφφ = −r sin2 (θ) , Γθrθ =
1

r
(2.4.61)

Γθφφ = − sin (θ) cos (θ) , Γφrφ =
1

r
, Γφθφ = cot (θ) . (2.4.62)

When looking at the LHS of (2.3.53), ones needs to consider whether any of the Christoffel
symbols from (2.4.61) are non vanishing. If this is the case, the covariant derivative does
not match the partial derivative. Analysing, term by term, the LHS of (2.3.53) one gets:

∇αu
β = ∂αu

β + Γβαλu
λ = ∂αu

β + Γβα0u
0 = ∂αu

β. (2.4.63)

The definition ni = 0 was used, and it was noted from (2.4.61) that there are no non
vanishing Christoffel symbols for the 0th index t. One finds similar results for the covariant
divergence:

∇µu
µ = ∂µu

µ + Γµµλu
λ = ∂µu

µ + Γµµ0u
0 = ∂µu

µ. (2.4.64)

The same can be said for the covariant derivative of the covector:

∇αuβ = ∂αuβ − Γλαβuλ = ∂αuβ. (2.4.65)

Moreover, by definition the covariant derivative reduces to a partial derivative when ap-
plied to a scalar function17, so one can directly conclude:

∇µε = ∂µε, ∇µχ = ∂µχ. (2.4.66)

The assumption made by Hossenfelder about utilising partial derivatives has proved valid
up until now. However, this is merely a coincidence:

The factor that allows the use of partial derivatives up to this point is the chosen
reference frame, in which the spatial components of ua vanish, as do any relevant
Christoffels.

17This notion is intuitive, as scalars do not possess a direction, and transporting them between two
points in a curved spacetime will have no impact on their value.
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If this assumption is not maintained, or the spherical symmetry is dropped, one generally
has to use covariant derivatives. By utilising what was found in (2.4.63)-(2.4.66), one can
explicitly evaluate the kinetic term, starting from the definition of χ:

χ =
4

3
(∇νu

ν)(∇µu
µ)− 1

2
(∇µuν)(∇µuν)− 1

2
(∇µuν)(∇νuµ) = (2.4.67)

4

3
(∂νu

ν)(∂µu
µ)− 1

2
(∂µuν)(∂

µuν)− 1

2
(∂µuν)(∂

νuµ). (2.4.68)

Noting that the only combination giving a non-zero result is ∂ru
0, which cannot be achieved

in the first and third term, the above simplifies to:

χ = −1

2
(∂µuν)(∂

µuν) = −1

2
(∂ru0)(∂ru0) =

1

2

(
∂ru

0
)2
. (2.4.69)

To obtain ∂r = ∂r and u0 = −u0 in the last expression, the metric for Minkowski space-
time in spherical coordinates, which has the following spacetime interval, was used (it is
important to note the difference between the angular variable ϕ and the potential φ):

ds2 = −dt2 + dr2 + r2dθ + r2 sin2 (θ) dϕ. (2.4.70)

It is now opportune to pause and analyse the form of the kinetic term in this regime. It
is easy to see that for a static, spherically symmetric scalar potential φ (r) the following
always holds:

∇µ (φ) = (0, ∂rφ, 0, 0) =⇒ (∇µφ)2 = (∇φ)2 = (∂rφ)2 (2.4.71)

After re-writing u0 = −φ/a0, it can then be seen that χ corresponds to the argument of
the function F (u) in the nonrelativistic Lagrangian for MOND given in (1.7.64), up to a
factor of 1/2.

The power 3/2 for χ in the CEG Lagrangian is in direct analogy with the func-
tion F (u) for the deep MOND limit. The current EOM will inevitably generate a
potential proportional to that of deep MOND.

Proceeding with the calculation, one gets:

∇µχ
1/2 = ∂µχ

1/2 =
1

2
χ−1/2∂µχ =

1

4
χ−1/2∂µ

(
∂ru

0
)2
. (2.4.72)

As explained for (2.4.68), ε = 2∂µu
µ = 0, yielding an RHS of the form:

−
3m2

p

2L
∇µ [
√
χ (−εµσ)] =

3m2
p

2L
(
√
χ∇µε

µ
σ + εµσ∂µ

√
χ) . (2.4.73)

The reason why the covariant derivative was kept on the scalar term will soon become
apparent. The equation given in [26] is for the σ = 0 term, which is the only nonzero
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component of (2.4.59), and is calculated as:

3m2
p

2L

 A︷ ︸︸ ︷√
χ∇µε

µ
0 +

B︷ ︸︸ ︷
εµ0∂µ
√
χ

 (2.4.74)

A =
√
χ∇µ (∇0u

µ +∇µu0) =
√
χ

∇µ

=0︷ ︸︸ ︷
∇0u

µ +∇µ∇µu0

 . (2.4.75)

It is useful to introduce the expression for the Laplace-Beltrami operator,18 defined as:

∇µ∇µf =
1√
|g|

∂

∂xµ

(
gµν
√
|g| ∂f
∂xν

)
. (2.4.76)

In the above expression, |g| is the magnitude of the determinant of the metric tensor,
which for Minkowski space in spherical coordinates is given by:

|g| =

∣∣∣∣∣∏
i

gii

∣∣∣∣∣ =
∣∣r4 sin2 (θ)

∣∣ . (2.4.77)

We then arrive at:

A =
√
χ

1

r2 sin (θ)

∂

∂xµ

(
gµνr2 sin (θ)

∂u0

∂xν

)
= (2.4.78)

−√χ 1

r2

∂

∂r

(
r2∂u

0

∂r

)
. (2.4.79)

The only non vanishing derivative is the radial one, so sin (θ) cancels out. Furthermore,
grr = 1 was used, while the minus sign was picked up by raising u0 = −u0. At this point
it is important to note that, using partial rather than covariant derivatives in (2.4.74), the
result would be considerably different, since the Laplace-Beltrami operator could not be
utilised:

A = −√χ ∂
∂r

(
∂u0

∂r

)
= −√χ∂

2u0

∂r2
. (2.4.80)

As expected, the use of partial in place of covariant derivatives results in a different,
incorrect, set of EOMs.

The second term from (2.4.74) is expanded as:

B = εµ0∂µ
√
χ =

1

2
εµ0χ

−1/2∂µχ =
1

4

√
2

|∂ru0|
∇ru0∂r

(
∂ru

0
)2

= (2.4.81)

−1

4

√
2

|∂ru0|
∂ru

0∂r
(
∂ru

0
)2
. (2.4.82)

18The Laplace-Beltrami operator is the equivalent of the Laplacian for curved space or curvilinear
coordinates. In fact, one can derive the Laplacian for flat space in curvilinear coordinates through this
operator.
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The following was used:
∇ru0 = ∂ru0 = −∂ru0. (2.4.83)

It is now possible to evaluate the full expression:

A+B =
√
χ∇µε

µ
0 + εµ0∂µ

√
χ = (2.4.84)√

1

2

1

r2

∂

∂r

(
r2∂u

0

∂r

)
+

1

4

∂u0

∂r

∂

∂r

(
∂u0

∂r

)2 √
2

∂ru0
= (2.4.85)√

1

2

∣∣∣∣∂u0

∂r

∣∣∣∣ ∂2u0

∂r2
+
√

2
1

r

∣∣∣∣∂u0

∂r

∣∣∣∣ ∂u0

∂r
+

√
1

2

(∂ru
0)

2

|∂ru0|
∂2u0

∂r2
= (2.4.86)∣∣∣∣∂u0

∂r

∣∣∣∣
(√

1

2

∂2u0

∂r2
+
√

2
1

r

∂

∂r
u0 +

√
1

2

∂2u0

∂r2

)
= (2.4.87)

√
2

∣∣∣∣∂u0

∂r

∣∣∣∣ (∂2u0

∂r2
+

1

r

∂u0

∂r

)
. (2.4.88)

The equivalent notations ∂r and ∂
∂r

were each used where more convenient to avoid clutter.
To make contact with MOND, one has to rewrite the following expression:√

1

2

1

r2

∂

∂r

(
r2∂u

0

∂r

∣∣∣∣∂u0

∂r

∣∣∣∣) = (2.4.89)√
1

2

(
2

r

∂u0

∂r

∣∣∣∣∂u0

∂r

∣∣∣∣+
∂2u0

∂r2

∣∣∣∣∂u0

∂r

∣∣∣∣+
∂u0

∂r

∂

∂r

∣∣∣∣∂u0

∂r

∣∣∣∣) . (2.4.90)

From the derivative of the absolute value:

d |x|
dx

=
x

|x|
=
|x|
x
, (2.4.91)

one retrieves the same expression as eq. 2.4.88:

√
2

∣∣∣∣∂u0

∂r

∣∣∣∣ (∂2u0

∂r2
+

1

r

∂u0

∂r

)
. (2.4.92)

In order to obtain the exact form expressed by MOND, the Laplace-Beltrami operator is
recognised in (2.4.89):

√
1

2

1

r2

∂

∂r

(
r2∂u

0

∂r

∣∣∣∣∂u0

∂r

∣∣∣∣) =

√
1

2

∇·︷︸︸︷
∇µ (

|∇u0|︷ ︸︸ ︷∣∣∇νu0
∣∣ ∇u0︷ ︸︸ ︷
∇µu0). (2.4.93)

This leads directly19 to the MOND expression for u0:

1√
2
∇ ·
(∣∣∇u0

∣∣∇u0
)

=
1√
2a0

∇ ·
[(
|∇φ|
a0

)
∇φ
]
. (2.4.94)

19The extra factor of 1/a0 is cancelled in the final EOM by the prefactor of the LHS.
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When equating this to the RHS of the EOM, and reinstating the constant prefactors one
finally obtains:

−3a0

2

1√
2a0

∇ ·
[(
|∇φ|
a0

)
∇φ
]

= −3Gρ =⇒ ∇ ·
[(
|∇φ|
a0

)
∇φ
]

= 2
√

2Gρ

(2.4.95)
The above certainly resembles the MOND PDE. Although the prefactors are clearly in-
correct, the coefficients in the Lagrangian could be changed to obtain the correct scale.

If the case of working exclusively with partial derivatives, the same result would not
have been achieved. Instead, by using (2.4.80), one would have arrived at an LHS of the
form:20

√
2
∣∣∂ru0

∣∣ ∂2u0

∂r2
=

√
1

2

∂

∂r

(∣∣∣∣∂u0

∂r

∣∣∣∣ ∂u0

∂r

)
=

1√
2
∂r (∂rφ)2 . (2.4.96)

This would determine the EOM:

∂r

(
∂rφ

a0

)2

= 2
√

2Gρ. (2.4.97)

In this case the correspondence with MOND from (2.4.93) could not be retrieved. By
consistently using partial derivatives, Hossenfelder in fact arrives at the final expression21:

3m2
pL

2
∂r (∂rφ)2 = ρ =⇒ ∂r (∂rφ)2 =

2

3
Ga0ρ. (2.4.98)

The error in the prefactor for the mass distribution is to be expected given the mentioned
calculation mistake in the RHS. The real problem is that the potential stemming from the
above PDE is not logarithmic:

The consistent use of partial derivatives leads to EOM that do not yield a logarithmic
potential, as is, instead, claimed by Hossenfelder.

2.4.4. The Non Spherically Symmetric Case

Having made this observation, another question arises after this procedure: is it pos-
sible to further relax the assumptions made to obtain the nonrelativistic limit, in order
to make contact with the MOND equation for a general system which does not possess
spherical symmetry? After all, one could argue that many of the steps made, such as only
considering the radial derivative of u0, could feasibly be generalised to the three Cartesian

20The absolute value in the derivative of the field can be ignored when realising that the value of the
gravitational acceleration never changes sign. In the convention used, the acceleration is always positive.

21It should also be observed that the Planck mass mp has the wrong definition in [26], given through
G = m2

p rather than the correct G = m−2
p
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coordinates. First, we need to check whether the scalar quantity of interest, χ, has the
same structure when considering all spatial derivatives in Cartesian coordinates. This
amounts to evaluating each of its terms, in a similar way to what was done in (2.4.67),
but for the general case:

χ =
4

3

=0︷ ︸︸ ︷
(∇νu

ν)(∇µu
µ)−1

2
(∇µuν)(∇µuν)− 1

2

=0︷ ︸︸ ︷
(∇µuν)(∇νuµ) . (2.4.99)

For the first term it was observed that:

∇iu
i = ∇0u

0 = 0. (2.4.100)

Similarly, for the third term:

=0︷ ︸︸ ︷
(∇0ui)

(
∇iu0

)
= (∇iu0)

=0︷ ︸︸ ︷(
∇0ui

)
= 0. (2.4.101)

Without assuming any specific reference frame, but still requiring that spacetime is flat
so that all Christoffel symbols containing t are vanishing22, the remaining term yields:

χ = −1

2
(∇µuν)(∇µuν) = −1

2
(∇iu0)(∇iu0) =

1

2
(∇iu

0)(∇iu0). (2.4.102)

The above is justified by noting that for any flat spacetime metric one has u0 = −u0.
Proceeding further, as the static case is still implied, the time derivative vanishes and one
has:

∇µχ =
1

2
∇µ

[
(∇iu

0)(∇iu0)
]
→ 1

2
∇j

[
(∇iu

0)(∇iu0)
]
. (2.4.103)

The other term that needs to be evaluated is:

∇µε
µ
σ

σ=0−−→ ∇µ

 =0︷ ︸︸ ︷
∇0u

µ +∇µu0

 = (2.4.104)

∇µ∇µu0 = ∇i∇iu0 = −∇i∇iu0. (2.4.105)

The final expression is the spatial Laplace-Beltrami operator or, in other words, the Lapla-
cian in arbitrary 3D coordinates. It is now possible to re-evaluate the full expression in
general flat spacetime by making use of (2.4.104) and (2.4.103), neglecting the constants
for the moment, as:

(
√
χ∇µε

µ
σ + εµσ∇µ

√
χ) = (2.4.106)

−
√

1

2
(∇iu0) (∇iu0)

(
−∇i∇iu0

)
−
(
−∇ju0

) 1

2

1√
1
2

(∇iu0) (∇iu0)

1

2

C︷ ︸︸ ︷
∇j

[(
∇iu

0
) (
∇iu0

)]
.

(2.4.107)

22Regardless of the coordinates chosen, spacetime metrics will always have vanishing Christoffel con-
taining the time component. This is due to the fact that for observers in the same inertial frame, the time
coordinate is the same regardless of spacetime location.
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So far, no assumption about a coordinate system has been made. However, to reproduce
the MOND equation, we need to identify the vector calculus operators for gradient and
divergence:

∇i → ∇, ∇iu
i = ∇ · ui. (2.4.108)

This requires raising the index on expressions containing ∇i. However, doing so implies
the use of the metric tensor. Therefore, to obtain an explicit expression we have to
choose a coordinate system. Without loss of generality, from now on we will assume that
the coordinates used are Cartesian, where the spatial metric is the 3x3 identity matrix,
gij =diag(1, 1, 1). So in this case one simply has ∇i = ∇i = ∇, the gradient operator.
From (2.4.107), we then obtain:

C = ∇j

[(
∇iu

0
) (
∇iu0

)]
= ∇iu

0∇j∇iu0 +∇iu0∇j∇iu
0 = 2∇iu

0∇j∇iu0. (2.4.109)

Plugging the expression obtained above back into (2.4.107) yields:

√
1

2

(∣∣∇iu0
∣∣∇j∇ju0 +

∇ju0∇iu
0∇j∇iu0

|∇ku0|

)
. (2.4.110)

Now, this does not look like the general MOND equation, but it is. This can be proven
by starting from the desired result and working backwards:

∇ ·
(∣∣∇u0

∣∣∇u0
)

= ∇i

(∣∣∇ju
0
∣∣∇iu0

)
= (2.4.111)∣∣∇ju

0
∣∣∇i∇iu0 +∇iu0∇i

∣∣∇ju
0
∣∣ = (2.4.112)∣∣∇ju

0
∣∣∇i∇iu0 +

∇iu0∇i∇ju
0∇ju0

|∇ku0|
= (2.4.113)

∣∣∇ju
0
∣∣∇i∇iu0 +

∇ju0∇iu
0∇j∇iu0

|∇ku0|
. (2.4.114)

In the third line the derivative of the absolute value was used:

∇i

∣∣∇ju
0
∣∣ = ∇i

∣∣∇ju
0∇ju0

∣∣1/2 = (2.4.115)

∇i∇ju
0∇ju0 +∇i∇ju0∇ju

0

2 (∇ku0∇ku0)1/2
=
∇i∇ju0∇ju

0

|∇ku0|
. (2.4.116)

In the last line we used the fact that ∇i and ∇j commute in Cartesian coordinates.

It has been proven that, without assuming any type of symmetry, the MOND equa-
tion can be fully recovered in Cartesian coordinates in a flat spacetime. In this
general case, the kinetic term is χ = −1/2 (∇µuν) (∇µ∇ν).
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2.5. An Outlook on the Nonrelativistic Limit of CEG

Having reproduced the approach by Hossenfelder for the nonrelativistic limit of CEG,
it is clear that there are multiple errors in the procedure, some negligible and others
problematic. The inaccuracies are the following:

1. The RHS is missing a factor of 3 in front of the mass distribution. Although not
disastrous, the potential resulting from a full PDE using the wrong mass distribution
would imply an erroneous value of a0 to match observations;

2. The LHS is missing a factor of
√

2, possibly due to the evaluation of
√
χ;

3. The given definition of the energy-momentum tensor is incorrect.

Furthermore, all but one of the assumptions made to obtain the nonrelativistic limit seem
flawed:

1. The normalisation of the imposter field is given as the square of the potential, which
is identified in the nonrelativistic limit as a logarithm. It is claimed that the mass
term vanishes for r � L, which includes all non cosmological scales. The problem
is then evident: the mass term will diverge for small r, as limr→0 (ln (r)) 2 =∞.

The mass term diverges in the nonrelativistic limit for small r, and neglecting
it in the derivation cannot be justified.

2. It is assumed that one can choose a frame in which the imposter field is at rest. As
the theory claims to expand EG, the spatial component of uµ must follow Verlinde’s
prescription, ui ∝ φ/a0. On a Minkowski background, over which the derivation is
carried out, this is inconsistent with a timelike field given the normalisation chosen
by Hossenfelder. This will be shown to be true in the next chapter, but the idea is
the following:

Either the chosen normalisation for uα is incorrect, or the field is lightlike.
Both possibilities clash with the choice of a rest frame for uα, in which the
spatial components vanish.

3. It is assumed that the solution is spherically symmetric. This should, in fact, be the
case if one wants to match the deep MOND limit and obtain a logarithmic potential.

We have shown that the MOND equation can be retrieved without assuming
the potential only has radial dependence.
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4. The use of partial derivatives instead of covariants is completely incorrect when
working with curvilinear coordinates, such as the spherical coordinates needed to
derive a spherically symmetric solution. Using partial derivatives results in a PDE
whose solution is not logarithmic:

The use of partial derivatives is not justified and leads to an incorrect form
for the potential.

Moreover, no mention is made of an acceleration scale below which one should enter
the deep MOND regime. Consequently, the only possibility the theory allows for is the
coexistence of Newtonian and deep MOND potential in all regimes, with one of the two
terms dominating the sum depending on the distance from the source. This is in clear
contrast with the main tenet of MOND, which predicts that the transition should follow
from a scale of acceleration, rather than distance. The following can then be said:

The analysis carried out for the nonrelativistic case of CEG does not correctly
represent Verlinde’s idea, nor does it convincingly recover MOND behaviour.

The only consistent way in which a0 enters CEG is through the normalisation of uµ.
However, we show in chapter 3 that this normalisation leads to inconsistencies, and is
once again not compatible with Verlinde’s EG.



Chapter 3

Addressing the Inconsistencies in Covariant
Emergent Gravity

As shown in the previous chapter, several inconsistencies and conceptual mistakes
have been found in the formulation of CEG and the resulting EOM. Various problems
were pointed out while introducing the theory. However, certain considerations pertaining
to choices made when defining the theory are best described separately, now that the
results stemming from the approach taken by Hossenfelder have been shown.

The aim of this chapter is to describe a number of alternative approaches and ideas
that seem more consistent with the original idea of EG, and which also eliminate certain
contradictions present in the CEG framework.

3.1. A Natural Set of Coefficients for χ

The arguments used by Hossenfelder to determine the coefficients of the kinetic term
χ cannot be coherently generalised. The requirement of conservation of the energy-
momentum tensor in a De Sitter background gives rise to coefficients which are either
argued against, or require a modification of the given Lagrangian, as shown in [28] [29]. It
hence appears that either the definition of the Lagrangian is flawed, or a more systematic
approach is needed in determining the coefficients for χ. Therefore, it is useful to analyse
closely the equation from [21] through which Hossenfelder builds the Lagrangian in the
first place. This is eq. 7.37 from [21]:1(

8πG

a0

ΣD

)2

= −
(
d− 2

d− 1

)
∇i

(
φB
a0

ni

)
. (3.1.1)

As shown at the start of the previous chapter, this can be simplified by using eq. 7.28 of
[21],

ΣD =
a0

8πG
ε̃. (3.1.2)

1It should be noted that for ease of comparison, the notation used for the following equations is identical
to that of [21], with all indices being lowered and latin indices representing 3-component vectors.

49



50 3. - Addressing the Inconsistencies in Covariant Emergent Gravity

This gives:

ε̃2 = −
(
d− 2

d− 1

)
∇i

(
φB
a0

ni

)
. (3.1.3)

It is useful give once again the definition of ε̃, the largest principal strain, correspond-
ing to the eigenvalue of the deviatoric strain tensor in the direction of the (normalised)
displacement field:

ε′ijnj = ε̃ni. (3.1.4)

Now, while in [26] the quantity χ = ε̃2 is treated as an arbitrary combination of terms
quadratic in the derivative of the field, two important inequalities are overlooked, namely
eqs. 7.29 and 7.30 of [21], which read respectively:2∫

B

ε̃2dV ≤ VM(B) (3.1.5)

ε̃2 ≤
(
d− 2

d− 1

)
ε′ij

2. (3.1.6)

In the above, B defines a ball of radius r, and the equality in 7.29 retrieves the Tully
Fisher relation when used alongside 7.30. As explained in chapter 1, MOND also predicts
the same relation, and hence one could use this equality to fix the coefficients of the
Lagrangian. In addition, the equality of 7.29 is used to arrive at 7.37, the equation from
which the Lagrangian in [26] is initially obtained. It would hence appear a reasonable step
to also assume equality for 7.30. By doing so, and plugging the relation into 7.37, one
obtains:

− ε′ij2

(
d− 2

d− 1

)
=

(
d− 2

d− 1

)
∇i

(
φBni
a0

)
. (3.1.7)

After the dimension-dependent factors cancel out, one gets:

ε′ij
2 = ∇i (ui) =⇒ ε′ij

2 = χ. (3.1.8)

If one were consistent with Hossenfelder’s generalisation of all 3D quantities to tensors
in 4D spacetime with the same structure (as was done for the strain tensor and the
displacement vector), plugging the definition of the deviator stress tensor ε′ij in the above
we would then have:

χ =

(
εµν −

1

4
εµµgµν

)2

= εµνε
µν − 7

4

(
εµµ
)2 6= −1

4
εµνε

µν +
1

3

(
εµµ
)2
. (3.1.9)

The RHS of the inequality is the form χ takes with the parameters chosen by Hossenfelder.
The following can be observed:

2The equality for eq. 3.1.5 holds for the maximum value in the largest principle strain ε̃.
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When generalising all quantities of EG from 3D to 4D spacetime, the coefficients
for χ derived from [21] do not match those utilised by Hossenfelder.

Ultimately, this does not prove that the set of coefficients stemming from the equality with
the deviator stress tensor is the correct one. This would however be the most natural choice
if one argues that the displacement vector ui has the same magnitude when generalised to
the 4-vector uα. However, the next section shows that the magnitude chosen for uα leads
to a number of contradictions.

3.2. Imposter field normalisation

In [26], the motivation for the timelike nature of the imposter field uµ is given with
respect to its magnitude. Hossenfelder claims that, although no indication is given in [21]
about the displacement field having a mass, setting uµ to be massless would clash with
its normalisation. Hence, a mass term is written down for the imposter Lagrangian Lθ,
without a physical reason, and with no equivalent description in Verlinde’s original paper.

Moreover, the only point of contact that CEG makes with observationally confirmed
data is in its E.O.M.s in the nonrelativistic limit, where MOND is retrieved. However, in
this limit the mass term is neglected. It is argued that this is possible when working on
the scale of galaxies and clusters, the size of which is negligible compared to that of the
entire visible universe. It has, however, been shown in the previous chapter that the mass
term diverges on non cosmological scales, indicating that this assumption does not hold.

Removing the mass term completely from the Lagrangian would have no impact on
the quantifiable predictions of the theory. It should also be mentioned that both in the
derivation presented here and that of [31], the mass term is found to have either the
wrong sign, or the wrong power. Therefore, it is inconsistent with either the relativistic
equations of motion presented directly in [26], or with the claim of conservation of the
energy-momentum tensor in a De-Sitter background,3 or with both.

What, then, can really be said about the nature of the imposter field, and whether
it should, in fact, be a timelike or lightlike vector field, or not?4 In order to answer the
question, it is best to look directly at the normalisation of the spatial component of the
field, ui, given by eq. 6.4 and by the condition given immediately below eq. 6.19 in [21],
which read respectively:

ui =
φ

a0

ni (3.2.10)

|ni|2 = nin
i = 1. (3.2.11)

3This is the key claim used by Hossenfelder to fix the coefficients of the kinetic term of uµ.
4This excludes a priori the possibility of a spacelike quantity to avoid acausal behaviour such as

superluminal propagation.
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By combining these two relations, it is easy to see that:

uiu
i =

(
φ

a0

)2

nin
i =

(
φ

a0

)2

. (3.2.12)

After identifying the Hubble radius L as the inverse of the low acceleration scale constant
a0 as:

a0 =
1

L
, (3.2.13)

(3.2.12) becomes:

uiu
i = φ2L2 =⇒ φ =

√
uiui

L
. (3.2.14)

Hossenfelder uses the normalisation:

φ =

√
−uαuα
L

. (3.2.15)

When compared to what was just found above, this would imply, when ignoring spacetime
curvature and raising indices with the Minkowski metric:5

− uαuα = uiu
i =⇒

(
u0
)2

= 2uiu
i = 2 (φL)2 . (3.2.16)

All that we have done so far has been to simply compare the information given in [21]
to the assumptions made in [26] by equating eq. 3.2.14 to eq. 3.2.15. However, a crucial
observation can now be made: in the derivation of the non-relativistic limit of the E.O.M.s
in [26] from which the MOND equation is retrieved, it is assumed that it is possible to
work in the rest frame of the imposter field, in which the following has to hold:

nµ ≈
(
−1,~0

)
. (3.2.17)

If this holds true, then automatically one also has:

nin
i = 0 =⇒ uiu

i = 0, ∀φ 6= 0 (3.2.18)

directly implying, by the use of (3.2.16), that the following has to hold:(
u0
)2

= 0 =⇒
(
n0
)2

= 0→ n0 = 0. (3.2.19)

Subsequently, this translates into the statement:

As the space and time components of both nα and uα are proportional, one cannot
vanish without the other, and a rest frame such as the one in [26] cannot be defined.

5This corresponds to the case of the limit in which Verlinde works, of a perturbed flat spacetime.
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This is an indication that either the time-like normalisation is incorrect, or one has
to accept that there is no rest frame for the imposter field in the first place.6 Both
conditions can be satisfied simultaneously: for a light-like field there is no rest frame, and
the normalisation would instead be:

uαu
α = 0. (3.2.20)

One immediate advantage of having a light-like field is the ability to uniquely determine
the time component by using the spatial component. In this particular case Verlinde
provides the value for ui, and one can then determine the time component using (3.2.20)
for the case of a Minkowksi background:7

u0u
0 = uiu

i → u0 = φL. (3.2.21)

This makes it possible to explicitly write out the imposter field as:

uµ =
(
u0, ui

)
=
(
φL, φniL

)
= φL

(
1, ni

)
(3.2.22)

This explicit form makes it clear once again that, since the spatial and time component
have the same magnitude, one cannot neglect either one.

3.3. Interaction Term and Metric for a Lightlike Field

When choosing a light-like normalisation for the imposter field, a problem immediately
arises if one wants to use the same Lagrangian as the one adopted in [26]. The interaction
term has the form:

Lint = −u
µuν

Lu
Tµν , (3.3.23)

with Tµν the energy momentum tensor of normal matter and u =
√
−uνuν .

The original interaction term for CEG is incompatible with the Lagrangian for a
light-like field, as it would imply division by zero.

It is thus necessary to further investigate the origin of this term and search for alternatives
for the interaction between the imposter field and matter.8

6It is possible to be consistent with the spatial component given by Verlinde and keep timelike nor-
malisation at the same time. This option will be discussed in the next chapter.

7One could similarly consider a Minkowski background perturbed by the same potential appearing in
the vector field. Such an approach is discussed in the next chapter when exploring Generalised Einstein
Aether theories.

8It has already been stated that having a direct interaction with matter of the form given in CEG
implies the presence of two non conformally related metrics. This is incompatible with observations, and
has to be avoided.
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As explained for (2.2.35), the interaction Lagrangian originates from the use of an
effective spatial metric h̃ij, defined as:

h̃ij = gij −
uinj
L

. (3.3.24)

In the above expression, gij is a generic spatial metric.9 As has been noted already for
(2.2.35), this expression stems from eq. 6.5 in [21]:

hij = δij −
1

L
(uinj + niuj) . (3.3.25)

However, this is not the first appearance of a spatial metric in [21], as already in eq. 5.8
the following definition was given:

hij = δij − 2φ (x)ninj. (3.3.26)

In both cases the vector ni is defined as:

ni ≡
xi
|x|
. (3.3.27)

xi is the position vector with respect to the center of a sphere, and |x| its magnitude,
making ni the unit direction vector. It is fairly straightforward to show that the two
equations, 5.8 and 6.5, are in fact equivalent by using (3.2.10):

ui = φLni =⇒ 1

L
(uinj + niuj) =

1

L
φL (ninj + ninj) = 2φninj. (3.3.28)

It is at this point that the generalisation of hij to a spacetime metric has to deviate from
the approach followed by Hossenfelder. Instead of simply promoting each 3-vector to a
4-vector (as done for ui → uµ, thus causing the conflict for the normalisation), one can
note that the spatial metric used is, in fact, simply obtained by the general spacetime
metric given in eq. 5.7 of [21], with spacetime interval:

ds2 = −dt2 + dx2
i − 2φ

(
dt2 +

(xidx
i)

2

|x|2

)
= (3.3.29)

−dt2 (1 + 2φ) + dx2
i − 2φ

(xidx
i)

2

|x|2
. (3.3.30)

In order to arrive at (3.3.30), (3.3.27) was used. To obtain the explicit form of the metric,
one can rewrite it in general form as:

ds2 = gµνdx
µdxν . (3.3.31)

9Hossenfelder uses the notation hij rather than gij , but this does not correspond to the quantity hij
defined by Verlinde.
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This can be simplified by rewriting the coordinate component of the last term in Cartesian
coordinates as:

(xidx
i)

2

|x|2
=

(xdx+ ydy + zdz)2

x2 + y2 + z2
. (3.3.32)

The equivalent matrix form reads:

1

x2 + y2 + z2


dx dy dz

dx x2 xy xz
dy yx y2 yz
dz zx zy z2

. (3.3.33)

As the eigenvalues en are given by:

e1 = 0, e2 = 0, e3 = 1, (3.3.34)

the matrix in the basis of the eigenvector is:


dx dy dz

dx 0 0 0
dy 0 0 0
dz 0 0 1

. (3.3.35)

After identifying the z-axis with the radial direction in spherical coordinates, one obtains:


dr dθ dϕ

dr 1 0 0
dθ 0 0 0
dϕ 0 0 0

. (3.3.36)

Finally, through the use of the above, we can rewrite the metric as:

ds2 = −dt2 (1 + 2φ) + (1− 2φ) dr2 + r2dθ2 + r2 sin2 (θ) dφ2. (3.3.37)

It is now simple to identify the components of the metric by comparison with (3.3.30):

g00 = − (1 + 2φ) , grr = 1− 2φ, gθθ = r2, gϕϕ = r2 sin (θ) . (3.3.38)

This is an interesting result: the metric describes a Minkowski spacetime perturbed by a
symmetric second rank tensor kµν :

gµν = ηµν + kµν , |kµν | � 1, (3.3.39)

as is explained e.g. in [6]. This procedure corresponds to a linearisation of gravity from the
full general relativistic approach, and is useful, among other things, for treating relativistic
phenomena such as light bending and gravitational radiation in the Newtonian limit. It is
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clear, by looking at (3.2.10), that the metric perturbation can be fully expressed in terms
of the imposter field:

k00 = krr = −2u0a0; kθθ = kϕϕ = 0. (3.3.40)

This apparently obvious statement has an important implication. In the work of Hossen-
felder an effective metric is given, and the metric perturbation couples to matter only.
As made clear in section 2.2, the effective metric is not conformally related to the back-
ground metric, which implies that there are two sets of distinct lightlike geodesics in the
spacetime. This inevitably leads to one of two problematic consequences. The first is:

If the imposter field couples to all nongravitational energy universally, one has a
bimetric theory, in which photons and gravitational waves travel along separate
geodesics.

Any theory predicting this behaviour can be falsified by observations indicating that
photons and gravitational waves have the same propagation speed. The discussion in the
next chapter will prove that such observations have indeed occurred, falsifying CEG if one
chooses to so interpret the interaction between energy and the imposter field. The second
alternative is the following:

Due to an unknown physical mechanism, the imposter field couples only to matter,
but not to the energy momentum tensor of the EM field, and hence photons.

This second interpretation would exempt the theory from being falsified based on obser-
vations on the equivalence of propagation speed between light and gravity. Nonetheless,
the following paradox follows directly from this approach: In CEG no transition exists
between Newton and MOND regimes, and the potential is always the sum of the two con-
tributions. We can translate this statement to the following infinitesimal transformation
of the Newton potential φ when adding the deep MOND potential φM :

φ→ φ̃ = φ+ ζφM . (3.3.41)

Here ζ functions as a bookkeeping parameter to indicate the infinitesimal change. We can
then note that, for small r, φ and φM are both negative. This directly implies that, for
small r, φ̃ < φ. Writing the spacetime interval for the Schwarzschild metric as a function
of the Newton potential plus infinitesimal addition yields:10

ds2 = −
(

1 + 2φ̃
)

dt2 +
1

1 + 2φ̃
dr2 + r2dΩ2. (3.3.42)

It follows that the Schwarzschild radius r̃s is shifted in this spacetime:

rs = 2GM = −2rφ→ r̃s = −2rφ̃ > rs. (3.3.43)

10This is the exact form of the Schwarzschild metric. Only a cosmetic change was carried out, −GM/r →
φ.
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As the Schwarzschild radius represents the event horizon, the spacetime would pos-
sess two event horizons. A photon could probe the region rs < r < r̃s inside of the
matter horizon, emerge and carry the quantum mechanical information describing
the spacetime beyond the horizon. Through the interaction with matter, this quan-
tum mechanical information could be passed on to a massive particle, which could
have ventured past the matter horizon r̃s by itself.

The identification of a single spacetime metric makes it possible to avoid the problems
stemming from a non conformal effective metric.11 All gravitational phenomena can then
be treated on the same footing. Moreover, a self interaction for the imposter field is
automatically introduced, with the field EOM evolving on a background that is perturbed
by the field itself.

The formalism for linearised gravity from [6] will now be followed to identify several
crucial quantities which will be needed for the treatment of gravitational lensing. The
next step is to separate the metric perturbation hµν into irreducible representations of the
rotation group, which are tensors of various rank that are transformed into themselves
under spatial rotations:

h00 = −2φ (3.3.44)

h0i = wi = 0 (3.3.45)

hij = 2sij − 2ψδij → ψ = −1

6
δijhij; sij =

1

2

(
hij −

1

3
δklhklδij

)
= 0. (3.3.46)

In the last line, sij vanishes as the metric is diagonal and sij encodes the traceless com-
ponents of hij.

3.3.1. An Important Observation on Linearised Gravity

Using the formalism in which one linearises the metric and resulting potentials describ-
ing the spacetime might seem contradictory. This is due to the fact that the redundant
degrees of freedom allow the choice of a gauge. In the transverse gauge, for example, the
Einstein equations become ∇2φ = 4πGρ.12 This implies that the potential has to satisfy
the Poisson equation. However, the above relation only holds when the only terms present
in the action are the Ricci scalar and the Lagrangian for the source fields.

11One could explore the possibility of a conformal metric, but that route is not followed throughout
this work.

12The expression for the transverse gauge is given in a simplified form, where one can observe that
the scalar degree of freedom Ψ corresponds to the gravitational potential and the T00 component of the
energy momentum is given by the matter density.
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The linearity constraint on the potential arises when deriving the Einstein equations
from the GR action with sources. Adding a vector field to the action modifies the
Einstein equations and the PDE for the φ. Linearity of the φ is no longer generally
imposed.

3.4. Geodesics of the Perturbed Metric

One phenomenon which is used for probing the (apparent) mass density of galaxies in
clusters is gravitational lensing. As photons always travel along geodesics, it is necessary
to derive the geodesic equations for the metric (3.3.29). As described in section 1.7.4,
these can be obtained by varying the action:

S =

∫
|ds| =

∫
dλ

(
−gµν

dxµ

dλ

dxν

dλ

) 1
2

. (3.4.47)

A helpful simplification can be made: since for timelike paths |ds| 6= 0, extremising |ds|
also extremises ds2, which means the action can be chosen to be:13

S =

∫
dλ

(
ds

dλ

)2

=

∫
dλ

(
gµν

dxµ

dλ

dxν

dλ

)
→ L = gµν

dxµ

dλ

dxν

dλ
. (3.4.48)

For massive particles, the affine parameter is λ = τ , the proper time. The geodesic
equations are then the Euler Lagrange (EL) equations, one for each coordinate. It is
convenient to work in spherical coordinates to simplify the calculations. The resulting
Lagrangian is:

L = − (1 + 2φ) ṫ2 + (1− 2φ) ṙ2 + r2θ̇2 + r2 sin2 (θ) ϕ̇2. (3.4.49)

It is important note once again the difference between the field φ and the coordinate ϕ.
As shown in section 1.7.4, the EL equations read:

d

dτ

(
∂L

∂ẋµ

)
=

∂L

∂xµ
. (3.4.50)

The geodesic equation is given as:

d2xµ

dτ
+ Γµνρ

dxν

dτ

dxρ

dτ
. (3.4.51)

13It may seem that this procedure is going against the goal of obtaining geodesics for photons, which
always travel on paths made of points separated by a zero spacetime interval. However, it can be shown
that the result of the calculations for timelike geodesics is also valid for lightlike geodesics.
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As previously mentioned, the Christoffel symbols can be obtained directly from the geodesic
equation for each coordinate. Assuming spherical symmetry, φ only depends on r and we
obtain:14

dφ

dτ
= ṙ∂rφ. (3.4.52)

Working out (3.4.50) then yields the four equations:15

ẗ+ ṫṙ
2∂rφ

1 + 2φ
= 0 (3.4.53)

r̈ − ṙṙ ∂rφ

1− 2φ
− θ̇θ̇ r

1− 2φ
− ϕ̇ϕ̇r sin2 (θ)

1− 2φ
+ ṫṫ

∂rφ

1− 2φ
= 0 (3.4.54)

θ̈ + θ̇ṙ
2

r
− ϕ̇ϕ̇ sin (θ) cos (θ) = 0 (3.4.55)

ϕ̈+ ṙϕ̇
2

r
+ ϕ̇θ̇

2 cos (θ)

sin (θ)
= 0. (3.4.56)

We can hence write down, after defining k ≡ 1− 2φ, in order to tidy up the expressions:16

Γttr =
∂rφ

1 + 2φ
Γrrr = −Γrtt = −∂rφ

k
Γrθθ = − r

k
(3.4.57)

Γrϕϕ = −sin2 (θ) r

k
Γθθr = Γϕϕr =

1

r
(3.4.58)

Γθϕϕ = − sin (θ) cos (θ) Γϕϕθ =
cos (θ)

sin θ
(3.4.59)

An important aspect of a spacetime is given by the symmetries it exhibits.17 Two types
of constants of motion can be identified and used to simplify the geodesic equations. The
first is the magnitude of the four-velocity vµ:18

−gµν
dxµ

dλ

dxν

dλ
= −vµvµ = ε→

{
0 lightlike path

1 timelike path
. (3.4.60)

The others are given by the Killing equation:

Kµ
dxµ

dλ
= C. (3.4.61)

14One should remember that all of Verlinde’s conclusions are only valid for a spherically symmetric
potential.

15As before, the notation ẋ represents differentiation w.r.t. the proper time τ .
16One must bear in mind that Christoffel symbols are symmetric in the lower two indices. Therefore, a

factor of two has to be accounted for when the two lower indices are not equal (as they are summed over,
and the two combinations are equivalent).

17As in the case of Noether’s theorem in classical field theory, symmetries in GR are often related to
conserved quantities, although definitions for energy and momentum, for example, do not always match
their flat spacetime counterparts.

18The notation vµ is not consistent with the literature, where the 4-velocity is usually uµ. vµ is used to
avoid confusion with the vector field treated so far. For a lightlike particle, the velocity w.r.t. the affine
parameter λ is equal to the 4-momentum, vµ = dxµ/dλ.
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C is a constant, three spatial Killing vectors are present for spherical symmetry, and
another one is found due to invariance under time translation (see e.g. [6]). The three
spatial Killing vectors can be identified with the magnitude and direction of the angular
momentum in a plane, while the one related to time translation can be identified with the
energy of a test particle.

The spacetime thus has five conserved quantities: the magnitude of vα, the two
directions of angular momentum, the magnitude of angular momentum and the
total energy.

The conservation of the direction of angular momentum allows one to limit the analysis
to that of the motion of a test body in a plane. Without loss of generality, one can hence
set:

θ =
π

2
=⇒ sin (θ) = 1 =⇒ θ̇ = 0. (3.4.62)

The two remaining Killing vectors can be found in two equivalent ways: by use of the
Killing equation or by identifying the constants of the motion from the relevant geodesic
equations for t and ϕ.19 From the geodesic equations, we observe the following:

d

dλ

(
∂L

∂ṫ

)
=

d

dλ

−2

E︷ ︸︸ ︷
(1 + 2φ) ṫ

 = 0 (3.4.63)

d

dλ

(
∂L

∂ϕ̇

)
=

d

dλ

2 sin2 (θ)

L︷︸︸︷
ϕ̇r2

 = 0. (3.4.64)

E is the total energy and L is the magnitude of the angular momentum. In the same qay,
by noting that the metric does not depend on t or ϕ, one can identify the Killing equations
for the related Killing vectors, Kµ and Rµ:

Kµ = (∂t)
µ = (1, 0, 0, 0)→ Kµ = (− (1 + 2φ) , 0, 0, 0)→ −Kµ

dxµ

dλ
= (1 + 2φ) ṫ = E

(3.4.65)

Rµ = (∂ϕ)µ = (0, 0, 0, 1)→ Rµ =
(
0, 0, 0, r2

)
→ Rµ

dxµ

dλ
= r2ϕ̇ = L. (3.4.66)

In both approaches the conservation of angular momentum was used to impose θ = π
2
.

To arrive at a unique equation of motion by using the obtained constants, (3.4.60) can be
used and it becomes:

gµν
dxµ

dλ

dxν

dλ
= − (1 + 2φ) ṫ2 + (1− 2φ) ṙ2 + r2ϕ̇2 = −ε. (3.4.67)

By multiplying each side by 1 + 2φ and plugging in E and L, this can be simplified to:

−E2 +
(
1− 4φ2

)
ṙ2 + r2 (1 + 2φ) ϕ̇2 = −ε (1 + 2φ) . (3.4.68)

19These are the directions in which energy is conserved.
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The above yields, after isolating the ṙ2 term:

ṙ2 +
L2

r2 (1− 2φ)
+

ε

1− 2φ
=

E2

1− 4φ2
. (3.4.69)

As it was assumed in [21] that the metric is used in the regime in which φ � 1, it is
a sensible approximation to expand the expression to first order in φ. By doing so, one
obtains (for ε = 1, giving a timelike path):

ṙ2

2
+

1

2
+
L2

2r2
+

(
1 +

L2

r2

)
φ =

E2

2
. (3.4.70)

Again following [6], with ε = 1 to analyse timelike paths, such as those of celestial bodies
in galaxies and clusters, one can interpret this equation as describing a particle of unit
mass and energy E (different from the conserved quantity ε) in a one dimensional potential
V (r),20 where one identifies:

E =
E2

2
(3.4.71)

V (r) =
1

2
+
L2

2r2
+

(
1 +

L2

r2

)
φ. (3.4.72)

The first term is a constant, the following two are contributions already accounted for by
Newtonian gravity, and the last term is the general relativistic contribution. Expression
(3.4.70) can then be put in the simplified form:

1

2
ṙ2 + V = E . (3.4.73)

The Schwarzschild equivalent reads:

V =
1

2
+
L2

2r2
− GM

r
− L2GM

r3
=

1

2
+
L2

2r2
+

(
1 +

L2

r2

)
φN . (3.4.74)

The only difference between (3.4.74) and (3.4.72) is given by the use of the Newto-
nian potential φN rather than the modified potential φ obtained by adding a vector
field uα = φL (1, ni) to the GR Lagrangian.

This similarity should not be surprising since by rewriting the Schwarzschild metric as a
function of the Newtonian potential φN , one obtains:21

ds2 = − (1 + 2φN) dt2 +
1

1 + 2φN
dr2 + r2dΩ2. (3.4.75)

20It needs to be pointed out that the potential V is not related to gravity, but emulates the potential
of a 1D harmonic oscillator.

21Compare to eq. 3.4.67 for the MOND-like potential φ.
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After expanding to 1st order in φN the above becomes:

ds2 ≈ − (1 + 2φN) dt2 + (1− 2φN) dr2 + r2dΩ2. (3.4.76)

In this approximation, the two metrics coincide, with the difference given by the gravita-
tional potential present. It is important to then conclude the following:

The analysis just carried out for the geodesics of the spacetime used to derive EG
is only valid when only one metric is present. In this case, it can be seen that the
results for the Schwarzschild background can be recovered to first order, and in the
Newtonian regime in which φ = φN .

3.5. E.O.M.s directly from Verlinde’s equations

An alternative way to obtain a PDE describing the behaviour of the potential associated
with the imposter field is to look at the previously used eq. (7.37) from [21], and directly
follow the definition of the quantities given by Verlinde, rather than coming up with an
independent Lagrangian. The equation is given again for convenience:(

8πG

a0

ΣD

)2

= −
(
d− 2

d− 1

)
∇i

(
φB
a0

ni

)
ΣD=

a0
8πG

ε̃
−−−−−−→ ε̃2 = −2

3
∇i

(
φB
a0

ni

)
. (3.5.77)

If one is coherent with the use of partial derivatives with no Christoffels, the RHS is
proportional to:

− ∇i

(
φB
a0

ni

)
= − (∇iφB)ni − (∇ini)φB = −Gm

r2
+ 2

Gm

r2
=
Gm

r2
. (3.5.78)

In addition, to simplify (3.5.77) it was used that the spacetime has d = 4 dimensions,
and the notation kept the same as in [21] to facilitate comparison. In [26], it is assumed
that ε̃ is an unknown quantity, and its value is not fixed a priori from the information
contained in [21]. However, that is not necessarily the case: as noted in section 3.1,
Verlinde gives the definition of ε̃ as the largest eigenvalue of the deviatoric strain tensor
ε′ij:

ε′ijñj = ε̃ñi. (3.5.79)

A distinction has to be made between ñi, the normalised eigenvector of the deviatoric
strain tensor corresponding to its largest eigenvalue, and ni used on the RHS of (3.5.77),
which is instead defined as ni = xi/ |xi|, although the same notation is used to refer to
both quantities in different sections of [21].22 We can then observe the following: Verlinde

22The ambiguity does not cause major problems, as both quantities can ultimately be represented by
unit vectors.
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never explicitly makes use of Christoffel symbols. It should then be possible, at least in
principle, to treat (3.5.77) through the use of partial derivatives only, albeit in Minkowski
spacetime and with spherical coordinates.23 In order to make it explicit that the expression
will be treated with partial derivatives, and in Minkowski spacetime, it is convenient to
re-express (3.5.77) through the usual notation:

ε̃2 = −2

3
∂µ

(
φB
a0

nµ
)
. (3.5.80)

As explained in section 3.2, using the normalisation24 uµu
µ = − (φ/a0)2 is inconsistent

with the spatial normalisation uiu
i = (φ/a0)2. To remain consistent with the spatial

normalisation of EG, one instead considers a lightlike imposter field. The generalisation
of the spatial vector ni is then given to satisfy.

nµn
µ = 0 =⇒ n0n

0 = −nini =⇒
(
n0
)2

=
∣∣ni∣∣ = 1 =⇒ n0 = ±1, (3.5.81)

In the above expression, it was noted that ni is a spatial unit vector, and the negative
root was chosen. Choosing the direction of ni to be radial gives:

nµ = (−1, 1, 0, 0) =⇒ nµ = (1, 1, 0, 0) =⇒ uµ =

(
φ

a0

,
φ

a0

, 0, 0

)
. (3.5.82)

Hence, contrary to what was claimed by Hossenfelder in [26], the quantity ni, and hence
nµ can be calculated explicitly.25 Therefore, the RHS of (3.5.77) is obtained as:

−2

3

1

a0

∂µ (φBn
µ) =

2

3

1

a0

∂rφB. (3.5.83)

At this point it is important to realise that φB is the known Newtonian potential for
ordinary baryonic matter. Therefore, for the limit of a spherically symmetric potential
with a mass m in the origin, as treated in both [21] and [26], the expression can be
explicitly evaluated as:

2

3

1

a0

∂rφB =
2

3

1

a0

Gm

r2
. (3.5.84)

Next, the LHS of (3.5.77) has to be evaluated. As we have to find the eigenvalue of the
deviatoric stress tensor, it is most convenient to express this quantity as a 4x4 matrix. To

23This would of course be incorrect. As mentioned before, non vanishing Christoffels exist for flat
spacetime in curvilinear coordinates.

24It should again be noted that the a0 used in Verlinde, and hence in Hossenfelder, does not correspond
to the value of Milgrom’s constant, as it is larger by a factor of 6.

25One can uniquely (up to a sign difference) define the timelike component of a 4-vector if the magnitude
and spatial components are known. As the magnitude of a lightlike 4-vector is always zero, the timelike
component depends exclusively on the chosen spacetime.
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do so, one rewrites the expression:26

∂µuν =



ν = 0 ν = 1 ν = 2 ν = 3

µ = 0 0 0 0 0

µ = 1 ∂rφ
a0

∂rφ
a0

0 0

µ = 2 0 0 0 0

µ = 3 0 0 0 0

. (3.5.85)

Now, as in matrix form ∂µu
ν is the transpose of ∂νu

µ, we find for the strain tensor:

εµν =
1

2
(∂µuν + ∂νuµ) =

∂rφ

a0


0 1

2
0 0

1
2

1 0 0
0 0 0 0
0 0 0 0

 . (3.5.86)

Finally, to find the deviatoric strain tensor we have to take the contraction of the strain
tensor, which in matrix form simply amounts to taking its trace. Hence, the result is:27

ε′µν = εµν −
1

4
gµνε

κ
κ =

∂rφ

a0


1
4

1
2

0 0
1
2

3
4

0 0
0 0 −1

4
r2 0

0 0 0 −1
4
r2 sin (θ)

 . (3.5.87)

The largest positive eigenvalue of the matrix28 is given by:

ε̃ =
1

4

(
2 +
√

5
) ∂rφ
a0

→ ε̃2 =
9 + 4

√
5

16

(
∂rφ

a0

)2

. (3.5.88)

Using this result, one can finally rewrite (3.5.77) as a PDE relating the potential stemming
from the imposter field to the Newtonian potential originating exclusively from baryonic
matter:

9 + 4
√

5

16

(
∂rφ

a0

)2

=
2

3

1

a0

GM

r2
. (3.5.89)

Choosing the positive root, the solution to (3.5.89) is given by

φ = 4

√
6− 8

√
5

3

√
GMa0 ln (r) + C ≈ 3

4

√
GMa0 ln (r) + C. (3.5.90)

26In this formulation, the deviator stress tensor is not a properly defined tensor, due to the use of partial
rather than covariant derivatives, which differ in the case of Minkowski space in spherical coordinates.

27As in the previous chapters, the metric signature is taken as (−+ ++).
28The eigenvalue is taken after fixing θ = π

2 , which is allowed in the case of spherical symmetry.
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C is a yet undetermined constant. At this point, it is important to note the striking
resemblance between the equation just found for the potential and the solution to the
deep-MOND regime given in [12], which is:

φM =
√
GMa0 ln

(
r

r0

)
+O

(
r−1
)
. (3.5.91)

In the above, r0 is an arbitrary radius. (3.5.90) also resembles the potential found in
[26] by solving the nonrelativistic EOM in CEG through the approximation of covariant
derivatives by partial derivatives:29

φH =
√
GMa0 ln

( r

GM

)
+ C. (3.5.92)

Another important factor must be taken into account when comparing the solution ob-
tained to the one from [12]: (3.5.91) is not the solution of the full theory but only of
the limit in which the acceleration falls below the empirically defined critical value a0. In
MOND the transition is smooth, and given by an interpolation function that reduces to
the deep-MOND limit in the a� a0 case and to standard Newtonian gravity for a� a0.
Conversely, in EG the transition to the so called “dark gravity” limit happens abruptly
for ε̃ < 1, corresponding to:

1

4

(
2 +
√

5
) ∂rφ
a0

< 1→ ∂rφ = a <
4

2 +
√

5
a0 ≈ a0. (3.5.93)

Therefore, apart from the lack of a smooth transition, the “dark gravity” regime can be
identified with the deep-MOND limit. Therefore, not only was the deep-MOND solution
recovered from [21] without any additional assumption not contained in the original work,
but its domain of validity was also independently found.

However, repeating the same procedure while treating covariant derivatives as such,
hence utilising the nonzero Christoffels of Minkowski spacetime in spherical coordinates,
does not lead to a logarithmic potential. Consequently, although the initial results seem
encouraging, the following must be recognised:

The spacetime generalisation of eq. 7.37 of [21], with the required - sign on the
RHS, yields the desired potential.

As the fundamental quantity describing EG is the displacement field ui, it seems reason-
able to build a theory through a sensible spacetime generalisation of this quantity.

The next chapter will show how the displacement vector can be generalised to a class
of vector tensor theories capable of retrieving both MOND and Newton limits, as well
as reproducing the predictions of GR. These theories are known as GEA (Generalised
Einstein Aether).

29However, one should remember that this expression was obtained by assuming a timelike field and
neglecting the mass term.



Chapter 4

Einstein-Aether theory

As was stated throughout the previous chapter, a relativistic generalisation of EG
should not follow the framework of CEG, due to the numerous inconsistencies with the
theory. Nonetheless, introducing a 4-vector to modify the Einstein equations of GR is a
possibility that has been widely explored in the literature. Although various theories can
match many of the predictions of GR while introducing a new field in the Lagrangian,
most do not jointly introduce a solid theoretical foundation motivating the addition of the
field.

It is hence interesting to analyse some of these theories, to see if a generalised EG
paradigm can be used to coherently explain the structure of the chosen Lagrangians, and
also to account for the success these theories have in matching observations.

This chapter will begin by describing the general theoretical frameworks that will be
used, and makes the connection between EG and GEA theories. It will be shown that the
identification of a 4-vector generalisation of the displacement vector ui with the aether
vector is consistent and matches all observational constraints placed on GEA so far.

4.1. CEG in the framework of Tensor-Vector theories

The analysis of CEG has revolved around the initial formulation given by Hossenfelder
in [26], describing a Lagrangian of the form:

Ltot =

A︷︸︸︷
GR +

B︷︸︸︷
LM +

C︷︸︸︷
Lint +

D︷︸︸︷
Lθ . (4.1.1)

Terms A and B are familiar. When used to build an action, the first yields1 the well known
Einstein-Hilbert action (see, for example, [6]):

SH =

∫ √
−g R d4x. (4.1.2)

1The expression is valid up to a constant factor varying between conventions.
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R is the Ricci curvature scalar described in section 1.5. The variation of the action w.r.t.
to the metric gµν can then be set to zero,2 equivalent to the vanishing of the corresponding
variational derivative:

1√
−g

δSH
δgµν

= 0. (4.1.3)

The above generates the Einstein equations in vacuum:

Rµν −
1

2
Rgµν = Gµν = 0. (4.1.4)

To obtain the RHS of (4.1.4), we vary the action describing the relevant matter fields,
again w.r.t. the metric gµν , obtaining the energy-momentum tensor Tµν as:

Tµν = −2
1√
−g

δSM
δgµν

. (4.1.5)

When varying the total action comprising the Einstein-Hilbert term and the mass term,
with the correct constant of proportionality, we then retrieve:

SGR =
1

16πG
SH + SM =⇒ 1√

−g
δSGR
δgµν

= 0 =⇒ Gµν = 8πGTµν . (4.1.6)

These are the Einstein equations in the presence of matter, which relate the curvature of
spacetime to the presence of mass (and energy), here for a massive matter field. Thus,
the following holds:

In GR, the only field coupling to energy is the metric tensor gµν .

However, in CEG the two extra terms C and D introduce a new field to which matter is
coupled. As also noted directly in [26], the inclusion of the interaction term C is equivalent
to replacing, only in the matter Lagrangian, the background metric of the theory, satisfying
the Einstein equations in the absence of external fields, by an effective metric g̃µν , given
as:

g̃µν = gµν − a0
uµuν

u
. (4.1.7)

As usual, u is the magnitude of the vector field uµ.
There are now two separate metric tensors in the theory, one used to derive the cur-

vature of the underlying spacetime and used in the Einstein-Hilbert action, and the other
coupling to energy sources. There are, therefore, two distinct spacetime geometries, each
defining its connections and geodesics. As discussed in section 2.2, the two metrics are
not conformally related, ergo:3

2Throughout this chapter, variations are taken w.r.t. the inverse metric. It can be shown that this is
equivalent to variations w.r.t. to the metric itself, as δgµν = −gµρgνσδρσ, see, for example, [6].

3The two interpretations for the coupling of the imposter field to matter were given in section 3.3.
Here, the assumption is made that the imposter couples to all energy sources, but it was, however, shown
that an exclusive coupling to matter, and not other fields carrying energy, is not viable.
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Massive and massless particles travel on the geodesics defined by the effective metric
g̃µν , whereas gravitational perturbations, such as gravitational waves and gravitons,
travel along the geodesics of the background metric defined in the Einstein-Hilbert
action, gµν .

This is a very important factor which will be referred to in the following section. The
last term, D, represents the Lagrangian of the vector field itself, giving its kinetic and
mass terms, as extensively discussed in the previous sections. One of the least convincing
aspects of CEG is its apparent arbitrariness in determining the parameters of the theory,
such as the coefficients in the kinetic term and the normalisation of the field itself. It
was shown in sections 3.1-3.3 that more natural choices of coefficients differ from those
of CEG, but also fail to produce a logarithmic potential. It should be noted that, for a
massive field such as uµ, the invariant scalar can be interpreted as the rest mass, equal
in any reference frame. This identification is absent in CEG. Furthermore the mass term
is ignored when achieving the only quantifiable connection of the theory to observational
evidence, namely, the reproduction of a MOND-like potential in the non-relativistic limit.

4.2. GW170817 and Constraints to modified gravity
theories

At the time of the redaction and publication of [26], there was no experimentally sound
way to constrain the parameters of modified gravity theories. That is no longer the case.
In August of 2017, a gravitational wave (GW) signal was detected by the LIGO-VIRGO
interferometers, and inferred to belong to the merger of a system of binary neutron stars
[33]. From a gravitational point of view, the event did not carry more relevance than, say,
the GW detection from a merger of black holes, but it did allow for an extremely relevant
set of observations, belonging to the field of multi-messenger astronomy.

While the result of the merger of a pair of black holes gives rise to a black hole,4 the
collision of the binary neutron stars responsible for the GW1798175 generated a variety
of EM phenomena which were detected across the spectrum [34], for example Gamma
Ray Bursts (GRB). The gravitational and EM events were traced back to the same
cosmological source [35]. Accordingly:

The arrival times of the corresponding radiation provided the opportunity to test
to very high accuracy the difference in propagation speed between gravitational and
EM waves.

This could be used to further constrain the WEP, which essentially states that all test
particles with given initial position and velocity travel along the same path.

4Any debris directly involved in the collision would be in proximity of one of the two event horizons,
hence unable to escape after the merger. This goes for both matter fields and radiation.

5This is to be read as: Gravitational Wave event yymmdd, with year month and day respectively
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It is now important to introduce the calculation of the time taken for a lightlike particle
propagating along a geodesic to reach an observer, for a given metric. This is called the
Shapiro delay [36], and it is calculated by dividing the distance from the source to the
observer by the speed of light along the path connecting the two. At first glance, it may
seem that the Shapiro delay would be equal for any source. However, this is not the
case, as one has to take into the account the gravitational time delay due to the energy
distribution determining the spacetime curvature along the line of sight6.

Modified gravity is used, first and foremost, to explain the phenomena which cannot
be accounted for by the gravitational properties of observable matter in the framework of
GR.7 Accordingly, the use of a direct coupling or effective metric must determine geodesics
which reflect the (apparent) dark matter density at a given point in spacetime, which differs
from the visible baryonic mass distribution.

Thus, for given baryonic and (apparent) dark matter densities, one can calculate
the difference in Shapiro delay of particles travelling along the geodesics set by the
two separate sources.

Throughout the observations borne by the GW10817 event, it was shown in [35] that
the expected difference in Shapiro delay between GW and photons was of 400± 90 days.
On the contrary, the first GRB signal was detected [37] only 1.7s after the GW detection.
During the following hours, days and months, multiple EM signals were detected from a
source consistent with the location in space pinpointed by GW170817, ranging across the
EM spectrum from X-Ray to InfraRed and traceable to behaviour consistent with that of
a binary neutron star merger [38].

The data from GW170817 is therefore sufficient to falsify CEG, given its reliance on
a direct coupling between matter and the extra vector field introduced, equivalent
to the existence of two non conformally related metrics.

Nevertheless, GW170817 cannot provide a precise suggestion as to how to build a healthy
theory with the CEG approach. This is due to fact that the parameters of CEG, such as
vector field normalisation and matter interaction term, do not fall within the framework
of other tensor-vector gravity theories.

Therefore, it is important to identify one of the possible frameworks present in the
literature as a candidate on which to rebuild a truly covariant theory of emergent gravity,
not plagued by the experimentally falsified predictions of CEG.

6This phenomenon was first described as an experimental test of GR in 1964. Its full potential can
now be exploited thanks to multi messenger astronomy.

7Many relevant systems can be approximated by GR’s nonrelativistic-weak field Newtonian limit.
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4.3. Generalised Einstein-Aether theories

4.3.1. A Strong Hint: the TeVeS Aether

It would be of interest to consider theories which have been shown to reproduce both
MONDian and Newtonian behaviour in the correct regimes. One of the most represen-
tative relativistic expansions of MOND was introduced by one of the founding fathers of
MOND itself, Jacob Bekenstein.

This theory, called Tensor Vector Scalar (TeVeS) gravity, added a scalar field and
a vector field to the traditional Einstein-Hilbert action, in order to retrieve the correct
behaviours of GR and MOND in the respective regimes [39]. Although incapable of ex-
plaining certain cosmological observations such as the power spectrum of the Cosmic
Microwave Background (CMB), the theory was successful in recovering the required
limits of Newtonian and MONDian behaviour. However, in the light of the GW170817
observations, a clear problem for the theory was the presence of two distinct metrics, with
one coupling to matter and the other representing the spacetime background. Nonetheless,
it was shown in [40] that the theory could in fact be rewritten entirely as a vector-tensor
theory, thus avoiding the problematic nature of bi-metric theories,8 and making a strong
connection with another type of vector-tensor gravity: Generalised Einstein-Aether
(GEA) theories.

This connection between TeVeS and GEA theories is a strong signal that a GEA theory
can reproduce MOND phenomenology, starting from a covariant approach with an action
in a fully relativistic setting. It is hence important to investigate the properties of this
class of theories before proceeding further.

4.3.2. Structure and Formalism

The Einstein Aether (EA) theory was initially introduced by adding a scalar field
to the Einstein-Hilbert action [41]. However, it was later reworked in [42] to to include a
unit timelike vector field defining a preferred frame instead.9

The addition of a preferred frame defining a timelike direction leaves 3D space isotropic,
but it breaks Lorentz invariance in the same way that an anisotropic space breaks rota-
tional symmetry, because a Lorentz boost can be interpreted as a rotation around the
time axis. This characteristic of the theory makes it possible to falsify its predictions
with experimental data on the validity of Lorentz invariance, which so far has held true
to high precision. As stated above, the EA theory has an action which includes the
Einstein-Hilbert action and extra terms characterising the novel unit timelike vector field,
conventionally named Aµ. The action for the EA theory described in [44] can be given as

8As previously explained, the disagreement with observational data only occurs when the two metrics
present are non conformally related.

9The timelike unit vector field is named aether. It is different from the field disproved by the Michelson
Morley experiment [43], as it defines a preferred time, not spatial direction, and it is hence consistent with
special relativity.
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follows, using the notation uµ for the vector field:

SEA =
1

16πG

∫ √
−g LEA d4x. (4.3.8)

The Lagrangian has the form:

LEA =

A︷︸︸︷
R +

B︷ ︸︸ ︷
c1 (∇µuν) (∇µuν) + c2 (∇µu

µ) (∇νu
ν) + c3 (∇µuν) (∇νuµ) +

C︷ ︸︸ ︷
λ (uµu

µ + 1) .
(4.3.9)

The components can be identified as follows:

• A is the standard Ricci scalar, yielding the L.H.S. of the Einstein equations;

• B has the role of a kinetic term with free coefficients ci, equivalent to χ in CEG;

• C is a Lagrange multiplier which forces the vector field uµ to be unit timelike upon
variation of the action w.r.t. λ. It has the same role as the a priori assumption of
uµu

µ = −φ2/a2
0 in CEG.

It can be seen that this family of theories belongs to the enlarged group of vector-tensor
(VT) theories, of the form [45]:

LV T =

Ã︷ ︸︸ ︷
R + ωuµu

µR+

B̃︷ ︸︸ ︷
c1 (∇µuν) (∇µuν) + c2 (∇µu

µ) (∇νu
ν) + c3 (∇µuν) (∇νuµ)

+

C̃︷ ︸︸ ︷
λ (uµu

µ + 1), (4.3.10)

which clearly reduces to (4.3.9) in the special case of no direct coupling of the vector field
uµ to the Ricci scalar R, with ω = 0. In constrained theories such as EA, a non-zero ω
could be replaced by a rescaling of the Newton constant G, as G̃ = G/ (1− ω).

A modification to (4.3.9) which allows non-canonical kinetic terms in the action is of
particular interest, as TeVeS was shown to belong to this Generalised Einstein Aether
(GEA) group . This specific case was extensively treated in [46], and its most general
form is given as:

LGEA =
1

16πG

(
M2F (K) + λ (uµu

µ + 1)
)
, (4.3.11)

where the following should be noted:

• a new constant M of the dimension of mass was introduced;

• K is a rescaled version of the kinetic term present in LEA of (4.3.9), K = B/M2;

• F (K) is an arbitrary function of the kinetic term.



72 4. - Einstein-Aether theory

As shown in [46], the field equations (corresponding to the Einstein Equations in GR) are
given as:

Gαβ = T̃αβ + 8πGTαβ, (4.3.12)

where Gαβ and Tαβ are the Einstein tensor and matter energy-momentum tensor from
GR respectively. This reflects the presence of a single metric tensor, and the coupling of
matter is to this metric only, and not directly to the vector field uµ. The new term, T̃αβ
is the energy-momentum tensor of the vector field, and is given as:

T̃αβ =
1

2
∇σ

[
dF
dK

(
J σ

(α uβ) − Jσ (αuβ) − J(αβ)u
σ)
)]
− dF

dK
Y(αβ) +

1

2
gαβM

2F + λuαuβ.

(4.3.13)
The bracket notation for the indices indicates the symmetric component of a (combination
of) tensor(s), e.g.:

J σ
(α uβ) =

1

2

(
J σ
α uβ + J σ

β uα
)
. (4.3.14)

An auxiliary tensor was introduced as:

Jασ =
(
Kαβσγ +Kβαγσ

)
∇βA

γ, (4.3.15)

and Kαβσγ is the tensor defining the coefficients for the kinetic term K through:

M2K = Kαβσγ∇αu
γ∇βu

σ = c1 (∇µuν) (∇µuν) + c2 (∇µu
µ) (∇νu

ν) + c3 (∇µuν) (∇νuµ) .
(4.3.16)

In the above, the dummy indices where replaced to match those of (4.3.9). Finally, Yαβ
gives the functional derivative of the kinetic component K w.r.t. to the metric tensor:10

Yαβ = ∇σu
η∇γu

ξ
δ
(
Kσγ ηξ

)
δgαβ

= −c1 [(∇νuα) (∇νuβ)− (∇αuν) (∇βu
ν)] . (4.3.17)

The EOM for the vector field are obtained in [46] through varying the action w.r.t. uα.
The result is equivalent to directly calculating the EL equations, which, however, yields
a clearer form if one intends to mimic the structure of the CEG analysis carried out in
previous chapters, thus allowing one to make considerations on the symmetry of quantities
built from the derivatives of the vector field:

∇µ

(
∂L

∂ (∇µuν)

)
=

∂L

∂un
. (4.3.18)

10To be exact, the functional derivative is again taken w.r.t. the inverse metric tensor, since as usual
the field equations (4.3.12) are obtained by varying the action w.r.t. the inverse metric.
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4.3.3. Including the Constraints from GW170817

A separate observation must be made before (4.3.18) is calculated explicitly: as shown
in [47], strong restrictions are put on GEA theories based on GW170817. Specifically, the
measured time delay in arrival between EM and gravitational radiation of 1.7s places a
strict upper bound on the propagation speed of gravitational waves. Using units with a
constant, unit speed of light, c = 1, the speed of gravitational waves cT is parametrised
as:

cT = 1 + αT , αT = 2
∆t

ds
(4.3.19)

where ds ≈ 40 Mpc is the estimated distance to the source, and ∆t ≈ 1.7s is the delay in
arrival time. With these values, one then has the constraint:

|αT | / 10−15. (4.3.20)

To excellent approximation then, models should satisfy the condition αT = 0. For a GEA
model, this condition implies:

αT = −
(c1 + c3) dF

dK[
1 + (c1 + c3) dF

dK

] = 0, (4.3.21)

which, assuming the free function F (K) is in fact not a constant, implies on a Minkowski
background:

c1 = −c3. (4.3.22)

When enforcing (4.3.22), the kinetic term becomes:

K = c1 [(∇µuν) (∇µuν)− (∇µuν) (∇νuµ)] + c2 (∇µu
µ) (∇νu

ν) (4.3.23)

where, in analogy with the EM strength tensor, one can introduce the quantity:

Fµν = ∇µuν −∇νuµ, (4.3.24)

whose contraction,

FµνF
µν = 2 [(∇µuν) (∇µuν)− (∇µuν) (∇νuµ)] (4.3.25)

simplifies the allowed form for the kinetic term:

K =
c1

2
FµνF

µν + c2 (∇αu
α) . (4.3.26)

The LHS of (4.3.18) can now be rewritten as:

∇µ

(
∂L

∂ (∇µuν)

)
= 2∇µ

{
dF
dK

[c1F
µ
ν + c2 (∇αu

α) δµν ]

}
, (4.3.27)
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whereas the RHS of (4.3.18) simply gives:

∂L

∂uν
=

∂

∂uν
λ (uµu

µ + 1) = 2λuν , (4.3.28)

yielding the full EOMs:

∇µ

{
dF
dK

[c1F
µ
ν + c2 (∇αu

α) δµν ]

}
= λuν . (4.3.29)

This can easily be shown to be equivalent to the expression found in [46]

∇α

(
dF
dK

Jαβ

)
+

dF
dK

yβ = 2λuβ, (4.3.30)

as one can express Jαβ as:
Jαβ = 2 [c1F

α
σ + c2δ

α
σ (∇µu

µ)] (4.3.31)

and the functional derivative of the action w.r.t. uν is shown to vanish,

yβ = ∇σu
η∇γu

ξ
δ
(
Kσγ ηξ

)
δuβ

= 0. (4.3.32)

4.3.4. The Weak Field, Non-Relativistic Limit

The constraints that were imposed on the EOMs were based on a Minkowski back-
ground. In the weak field limit, it is interesting to work in a Minkowski spacetime per-
turbed by a potential φ. Following [46], one can work in the Poisson Gauge, with a metric
given by (it is important to note that the perturbation parameter ε is in no way related
to the strain quantities of CEG described in previous chapters):

gαβ = ηαβ + εhαβ, (4.3.33)

where the metric perturbation hαβ can be taken in the Poisson Gauge as:

hµν = −2φδµν . (4.3.34)

The same approach is taken to expand the vector field around a lowest order unit timelike
approximation, chosen as δα0 , which to first order in the same parameter ε gives:

uα = δα0 + εBα. (4.3.35)

4.3.5. Connection to Emergent Gravity

In the previous chapter, we showed that the metric used by Verlinde (which explicitly
analyses the nonrelativistic, spherically symmetric case) can be rewritten as a Minkowski
background plus a perturbation of the same form of that used in [46] (see (3.3.29)). It
therefore seems reasonable to assume that the displacement field 3-vector, which describes
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the modified potential that can be shown to reproduce MOND phenomenology, can be
cast in a 4-vector form on the same background on which the Einstein-Aether perturbation
is being analysed. In CEG, Hossenfelder arbitrarily gives the same normalisation to her
4-vector uα and to that of the 3-vector appearing in [21], a choice that was shown to be
inconsistent with a timelike vector in the previous chapter, where a lightlike normalisation
was instead suggested.

Here, a different approach is taken. To identify the displacement 3-vector from [21]
with the timelike vector uα, we have to ensure that the normalisation is consistent on
a perturbed Minkowski background. The task is simplified by the observation that the
potential perturbing both spacetimes in [21] and [46] is the same as the one which appears
in the 3-vector in Emergent Gravity and the unit timelike vector in GEA.

Before analysing the normalisation, it is important to be consistent with a unique
system of units. Following the use of natural units from [21] and [26], we set speed to
be dimensionless, energy to have inverse time dimension, and infer the other necessary
physical units through the formula for the Compton wavelength, relating relativistic (the
speed of light c) and quantum mechanical (the energy of a quantum of the EM field ~)
scales through the equivalence in energy between the wavelength λ of a photon and the
mass m of a massive particle:

λ =
~
mc

. (4.3.36)

When setting c = ~ = 1 and taking mass as the fundamental dimension, the following can
be inferred:

λ =
1

m
→ [λ] = [D] = [M ]−1. (4.3.37)

It is then easy to see that the dimensions of acceleration (such as the acceleration scale
a0) are given as:

[a0] =
[c
t

]
=

[
1

D

]
= [M ] , (4.3.38)

implying that the mass scale can be interpreted as an acceleration scale. That said, it is
interesting to note that the GEA Lagrangian (4.3.11) scales the kinetic term by a constant
of the dimension of mass, M. Without modifying the theory, we can decide to absorb the
mass constant into the field itself, by the substitution:

V µ =
uµ

M
, (4.3.39)

which leads to a new, equivalent Lagrangian formulation in terms of the new field V µ:

LV =
1

16πG

(
M2F (K (V µ)) + λ

(
M2VµV

µ + 1
))
. (4.3.40)

It is now clear that the EOM for λ yield a new constraint on V µ:

VµV
µ = − 1

M2
. (4.3.41)
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For future reference, the vector V µ will be called the dressed potential, since it contains
an additional prefactor when compared to the expression from [21], and the original uµ

with unit magnitude the naked potential as it lacks any of the additional prefactors of the
dressed potential. The easiest way to define the correct dimension for the normalisation
factor is of course to look at the dimensions of the spatial component of the displacement
vector, which are of the form: [

ui
]

=

[
φ

a0

]
=

[
φ

M

]
. (4.3.42)

As the gravitational potential is the energy per unit mass, with both quantities having
the same dimension in natural units as E = mc2, we can conclude that:[

ui
]

= [M ]−1 . (4.3.43)

Therefore, it would be inconsistent to identify the 4-vector of the displacement vector as
the naked potential. Instead, it has units coinciding with the dressed potential, as shown
in (4.3.41), so it is consistent to make the identification:

V i =
φ

a0

ni, (4.3.44)

where it is appropriate to now equate the two mass scales involved in the calculation:

a0 = M. (4.3.45)

An immediate result of (4.3.44) is that the spatial component of the naked potential can
be given as:

ui = a0V
i = φni. (4.3.46)

The two cases which are now of most interest in analysing the consequences of the con-
nection between the aether and the displacement field of [21] are:

• The full form of the field in a static Minkowski background;

• The behaviour of the field as a vector perturbation over a perturbed Minkowski
background.

For the first case, the normalisation to match the constraint given by the Lagrange mul-
tiplier in (4.3.9) is straightforward:

uµu
µ = −

(
u0
)2

+
(
ui
)2

= −1→ u0 = ±
√

1 + φ2. (4.3.47)

For the second case, perturbations around an already timelike vector δα0 as in (4.3.35), it
is useful to look at the normalisation necessary for the sum of the zeroth and first order
corrections to remain unit timelike:

Aα = δα0 + εBα +O
(
ε2
)
→ AαA

α = −1. (4.3.48)
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Working out the above we have:

(ηµν + εhµν)
(
δµ0 δ

ν
0 + ε (δµ0B

ν + δν0B
µ) + ε2BµBν

)
≈ η00

(
1 + 2εB0

)
+ εh00 = −1, (4.3.49)

from which it is implied that:
B0 = −φ. (4.3.50)

It is shown in [46] that the generalised Einstein equations (4.3.12) and the EOMs for the
vector field (4.3.27) yield respectively:

2∇2φ− (c1 − c3)∇ ·
(

dF
dK
∇B0

)
− λ = 8πGρ (4.3.51)

2c3∇ ·
(

dF
dK
∇ (φ)

)
+ 2c1∇ ·

(
dF
dK
∇
(
φ+B0

))
= −2λ. (4.3.52)

By now plugging in the constraints from GW170817, c1 = −c3 and (4.3.50), we can easily
obtain a single PDE for the potential:

∇ ·
[(

2 + c1
dF
dK

)
∇φ
]

= 8πGρ. (4.3.53)

It is important to realise that the above can only be obtained if (4.3.50) holds. Therefore,
it is important to ensure that this is, in fact, the case when the perturbation is given by
the chosen naked potential. To this end, we can use the field normalised in Minkowski
spacetime (as each element of uµ is ∝ φ, the time component is the same in a perturbed
Minkowski background up to first order in the perturbation), and set:

B0 = ±
√

1 + φ2 ≈ −φ, (4.3.54)

where the minus sign was chosen to obtain the correct normalisation with B0 = −φ, and
the spatial terms can be ignored as they do not enter (4.3.53).

uµ = δm0 + ε
(
−φ, φni

)
. (4.3.55)

Computing the magnitude yields:

uµu
µ = − (1 + 2εφ) (1− εφ)2 + (1− 2εφ)uiu

i, (4.3.56)

and discarding nonlinear terms in ε we obtain:

− (1 + 2εφ) (1− 2εφ) +O
(
ε2
)

= −1 +O
(
ε2
)
, (4.3.57)

which shows that, provided that φ2 � 1, it is consistent to use the lightlike approximation
of the naked potential as the perturbation of the timelike field. In [46], the correct limits
for both MONDian and Newtonian gravity can only be retrieved if we accept that M is
of the same order of magnitude as a0.
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The above calculations have shown that M and a0 are in fact the same quantity, and
have given a solid theoretical foundation to the Einstein-Aether theory, as well as a truly
covariant expansion for both MOND and Emergent Gravity. However, it should be noted
that the a0 utilised in the above calculations is not equal to Milgrom’s constant aM , but
related to it through a0 = 6aM . The Lagrangian for GEA with the dressed potential and
M = a0 can ultimately be given as:

LV =
1

16πG

(
a0

2F (K (V µ)) + λ
(
a0

2VµV
µ + 1

))
, V i =

φ

a0

ni (4.3.58)



Chapter 5

Numerical MOND and Galaxy Clusters

5.1. Baryonic and Apparent Mass

When inferring the mass distribution from a gravitational potential, we must solve the
PDE which models the system. In the Newtonian case, this PDE is the Poisson equation
for gravity, whereas for MOND it is the non-linear MOND PDE. For the case of galaxy
clusters in Newtonian gravity, the key assumption is that the total mass distribution ρT
is given by the sum of the baryonic contribution ρB and a dark matter contribution ρD.
Then, the Poisson equation for the Newtonian potential φN reads:

∇ · (∇φN) = 4πGρT = 4πG (ρB + ρD) . (5.1.1)

One can integrate eq. 5.1.1 to obtain the mass contained within a finite volume. For a
spherical volume, which is of interest for galaxy clusters, the integration over the domain
Ω yields: ∫

Ω

∇ · (∇φN) dΩ =

∫
Ω

4πG (ρB + ρD) dΩ. (5.1.2)

The RHS is proportional to the total mass, whereas the LHS can be simplified using the
divergence theorem. Denoting the spherical surface bounding the domain by S, n̂ the unit
normal vector, MB and MD the masses of the baryonic and dark matter contained in the
volume respectively, eq. 5.1.2 results in:∫

S

∇φN · n̂ dS = 4πG (MB +MD) . (5.1.3)

Plugging in the the normal unit vector for the spherical surface n̂ = r̂, and the surface
element dS = r2 sin (θ) dθ dφ, eq. 5.1.3 becomes:

r2

∫
S

∂φN
∂r

sin (θ) dθ dφ = 4πG (MB +MD) . (5.1.4)

The following important observation can then be made:

79
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In Newtonian gravity, the mass contained in a spherical volume is uniquely deter-
mined by the behaviour of the potential on the surface bounding the volume.

For a spherically symmetric mass distribution, both the potential and gravitational accel-
eration gN = ∂φN/∂r are also spherically symmetric. For a mass distribution contained
within a radius R, eq. 5.1.5 simplifies to:

4πgNr
2
∣∣
r=R

= 4πG (MB +MD) . (5.1.5)

When no mass is present for r > R, the gravitational acceleration at any point outside
the mass distribution is:

gN (r) =
G (MB +MD)

r2
. (5.1.6)

Eq. 5.1.6 describes the same acceleration as the one produced by a point source. This
statement is part of the Shell Theorem, and it implies the following:

The gravitational acceleration outside of a spherically symmetric mass distribution
with total mass MT is indistinguishable from the acceleration generated by a point
source of mass MT located in the center of the distribution.

On the other hand, in MOND, the mass distribution present in galaxy clusters is ex-
clusively made up of baryons. The PDE for the MOND potential φM , where µ (x) is an
arbitrary interpolation function satisfying the correct asymptotic behaviour, is expressed
as:

∇ ·
[
µ

(
|∇φM |
a0

)
∇φM

]
= 4πGρB. (5.1.7)

Following the same procedure as for the Newtonian case, the baryonic mass contained in
a spherical volume can be found by integration:∫

Ω

∇ ·
[
µ

(
|∇φM |
a0

)
∇φM

]
dΩ = 4πGMB. (5.1.8)

After applying the divergence theorem this yields:

r2

∫
S

µ

(
|∇φM |
a0

)
∂φM
∂r

sin (θ) dθ dφ = 4πGMB. (5.1.9)

As in Newtonian gravity, the total mass enclosed in the spherical volume is defined by
the behaviour of the potential on the boundary. If the mass distribution is spherically
symmetric, this reduces to:

µ

(
1

a0

∂φM
∂r

)
∂φM
∂r

r2

∣∣∣∣
r=R

= GMB. (5.1.10)
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In the case of galaxy clusters, points with r ≥ R are in the deep MOND regime, and on
the boundary the interpolation function is approximately equal to its asymptotic value,
µ (x) ≈ x. When no mass is present for r > R, eq. 5.1.10 becomes:

1

a0

(
∂φM
∂r

)2

r2 = GMB. (5.1.11)

The gravitational acceleration gM = ∂φM/∂r is then given by:

gM =

√
GMBa0

r
. (5.1.12)

The acceleration in eq. 5.1.12 is equivalent to the acceleration produced by a point source
of mass MB in the deep MOND limit, as derived in eq. 1.4.30 of Chapter 1. However, to
obtain this result it was assumed that the boundary of the domain was in the deep MOND
regime. Instead, if this is not the case, eq. 5.1.10 becomes:

gM =
GMB

r2

[
µ

(
gM
a0

)]−1

6=
√
GMBa0

r
. (5.1.13)

This results in a restriction on the use of the shell theorem in MOND:

In MOND, the shell theorem can only be applied outside a spherical domain con-
taining a mass MB if the boundary of the domain is in the deep MOND regime.
In this case, the acceleration is the same as that produced by a point source in the
deep MOND regime with the same mass MB, at the center of the mass distribution.

The above statement implies that the mass contained in a volume, the boundary of which
is not in the deep MOND regime, depends on the interpolation function chosen and on
the value of the acceleration at the boundary. This also holds for spherically symmetric
distributions. In the next section we will treat the phenomenon of gravitational lensing,
to show that the assumption that the gravitational potential is always Newtonian can
lead to a form of apparent matter which is non-physical, named Phantom Dark Matter
(PDM).

5.2. Gravitational Lensing and Phantom Dark Matter

5.2.1. Lensing on a Flat Background

The data gathered from gravitational lensing measurements only gives an indirect
measure of the mass present in systems such as galaxies and galaxy clusters. In general,
gravitational lensing is considered to be an effect of the perturbation of a Minkowski
background by the Newtonian potential, with the spacetime interval:

ds2 = − (1 + 2φN) dt2 + (1− 2φN)
(
dx2 + dy2 + dz2

)
. (5.2.14)
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Here we denote the Minkowski metric by ηµν and the perturbation by hµν . The metric
from eq. 5.2.14 can be decomposed as:

gµν = ηµν + hµν . (5.2.15)

This implies that the perturbation is a 2nd rank tensor fully defined by its trace, namely,
a diagonal matrix of the form:

hµν = −2φN


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1.

 (5.2.16)

Following the treatment given in [6], we make the assumption that the perturbation is
small enough that the geodesics of the perturbed spacetime can be calculated by a slight
deviation from the geodesic of the Minkowski spacetime, which are straight lines. The per-
turbed geodesic is xµ (λ), with respect to an affine parameter λ. The Minkowski geodesic
is x(0)µ (λ) and the geodesic perturbation is x(1)µ (λ). We then have:

xµ (λ) = x(0)µ (λ) + x10)µ (λ) . (5.2.17)

Gravitational lensing considers the paths of photons, which are geodesics, for which the
spacetime interval vanishes. For the interval of eq. 5.2.14, this implies:

ds2 = gµν
dxµ

dλ

dxν

dλ
= 0. (5.2.18)

It is useful to denote the wave vectors for the Minkowski spacetime and the perturbation:

kµ =
dx(0)µ

dλ
, lµ =

dx(1)µ

dλ
. (5.2.19)

With (k0)
2

=
(
~k
)2

= k2, eq. 5.2.18 yields, to first order in x(0)µ:

− kl0 +~l · ~k = 2k2φN . (5.2.20)

The analysis of the perturbed geodesic equation to first order yields expressions for the
time and space components of the change of the wave vector perturbation w.r.t. the affine
parameter λ. This represents the deviation from a Minkowski geodesic (which is the 0th

order approximation of eq. 5.2.18), and it reads:1

dl0

dλ
= −2k

(
~k · ∇φN

)
,

d~l

dλ
= −2k2∇⊥φN . (5.2.21)

1To obtain these results, the Christoffels need to be calculated. In the interest of conciseness, we skip
the details, which can be found in [6].
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In the above expression the transverse gradient was introduced, which quantifies the gra-
dient that is not parallel to the path:

∇⊥φN = ∇φN −
(
~k · ∇φN

)
~k/k2. (5.2.22)

Two steps are now required to find the spatial deviation of the geodesic from a straight
line. First, l0 can be obtained by integrating the expression in eq. 5.2.21 w.r.t. the affine
parameter λ:2

l0 =

∫
λ

−2k
(
~k · ∇φN

)
dλ = −2kφN . (5.2.23)

Following the same procedure to find the change in ~l yields:

∆~l = −2k2

∫
λ

∇⊥φN dλ (5.2.24)

By inserting eq. 5.2.23 into eq. 5.2.20, it can also be seen that spatial component of the
perturbation to the wave vector is normal to the spatial component of the background
geodesic:

~l · ~k = 2k2φN + kl0 = 0. (5.2.25)

Ultimately, the quantity of interest is the deflection of photons due to the gravitational
potential φN . This is measured by the deflection angle α̂. Identifying the spatial length s
of the path along which the angle is measured as s = kλ, the deflection angle is computed
as follows:

α̂ = −∆λ

k
= 2

∫
s

∇⊥φN ds. (5.2.26)

5.2.2. Cosmological Backgrounds

The discussion so far has assumed that the background metric is given by Minkowski
spacetime. However, the actual study of gravitational lensing must take into account the
fact that, according to observations, the universe is expanding. We again will follow the
notation from [6], for which the following concepts must be defined:

• At any given moment in time, the spacetime describing the universe is, spatially,
maximally symmetric. This means that it is spatially homogeneous and isotropic:
space looks the same everywhere and in every direction.

• The universe evolves with time, with the spatial distance between objects varying
accordingly.

2The integration constant is set to zero, as one uses the fact that the deviation will vanish when the
potential is 0, φN = 0 =⇒ l0 = 0.
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• Introducing the space interval in 3D space as dσ2, and the function determining its
variation over time as R (t), the two previous statements give rise to metrics of the
form:

ds2 = −dt2 +R2 (t) dσ2. (5.2.27)

It is evident that, for a given value of t, the spatial component of the spacetime
can be made homogeneous and isotropic by an appropriate choice of dσ2. At the
same time, spatial distances will increase (decrease) over time for an increasing
(decreasing) R (t), which is called the scale factor.

• The curvature of the 3D space defined by dσ is described by the Riemann tensor
R̃ijkl.

3 In section 1.5 it was stated that the Riemann tensor can be decomposed into
a trace component, the Ricci tensor R̃ij, and a traceless component, the Weyl tensor
Cijkl. For a 3D manifold, the Weyl tensor always vanishes [6], so the curvature is
fully described by the Ricci tensor. The Ricci scalar R̃ = R̃i

i can then be used to
quantify the curvature. It is useful to introduce the scaled curvature scalar k = R̃/6.

• The scaled curvature k can be normalised to the values k ∈ {+1, 0,−1}. The sign of k
determines the curvature of the space: k = −1 defines a space with constant negative
curvature, in which initially parallel geodesics will diverge; k = 0 corresponds to flat
space; k = +1 defines a space with constant positive curvature, where geodesics will
converge.

• When rescaling k to the {+1, 0,−1} range, the scale factor acquires the dimension
of distance. It is useful to work with a dimensionless scale factor a (t) /R0, where R0

is a length scale. The curvature scalar is similarly redefined as κ = k/R2
0, and so is

the radial direction r̄ of the spatial metric from dσ2, as r = R0r̄.

Taking into account all the observations made above, the metric describing a spatially
isotropic and homogeneous universe is given by the Friedmann-Lemaitre-Robertson-
Walker (FLRW) metric, with spacetime interval:

ds2 = −dt2 + a2 (t)

[
dr2

1− kr2
+ r2dΩ

]
. (5.2.28)

In eq. 5.2.28 the scale factor a (t) does not yet have an explicit form, which is instead
fixed by the Einstein equations for a given energy distribution. By postulating the energy
content of the universe at different cosmological times (for example, from immediately
after the Big Bang to the modern day), an expression can be obtained for a (t), that
makes it possible to define the spatial distances between points in spacetime for a given
value of t. Therefore, once a (t) has been found, one can utilise the FLRW metric as a
background metric.

3We use R̃ijkl rather than Rijkl to avoid confusion between the resulting Ricci scalar R̃ and the scale
factor R (t).
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Naturally, the treatment of gravitational lensing will be different when considering
the FLRW background rather than Minkowski spacetime. Gravitational lensing on an
FLRW background is generally treated through the weak lensing formalism, where the
assumption is made that the gravitational potential φN originates from a body of a size
which is negligible when compared to the distance DLS between the source and the lens,
as well as the distance dL between the lens and the observer. However, as explained in
[24], the thin lens approximation cannot be applied to MOND due to the theory’s inherent
nonlinearity. For example, the deflection angle that would be produced by N equal bodies
along a line of sight would be

√
N times larger than if the total mass belonged to a single

object. Therefore, rather than deriving the relations for the deflection angles in the thin-
lens approximatio, we give the expression for weak lensing on an FLRW background in
terms of the observed angle θi and the unlensed angle βi. The angles are 2D vectors which
define the angular position of the source in the sky. The expression relating these two
angles, as shown in [48], is:

∂βi
∂θj

= δij +

∫
r

g (r)
∂2φN
∂xi∂xj

. (5.2.29)

In eq. 5.2.29, g (r) is the lensing kernel, which contains information about the mass dis-
tribution, but the exact form of which is not important for this discussion. In addition, xi

represents the 2D coordinates in the plane normal to the line of sight, and r is the distance
between two points at a given time t, namely, the comoving distance, which corresponds
to the scaled radial coordinate from the FLRW metric. The integral is calculated along
the line of sight between the source and observer. Although a more in-depth discussion
could certainly be carried out on weak lensing on an FLRW background, there is one key
aspect to note:

As in the case of a Minkowski background, lensing on an FLRW spacetime is deter-
mined by the Newtonian potential φN .

The mass distribution inferred by lensing measurements is always based on the assumption
that gravity is Newtonian. This leads us to ask the important question: if MOND is
correct, what mass distribution would be inferred from the observed potential, in the case
that the potential was exclusively generated by baryonic matter? To answer this question,
we recall that, both in the case of Newtonian gravity and MOND, the mass contained in
a finite volume can be determined by the behaviour of the potential at the boundary of
said volume. We previously pointed out that the boundaries of galaxy clusters are in the
deep MOND regime. Since the mass distribution in clusters is generally concentrated in
the central region [3], we can also to good approximation assume that the potential at the
boundary resembles the potential generated by a spherical mass distribution. Therefore,
if we make the (erroneous) assumption that the potential is Newtonian, and instead work
with the MOND potential, we find, for the total Newtonian mass MN contained in a
spherical volume:

MN =
1

4πG

∫
Ω

∇2φM dΩ. (5.2.30)
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Applying the divergence theorem we find:

MN =
1

4πG

∫
S

∂φM
∂r

dS. (5.2.31)

Assuming that at the boundary, r = R, the potential is approximately that of a spher-
ical mass distribution centered at the origin, φM |r=R =

√
GMBa0 ln r, where MB is the

baryonic mass generating the potential φM , we find:

MN =
4π

4πG

√
GMBa0

r
r2

∣∣∣∣
r=R

=

√
a0MB

G
R (5.2.32)

A number of important conclusions can be derived from the above expression:

• The inferred Newtonian mass grows linearly with the radius R of the volume over
which integration is performed, even if the baryonic mass MB becomes constant at
a given radius.

• There is a critical radius rc for which the inferred Newtonian mass MN and the true
baryonic mass MB coincide. This radius is determined by the baryonic mass:

MN = MB =⇒ rc =

√
GMB

a0

. (5.2.33)

• There is a corresponding critical surface mass density Σm = a0/G which determines
the transition between the Newtonian and MOND regimes. The importance of Σm

in the study of the rotation curves of galaxies in explained in [49].

• The total Newtonian mass includes the baryonic and dark components. Hence we
can re-write:

MB +MD =

√
a0MB

G
R =⇒ MD =

√
a0MB

G
R−MB. (5.2.34)

This implies that for radii R < rc, the inferred mass of the dark matter will be
negative, MD < 0. Equivalently, we note the following: in the above expression,
a negative value for MD is obtained when MB < a0/GR

2 = ΣmR
2. Therefore,

negative mass should be observed for all systems with surface mass density Σ < Σm.
Although this relation corresponds to the MOND regime, the radius R at which this
phenomenon is measured should be larger than the radius of the system, as it is well
known that the region close to the core of galaxies is in the Newtonian regime, and
baryonic mass is dominant, so the effect could not be observed.
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5.3. Simulation results

In the previous section, the analysis of the relationship between the apparent Newto-
nian mass MN , phantom dark matter mass MD and baryonic mass MB was carried out
under the assumption of spherical symmetry. However, in the case of galaxy clusters,
spherical symmetry is only a good approximation at the boundary of the system, as the
mass distribution generally includes a continuous component, the ICM, and a discrete
component, given by the galaxies. In MOND, three important aspects cannot be treated
analytically:

1. In order to compute the mass contained in a volume through the behaviour of the
potential at the boundary, we have so far assumed that the boundary of the system
is in the deep MOND regime. Given a potential, this allows us to infer the PDM
contribution to the total mass. However, it is not true that the whole cluster is
in the deep MOND regime. This means that we can not analytically compute the
value of the potential at an arbitrary surface contained in the volume, whether this is
centered at the origin or at another arbitrary location. Therefore, we are interested
in analysing the behaviour for the integrated mass for spheres of increasing radii
centered at the origin, both for the case of PDM and baryonic matter.

2. We have shown in the previous section that, at the critical radius rc of a given
system, the apparent mass equals the baryonic mass, implying that the PDM mass
is 0. Therefore, we are interested in understanding how the relationship between
baryonic mass and PDM changes when the galaxies embedded in the ICM. We want
to explore how the PDM distribution increases around the galaxies, and determine
what fraction of the total dark matter in the cluster is clumped around the galaxies,
rather than following the gas distribution.

3. We showed in eq. 5.2.34 that it is possible for the PDM mass to take on negative
values. This necessarily implies that there will be regions in which the PDM density
transitions from positive to negative, crossing zero. We predict that this should
happen close to the critical radius rc of each galaxy. However, given that the gas
component is non-negligible for all clusters analysed, we want to determine the
regions in which the PDM has a negative mass distribution, and compare the results
to the analytical case for two isolated masses which is provided in [50].

5.3.1. The Sample

In order to simulate a galaxy cluster, it is necessary to make a selection of observational
data which can provide detailed information for both the ICM and galaxy components of
the baryonic distribution. The search for valid results is made challenging in MOND by the
fact that raw data is rarely available. Instead, the observations gathered by astronomers
are processed according to a particular cosmological model, which almost always assumes
that gravity is Newtonian at all scales. For this work, we required a sample that did not
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include any inferred dark matter contribution, and that could give a precise account of
the distribution of the baryonic matter present in the clusters. The catalog by Reiprich
and Bohringer [51] was used to obtain the ICM distribution. This catalog is particularly
suitable since the data is obtained via X-Ray measurements rather than gravitational
lensing, therefore giving an account of the radiation-emitting hot gas in the ICM without
including inferred massed from weak lensing. Moreover, the catalog has been utilised in
the study of modified gravity theories in [52], giving a further indication of its suitability
for the study of alternative gravitational theories that do not predict the existence of
non-baryonic dark matter. The ICM distribution is given as a King β model. This
distribution makes the assumption that the gas is close to being in an isothermal state,
and fully defines its distribution in 3D space through three parameters:

1. The central mass density ρ0;

2. The critical gas radius rk
4;

3. The dimensionless exponent β.

The distribution is spherically symmetric, and is given as:

ρ (r) =
ρ0(

1 + (r/rk)
2)−3β/2

. (5.3.35)

However, the catalog given in [51] does not provide any information about the galaxy
content of each cluster. Moreover, most galaxy mass data in the literature is given by
including the assumed halo of dark matter surrounding the baryonic mass distribution.
However, although the Reiprich catalog does not provide information on galaxy popula-
tions directly, it includes several clusters from the Abell catalog. The Abell catalog is
a separate catalog of galaxy clusters which can complement the Reiprich catalog, as it
gives information on the number of galaxies which belong to each cluster, by dividing the
clusters into groups according to galactic population [53]. Certainly, it would be interest-
ing to study every cluster, regardless of the number of galaxies contained within them.
Nonetheless, as computation time is an important factor, we limited our study to the two
less populous cluster groups, namely:

• Group 0, containing between 30 and 49 galaxies;

• Group 1, containing between 50 and 79 galaxies.

We found 15 galaxy clusters belonging to Groups 0 and 1 that were contained in the
Reiprich catalog. Moreover, a fraction of these galaxies is gas dominated, whereas the
rest is galaxy dominated, allowing us to test the difference in the behaviour of the PDM

4This should not be confused with the critical radius determining the volume in which the baryonic
and apparent masses are equivalent for the case of a galaxy.
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when the baryonic mass is more continuously or discretely distributed. The last step
was to define a mass and size scale for the galaxies, as well as determining exactly how
many galaxies to include in the simulation for each group. First, as there is an inherent
uncertainty associated with the exact number of galaxies belonging to each cluster, due
to the possibility of misclassification for both background and foreground galaxies, it was
decided to assign the median value for both groups, namely, 40 galaxies for group 0 and
65 galaxies for group 1. Finally, it was decided to assign the same mass and size to each
galaxy for either group. The best way to compute a mass range for galaxies without
any assumption regarding dark matter is through the baryonic Tully-Fisher relation and
rotation curve measurements, which can both consistently explained by MOND, based
solely on baryonic matter. The Tully-Fisher relation, introduced in chapter 1, directly
relates the asymptotic rotational speed of a galaxy to the baryonic mass contained within
it:

Mb =
V 4
r

Ga0

. (5.3.36)

By analysing the SPARC collection of rotation curve data, we individuated 300km/s as
a realistic value for our simulations and set the baryonic mass from eq. 5.3.36. Finally,
we set the radius of each galaxy to 20kp. For comparison, the Milky Way galaxy has
an asymptotic rotational velocity of Vr ≈ 220km/s, and hence a mass smaller than the
the one of the galaxies used for the simulations, Mg, by a factor of ≈ 3.5. Moreover, the
Milky Way radius is ≈ 30kp, hence larger than the one of the galaxies in our simulation,
Rg, by a factor of ≈ 1.5. Moreover, the galaxies are simulated as a 3D Gaussian pulse
with a standard deviation of σ = Rg/3, so that 99.7% of the total mass Mg is contained
within Rg. Furthermore, there is a reason why the chosen values for the galaxy mass and
radius are interesting. For these values, the critical radius rc, within which the apparent
and baryonic masses are predicted to be equivalent, is only slightly larger than the galaxy
radius Rg, by a factor of ≈ 1.3. This implies that we should be able to observe the
formation of the PDM halo outside of each galaxy, as the critical radius is located outside
of the baryonic mass distribution.

5.3.2. Integrated Mass Around the Center

The first phenomenon we analysed was the radial behaviour of the integrated mass
for the baryonic, PDM, and total apparent mass distributions. To study this property,
we calculated the masses contained within 20 spheres centered at the origin, with radii rs
given by the sequence:

rs = {rt/n}10
n=1. (5.3.37)

The results are shown in fig. 5.3.1. As can be seen from fig. 5.3.1, all of the integrated
masses are increasing functions. Moreover, for all the clusters that were simulated, there
is a radius within which the integrated dark matter MD is smaller than the baryonic mass
MB. However, we also see that, at the boundary, MD > MB for all cases considered. The
radius at which MD = MB varies between clusters, and it reaches a maximum value of
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Figure 5.3.1: Integrated mass contained within spheres of successively larger radii around
the origin. The blue, green and orange curves denote the baryonic, PDM and apparent
masses respectively. The x axis gives the scaled domain size. The y axis gives the mass in
1014 solar masses. It can be seen that the baryonic mass still has a slope at the boundary
of the domain. This occurs because the gas distribution is divergent, and grows linearly in
the radial direction.
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Name ρ0 (10−25g/cm3) β rk(kpc) rout(kpc) Richness
A0085 0.34 0.532 58.4 2241 1
A0133 0.42 0.530 31.7 1417 0
A0262 0.16 0.443 29.6 1334 0
A0400 0.04 0.534 108.4 1062 1
A0576 0.03 0.825 277.5 1076 1
A1060 0.09 0.607 66.2 790 1
A2052 0.52 0.526 26.1 1373 0
A2147 0.03 0.444 167.6 2360 1
A2319 0.1 0.591 200.7 2657 1
A2589 0.12 0.596 83.1 1206 0
A3526 0.29 0.495 26.1 1175 0
A3581 0.31 0.543 24.6 840 0
A3627 0.04 0.555 210.6 1830 1
A4059 0.2 0.582 63.4 1324 1
S636 0.01 0.752 242.3 742 0

Table 5.1: List of the galaxy clusters simulated. All clusters belong to both the Reiprich and
Abell catalogs. The richness comes from the Abell catalog, whereas the other parameters, which
define the ICM distribution, originate from the Reiprich catalog. ρ0 gives the central density of
the ICM. β is a dimensionless exponent which appears in the ICM distribution. rc and rout are
the critical radius and total radius of integration for the ICM respectively. The Richness column
indicates the richness group each cluste belongs to: for richness 1, we simulated 65 galaxies,
while for richness 0 we simulated 40.

rs = 0.5st for A1060. Both the total values of MB and MD clusters shown in fig. 5.3.1
vary over an order of mangitude between the different clusters. However, the radial scaling
of each integrated mass is not considerably affected by the total mass contained in each
cluster. From eq. 5.2.32, we know that the apparent mass grows as MA ∝

√
MBR if

the system is approximately spherically symmetric and is in the deep MOND regime at
the integration boundary. Since we know that the baryonic distribution grows linearly
with R, this implies that, in this case, the growth in MA will be given by MA ∝ R3/2.
Deviation from this behaviour can be caused by the boundary of the sphere not being in the
deep MOND regime, by the distribution not being approximately spherically symmetric,
or both. We can see that, for the clusters A0400, A0576, A1060, A3581 and S636, the
apparent mass grows, to good approximation, linearly. We can understand this behaviour
by noting that these five clusters have the five smallest values for rout in our sample.
As rout is the radius that bounds the cluster, we can see that it is more likely for these
clusters that the deep MOND limit approximation on the boundary is not as good an
approximation as it is for the other clusters. These five clusters also have very different
values for the central mass density ρ0 and galaxy population group amongst each other,
so we see that the behaviour of the apparent mass is in this case not strictly tied to the
nature of the baryonic distribution, but to the fact that the boundaries of these clusters
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are not precisely in the deep MOND regime.
Regardless of the total baryonic and apparent mass contained in the entire cluster, it is

clear that all mass contributions scale similarly for different clusters (with the exceptions
described above for the cluster with small bounding radii rc). Therefore, to compare the
behaviour of the clusters to each other more directly, we show the ratio between the dark
and baryonic integrated masses MD/MB, again as a function of the distance from the
origin, in fig.5.3.2. As can be seen in fig. 5.3.2, all clusters show a similar behaviour for

Figure 5.3.2: Ratio between the integrated mass for the dark mass and baryonic mass, for
the integrated mass of the spheres centered at the origin. The x-axis gives the normalised
radial distance, while the y-axis is the dimensionless ratio MD/MB. We see that the ratio
grows linearly for clusters for which most of the domain is in not in the deep MOND regime,
and grows with rs/st

the ratio MD/MB for low values of rs/rt. To make the analysis more quantitative, we
point out that we can rewrite eq. 5.2.34 in the following way:

MD/MB =

√
a0

GMB

R− 1. (5.3.38)

However, the above expression only holds in the case in which the boundary of the sphere
over which the volume is integrated is in the deep MOND regime. Since for smaller values
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of r the cluster is still in the Newtonian regime, this is not expected to hold. Moreover,
in the central region, the abundance of galaxies implies that the mass distribution cannot
be approximated by a spherical distribution. As can be seen from fig. 5.3.1, far from the
central region the baryonic mass MB grows approximately linearly. Therefore we expect
that the integrated dark mass MD will grow ≈MB/

√
MB =

√
MB away from the central

region. We see that this is in fact the case for a number of clusters, although other clusters
exhibit a linear growth at all values of rs. This effect appears because the mass distribution
is more spread out, implying that there is no spherical symmetry in the inner regions of
the cluster. At the boundary, the ratio varies between 2.4 ≤ MD/MB ≤ 4.3. Overall, we
see that the ratio between PDM and baryonic matter does not follow the expected square
root behaviour. Instead, in many clusters we see a linear growth in MD/MB, which is
simply determined by the linear growth w.r.t. the radius rs. Similarly to the result from
fig. 5.3.1, this shows that if the system is not in the deep MOND regime, the usual square
root dependence between MD and MB is no longer valid, and the behaviour of the PDM
is no longer predictably related to the baryon density.

5.3.3. Integrated Mass Around the Galaxies

In the previous subsection we showed that, in general, the growth of the PDM mass
w.r.t. the baryonic mass inside the clusters does not follow the square root relation, when
the systems are not spherically symmetric and/or in the deep MOND regime. Another
aspect of interest is the behaviour of the PDM around the galaxies. It was shown in [54]
that recent measurements of the weak lensing in galaxy clusters implied a consistently
larger number of small scale lensing effects when compared to simulations using the stan-
dard cosmological model with Newtonian gravity and cold dark matter. It is then of great
interest to analyse the behaviour of the dark matter around the galaxies in the cluster.
By doing so, we can see if the PDM can indeed form clumps around the galaxies. This
would imply that a higher fraction of the PDM is concentrated away from the ICM, which
in the majority of the clusters analysed accounts for most of the baryonic mass. To do
so, we integrate the distribution of baryonic matter, PDM and total apparent matter in
the neighbourhood of each galaxy, and add up all the contributions. The distance scale
of interest for the concentration of PDM around the galaxies is the critical radius rc. For
the case of an isolated galaxy, the critical radius rc =

√
GMB/a0 is the radius for which

MA = MB. As all the galaxies simulated have the same mass and radius, we know that
the critical radius is larger than the galactic radius rg by a factor of ≈ 1.3. Therefore,
the value of the integral at the smallest radius rc should result in a PDM mass close to
0. More specifically, we evaluate the integrated masses in spherical volumes surrounding
each galaxy, with the sphere radii rs being multiples of the critical radius rc:

rs = {rc · n}n=1,2,4,6,8,10. (5.3.39)

First, we analyse the integrated masses for baryonic, PDM and apparent masses for all
clusters. The results are shown in fig. 5.3.3. As shown in fig. 5.3.3, the baryonic mass
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Figure 5.3.3: Baryonic, PDM and apparent integrated masses within the spheres around
each galaxy. The x-axis gives the size of the spheres around each galaxy, as multiples of
the critical radius of the galaxy. The y-axis gives the the integrated masses divided by the
total apparent mass MA contained in the cluster. Therefore, the y-axis is dimensionless.
All curves start at the critical radius rc, so that r/rc = 1.
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contained within increasing radii varies only slightly. This is to be expected, as the galaxies
are generally separated from each other by distances which are large compared to their
critical radius, and that the ICM surrounding them has a low mass density away from the
central region. It can be seen that, for all clusters, the PDM density is close to zero at the
critical radius, as expected. Moreover, the integrated PDM mass increases approximately
linearly for all clusters. Instead, the baryon mass is approximately constant. A weak
linear growth in the baryonic mass can be understood when we take into account that,
for large values of r/rc, we should also consider the ICM mass, which might give a non-
negligible contribution. We also see that the radius at which the integrated PDM mass
overtakes the baryonic contribution is always in the range 4rc ≤ rs ≤ 8rc. These results
confirm that a vast portion of the PDM is contained in spheres around the galaxies,
although the contribution only becomes dominant for rs > 4rc in all cases. We can make
another important observation when comparing fig. 5.3.3 to fig. 5.3.1. The apparent
mass MA grows linearly in the radius for all clusters. This can be understood by utilising
eq. 5.2.32 for constant MB. It is natural to assume that there is spherical symmetry
around each galaxy, but the fact that eq. 5.2.32 gives such a precise fit tells us that,
even in the presence of the external acceleration field generated by the ICM, the sphere
contained within rs = 10rc is in the deep MOND regime. This is in contrast to fig. 5.3.1,
where we have established that the central region of the cluster is generally neither in
the deep MOND regime, nor spherically symmetric. We have then established that the
region around each galaxy is in general spherically symmetric and in the deep MOND
regime. However, we should investigate whether the above result is affected by how much
of the total baryonic and PDM mass of the cluster is contained within these spheres.
Therefore, we plot the ratio of integrated mass to total, for both baryonic and PDM
components, for the same radii as in fig. 5.3.3. This ratio can be seen in fig. 5.3.4.
From fig. 5.3.4, we see that the fraction of the total baryon mass that is contained within
a radius rc around the galaxies ranges from a negligible amount of ≈ 13%, to the vast
majority of the baryons in the cluster, at ≈ 85%. In addition, the baryons contained
within the largest radius tested, rs = 10rc, also range from 25% to ≈ 92%. The variety
in the mass contained within each sphere for different clusters stems from the fact that
certain clusters have a high concentration of gas and galaxies in the central region, while
others have broader distributions, due to which the mass captured in the shells around
the galaxies only includes a negligible amount of the total ICM mass, and hence of the
total baryon mass. On the contrary, the PDM distribution shows an approximately linear
growth for all clusters w.r.t. the radius of the sphere rs. For all clusters, at the critical
radius rc the PDM accounts for less than ≈ 3% of the total PDM contained in the cluster,
with clusters in which this value is lower than ≈ 1%. The clusters in which ≈ 3% of the
PDM is contained within rc are those for which both gas and galaxies are concentrated
in the central region, so that the PDM associated with the ICM is included within the
smallest sphere. Moreover, the total PDM mass which is contained within rs = 10rc varies
from ≈ 10% to ≈ 70%, with most clusters in the range between ≈ 20% and ≈ 30%. Once
again, we have then shown that the distribution of the PDM does not trivially follow
that of the baryons, while instead it converges towards the discrete distributions, and that
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Figure 5.3.4: Fraction between the integrated and total mass, for baryonic (left) and PDM
(right) mass distributions, contained in the spheres around the galaxies. The x-axis gives
the radius of the spheres around each galaxy in units of the critical radius rc. The y-axis
gives the fraction of the integrated to total mass and is dimensionless. We see that the
baryonic mass contained within the critical radius strongly varies, while the PDM is always
close to zero within the critical radius rc.

regardless of the baryon fraction contained in the spheres, the PDM is negligible close to
each galaxy, as predicted in the previous section. Fig. 5.3.5 shows more clearly that the
PDM distribution follows a common behaviour in all clusters, regardless of the width of
the mass distribution which determines the density of the ICM and galaxies. As can be
seen in fig. 5.3.5, the ratio between the baryonic mass and the total apparent mass within
the spheres around the galaxies decreases approximately as 1/

√
rs. This is expected, since

far from the galaxies we are in the deep MOND regime, and we can hence use the inverse of
eq. 5.2.32. Furthermore, we see that the PDM mass becomes comparable to the baryonic
mass between rs = 4rc and rs = 8rc for all clusters, regardless of the total fraction of
baryons or PDM contained in any of the spheres. Although we have shown the relation
between the baryonic and apparent integrated masses inside each of the shells, it is useful
to analyse the ratio of the PDM to the baryons directly. This is shown in fig. 5.3.6.
As can be seen in fig. 5.3.6, the PDM mass has a very similar integrated mass to that
shown for the case of spheres centered at the origin, showing that the PDM distribution
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Figure 5.3.5: Ratio of the baryonic matter MB contained in each shell around the galaxies
to the apparent matter MA contained in the same shell. The x-axis gives the radius of the
spheres around each galaxy, scaled by the critical radius rc, while the y-axis is a dimensionless
fraction.

around the galaxies gives the dominant contribution to the total distribution of the PDM
in each of the clusters. Up until this moment, we have made the assumption that the total
contributions to baryonic, PDM and apparent masses are uniquely defined for a given
spherical volume. Therefore, we have not tried to examine whether the baryonic mass we
utilised is sufficient to account for all the dark matter contained in the cluster. This is
because we are aware that our answer would not differ from that given in the literature
when using the pristine formulation of MOND, which is equivalent to AQUAL in the case
of spherical symmetry. However, there is one result that could theoretically be predicted
without the need for a simulation, but is interesting nonetheless. This result is shown in
fig. 5.3.7. From fig. 5.3.7, we clearly see that there are two linear scaling behaviours for the
ratio MD/NB, one increasing and the other decreasing. These two behaviours correspond
exactly to clusters where the baryonic mass distribution is either dominated by galaxies
or by the ICM. However, this apparent relation does not depend on the MOND regime
or the distribution being spherical. Instead, it is embedded in the baryonic fractions that
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Figure 5.3.6: Ratio of dark matter to baryonic matter for the spheres around the galaxies.
The x-axis gives the radius of the spheres around each galaxy, scaled by the critical radius
rc, while the y-axis is a dimensionless fraction.

we input into the simulation. Although we cannot fully account for the origin of this
relationship, it is clear that the ratio between PDM and baryonic mass increases linearly
as long as the galaxies make up most of the baryonic matter, and decreases linearly if the
dominant component is the ICM.

5.3.4. Negative Mass Distributions

In general, the phenomena that can be described in the MOND framework through the
exclusive use of baryonic matter can also be reproduced in standard cosmology by postu-
lating an ad hoc matter distribution. Even the presence of small gravitational lenses inside
of galaxy clusters, which we showed in the previous section to be an inevitable consequence
of inferring an apparent distribution from a MOND potential, can be accommodated by
simply postulating the presence of dark natter wherever needed. However, there is one
phenomenon that cannot be explained by any widely adopted dark matter model: negative
mass distributions. Of course, no such distribution would be inferred if the assumption is
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Figure 5.3.7: Dark-baryonic ratio against gas-galaxy ratio. All masses refer to the total
masses integrated over the cluster. Each point corresponds to a different cluster, as given in
the legend. There are clearly two different regimes, for which the ratio MD/MB increases
(decreases) linearly. The two regimes meet where the baryonic mass is evenly split between
gas and galaxies.

made that the potential measured is Newtonian. However, there is nothing that impedes
the PDM stemming from a MOND potential, for a completely arbitrary baryonic mass
distribution, from being negative at some points in space. A clear example can be taken
from the existence of the critical radius rc for a galaxy. If we assume that the baryonic
mass distribution of the galaxy drops off extremely fast after a certain radius rg, and that
we have rc > rg, then for a given radius rg < r < rc it is possible that there is a negative
PDM component, since:

MD =

√
a0MB

G
R−MB → R < rc =

√
GMB

a0

=⇒ MD < 0. (5.3.40)
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The possibility of PDM with negative density has been considered by Milgrom in [50],
where he analytically derived the geometry of a region of negative density around a dis-
crete object of low surface density (equivalent to a radius smaller than rc when using the
definition for the critical surface density Σm = a0/G given after eq. 5.2.34) in an external
acceleration field. We now want to make qualitative statements about the presence of
negative mass PDM distributions in our simulations. Without loss of generality, as all
clusters follow the same distribution with different parameters, we consider the cluster
A0085. Its baryonic mass density is shown as a collection of isosurfaces, which are made
transparent to show the galaxies within the ICM. The baryonic isosurfaces are shown in
fig. 5.3.8: It can be seen that most of the galaxies are concentrated in the central region

Figure 5.3.8: 3D view of the isosurfaces for the baryonic mass distribution for the A0085
cluster. For scale, each of the smaller surfaces gives the spatial extension of a galaxy inside
the cluster. The larger isosurfaces around the origin represent the ICM distribution.

of the cluster, where the ICM mass density is highest. Nonetheless, every galaxy is in
an external gravitational field pulling it towards the center of the ICM distribution. It
is useful to now show an illustration from [50] depicting the predicted region of negative
mass density. The illustration is in fig. 5.3.9: We now present the same situation as in
fig. 5.3.8, except we now show the isosurface for a vanishing apparent mass, MA = 0,
implying a negative dark matter MD < 0 in the region with positive baryon mass density:
It can be seen from fig. 5.3.10 that the negative PDM accumulates around the galaxies
exclusively, in the form of a torus. The approximation devised by Milgrom and shown in
fig. 5.3.9 can hence be confirmed in the case of the external gravitational field generated
by the ICM, with the galaxies acting as the sources. Due to the galaxies filling the gaps
left by the negative PDM densities, it is not clear that the geometries shown in blue in fig.
5.3.10 actually correspond to tori. A clearer perspective, showing the predicted gaps in
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Figure 5.3.9: Body in an external gravitational field giving rise to a negative mass distri-
bution, marked by the - signs to the sides of the extended cone geometry.

the negative PDM density in the direction of the external field lines, is given in fig. 5.3.11.
We also show some isosurfaces for the positive apparent mass distribution, in order to
give a more straightforward indication of the clumping effect that takes place close to the
galaxies, after the critical radius rc. From fig. 5.3.12 we see that, although some of the
apparent mass density is present around the ICM, it is evident that each galaxy has a pos-
itive distribution surrounding it, starting after its critical radius rc. Finally, we show the
same system with all the isosurfaces for the separate contributions at once in fig. 5.3.13.
From fig. 5.3.13, we can see that the galaxies are surrounded by a positive, spherical PDM
distribution, and contained in the torus-shaped negative PDM distribution further away
from its center. As a smooth transition is required between the PDM having a positive
and negative distributions, the green and blue contributions in fig. 5.3.13 transform into
each other, and become equivalent close to rc for every galaxy, where MD = 0.
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Figure 5.3.10: 3D view of the isosurfaces for the baryonic mass distribution for the A0085
cluster. The red surfaces represent the positive baryonic mass density, while the blue iso-
surfaces represent the points at which the apparent mass distribution vanishes, implying a
negative PDM density MD = −MB.

Figure 5.3.11: 3D view of the isosurfaces in A0085 for the negative PDM density MD =
−MB. The angle of this 3D view does not correspond to the one of the other plots, since
it is pointing towards the center of the ICM, in the direction of thee external acceleration
field. Due to this, the torus shapes are more clearly visible.
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Figure 5.3.12: 3D view of the isosurfaces in A0085 for the positive contributions of the
baryonic distribution (red) and the apparent distribution (green).

Figure 5.3.13: 3D view of the isosurfaces in A0085 including the positive contributions
of the baryonic distribution (red) and the apparent distribution (green), and the negative
PDM contributions (blue).
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Chapter 6

Finite Element Method

This chapter gives an introduction to the Finite Element Method (FEM). FEM is
the numerical technique which was used to compute the solution to the MOND Bound-
ary Value Problem (BVP), through the use of the FEniCS software, which will be
introduced in chapter 7. This chapter will begin by describing the basic structure of
FEM, explaining why it is a popular numerical method and giving its working principles
from a non-mathematical point of view. Next, the concepts of the weak form and test
function will be introduced, alongside the most common FEM implementation, namely
the Galerkin method. Examples of the weak form will then be given for the Poisson and
MOND equations. Subsequently, the discretisation procedure will be treated. Three main
concepts are discussed: the elements, basis functions and the assembly of the integrals
into element matrix and element vector. For each concept, a brief mathematical overview
will be given, after which implementations will be described, utilising results from the
literature.

6.1. The Need for a Numerical Solution

In an ideal world, the solution to equations describing physical problems would be given
in terms of known analytic functions, such as polynomials, exponentials, trigonometric
functions and similar. Unfortunately, analytic solutions to PDEs are not always available,
for reasons ranging from non-linearity to the use of complex domain geometries.

In the case of the MOND PDE, exact general solutions1 are not known even for the
simplest 3D domains such as spheres or cylinders. Therefore, numerical methods need
to be utilised to understand the behaviour of any physical system of interest which, for
MOND, are mostly galaxies and galaxy clusters.

This section introduces the work that has been carried out in the past to obtain both
exact and numerical solutions to the MOND equations. Through the description of previ-
ous results, we will argue for the need for a more robust numerical treatment, particularly

1By general solution here we mean solutions which do not make use of principles of symmetry. For
example, a spherically symmetric solution is not a general solution, and is only applicable when there is
a spherically symmetric mass distribution.
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in the case of discrete mass distributions. Ultimately, we will explain why the Finite
Element Method is the most suitable numerical scheme for the purpose.

The MOND PDE with interpolation function µ (x) has no analytic solution. One
can find approximate solutions for simple mass distributions, which either possess strong
symmetries (spherical or axial), or have a physical extension which is negligible when
compared to the chosen domain, such as point sources. However, these solutions are of
limited use in physically interesting situations, due to the assumptions which have to be
imposed to find a closed form.

Analytic solutions of toy models were treated in [13] and [55], with a focus on cylin-
drically symmetric distributions, which are of great relevance in the study of galaxies.
Non-exact solutions were also treated in [13] through perturbation theory and the use of
the Finite Difference Method. Nonetheless, none of these implementations can be used to
model the irregular mass distributions which is necessary for the analysis of galaxy clus-
ters. Galaxy clusters are particularly important because the MOND predictions do not
seem to match observational evidence when simplified mass models are used [56]. Even
more importantly, previous work on the behaviour of MOND in galaxy clusters [49] did not
directly compute a solution to the full MOND PDE. Instead, it calculated the Newtonian
force and inferred the resulting MOND force by the a posteriori use of the interpolation
function µ (x). This approach neglects the crucial non-linearity of the MOND PDE, and
by construction cannot make a distinction between the potential stemming from a contin-
uous distribution and a collection of discrete sources, if the total mass of the two systems
is equal.

In galaxy clusters, continuous distributions correspond to the gas in the Intra Cluster
Medium (ICM), whereas the galaxies can be considered as discrete sources with a radius
smaller than that of the cluster by at least two orders of magnitude. Therefore, if one
wants to analyse the behaviour of MOND in galaxy clusters, a numerical solution, which
has good performance when the source term is non-homogeneous, is needed. Mesh based
methods, such as Finite Differences, Finite Volume and Finite Element can be utilised, but
in order to obtain both convergence in the solution and low computation times, particular
attention must be given to the meshing process.

6.2. Introduction to FEM

When dealing with numerical methods, one has to abandon the concept of continu-
ous functions: both inputs and outputs need to be discretised and expressed with finite
precision. This implies the following:

1. The domain of a problem can only be described by a finite number of points. For
example, these can be identified as the nodes of a mesh, and any function on the
domain will be evaluated at this set of points;

2. The value of any function can only be calculated at a finite number of nodes in
the domain. In general, the value of the function will contain a finite error when
compared to an exact analytical expression.
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The concept of the mesh is fundamental in most numerical schemes, including FEM.
The term mesh refers to a collection of objects that can be characterised based on their
geometric dimension.2 As an example, a mesh in n dimensions is composed of objects
that have geometric dimensions 0 through n. For MOND one is interested in the 3D case
where:

• Points are also referred to as vertices or nodes. They have dimension 0. It is on
these nodes that one obtains the value of a solution;

• Lines are termed edges in 3D, and have dimension 1;

• Surfaces come in the form of facets, defining the boundary of each 3D element, and
have dimension 2;

• Polyhedra, such as tetrahedra, are the elements in 3D and have dimension 3. They
are also referred to as cells, and the solution is computed over each of them indi-
vidually.

As mentioned above in the definition of a cell, in FEM the solution to a BVP is calculated
separately over each cell, with the value of the solution being approximated on each node
that makes up the cell. From a mathematical standpoint, the aspect which makes FEM a
powerful numerical method is that the domain over which the BVP is defined is subdivided
into smaller subdomains. On these subdomains, the solution can be approximated by
combinations of simple functions, such as polynomials. With FEM, solutions to BVPs on
complex domain geometries can be obtained by splitting the overall domain into smaller,
simpler domains of the chosen shape, such as cubes or tetrahedra in 3D. Overall, obtaining
the solution of a BVP using FEM involves the following steps:

1. Choosing a domain of computation and defining the BVP on it, including the PDE
and the boundary conditions;

2. Obtaining a weak form from the PDE;

3. Deriving a system of equations from the weak form that can be solved on each
element;

4. Solving the system of equations on each element to obtain the value of the solution
at every node in the domain.

2It will be explained in chapter 8 that a topological dimension is also required in the FEniCS software.
However, for many purposes the geometric dimension is sufficient.
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6.3. Weak Form and Test Functions

Certain aspects of the above-mentioned steps need to be described more in detail. The
most important features of FEM include the introduction of so-called test functions and
the use of the weak form.

Without delving too deeply into the mathematical formalism, the reason why intro-
ducing a test function and weak form is advantageous is the following: when defining a
PDE over a domain, one must ensure that the PDE is valid at each point of the domain
itself. For example, if the PDE contains second derivatives, the solution must have second
derivatives at each point of the domain. This is quite a stringent condition.

Instead, a test function, which is a function which shares a given property with the
solution, could be introduced. The case of interest is that of a test function which belongs
to the same function space as the solution. If one multiplies both sides of the PDE by this
test function, one obtains an equivalent expression. The expression can now be integrated.
This is where the weak form is advantageous: as one is dealing with a PDE, there will be
spatial derivatives of the solution. Since both sides of the PDE were multiplied by a test
function, one can use integration by parts to redistribute the differentiation between the
solution and the test function, hence decreasing the order of the partial derivative on the
solution. For example, if the highest order derivative on the solution is reduced from 2
to 1, the solution is no longer required to have second derivatives throughout the whole
domain, but only first derivatives. This is a weaker requirement, hence the name weak
form.

Moreover, the following important aspect must be noted:

The PDE must hold at all points of the domain. Instead, the integral expression
giving the weak form must only be valid for all test functions in the chosen function
space.

In synthesis, in the initial PDE the solution is required to satisfy a stringent condition
on its differentiability, at all points in the domain. After multiplication by a test function
and integration, the resulting expression has less stringent constraints and has to hold for
all possible test functions rather than all points in the domain. If the solution of the PDE
is sufficiently well behaved, it can be shown that it coincides with the solution of the weak
form. Therefore, the weak form can be seen as offering a different formulation for the
problem, for which the solution is identical, can be obtained more easily, and can be more
effectively computed through a numerical scheme.

There are various ways to arrive at the weak form. The two main approaches are given
by the Ritz method and the Galerkin method. Given that for the MOND PDE only the
Galerkin method can be used, the description of the Ritz method is given in appendix D.
The Galerkin method also includes a prescription to obtain a discretised system from the
weak form. for. The latter will be described once the method has been explained.
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6.4. Galerkin Method

The strong conditions imposed on the use of the Ritz method (see appendix D) are
absent from the Galerkin method. The latter method can, however, be used to solve
non-linear PDEs with inhomogeneous boundary conditions such as MOND. Moreover, the
procedure requires fewer steps. These are:

1. Obtaining a weak form from the BVP.

2. Discretising the weak form through the use of basis functions and the introduction
of elements;

3. Deriving the element matrix and element vector from the discretised weak form.

In the next subsection, we will find the weak form for two different PDEs. First, for
the Poisson equation, one of the simplest PDE formulations, in order to apply the basic
concepts without further complications. Subsequently, for MOND with one of the possible
interpolation functions, as this is the problem which needs to be solved.

6.5. The Weak Form for the Poisson Equation

To allow for a smooth transition to the description of the MOND PDE, it is useful
to begin by treating the Poisson equation for gravity. The solution is the gravitational
potential φ, the mass density is ρ andG is the gravitational constant. The Poisson equation
can then be given as:

∇ · (∇φ) = 4πGρ ∈ Ω. (6.5.1)

The domain Ω is taken to be the sphere in 3D. In the case of the Poisson equation inside
a 3D sphere, the solution is known. This can then be used as the boundary condition,
where M is the total mass enclosed in the sphere:

φ =
GM

r
∈ Γ. (6.5.2)

Γ is the boundary of the domain Ω. For a sphere in 3D, this is the surface of the sphere,
and it assumes the role of spatial infinity. When the value of the solution is explicitly
prescribed on the boundary, the test function is required to vanish on the boundary:

ψ = 0 ∈ Γ. (6.5.3)

As mentioned in sections 6.3 and 6.4, one way to obtain the weak form is the following:
one multiplies each side of the PDE by a test function (which might be required to satisfy
some additional constraints, e.g. on the boundary of the domain), integrates both sides of
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the expression, and reduces the order of partial derivatives. Applying these steps to eq.
6.5.1 with a test function ψ we obtain:∫

Ω

∇ · (∇φ)ψ dΩ =

∫
Ω

4πGρψ dΩ. (6.5.4)

To reduce the order of differentiation on the solution φ, one can use integration by parts
to arrive at: ∫

Ω

∇ · (∇φ · ψ) dΩ−
∫

Ω

∇φ∇ψ dΩ =

∫
Ω

4πGρψ dΩ. (6.5.5)

As the integrand of the first integral on the LHS is a divergence, one can use the divergence
theorem to obtain: ∫

Γ

∇φ · ψ dΓ−
∫

Ω

∇φ∇ψ dΩ =

∫
Ω

4πGρψ dΩ. (6.5.6)

The resulting integral over the surface Γ contains ψ. From eq. 6.5.3 we have ψ = 0 on
the boundary, so this term vanishes. The remaining expression can be used to give the
weak form as follows. One must first introduce the function space to which both φ and ψ
belong to and call it Σ. Then, the weak form is given by the following statement.

Find φ such that the following expression holds for all test functions ψ in Σ that
satisfy ψ = 0 ∈ Γ:

−
∫

Ω

∇φ∇ψ dΩ =

∫
Ω

4πGρψ dΩ. (6.5.7)

6.6. The Weak Form for MOND

In order to find the weak form for MOND, one follows similar steps to the ones for the
Poisson equation. However, as there are different interpolation functions in MOND, which
give rise to different PDEs, each of these has to be treated separately. In the following,
the weak form is obtained for the MOND PDE with the simple interpolation function.
One has the PDE:

∇ ·
(
|∇φ|

|∇φ+ a0|
∇φ
)

= 4πGρ ∈ Ω. (6.6.8)

Ω is the domain of the solution. The case of interest for Ω is the 3D sphere. In order to find
a solution, one must give a boundary condition, such as the behaviour of the potential φ at
spatial infinity. Following [12] and [13], one can define the Dirichlet Boundary Condition
(BC):

φ =
√
MGa0 ln

(
r

r0

)
∈ Γ. (6.6.9)
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This type of BC, which has to be imposed on the PDE and also on the weak form, is
called essential.

To obtain the weak form, one has to again multiply the PDE by a test function,
integrate over the domain, and reduce the order of the partial derivatives. Starting from
eq. 6.6.8 and multiplying by the test function ψ we have:

−
∫

Ω

ψ∇ ·
(
|∇φ|

|∇φ|+ a0

∇φ
)

dΩ =

∫
Ω

4πGψρ dΩ. (6.6.10)

Using integration by parts on eq. 6.6.10 we arrive at:∫
Ω

∇ ·
(
|∇φ|

|∇φ|+ a0

ψ∇φ
)

dΩ−
∫

Ω

|∇φ|
|∇φ|+ a0

∇φ∇ψ dΩ =

∫
Ω

4πGψρ dΩ. (6.6.11)

As for the Poisson equation, the test function ψ must vanish on the boundary:

ψ = 0 ∈ Γ. (6.6.12)

As eq. 6.6.11 contains a divergence term, one can use the divergence theorem to obtain:∫
Γ

|∇φ|
|∇φ|+ a0

ψ∇φ dΓ−
∫

Ω

|∇φ|
|∇φ|+ a0

∇φ∇ψ dΩ =

∫
Ω

4πGψρ dΩ. (6.6.13)

Since the first term is now an integral over the boundary Γ, over which ψ = 0, the first
term cancels, and one is left with the weak form. As stated above, the weak form must hold
for all test functions in the chosen function space, for which details are now unimportant,
named Σ. Mathematically, the weak form is given by the following statement.

Find φ such that the following holds for all test functions ψ in the function space Σ
that satisfy ψ = 0 ∈ Γ:

−
∫

Ω

|∇φ|
|∇φ|+ a0

∇φ∇ψ dΩ =

∫
Ω

4πGψρ dΩ (6.6.14)

As can be seen in eq. 6.6.14, there are only first derivatives of the solution and test function.
Hence the requirement is that φ is differentiable once, rather than twice differentiable, as
was the case with the original PDE formulation. This is a weaker requirement than what
was initially set.

6.7. Discretisation and Basis Functions

Once the weak form has been obtained, the problem can be discretised. However,
before giving a specific example by carrying out the discretisation of the weak form which
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was found above for the Poisson equation, it is necessary to introduce some concepts which
are generally applicable. Despite the intention to avoid being too technical, it must be
pointed out that the functions which have been defined so far belong to an infinite space,
namely a Hilbert space. For the purposes of this discussion, it is sufficient to point out
that a function belonging to an infinite space can be defined as an infinite sum of basis
functions, each coming with a specific coefficient. Using the notation u for a function in
an infinite function space, ṽi for the basis functions and c̃i for the respective coefficients,
one can express u through the infinite sum:3

u =
∞∑
i=0

c̃iṽi. (6.7.15)

As computers cannot calculate infinite quantities, one must define the function as a finite
sum, which is an approximation to the exact function u. The function defined through
this finite sum thus belongs to a finite subspace of the infinite space one started with.
Calling the approximation from the finite subspace ua, one can write:

ua =
n∑
i=1

civi. (6.7.16)

As the expression in eq. 6.7.16 is a finite sum, the existence of a finite amount of basis
functions vi is implied. The next aspect to note is the following: the weak form has to hold
for every test function ψ. As the test function is required to belong to the same function
space as u, its approximation must also belong to the same finite subspace. Therefore, the
test function can be expressed as a finite sum over the basis functions, and requiring that
the weak form holds for all test functions is equivalent to requiring that it holds for all of
the basis functions independently.

Having defined these concepts, it is now possible to express the weak form for the
Poisson equation in terms of the approximated solution. Using again the notation vi
for the basis functions and ci for the respective coefficients, this involves making the
substitution in eq. 6.6.14:

φ ≈
n∑
i=1

cjvj. (6.7.17)

Furthermore, the weak form must now hold for all basis functions vj. The basis functions
have not yet been defined. In general, one can choose any set of functions which satisfies
certain mathematical requirements, for example orthogonality. This means that the prod-
uct of any two basis functions is 0, unless it is the product of a basis function with itself.
However, it is assumed that the basis functions are known, hence the unknowns are now
the coefficients ci. The problem now is to find these coefficients rather than the initial

3In the literature, it is common to assign the letter φ to the basis functions. However, in the MOND
PDE φ is the variable of interest, so the notation vi is used instead for the basis functions.
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exact function φ. Generally, the discretised version of the weak form follows from making
the two simple replacements:

φ→
n∑
j=1

cjvj, ψ → vi (6.7.18)

With these substitutions, eq. 6.6.14, which gives the weak form for the Poisson equation,
now reads as follows:

Find the coefficients cj such that the following expression holds for all basis functions
vi:

−
n∑
j=1

cj

∫
Ω

∇vj∇vi dΩ =

∫
Ω

4πGρvi dΩ. (6.7.19)

It can then be seen that eq. 6.7.19 describes a matrix-vector multiplication by making the
substitutions:

−
∫

Ω

∇vj∇vi dΩ→ Aij,

∫
Ω

4πGρvi dΩ→ fi. (6.7.20)

The newly introduced quantities are the element matrix Aij and the element vector fi.
The discretised weak form then becomes:

Aij · cj = fi. (6.7.21)

It was previously explained that the coefficients cj uniquely define the solution φ. The
expressions for Aij and fi are known once the respective integrals have been solved. After
computing the integrals, the approximate solution can be found by solving the system
of equations in eq. 6.7.21. In order to arrive at the solution, three steps are in general
non-trivial:

1. Dividing the domain into sub-domains, called elements;

2. Choosing a set of suitable basis functions for the problem;

3. Numerically calculating the integrals defining the element matrix and element vector.

These steps will be discussed individually in the subsections below. For each step, first
a brief mathematical explanation will be provided. Techniques for their computation will
then be given, together with implementations from the literature.
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6.8. Elements

6.8.1. Mathematical Problem

Both of the integrals given in eq. 6.7.19 are given over the domain Ω. So far, the basis
functions have been treated as continuous functions. However, in order to calculate the
integrals numerically, one must define a finite number of points over which the approximate
solution will be calculated. These points are called nodes, or vertices. Once a finite number
of vertices have been introduced, one can no longer exactly cover the initial domain Ω,
but only an approximation of this domain, denoted by Ω̃. The result of integration over
the domain Ω̃ can be decomposed into the sum of the integration over subdomains ek
which add up to Ω̃. For example, the integral could be decomposed to calculate Aij over
m subdomains:

−
∫

Ω

∇vj∇vi dΩ = −
m∑
k=1

∫
ek

∇vj∇vi dek. (6.8.22)

In 3D, the elements define the volume of a cell, and the union of all the cells is equal to the
approximated domain Ω̃. The process of subdividing the domain into subdomains forms a
mesh, which is defined by the cells composing it and the nodes over which the solution is
calculated. The following important aspect should be noted: in theory, the integral over
each element can be calculated independently. However, one would have to calculate the
integral of the weak form as a function of the test functions for all values of i and j. For
the integrals to be truly independent from each other, one must make a smart choice for
the basis functions.

6.8.2. Implementation

The subdivision of the domain into a mesh made of nodes and elements is a step
of crucial importance for FEM. As described in [57], element quality can be defined by
different criteria, but all definitions agree on one main factor:

Regardless of the exact geometric shape of the element, elements of higher quality
are those which are closest to a regular shape.

For 3D, the element geometry of interest is generally the tetrahedron. A good element
is thus given by a tetrahedron whose sides are approximately equal. A more in depth
discussion of element quality will be given in chapter 8. It is then important that the
nodes are connected in such as way as to obtain elements which all have approximately
a regular shape. The most common technique to obtain simplex elements (triangles in
2D, tetrahedra in 3D) is DT (Delaunay triangulation). Through this technique, each
element is defined so that its circumsphere (the smallest sphere containing the element)
does not contain the center point of any other element.

In addition to generally producing elements of high quality for complex domain shapes,
it was shown in [58] that for the case of 2D meshes the Delaunay triangulation can be
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improved to achieve a scaling of O(n log(n)) on a sequential machine by utilising a quad-
edge data structure, which allows to concurrently store the information of four edges.
Moreover, it was recently shown in [59] that on a multi-core system with 16 single-threaded
cores, optimisations based on point insertion in 2D meshes allowed the computation of the
triangulation with a speedup of ≈ 14 compared to a sequential program with a scaling of
O(n log(n)). On the other hand, the implementation from [59] did not provide comparable
speedups for the case of 3D meshes.

However, it was shown in [60] that through GPU acceleration, the triangulation for 3D
models with O(106) nodes could achieve a speedup of ≈ 6 w.r.t. a sequential counterpart
running on a CPU. Moreover, for models with O(107) nodes, the speedup achieved reached
a factor of ≈ 10. As the technique used in [60] was also that of point insertion, these
results show that for the case of 3D meshes, GPUs can provide speedup of order O(10)
for Delaunay triangulation w.r.t. CPU implementations. It is hence clear that the use
of Delaunay triangulation is optimal for the mesh generation required in FEM, because
of the possible speedups achievable by multi-core and GPU-accelerated systems in both
2D and 3D. As a result, most mesh generation libraries, such as tetgen and CGAL, offer
Delaunay as the default triangulation backend, as explained in [61].

6.9. Basis Functions

6.9.1. Mathematical Problem

To ensure that the integral over each element ek can be evaluated independently, each
basis function must be defined so that it is only non-zero at a given point in space. As
the domain is now given by a discrete set of points, this can be done by using so-called
hat functions4. Formally, a hat function is defined to be only non-zero on a specific node,
and zero everywhere else. Using the indices i for the basis functions and j for the discrete
points in the domain, this can be defined as:

vi(xj, yj, zj) =

{
1 i = j

0 i 6= j.
(6.9.23)

If the elements are small compared to the domain Ω̃, one can make the approximation
that, over each element, every basis function can be approximated as a linear combination
of the coordinates. Indicating the value of the basis function vi on the element ek as vki ,

4This description is limited to elements of degree 1, but the same reasoning can be used to make
elements of higher order by adding more nodes to each element.
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this implies5:

vki = ai + bix+ ciy + diz. (6.9.24)

The coefficients ai, bi, ci, di are chosen so that on every element ek, the value of each
test function vki at each node of the element follows the form given in eq. 6.9.23. Eq.
6.9.23 implies a crucial feature: as each test function is only non-zero at a given node, test
functions which are not directly connected by an edge do not overlap. Given that nodes
which are connected by an edge are part of the same element, for all nodes i, j which do
not belong to the same element one has:∫

ek

vivj dek =

∫
ek

∇vi∇vj dek = 0. (6.9.25)

When considering the matrix structure of the discretised weak form of eq. 6.7.19, one can
then see that for a large number of elements k � 1, the resulting matrix will be sparse,
because the vast majority of the pairs of basis functions with indexes i, j will give zero
contributions.

6.9.2. Implementation

The mathematical description provided in the previous subsection only concerned the
use of linear elements for reasons of simplicity. However, in real world applications, linear
elements often cannot be used. For example, if one is interested in taking the second
derivative of the solution, as in the case of galaxy clusters, one must use elements on which
the solution is approximated by a higher order polynomial. Moreover, polynomials are not
the only choices that can be made for the basis functions on each element. Choosing the
best element for the problem at hand can quickly become complex, and for higher order
elements the solution of the integrals over each element becomes challenging.

In addition, it is well known that specific problems are best treated with non-standard
basis functions, such as the Nedelec elements introduced in [62] for EM problems. The
greatest issue is that many libraries for FEM do not offer compatibility with most of the
families of basis functions which are needed to achieve the highest precision in the solution
of specific problems such as EM simulations. This is because it is difficult to obtain closed
forms for even a lower order approximation to these basis functions, as explained in [63].
One approach that allows for the use of most families of basis functions is given by FIAT
(FInite element Automatic Tabulator), introduced in [63] and [64].

The approach taken by FIAT is to approximate arbitrary basis functions by linear
combinations of polynomials of arbitrarily high order. This can be done for elements of
varying geometries, both in 2D and 3D, including triangles and tetrahedra. Once the
basis functions have been approximated, their values are stored in a file for future use.

5It should again be noted that this is the approximation made for linear elements. If using polynomials,
one defines the basis functions on each element as a polynomial function of order n of the coordinates.
Degree 3 elements are given by an order 3 polynomial.
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Although this implies an overhead in the computation, it allows for a better evaluation
of the solution, as well as bridging the gap between the mathematical formulation and
the programming implementation. FIAT was first implemented in Python, because of
advantages such as automatic memory management and ease of interface with a large
number of linear algebra libraries, necessary to compute the basis functions efficiently.

It was also shown in [65] that by integrating the level 3 BLAS library in FIAT, speedups
from O(10) up to O(103) could be achieved in the tabulation of complex basis functions,
thanks to the optimisation of the dense-matrix operations required. FIAT is one of the
building blocks of many modern FEM solvers, such as FEniCS, which will be introduced
in chapter 7.

6.10. Integration and Assembly

As explained above, the only non-zero contributions to the element matrix come from
nodes belonging to the same element. The last step which is necessary to obtain the matrix
element is hence the computation of the value of the integral on each element. As one
chooses elements of a simple geometry, it is sometimes possible to solve the integrals over
the basis functions analytically. When this is not possible, numerical integration must be
used. Ultimately, one has to obtain the element matrix for the total system by assembling
the matrices obtained for every element ek, by utilising a mapping w.r.t. to the vertices
of each element. The same must be done for the element vector. However, in this case,
the coefficients for each basis function vi are known, as they depend on the interpolated
value of the source at each discrete point xj.

6.10.1. Implementation

To obtain the total element matrix and element vector, four steps are necessary:

1. Solving the integral involving the basis functions for both the solution and the test
function, vi and vj. This gives the element matrix Akij for each element ek;

2. Solving the integral involving the interpolation of the source and the basis function
for the test function vi, The coefficients of vi are given by the interpolated values of
the source f at all nodes xj, and are known a priori. This gives the element vector
fki for each element ek;

3. Once the integrals for the element matrix have been computed over each element
ek, the results need to be assembled into the total element matrix according to the
indices i, j;

4. Once the integrals for the element vector have been computed for each element ek,
the total element vector needs to be assembled according to the index i.
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The solution of the integrals depends on the choice of the basis functions, the number of
dimensions of the mesh, the geometry of the elements, and the value of the source at each
node. Therefore, it is hard to give a standard measure of performance for the general case
without specifying the element type and basis functions. However, in all cases, one must
have a connectivity list indicating which pairs of nodes i, j are connected. This list is
called the mapping.

It was shown in [66] that by utilising the MPI standard on a multi-core CPU system,
speedups of O(10) can be achieved for the mapping on meshes with O(104) nodes. To arrive
at this result, instead of having a global mapping, each element is made to hold a list of
its own mapping into the total element matrix. Without the need for a global mapping,
the mapping computation can be more efficiently distributed for parallel computation.
Moreover, it was shown in [67] that a similar method could be paired to a more efficient
compression of sparse matrices to obtain speedups of O(10) in the mapping for meshes
with O(105) nodes. The speedup is defined w.r.t. standard libraries such as uBLAS, in
the case of sequential computation. The results from [67] are particularly relevant for this
work as they are integrated with FEniCS Form Compiler (FFC) described in chapter
7.

6.10.2. Solution of the Linear System

6.10.3. Implementation

After the integrals have been computed for the total element matrix and total element
vector, one is left with a linear system of the form:

Aijcj = fi. (6.10.26)

The solution is uniquely determined by the coefficients cj, and there are generally two
different methods for obtaining these coefficients.

1. Direct solvers: through techniques such as Lower-Upper (LU) decomposition. In
this case, only matrix-vector multiplication is required, once the element matrix Aij
has been decomposed into the product of a lower triangular and an upper triangular
matrix, L and U respectively:6

Aij = LU. (6.10.27)

However, the method grows with O(n3) in the number of nodes in the mesh. More-
over, if the matrix M is mostly sparse, the computation can be inefficient as empty
cells are multiplied together.

2. Iterative solvers: rather than solving the problem directly by matrix multipli-
cation, an iterative solver starts with an approximation of the solution. Iterative
solvers do not provide an exact solution as in the case of direct solvers, but instead
find a best approximation. This is particularly useful when solving a non-linear
problem.

6Indices for the L and U matrices are suppressed to avoid clutter.
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The MOND PDE is non-linear, but in certain regimes it converges to the Poisson equation,
which is linear. Moreover, as indicated, for example, in [68], iterative solvers become more
effective for meshes with O(106) elements. Therefore, in order to determine which solver is
most suitable for a problem, one must not only consider its size, but also the distribution
of the sources and the non-linearity in the considered regime. A more in-depth study of
the speedup which can be provided by various direct and iterative solvers for the MOND
PDE will be given in chapter 8.

6.10.4. The FEM Workflow and FEniCS

For the implementatiofn of a complete FEM software, one must provide code to com-
pute each quantity present in the aforementioned section. The fundamental issue is that,
from a mathematical point of view, FEM is applicable to most of the problems in engi-
neering and science which can be expressed in PDE form, such as Computational Fluid
Dynamics (CFD), Electromagnetism (EM), statics, gravity and so on. However, as
was explained when describing basis functions, different PDEs generally require different
domains, problem sizes, basis functions and element types. Therefore, even though each
component of the FEM workflow can be executed with high performance, the lack of a
package capable of handling the compatibility between each of the fundamental building
blocks greatly hinders the ability to truly exploit the power of the FEM formalism.

For this reason, efforts have recently been made to unite the various high performance
libraries for use in FEM into a single framework. The prime example of this category of
open source general FEM solvers is given by FEniCS, first introduced in [69]. FEniCS
handles all the stages necessary for computing the FEM solution for an arbitrary PDE,
including mesh generation, element definition, integral calculation and matrix assembly,
and solution to both linear and nonlinear systems of equations. The packages allowing
the computation of these steps include the previously mentioned CGAL library for mesh
generation, FIAT for element definition, and FFC to obtain element matrices and element
vectors. The next chapter is dedicated to an in-depth description of FEniCS, and the
following two chapters give the results of its use to find the solution of the MOND PDE,
first with a sequential program, and subsequently through parallelisation using the MPI
standard.



Chapter 7

Introduction to FEniCS

This chapter serves as an introduction to FEniCS, an open source project aimed at pro-
viding a scalable, high performance platform for mathematical modelling through FEM.
FEniCS is supported for both C++ and Python. Throughout this work, almost exclusive
use was made of Python, although C++ code is present in the definition of a limited
amount of objects, such as Expressions, which will be described throughout the chap-
ter. The chapter is structured as follows: first, an overview of FEniCS will be given. Next,
a general description will be provided for all the main components which form FEniCS. Fi-
nally, the main classes and functions from the package will be described, and their relation
to the code developed to solve the MOND PDE will be explained.

7.1. Building Blocks of FEniCS

FEniCS can generally be utilised without the need to access the core libraries which
separately implement its basic functionalities, such as mesh generation and linear algebra
calculations. Nonetheless, it is important to describe its main building blocks because in
order to increase the performance of the solution of a PDE, it is often necessary to modify
the parameters which define the behaviour of the underlying libraries. The first thing to
mention is that there are two separate interfaces to FEniCS:

• A C++ library;

• A Python module.

The C++ library defines all the classes which are necessary for the Finite Element im-
plementation, as well as a number of functions which are used to obtain the solution
of a given PDE, such as assemble and solve (see, for example, [68]). On the other
hand, the Python module for FEniCS is mostly generated through the use of Simplified
Wrapper and Interface Generator (SWIG). However, certain features, such as the
full integration of Unified Form Language (UFL), are exclusive to the Python imple-
mentation. UFL has an important role in FEniCS, as it allows all relevant quantities for
a FEM implementation to be defined with a syntax close to the mathematical notation.

120
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This results in a more automated solving process, as most aspects concerning the element
type or explicit assembly of element matrices and element vectors are handled by FCC.
Both FCC and UFL will be described more in detail throughout the rest of the chapter.
In order to access all functionalities of FEniCS, it is sufficient to import a single module,
which can be done as follows for Python:

1 from dolfin import *

In the Pyhton implementation, all separate sub-modules are imported through the above
command. It is useful to give an overview of the most important of these, while a schematic
depiction of all sub-modules and their relations is given in fig. 7.1.1:

7.1.1. DOLFIN

DOLFIN is the main user interface of FEniCS for both the C++ and Python versions.
DOLFIN allows the access to all of the separate sub-modules and is hence a critical
component of any FEniCS workflow. It is important to mention that the efficiency of a
FEniCS program is the same whether the chosen language is Python or C++. This is due
to the fact that, in both cases, functions and classes used are implemented from the C++
library. As previously noted, this is mostly achieved through the use of SWIG.

7.1.2. UFL

As stated above, UFL allows a definition of quantities needed for a FEM solution
through a syntax which is remarkably close to the mathematical notation. This is par-
ticularly true for weak forms, which can be given directly as integrands over the domain.
When one has a weak form and a domain with related mesh, the element matrix and
vector need to be assembled through either SyFi or FFC, which then produces UFC code.

7.1.3. SyFi and FFC

At the core of any FEM solver are systems of linear equations, implemented as a
matrix-vector multiplication as described in chapter 6. These element matrix and element
vector are called the bi-linear and linear forms respectively. For the system of equations
to be solved, it is necessary to first assemble the system, and secondly solve the resulting
equations, whether these are linear or non-linear. In most cases, sparse matrices are
obtained.

As the overall element matrix needs to include the individual element matrices for each
element in the domain, another quantity needs to be computed, namely, the mapping. In
short, the mapping indicates the position in the overall matrix element of each individual
element’s matrix. In many FEM solvers, this process has to be implemented by the user,
which can result in unsatisfactory performance and is generally prone to errors. FFC
(FEniCS Form Compiler) can automatically produce both the element matrix and the
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Figure 7.1.1: Schematic representation of the sub-modules present in FEniCS, their con-
nection and role. Also depicted are a number of external libraries that are commonly utilised
in connection to a FEniCS implementation. DOLFIN represents the main interface. UFL
defines the syntax that must be used to define quantities such as the weak form. FFC pro-
vides functions such as the assembly of element matrix and element vector. FIAT is used
for element definition, and Instant is the JIT (Just In Time) compiler. Image from [68].

mapping, with a mesh and a weak form as its input. The weak form needs to be defined
through UFL. The FFC operation does not have to be explicitly called by the user, as it
is handled directly by the DOLFIN sub-module [70]. The output is in the form of UFC
code, described next.

7.1.4. UFC

UFC (Unified Form-assembly code) is an interface between code that is generally
the same for most FEM implementations, and code that is usually problem-specific. UFC
code expresses important quantities given a certain weak form, such as:
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• D.O.F. (Degree Of Freedom) map: this indicates the value of the solution at each
vertex in the domain, mapping nodes of the mesh to individual element matrices in
the full element matrix;

• Finite Element: this describes the element used, which for the rest of this work is
assumed to be a tetrahedron in 3D, on which the numerical solution is approximated
by a polynomial of varying degree.

The above are implemented as C++ classes, and can also be utilised in Python through
related classes. In Python, the UFC module is contained in the DOLFIN module.

7.1.5. Viper

Viper is used to implement the plotting capabilities of FEniCS. However, for the work
presented here, the matplotlib module was utilised instead, because of its flexibility
and compatibility with the numpy module for scientific computing.

7.1.6. FIAT and FErari

As explained in chapter 6, FIAT is the FEM backend responsible for the definition
of the basis functions, which give the expression for the numerical solution of the PDE
on each of the elements. FIAT also allows for the definition of elements which are of a
higher degree, or non-polynomial. Higher order elements are, for example, needed when
it is necessary to take the derivative of the obtained solution, such as in the case of the
calculation of an apparent mass distribution for galaxy clusters. FIAT is generally not
accessed by the user, and it handles the classes defining the element type, such as the
Lagrange element class which is used throughout this work. In addition, the optional
backend FErari gives the option of utilising graph-based optimisation, which occurs at
compile-time.

7.1.7. Instant

Instant is another backend for DOLFIN, needed for JIT (Just In Time) compilation
and inlining of C++ code. It allows for the use of C++ code in a FEniCS Python program,
which is necessary for certain objects such as Expressions, which can be used to define
initial guesses or boundary conditions for a given PDE. Instant again makes use of SWIG to
allow the C++ code to be utilised in a Python program. Instant is particularly necessary
because the form compilers such as FFC which generate UFC code, output C++ code.
Through instant, form compilers such as FFC can easily be used through Python.

7.1.8. Mshr

Although not shown in fig. 7.1.1, the mshr module was used throughout this work.
It provides a number of classes which are useful in the creation, analysis and modification
of meshes, such as pre-defined meshes, information on the quality of mesh elements, and
compatibility with standard mesh file types such as xml.
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7.1.9. External Libraries

To optimise performance, DOLFIN utilises various classes and functionalities that be-
long to external modules. The most relevant for the work described here are the following:

• NumPy: An open source Python module providing tools for scientific computing
and numerical methods in general. The most used structure of the module is the
ndarray, which allows for the definition of arrays of arbitrary dimension. Several
quantities related to DOLFIN objects come in the form of ndarrays, for example
the value of the solution or its derivatives at each node in the domain. Moreover,
Numpy allows for better integration of plotting modules. In particular, the com-
bination with Matplotlib, used throughout this work, provides data visualisation
similar to that of Matlab, in an open source environment.

• MPI: A standard for parallel distributed memory computing, standing for Message
Passing Interface. MPI is available as a C++ library as well as a Python module,
mpi4py. It is not necessary to explicitly import the mpi4py module for the Python
version, as this is already included in the DOLFIN module.

• SCOTCH: A library that provides mesh partitioning capabilities. This is most useful
when implementing the parallelisation of a solver in FEniCS using a distributed
memory system. In this case, the mesh is distributed amongst all processes, with
each process only storing a sub-mesh on which it performs computation.

7.2. Important Classes and Functions

Certain classes and functions are utilised in virtually every FEniCS program. For
example, as one generally deals not only with a PDE, but with a BVP, boundary conditions
are needed. Furthermore, if one is to solve a non-linear problem, as in the case of the
MOND PDE, a certain initial guess has to be defined for the solver to converge. In
every case, one needs to define a domain and respective mesh. In this section the most
important classes and functions for the solution of a BVP are listed, with a graphical
summary provided in fig. 7.2.1.

7.2.1. Function Space

The FunctionSpace class defines the space to which the numerical solution belongs.
This space is determined by three inputs:

1. A mesh, which provides the spatial domain of computation. This can be given as a
built-in mesh, or a more complicated mesh which can be imported from a separate
mesh generation library such as gmsh or tetgen.

2. The D.O.F. map defines the family of elements that is chosen. Throughout this
work, a Lagrangian element is chosen, which is, in short, equivalent to a polynomial
function. This is the type of function that approximates the solution on each cell.
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Figure 7.2.1: Schematic representation of the most important classes and functions utilised
in the definition and solution of a BVP in FEniCS. The functions and mesh categories
are the most relevant, as it is always necessary to manually define meshes, functions and
function spaces. Image from [68].

3. The degree of the element: in the case of a Lagrangian element, this gives the degree
of the polynomial which will be used to approximate the solution. A higher degree
yields a higher accuracy, as well as increasing the computation time and memory
required.

7.2.2. Function

A function is defined at each point of the FunctionSpace to which it belongs.
A function object stores the value of a solution or initial guess at every discrete point
of the domain through a form defined by its D.O.F. map. For example, in the case of a
Lagrangian element, a function is given by a polynomial of the required degree at each
node of the mesh.

7.2.3. Expression

Although not shown in fig. 7.2.1, the expression class is of crucial importance in the
definition of source terms, as well as initial guesses if one is solving a non-linear problem
such as the MOND PDE. Unlike the function class, which can only be defined at the
nodes of a FunctionSpace on a given mesh, an expression can be given in terms of
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spatial coordinates. Moreover, it can be defined in terms of the solution and its derivatives,
allowing one to build non-linear PDEs such as the MOND PDE. It is important to note
that, when using Python, one can define an expression object using C++ syntax. To
do so, the input must be a string containing C++ code.

An important advantage of using C++ code in the definition of an expression object
is the possibility of using inline conditional statements. For example, this can be used to
define a spherical source of arbitrary radius, by demanding that its value is non-zero only
within a given radius.

7.2.4. FEM Classes

Classes such as assembler and Form were not directly used in this work, because
their definition can be automated when using the solve function. However, in order to be
able to specify a linear and nonlinear solver different from the FEniCS default, one must
use the VariationalProblem class. Furthermore, the FiniteElement class, which
can be used to define the type of cell to be used, such as triangle, square or hexagon in 2D,
was also not explicitly used. This is due to the fact that the only elements necessary for
basic domain geometries are the so-called simplices, which correspond to triangles in 2D
and tetrahedra in 3D. Tetrahedra were used as the domain of interest for galaxy clusters
is the sphere.

7.2.5. Linear Algebra

Much like the FEM classes, the linear algebra classes allow for a direct definition of the
element matrix and element vector. These are not necessary when using the automated
solve function, and were hence not explicitly defined throughout this work. On the
other hand, the KrylovSolver class was utilised to change the linear iterative solver
and its preconditioner in order to increase performance for the parallel implementation,
as described in chapter 9.

7.2.6. Mesh

The mesh class represents the discretised domain over which the solution is obtained.
From a mesh object, one can obtain information on useful quantities such as the number
of cells or vertices present in the mesh, as well as the smallest or largest cell diameter. All
of these quantities were used to optimise the performance throughout this work, and will
be discussed in detail in the next chapter.

Furthermore, one can define a so=called meshfunction, which can set an arbitrary
value at each vertex, cell, or facet in the mesh. This can be extremely useful when trying
to optimise a solution by mesh refinement, as the mesh can be selectively refined where a
criteria is met. Common criteria are the inclusion of a point based on its coordinates, or
the error w.r.t. to the anlytical solution being within a given range.

Wide use was made of meshfunction functions throughout this work, as will be
discussed in the next chapter.
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7.2.7. Mesh Entity, Topology and Geometry

Depending on the number of dimensions in which it lives, a mesh can contain various
types of meshentity objects. The meshtopology of the mesh itself defines the con-
nectivity between different meshentity objects, for example a list of edges connecting
adjacent vertices.

In the case of a 3D domain, the topological objects can be vertices, edges, facets and
cells. In short, their topological dimension quantifies the difference in their geometrical
dimension from the dimension of the mesh in which they live. As a cell is geometrically
3D, it will have a topological dimension of 0. Similarly, facets, edges and vertices have
topological dimensions of 1, 2 and 3 respectively. The use of topological dimensions allows
for the definition of a cell independently from the spatial dimension of the domain: in 1D,
a line is considered a cell, in 2D a facet is a cell. In all of the aforementioned cases, the cell
has topological dimension 0. Through this classification, one can then define local mesh
refinement algorithms which can work regardless of the mesh being in 1D, 2D or 3D. On
the other hand, the geometrical dimension of a meshentity corresponds to the intuitive
notion of spatial dimension, with a vertex being 0D, a line 1D, a facet 2D and a cell 3D.

Finally, a meshentity can be defined in a general way through its topological di-
mension. Subtracting the topological dimension of a meshentity from the geometrical
dimension of the mesh itself will always yield the geometrical dimension of the cell, re-
gardless of the mesh being in 1D, 2D, 3D or above.



Chapter 8

Solving the MOND PDE in FEniCS

This chapter describes the serial implementation of FEM to solve the MOND PDE in
FEniCS. First, the notation used in the chapter will be introduced, in terms of computation
times and mesh parameters. With the notation in place, the performance will be discussed
for meshes in the case of no refinement, uniform refinement and local refinement. We will
show that, by utilising an improved version of a local mesh refinement function, we can
speed up the total computation time by O(100). All comparisons will be carried out by the
use of error measures that will be defined throughout the chapter. Moreover, we will show
that the use of local mesh refinement is always advantageous for the number of sources of
interest in a galaxy cluster, namely, O(100). Finally, we will analyse the performance of
the linear and non-linear solvers available in FEniCS, and compare the speedup they can
provide to the one that can be obtained by the use of local mesh refinement.

8.1. Notation

Before giving the description of the results achieved for the different mesh configu-
rations tested, the notation used throughout the chapter will be introduced for clarity.
There are five main computation times of interest, all of which are measured in seconds:

• Generation time, to generate the mesh: tg.

• Uniform refinement time, to uniformly refine the mesh: tu;

• Local refinement time, to locally refine the mesh: tl

• Solver time, to compute the solution of the PDE on the mesh: ts;

• Total time, including contributions from all times described above, as well as other
operations such as explicit communication between processors and plotting of the
results: tt.

In addition, there are five quantities which define the scale of the mesh:

128
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• The number of cells, equal to the number of elements: nc;

• The number of vertices, equal to the number of points at which the function is
evaluated: nv;

• The minimum cell diameter, taken as the minimum diameter of the sphere
circumscribing each cell: dm;

• The diameter and radius of the domain, dt and rt. Throughout this chapter,
the domain size is kept constant.

• We introduce dt and rt to obtain the scaled radii for sources and cells.

All the above quantities will be given in relation to a specific mesh. Therefore, they can be
thought of as functions of the mesh. As the mesh geometry will be the sphere throughout
the report, three quantities are sufficient to uniquely define any mesh. The input (or
equally, the argument) to the functions giving the time and scale of the mesh will be the
following:

• Mesh resolution, the number of mesh elements per spatial direction: α. In the
report, the resolution values are in the range 10 ≤ α ≤ 40;

• Uniform mesh refinement, giving the number of times the mesh is refined uni-
formly: β. The values for the uniform refinement are in the range 1 ≤ β ≤ 5;

• Local mesh refinement, giving the number of times the mesh is refined locally:
γ. The values for the local refinement are in the range 1 ≤ γ ≤ 20.

Now that all functions and parameters have been defined, an arbitrary function of a given
mesh is expressed as:

f (α, β, γ) . (8.1.1)

For example, the time required to generate a mesh with resolution α = 20, no uniform
refinement, and local refinement γ = 6 is expressed as:

tg (20, 0, 6) . (8.1.2)

To give another example, the number of cells for a mesh with resolution α = 40 and no
uniform or local mesh refinement is expressed as:

nc (40, 0, 0) . (8.1.3)
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8.2. Mesh Parameters

With the notation in place, it is now important to give a more in-depth description
of all of the quantities defined above, alongside their contribution to the accuracy of the
solution and overall computation time:

1. The generation time tg: more detailed meshes will generally yield more precise re-
sults1. However, the time required to generate a mesh2 will increase with the number
of its elements. There are, therefore, different optimal mesh sizes for different de-
sign goals, such as the lowest possible error in the solution, or the shortest overall
computation time for a given error threshold.

2. The number of vertices nv: vertices define the degrees of freedom over which the
solution is computed. The number of vertices per cell depends on the chosen geome-
try: in this report, tetrahedra are implied. When using linear elements, one has four
vertices, one at each corner of the tetrahedron. However, in certain circumstances a
higher order polynomial is needed to express the solution.3 Higher degree elements
were used, for example, when calculating the apparent mass distribution from the
potential function described in Part 1. The vertex distribution for tetrahedra of
degree 2 and 3 is shown in fig. 8.2.1 [71]. A higher number of vertices for the same
geometry generally results in longer computation times and smaller errors.

3. The number of cells nc: the cells are the elements over which the PDE solution is
computed. Their size is of particular relevance, because variations in the solution
which are smaller than the cell dimension4 can generally not be accounted for.

4. The radius of the cell: as mentioned above, features smaller than the cell size are
usually not accounted for in the solution. For example, this is the case for source
terms with a spatial extension which is considerably smaller than the total domain
size. It is hence important that the cells which intersect a source have the correct
size. This is an aspect of crucial importance in the study of galaxies and galaxy
clusters, where the discrete mass sources are orders of magnitude smaller than the
total system.

The aforementioned quantities must be analysed for different meshes in order to obtain
simulations which can minimise error, computation time, and required memory.

1Strictly speaking, there are exceptions to this behaviour, which will be discussed later in the chapter.
2The generation time for a mesh grows with the mesh size, whether the mesh is structured or un-

structured. Structured meshes have a predefined layout in space, such as a Cartesian or polar grid.
Unstructured meshes have no a priori arrangement, and require a connectivity list to determine adjacent
cells. Throughout this work, only unstructured meshes are used.

3This is the case if one has to calculate the second derivative of the solution. In that case one needs a
degree 3 element.

4The dimension of the cell can be given as the diameter of its inscribed or circumscribed sphere, see
e.g. [72]. Throughout the rest of this work, the diameter of the cell indicates its circumradius, which is
the radius of the sphere within which it is inscribed.
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Figure 8.2.1: Second and third order tetrahedra with the respective vertices. Additional
vertices are present on the edges for both cases, and also on the faces of the tetrahedron for
the third degree element [71].

8.3. Non Refined Meshes

It is important to understand how all necessary quantities evolve when increasing the
mesh resolution α. The mesh quantities of interest for a spherical mesh of resolution α
are shown in fig. 8.3.1. To minimise the computation time, as well as the error, it is
not sufficient to analyse the scaling behaviour of these quantities. Offsets and lower order
terms also have to be taken into consideration in order to make realistic comparisons
between different configurations.

In order to fit the data points, the curve_fit function from the Python scipy
package was used. The curve_fit function utilises an LS (Least Squares) approxi-
mation to fit discrete points to a function of arbitrary form. This allows for the fitting not
only of polynomial behaviour, but also of logarithmic and exponential scaling. The latter
will be encountered multiple times throughout this chapter. Moreover, the ability to fit
data to functions which are not polynomial is particularly advantageous when calculating
speedups between different configurations. For example, this allows the fit of a quotient
of two polynomials, which in general is not a polynomial. The following functions were
found to best fit the data from fig. 8.3.1:

• Generation Time: tg ≈ 1.658− 0.228α + 0.013α2

• Cell Number (1000s): nc ≈ 27.092− 3.949α + 0.172α2

• Vertex Number (1000s): nv ≈ 4.265− 0.619α + 0.028α2

• Smallest Cell Diameter 5: dm/dt ≈ −0.002 + 1.108/α

It is natural to expect a growth of O(α2) for the scaling behaviour of tg, nc and nv. This
is because a change in resolution for a fixed domain size is analogous to an increase in the

5This is a normalised quantity, divided by the domain size.
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Figure 8.3.1: The dependence of the fundamental mesh quantities on the mesh resolution
α. The red dots on the light gray bars represent the data points and are the measured
values. The dotted green lines give the non-linear Least Squares approximation to each of
the quantities. For generation time, cell and vertex number, there is a quadratic growth.
On the other hand, the smallest cell diameter decays inversely with the resolution.

radius with increasing domain size, α ∝ r. Moreover, changes in the volume of a sphere
scale quadratically in r according to:

δV = V + δV − V ≈ (r + δr)3 − r3 ≈ r2 +O
(
δr2
)
. (8.3.4)

Finally, cell and vertex number both scale with the volume, and the generation time
depends directly on the number of cells.

On the other hand, the smallest diameter decreases almost exactly as 1/α. This is
also expected, given that the size of each element is inversely proportional to the mesh
resolution for a fixed domain size. One important feature of the increase in mesh resolution
can hence be defined.

Both the mesh generation time, which accounts for a non-negligible fraction of the
total computation, and the cell number, which determines the memory necessary
to store the mesh, grow quadratically in the resolution. On the other hand, the
smallest cell diameter, which is related to the error in the solution, only decays as
O (1/α). Therefore, both computation time and memory required grow faster than
the quality of the solution with O (α).
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The other component which contributes to the total computation time is given by the
PDE solver. The execution time of the solver with respect to the resolution α is shown
below in fig. 8.3.2. The LS fit for the solving time is given as:

Figure 8.3.2: Solver time against mesh resolution. The time ts taken by the PDE solver
has a quadratic dependence on the mesh resolution α. The red points represent the exact
data points, whereas the green dotted line is the best LS fit.

• Solver Time: ts ≈ 1.791 · 10−2α + 1.636 · 10−1α2.

As with the mesh generation time tg, the solver time ts scales as O (α2), implying the
following:

The total computation time, including mesh generation and PDE solver, scales
linearly faster than the solution quality with respect to the mesh resolution α.
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8.4. Error Measures

So far, the size of the smallest cell has been utilised as a measure of the quality of the
solution. However, in order to make quantitative predictions and allow for comparisons
between different meshes, we need to introduce more precise definitions to quantify the
error.

8.4.1. Radial Error

One aspect which needs to be considered is the behaviour of the error throughout the
domain of computation. This can give a good indication of how to improve the mesh to
reduce the error. One of the cases for which the analytical solution is known is that of a
point source. Therefore, one can compare the FEM solution to the analytical solution for
a sphere of varying size, simulating a spherically symmetric source.

It is of interest to investigate the behaviour of the error as the sphere becomes smaller,
better approximating a point source resembling a galaxy in a galaxy cluster. For the
simulation of galaxy clusters, it is sufficient to examine the case of a spherical source
with a radius 200 times smaller than that of the whole domain. The radial error is a
dimensionless quantity defined as the scaled difference between the FEM solution φFEM
and the exact analytical solution φ, as |(φ− φFEM) /φ|. The radial behaviour of the error
for sources of decreasing size is shown in fig. 8.4.1. However, a few features of fig. 8.4.1
need to be explained before commenting on the behaviour of the error.

As the boundary conditions for the PDE are the same for each case, the error tends
to a fixed value on the boundary, EB ≈ 10−5.

This represents the smallest error which can be achieved as the numerical solution con-
verges to the analytical solution. Conversely, close to the origin at r ≈ 0 one can see a
sudden jump in the value of the error. This is mostly visible in the curves for α = 10, 16, 22.
This effect can be attributed to the fact that both the solution and the error are evalu-
ated at the vertices of the mesh. Because meshes with a lower resolution have a lower
density close to the origin, the radial density of the vertices decreases as r → 0. The same
observation can be made close to the boundary of the domain, for r → rt.

Close to the boundary, there is a shell of thickness proportional to the domain size
divided by the resolution, rt/α, in which no vertices are present.

Ideally, the solution would converge to the boundary condition as r → rt. However, the
large difference between the values of the error before the aforementioned shell and on the
boundary itself is an indication that the solution is not correctly converging to the exact
analytical value. For the case of rs = rt/25 the solution shows good behaviour for mesh
resolutions α ≥ 34. Nonetheless, when rs = rt/200, which is the case of interest for galaxy
clusters, the error close to the source has the same order of magnitude as the solution,
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Figure 8.4.1: Relative error in the potential against the radius for various mesh resolu-
tions α, represented by curves of the different colours listed in the legend. Each subplot
corresponds to a source with radius rs given with respect to the domain size rt. The y-axes
of each subplot have a logarithmic scale. Close to the edge of the domain, there is a shell
containing no vertices, with a thickness which corresponds to the cell diameter close to the
boundary. This is the reason for the step-like behaviour for large values of r. It represents
the sudden decrease in the error from the numerical error in the domain to the error on the
boundary. The numerical solution on the boundary coincides with the analytical solution,
as the BC is given as the analytical solution. Hence the error on the boundary represents
the smallest achievable numerical error.

indicating that the solution is not correct. A more quantitative description of the error
will be given next.

Both in the neighbourhood of the source and on the boundary, the FEM solution
does not converge to the correct analytical form for the relevant source size of
rs = rt/200.

The low number of vertices close to the origin, and the shell containing no vertices close
to the boundary, can be seen more clearly in fig. 8.4.2.
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Figure 8.4.2: Histograms for the radial vertex distribution on the mesh. The grey bars
represent the number of vertices per bin, while the orange solid line gives a quadratic scaling.
In both plots, there are 10 bins. The left histogram covers the whole domain, while the
right histogram only covers the region close to the boundary. The quadratic scaling of the
vertex number for the domain implies that, close to the origin, very few vertices are present.
Conversely, it is clear from the right histogram that close to the boundary there is a shell
within which no vertices are present, which causes the step behaviour near the boundary in
the radial error plots of fig. 8.4.1.

8.4.2. Error Functional

In order to carry out a quantitative comparison between two meshes, with their quality
defined as the error of the solution w.r.t. the exact analytical form, the error itself must
be defined more precisely.

A common measure of the error of a numerical solution is the Error Functional, which
is obtained by integrating the square of the difference between numerical and analytic
solutions over the whole domain, and then taking the square root. This ensures that the
same weight is given to overestimation and underestimation errors. This error EF can be
expressed as:

EF =

√∫
Ω

(φE − φFEM)2 dΩ. (8.4.5)

However, we should note that EF does not necessarily reflect the local quality of a solution
around a given point, such as the origin. This is due to the fact that errors at all points
of the domain are given the same weight.
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8.4.3. Maximum Error and Weighted Error

In the case of a point source in the origin, as both the solution and its derivatives
decrease with the distance from the source, it is desirable to determine what the error is
close to the source. It can be seen from fig. 8.4.1 that for rs = rt/200, the case of interest
for galaxy clusters, the error is a decreasing function of the radius. To quantify the error
around the source, we can then look at the maximum value of the error, which can indicate
how well the numerical solution matches the analytical counterpart in the region of most
interest. The maximum error EMax is defined as:

EMax = Max [|(φ− φFEM) /φ|] . (8.4.6)

As in the case of the relative radial error, EMax is a dimensionless quantity. However, the
maximum error can also not be used as the sole quantity to define the error, as we want
to ensure that the solution is consistent throughout the whole domain. It is thus useful
to introduce a weighted error EW as the product between the Error Functional EF and
the maximum error EMax:

EW = EF · EMax. (8.4.7)

As EMax is dimensionless, EW has the same units as the error functional EF . Ultimately,
this error accounts for the quality of the solution throughout the whole domain, but also
reflects how well the solution behaves close to the source itself. All these quantities are
shown in fig. 8.4.3 for the case rs = rt/200. As can be seen in fig. 8.4.3, none of the error
measures are exactly a decreasing function of the resolution. All error measures show little
decrease for 20 < α < 30 and 32 < α < 40. This is particularly true for EMax, which
is given in fig. 8.4.3 with a linear y-scale, whereas both EF and EW have a logarithmic
y-scale. It is important to point out these plateaus, as they will not be present in the case
of local mesh refinement, introduced in the next subsection. It is interesting to note that
EW > EF for all resolutions α. This reflects the following:

For all resolutions 10 ≤ α ≤ 40, EMax > 1. This indicates that, for all values of α,
there are points close to the source where the error is of the same order of magnitude
as the solution.

It is hence clear that, even with large values for the resolution α, the numerical solution
φFEM does not suitably reproduce the exact analytical solution φ. It should also be noted
that the minimum value for both EMax and EW is achieved by the largest resolution,
α = 40. Qualitatively, this indicates that further increasing the mesh would reduce the
error. However, it should be mentioned that for 34 < α < 40 neither EF nor EMax show
the sharp exponential decrease that was found for α < 20.

The value α = 20 is a local optimum in the quality of the solution w.r.t. to the
generation time. For this reason, it represents a good starting point if we want
to selectively refine the mesh. This observation will be used throughout the next
subsections.
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Figure 8.4.3: Error measures against the mesh resolution α for source radius rs = rt/200.
The graphs for the error functional and weighted error have the same units and have y-axes
in a logarithmic scale. The max error is dimensionless and has a linear y-scale. The red
points represent the results from FEM, while the black vertical dashed lines indicate the
minimum value for the Max Error and the Weighted Error. Although the behaviours of
each error seem comparable, it must be noted that the max error has a linear scale.

Fig. 8.4.3 then shows that, after a critical value αc = 20, increasing the mesh resolution
has diminishing returns. Moreover, as shown in fig. 8.3.2, the mesh generation time tg
increases quadratically in the resolution.

Memory is also an issue: for a large scale computation in which the sources are orders
of magnitude smaller than the domain, for example the case of galaxy clusters, there is
the need for a mesh of very high resolution. However, as shown below in fig. 8.4.4, the
memory required for a mesh rapidly increases with its size. The Least Squares fit for the
mesh size in bytes Mα w.r.t. the resolution is given by:

• Mα ≈ 284.594 · 104 − 40.709 · 104α + 1.716 · 104α2.

One should hence highlight the fact that:

Generation and solver times, as well as cell/vertex numbers and memory required
for a mesh, all scale quadratically with the resolution α.
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Figure 8.4.4: Memory in bytes required for a mesh of resolution α. The red dot represents
the FEM data, whereas the green dotted line gives the Least Squares fit to the data. It
can be seen that the scaling has a dominant quadratic component. The size is measured in
bytes.

8.5. Uniform Mesh Refinement

A widely used technique to improve the quality of a FEM solution is to increase the
number of cells of a pre-existing mesh, through the process of Mesh Refinement (see
for example [73]). This section will introduce the algorithm used for mesh refinement in
FEniCS, and the impact of uniform mesh refinement on computation time and error in
the solution.

8.5.1. The Plaza algorithm

Many mesh refinement algorithms exist, but the following discussion will be limited
to the algorithm used in FEniCS, called the 8-Tetrahedra Longest-Edge Partition,
introduced by Plaza and Rivara in [74]. This algorithm is based on splitting each tetrahe-
dron element into 8 smaller tetrahedra while maximising the quality of the newly produced
elements, as shown schematically in fig. 8.5.1.

As the Plaza algorithm itself ensures a good quality of the generated sub-elements,
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Figure 8.5.1: Four different ways of splitting a tetrahedron element into 8 sub-elements
while maintaining good element quality by using the 8-Tetrahedra Longest-Edge Partition
algorithm designed by Plaza. Figure from [74].

it is not necessary to analyse the quality of all the elements after each mesh refinement.
Nonetheless, it is useful to define what is meant exactly by element quality. Although
different measures exist, as explained in [57], probably the most intuitive is given by the
ratio of the radii of the circumscribing and inscribing spheres for each element.6 This ratio
gives a measure of how close the element is to a regular tetrahedron or, in other words,
whether it is particularly flat along a given axis (bad element) or whether all of the sides
have lengths comparable to the height w.r.t. any of the planes (good element).7 A visual
example of what is usually considered a bad element is given in fig. 8.5.2.

Generally, if the quality of the element is kept constant during mesh refinement, a
solution will have a lower error for a more refined mesh. Nonetheless, generation time and

6The circumscribing sphere is the sphere that contains all the element vertices on its surface. The
inscribed sphere is the sphere that has tangent points to all element facets on its surface.

7Numerically, the ratio is a number between 0 and 1/3, with 1/3 corresponding to a regular tetrahedron,
a cell of the highest quality.
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Figure 8.5.2: Four different examples of what is generally considered to be a bad element in
a refined mesh. Thin, wedge and flat elements provide poor approximations to the solutions
when using linear elements because the points at which the solution is evaluated are not
equally distributed in the 3 spatial directions. Sliver elements are the limit of 4 points
belonging to the same plane, and cannot be present in the mesh. Figure from [74].

memory required also scale with the refinement times β. Since the refinement algorithm
splits each tetrahedron into 8 new elements, the cells increase exponentially with β, the
number of refinements. This behaviour should also be expected for the number of vertices
nv and the generation time tg.

The scaling of all these quantities, to be compared with a mesh generated with a given
resolution without refinement, are given in fig. 8.5.3. As expected, all quantities shown in
fig. 8.5.3 have an exponential behaviour. More precisely, the Least Squares fits are found
to be:

• Generation time tg: 6.989 · 10−4e2.373β

• Cell Number nc: 2.284 · e2.079β

• Vertex Number nv: 1.071 + 0.403e2.07β

• Minimum Cell Diameter rc/rt: 0.127e−0.838β

It must be mentioned that the mesh refinement was conducted on an initial mesh with
resolution α = 10. Through the notation introduced at the start of the chapter, this is a
(10, 0, 0) mesh. A direct comparison can now be made between a mesh generated with a
given resolution α and a mesh of resolution α = 10 refined β times, expressed as (10, β, 0).
It is interesting to compare a non-refined (40, 0, 0) mesh to a (10, 2, 0) uniformly refined
mesh. This is a good comparison because one has a similar number of cells:

nc (40, 0, 0) = 146339, nc (10, 2, 0) = 144200 =⇒ nc (40, 0, 0) ≈ nc (10, 2, 0) . (8.5.8)



142 8. - Solving the MOND PDE in FEniCS

Figure 8.5.3: Mesh quantities w.r.t. times the mesh is uniformly refined, β. The red dots
represent the FEM data, whereas the green dashed lines give the best fit. All the y-axes
have a logarithmic scale, showing that all quantities have exponential scaling.

However, when comparing the overall generation time one needs to be aware of the fol-
lowing: for the non refined mesh, one can directly read from fig. 8.3.1 that tg (40, 0, 0) =
13.338s. On the other hand, to calculate the overall time taken to obtain the twice refined
mesh, one needs to account for the generation time of the initial mesh, and add the times
of each successive refinement, which generate a mesh with a value β increased by 1. Gen-
erally, the time necessary to produce an (α, β, 0) uniformly refined mesh can be obtained
as:

tg (α, β, 0) = tg (α, 0, 0) +

β∑
β̃=1

tg

(
α, β̃, 0

)
. (8.5.9)

In the above, α indicates the resolution of the initial refined mesh, and β̃ the number of
each successive uniform refinement. Using (8.5.9) for a (10, 2, 0) mesh gives tg (10, 2, 0) =
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0.766s. This implies that the speedup sg in the overall mesh generation is given by:

sg =
tg (40, 0, 0)

tg (10, 2, 0)
=

13.338

0.766
≈ 17.4. (8.5.10)

With a substantial speedup such as the one obtained above, it is important to check that
the smallest cell has approximately the same size, as a first order check of solution quality.
The minimum cell diameters for the two cases are:

(rc/rt) (40, 0, 0) = 0.0257 ≈ (rc/rt) (10, 2, 0) = 0.0238. (8.5.11)

The following is then clear:

For approximately equal cell number nc and minimum cell diameter rc/rt, it can be
advantageous to generate a mesh with lower resolution and consequently refine this
mesh, rather than generating a larger mesh initially.

This behaviour might seem surprising, as the generation time for refined meshes grows
exponentially. However, eq. 8.5.10 shows that scaling behaviour alone is not sufficient
to determine computational efficiency, as one needs to take into consideration the scale
of the problem at hand. Nevertheless, despite the speedup obtained by utilising mesh
refinement, one must be cautious in using such an approach: for higher mesh sizes, scaling
behaviour becomes important and one needs to consider that the memory required for a
refined mesh will scale exponentially. A design goal could hence be formulated as follows:

In order to minimise both error and computation time, one should make use of
mesh refinement, but devise a method which avoids the exponential growth that
this implies for both tg and nc.

8.5.2. Local Mesh Refinement

The solution to the above-mentioned problem is to use local mesh refinement. As
the name suggests, local mesh refinement consists of only refining the mesh where a certain
criterion is met. This criterion could be any combination of the following (see, for example,
[75]):

• Distance from a given point in the domain;

• Value of the solution or its derivatives;

• Difference between the numerical and analytical solutions.
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As was shown in fig. 8.4.1, the error is highest close to the center of the domain. More
generally, when the size of the source is considerably smaller than the size of the cell, the
error is maximal close to the source. Consequently, the following can be observed:

Due to nonlinearity, the analytic solution for the MOND PDE is not known for
multiple point sources. Therefore, local mesh refinement for problems with multiple
sources should be carried out in the neighbourhood of each discrete source. This
is because, in the case of a single source, where the analytic solution is known, the
neighbourhood of the source is where the error is highest. Moreover, it is here that
both the solution and its derivatives vary the fastest.

It is clear from the above that all criteria for local mesh refinement are met close to
the sources. The way of implementing any function depending on the mesh in FEniCS
is given by the Mesh Function, as explained in [76]. The Mesh Function is a spe-
cific type of function which can be defined and evaluated on a set of Mesh Entities.
Mesh Entities are objects that represent the various components of a FEniCS mesh,
depending on their geometrical and topological size. The Mesh Entity that was used to
build a local refinement function is the Cell. This matches exactly the concept of a cell
in a FEM domain, and it is made up of internal nodes and a connectivity list indicating
the connection between different nodes by means of edges.8

Mesh Functions are extremely useful as they make it possible to set markers on
each object corresponding to the chosen Mesh Entity. The markers can then be used
by built-in functions in FEniCS to carry out tasks such as mesh refinement through the
refine function. In particular, for a 3D mesh, the refine function accepts as an
optional parameter a boolean Mesh Function indicating which cells should be refined
and which should not, hence acting as a boolean mask.

8.5.3. Refinement by Cell Distance

As previously mentioned, the goal is to refine the mesh exclusively around each source.
An obvious way to approach this is described in [77] as follows: define a Mesh Function
marking each cell whose midpoint lies within a given radius, and refine the mesh for each
cell that has been marked. Although the approach is an initial improvement over refining
the entire mesh, it presents the following issues:

1. The refinement of a sub-volume of the mesh will have the same exponential scaling
behaviour as the refinement of the entire mesh;

2. For initially coarse meshes, the method might fail, as it is possible that no cell
midpoint falls within the required refinement radius;

8It is useful to note that Vertex and Edge are also a Mesh Entity, of geometrical dimension 1 and
2 respectively.
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3. The determination of the midpoint of each cell requires a loop over every cell present
in the mesh, as cells cannot be ordered according to their distance from an arbitrary
point without looping over them with another Mesh Function;

4. When refining the mesh for multiple sources, the distance must be calculated from
each cell to each source. As the cell number increases exponentially in the refine-
ments, so will the computation time.

8.5.4. Refinement by Containing Cell

Given the issues outlined above with regard to refining the mesh based on the distance
of the source from a point in the domain, a better approach is the following: start with a
sufficiently coarse mesh and exclusively refine the cells that contain a source, rather than
computing their relative distance. The inputs needed for such a function are:

• The mesh to be refined: mesh;

• A list of source locations: location. In order to be correctly evaluated by the
Mesh Function, the locations need to belong to the Point class of FEniCS;

• The number of times the mesh should be locally refined: gamma.

The output of the function is the refined mesh. The MWE (Minimal Working Exam-
ple) of this initial implementation is the following:

1 def local_refinement (mesh, location, gamma):

2 '''Function to refine mesh locally, based on the cells containing each source

3 '''

4

5 #Looping over refinement an arbitrary amount of times

6 for i in range(gamma):

7

8 #Looping over each source location

9 for j, source in enumerate(location):

10

11 #Declaring the boolean Mesh Function for a cell, entity of dimension 3

12 cell_to_refine = MeshFunction("bool", mesh, 3)

13

14 #Initialising all markers to false

15 cell_to_refine.set_all(False)

16

17 #Iterating over all cells in the mesh

18 for cell in cells(mesh):

19
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20 #Checking if cell contains the source

21 if cell.contains(source):

22

23 cell_to_refine[cell] = True

24

25 #Refining the mesh only where the markers are True

26 mesh = refine(mesh, cell_to_refine)

27

28 #returning the refined mesh

29 return mesh

Although clearly not optimal, this initial implementation solves the first two problems
present in the approach described in [77]:

• The scaling does not depend on the volume, but rather on the amount of sources.
Although in theory the growth will still be exponential in the number of local re-
finements γ, since the number of sources ns is orders of magnitude smaller than
the number of cells nc, the function should grow polynomially both w.r.t. to the
refinement times γ and the source number ns.

• No midpoint calculation is required, and the function will correctly refine meshes of
any initial resolution, including particularly coarse meshes.

Nevertheless, in the above approach it is still necessary to loop over each cell for each
source. A clear initial path to improvement is to first store the indices of the cells con-
taining a source. The modified approach differs in the following aspects:

• Only one Mesh Function has to be created, valid for all sources, rather than each
source having its individual Mesh Function.

• The loop to set the Mesh Function, which was previously over each cell, is now
carried out only for the cells that contain a source.

• The refine function is only called γ times, rather than for each source as previously,
γ · ns times. Therefore, the speedup w.r.t. the initial implementation increases with
ns.

An MWE of this approach is as follows:

1 def modified_refinement (mesh, location, gamma):

2 '''Modified Mesh Refinement Function

3 '''

4

5 for i in range(gamma):

6
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7 #Declaring Boolean Mesh Function

8 contain_function = MeshFunction("bool", mesh, 3)

9

10 #Initialising function to False everywhere

11 contain_function.set_all(False)

12

13 #Initialising empty array for the indices of cells containing a source

14 cell_index = np.zeros((source_number, 1))

15

16 for j, source in enumerate(location):

17

18 #List comprehension, True for cells containing a source

19 contain_list = [cell.contains(source) for cell in cells(mesh)]

20

21 #Converting list to a numpy array

22 contain_numpy = np.fromiter(contain_list, float, mesh.num_cells())

23

24 #Then setting the MeshFunction True at those cells

25 cell_index[j] = np.nonzero(contain_numpy)[0]

26

27 for cell_containing in cell_index:

28

29 contain_function[cell_containing] = True

30

31 mesh = refine(mesh, contain_function)

32

33 #Returning the refined mesh

34 return mesh

The problem with the above code is that it is still necessary to loop over each cell in the
mesh for every source because, as previously explained, the cell indices cannot be organised
without making use of a separate Mesh Function.

However, FEniCS provides the intersect function to directly calculate the intersec-
tion between a given point in the domain and Mesh Entity of any type, such as a cell.
Although this is a costly operation, it makes it possible to completely avoid the explicit
loop over each cell in the mesh, as it only requires a single loop over each source. One can
thus loop exclusively over the cells containing a source, as described above. The MWE
for this improved implementation is the following:

1 def improved_refinement (mesh, location, beta):

2 '''Improved Mesh Refinement Function

3 '''

4
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5 for i in range(beta):

6

7 #Declaring Boolean Mesh Function

8 contain_function = MeshFunction("bool", mesh, 3)

9

10 #Setting function to False everywhere

11 contain_function.set_all(False)

12

13 #List comprehension for the cells containing a source

14 intersect_list = [intersect(mesh, source).intersected_cells() for

15 source in location]

16

17 #Setting the cell function contain_function to true for each cell

18 #containing a source

19 for cell_index in intersect_list:

20

21 contain_function[cell_index[0]] = True

22

23 #Refining the mesh only for cells that contain a source

24 mesh = refine(mesh, contain_function)

25

26 #returning the refined mesh

27 return mesh

Although the largest speedups are expected to appear when refining multiple sources, fig.
8.5.4 shows that that the computation time also decreases noticeably for a single source
for a mesh with configuration (20, 0, γ). The computation times for each of the functions
can be fitted by a second order polynomial. More specifically the generation times are:

• Initial implementation: tg
i ≈ 0.002 + 0.0692γ + 0.003γ2

• First modification: tg
m ≈ −0.027 + 0.06γ + 0.003γ2

• Final modification: tg
f ≈ −0.038 + 0.052γ + 0.002γ2

Although the scaling is O(γ2) for all implementations, the second order coefficient is lower
in the final implementation by ≈ 30%. For γ = 10 this results in a reduction in computa-
tion time of 13% and 32% respectively for the modified and improved functions w.r.t. the
initial function. That said, one must remember that all three functions implement exactly
the same algorithm. The growth in the cell number nc and the reduction of the smallest
cell diameter dm are hence common to all the implementations described, and are shown
in fig. 8.5.5. The fitted behaviours are found to be:

• Cell number: nc = 20.493 + 0.513γ + 0.04γ2
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Figure 8.5.4: Time taken for different refinement functions to refine a single source, against
the local refinement times γ. The red dots represent the FEM data, whereas the green dashed
line shows the Least Squares fit. All the refinement times have a quadratic scaling. However,
w.r.t. the initial implementation, for the median value γ = 10 the modified refinement
provides a speedup of σ ≈ 12% whereas the improved refinement function provides a speedup
of ≈ 32%.

• Smallest cell diameter: dm/dt = 0.142e−0.693γ.

It can be seen that the local mesh refinement function manages to reproduce two im-
portant features, which could not both be simultaneously obtained through standard
mesh generation or uniform mesh refinement: polynomially increasing cell number
nc and exponentially decreasing cell diameter dm.

As dm/dt is a good indicator of the error, one can infer that both the computation time and
overall mesh size now grow slower than the mesh quality. However, dm/dt is not sufficient
to make quantitative observations on the error across the whole domain. Therefore, the
relative radial error was again calculated as done for fig. 8.4.1, and is shown in fig. 8.5.6.
When comparing fig. 8.5.6 to fig. 8.4.1, which represents the same quantity for a non
refined mesh, several qualitative statements can be made for the case of local refinement::

• The curve corresponding to γ = 0 has an error which in the case of rs/rt = 100, 200
is of the order of magnitude of the solution close to the source. This is never the
case for γ ≥ 3. This implies that the even for low values of γ, the numerical solution
converges to the exact analytic solution.
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Figure 8.5.5: Mesh quantities as a function of the local refinement times γ for the local
refinement algorithm. The red points represent the FEM data, whereas the green dashed
lines give the Least Squares fit. It can be seen that the number of cells nc increases quadrat-
ically. This is an improvement over the case of uniform refinement, where the growth was
exponential in β. On the other hand, the smallest cell diameter still decreases exponentially,
as desirable to reduce the error.

• The shell containing no vertices close to the domain boundary remains the same re-
gardless of the value of γ since the mesh is only refined close to the source. Nonethe-
less, for γ ≥ 6 and for all source radii, the difference in value between the numerical
solution at the edge of the shell and the exact solution on the boundary is at most
O(10), compared to O(104) for the non refined meshes in fig. 8.4.1 for rs/rt = 200.
This indicates that the mesh refinement close to the source improves the quality of
the solution throughout the domain, not only in the neighbourhood of the source.

• For all source sizes the error does not seem to decrease for γ > 6. Unlike the case of
no refinement, where no local minimum was present, it appears that γ = 6 provides
an optimal value for local refinement.

• The error becomes smaller with decreasing source size and increasing γ. Moreover,
for the case of most interest i.e. rs/rt = 200, the radial error is lower than 10−2

throughout the whole domain. This indicates that the solution converges faster for
a smaller source, which is the desired result when implementing a point source.

Although the aforementioned qualitative observations are encouraging, it is again neces-
sary to quantitatively define the error in order to make a comparison between refined and
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Figure 8.5.6: Relative radial error for a single source placed at the origin against the local
refinement γ. The y-axes are logarithmic in all plots. Different colours represent different
values of γ. The initial mesh before refinement, corresponding to the curve γ = 0, was
generated with α = 20. It can be seen that, for all source radii rs, the error does not
decrease for γ > 6. Moreover, the large error between the solution in the domain and on
the boundary is reduced from O(104) to O(10) when compared to the case of non-refined
meshes.

non refined meshes. To do so, the error functional, max error and weighted error were
calculated for the refined meshes, as was previously done for the non refined meshes in fig.
8.4.1. The results for the locally refined meshes are shown in fig. 8.5.7.

As expected from the analysis of fig. 8.5.6, the error functional reaches its minimum
for γ = 6. On the other hand, the maximum error is lowest for γ = 9, after which it
appears to stabilise around 3 · 10−3. As a result, the weighted error has a minimum at
γ = 6, after which it also remains approximately constant. The following can then be
observed:

• Compared to the case of no refinement, the minimum value achieved for the error
functional is ≈ 103 lower.

• For γ > 2, the maximum error is smaller than the value of the solution. Moreover,
for γ ≥ 6 it is smaller by at least two orders of magnitude.

• Overall, the maximum error can always be made smaller than unity, implying that
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Figure 8.5.7: Error measures for a mesh with local refinement γ. The red points show the
FEM data whereas the vertical dashed black lines give the minimum value for the error. For
all subplots the y-axes are logarithmic. Unlike the case of non refined meshes, the minimum
values of EMax and EW do not coincide. This is because the error functional EF has a local
minimum at γ = 6. Therefore, increasing γ past a critical value increases the error.

the weighted error will be smaller than the error functional. This is in contrast with
the non refined mesh, where the maximum error was of order unity even for the
highest resolution α = 40.

• As expected on the basis of the previous observations, the weighted error is O(105)
smaller for a refined mesh with γ = 6 than for a non refined mesh of α = 40.

8.5.5. Speedup from Local Refinement

After these quantitative observations, a first comparison can be made for meshes that
result in the same weighted error EW . Taking EW1 (40, 0, 0) for the non refined mesh and
EW2 (20, 0, 2) for the locally refined mesh, we have approximately equal weighted errors:

EW1 ≈ EW2 ≈ 5 · 1047. (8.5.12)

The speedup in generation time sg (which, as previously, is given by the sum of each
refinement step for the locally refined mesh) is then found as:

sg = tg1/tg2 = 13.338/ (2.298 + 0.074) ≈ 4.39. (8.5.13)
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This shows that the speedup gained by the local mesh refinement is lower than what was
obtained by uniformly refining the mesh as in eq. 8.5.10. Nonetheless, in that case the
comparison was carried out for configurations with the same total number of cells nc,
related to the minimum cell diameter, rather than the error itself. It must be noted that:

For an arbitrarily small source, it is not possible to reach the weighted error ob-
tained by local mesh refinement using uniform refinement alone, without running
into memory issues.

The is due to the fact that, although a large computation time is not optimal but in
theory viable, a mesh exceeding a given size will cause an error in the solver, preventing
it from obtaining the solution regardless of the computation time available.

For this reason, it is harder to give a realistic comparison, on the basis of direct error
measures alone, between a locally refined mesh and a mesh that is either not refined or
uniformly refined across the domain. However, there is a good reason why the use of the
minimum cell size is an acceptable measure of solution quality, as will be explained in the
next subsection.

8.5.6. Relationship Between Cell Size and Error

The minimum cell size for the local refinement gives the scale at which the mesh can
reliably express the solution and its changes. It is of course necessary that the behaviour
of the source is properly reflected in the numerical solution, and it can be verified that
this happens when multiple cells can fit in the volume occupied by the source itself.

Intuitively, this behaviour is to be expected: as shown in fig. 8.4.1 and fig. 8.5.6, larger
sources benefit less from a higher number of cells. Empirically, the following observation
holds:

For the numerical solution to converge to the analytic solution to a sufficient degree,
the cells containing the source should have radii smaller than, but of the same order
of magnitude of, the source itself.

This can be directly verified from fig. 8.5.6 by noting the following:

• For rs = rt/100 = 0.01 · rt, the error does not noticeably decrease for β > 3. In fact,
for β = 3 one has a minimum cell radius9 rm/rt ≈ 0.01. Hence, the minimum cell
radius approximately coincides with the source radius. Recalling that by cell radius
one really means its circumradius, this indicates that the element can completely fit
inside the source volume. Consequently, the volume of the source will be intersected
by multiple elements.

• For rs = rt/200 = 0.005 · rt and β = 3, one has that rs < rm. Therefore, it will not
be possible to fit an element inside the source volume, and it could occur that the

9Technically, one has the ratio between the diameters, but the ratio between the radii will clearly have
the same value.
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source is exclusively contained in a single element. On the other hand, for β = 6
one has rm = 0.002 < rs. In this case, the situation is again that multiple elements
intersect the volume of the source. As can be seen in fig. 8.5.6, for β > 6 the error
stops decreasing.

From both aforementioned cases, it can be seen that the value for which the error
is lowest can be inferred from the minimum cell size.

Therefore, one can take the minimum cell size of a locally refined mesh for which the
related weighted error reaches a minimum, and compare different mesh configurations
which result in the same minimum cell size. This is advantageous due to the fact that
good LS fits of rm were obtained for both non refined and uniformly refined meshes.

8.5.7. Comparison for Equal Minimum Cell Radius

As the optimal value for the local refinement times is given by β = 6, it is of interest
to compare meshes with the minimum cell radius corresponding to this mesh, rm ≈ 0.002.
For a non refined mesh, one can obtain this radius for a configuration with (277, 0, 0). On
the other hand, for a uniformly refined mesh with configuration (10, β, 0), the refinement
times necessary would be β ≈ 4.95 ≈ 5. With these two configurations, one can calculate
the required generation times:

• Non refined mesh: tg1 (277, 0, 0) ≈ 619.78s;

• Uniformly refined mesh: tg2 (10, 5, 0) ≈ 0.7 + 0.0075 + 0.08 + 0.86 + 9.26 + 99.38 ≈
110.29s.

It is now straightforward to calculate the speedups for each situation w.r.t. to the locally
refined mesh with configuration (20, 0, 6), with tg (20, 0, 6) ≈ 2.3s:

sg1 ≈ 620/2.3 ≈ 270, sg2 ≈ 110.3/2.3 ≈ 48. (8.5.14)

This result shows that, in order to obtain a solution with an arbitrarily low error, local
mesh refinement can provide significant speedups over both non refined and uniformly
refined meshes. Nevertheless, it must be noted that the generation time for non refined
and uniformly refined meshes is constant w.r.t. the amount of sources ns, since for all
sources the error is expected to fall equally below a given threshold. On the other hand,
the generation time for a locally refined mesh will grow with the number of sources ns,
implying that for large ns uniform refinement will become the better option. It is hence
important to analyse the scaling behaviour of the local mesh refinement functions, both
the initial and the final version, w.r.t. ns.
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Figure 8.5.8: Time taken for the initial local mesh refinement function and for its final
modified implementation against the number of sources. The refinement times are fixed
to β = 6. The rightmost subplot depicts the speedup between the initial and final imple-
mentations. Red points represent the FEM data, and green dashed lines give the best LS
fit.

8.5.8. Local Refinement and Source Number

The result of this analysis is given in fig. 8.5.8, where the local refinements are fixed
to γ = 6, the optimal value for the source size of interest rs = rt/200. The LS fits for the
two implementations, as well as the speedup between the two, are the following:

• Initial function refinement time: tg
i ≈ −0.382 + 0.674ns + 0.035ns

2

• Final function refinement time: tg
f ≈ 0.236 + 0.086ns + 0.0015ns

2

• Speedup: sg = −2.691 + 4.78ns
1/3.

Although both functions scale with O(ns
2), the speedup sg provided by the improved

function also increases with the source number, as would be highly desirable. With these
results, we can now make a fairer comparison between the methods of local and uniform
mesh refinement.10 In order to make the comparison, it is necessary to find the number of
sources ns for which the refinement time tg

l (20, 0, 6) of the local mesh refinement algorithm
matches that tg

u (10, 5, 0) of the uniform mesh refinement.

10It is unnecessary to consider non refined meshes. This is because it has been shown that, in order
to reach the error required, the uniform refinement of an initially coarse mesh is more efficient than the
direct generation of a mesh with high resolution for the same final number of cells.
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This threshold indicates the value of ns above which local refinement is no longer
advantageous. This is calculated by equating the initial local refinement function to the
uniform refinement:

tg
i = tg

u =⇒ −0.382 + 0.674ns
i + 0.035

(
ns

i
)2

= 110.3 =⇒ ns
i ≈ 48. (8.5.15)

Carrying out the same calculation for the final refinement function:

tg
f = tg

u =⇒ 0.236 + 0.086ns
f + 0.0015

(
ns

f
)2

= 110.3 =⇒ ns
f ≈ 244 (8.5.16)

The amount of sources for which utilising local refinement is advantageous w.r.t. uni-
form refinement is thus considerably larger for the final local refinement function. More
precisely, it is larger by a factor ss:

ss = ns
f/ns

i = 244/48 ≈ 5. (8.5.17)

That said, it should be stated that the largest galaxy clusters can contain around 1000
separate galaxies. One should then ask whether in such cases there is any advantage in
utilising the proposed local mesh refinement algorithm.

To answer this question, one has to take into consideration the computation time of
the full PDE solver, which is contributed to by three main sections:

• Mesh Generation;

• Mesh Refinement (uniform or local);

• PDE Solver.

When each of the above contributions for the final local refinement function are included,
we arrive at the results in fig. 8.5.9. The total time shown in fig. 8.5.9 includes the
constant generation time for an initial mesh with αi = 20, local refinement with the final
refinement function for a different amount of sources, and the time taken by the PDE
solver.

Perhaps surprisingly, the total time does not show the quadratic behaviour seen for
the local refinement. Instead growing linearly with the number of sources ns. The best
LS fit for the total time tt is given by:

• tt ≈ 4.71 + 0.16ns.

The linearity of tt in the number of sources can be partially understood from the weak
quadratic dependence of the final local refinement function. Moreover, it implies that the
solver time grows at most linearly in ns. As the linear growth of the solver time ts is
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Figure 8.5.9: Total time taken for mesh generation, refinement and PDE solution when
using local mesh refinement, against the number of sources. The refinement times were fixed
to the optimal value β = 6. The times taken by the various sections are given by different
coloured bars, whereas the red points represent the total time. The green dashed line gives
the best LS fit. The values of ns are 1 and all multiples of 10 up to 50.

negligible w.r.t. the total time ts in the interval 10 ≤ 50, we can take its average value for
ns ≥ 10, ts ≈ 2.75s.

It might be surprising that the solver time only shows a weak linear growth. However,
this could be explained by noting that the solver times are determined by two competing
contributions:

• The solver time ts generally decreases when the initial guess is closer to the numerical
solution, as fewer iterations are necessary to reduce the error below a given tolerance.
A finer mesh close to where the solution changes most rapidly increases the accuracy
of the initial guess. This reduces the steps necessary to arrive at an arbitrarily low
error threshold (see, for example, [78]).

• The effect described above can be countered by the slight increase in the cell number
nc when refining the mesh locally. As previously described, the cell number nc grows
linearly with the source number ns. Since one has ns � nc, it is likely that the
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increase in solver time caused by this increase in ns is almost completely balanced
out by the decrease in ts caused by having a more accurate initial guess.

It is now possible to make a new, more realistic comparison, between the total computation
time for an equal amount of sources when using local and uniform mesh refinement. First,
it is interesting to compare the case where it was found that the two mesh generation
times coincide, that is for ns = 244.

To obtain the solver time for the uniform refined mesh with β = 5 the following must
be noted: it has been previously shown that for approximately equal nc, a non refined
and a uniformly refined mesh will approximately have the same minimum cell size. This
indicates that, to good approximation, the two meshes will have elements of comparable
qualities. Thus, it is natural to infer the solver time ts of a uniformly refined mesh from
that of a non refined mesh with the same amount of cells.

It was previously shown that a uniformly refined mesh with configuration (10, 5, 0) is
approximately equivalent to a non refined mesh of configuration (277, 0, 0). For the latter
value of α, the LS fit for the solver time gives:

ts (277, 0, 0) = 1.791 · 10−2 · 277 + 1.636 · 10−12772 ≈ 12557s ≈ 3.5 hours. (8.5.18)

In this case, the solver clearly accounts for almost the entirety of the computation time,
and the mesh generation and uniform refinement times can be neglected. On the other
hand, for ns = 244 the total time taken when utilising local refinement could be obtained
by either utilising the linear relation from fig. 8.5.9, or by adding each contribution
individually.

As for ns = 244 the quadratic contribution to the local refinement time is not negligible,
one should adopt the latter approach, which yields for the total time:

tt
f ≈ 0.236 + 2.29 + 2.75 + 0.086 · 244 + 0.0015 · 2442 ≈ 115s. (8.5.19)

If one had used the initial local refinement algorithm, the result would have been:

tt
i ≈ −0.382 + 0.674 ∗ 244 + 0.035 ∗ 2442 + 2.29 + 2.75 ≈ 2253s. (8.5.20)

In both cases there is a total speedup for local refinement st, when compared to uniform
refinement. For the initial local refinement function this speedup is of order unity:

st
i ≈ 12557/2253 ≈ 5.6. (8.5.21)

On the other hand, when utilising the improved local refinement function the speedup is
of two orders of magnitude:

st
f ≈ 12557/115 ≈ 109. (8.5.22)
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8.5.9. Linear and Nonlinear Solvers

So far, the solver time ts has only been defined as a function of the mesh parameters
α, β, γ. This has been the case because the solver used was the default serial solver in
FEniCS. This approach can be fully justified by taking into account the total computation
time ttot. For the cases of interest, one has a number of sources of the order ns = 50. From
fig. 8.5.9, we can see that, for ns = 50m the solver time ts does not account for the
majority of the computation time. However, we will see in the next chapter that, when
utilising elements of degree 3, the total computation time is dominated by ts. As the
MOND PDE is non-linear, one needs to utilise a non-linear solver in addition to the linear
solver used for the matrix-vector multiplications. By default, FEniCS uses the following
combination:

• The linear solver is based on sparse LU (Lower Upper) decomposition through Gaus-
sian elimination;

• The non-linear solver is based on the Newton-Raphson method.

As explained in [76], the use of a sparse LU linear solver can be advantageous when
working with meshes with an overall number of vertices nv � 106. LU solvers are also
called direct solvers, as opposed to iterative solvers such as Krylov solvers. When using
Krylov solvers, a preconditioner can be used to reformulate the problem in a form that is
easier to solve numerically. As previously explained, for elements of degree 1, the solution
is only computed at the vertices of each tetrahedron defining the element. On the other
hand, for degree 3 elements the solution is computed at 20 points per cell, including 2 extra
points on each edge, and an additional point on each of the four facets of each element’s
tetrahedron. As was shown in fig. 8.5.5, for a single source and a mesh with values
(20, 0, 6), we have a number of nodes equal to the vertices nv = O(104). On the other
hand, locally refined meshes with ns = O(100) will have a number of nodes nv = O(105).
When using a degree 3 element then, one can see that the number of nodes can reach
nv = O(106). In this case, the use of a default LU solver cannot offer good performance.
One can adopt one of two strategies:

• Utilise an LU solver that is optimised for parallelisation;

• Utilise an iterative Krylov solver, and pair it with a preconditioner optimised for
parallel operation.

FEniCS offers a wide selection of linear solvers, both direct and iterative. One can also
choose between two non-linear solvers, a Newton-Raphson solver or a SNES solver. The
advantage of using a SNES solver is the possibility of defining a line search method to
determine the local minimum of a function. In order to find the optimal solver configu-
ration, it is necessary to test different combinations of linear and non-linear solvers. The
direct and iterative solvers were analysed independently, and paired to both the Newton-
Raphson and SNES non-linear solver to find the best combination. The results of this
analysis will now be shown. It should be specified that only the linear solvers which could



160 8. - Solving the MOND PDE in FEniCS

provide convergence for the MOND PDE in the case of ns = 50 were examined further.
Moreover, the results were analysed for degree 1 elements. This is due to the fact that
for ns = 50 one already has nv = O(105), hence making this analysis also applicable to
elements of degree 3. The results for the direct solvers are shown in fig. 8.5.10. It can be

Figure 8.5.10: Solver times for different direct linear solvers, MUMPS, UMFPACK and
SUPERLU. All results are for a mesh configuration of (20, 0, 6) against a variable amount of
sources 10 ≤ ns ≤ 50. The two graphs are for different non-linear solvers, Newton-Raphson
and SNES respectively. It can be seen that the MUMPS solver offers the lowest solver time ts
for all values of ns, when paired to both the Newton-Raphson and SNES solvers. Moreover,
MUMPS is the only solver with a predominantly linear growth, whereas UMFPACK and
SUPERLU show quadratic scaling. Overall, the use of the Newton-Raphson non-linear
offers better performance for each solver and all values of ns.

seen that the performance gain stemming from the use of a better linear solver is much
higher than the one stemming from the use of a different nonlinear solver. Nonetheless,
for each solver the Newton non-linear solver offers a speedup of up to ≈ 1.04 compared to
the SNES solver with its fastest line search algorithm. On the other hand, the difference
in performance between the various linear solvers is more pronounced: the MUMPS solver
offers a speedup of ≈ 1.3 w.r.t. to UMFPACK and up to ≈ 5.8 w.r.t. SUPERLU. Both
values are taken for the case of most interest, namely ns = 50. When compared to the
default FEniCS LU solver previously examined in the chapter, MUMPS offers a speedup
of up to ≈ 1.8. In addition, it should be noted that the default FEniCS LU solver is serial,
whereas MUMPS is optimised for parallel computation. A similar comparison was carried
out for the performance of the iterative Krylov solvers. In this case, the two solvers which
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were able to achieve convergence for the MOND PDE, namely bicgstab and gmres, were
both paired to two different preconditioners. Both preconditioners, ilu and hypre-euclid,
are based on the method of incomplete LU factorisation. However, ilu is only configured
for sequential operation and cannot be used alongside MPI, whereas hypre-euclid is op-
timised for parallel computation. The results are shown in fig. 8.5.11. As can be seen

Figure 8.5.11: Solver times for different krylov iterative solvers, bicgstab and gmres. Two
solvers were paired to two different preconditioners. The ilu preconditioner is optimised
for serial computation and cannot be used with MPI, whereas hypre-euclid preconditioner
is optimised for parallel computation. It can be seen that the difference in performance
between the two krylov solvers, as well as between the use of a Newton or SNES nonlinear
solver, is small in comparison to the advantage of using an ilu preconditioner. Nonethe-
less, one should take into account that the ilu preconditioner cannot be used for parallel
computation.

from fig. 8.5.11, the choice of a nonlinear solver does not have a strong impact on the
performance of the solver, as in the case of the LU solvers in fig. 8.5.10. Nonetheless, for
ns = 50, the use of a Newton solver can provide a speedup of ≈ 1.05. This speedup is
virtually identical to the one achieved by the use of the Newton nonlinear solver for the
case of a LU linear solver. Moreover, the performance of the bicgstab and gmres krylov
solvers is similar for all values of ns, although the gmres solver diplays a speedup of up to
1.04 w.r.t. bicgstab when paired to the Newton nonlinear solver. It is, however, clear that
the use of the ilu preconditioner is advantageous for all values of ns for both the Newton
and SNES nonlinear solvers. For the Newton case and ns = 50, utilising ilu results in a
speedup of ≈ 2 for bicgstab and ≈ 1.9 for gmres when compared to hypre-euclid. Overall,
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the best configuration for the Krylov solver for serial execution is given by the gmres solver
paired to the ilu preconditioner. When compared to the fastest LU solver MUMPS, gmres
paired to ilu results in a speedup of up to ≈ 1.3, and is hence up to ≈ 2.3 faster than the
default FEniCS LU solver.

However, for the case of degree 1 elements, the choice of the fastest solver provides
a speedup for the total computation time which can be considered negligible even in the
best case scenario: for ns = 50, one has a solver time ts ≈ 2.7s. When considering a
total time tt ≈ 12.5s, it can be seen that the solver only takes up ≈ 21% of the total
computation time. For this case, gmres provides a speedup of ≈ 1.2 w.r.t the default
FEniCS LU solver, resulting in a total speedup of ≈ 4%. Hence, for ns = 50, utilising
the fastest nonlinear-linear solver combination can grant at best a speedup of order unity,
O(1). On the other hand, we have shown that the use of local mesh refinement could
provide a speedup of O(100) w.r.t. the use of uniform mesh refinement. It can therefore
be concluded that, with elements of degree 1, the use of an optimal solver has only a
marginal impact on the overall computation time, whereas the largest speedup can be
gained by utilising an optimised local refinement algorithm, which also directly affects the
solver time, regardless of the solvers in use. However, for degree 3 elements this is no
longer the case, as the solver time makes up for most of the computation time, as will be
described in chapter 9.



Chapter 9

Code Parallelisation

This chapter describes the optimisation of the serial code presented in Chapter 10,
achieved using the MPI standard for distributed memory parallel computation. First,
an overiew will be given on the two main formalisms for computational speedups which
can be achieved through parallelisation. These will be illustrated by Amdahl’s law and
Gustafson’s law, which describe scaling with fixed total problem size and fixed problem
size per computational unit respectively. Subsequently, an explanation will be given for
why parallelism is necessary for the calculation of an apparent mass density in galaxy
clusters when dealing with multiple discrete sources. Finally, the performance of the total
FEM program will be analysed w.r.t. both strong and weak scaling when run on a multi-
core architecture, namely, a single-threaded 8-core Intel i7-9700 with maximum frequency
fmax = 4.7GHz, 8GB of RAM and 64KB, 256KB and 12MB of L1, L2 and L3 cache
respectively.

9.1. Scaling Behaviours

When dealing with simulations of physical systems, or modelling of real world phenom-
ena more generally, the scale of the problem at hand must be taken into consideration. For
time dependent problems, the amount of computation required increases for a smaller time
step. Similarly, for time independent problems, one can generally obtain more accurate
results by increasing the resolution of the mesh on which the computation is carried out.
The PDE for MOND falls into the second category.

As explained in Chapter 10, in order to obtain accurate results for the case of galaxy
clusters, one needs to ensure that the volume of the cells close to each of the sources is
smaller than the volume of the source itself. By using local mesh refinement, we showed in
the previous chapter that s considerable speedup of O(100) can be obtained w.r.t. uniform
mesh refinement for the sequential computation. However, the computation time for local
mesh refinement grows at most quadratically with the number of sources. However, the
computation time required to solve the PDE for the gravitational potential in a galaxy
cluster for the desired hence increases approximately linearly with the number of sources.

In principle, then, one can expect that distributing the computation time amongst
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multiple computation units will result in a net speedup. However, before quantitative
considerations are made on the speedup that can be obtained by parallelisation, it is
necessary to introduce two models which quantify the maximum achievable speedup for a
given problem, based on the fraction of the code which is inherently sequential.

9.1.1. Strong Scaling: Amdahl’s Law

The first paradigm to evaluate the possible speedup for a program with a sequential
fraction s and a parallel fraction p is the following: given a number of cores N , the
maximum speedup SS that one can achieve is given by the relation:

SS =
1

(1− p) + p
N

. (9.1.1)

This type of speedup relates to so-called strong scaling. In short, strong scaling describes
the speedup that can be achieved when one has a fixed problem size. This relation was
first put forward in 1967 by Amdahl in [79], when parallel computing was by no means as
established as it is in the modern day. Eq. 9.1.1 is hence named Amdahl’s Law.

A few observations can be made about this equation:

• A key simplification of the model is that the code is divided exactly into two com-
ponents. One of these can be parallelised with no overhead and is named p, whereas
the other cannot be parallelised by any means and is named s;

• As all code must fall into one of the two categories just defined, it is useful to
normalise the total computation time for the non parallelised computation: p+s = 1;

• By observing that all code which is not parallel must be sequential, one can rewrite
eq. 9.1.1 as:

SA =
1

s+ p
N

. (9.1.2)

From the above form, one can analyse the limit in which unlimited cores are available
to be utilised in parallel:

lim
N→∞

1

s+ p
N

=
1

s
. (9.1.3)

• The other limit of interest is a completely parallel program. This can be expressed
by the vanishing of the sequential fraction s:

lim
s→0

1

s+ p
N

=
1
1
N

= N. (9.1.4)

Therefore, in the case of a vanishing sequential component, the only bound to the
speedup is given by the available number of cores N.
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In real world applications, it is not possible to achieve programs with s = 0. Therefore,
from the last two observations it is clear that, regardless of the value of N, the maximum
speedup of a program will ultimately be determined by its sequential fraction s. At
the same time, if one can arbitrarily reduce the sequential component, the speedup is
exclusively bounded by N. Both asymptotic behaviours can be seen in fig. 9.1.1 from [80].

Figure 9.1.1: The relationship described by Amdahl’s Law for different values of the
sequential fraction. The x-axis gives the value of s as a percentage of the whole program,
and the y-axis indicates the speedup SA. Here, a fixed value of N = 1024 is taken. One
can see that two clear asymptotes are present: for small values of s, the speedup reaches
its maximum possible value of SA = N = 1024, whereas for increasing serial fractions SA
approaches 0, corresponding to no parallelisation present, s = 1.

When Amdahl’s Law first emerged, the main conclusion of its scaling behaviour was
that the use of a single core with increased performance would provide a better speedup
when compared to multiple processors, for comparable cost and power consumption. How-
ever, in the modern day two aspects have changed profoundly:

• Many programs, especially for scientific research, are designed with High Perfor-
mance Computing in mind, resulting in a much lower value of s which allows for
greater speedups when increasing N;
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• Greater resolution in time steps or meshes generally yields better results. For exam-
ple, it is common that errors below a certain threshold can only be achieved when
utilising a higher mesh resolution. In other words, it is advantageous to be able to
compute larger problems in comparable amounts of time.

Consequently, the following observation can be made: a fixed problem size with a variable
amount of cores is not a realistic model in today’s HPC landscape: one should instead
include the speedup gained by solving larger problems while using a larger N. A paradigm
to treat speedup with these characteristics is given by Gustafson’s Law.

9.1.2. Weak Scaling: Gustafson’s Law

The results presented in Chapter 10 made the following clear: for the case of galaxy
clusters, meaningful results cannot be achieved unless the cell size close to the sources is
below a given threshold. As computation time grows with the amount of cells ns, one can
identify the problem size with the amount of cells.

The main statement of Gustafson’s Law is the following: rather than calculating the
speedup of a fixed program when increasing N, one should analyse a situation in which
the problem size increases with N. This approach essentially states that smaller problems,
for which the sequential component is non-negligible, will not greatly benefit from a large
N, in agreement with Amdahl’s Law. However, making the assumption that the parallel
component scales linearly with N and that no extra overhead is introduced, one gets a
speedup SG of the form:

s+ p ·N
s+ p

. (9.1.5)

Eq. 9.1.5 is the form that was initially given in 1988 by Gustafson himself in [80]. It can
be seen that this form can be obtained directly from Amdahl’s Law when one abandons
the notion that the parallel fraction p is fixed.

As mentioned above, one can increase p linearly with N as:

p→ p ·N (9.1.6)

Plugging this into eq. 9.1.1 yields a modified form of Amdahl’s Law:

s+ p

s+ p
N

→ s+ p ·N
s+ p·N

N

=
s+ p ·N
s+ p

. (9.1.7)

The following observations can be made about eq. 9.1.5:

• When the program is almost exclusively parallel, one obtains the same limit as for
Amdahl’s Law:

lim
s→0

s+ p ·N
s+ p

=
p ·N
p

= N. (9.1.8)

In this case, the speedup is once again bounded by N;
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• Unlike the case of Amdahl’s Law, taking the limit of large N yields a speedup that
becomes independent of s:

lim
N→∞

s+ p ·N
s+ p

=
p ·N
p

= N. (9.1.9)

One can thus see that, even for a program which has comparable values of p and
s, increasing N will result in a linear speedup SG. On the other hand, it should
be noted that, in the general case, increasing the problem size might not lead to
obtaining better results or a larger amount of useful information. Furthermore, it
is possible that the computation time that can be parallelised grows faster than
linearly, in which case the speedup will no longer be linearly increasing with N .

Although the assumptions that the parallel part p grows exactly linearly with N , and
that no overhead is associated with increasing values of p, cannot always be satisfied for
arbitrary values, Gustafson’s Law still provides a useful guideline for the parallelisation
of large problems. Ultimately, the speedup will depend on how precise a solution must
be, or how big a domain of computation is required. Gustafson’s paradigm is particularly
suited to calculations for galaxy clusters, where increasing both the domain size and the
accuracy of the mesh generally leads to more accurate and realistic results.

9.2. Parallelisation Results

This section describes the process of parallelising the code described in chapter 8
through the use of the MPI standard. The section is divided into two different subsections,
one for elements of d3 and the other for elements of d1 . For convenience, degree 3 is
indicated by d3 , and degree 1 by d1 . These two cases have to be treated independently
for two reasons:

• The use of d3 elements results in a higher number of vertices nv. This is because
each element has two nodes on each edge and a node on each facet, in addition to
the nodes already present on each vertex of the tetrahedron for elements. Overall,
a mesh with d3 elements will have up to O(10) more vertices than an equivalent
mesh with d1 elements. Approximately, as the solver time ts grows quadratically in
the number of vertices for large ns, one expects the computation time to grow by
O(100).

• The use of d3 elements is only required when it is necessary to calculate the second
derivative of the solution to great accuracy. This is the case when one wants to
analyse an apparent mass distribution in galaxy clusters;

• d1 elements should, instead, be used when the highest derivative required is the
first derivative, such as in the calculation of the gravitational acceleration. In many
cases, such as the study of the potential created by a particular mass configuration,
d3 elements are therefore not necessary.
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The first case introduced next will be that of d3 elements, where the solver time ts occupies
the vast majority of the computation time tt. This case is somewhat simpler than the one
of d1 , where different components of the program, such as mesh generation, refinement
and solver all give non-negligible contributions to the total time ttot.

9.2.1. d3 Elements

When utilising elements with d3 , that is to say elements on which the solution is
approximated by a polynomial of order 3, one obtains the results for the total run time
shown in fig. 9.2.1.

Figure 9.2.1: Total time for a fixed amount of sources ns = 80, using d3 elements. The
mesh configuration is given by (20, 0, 6). Each colour represents a section of the program. It
can be seen that the solver time ts dominates the computation time, and both the generation
time tg and refinement time tr are negligible. The ’Others’ label indicates processes such
as plotting and explicit communication between processors for MPI. The x-axis gives the
number of processors np used to carry out the computation.
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It is clear from fig. 9.2.1 that, when using d3 elements, the vast majority of the
computation time is taken by the solver.

In fact, for all numbers of processors used np, the solver time ts takes up over ≈ 92%
of the total computation time tt. On the other hand, generation time tg and refinement
time tr jointly take less than ≈ 1% of the computation time for all values of np. Other
processes, such as explicit communication between processors through MPI, plotting and
post-processing of data never take up more than ≈ 7% of the computation time.

In chapter 8 it was shown that, for d1 elements, utilising local mesh refinement could
considerably reduce the total computation time. This is still true for d3 elements. However,
unlike in the case of d1 elements, the total computation time is not dominated by the
mesh refinement, but by the solver. The times shown in fig. 9.2.1 pertain to the default
sequential solver used in FEniCS. A modest speedup of ≈ 31% can still be observed
from np = 2 to np = 6, due to the fact that the domain of computation is split into more
subdomains on which the PDE is independently solved by each processor. However, as the
default FEniCS solver is not optimised for parallel computation, the overheads caused by
the communication between processors for cells at the interface between two subdomains
impede a substantial speedup.

It can be seen that the solver time ts stops decreasing for np > 6, after which the
communication overheads outweigh the parallel speedup when increasing np. This implies
that one can calculate the effective serial component of the solver ss by comparing the
solver times ts for np = 6 and np = 1. However, when using d3 elements and the default
sequential solver, one cannot obtain a solution using a single processor due to memory
limitations.1 As the computation time on a single processor cannot be obtained exactly,
one can estimate this quantity from observing that for np ≤ 5 the solver time ts decreases
approximately linearly. Although it cannot be guaranteed that this behaviour extends to
the single processor behaviour, an approximation can be made, giving a single processor
solver time of ts ≈ 3000s. Now the serial and parallel fractions can be estimated by taking
value of the lowest solver time, which is ts ≈ 1950 for np = 6. For a serial section S and
a parallel section P , this gives:

P + S ≈ 3000, P/6 + S ≈ 1950 =⇒ 5

6
P ≈ 1050 =⇒ P ≈ 1260. (9.2.10)

From the above, one can then find the normalised parallel and serial fractions p and s, so
that p+ s = 1:

p = 1260/3000 = 0.41, =⇒ s = 1− p = 0.59. (9.2.11)

It is useful to introduce a new variable to quantify speedup, σ. However, according to
Amdahl’s law, the large serial fraction s limits the achievable speedup to σA = 1/0.59 ≈

1The total memory that can be used by a single process with the default sequential solver in FEniCS
is limited to 4GB. This size is exceeded for mesh configurations of (20, 0, 6) with even a single source.
This limitation is not imposed when using MPI and multiple processors.
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1.7. One could then define the Amdahl speedup efficiency η as the ratio of the largest
speedup ηA obtained with a configuration with a bound on the number of compute units
np ≤ 8 as:

ηA =
Max (σ)

σA
(9.2.12)

It can be seen that, although the default FEniCS solver is sequential, the subdivision of
the domain into smaller subdomains can result in a speedup of σt ≈ 3000/1950 ≈ 1.5.
This corresponds to a speedup efficiency of:

ηA ≈ 1.5/1.7 ≈ 0.88 (9.2.13)

Although the efficiency is close to 1, the speedup is likely to be limited by the communica-
tion needed between the processors for elements at the boundary between two subdomains,
which is not optimised for the MPI standard in the default solver. This results in the large
serial fraction s = 0.59 which ultimately limits the speedup to σA = 1.7, a clearly subopti-
mal value when utilising configurations with up to np = 8 compute units. Another useful
speedup efficiency that can be introduced is the parallel efficiency ηp, providing the ratio
of the largest speedup achieved w.r.t. a completely parallel program with p = 1, with the
same single-core computation time. This is equivalent to the ratio of the largest speedup
to the number of available cores:

ηp =
Max (σ)

Max (np)
. (9.2.14)

When using the default FEniCS solver, one has:

ηp =
1.5

8
≈ 0.19. (9.2.15)

From the above it is clear that, although the Amdahl efficiency ηA is close to unity, the
large serial fraction of the default FEnICS solver results in a low value for the parallel
efficiency ηp. Therefore, it is necessary to investigate how the performance of other solvers
available in FEniCS can reduce the solver time ts. An analysis on the performance of the
different solvers available in FEniCS was carried out in chapter 8. The main findings were
the following:

• The use of the Newton nonlinear solver can provide a speedup of ≈ 5% w.r.t. the
SNES nonlinear solver;

• Amongst the direct LU solvers, the MUMPS solver provides the best performance.
Nonetheless, the UMFPACK solver provides comparable performance in the range
10 ≤ ns ≤ 50. MUMPS is optimised for parallel computation, whereas UMFPACK is
optimised for serial computation.
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• For iterative Krylov solvers, the choice between the solvers bicgstab and gmres
has a negligible impact on performance. On the other hand, the choice of the ilu
preconditioner results in speedups of σ ≈ 2 for both solvers when compared to
the hypre-euclid preconditioner. It must, however, be taken into account that
ilu cannot be used alongside MPI, so for parallel computation one needs to use
hypre-euclid. For the serial case, the LU solver MUMPS gives a speedup of
σ ≈ 1.5 w.r.t. gmres with hypre-euclid. As both MUMPS and hypre-euclid
are optimised for MPI, it is interesting to test if this relation also holds when utilising
multiple processors.

It has been shown in chapter 8 that the solver times for MUMPS and gmres increase
approximately linearly with the number of processors used np, although a quadratic com-
ponent becomes non-negligible for large values of ns. For the range a0 ≤ ns ≤ 80 this
implies the following:

For the analysis of weak scaling and the speedup because of Gustafson’s law, it is
necessary to choose a parameter for which the computation time grows approxi-
mately linearly. It is suitable to choose the number of sources ns as the parameter
defining the linearly increasing problem size.

To verify that the growth of the solver time ts w.r.t. the number of sources ns can indeed
be approximated by a linear relation in the range of interest, one must test the weak
scaling behaviour with the source number ns increasing with the number of cores used np.
However, one must first infer the parallel and serial fractions of the computation, p and s
respectively, by analysing the behaviour under strong scaling. This is achieved by keeping
the problem size constant and increasing the number of cores utilised.

By defining the problem size as the number of sources ns, one can use the following
method for weak scaling: for each added core, 10 sources are added to the problem.

As the parallelisation is targeted at a multi-core system with 8 cores, the number of
sources for weak scaling varies in the range 10 ≤ ns ≤ 80. For the evaluation of strong
scaling it is hence suitable to choose ns to be close to the average of this range. A suitable
choice is given by ns = 40. The evaluation of strong and weak scaling must then follow
these steps:

1. Compute the strong scaling for the different solvers for a set number of sources
ns = 40;

2. From the results of strong scaling, choose the solver with the largest parallel com-
ponent p;

3. For the chosen solver, determine the serial and parallel fractions s and p;

4. Utilise the serial and parallel fractions to compute strong scaling by increasing the
problem size by 10 sources for each added core.
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9.2.2. Strong Scaling for Different Linear Solvers

The first step is to fix the problem size to ns = 40 and evaluate the performance of
three solvers:

• The fastest serial LU solver UMFPACK;

• The fastest parallel LU solver MUMPS;

• The fastest combination of Krylov solver and parallel preconditioner, gmres with
hypre-euclid.

The results for the strong scaling are shown in fig. 9.2.2. From fig. 9.2.2, one can clearly

Figure 9.2.2: Total time for a fixed amount of sources ns = 80, using d3 elements, for
different choices of the linear solver. The three solvers shown are the fastest sequential LU
solver UMFPACK, the fastest parallel LU solver MUMPS, and the fastest iterative solver with
parallel precodintioner, gmres with hypre-euclid. It can be seen that, although MUMPS
is optimised for parallel computation, its performance is similar to that of UMFPACK for all
values of np. On the other hand, gmres with the hypre-euclid preconditioner has a
comparable solver time on one processor, but provides a speedup of up to σ ≈ 2.1, achieved
for np = 7 when compared to MUMPS and UMFPACK.

see that gmres has the best parallel performance for all numbers of cores 2 ≤ np ≤ 8. On
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the other hand, the sequential times for MUMPS and gmres are comparable. The value
for np = 1 for UMFPACK is not present in fig. 9.2.2 because UMFPACK cannot produce the
solution for the given mesh configuration (20, 0, 6) due to memory constraints. One can
see that gmres achieves the lowest value of solver time ts for np = 7. For this value, it
provides a speedup of ≈ 2.1 w.r.t. to MUMPS and of σ ≈ 2 w.r.t. UMFPACK. It should also
be noted that UMFPACK, which is optimised for sequential operation, outperforms MUMPS,
optimised for parallel computation, for np = 5, 7. Nonetheless, in the general case MUMPS
is marginally faster. It should be mentioned that the performance of gmres should be
attributed to the use of the parallel hypre-euclid preconditioner.

In contrast to the parallel case, in the sequential computation shown in chapter 8,
MUMPS provided a speedup of σ ≈ 1.5 w.r.t. gmres with hypre-euclid. This is an
indication that the optimisation on the hypre-euclid preconditioner grants a better
performance than the parallel optimisation of the direct LU solver MUMPS. It is hence clear
that:

For the parallel case, the best performance for the linear solver is achieved by the
combination of gmres and the hypre-euclid preconditioner.

From here on, the gmres and hypre-euclid combination will be referred to as gmres
for simplicity. Unlike in the case of the default FEniCS LU solver shown in fig. 9.2.1, it
was possible to obtain results for the solver time of gmres on a single processor, allowing
the precise calculation of its serial and sequential components, P and S. As the solver time
does not decrease for np > 7, the value for np = 7 was used as follows:

P + S ≈ 1385s, P/7 + S ≈ 350s =⇒ 6

7
P ≈ 1035s =⇒ P ≈ 1207s. (9.2.16)

Normalising to obtain the serial and parallel fractions p and s, we then have:

p =
P

P + S
≈ 1207/1385 ≈ 0.87 =⇒ s = 1− p = 0.13. (9.2.17)

When comparing the value of p to that of the default FEniCS LU solver, one finds that
for gmres it is larger by a factor of ≈ 2.12. More importantly, the serial component
that determines the maximum strong speedup is smaller by a factor of ≈ 4.5. Following
Amdahl’s law, this results in a maximum speedup for strong scaling when using gmres
of:

σA =
1

s
≈ 7.7. (9.2.18)

It can be seen that for an 8-core configuration this value almost coincides with the max-
imum achievable parallel speedup σp = 8. When comparing this value to the maximum
achievable speedup for the default FEniCS LU solver, 1/0.59 ≈ 1.7, we can see that the
speedup for gmres can be larger by a factor of ≈ 4.5. The shortest solver time ts is
achieved for np = 7, and provides a speedup w.r.t. the serial performance of:

σs ≈ 1385/352 ≈ 3.92. (9.2.19)
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For the speedup efficiency, the Amdahl efficiency ηA and parallel efficiency ηp are approx-
imately equal:

ηA ≈ 3.92/7.7 ≈ 0.51, ηp ≈ 3.92/8 ≈ 0.49. (9.2.20)

It can then be seen that, although the Amdahl efficiency ηA is higher for the default solver,
the following applies:

gmres achieves a parallel efficiency ηp greater than the default FEniCS solver by a
factor of ≈ 2.6.

In order to determine whether the extrapolation of the values for s and p for gmres is
reliable, one can directly plot the strong speedup as shown in fig. 9.2.3. As can be seen

Figure 9.2.3: Speedup for the strong scaling of the gmres solver with the hypre-euclid
preconditioner. The red points represent the FEM data, whereas the green dotted line gives
the best LS fit. The solid blue line represents the theoretical value for Amdahl’s law for
the inferred value for the serial fraction s = 1.3. The x-axis gives the number of processors
used np. It can be seen that there is excellent agreement between the LS fit and the value
for Amdahl’s law based on the inferred value of s. The values for the Amdahl and parallel
speedup efficiencies are approximately equivalent at ηA ≈ ηp ≈ 0.5.

from fig. 9.2.3, there is excellent agreement between the best LS fit for the speedup and
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the theoretical value provided by Amdahl’s law. The LS fit has values:

sLS ≈ 0.15, pLS = 0.76. (9.2.21)

Compared to the inferred value s = 0.13, there is only a difference of ≈ 15% in the LS fit.
It should, however, be noted, that from the LS fit one has sLS + pLS ≈ 0.91 6= 1. This can
be interpreted as the existence of a portion of the code, approximately 0.09 of the total,
which does not decrease linearly with an increase in the number of cores np but is not
completely sequential. This could be due to communication between processes in MPI, or
to the fact that for np � 50 the second order term of the solver time w.r.t. the number of
sources ns becomes non-negligible.

After confirming the validity of the values for s and p through the use of Amdahl’s law,
it is possible to compute the weak scaling behaviour. As previously shown in fig. 8.5.11
of chapter 8, gmres scales approximately linearly with ns. In the range 10 ≤ ns ≤ 50
the quadratic contribution is negligible. The linear behaviour should hence still give a
good approximation up to ns = 80. After identifying the problem size with the amount of
sources, the weak scaling is obtained by increasing the number of cores np alongside ns.
By varying ns by 10 for each data point, one obtains the results shown in fig. 9.2.4. As
can be seen from fig. 9.2.4, the solver time ts with a set number of sources per processor
ns = 10·np has a quadratic behaviour with a minimum at np = 4 corresponding to ns = 40.
In the ideal case, for a parallel component that grows exactly linearly, the solver time for
a fixed problem size per core would be constant. However, it was previously stated that
the scaling of the solver time ts w.r.t. ns also has a quadratic component. Although the
quadratic behaviour is evident, the deviation from a constant value is always modest, in
the range 10 ≤ ns ≤ 80: the solver time ts is at most 22% larger, for np = 4, and 19%
smaller, for np = 8. This implies that for ns ≤ 4 the parallel effective fraction p is larger
than the fraction computed with Amdahl’s law, whereas for np ≥ 5 this fraction is smaller.

The behaviour for np ≥ 5 can be explained by taking into account the communication
overhead between processors. If one makes the assumption that the sphere is perfectly
partitioned into n subdomains, each subdomain is a regular spherical wedge. If the parti-
tions are equal, the volume of each wedge, and hence the number of vertices nv and cells np
inside each wedge, is approximately equal. Without communication between processors,
one would hence expect a constant time for the weak scaling. Similarly, if the communi-
cation time between cores was fixed, there should be no noticeable increase in the solver
time ts w.r.t. np. Indeed, if each core communicated with only two other cores, it would
follow that the communication time would not appreciably increase w.r.t. ns.

However, it should be noted that, for the case of np = 3, each processor has to com-
municate with at most two neighbours. This is the same value as the ideal case in which
each wedge is identical and each core only communicates with two other cores. There-
fore, for np ≤ 3 one does not expect the communication to add a substantial overhead.
On the other hand, as the lists for both cells and vertices need to be updated after each
refinement, the mesh also has to be re-partitioned every time the refinement function is
utilised. In all tests, the sources were uniformly scattered across the domain. As the
mesh partitioning cannot be set manually and is fully handled by the SCOTCH library,
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Figure 9.2.4: Solver time for the combination of the gmres Krylov solver and the
hypre-euclid preconditioner for a set amount of sources per processors: ns = 10np.
It can be seen that the solver time behaves as a parbola with a minimum at np = 4. The
red points give the FEM results, whereas the green dashed line gives the best LS fit. For
all values of np ≥ 2, the solver time ts stays approximately within ±20% of the serial time.
This indicates that the approximation of linear scaling with problem size is valid in the
range 10 ≤ ns ≤ 80.

the more sources are added, the higher the chance is that the domain will not be split
into equal regular spherical wedges. This, in turn, implies that the likelihood that each
processor will have to communicate with more than two neighbours grows with the source
number ns. One can then expect a growth in the solver time ts after the critical value
np = 3, when each processor has to communicate with more than two neighbours. The
communications between cores are blocking, meaning that computation cannot be carried
out by the core sending a message before confirmation is received. Moreover, the solver
time is bounded below by the time taken by the slowest core. It is hence sufficient that one
core has a number of neighbours larger than 3 for the solver time to increase. By making
the reasonable assumption that the probability of a core having more than one neighbour
scales linearly with np, we can explain the linear increase in ts for the range np ≥ 4.

Instead, the decrease in ts for the range 1 ≤ np ≤ 3 can be explained by noting from fig.
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8.5.11 that in the serial case, the linear coefficient of the scaling of ts w.r.t. ns is smaller
than one. This implies that, provided that communication overheads are small compared
to the computation time, increasing np for a fixed ns per compute unit will in fact decrease
the solver time ts. Given the aforementioned observations, an exact linear speedup is not
expected. Even so, because the solver time ts only changes by approximately ±20% in the
range 1 ≤ np ≤ 8, the weak speedup should be of the same order of magnitude as the one
described by Gustafson’s law. The weak scaling behaviour is shown in fig. 9.2.5. As can

Figure 9.2.5: Weak speedup for the combination of the gmres Krylov solver and the
hypre-euclid preconditioner for a set amount of sources per processor: ns = 10np. The
red points give the FEM results, whereas the green dashed line gives the best LS fit. The
solid blue line gives the theoretical Gustafson speedup for the inferred value s = 0.13. For
the LS fit, the serial value was bounded to s ≤ 0.13, whereas the parallel value was left as
a free parameter. It can be seen that there is excellent agreement between the theoretical
Gustafson speedup value and the linear LS fit.

be seen from fig. 9.2.5, the LS fit for the weak speedup coincides almost exactly with the
formula for the Gustafson speedup. It should be noted that in order to obtain the LS fit,
the serial fraction was bounded above by the value inferred by the use of Amdahl’s law,
s ≤ 0.13. On the other hand, the parallel fraction was left as a free parameter, and the
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LS fit for the weak speedup was found to be:

σW = 0.13 + 0.86np. (9.2.22)

Thus, the value found for p for the LS fit was approximately equal to the theoretical
prediction, pLS = 0.86 ≈ 0.87. Nevertheless, it is clear from fig.9.2.5 that the scaling is
not exactly linear. This was expected from the result presented in fig. 9.2.4, where, for
np ≤ 6, it was shown that that solver time ts was lower than for the serial case, indicating
a speedup larger than the Gustafson speedup for the given value of s. On the other hand,
for np ≥ 7, the solver time ts increased, indicating a speedup lower than the theoretical
maximum. Lastly, it is important to observe that the speedup increases at a lower rate
for np ≥ 5. This indicates that for this range the communication overheads have to be
added to the serial fraction s in order to obtain a reliable speedup estimate. Nonetheless,
it should be noted that:

On a system with 8 cores, the weak speedup is close to the theoretical maximum,
which allows us to compute a problem size larger by a factor of 8, hence almost an
order of magnitude, with only a 22% increase in computation time.

9.2.3. d1 Elements

The same analysis carried out for d3 elements was also carried out for d1 elements,
over which the solution is approximated by linear function, a polynomial of degree 1. As
was done previously, the first step is to analyse how the computation time is distributed
among the various sections of the program. Again, this was carried out for the highest
problem size of interest, ns = 80. The results are shown in fig. 9.2.6.

It is immediately clear that the situation for d1 elements is very different from the case
of d3 examined in the previous section. For all cases np ≥ 2, the solver time ts accounts for
at most ≈ 20% of the total computation time tt. In chapter 8 it was shown that the choice
of a faster iterative solver can at most increase the serial solver time by a factor of ≈ 2.3.
This implies that the maximum speedup that can be achieved by utilising a faster solver
is of σ ≈ 0.2/2.3 ≈ 8.5%. One can then see that, compared to the case of d3 , the choice
of a faster linear solver is not an efficient approach to significantly increase performance.
Moreover, the generation time tg is non-negligible for all cases, and takes up to 25% of
the total time. This approximately constant time includes the mesh generation and mesh
partitioning amongst all processors. Both processes must be carried out sequentially as
FEniCS does not support any parallel mesh generation schemes, so the mesh generation
represents an immutable contribution to the total serial fraction st. It should be noted that
the mesh partitioning process results in a slight increase of the overall mesh generation
time for a larger np. Nonetheless, the generation time tg only varies from ≈ 2.64s for
np = 2 to 2.71s for np = 8, hence the variation of 0.07s is negligible for all values of np.

Other operations such as explicit communication between processors and plotting never
contribute more than 7% to the total time and can hence be neglected. Instead, most of
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Figure 9.2.6: Total computation time for a fixed problem size ns = 80, for a variable
amount of cores np. The solver used is the default FEniCS LU solver. Bars of different
colours represent the computation time of separate sections. Unlike in the case of d3

elements, the solver does not take up the majority of the computation time for any
value of np. The Other section includes the sum of computations such as explicit
communications between processors, plotting and other data manipulation.

the computation time is spent on local mesh refinement. It should again be noted that,
although the local refinement time tl is the largest contribution to tt, it was shown in
chapter 8 that, for serial computation, utilising local mesh refinement provides a speedup to
the total computation of ≈ 109. This is due to the reduction in the number of cells required
to obtain an arbitrarily low error, and the relative decrease in solver time ts. However, it
should be mentioned that for the improved local refinement function introduced in chapter
8 to be used during parallel computation, the following observations had to be made:

• After mesh partitioning, each processor still has access to a global list of all cells and
vertices in the mesh;

• It is not possible for a process to refine a cell that does not belong to its subdomain
without communicating with another processor;
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• To avoid needless communication and allow for parallelisation, every processor should
only refine the cells in its own subdomain.

To comply with all of the above, we need to refer to the implementation of the improved
local refinement function in chapter 8. To avoid the loop over each cell in the mesh, it was
observed that we could use the FEniCS intersect function, as follows:

1 intersect_list = [intersect(mesh, source).intersected_cells() for

2 source in location]

The issue of this approach is that, when using more than one processor, the mesh object
will refer to the submesh on the subdomain assigned to each processor, whereas the list
of cells available to each processor will contain all cells in the complete mesh. In the
serial computation, once the intersect_list has been obtained, we can loop over its
elements to set the meshfunction to True for each cell containing a source. This is
expressed as:

1 for cell_index in intersect_list:

2 contain_function[cell_index[0]] = True

3

4 #Refining the mesh only for cells that contain a source

5 mesh = refine(mesh, contain_function)

The problem is that this approach does not cover the case in which no cell contains the
source. This is not a problem if a single processor contains the full mesh, but when using
multiple processors the sources will be distributed among the different subdomains. To
fix this problem, we could use various approaches, for example:

• Sharing a single meshfunction among all processors;

• Generating a list of cells on each processor which only contains the mesh entities
contained in the submesh.

However, the easiest solution is to simply check that the list is not empty before setting
the value of the meshfunction. This avoids communication between processors and the
rearrangement of the cell list that is attached to each subdomain, and it only requires a
simple conditional statement. The code then becomes:

1 for cell_index in intersect_list:

2

3 #If the list is empty, the source belongs to a different

4 #process' subdomain. Do not update the meshfunction
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5 if not len(cell_index) == 0:

6

7 contain_function[cell_index[0]] = True

8

9 #Refining the mesh only for cells that contain a source

10 mesh = refine(mesh, contain_function)

This small modification allows each processor to independently refine the mesh of the
subdomain it is assigned to, avoiding communication overheads. It is now possible to
estimate the serial and parallel components of the total time tt. In order to do so, it can
be seen that both the generation time tg and Other time to can be taken as completely
serial, as mesh generation and plotting are exclusively carried out by one core. On the
other hand, the values for the solver and refinement times, ts and tl, can be obtained by
using Amdahl’s law as we did for d3 elements. Starting with the solver, we consider the
cases of np = 1 and np = 7, as the total time is lowest for the latter value. We then get,
for the serial and parallel components of the solver Ss and Ts:

Ss + Ps ≈ 6.6s, Ss + Ps/7 = 2.1s =⇒ 6

7
Ps = 4.5s =⇒ Ps ≈ 5.25s. (9.2.23)

After normalisation, we then have serial and parallel fractions for the solver, ss and sp:

ps = Ps/(PS + Ss) ≈ 0.79 =⇒ ss = 1− ps ≈ 0.21. (9.2.24)

Following the same procedure for the local refinement function, the serial and parallel
portions Pl and Sl give:

Sl + Pl ≈ 17s, Sl + Pl/7 ≈ 5s =⇒ 6

7
Pl ≈ 12s =⇒ Pl ≈ 14s. (9.2.25)

The resulting serial and parallel fractions sl and pl read:

pl = Pl/(Sl + Pl) ≈ 0.82 =⇒ sl = 1− pl = 0.18. (9.2.26)

It is now possible to compute the serial and parallel fractions for the total computation
time as the sum of the fractions from each component. With ti being the fraction of the
total time taken by each component for np = 1, summing over each ith component we
obtain:2

st =
1

tt

3∑
i=1

tisi =
sg · tg + sl · tl + ss · ts

tt
. (9.2.27)

2In the calculation of the overall serial fraction st, the Other times are discarded, as the value is
highest for np = 1 and hence does not reflect the explicit MPI communication between processors, which
is the only quantity of interest within Other. The Other time is mostly taken by plotting, which can be
neglected when we are only interested in the time taken to obtain the solution itself.
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Plugging in the values found above, we have:

st ≈
1 · 2.6 + 0.18 · 17 + 0.21 · 6.6

26.2
≈ 0.27 =⇒ pt = 1− st ≈ 0.73. (9.2.28)

It is now possible to calculate the speedup over the range np ≤ 8 and compare it to
Amdahl’s law. The result is shown in fig. 9.2.7. As can be seen from fig. 9.2.7, there

Figure 9.2.7: Strong speedup for a fixed problem size ns = 80, and a variable number
of cores np. The red points represent the FEM data, the green dashed line is the best LS
fit and the solid blue line gives the theoretical speedup from Amdahl’s law based on the
total serial component st. It can be seen that there is once again excellent agreement
between Amdahl’s law and the inferred values for the total serial and parallel fractions
st and pt.

is excellent agreement between the inferred value of st and the related speedup obtained
from Amdahl’s law. For the LS fit, both values pt and st were only bounded between 0
and 1, and the best fit is found to be:

sLS ≈ 0.29, sLS ≈ 0.64. (9.2.29)
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Once again, the values obtained from the LS fit do not add up to 1, instead leaving a value
of 0.07 unaccounted for. As for the case of d3 , this represents the portion of the code which
is neither completely serial nor parallel. This includes the communication time between
processors, which grows when increasing np but is not present in the computation on one
core. It should also be noted that the largest speedup is reached for the case of np = 7.
As for the case of degree = 2, this implies that for np > 7, the communication between
processors balances out the speedup gained from dividing the domain of computation.

With the values for the total serial and parallel fractions st and pt, we can analyse the
behaviour under weak scaling. As previously done for the d3 case, the problem size per
compute unit is fixed at ns = 10 · np. The results are shown in fig. 9.2.8. Two separate

Figure 9.2.8: Weak scaling behaviour for d1 elements with a fixed problem size per
core, ns = 10np. The different colours give the computation time for different sections.
It can be seen that for np ≤ 4 we have behaviour consistent with the theoretical
maximum for weak scaling. On the other hand, for np ≥ 5 there is a linear increase in
tt. This is due to the fact that for ns > 4 the quadratic component of the refinement
function can no longer be neglected, so the ratio of the quadratic growth to the linear
speedup gives an overall linear increase in the time tt. This is because for ns ≥ 50 the
refinement time tl is the largest fraction of the total time tt.

regions can be identified in fig. 9.2.8:
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• For np ≤ 4, we have an approximately constant computation time tt, in line with
what is expected from the theoretical maximum for weak scaling.

• For np ≥ 5 there is a linear increase in the computation time tt.

To find the cause of this behaviour, we must consider the LS fit of the scaling for the local
refinement function w.r.t. the source number ns given in chapter 8. This is given as:

tg = 0.236 + 0.086ns + 0.0015n2
s. (9.2.30)

When analysing the case of weak scaling, the assumption is made that the execution time
tt grows linearly w.r.t. the problem size ns. From eq. 9.2.30 it can be seen that for
ns ≈ 58, the linear and quadratic contribution have the same value. This means that for
np ≥ 60 we can no longer expect a constant computation time for a linear relation between
the number of compute units np and source number ns. More specifically, for ns = 30
the linear contribution is ≈ 92% larger than the quadratic contribution, so the difference
between them is of order O(1) and the linear term is dominant. On the other hand, for
np = 50 the difference is of ≈ 11%, or order O(0.1). It is hence clear that for np ≥ 5 the
approximation of a linear growth in computation time with the problem size breaks down,
and the two different regimes can hence be clearly explained. In particular, assuming the
speedup obtained by increasing np is indeed linear, the increase in ttot is in fact expected to
be linear, as it stems from dividing a quadratic increase by a linear speedup. Nonetheless,
although for np = 8 the value of tt is larger than for np = 1, the two are related by a factor
of ≈ 2. This implies that, although weak scaling does not exactly apply to the situation,
there is still a speedup of ≈ 4 for ns = 80 w.r.t. serial execution.



Chapter 10

Discussion, Conclusions and Future Work

Throughout this work we have treated three main aspects concerning the MOND
theory:

1. Relativistic expansions;

2. Behaviour of the baryonic, apparent and PDM mass distributions in galaxy clusters;

3. Performance and accuracy of FEM solutions of the AQUAL formulation.

Regarding relativistic expansions of MOND, we first studied Hossenfelder’s theory of Co-
variant Emergent Gravity described in [26]. We then examined its connection to Verlinde’s
theory of Emergent Gravity from [21], the retrieval of a MOND-like potential in the non-
relativistic limit, and its agreement with experimental data. We showed that, although
CEG introduces a spacetime generalisation for the spatial quantities described in EG,
the timelike normalisation chosen for the imposter 4-vector, on which the theory is built,
is fundamentally incompatible with Verlinde’s EG. Accordingly, we proposed that the
vector field of CEG is lightlike, analysed the spacetime resulting from the lightlike field
perturbing a Minkowski potential, and presented the geodesic equations. In addition, we
showed that the full deep MOND equation can be retrieved from the EOM of CEG in
Cartesian coordinates, without needing to assume spherical symmetry. Furthermore, we
studied the two possibilities for the behaviour of photons in the spacetime of CEG, which
is perturbed by the imposter field. For the case of the photons travelling on the geodesic
of the background metric, we referred to the recent detection of concurrent gravitational
and EM signals and concluded that, if CEG predicts that the photons travel along the
geodesics of the effective metric, the theory is experimentally falsified. This is because
any modified theory of gravity postulating the existence of two non-conformally related
metrics would predict a time delay between the arrival of the gravitational and EM signals
from a neutron star merger such as GW170817, which was experimentally ruled out in [33]
and [35]. In addition, we showed that, if instead the photons propagate on the geodesics
of the background metric, this implies the possibility of the existence of two distinct event
horizons. In this case, the photons could, in principle, go beyond the horizon defined

185
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for massive particles and come out unscathed, thus capable of delivering quantum infor-
mation about the physics past the horizon to a massive particle through an interaction.
Furthermore, the propagation of photons along geodesics of a different spacetime from the
massive particles would be in direct contradiction with the Equivalence principle, which
states that gravity universally couples to all forms of energy.

Due to the numerous inconsistencies listed above, we then followed the work in [40] and
[46], and proposed that the relativistic expansion of EG could, in fact, be a Generalised
Aether Theory. We showed that, by perturbing a Minkowski background with a spacetime
generalisation of the displacement field introduced by Verlinde, it is possible to recover
MOND with an arbitrary interpolation function in the non-relativistic limit. Furthermore,
we demonstrated that the lightlike normalisation we adopted is consistent with both EG
and GEA, and that it is possible that the energy-momentum tensor of the field can reduce,
or completely dispense of, the missing mass on the scale of galaxy clusters. In addition,
the normalisation we chose results in a covariant theory which is fully compatible with the
observations from the GW170817 event.

There are still open questions regarding the ability of GEA theories to describe MOND
phenomenology on cosmological backgrounds. With the goal of developing a full-fledged
gravitational lensing framework, more work is needed in studying the form of the EOMs
for the GEA theory with the EG dressed potential on FLRW backgrounds. In addition,
it should be verified whether the energy momentum tensor of the dressed potential can
provide a non-negligible contribution to the total energy present in galaxy clusters, as
a path to explaining the missing mass that cannot be accounted for by non-relativistic
MOND or EG. Ultimately, more work is also needed in identifying predictions, if any exist,
that would differ between the non-relativistic limit of GEA and the AQUAL formulation
of MOND, in order to have a more concrete direction towards which to focus the more
theoretical research.

Regarding the mass distribution in galaxy clusters, we investigated the behaviour of
baryonic, PDM, and apparent mass distributions in galaxy clusters in a non-relativistic
setting. In particular, we utilised the fully non-linear AQUAL formulation of MOND to
analyse the apparent and PDM mass distribution stemming from a baryonic mass distri-
bution including both a gas and galactic component. Following the catalog of Reiprich in
[51], and the work done by Moffat and Brownstein in [52], we adopted a King β model
for the ICM, under the assumption that the hot gas populating the cluster is close to
thermal equilibrium. Furthermore, we utilised data on the galaxy population from the
Abell catalog, and selected only the clusters of population groups 0 and 1 which were also
contained in the Reiprich catalog. Overall, we simulated 15 galaxy clusters, with baryonic
fractions divided more or less equally between gas dominated and galaxy dominated.

From a computational standpoint, we solved the fully non-linear AQUAL MOND PDE
through the use of the FEM in the FEniCS software package in Python. For the serial
case we showed that, by utilising local mesh refinement around each of the galaxies in the
cluster, we could achieve speedups of O(100) w.r.t. a uniformly refined mesh, for a number
of galaxies of ≈ 250. In addition, we utilised MPI to allow for the computation of the
potential with degree 3 elements, and achieved near-optimal speedups for weak scaling,



187

which hence enabled us to compute a problem size 8 times larger than for the sequential
case, with an increase of only 22% in the computation time. This was achieved by utilising
the gmres Krylov solver paired to the hypre-euclid parallel pre-conditioner. All
the simulations were run on a single-threaded 8-core Intel i7-9700 CPU with maximum
frequency fmax = 4.7GHz, 8GB of RAM and 64KB, 256KB and 12MB of L1, L2 and
L3 cache respectively. Our implementation is the first to have treated the fully non-linear
MOND PDE with interpolation function for the case of galaxy clusters through FEM.

With regards to the results for the mass distributions, we analysed the integrated
mass for two different situations: a set of concentric spheres around the center of the
cluster, and the sum of the set of spheres enclosing each galaxy. In the first case, we
verified that the integrated mass has a behaviour that deviates both from the case of
spherical symmetry and from the deep MOND regime, since the central regions of the
clusters are neither spherically symmetric nor in the deep MOND regime. We saw that,
in all clusters, up to a radius which varies from 1/10 to 1/2 of the radius of the cluster,
the baryons accounted for a larger fraction of the total apparent mass when compared
to the PDM. This demonstrates that the PDM mass distribution is not peaked in the
center of the cluster, and that it does not exclusively follow the distribution of the ICM,
even in clusters where the ICM is the dominant baryonic component. For the second
case, we verified that within the critical radius around each galaxy, the apparent mass
is virtually zero. Moreover, we saw that, regardless of the fraction of total baryonic
matter contained in each radius, the PDM is always close to zero in proximity of the
galaxies. On the other hand, the PDM mass grows approximately linearly in the radius
for all clusters, showing that, regardless of the baryonic fraction contained around the
galaxies, the PDM tends to clump around the galaxies, which will cause an abundance
of smaller gravitational lenses farther from the central region of the cluster. Lastly, we
verified the theoretical prediction that both the PDM and apparent mass distributions
can take on negative values, which come in the form of tori around the galaxies. We
showed that the transition between the positive and negative distributions is smooth, so
that the galaxies are surrounded by tori of negative mass density, through which a halo
of positive mass PDM encapsulates each galaxy. Ultimately, our simulations confirmed
a number of phenomena, among which some have not yet been attributed to MOND.
First, the concentration of the PDM is predominantly around the galaxies even when the
ICM is the dominant component. Second, it is possible for both the PDM and apparent
mass to have a negative mass density which, if observed, could in no way be explained
by dark matter models. Third, there are no peaks of dark matter in the central regions
of the clusters and, within the critical radius of every galaxy, no PDM is present at all.
All of these results were made possible by the use of a numerical method, FEM, capable
of treating discrete and continuous solution in the same PDE but on a different footing,
without smoothing the discrete distribution.

In this work, we carried out our treatment of galaxy clusters exclusively through the
AQUAL formulation of MOND with the standard interpolation function. As was previ-
ously mentioned, if the boundary of a domain is not in the deep MOND regime, the mass
contained in that volume is determined by the value of the interpolation function on the
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boundary. Therefore, it would be of interest to study the apparent mass distributions
generated other MOND interpolation functions, such as the simple and exponential inter-
polation functions. Moreover, for this work we limited our sample to 15 clusters, in order
to ensure that we could describe the ICM and the galaxy component of the baryonic mass
in a realistic scenario. However, given that most galaxy mass measurements already in-
clude the contribution of the apparent dark matter halo, it is challenging to find raw data
obtained, for example, by unbiased luminosity measurements. An interesting alternative
would be to simulate clusters in which each galaxy has unique mass and radii, in order to
understand how the PDM distribution behaves under a variation in the scale of the criti-
cal radius w.r.t. the galactic radius. Finally, the gas distribution that was used to model
the ICM is known to be divergent, and to make the rather stringent assumption that the
gas is close to thermal equilibrium. In the ideal case, it would be best to simulate a gas
distribution derived entirely by principles stemming from MOND, rather than Newtonian
gravity.

From the computational side, the possibility of having a large distributed memory
computer available would allow for the simulation of much larger systems, and to greater
accuracy. However, in that case, it would be paramount to have access to libraries capable
of mesh generation and partitioning in parallel, as well as the ability to change the mesh
partitioning criteria, especially after local mesh refinement. In fact, with the libraries used
for this work, the mesh has to be re-partitioned every time that local mesh refinement
is carried out, which would definitely represent a bottleneck if working with a larger
distributed memory system. With the access to more computational power, a useful
application would be to achieve a resolution comparable to the simulations carried out in
this work, for each of the galaxies in a cluster, in order to more precisely search for effects,
such as negative mass distributions, which could be observationally verifiable. Once again,
for such a purpose a parallel mesh partitioning library would be necessary, which is capable
of taking into account mesh refinement and split the domain not only according to the
number of cells, but also user input, with the goal of having a separate processor allocated
to each of the O(1000) galaxies contained in the cluster.



Appendix A

CEG in Schwarzschild spacetime

A.1. The spherically symmetric covariant case:
Schwarzschild geometry

After determining that the EOM in a flat background are plagued by numerous issues,
the next step is to attempt to find an explicit solution in a curved background that
can provide valid results. It must be noted that in Hossenfelder’s approach the effect of
the imposter field on the metric is completely neglected, so this amounts to a test field
treatment1 . All assumptions made previously for the spherically symmetric, flat spacetime
case still hold, with the only obvious difference being the use of the Schwarzschild metric,
replacing Minkowski.

Throughout the flat spacetime analysis, the assumption of a static field greatly sim-
plified calculations due to vanishing partial derivatives with respect to time, and the lack
of any non-zero Christoffel symbols including t. In Schwarzschild spacetime, one has to
instead consider the two non vanishing Christoffels symbols containing t:

Γrtt =
GM (r − 2GM)

r3
, Γttr = Γtrt =

GM

r (r − 2GM)
. (A.1.1)

The symmetry of the Christoffel symbols in the two lower indices was noted2:

Γαµν = Γανµ. (A.1.2)

It is useful at this point to introduce another important property, that of metric com-
patibility:

1The notation is analogous to that of a test particle, whose equations of motion do not account for the
effect of its own energy on the background curvature)

2The symmetry of the Christoffel symbols in the lower indices is the reason the definition of the
Riemann tensor can be simplified to that of the commutator of covariant derivatives. The extra term
present from commuting covariant derivatives is the torsion tensor, which is equal to the commutator of
Christoffel symbols in the two lower indices. This commutator always vanishes in GR.
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Since Christoffels “adjust” partial derivatives to make them independent of the used
coordinate system, they ensure that the covariant derivative of the metric vanishes,
so that the effect of curvature on differentiation is fully absorbed in the Christoffel.

Mathematically, this is expressed as:

∇µgαβ = 0. (A.1.3)

Armed with these two notions, one can now find an explicit formula for the EOM in a
curved background. Starting from the kinetic term χ, one obtains:

χ =
4

3

A︷ ︸︸ ︷
(∇νu

ν)(∇µu
µ)−1

2

B︷ ︸︸ ︷
(∇µuν)(∇µuν)−1

2

C︷ ︸︸ ︷
(∇µuν)(∇νuµ) (A.1.4)

A = (∇αu
α)
(
∇βu

β
)
→ ∇αu

α = ∇βu
β = (A.1.5)

∂αu
α + Γααλu

λ = Γαα0u
0 = 0∀α (A.1.6)

C = (∇αuβ)
(
∇βuα

)
=
(
∇αu

β
)

(∇βu
α) = (A.1.7)(

∇iu
0
) (
∇0u

i
)

+
(
∇0u

i
) (
∇iu

0
)

= 0. (A.1.8)

For C, ui = 0 was used. The B term gives the only non-vanishing contribution, as in the
case of flat spacetime:

B = (∇αuβ)
(
∇αuβ

)
= (∇α gβνu

ν)
(
gρα∇ρu

β
)

= (A.1.9)

gβνg
ρα (∇αu

ν)
(
∇ρu

β
)
. (A.1.10)

Metric compatibility was used. The best way to proceed is to evaluate the expression term
by term, by looking at each non-zero index combination of the metric and its inverse, which
yields:3

gβνg
ρα (∇αu

ν)
(
∇ρu

β
)

= (A.1.11)

gβνg
ρα (∂αu

ν + Γνασu
σ)
(
∂ρu

β + Γβρηu
η
)

= (A.1.12)

g00g
00
(
∂0u

0 + Γ0
0σu

σ
) (
∂0u

0 + Γ0
0ηu

η
)

+ giig
jj
(
∂ju

i + Γijσu
σ
) (
∂ju

i + Γijηu
η
)

+ (A.1.13)

g00g
jj
(
∂ju

0 + Γ0
jσu

σ
) (
∂ju

0 + Γ0
jηu

η
)

+ giig
00
(
∂0u

i + Γi0σu
σ
) (
∂0u

i + Γi0ηu
η
)
. (A.1.14)

Working out one term explicitly as an example:

gikg
lm
(
∂mu

k
) (
∂lu

i
)

=

{
giig

ll (∂lu
i) (∂lu

i) i = k, l = m

0 otherwise.
(A.1.15)

3In all terms apart from the first, an ill-defined Einstein summation is used, with two contravariant
and two covariant indices equal to each other. Although formally not allowed, this abuse of notation gives
a sum yielding the correct value since gµν is diagonal.
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Simplifying as before, and using g00g
00 = 1, the expression becomes:4

F︷ ︸︸ ︷(
Γ0

0σu
σ
) (

Γ0
0ηu

η
)

+

G︷ ︸︸ ︷
giig

jj
(
Γijσu

σ
) (

Γijηu
η
)

+ (A.1.16)

H︷ ︸︸ ︷
g00g

jj
(
∂ju

0 + Γ0
jσu

σ
) (
∂ju

0 + Γ0
jηu

η
)

+

I︷ ︸︸ ︷
giig

00
(
Γi0σu

σ
) (

Γi0ηu
η
)
. (A.1.17)

It is most convenient to evaluate each term individually.5

F =
(
Γ0

0σu
σ
) (

Γ0
0ηu

η
) Γ0

00=0
===⇒ 0 (A.1.18)

G = giig
jj
(
Γijσu

σ
) (

Γijηu
η
) Γij0=0∀ i,j

======⇒ 0 (A.1.19)

H = g00g
jj
(
∂ju

0 + Γ0
jσu

σ
) (
∂ju

0 + Γ0
jηu

η
) σ=η=0, j=r

======⇒ g00g
rr
(
∂ru

0 + Γ0
r0u

0
)2

(A.1.20)

I = giig
00
(
Γi0σu

σ
) (

Γi0ηu
η
) σ=η=0, i=r

======⇒ grrg
00
(
Γr00u

0
)2
. (A.1.21)

To simplify further, one looks at the explicit form of the Schwarzschild metric, for which
the spacetime interval reads:

ds2 = −γ(r)dt2 + γ(r)−1dr2 + r2dθ2 + r2 sin2 (θ) dϕ2 . (A.1.22)

The quantity γ is defined as:

γ =
r − 2GM

r
. (A.1.23)

Here, M is the mass at the origin of the coordinate system, and r is the radial distance
from the origin. An important simplification can now be made, firstly by noting that the
Schwarzschild metric used is diagonal, so that the inverse metric is also diagonal, with
each component replaced by its reciprocal:

gµν = g−1
µν . (A.1.24)

It can be seen that g00 = −grr, giving:

g00g
rr = −g2

00 = −γ2. (A.1.25)

Another useful simplification can be obtained by expressing the Christoffel symbols in
terms of γ:

Γ0
r0 =

GM

r2γ
, Γr00 =

γGM

r2
. (A.1.26)

4It can be shown that for a metric that can be written in diagonal form, gµν = (gµν)
−1

. Consequently,
one has the identities: gaa = gaa ∀a, and gµνg

µν = 4
5the arrows give the index values for which each summation is non-zero, to avoid writing out terms

that have a zero contribution.
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It is now possible to rewrite the kinetic term as:

χ = −1

2
B = −1

2
(H + I) = (A.1.27)

−1

2

(
g00g

rr
(
∂ru

0 + Γ0
r0u

0
)2

+ grrg
00
(
Γr00u

0
)2
)

= (A.1.28)

1

2

(
g2

00

(
∂ru

0 + Γ0
r0u

0
)2

+
(Γr00u

0)
2

g2
00

)
. (A.1.29)

In the last line A.1.25 was used. Making use of A.1.22 and re-writing the Christoffel
symbols according to A.1.26 gives:

χ =
1

2

(
γ2

(
∂ru

0 +
GMu0

r2γ

)2

+

(
γGMu0

r2

)2
1

γ2

)
= (A.1.30)

1

2r4

((
γr2∂ru

0 +GMu0
)2

+
(
GMu0

)2
)
. (A.1.31)

The following must be pointed out:

The result for χ does not match what found in [26].

This implies that the EOM will also differ by those found by Hossenfelder. The other
terms necessary to calculate the equations of motion are ε and εµν . It is easy to see that
the former vanishes:

ε = εµµ = (∇µu
µ +∇µu

µ) = 2∇µu
µ = 2

(
∂µu

µ + Γµµνu
ν
)

= 0 ∀ µ. (A.1.32)

For the latter, it is noted that it only appears in the E.O.M.s in the combination:

∇µ (
√
χεµσ) =

√
χ∇µε

µ
σ + εµσ∇µ

√
χ. (A.1.33)

Since ∇µ
√
χ = ∂µ

√
χ vanishes ∀µ 6= r, one only has to compute εrσ, which is done as

follows:

εµσ =
1

2

 J︷ ︸︸ ︷
∇σu

µ +

K︷ ︸︸ ︷
∇µuσ

 . (A.1.34)

Evaluating each term separately gives:

J = ∇σu
µ µ=r−−→ ∂σu

r + Γrσλu
λ σ=0−−→ Γr00u

0 (A.1.35)

K = ∇µuσ = gµνgρσ
(
∂νu

ρ + Γρνλu
λ
) µ=r, ρ=λ=0−−−−−−−→ grrg00

(
∂ru

0 + Γ0
r0u

0
)

= (A.1.36)

−γ2
(
∂ru

0 + Γ0
r0u

0
)
. (A.1.37)
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Overall this yields, for σ = 0:

εr0 = Γr00u
0 − γ2

(
∂ru

0 + Γ0
r0u

0
)
. (A.1.38)

On the other hand, the divergence ∇µε
µ
σ has to be calculated in full:

∇µε
µ
σ =

L︷ ︸︸ ︷
∇µ (∇σu

µ) +

M︷ ︸︸ ︷
∇µ∇µuσ . (A.1.39)

The first term needed from A.1.39 is:

L = ∇µ (∇σu
µ) . (A.1.40)

As noted previously, covariant derivatives do not commute. To obtain the value of L, it is
best to treat the first covariant derivative as a (1,1) tensor, take its covariant derivative,
and plug the explicit form back in at the end of the calculation. By setting

Aµσ ≡ ∇σu
µ, (A.1.41)

A.1.40 becomes:

L = ∇µ (Aµσ) = ∂µ (Aµσ)− ΓλµσA
µ
λ + ΓµµλA

λ
σ = (A.1.42)

∂µ (∇σu
µ)− Γλµσ∇λu

µ + Γµµλ∇σu
λ. (A.1.43)

The definition for the covariant derivative for a higher rank tensor was used (see e.g. [6])6.
Expanding each term so to calculate them explicitly:

L =

N︷ ︸︸ ︷
∂µ
(
∂σu

µ + Γµσλu
λ
)
−

O︷ ︸︸ ︷
Γλµσ (∂λu

µ + Γµλαu
α) +

P︷ ︸︸ ︷
Γµµλ

(
∂σu

λ + Γλσαu
α
)

(A.1.44)

N = ∂µ∂σu
µ + ∂µ

(
Γµσλu

λ
) λ=0, σ=0−−−−−→ ∂r

(
Γr00u

0
)

= Γr00∂ru
0 + u0∂rΓ

r
00. (A.1.45)

In evaluating N it was noted that partial derivatives commute, and as previously showed
∂µu

µ = 0. The remaining terms give:

O = Γλµσ (∂λu
µ + Γµλαu

α)
µ=α=σ=0−−−−−−→ Γλ00∂λu

0 + Γλµ0Γµλ0u
0 = (A.1.46)

Γr00∂ru
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(
Γr00Γ0

r0 + Γ0
r0Γr00

)
u0 = Γr00

(
∂ru

0 + 2Γ0
0ru

0
)
, (A.1.47)

and:

P = Γµµλ
(
∂σu

λ + Γλσαu
α
) µ=α=σ=0, λ=r−−−−−−−−−→ Γ0

0λ

(
∂0u

r + Γλ00u
0
)

= Γ0
0rΓ

r
00u

0. (A.1.48)

6One can see that the covariant derivative for a higher rank tensor includes one partial and derivative
and a number of Christoffels equal to the rank. In the procedure, each index is treated as if describing a
corresponding (co)vector.
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On the other hand, M could be most easily evaluated by using the Laplace-Beltrami
operator:

M = ∇µ∇µuσ =
1√
|g|
∂µ

(
gµν
√
|g|∂νuσ

)
. (A.1.49)

For the Schwarzschild metric: √
|g| =

∣∣r2 sin θ
∣∣ . (A.1.50)

Since spherical symmetry is assumed, this results in:

1

2
∂r
(
grrr2∂rgσρu

ρ
) σ=ρ=0−−−−→ − 1

r2
∂r
[
γr2∂r

(
γu0
)]

= (A.1.51)

− 1

r2
∂r
(
γ2r2∂ru

0 + 2GMγu0
)
. (A.1.52)

In the last step the derivative of γ was used,

∂rγ = ∂r

(
1− 2GM

r

)
=

2GM

r2
. (A.1.53)

However, an important observation should be made at this point. The explicit evaluation
of the imposter field through its E.O.M.s is needed to ultimately calculate a perturbation
to a background metric in order to apply the formalism of gravitational lensing.

In this formalism (see e.g. [6]), the perturbation of the background metric is only
considered up to first order. This means that the metric used to raise indices is in fact
the background metric, and only coefficients linear in the perturbation are kept, with
second order terms such as products of Christoffel symbols neglected in the approximation,
whereas the first derivatives of the Christoffel symbols are kept.

Although in the calculation that was just carried out the indices were raised with
the full Schwarzschild metric (as necessary to make contact with the calculations from
[26]), terms quadratic in the Christoffels can be neglected. As χ and εr0 have already
been expressed in terms of Christoffel symbols, it is hence necessary, in order to obtain a
coherent approximation, to also evaluate the Laplace Beltrami term with respect to the
Christoffel symbols without utilising the formula from A.1.49 directly, instead using the
approach outlined for L. M is then calculated setting Bρ

ν ≡ ∇νu
ρ, giving:

∇µ (∇µuσ) = gµνgρσ∇µ (∇νu
ρ) = gµνgρσ
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ν −
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ρ
λ

 . (A.1.54)

Evaluating each term individually:

gµνgρσQ = gµνgρσ (∂µB
ρ
ν) = (A.1.55)
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gµνgρσR = gµνgρσ
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The second arrow describes the two possible sets of nonzero indices and, once again, the
only nonzero contributions are given by σ = 0. Finally, for the last term:

gµνgρσS = gµνgρσ
(
ΓλµνB

ρ
λ

)
= (A.1.60)

gµνgρσΓλµν (∇λu
ρ)
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r0u
0. (A.1.61)

It is now possible to approximate all quantities calculated so far to first order in the
Christoffel symbols:

χ ≈ 1
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∂ru
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εr0 ≈ Γr00u
0 − γ2
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∂ru
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∇µε
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0 ≈ −γ2
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∂2
ru
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Γ0
r0u
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+ Γ0
r0∂ru

0
)
− Γr00∂ru

0 + u0∂rΓ
r
00. (A.1.64)

Before going any further, one must note the following problem:

The value of χ determines the expression resulting in a PDE for the potential φ,
and χ one found here does not match that obtained by Hossenfelder.

This implies that the potential obtained by using the χ derived here will generally not
match the potential obtained by Hossenfelder, which is to first order logarithmic. Further-
more, there is no indication in Verlinde’s original work that the displacement field would
have the same form on a Schwarzschild background. Finally, the same assumption is made
about the rest frame of the imposter field as for the nonrelativistic case, carrying along
with it the problems described for that limit. Due to these issues, the Schwarzschild case
is not worth pursuing further.



Appendix B

Quantities for the Lightlike Field EOM

If one decides to in fact fix the vector field to have a lightlike normalisation, the time
component is uniquely dependent on the chosen metric. A clear candidate is the metric
that was obtained in section 3.4. Throughout this appendix, all quantities necessary to
compute the EOM for a lightlike field on this background are given. These calculations
are not included in the main body as a full solution yielding a logarithmic potential in the
correct regime could not be found, and other avenues were followed.

B.1. Quantities for the Lightlike Field EOM

With the Christoffel symbols available, the next step is to calculate the E.O.M.s for
uµ, deviating now completely from the field defined by Hossenfelder in [26] and instead
using a light-like normalisation. In section ??, u0 was obtained by fixing the light-like
normalisation of uµ in a Minkowski background. On the other hand, for the E.O.M.s it is
desirable to obtain the normalisation directly from the perturbed metric, initially without
approximating. One then gets, using the general case of Cartesian coordinates for the
spatial component of the metric:

uµu
µ = gµνu

νuµ = g00u
0u0 + giiu

iui = − (1 + 2φ)
(
u0
)2

+ (1− 2φ)uiui = 0 (B.1.1)

(1 + 2φ)
(
u0
)2

= (1− 2φ)φ2L2 → u0 =

√
1− 2φ

1 + 2φ
φL, (B.1.2)

The positive root was taken for u0. The 4-vector uµ now reads:

uµ = φL

(√
1− 2φ

1 + 2φ
, ni

)
. (B.1.3)

As spherical symmetry is assumed, and one considers the effect of a single mass at the
origin of the coordinate system on an individual test particle, the coordinate system can
be aligned so that one of the axes corresponds to the vector connecting the source mass
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to the test particle, which then gives the simplified expression:

uµ = φL

(√
1− 2φ

1 + 2φ
, 1, 0, 0

)
. (B.1.4)

With this definition, it is possible to again evaluate all the terms needed to form the
Lagrangian for the free field, with the difference being that the metric used is no longer
Minkowski, and that uµ has a non-vanishing spatial component, exclusively in the r di-
rection. Whereas it is convenient for now to delay the choice of coefficients for the kinetic
term, given that the arguments of Hossenfelder no longer apply, the contractions of the
derivative terms have to be evaluated all the same, so it is good to start from these.

(∇µu
µ) =

A︷︸︸︷
∂µu

µ +

B︷ ︸︸ ︷
Γµµαu

α (B.1.5)

A = ∂µu
µ µ=r−−→ ∂ru

r (B.1.6)

B = Γµµα
α=r−−→ Γµµru

r =
(
Γttr + Γrrr + 2Γθθr

)
ur, (B.1.7)

where it was used that Γθθr = Γϕϕr. Hence, to 1st order in φ (and hence to 1st order in ur),
one has:

(∇µu
µ)2 ≈ (∂ru

r)2 + 2ur
(
Γttr + Γrrr + 2Γθθr

)
∂ru

r. (B.1.8)

The next term is:

(∇µuν) (∇νuµ) = (∇µu
ν) (∇νu

µ) =
(
∂µu

ν + Γνµαu
α
) (
∂νu

µ + Γµνβu
β
)

= (B.1.9)

C︷ ︸︸ ︷
∂µu

ν∂νu
µ +

D︷ ︸︸ ︷
(∂µu

ν) Γµνβu
β +

E︷ ︸︸ ︷
Γνµαu

α (∂νu
µ) +

F︷ ︸︸ ︷
Γνµαu

αΓµνβu
β (B.1.10)

C
µ=ν=r−−−−→ (∂ru

r)2 (B.1.11)

D
µ=r−−→ (∂ru

r) Γrrru
r +

(
∂ru

t
)

Γrttu
t, E = D. (B.1.12)

For the last term F , we note that all non-zero contributions are of the form uαuβ, hence
2nd order in φ and can hence be neglected, so that one has:

(∇µuν) (∇νuµ) ≈ (∂ru
r)2 + 2

(
(∂ru

r) Γrrru
r +

(
∂ru

t
)

Γrttu
t
)

(B.1.13)

The last contraction of the derivative term is:

(∇µuν) (∇µuν) = gλµgκν (∇λu
κ) (∇µu

ν) = gλµgκν (∂λu
κ + Γκλαu

α)
(
∂µu

ν + Γνµβu
β
)

=

(B.1.14)

gλµgκν

 G︷ ︸︸ ︷
∂λu

κ∂µu
ν +

H︷ ︸︸ ︷
∂λu

κΓνµβu
β +

I︷ ︸︸ ︷
Γκλαu

α∂µu
ν +

J︷ ︸︸ ︷
Γκλαu

αΓνµβu
β

 (B.1.15)

gλµgκνG
λ=µ=r,−−−−→ grr

(
grr (∂ru

r)2 + gtt
(
∂ru

t
)2
)

= (∂ru
r)2 + grrgtt

(
∂ru

t
)2

(B.1.16)
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where in the last step it was used that the metric is diagonal and therefore g−1
rr = grr.

Continuing with the calculation:

gλµgκνH
λ=µ=r−−−−→ (∂ru

r) Γrrru
r + grrgtt

(
∂ru

t
)

Γtrtu
t, I = H. (B.1.17)

Once again, J only has non-zero contributions of the form uαuβ, which can be neglected
as they are 2nd order in φ, giving overall:

(∇µuν) (∇µuν) ≈ (∂ru
r)2 + grrgtt

(
∂ru

t
)2

+ 2
(
(∂ru

r) Γrrru
r + grrgtt

(
∂ru

t
)

Γtrtu
t
)

(B.1.18)

The next term appearing in the E.O.M.s is the derivative of the strain tensor:

∇νε
ν
µ =

1

2

 L︷ ︸︸ ︷
∇ν (∇µu

ν) +

M︷ ︸︸ ︷
∇ν (∇νuµ)

 , (B.1.19)

which is best calculated by treating the first covariant derivative as a tensor and taking
its covariant derivative, as done with the Schwarzschild case:

L =

L1︷ ︸︸ ︷
∂ν (∇µu

ν)−

L2︷ ︸︸ ︷
Γλνµ∇λu

ν +

L3︷ ︸︸ ︷
Γννλ∇µu

λ . (B.1.20)

With the light-like normalisation, there is now an additional aspect to be considered, that
was absent when assuming uµ to be time-like: as two components of uµ are non vanishing,
ur and ut, there will be two separate equations of motion stemming from the Lagrangian.
The clearest approach is to write down each expression separately, starting from µ = r:

L1 = ∂r∂νu
ν + ∂ν (Γνrαu

α)
ν=α=r−−−−→ ∂2

ru
r + ∂r

(
Γrµru

r
)

(B.1.21)

L2 = Γλνr (∂λu
ν + Γνλαu

α)
λ=r−−→ Γrrr∂ru

r +
((

Γttr
)2

+ (Γrrr)
2 + 2

(
Γθθr
)2
)
ur (B.1.22)

L3 = Γννλ
(
∂ru

λ + Γλrαu
α
) λ=r−−→

(
Γttr + Γrrr + 2Γθθr

)
(∂ru

r + Γrrru
r) . (B.1.23)

Moving onto the next term, and again considering the first covariant derivative as a 2nd

rank tensor, and adjusting the indices accordingly:

M = gµαg
νβ∇ν (∇βu

α) = gµαg
νβ

 M1︷ ︸︸ ︷
∂ν (∇βu

α) +

M2︷ ︸︸ ︷
Γανλ∇βu

λ−

M3︷ ︸︸ ︷
Γλνβ∇λu

α

 (B.1.24)

gµαg
νβM1 = gµαg

νβ∂ν
(
∂βu

α + Γαβλu
λ
) β=ν=r−−−−→ ∂2

ru
r + ∂r (Γrrru

r) (B.1.25)

gµαg
νβM2 = gµαg

νβΓανλ
(
∂βu

λ + Γλβκu
κ
) λ=r−−→ Γrrr (∂r + Γrrr)u

r + grrg
ttΓrttΓ

t
tru

r (B.1.26)

gµαg
νβM3 = gµαg

νβ
(
Γλνβ∂λu

α + ΓλνβΓαλκu
κ
) λ=κ=r−−−−→ (B.1.27)

grr
[
2gϕϕΓrϕϕ +

(
grr − gtt

)
Γrrr
]

(∂ru
r + Γrrru

r) , (B.1.28)

where in the computation of M3 it was used that Γrrr = −Γrtt.



Appendix C

The Newtonian Correspondence in Flat
Spacetime

C.1. The MOND Correspondence in Flat Space-Time

At this point, one could make a guess on the form of the Lagrangian, choosing coef-
ficients based on assumptions such as the conservation of the Energy-Momentum tensor
in a specific curved background (e.g. de Sitter space as in [26]). Instead, another route
is chosen here. The only point of contact of Hossenfelder’s formulation of CEG with
observational data is given by the retrieval of the MOND equation in a flat spacetime
background. As this is a crucial result, it is first and foremost necessary to demonstrate
that the formulation with a light-like field proposed here can reproduce the same MOND
PDE. On the other hand, as there is no rest frame for a light-like four vector, different
considerations have to be made:

1. As shown in section 3.4, the conservation of angular momentum allows one to limit
the analysis of the geodesic equations to the θ = π

2
plane. The same can then be done

for the E.O.M.s, since the case considered is that of a single test particle acted on
by the imposter field source by a point mass at the origin of the coordinate system.

2. The coordinate system can be aligned so that the vector connecting the point mass
to the test particle coincides with one of the Cartesian axes. Then, there is only
one non-zero spatial component, which can be identified with the r component in
spherical coordinates. When enforcing the normalisation from [21] on the spatial
part in a Minkowski background, this leads to:

uµ = φL (1, 1, 0, 0) . (C.1.1)

This also gives a way to check the consistency of the model: as one has ut = ur, the
equations of motion for the r and the t component should coincide.

3. In section 3.4, the similarity between the spacetime metric from [21] and the Schwarzschild
metric the 1st order in φ was noted. In fact, to 1st order in φ, the Newtonian contri-
butions to timelike orbits exactly coincided, and the general relativistic contribution
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only differed by a factor of 2. It should hence be sufficient to consider terms O(φ)
for the E.O.M.s.

4. As previously explained, the only way to fix coefficients so to produce a theory that
can explain observations is to keep the coefficients explicit in the derivation and only
assign them once the E.O.M.s have been calculated, in order to retrieve MOND.

To obtain the E.O.M.s in Minkowski space-time in spherical coordinates, it is useful to note
that all Christoffel symbols that are non-vanishing are also non-vanishing in Verlinde’s
metric. One can hence simply reuse the expressions worked out in section B.1, as in
obtaining these the Christoffel symbols were not written out explicitly. Hence, by using
equations B.1.5-B.1.28 and directly substituting ur = ut = φL, one has:

∇µu
µ = −L∂rφ, (∇µu

µ)2 = (L∂rφ)2 , (∇µuν) (∇νuµ) = (L∂rφ)2 , (C.1.2)

(∇µuν) (∇µuν) =
2

r2
(Lφ)2 ≈ 0. (C.1.3)

These terms appear identically in both the ur and the ut E.O.M.s as they have no free
indices. The remaining terms are different for the t and r components. The t component
is treated first. For µ = t:

∇νε
ν
µ =

L

2
∂2
rφ, ∇ν

(
εδνµ
)

= 0, ενµ + εδνµ = −L∂rφ (C.1.4)

It is now possible to write the E.O.M.s without specifying the coefficients, with the La-
grangian for the free field:

L = χ
3
2 , χ = αεµνε

µν + βε, (C.1.5)

where the antisymmetric combination was neglected due to the physical quantity of interest
being a symmetric tensor, as previously explained for 2.1.13. The E.O.M.s hence read:

∇ν

(
∂χ

3
2

∂ (∇νut)

)
= (C.1.6)

3

[
∂r

√
α

2
(∇µuν) (∇µuν) +

α

2
(∇µuν) (∇νuµ) + β (∇µuµ)2 (αεrt + βε) + (C.1.7)√

α

2
(∇µuν) (∇µuν) +

α

2
(∇µuν) (∇νuµ) + β (∇µuµ)2∇ν (αενr + βεδνr )

]
≈ (C.1.8)

3L

[
∂r

√
α

2
(∂rφ)2 + β (∂rφ)2 (−α∂rφ) +

√
α

2
(∂rφ)2 + β (∂rφ)2

(
1

2
α∂2

rφ

)]
= (C.1.9)

3

[√
α

2
+ β

(
−|∂rφ|
∂rφ

∂rφ∂
2
rφα

)
+

√
α

2
+ β

α

2
∂2
rφ

]
. (C.1.10)
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It is now convenient to look back at 2.4.92 to be able to compare the MOND equation
with spherical symmetry. Under these conditions, it becomes:

∇ · (|∇φ| ∇φ)→ 2

∣∣∣∣∂u0

∂r

∣∣∣∣ (∂2u0

∂r2
+

1

r

∂u0

∂r

)
. (C.1.11)

One can see that by re-writing C.1.10 as

3

√
α

2
+ β

[
∂2
rφ (−α) +

α

2
∂2
rφ
]
, (C.1.12)

noting that for the Newtonian potential the following holds,

φ = −GM
r
→ ∂2

rφ = −2
1

r
∂rφ, (C.1.13)

and substituting the relation in the second term of C.1.12, one can finally obtain:

− 3 |∂rφ|α
√
α

2
+ β

(
∂2
rφ+

1

r
∂rφ

)
, (C.1.14)

which is in fact the L.H.S. of the MOND equation up to a constant factor given by the α
and β coefficients. Carrying out a similar calculation for ur yields:

∇ν

(
∂χ

3
2

∂ (∇νur)

)
= 3 |∂rφ|

[√
α

2
+ β (α− β)

(
−2

1

r
∂rφ

)
+

√
α

2
+ β

(
−α

2
− β

)
∂2
rφ

]
.

(C.1.15)
For the coefficients to be equal, and for the two equations to be equivalent (which is needed
given that ur = ut one needs:

− 2

√
α

2
+ β = −

√
α

2
+ β

(α
2

+ β
)
→ β = ±α

2
. (C.1.16)

This relation can hence be used to fix the coefficients in the kinetic term of the Lagrangian
so to achieve MOND in a flat background.



Appendix D

The Ritz Method for FEM

The Ritz method proceeds as follows (see e.g. [81]):

1. Verify the operator1 used in the PDE satisfies the following requirements: linear-
ity, self-adjointness(symmetry), and positiveness. These requirements are tested by
putting the PDE in operator form, such as:

L (u (~r)) = f (~r) , (D.0.1)

where L is the differential operator used, such as the gradient, divergence or Lapla-
cian.

2. The PDE is converted into a minimisation problem.

3. From the minimisation problem a weak form is obtained.

4. The linear system of Element Matrix and Element Vector are obtained from the
weak form.

As the MOND PDE is nonlinear, the Ritz method cannot be used. To formally establish
that this is indeed the case, the linearity of a (differential) operator is introduced as follows:

L(αu+ βv) = αL (u) + βL (v) ∀ {α, β} , ∀ {u, v} ∈ Σ. (D.0.2)

Here, α and β are arbitrary constants and u and v are functions living in the function
space Σ. As the non-linearity comes from the |∇φ|

a0
� 1 case, it is sufficient to falsify the

linearity for this limit, as it is known that the Newton-Poisson equation to which eq.1.4.20
reduces when |∇φ|

a0
� 1 is linear. The RHS of (D.0.2) gives:

L (αu+ βv) = ∇ ·
[
|α∇u+ β∇v|

a0

(α∇u+ β∇v)

]
= (D.0.3)

α∇ ·
(
|α∇u+ β∇v|

a0

∇u
)

+ β∇ ·
(
|α∇u+ β∇v|

a0

∇v
)
. (D.0.4)

1By operator one means the differential operator used in the PDE. As examples of operators in known
PDEs, in the Poisson equation, ∇2u = f , the operator is ∇2.
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On the other hand, for the RHS of (D.0.2) one obtains:

(D.0.5)

αL (u) + βL (v) = α∇ ·
(
|∇u|
a0

∇u
)

+ β∇ ·
(
|∇v|
a0

∇v
)
, (D.0.6)

L (αu+ βv) 6= αL (u) + βL (v) . (D.0.7)

This shows that eq.1.4.23 is non-linear, and the Ritz method can hence not be utilised.
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