
 
 

Delft University of Technology

Automated CPT interpretation and modelling in a BIM/Digital Twin environment

Brinkgreve, R.B.J.; Tschuchnigg, F. ; Laera, A.; Brasile, S.

Publication date
2023
Document Version
Final published version
Citation (APA)
Brinkgreve, R. B. J., Tschuchnigg, F., Laera, A., & Brasile, S. (2023). Automated CPT interpretation and
modelling in a BIM/Digital Twin environment. Paper presented at NUMGE 2023, London, United Kingdom.

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.



Proceedings 10th NUMGE 2023  
10th European Conference on Numerical Methods in Geotechnical Engineering  
Zdravković L, Konte S, Taborda DMG, Tsiampousi A (eds) 
ISSN  
© Authors: All rights reserved, 2023  
doi: 10numge-2023-Y-XXXX 
 

 

       1 NUMGE 2023 - Proceedings 

Automated CPT interpretation and modelling in a BIM/Digital 
Twin environment 

R.B.J. Brinkgreve1, F. Tschuchnigg2, A. Laera3, S. Brasile3 

1Department of Civil Engineering & GeoSciences, Delft University of Technology, Delft, NL 
2Graz University of Technology, Graz, Austria 

3Seequent – The Bentley Subsurface Company, Italy / Netherlands 

 
ABSTRACT: Following up on previous research on Automated Parameter Determination (APD), in which the soil stratification 
and numerical model parameters are automatically derived from individual CPTs, this article describes ongoing research in which 
the geotechnical modelling workflow is further automated in a BIM / Digital Twin environment. Especially in a preliminary 
project phase, when limited soil data are available, a workflow in which CPT data are used to automatically create a 3D geological 
model from which 2D or 3D numerical models can be extracted, may be very helpful in exploring different design alternatives. 
For existing (infrastructural) projects, such an automated system in a Digital Twin environment could also help responsible 
authorities to check the infrastructure’s safety under changing conditions. In addition to the description of technical solutions 
used for automatic layer detection and clustering (based on Machine Learning) across different CPTs, the article touches upon 
the discussion on transparency and accessibility of the automated system in view of the expertise and responsibilities of the 
operating geotechnical engineer.  
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1 INTRODUCTION 

The Cone Penetration Test (CPT) is a very useful and 
cheap in-situ test to investigate ground properties for 
geotechnical engineering in medium to soft soils. Some 
countries maintain accessible databases with CPT and 
other ground data. Especially in an early project phase, 
when limited soil data are available, CPTs can provide 
a valuable source of information from which geotech-
nical design alternatives may be analysed and evalu-
ated. No doubt, for detailed geotechnical design more 
accurate soil investigations based on high quality lab 
testing are needed. In any case, CPTs (in addition to bor-
ings) are very useful in characterising the (3D) sub-soil 
stratigraphy to a depth of about 30 m (and even beyond), 
which is relevant for any infrastructural construction 
project.  

Although the processing of CPT data has been auto-
mated to a certain extent, further automation steps can 
be taken to make geotechnical modelling for engineer-
ing and design purposes more efficient and reliable, es-
pecially in digital cloud-based modelling concepts such 
as Building Information Modelling (BIM) and Digital 
Twins. 

In previous publications by the authors and co-work-
ers it was described how CPT data can be used to auto-
matically determine soil properties as well as model pa-
rameters of constitutive models based on paths of 

correlations (Brinkgreve, 2019; Van Berkom et al., 
2022; Brinkgreve & Brasile, 2022). The so-called Au-
tomated Parameter Determination (APD) concept has 
been demonstrated in conjunction with the interpreta-
tion of a single CPT, but it is not limited to that. In fact, 
APD can be used more generally on averaged data from 
corresponding soil layers across different CPTs at a pro-
ject site; in other words: from all CPT readings contrib-
uting to the same 3D soil layer in the underground. 
Therefore, our research has branched into automatic 
layer determination, which is the topic of this publica-
tion. 

As a next step following the identification of soil lay-
ers in a single CPT, automatic identification of 3D soil 
layers composing a 3D sub-soil model is more challeng-
ing. After a short review of previous work on automatic 
layer determination, Section 2 first focuses on an alter-
native method for detecting layers from single CPTs. 
Section 3 then continues with the automatic clustering 
of sub-layers across multiple CPTs at a project location 
to compose 3D soil layers. Examples are included to 
demonstrate the working of automatic layer detection 
and clustering. The clustering is used as a pre-processor 
to create borehole input data as used in geological mod-
elling software to create a 3D sub-soil model; this is de-
scribed in Section 4. The 3D sub-soil model can be used 
subsequently in a BIM / Digital Twin environment to 
extract 2D or 3D models for numerical analysis.  
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Although automation improves the workflow effi-
ciency and reduces errors due to re-entering of data 
from one application to another, there is some concern 
that too much automation may harm the geotechnical 
engineering profession. Therefore, Section 5 discusses 
the issue of transparency and accessibility of automated 
systems in view of the expertise and responsibilities of 
the geotechnical engineer. The article ends with some 
conclusions and references for further reading. 

2 LAYER DETECTION IN SINGLE CPT 

Most CPT interpretations are based on Robertson’s 
method, translating combinations of cone resistance qc 
and sleeve friction fs (or friction ratio Rf) into Soil Be-
haviour Type SBT (Robertson 1990, 2009, 2010, 2016) 
for every CPT reading (typically every 1, 2 or 5 cm in 
depth). In geotechnical engineering, the decomposition 
of individual CPTs into a limited number of soil layers 
with averaged properties, is common practice. Since 
this process is generally based on ‘engineering judge-
ment’, interpretations may vary from one engineer to 
another. Methods have been proposed to automate this 
process and obtain more objective and consistent re-
sults. Most methods use the SBT as a starting point to 
compose layers and impose a minimum layer thickness 
dmin or desired number of layers as ‘a priory’ condition. 
The more recent methods are based on a probabilistic or 
Bayesian approach addressing the uncertainty and spa-
tial distribution of CPT data (Wang et al., 2013; De 
Zeeuw, 2021). The disadvantage of probabilistic meth-
ods is that these are relatively time-consuming and may 
not be efficient in practical projects when multiple 
CPTs need to be processed. 

In this article an alternative approach is followed. 
The idea is that the transition from one layer to another 
results in an increase of the combined standard devia-
tions in qc (or the corrected cone resistance qt or normal-
ised cone resistance Qtn) and Rf (or normalised friction 
ratio Fr) considering the moving average and moving 
standard deviation over a certain number of readings  
naverage (e.g. 7) around each data point, to reduce fluctu-
ations within each layer. The result is a plot of combined 
standard deviations as a function of depth, in which the 
‘peaks’ indicate potential layer boundaries.  

After the maximum peak has been identified, all val-
ues within a distance dmin are removed to ensure that 
subsequent layer boundaries respect the minimum layer 
thickness. Then, the next maximum peak is identified 
and treated, etcetera. 

It can happen that the two layers at both sides of a 
peak are very similar. In that case the peak can be ig-
nored (deleted) from the list. To check if adjacent layers 
are similar, average values of log(qt /pa) and log(Rf) are 
calculated for these layers (pa = atmospheric pressure) 
and the distance of their respective positions in Robert-
son’s diagram is measured. Note that the averaging and 

distance calculation involves log-values rather than ac-
tual values of qt /pa and Rf. If the distance is less than a 
certain threshold value (typically in the range [0.1 , 0.3]) 
the peak does not represent a true layer boundary and 
can be deleted from the list. The higher the threshold 
value, the more peaks are deleted resulting in a smaller 
number of layers with a larger layer thickness. How-
ever, this last step may not be necessary as explained in 
Section 3. 

The procedure is pointwise listed below: 
 Store all CPT readings and derived CPT parame-

ters with depth (depth, qc, qt, fs, Rf, etc.) 
 Calculate moving averages and moving standard 

deviations of log(qt /pa) and log(Rf) over a range of 
naverage readings. 

 For the desired maximum number of layers: 
o Search for the highest standard deviation 

(‘peak’) 
o Store the corresponding depth in a list 
o Remove all standard deviations within a dis-

tance dmin around this level 
o Search the next peak in standard deviation 

 Optionally: For all peaks (depths) in the list: 
o Calculate average values of log(qt /pa) and 

log(Rf) of adjacent layers 
o If the distance of the respective points (log(qt 

/pa) , log(Rf)) in Robertson’s diagram of two 
adjacent layers is less than a certain threshold 
value, delete this peak and depth. 

 Decompose the CPT into (sub-)layers based on the 
remaining peaks (depths) in the list. 

 Calculate averaged CPT parameters for all (sub-) 
layers based on the contributing CPT readings. 

Instead of the term ‘layer’, it is preferred to use the 
term ‘sub-layer’ when considering the decomposition 
of individual CPTs. This is because a sub-layer is part 
of a bigger entity, namely a 3D soil layer, as demon-
strated in Section 3. 

2.1 Layer detection example  

CPT000000149495 as obtained in GEF format from the 
Dutch database Dinoloket (https://www.dinoloket.nl) is 
used to demonstrate the (sub-)layer detection procedure. 
Figure 1 (left) shows qt and Rf as a function of depth. 
The ground surface is located at NAP 4.78 m, where 
NAP is the Dutch reference elevation level. The ground-
water table is assumed 1.0 m below ground surface. 

The standard deviation with depth, calculated as the 
sum of the moving standard deviation of log(qt /pa) and 
log(Rf) over a range of 7 readings (from 3 above until 3 
below each data point) is plotted next to the CPT dia-
gram in Figure 1 (middle). 
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Figure 1. Left: qt and Rf as function of depth for 
CPT00000149495 from a location in Rotterdam, NL. Source: 
Dinoloket.nl. Middle: Moving standard deviation of log(qt 

/pa) and log(Rf) and their sum as function of depth. The 
‘peaks’ show potential layer boundaries. Right: Decomposi-
tion into limited number of soil layers (5). 
 

Starting with the maximum peak, a total of 20 local 
peaks are identified. The minimum layer thickness dmin 
is taken as 1.0 m. Although multiple peaks and hence, 
multiple potential soil layer boundaries are initially 
identified, most of them are deleted (including the max-
imum peak at 10 m depth, which turns out to be no real 
layer boundary). This was achieved by using a rather 
high threshold value of 0.3. The result is only five dif-
ferent soil layers as shown in Figure 1 (right) consisting 
of a top sand layer (SBT = 6), followed by two subse-
quent clay layers (SBT = 3), a silty sand layer (SBT = 5) 
and a deep sand layer (SBT = 6). In fact, the upper one 
of the two adjacent ‘clay’ layers is actually peat, but or-
ganic soils are often not properly predicted using Rob-
ertson’s method. Meanwhile, Lengkeek (2022) pro-
posed improvements for the identification of organic 
soils, which will be included in future applications. 

3 CLUSTERING OF LAYERS ACROSS 
MULTIPLE CPTS 

At many locations the subsoil is not composed of fully 
horizontal soil layers, so the interpretation and decom-
position of a single CPT or borehole into (sub-)layers is 
insufficient to compose a 2D or 3D sub-soil model for 
geotechnical engineering and analysis purposes. In gen-
eral, the connection of corresponding soils from one 
borehole to another requires the expertise of a geotech-
nical engineer. The automation of this process is a chal-
lenge that several researchers have investigated, but as 

to date there is no robust method that accurately deter-
mines 3D soil layers across boreholes.  

The composition of 3D soil layers resembles the 3D 
stratification of geological formations in the deeper un-
derground. Geological software such as Leapfrog can 
help building and visualizing a 3D sub-soil model based 
on borehole data and surfaces (triangulated or point 
clouds). Leapfrog was originally developed for deep 
mining applications but can also be used to a create a 
3D sub-soil model for geotechnical engineering appli-
cations. CPT data can be transformed into ‘boreholes’, 
optionally combined with ground surface elevation data 
to build a 3D sub-soil model. Automation of this process 
still requires some pre-processing to link similar soil 
(sub-)layers across boreholes. 

Pre-processing of borehole data in terms of clustering 
of corresponding sub-layers, can be done by means of 
Machine Learning (ML). Using qt / pa and Rf only is not 
enough to identify corresponding soil layers across 
boreholes, since, for example, shallow sands could be 
incorrectly linked to deeper sands with similar CPT pa-
rameters. The solution is to add depth as an additional 
parameter. 

After the interpretation and decomposition of a single 
CPT into sub-layers, the averaged log(qt/pa) and log(Rf) 
together with the averaged depth per sub-layer can be 
regarded as data points in a 3D version of Robertson’s 
diagram, where the third dimension is depth. In this 
way, sub-layer data points from multiple CPTs at a pro-
ject location can be visualized all together as ‘dots’ in a 
3D diagram (Figure 2).  

 

 
 
Figure 2. 3D visualization of data points 
 

The 3D data points are then sent to a clustering algo-
rithm to identify clusters of similar points. Thereby, 
scaling factors (Q, F, d) are used for all three quanti-
ties to ensure that all of them have a similar influence in 
the clustering process. 
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In the world of ML, clustering algorithms are found 
within the branch of unsupervised learning methods. 
This means, there are no ‘a priory’ categories defined to 
which a data point can belong, and there is no separate 
set of data points needed for training of the algorithm. 
Clustering algorithms search for clusters of points or 
point densities in a 2D or 3D environment. The result is 
a list with respective cluster number for each data point. 
Data points for which no cluster can be found are given 
the cluster number 1:  the ‘left-overs’.  

There are different types of clustering algorithms, of 
which K-Means and DBSCAN are probably the ones 
mostly used. For our application we have chosen the 
DBSCAN algorithm (Ester et al., 1996), as available in 
the Python library Scikit-learn. Input to DBSCAN are 
the 3D data points composed of averaged and scaled 
CPT parameters (Q  log(qt / pa), F  log(Rf), d  depth) 
for all sub-layers identified from a series of CPTs from 
a project site. Besides the scaling parameters, the algo-
rithm requires a minimum number of data points in each 
cluster (nmin) and an accuracy parameter (eps). The 
lower eps, the stricter the similarity should be for data 
points to be in the same cluster. Hence, a smaller value 
of eps generally gives more clusters.  

We have investigated the influence of these parame-
ters and obtained good results using Q = 1.0, F = 1.0, 
d = 0.1, nmin = 3 and eps in the range [0.15 , 0.3]. Figure 
3 shows the clustering of the same data points as in Fig-
ure 2 using eps = 0.26. 

 

 
 
Figure 3. 3D visualization of data points after clustering 

 
After clustering there are generally some data points 

for which no cluster can be found (the ‘left-overs’), in-
dicated by the cluster number 1. These are the purple 
dots in Figure 3. To ensure that the left-overs are some-
how added to existing clusters, the distance of these 
points to the centre (average) of each cluster is calcu-
lated, and the points are added to their closest cluster. 

In the end, a file is created with information of each 
sub-layer, including their corresponding cluster num-
ber, which can be used to compose a 3D sub-soil model. 

Some remarks about the clustering procedure: 
 Although the use of ML techniques may seem 

highly sophisticated, it only takes 3 lines of code to 
implement the clustering algorithm in Python 
(when importing the Scikit-learn library). 

 The clustering algorithm does not only combine 
sub-layers from different boreholes, it also com-
bines similar sub-layers from the same borehole. 
This makes the deletion of ‘peaks’ between similar 
sub-layers in the layer detection procedure (Section 
2) redundant, as they will all be treated by the clus-
tering procedure. 

 Although SBT is determined for all sub-layers and 
for the clusters as a whole, based on averaged CPT 
parameters, the clustering procedure does not take 
SBT into account, but just considers the density of 
data points in the 3D Robertson diagram, irrespec-
tive of SBT zones. 

3.1 Clustering example  

In addition to CPT000000149495, as used in Section 
3.1, three other CPTs from the same site in Rotterdam 
were obtained from Dinoloket, i.c. CPT000000149485, 
CPT000000149481 and CPT000000149488. 

Figure 4 shows all CPT graphs in terms of qt and Rf 
as a function of depth, together with their decomposi-
tion into sub-layers based on the layer detection proce-
dure described in Section 2 using a threshold of 0.1. 
Note that in this case CPT000000149495 is decom-
posed in a larger number of sub-layers compared to Fig-
ure 1, due to the smaller threshold value. In total, there 
are 60 sub-layers in the four CPTs, numbered 0 to 59, 
as indicated in Figure 4. The typical numbering in Py-
thon is adopted here, in which the first item is numbered 
0. Corresponding soil layers can be identified across 
CPTs as well as within the same CPT. 

The clustering was performed using the previously 
mentioned parameters (Q = 1.0, F = 1.0, d = 0.1, nmin 
= 3 and eps = 0.26). This gives a total of four clusters 
with the following sub-layers: 

 
Cluster 0 = [1,2,3,13,15,16,17,18,28,29,30,31,46,47] 
Cluster 1 = [4,5,6,7,19,20,32,33,34,48,49,50,51,52] 
Cluster 2 = [8,9,10,11,12,21,22,23,24,25,26,35,36,37, 

   38,39,40,41,42,43,53,54,55,56,57,58,59] 
Cluster 3 = [0,14,27,44,45] 
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Figure 4. CPT graphs and decomposition into sub-layers 
 

It can be seen from Figure 4 that the clusters contain 
similar sub-layers; not only across CPTs, but also within 
the same CPT. In this way, the deep sand sub-layers in 
CPT000000149495 are still combined into the same 3D 
soil layer, similar as Figure 1, but here a result of the 3D 
clustering (part of cluster 2). It can also be seen that the 
clustering is independent of SBT, since sub-layer 0 (SBT 
= 5) is in the same cluster (3) as sub-layers 14, 27, 44, 
and 45 (SBT = 6). Similarly, sub-layer 31 (SBT = 4) is 
in the same cluster (0) as the ‘clay’ sub-layers (SBT = 
3). Looking at the CPT diagrams and given the rela-
tively coarse layer distribution, this makes sense. 

After the clustering, average values of the CPT pa-
rameters are calculated for the entire 3D soil layers. 
These can be used to calculate the layer’s overall SBT 
as well as additional soil and model parameters using 
the APD concept (Van Berkom et al., 2022). 

4 ELABORATION OF 3D SUB-SOIL MODEL 

After the clustering procedure, two comma separated 
value (CSV) files are created containing ‘borehole’ data 
that can be imported in Leapfrog to build a 3D sub-soil 
model. The first file contains the locations and depths 
of the CPTs; the second file contains the elaborated 
data, consisting of separate lines for each of the sub-lay-
ers. Each line includes the top and bottom of the sub-
layer, the cluster number and average values of the CPT 
parameters. The individual ‘boreholes’ can be visual-
ised in 3D as columns composed of different colours, 
according to the cluster numbers, so each colour repre-
sents a 3D soil layer. 
 
 
 

 
 
 

 
 
Figure 5. 3D visualization of ‘boreholes’ in a 3D model based 
on CPT data and clustering 
 

The cluster numbers and depth data are used to create 
a geological model by running a stratification algo-
rithm, which results in the creation of 3D layer bounda-
ries. Leapfrog uses advanced numerical techniques, 
such as kriging and radial basis functions, to interpolate 
and extrapolate around available data, thereby creating 
3D surfaces. The stratification can be influenced by 
providing mesh densities, orientation trends and aspect 
ratios. We have used a horizontal / vertical aspect ratio 
of 10:1, which is typical for soil layers. From the layer 
boundaries and model boundaries, 3D layer volumes are 
generated, which completes the 3D sub-soil model.  

Figure 6 shows the elaborated subsoil model for the 
entire project location based on a total of 25 CPTs. 
 

 
 
Figure 6. 3D sub-soil model created from ‘boreholes’ 
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5 AUTOMATION VS. RESPONSIBILITY 

As automatic processing of geotechnical data highly im-
proves the efficiency of the geotechnical workflow and 
‘simplifies’ the work of geotechnical engineers, a dis-
cussion has started how far automation should go. No 
doubt, the geotechnical engineer remains responsible 
for a geotechnical design, even if this has been highly 
automated. Therefore, the engineer needs to possess the 
necessary skills to judge the outcome of automated pro-
cesses, just as how they would use their own skills to 
perform the job ‘manually’. To enable engineers to take 
their responsibility imposes the following requirements 
on automated systems: 
 Transparency to the extent that essential ‘decisions’ 

made in the system are clear and can be overruled. 
 (Default) parameters, controlling main functions in 

the system, can be set and tuned. 
 Intermediate and end results from the system can be 

verified and adapted. 
 Optionally: Extendibility of the system to incorpo-

rate the expert’s knowledge and experience. 

Engineers who feel that these requirements are insuf-
ficiently fulfilled by a system, or engineers who are in-
sufficiently skilled to complete a job without the system, 
should not use such an automated system. However, the 
authors believe that an automated system that is 
properly used by qualified engineers, will greatly en-
hance the workflow and reduce possible errors. It will 
make designs more economic and the engineering job 
more attractive and joyful. This is not only beneficial 
for the geotechnical engineering profession, but for all 
stakeholders in a project. 

 
6 SUMMARY 

This paper describes methods for automatic interpreta-
tion and processing of CPTs into soil layers. An alter-
native way of layer detection for single CPTs is pre-
sented based on the identification of ‘peaks’ when 
plotting the moving standard deviation of CPT data as a 
function of depth. Based on the decomposition of a se-
ries of individual CPTs into soil sub-layers, a Machine 
Learning clustering algorithm is then used to find cor-
responding layers across multiple CPTs (3D soil lay-
ers). Input to the clustering algorithm is the averaged 
CPT data together with the average depth per sub-layer. 

The clustering can be regarded as a search for local 
densities (clusters) of ‘dots’ in a 3D version of Robert-
son’s diagram. The result from the clustering is used to 
create ‘boreholes’ that can be read and processed by ge-
ological modelling software to create a 3D subsoil 
model, which can be used to extract 2D or 3D geometric 
models for numerical analysis. Averaged CPT data 
from all contributing sub-layers can be used in conjunc-
tion with the Automatic Parameter Determination con-
cept, as published earlier by the authors and co-workers, 

to determine soil and model parameters for the 3D lay-
ers. 

The working of these algorithms has been demon-
strated by means of an elaborated example based on a 
series of CPTs obtained from the Dutch subsoil data-
base Dinoloket.nl. 

At the end of the paper it is discussed that automation 
of the geotechnical workflow can be beneficial for the 
geotechnical engineering profession as well as for all 
stakeholders in a project, provided the system is 
transparant and extendible, results can be verified and 
adapted and the system is used by qualified engineers.  
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