

Delft University of Technology

Adversarial Robustness Certification for Bayesian Neural Networks

Wicker, Matthew; Patane, Andrea; Laurenti, Luca; Kwiatkowska, Marta

DOI
10.1007/978-3-031-71162-6_1
Publication date
2025
Document Version
Final published version
Published in
Formal Methods

Citation (APA)
Wicker, M., Patane, A., Laurenti, L., & Kwiatkowska, M. (2025). Adversarial Robustness Certification
for Bayesian Neural Networks. In A. Platzer, K. Y. Rozier, M. Pradella, & M. Rossi (Eds.), Formal Methods :
Proceedings of the 26th International Symposium, FM 2024 (pp. 3-28). (Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 14933
LNCS). Springer. https://doi.org/10.1007/978-3-031-71162-6_1
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-031-71162-6_1
https://doi.org/10.1007/978-3-031-71162-6_1

Adversarial Robustness Certification
for Bayesian Neural Networks

Matthew Wicker1 , Andrea Patane2 , Luca Laurenti3 ,
and Marta Kwiatkowska4(B)

1 Imperial College, London, UK
m.wicker@imperial.ac.uk

2 School of Computer Science and Statistics, Trinity College Dublin, Dublin, Ireland
apatane@tcd.ie

3 Delft Center for Systems and Control (DCSC), TU Delft, Delft, The Netherlands
l.laurenti@tudelft.nl

4 Department of Computer Science, University of Oxford, Oxford, UK

marta.kwiatkowska@cs.ox.ac.uk

Abstract. We study the problem of certifying the robustness of
Bayesian neural networks (BNNs) to adversarial input perturbations.
Specifically, we define two notions of robustness for BNNs in an adversar-
ial setting: probabilistic robustness and decision robustness. The former
deals with the probabilistic behaviour of the network, that is, it ensures
robustness across different stochastic realisations of the network, while
the latter provides guarantees for the overall (output) decision of the
BNN. Although these robustness properties cannot be computed ana-
lytically, we present a unified computational framework for efficiently
and formally bounding them. Our approach is based on weight inter-
val sampling, integration and bound propagation techniques, and can be
applied to BNNs with a large number of parameters independently of the
(approximate) inference method employed to train the BNN. We evalu-
ate the effectiveness of our method on tasks including airborne collision
avoidance, medical imaging and autonomous driving, demonstrating that
it can compute non-trivial guarantees on medium size images (i.e., over
16 thousand input parameters).

Keywords: Certification · Bayesian Neural Networks · Adversarial
Robustness · Classification · Regression · Uncertainty

1 Introduction

While neural networks (NNs) regularly obtain state-of-the-art performance in
many supervised machine learning problems [2,15], they are vulnerable to adver-
sarial attacks, i.e., imperceptible modifications of their inputs that result in an
incorrect prediction [42]. Along with several other vulnerabilities [8], the dis-
covery of adversarial examples has made the deployment of NNs in real-world,
safety-critical applications increasingly challenging. The design and analysis of
c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14933, pp. 3–28, 2025.
https://doi.org/10.1007/978-3-031-71162-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71162-6_1&domain=pdf
http://orcid.org/0000-0003-0779-3114
http://orcid.org/0000-0003-0492-4860
http://orcid.org/0000-0003-1190-6097
http://orcid.org/0000-0001-9022-7599
https://doi.org/10.1007/978-3-031-71162-6_1

4 M. Wicker et al.

methods that can mitigate such vulnerabilities, or compute provable guarantees
on their worst-case behaviour in adversarial conditions, is therefore of utmost
importance [44].

While retaining the advantages intrinsic to deep learning, Bayesian neural
networks (BNNs), i.e., NNs with a probability distribution placed over their
weights and biases [33], enable probabilistically principled evaluation of model
uncertainty. Because of their ability to model uncertainty [27], the application
of BNNs is particularly appealing in safety-critical scenarios, where uncertainty
could be taken into account at prediction time to enable safe decision-making
[4,11,32,57]. To this end, various techniques have been proposed for the eval-
uation of BNNs’ robustness, including generalisation of gradient-based adver-
sarial attacks [31], statistical verification techniques [12], and formal verification
approaches aimed at verifying that the decisions made by a BNN are safe [1,7]
or checking the robustness of the neural networks sampled from the BNN pos-
terior [7,12,29]. The increasingly diverse techniques for analysing robustness of
Bayesian neural networks have resulted in divergent robustness properties, some
directly analysing the stochasticity of the system [12] and others directly adapt-
ing robustness specifications from deterministic systems [7]. To the best of our
knowledge, there is a lack of systematic, unified approaches for computing for-
mal (i.e., with certified bounds) guarantees on the range of emergent quantitative
robustness properties against adversarial input perturbations for BNNs.

In this work, we develop a probabilistic verification framework to quantify the
adversarial robustness of BNNs. In particular, we model adversarial robustness
as an input-output specification defined by a given compact set of input points,
T ⊆ R

m, and a given convex polytope output set, S ⊆ R
n (called a safe set).

A neural network satisfies this specification if all points in T are mapped into
S. For a particular specification, we focus on two main properties of a BNN of
interest for adversarial prediction settings: probabilistic robustness [12,50] and
decision robustness [7,23]. The former is defined as the probability that a network
sampled from the posterior distribution is robust, which thus provides a general
measure of the robustness of a BNN. In contrast, decision robustness focuses
on the decision step, and evaluates the robustness of the optimal decision of a
BNN. That is, a BNN satisfies decision robustness if, for all points in T , the
expectation of the output of the BNN in the case of regression, or the argmax
of the expectation of the softmax for classification, are contained in S.

Unfortunately, evaluating probabilistic and decision robustness for a BNN
is not trivial, as it involves computing distributions and expectations of high-
dimensional random variables passed through a non-convex function. Neverthe-
less, we derive a unified algorithmic framework based on computations over the
BNN weight space that yields certified lower and upper bounds for both prop-
erties. Specifically, we show that probabilistic robustness is equivalent to the
measure, w.r.t. the BNN posterior, of the set of weights for which the resulting
deterministic NN is robust. Computing upper and lower bounds for the prob-
ability involves sampling compact sets of weights according to the BNN poste-
rior, and propagating each of these weight sets, H, through the neural network

Adversarial Robustness Certification for Bayesian Neural Networks 5

architecture, jointly with the input region T , to check whether all the networks
instantiated by weights in H are safe. To do so, we generalise bound propagation
techniques developed for deterministic neural networks to the Bayesian setting
and instantiate explicit schemes for Interval Bound Propagation (IBP) and Lin-
ear Bound Propagation (LBP) [20]. Similarly, in the case of decision robustness,
we show that formal bounds can be obtained by partitioning the weight space
into different weight sets, and for each weight set J we employ bound propa-
gation techniques to compute the maximum and minimum of the decision of
the NN for any input point in T and any weight in the set J . The resulting
extrema are then averaged w.r.t. posterior measure to obtain sound lower and
upper bounds on decision robustness.

We empirically validate our framework using case studies from airborne col-
lision avoidance [25], medical image recognition [56], and autonomous driving
[40]. We demonstrate that our framework is able to compute sound upper and
lower bounds for both notions of robustness for Bayesian neural networks. More-
over, we study the effect of approximate inference, as well as depth and width
of the neural network classifier, on our guarantees. We find that our approach,
even when using simple interval bound propagation, is able to provide non-
trivial certificates of adversarial robustness and predictive uncertainty proper-
ties for Bayesian neural networks with four hidden layers and more than 16,000
input dimensions. We additionally use our approach to show how approximate
Bayesian posteriors may provide provably robust uncertainty estimation for ran-
dom noise inputs while failing to provide the same guarantees for more structured
classes of out-of-distribution inputs1.

In summary, this paper makes the following contributions2

– We present an algorithmic framework based on convex relaxation techniques
for the robustness analysis of BNNs in adversarial settings.

– We derive explicit lower- and upper-bounding procedures based on IBP and
LBP for the propagation of input and weight intervals through the BNN
posterior function.

– We empirically show that our method can be used to certify BNNs consisting
of multiple hidden layers and with hundreds of neurons per layer.

Probabilistic robustness was introduced in [50]. This work extends [50] in several
aspects. In contrast to [50], which focused only on probabilistic robustness, here
we also tackle decision robustness and embed the calculations for the two prop-
erties in a common computational framework. Furthermore, while the method in
[50] only computes lower bounds, in this paper we also develop a technique for
upper bound computation. Finally, we extend the empirical analysis to include
additional datasets, evaluation of convolutional architectures, scalability analy-
sis, as well as certification of out-of-distribution (OOD) uncertainty.

1 An implementation to reproduce all the experiments can be found at: https://github.
com/matthewwicker/AdversarialRobustnessCertificationForBNNs.

2 In view of space constraints, additional details are available in Appendix at https://
arxiv.org/abs/2306.13614.

https://github.com/matthewwicker/AdversarialRobustnessCertificationForBNNs
https://github.com/matthewwicker/AdversarialRobustnessCertificationForBNNs
https://arxiv.org/abs/2306.13614
https://arxiv.org/abs/2306.13614

6 M. Wicker et al.

Related Works. The vast majority of existing NN verification methods have
been developed specifically for deterministic NNs, with approaches including
abstract interpretation [20], mixed integer linear programming [19,36,43,54,60],
Monte Carlo search-based frameworks [24,48,55], convex relaxation [23,45,59]
and SAT/SMT [25,26]. However, these methods cannot be directly applied to
BNNs because they all assume that the weights of the network are determin-
istic, i.e., fixed to a given value, while in the Bayesian setting weights are not
fixed, but distributed according to the BNN posterior. Statistical approaches to
quantify the robustness of BNNs that are ε approximately correct up to a confi-
dence/probability of error bounded by 1 − δ, for δ > 0, have been developed in
[12,32]. In contrast, the methods in this paper do not rely on confidence intervals
and return guaranteed upper and lower bounds on the true probability that a
BNN satisfies a specific property.

Since the publication of our preliminary work [50], other papers have stud-
ied the problem of verifying BNN robustness [1,3,7,29,51,52]. However, [7] only
considers verification of BNNs with weight distributions of bounded support,
and consequently does not include Gaussian posterior distributions, which are
commonly employed in practice. [1] develops an approach based on dynamic
programming to certify decision robustness for BNNs, which improves the pre-
cision of BNN verification by performing bound propagation in the latent space
of BNNs, rather than working on the space of weights. However, this approach
is restricted to decision robustness. Further, [3] develops an approach based on
mixed integer linear programming (MILP), which is specific for probabilistic
robustness. It is unclear how these approaches could be extended to encom-
pass both probabilistic and decision robustness. In contrast, in this paper we
propose a simple and general framework that encompasses both decision and
probabilistic robustness, and can be applied to both fully-connected and con-
volutional neural network architectures. Another related method is [29], which
takes a distribution-free approach and considers a dynamical system whose one-
step dynamics includes a neural network, and computes the set of weights that
satisfy an infinite-horizon safety property. Note that, as the support of a Gaus-
sian distribution is unbounded, similarly to [7], this approach does not support
Gaussian posterior distributions over the weights. We also mention [52], which
builds on the results of [51] to develop certification for reach-avoid properties of
dynamical systems described by BNNs. Finally, [49] considers certifiable robust
training and introduces the concept of robust likelihood that we employ in our
experimental evaluation.

In the context of Bayesian learning, methods to compute adversarial robust-
ness measures have been explored for Gaussian processes (GPs), both for regres-
sion [13] and classification tasks [35,38]. However, because of the non-linearity in
NN architectures, GP-based approaches cannot be directly employed for BNNs.
Furthermore, the vast majority of approximate Bayesian inference methods for
BNNs do not utilise Gaussian approximations over the latent space [10]. In con-
trast, our method is specifically tailored to take into account the non-linear

Adversarial Robustness Certification for Bayesian Neural Networks 7

nature of BNNs and can be directly applied to a range of approximate Bayesian
inference techniques used in the literature.

2 Background on Bayesian Deep Learning

We consider a dataset of nD independent pairs of inputs and labels, D =
{(xi, yi)}nD

i=1, with xi ∈ R
m, where each output y ∈ R

n is either a one-hot
class vector for classification or a real-valued vector for regression. The aim of
Bayesian learning is to learn the function generating D via a feed forward-neural
network fw : R

m → R
n, parameterised by a vector w ∈ R

nw containing all
its weights and biases. We denote with fw,1, ..., fw,K the K layers of fw and
take the activation function of the ith layer to be σ(i), abbreviated to just σ in
the case of the output activation.3 Throughout this paper, we will use fw(x) to
represent pre-activation of the last layer.

Bayesian deep learning starts with a prior distribution, p(w), over the vector
w of random variables associated to the weights. Placing a distribution over the
weights defines a stochastic process indexed by the input space, which we denote
as fw. Note that we use bold to distinguish the stochastic process parameterised
by a random variable, fw, and the deterministic function that results from sam-
pling a single parameter value, fw. To obtain the posterior distribution, the
BNN prior is updated according to the likelihood, p(D|w), via the Bayes rule,
i.e., p(w|D) ∝ p(D|w)p(w) [9]. The cumulative distribution of p(w|D), which we
denote as P (·), is such that for R ⊆ R

nw we have:

P (R) :=
∫

R

p(w|D)dw. (1)

The posterior p(w|D) is in turn used to calculate the output of a BNN on an
unseen point, x∗. The distribution over outputs is called the posterior predictive
distribution and is defined as:

p(y∗|x∗,D) =
∫

p(y∗|x∗, w)p(w|D)dw. (2)

When employing a Bayesian model, the overall final prediction is taken to be
a single value, ŷ, that minimizes the Bayesian risk of an incorrect prediction
according to the posterior predictive distribution and a loss function L. Formally,
the final decision of a BNN is computed as

ŷ = arg min
y∗

∫
Rn

L(y, y∗)p(y∗|x∗,D)dy∗. (3)

This minimization is the subject of Bayesian decision theory [6], and the final
form of ŷ depends on the specific loss function L employed in practice. In this
3 We assume, for the purposes of linear bound propagation in Appendix D.4, that

the activation functions have a finite number of inflection points, which holds for
activation functions commonly used in practice [21].

8 M. Wicker et al.

paper, we focus on two standard loss functions widely employed for classification
and regression problems4, described in more detail below.

Classification. For classification problems, the 0–1 loss, denoted �0−1, is com-
monly employed. �0−1 assigns a penalty of 0 to the correct prediction, and 1
otherwise. It can be shown that the optimal decision in this case is given by the
class for which the predictive distribution obtains its maximum, i.e.:

ŷ = arg max
i=1,...,n

pi(y∗|x∗,D) = arg max
i=1,...,n

Ew∼p(w|D) [σi(fw(x))] ,

where σi represents the ith output component of the softmax function.

Regression. For regression problems, the �2 loss is generally employed. �2
assigns a penalty to a prediction according to its �2 distance from the ground
truth. It can be shown that the optimal decision in this case is given by
the expected value of the BNN output over the posterior distribution, i.e.,
ŷ = Ew∼p(w|D) [fw(x)] . Unfortunately, because of the non-linearity of neu-
ral network architectures, the computation of the posterior distribution over
the weights, p(w|D), is generally intractable [33]. Hence, various approxima-
tion methods have been studied to perform inference with BNNs in practice.
Among these, we will consider Hamiltonian Monte Carlo (HMC) [33] and Vari-
ational Inference (VI) [10]. While HMC is a sample-based method that involves
defining a Markov chain whose invariant distribution is pw(w|D) [33], VI pro-
ceeds by finding a Gaussian approximating distribution over the weight space
q(w) ∼ pw(w|D) in a trade-off between approximation accuracy and scalability.
For simplicity of notation, in the rest of the paper we will indicate with p(w|D)
the posterior distribution estimated by either of the two methods, and clarify
the methodological differences when they arise.

3 Problem Statement

We focus on local specifications defined over an input compact set T ⊆ R
m,

which we assume to be a box (axis-aligned linear constraints), and output set
S ⊆ R

n in the form of a convex polytope:

S = {y ∈ R
n |CSy + dS ≥ 0}, (4)

where CS ∈ R
nS×n and dS ∈ R

nS are the matrix and vector encoding the poly-
tope constraints, with nS being the number of output constraints. Throughout
the paper we will refer to an input-output set pair, T and S, as defined above,
as a robustness specification. We note that our formulation of robustness specifi-
cation captures various important properties used in practice, such as classifier
4 In Appendix B we discuss how our method can be generalised to other losses com-

monly employed in practice.

Adversarial Robustness Certification for Bayesian Neural Networks 9

monotonicity [41], adversarial robustness [22,24], and individual fairness [5]. For
instance, targeted adversarial robustness for classification, which aims to find an
adversarial example belonging to a specified class, can be captured by setting CS

to an nS × n matrix of all zeros with a −1 in the diagonal entry corresponding
to the true class and a 1 on the diagonal entry corresponding to the target class.
Similarly, for regression, one uses CS to encode the absolute deviation from the
target value and dS to encode the maximum tolerable deviation.

Probabilistic robustness accounts for the probabilistic behaviour of a BNN
with respect to a robustness specification.

Definition 1 (Probabilistic robustness). Given a Bayesian neural network
fw, an input set T ⊆ R

m and an output set S ⊆ R
n, also called safe set of

outputs, define probabilistic robustness as

Psafe(T, S) := Probw∼p(w|D)(∀x ∈ T, fw(x) ∈ S). (5)

Given η ∈ [0, 1], we then say that fw is probabilistically robust, or safe, for
robustness specifications (T, S) with probability at least η iff Psafe(T, S) ≥ η.

Probabilistic robustness considers the adversarial behaviour of the model while
accounting for the uncertainty arising from the posterior distribution. In par-
ticular, Psafe(T, S) quantifies the proportion of networks sampled from fw that
satisfy a given input-output specification, and can be used directly as a mea-
sure of compliance for Bayesian neural networks [7,16,32]. Exact computation of
Psafe(T, S) is hindered by the size and non-linearity of neural networks. There-
fore, in this work, we aim to compute provable bounds on probabilistic robust-
ness.

Problem 1 (Bounding probabilistic robustness). Given a Bayesian neural network
fw, an input set T ⊆ R

m and a set S ⊆ R
n of safe outputs, compute (non-trivial)

lower and upper bounds PL
safe and PU

safe such that

PL
safe ≤ Psafe(T, S) ≤ PU

safe. (6)

3.1 Decision Robustness

While Psafe attempts to measure the probability of robustness of neural networks
sampled from the BNN posterior, we are often interested in evaluating robustness
w.r.t. a specific decision. In order to do so, we consider decision robustness, which
is computed over the final decision of the BNN. In particular, given a loss function
and a decision ŷ we have the following.

Definition 2 (Decision robustness). Consider a Bayesian neural network
fw, an input set T ⊆ R

m and an output set S ⊆ R
n. Assume that the decision

for a loss L for x ∈ R
m is given by ŷ(x) (Eq. 3). Then, the Bayesian decision is

considered to be robust if ∀x ∈ T, ŷ(x) ∈ S.

10 M. Wicker et al.

Fig. 1. A diagram illustrating a single iteration of the computational flow for the certi-
fication process of a BNN w.r.t. decision robustness (green) and probabilistic robustness
(purple). This process is summarised in Algorithm 1 (Color figure online).

As discussed in Sect. 2, since the specific form of the decision depends on the loss
function, the definition of decision robustness takes different form depending on
whether the BNN is used for classification or for regression. We thus arrive at
the following problem.

Problem 2 (Bounding decision robustness). Let fw be a BNN with posterior
distribution p(w|D). Consider a robustness specification (T , S) and assume L =
�0−1 for classification or L = �2 for regression. We aim at computing (non-trivial)
lower and upper bounds DL

safe and DU
safe such that:

DL
safe ≤ E[s(fw(x))] ≤ DU

safe ∀x ∈ T,

where s corresponds to the likelihood function σ in the case of classification (e.g.,
the softmax) and simply denotes the identity function in the case of regression.

Problem 2 suggests that, while for regression we can simply bound the
expected output of the BNN, for classification we need to bound the predictive
posterior to compute bounds on the final decision, i.e., we need to propagate
these inside the softmax. This is similar to what is done for deterministic neural
networks, where, in the case of classification, the bounds are often computed
over the logits, and then used to provide guarantees for the final decision [23].

3.2 Approach Outline

We design an algorithmic framework for computing worst- and best-case bounds
(lower and upper bounds, respectively) on local robustness properties for
Bayesian neural networks, taking account of both the posterior distribution (PL

safe

and PU
safe) and the overall model decision (DL

safe and DU
safe). First, we show how

the two robustness properties of Definitions 1 and 2 can be reformulated in terms
of computation over weight intervals. This allows us to derive a unified approach,

Adversarial Robustness Certification for Bayesian Neural Networks 11

which enables bounding of the robustness of the BNN posterior (i.e., probabilis-
tic robustness) and that of the overall model decision (i.e., decision robustness)
by means of bound propagation and posterior integral computation over hyper-
rectangles. For a discussion of when each bound may be useful see Appendix
A.

A visual outline for our framework is presented in Fig. 1. The presentation
of the framework is organised as follows. We first introduce a general theoretical
schema for bounding the robustness quantities of interest (Sect. 4). We then show
how the required integral computations can be achieved for practical Bayesian
posterior inference techniques (Sect. 5.1). This allows us to extend bound prop-
agation techniques to deal with both input variable intervals and intervals over
the weight space, which we rely on to instantiate approaches respectively based
on Interval Bound Propagation (Sect. 5.2) and Linear Bound Propagation tech-
niques (Appendix C.). Finally, in Sect. 6, we present an overall algorithm that
produces the desired bounds.

4 BNN Adversarial Robustness via Weight Sets

We show how a single computational framework can be leveraged to compute
bounds on both definitions of BNN robustness. We start by converting the com-
putation of robustness into the weight space and then define a family of weight
intervals that we utilise to bound the integrations required by both definitions.
Proofs for the main results in this section are presented in Appendix D.

4.1 Bounding Probabilistic Robustness

We first show that the computation of Psafe(T, S) is equivalent to computing a
maximal set of safe weights H such that each network associated to weights in
H is safe w.r.t. the robustness specification at hand.

Definition 3 (Maximal safe and unsafe sets). We say that H ⊆ R
nw is

the maximal safe set of weights from T to S, or simply the maximal safe set of
weights, iff H = {w ∈ R

nw | ∀x ∈ T, fw(x) ∈ S}. Similarly, we say that K ⊆ R
nw

is the maximal unsafe set of weights from T to S, or simply the maximal unsafe
set of weights, iff K = {w ∈ R

nw | ∃x ∈ T, fw(x) �∈ S}.

Intuitively, H and K simply encode the input-output specifications S and T in
the BNN weight space. The following lemma, which follows from Eq. 5, allows
us to relate the maximal sets of weights to probabilistic robustness.

Lemma 1. Let H and K be the maximal safe and unsafe sets of weights from
T to S. Assume that w ∼ p(w|D). Then, it holds that

P (H) =
∫

H

p(w|D)dw = Psafe(T, S) = 1 −
∫

K

p(w|D)dw = 1 − P (K). (7)

12 M. Wicker et al.

Unfortunately, an exact computation of sets H and K is infeasible in general
and may not be possible to capture using any finite number of sets. However,
we can compute subsets of H and K. Such subsets can then be used to compute
upper and lower bounds on the value of Psafe(T, S) by considering subsets of the
maximal safe and unsafe weights.

Definition 4 (Safe and unsafe sets). Given a maximal safe set H or a max-
imal unsafe set K of weights, we say that Ĥ and K̂ are a safe and unsafe set of
weights from T to S iff Ĥ ⊆ H and K̂ ⊆ K, respectively.

Without maximality, we no longer have strict equality in Lemma1, but we can
use Ĥ and K̂ to arrive at bounds on the value of probabilistic robustness. Specif-
ically, we proceed by defining Ĥ and K̂ as the union of a family of disjoint
weight intervals, as these can provide flexible approximations of H and K. That
is, we consider H = {Hi}nH

i=1, with Hi = [wL,H
i , wU,H

i] and K = {Ki}nK
i=1, with

Ki = [wL,K
i , wU,K

i], such that Hi ⊂ H and Ki ⊂ K, Ĥ =
⋃nH

i=1 Hi, K̂ =
⋃nK

i=1 Ki,
and Hi ∩ Hj = ∅ and Ki ∩ Kj = ∅, for any i �= j. Hence, as a consequence of
Lemma 1, and by the fact that Ĥ ⊆ H and K̂ ⊆ K, we obtain the following.

Proposition 1 (Bounds on probabilistic robustness). Let H and K be
the maximal safe and unsafe sets of weights from T to S. Consider two families
of pairwise disjoint weight intervals H = {Hi}nH

i=1, K = {Ki}nK
i=1 , where for all

i it holds that Hi ⊆ H and Ki ⊆ K. Let Ĥ ⊆ H and K̂ ⊆ K be non-maximal
safe and unsafe sets of weights, with Ĥ =

⋃nH

i=1 Hi and K̂ =
⋃nK

i=1 Ki. Assume
that w ∼ p(w|D). Then, it holds that

PL
safe :=

nH∑
i=1

P (Hi) ≤ Psafe(T, S) ≤ 1 −
nK∑
i=1

P (Ki) =: PU
safe, (8)

that is, PL
safe and PU

safe are lower and upper bounds on probabilistic robustness.

Through the use of Proposition 1, we can thus bound probabilistic robustness by
performing computation over sets of safe and unsafe intervals.5 Before explaining
in detail how such bounds can be explicitly computed, we first show, in the next
section, how a similar derivation leads us to analogous bounds and computations
for decision robustness.

4.2 Bounding Decision Robustness

The key difference between our formulation of probabilistic robustness and that
of decision robustness is that, for the former, we are only interested in the
behaviour of neural networks extracted from the BNN posterior that satisfy
the robustness requirements (hence the distinction between H- and K-weight
intervals), whereas to compute sound bounds on decision robustness we need to

5 In Appendix E.4. we extend the results to general hyper-rectangles by using the
Bonferroni bound.

Adversarial Robustness Certification for Bayesian Neural Networks 13

take into account the overall worst-case behaviour of an expected value com-
puted for the BNN predictive distribution. As such, rather than computing safe
and unsafe sets, we only need a family of weight sets, J = {Ji}nJ

i=1, which we
can rely on for bounding Dsafe(T, S). In the following, we explicitly show how
to do this for classification with likelihood σ. The bound for regression follows
similarly by using the identity function as σ.

Proposition 2 (Bounding decision robustness). Let J = {Ji}nJ
i=1, with

Ji ⊂ R
nw , be a family of disjoint weight intervals. Let σL and σU be vectors

that lower- and upper-bound the co-domain of the final activation function, and
c ∈ {1, . . . , m} an index spanning the BNN output dimension. Define:

DL
safe,c :=

nJ∑
i=1

P (Ji) min
x∈T
w∈Ji

σc(fw(x)) + σL

(
1 −

nJ∑
i=1

P (Ji)

)
(9)

DU
safe,c :=

nJ∑
i=1

P (Ji) max
x∈T
w∈Ji

σc(fw(x)) + σU

(
1 −

nJ∑
i=1

P (Ji)

)
. (10)

Consider DL
safe = [DL

safe,1, . . . , D
L
safe,m] and DU

safe = [DU
safe,1, . . . , D

U
safe,m], then:

DL
safe ≤ Ep(w|D)[σ(fw(x))] ≤ DU

safe ∀x ∈ T,

that is, DL
safe and DU

safe bound the predictive posterior in T .

Intuitively, the first term in the bounds of Eqs. (9) (and similarly (10)) con-
siders the worst-case output for the input set T and each interval Ji, while the
second term accounts for the worst-case value of the posterior mass not captured
by the family of intervals J . The bound is valid for any family of intervals J .
Ideally, however, the partition should be finer around regions of high probability
mass of the posterior distribution, as these make up the dominant term in the
computation of the posterior predictive. We discuss in Sect. 5 how we select these
intervals in practice so as to empirically obtain non-vacuous bounds.

4.3 Computation of the Lower and Upper Bounds

We now propose a unified approach to computing the lower and upper bounds.
We observe that Eqs. (8), (9) and (10) require the integration of the posterior
distribution over weight intervals. While this is in general intractable, we have
built the bounds so that Hi, Ki and Ji are axis-aligned hyper-rectangles, and so
the computation can be done exactly for commonly used approximate Bayesian
inference methods (discussed in detail in Sect. 5.1).

For the explicit computation of decision robustness, the only missing ingre-
dient is then the computation of the minimum and maximum of σ(fw(x)) for
x ∈ T and w ∈ Ji. We do this by bounding the BNN output for any given rect-
angle, R, in the weight space. That is, we will compute upper and lower bounds

14 M. Wicker et al.

yL and yU such that:

yL ≤ min
x∈T
w∈R

fw(x) yU ≥ max
x∈T
w∈R

fw(x), (11)

which can then be used to bound σ(fw(x)) by simple propagation over the
softmax. The derivation of such bounds will be the subject of Sect. 5.2.

Finally, observe that, whereas for decision robustness we can simply select any
weight interval Ji, for probabilistic robustness one needs to make a distinction
between safe sets (Hi) and unsafe sets (Ki). It turns out that this can be done by
bounding the output of the BNN in each of these intervals. For example, in the
case of the safe sets, by definition we have that ∀w ∈ Hi,∀x′ ∈ T it follows that
fw(x′) ∈ S. By defining yL and yU as in Eq. (11), we can see that it suffices to
check whether [yL, yU] ⊆ S. Hence, the computation of probabilistic robustness
also depends on the computation of such bounds.

Therefore, once we have shown how to compute P (R) for any weight interval
and yL and yU , the bounds in Proposition 1 and Proposition 2 can be computed
explicitly, and we can thus bound probabilistic and decision robustness.

5 Explicit Bound Computation

In this section, we provide details of the computational schema needed to calcu-
late the theoretical bounds presented in Sect. 4.

5.1 Integral Computation over Weight Intervals

Key to the bound computation is the ability to compute the integral of the pos-
terior distribution over a combined set of weight intervals. Crucially, the shape
of the weight sets H = {Hi}nH

i=1, K = {Ki}nK
i=1 and J = {Ji}nJ

i=1 is a parameter of
the method, which can be leveraged to simplify the integral computation depend-
ing on the particular form of the approximate posterior distribution. We build
each weight interval as an axis-aligned hyper-rectangle of the form R = [wL, wU]
for wL and wU ∈ R

nw .

Weight Intervals for Decision Robustness. In the case of decision robust-
ness, it suffices to sample any weight interval Ji to compute the bounds we
derived in Proposition 2. Clearly, the bound is tighter if the J family is finer
around the area of high probability mass for p(w|D). In order to obtain such
a family we proceed as follows. First, we define a weight margin γ > 0,
whose role is to parameterise the radius of the weight intervals. We then iter-
atively sample weight vectors wi from p(w|D), for i = 1, . . . , nJ , and define
Ji = [wL

i , wU
i] = [wi − γ,wi + γ]. Thus defined weight intervals naturally con-

centrate around the area of greater density for p(w|D), while asymptotically
covering the whole support of the distribution.

Adversarial Robustness Certification for Bayesian Neural Networks 15

Weight Intervals for Probabilistic Robustness. On the other hand, for the
computation of probabilistic robustness one has to make a distinction between
safe and unsafe weight intervals, Hi and Ki. As explained in Sect. 4.3, this can
be done by bounding the output of the BNN in each of these intervals. For
example, in the case of the safe sets, by definition, Hi is safe if and only if
∀w ∈ Hi,∀x′ ∈ T we have that fw(x′) ∈ S. Thus, in order to build a family of
safe (respectively unsafe) weight intervals Hi (resp. Ki), we proceed as follows. As
for decision robustness, we iteratively sample weights wi from the posterior used
to build hyper-rectangles of the form Ri = [wi − γ,wi + γ]. We then propagate
Ri through the BNN and check whether the output is (resp. is not) a subset of
S. The derivation of such bounds on propagation will be the subject of Sect. 5.2.

Once the family of weights is computed, it remains to compute the cumulative
distribution over such sets. The specific computations depend on the particular
form of Bayesian approximate inference that is employed. We discuss explic-
itly the case of Gaussian variational approaches, and of sample-based posterior
approximation (e.g., HMC).

Variational Inference. For variational approximations, p(w|D) takes the form
of a multi-variate Gaussian distribution over the weight space. The resulting
computations reduce to the integral of a multi-variate Gaussian distribution
over a finite-sized axis-aligned rectangle, which can be computed using stan-
dard methods from statistics [14]. In particular, under the common assumption
of variational inference with a Gaussian distribution with diagonal covariance
matrix [28], i.e., p(w|D) = N (μ,Σ), with Σ = diag(Σ1, . . . , Σnw

), we obtain the
following result for the posterior integration:

P (R) =
∫

R

p(w|D)dw =
nw∏
j=1

1
2

(
erf

(
μj − wL

i√
2Σj

)
− erf

(
μj − wu

i√
2Σj

))
. (12)

By plugging this into the bound equations for probabilistic robustness and for
decision robustness, one obtains a closed-form formula for the bounds given
weight set interval families H, K and J .

Sample-Based Approximations. In the case of sample-based posterior
approximation (e.g., HMC), we have that p(w|D) defines a distribution over
a finite set of weights. In this case we can simplify the computations by selecting
the weight margin γ = 0, so that each sampled interval is of the form R = [wi, wi]
and its probability under the discrete posterior will trivially be:

P (Ri) = p(wi|D). (13)

5.2 Bounding Bayesian Neural Network Output

Given an input set, T , and a weight interval, R = [wL, wU], the second key step in
computing probabilistic and decision robustness is the bounding of the output

16 M. Wicker et al.

of the BNN over R given T . That is, we need to derive methods to compute
[yL, yU] such that ∀w ∈ [wL, wU],∀x′ ∈ T it follows that fw(x′) ∈ [yL, yU].

In this section, we consider Interval Bound Propagation (IBP) as a method for
computing the desired output set over-approximations, and defer the discussion
of Linear Bound Propagation (LBP) to Appendix C. Before discussing IBP in
more detail, we first introduce common notation for the rest of the section. We
consider feed-forward neural networks of the form:

z(0) = x, ζ
(k+1)
i =

nk∑
j=1

W
(k)
ij z

(k)
j + b

(k)
i , z

(k)
i = σ(ζ(k)i) (14)

for k = 1, . . . ,K and i = 0, . . . , nk, where K is the number of hidden layers,
σ(·) is a pointwise activation function, W (k) ∈ R

nk×nk−1 and b(k) ∈ R
nk are the

matrix of weights and vector of biases that correspond to the kth layer of the
network, and nk is the number of neurons in the kth hidden layer. Note that,
while Eq. (14) is written explicitly for fully-connected layers, convolutional layers
can be accounted for by embedding them in fully-connected form [59].

We write W
(k)
i: for the vector comprising the elements from the ith row of

W (k), and similarly W
(k)
:j for that comprising the elements from the jth column.

ζ(K+1) represents the final output of the network (or the logit in the case of
classification networks), that is, ζ(K+1) = fw(x). We write W (k),L and W (k),U

for the lower and upper bound induced by R for W (k), and b(k),L and b(k),U

for the bounds of b(k), for k = 0, . . . , K. Observe that z(0), ζ
(k+1)
i and z

(k)
i

are all functions of the input point x and of the combined vector of weights
w = [W (0), b(0), . . . ,W (K), b(K)]. We omit the explicit dependency for simplicity
of notation. Finally, we remark that, as both the weights and the input vary in
a given set, the middle expression of Eq. (14) defines a quadratic form.

Interval Bound Propagation (IBP). IBP has already been employed for fast
certification of deterministic neural networks [23]. The only adjustment needed
in our setting is that, at each layer, we also need to propagate the interval of
the weight matrix [W (k),L,W (k),U] and that of the bias vector [b(k),L, b(k),U].
This can be done by noticing that the minimum and maximum of each term
of the bi-linear form of Eq. (14), that is, of each monomial W

(k)
ij z

(k)
j , lies in

one of the four corners of the interval [W (k),L
ij ,W

(k),U
ij] × [z(k),Lj , z

(k),U
j], and by

adding the minimum and maximum values respectively attained by b
(k)
i . As in the

deterministic case, interval propagation through the activation function proceeds
by observing that generally employed activation functions are monotonic. This
is summarised in the following proposition.

Proposition 3. Let fw(x) be the network defined by Eq. (14), let for k =
0, . . . ,K:

t
(k),L
ij = min{W

(k),L
ij z

(k),L
j ,W

(k),U
ij z

(k),L
j ,W

(k),L
ij z

(k),U
j ,W

(k),U
ij z

(k),U
j } (15)

t
(k),U
ij = max{W

(k),L
ij z

(k),L
j ,W

(k),U
ij z

(k),L
j ,W

(k),L
ij z

(k),U
j ,W

(k),U
ij z

(k),U
j } (16)

Adversarial Robustness Certification for Bayesian Neural Networks 17

where i = 1, . . . , nk+1, j = 1, . . . , nk, z(k),L = σ(ζ(k),L), z(k),U = σ(ζ(k),U) and

ζ(k+1),L =
∑

j

t
(k),L
:j + b(k),L, ζ(k+1),U =

∑
j

t
(k),U
:j + b(k),U . (17)

Then we have that ∀x ∈ T and ∀w ∈ R: fw(x) = ζ(K+1) ∈ [
ζ(K+1),L, ζ(K+1),U

]
.

The minima and maxima in Proposition 3 are the tightest possible bounds
one can compute on matrix multiplication. A more efficient scheme for this
propagation is detailed in [46], which can be seen as an adaptation of [37] to
NN operations. Additionally, our approach can be linked to abstract interpre-
tation with simultaneous abstract sets (in our case from the orthotope domain)
over inputs and weights [20]. Regardless, [34] shows that both have an over-
approximation factor of 1.5. Similar bound formulations have been employed
across the deterministic NN certification literature [18,39,47,53]. In Appendix
C, we employ linear bounds on Eq. 17, which can tighten the bounds computed
by our method as shown initially in [50]. In [1] dynamic programming is used
to tighten these bounds further, and in [39], outside the context of BNNs, an
extension of CROWN is developed for the same problem. We emphasise that,
regardless of the propagation or tightening employed, each of these approaches
can be seen as an instantiation of the framework provided in this work.

Algorithm 1. Lower Bounds for BNN Probabilistic Robustness
Input: T – Input Region, fw – Bayesian Neural Network, p(w|D) – Posterior Distri-
bution with variance Σ, N – Number of Samples, γ – Weight margin.
Output: A sound lower bound on Psafe(T, S).

1: H ← ∅ # H is a set of known safe weight intervals
2: v ← γ · I · Σ # Elementwise product to obtain width of weight margin
3: for i ← 0 to N do
4: w(i) ∼ p(w|D)
5: # Assume weight intervals are built to be disjoint
6: [w(i),L, w(i),U] ← [wi − v, wi + v]
7: # Interval/Linear Bound Propagation, Section 5.2
8: yL, yU ← Propagate(f, T, [w(i),L, w(i),U])
9: if [yL, yU] ⊂ S then

10: H ← H ⋃{[w(i),L, w(i),U]}
11: end if
12: end for
13: PL

safe ← 0.0
14: for [w(i),L, w(i),U] ∈ H do
15: PL

safe = PL
safe + P ([w(i),L, w(i),U]) # Compute safe weight probs, Section 5.1

16: end for
17: return PL

safe

18 M. Wicker et al.

6 Complete Bounding Algorithm

In this section, we assemble complete algorithms for the computation of bounds
on Psafe(T, S) and Dsafe(T, S) based on the results discussed so far, leaving the
detailed algorithms to Appendix D. Appendix A discusses further use cases
for the bounds. The computational complexity of the algorithm is discussed
in Appendix F.

6.1 Lower-Bounding Algorithm

We provide a step-by-step outline for how to compute lower bounds on Psafe(T, S)
in Algorithm 1. We start (line 1) by initialising the family of safe weight sets H
to be the empty set and by scaling the weight margin with the posterior weight
scale (line 2). We then iteratively (line 3) proceed by sampling weights from
the posterior distribution (line 4), building candidate weight boxes (line 6), and
propagating the input and weight box through the BNN (line 8). We next check
whether the propagated output set is inside the safe output region S, and, if
so, update the family of weights H to include the weight box currently under
consideration (lines 9 and 10). Finally, we rely on the results in Sect. 5.1 to
compute the overall probabilities over all the weight sets in H, yielding a valid
lower bound for Psafe(T, S). For clarity of presentation, we assume that all the
weight boxes that we sample in lines 4–6 are pairwise disjoint, as this simplifies
the probability computation. The general case with overlapping weight boxes
relies on the Bonferroni bound and is given in Appendix E.4.

The algorithm for the computation of a lower bound on Dsafe(T, S) (listed
in the Appendix E as Algorithm 2) proceeds in an analogous way, but without
the need to perform the check in line 9, and by adjusting line 15 to the formula
from Proposition 2.

6.2 Upper-Bounding Algorithm

Upper-bounding Psafe(T, S) and Dsafe(T, S) follows the same computational flow
as Algorithm 1. The algorithms for the computation of upper bounds on prob-
abilistic and decision robustness are listed respectively as Algorithm 3 and 4
in Appendix E. We again proceed by sampling a rectangle around the weights,
propagate bounds through the NN, and compute the probabilities of weight
intervals. The key change to the algorithm to allow upper bound computation
involves computing the best case, rather than the worst case, for y for deci-
sion robustness (line 12 in Algorithm 3) and ensuring that the entire interval
[yL, yU] /∈ S (line 18) for probabilistic robustness.

7 Experiments

In this section we experimentally validate our framework on a variety of tasks,
including airborne collision avoidance, medical imaging, and autonomous driv-
ing applications. We mainly focus on verifying the adversarial robustness and

Adversarial Robustness Certification for Bayesian Neural Networks 19

Fig. 2. Top Row: Lower bounds on Psafe. Bottom Row: Lower bounds on Dsafe.
Left Two Columns: Bound values for VI-inferred BNN averaged over 1000 test-
set examples using various likelihoods, number of samples, and weight-margin values.
Right Two Columns: Bound values for HMC-inferred BNN averaged over 1000 test-
set examples using various likelihoods, number of samples, and values of ε.

uncertainty of classification problems that use the 0–1 loss. For a discussion of
how our framework applies to a wider class of specifications see Appendix A,
and Appendix B for an extension to other decision rules. In each case study,
we take the input set to be the interval Tε(x) := [x − ε, x + ε], where ε ≥ 0 is
a parameter that we vary in our experiments. For all experiments, S is the set
of all vectors where the true class is returned. Experiments are run on a server
equipped with 2x AMD EPYC 9334 CPUs and 2x NVIDIA L40 GPUs. Details
on training hyper-parameters can be found in Appendix G.

7.1 Airborne Collision Avoidance

We start with the airborne collision avoidance benchmark, which is commonly
used to evaluate the robustness of neural network controllers in a safety-critical
scenario [25,26]. In particular, we consider the horizontal collision avoidance
scenario (HCAS) from [25], and work with a single hidden layer neural network
with 125 hidden neurons trained both using Variational Online Gauss Newton
(VOGN) [28] and Hamiltonian Monte Carlo (HMC) [33]. We infer posteriors
using both the standard likelihood and the robust likelihood proposed in [49].
In Fig. 2 we study the guarantees that our method is able to provide for each
combination of the inference method and likelihood. We plot the lower bound on
Psafe and Dsafe resulting from Algorithm1 averaged over 1000 test-set samples. In

20 M. Wicker et al.

each plot we show the effect of varying the critical parameters of our algorithm,
including the number of samples and, for VOGN, the width of the weight margin
γ, as defined in Sect. 5. As expected, in all cases, we find that taking more
samples and using a higher weight margin consistently yields a higher lower
bound. HMC requires significantly more samples to cover the probability mass
as there is no margin parameter when certifying probability mass functions, i.e.,
probability distributions with discrete support. Thus, each sample covers a fixed,
small amount of mass, while even one sample from the VOGN posterior, with
a suitable weight margin, is able to give non-trivial lower bounds, e.g., 0.8 in
the case of a Psafe lower bound for the robust likelihood BNN in Fig. 2. The fact
that higher ε values lead to smaller values of the lower bound is also expected,
as larger ε implies a greater radius for the initial set T.

Fig. 3. Top Row: Computed lower bound values on Psafe for robust-likelihood VOGN
posterior (right) and standard VOGN posterior (left). Bottom Row: Computed lower
bound Psafe values for the VOGN posterior while varying depth and width parameters
of the BNN architecture.

Adversarial Robustness Certification for Bayesian Neural Networks 21

7.2 Image Classification

We now turn our attention to image classification, considering first the widely
used MNIST benchmark with 28 by 28 pixel grey-scale images [30] and then two
safety-critical tasks from medical image classification and autonomous driving.

Fig. 4. Left: Different training image resolutions on a training image sample from
PneumoniaMNIST. Right: Our computed lower bounds on Dsafe, which correspond
to adversarial robustness certificates as we vary the resolution fed into a VOGN-inferred
BNN.

MNIST Digit Recognition. In Fig. 3, we present two plots certifying (via
lower bounds on Psafe) a single hidden layer neural network with 100 hidden
neurons with parameters inferred using VOGN [28], BayesByBackprop [10] and
NoisyAdam [58], using both robust and standard likelihoods as for the airborne
collision avoidance case study. In the top row of Fig. 3, we plot the computed
lower bounds as we increase the value of ε. For the posterior inferred by each
inference method using the standard likelihood, we observe that our method is
only able to certify low values of Psafe, even for small values of ε, e.g., 0.001.
However, for the robust likelihood posteriors, we are able to certify non-trivial
robustness guarantees even at ε = 0.1. Additionally, we observe that Bayes-
ByBackprop [10] has consistently lower certified values of Psafe. We hypothesis
that this is due to BayesByBackprop having a higher variance posterior, which
in turn results in the propagation of wider weight intervals that can introduce
significant approximation.

In the bottom half of Fig. 3, we study how our lower bounds on Psafe change
as we increase the depth and width of the neural network architecture. For
this study we exclusively employ VOGN, but, as previously, still utilise the
standard (left) and robust (right) likelihoods. We find that, for the standard
likelihood, we are able to obtain high lower bounds (greater than 0.7) for all one-
layer networks regardless of width, but struggle with increasing depths. For the

22 M. Wicker et al.

posteriors inferred using the robust likelihood, we observe that the lower bounds
produced by our approach only begin to decrease when the depth reaches three
layers with significant width. We additionally highlight that, for the posteriors
inferred using the robust likelihood, we use a much larger ε (=0.03) compared to
what is used to get non-trivial bounds in the standard training case (ε = 0.001).

Fig. 5. Computing upper bounds on Dsafe to certify robust uncertainty estimates from
posteriors inferred on PneumoniaMNIST. Left: Uncertainty certificates for Pneumo-
niaMNIST posterior on MNIST dataset. Right: Uncertainty certificates for Pneumo-
niaMNIST posterior on FashionMNIST dataset.

Medical Image Classification. We now turn our attention to a more realis-
tic safety-critical application from the medical image classification domain. In
particular, we study the PneumoniaMNIST dataset from the MedMNIST suite
of benchmarks [56]. PneumoniaMNIST is a dataset of greyscale images of chest
X-rays that pose a binary classification problem, with one class representing
normal chest X-rays and the other class presenting with pneumonia. In the most
recent iteration of the MedMNIST benchmark, an option for different resolu-
tions is provided ranging from 28 by 28, the same resolution as MNIST, up to
224 by 224, the same resolution as the popular, large-scale ImageNet dataset
[17]. In the left-hand-side plot of Fig. 4, we visualize the significant differences
between these input dimensionalities. We use these datasets to study how well
our certification approaches scale with increasing input dimensionality. We work
with a four-layer convolutional architecture with two 2D convolution layers, an
average pooling layer, and a final fully-connected layer consisting of 50 neurons.
For each network studied in this section, we use the robust likelihood of [49] in
order to obtain non-trivial certifications. Additionally, we turn our attention to
bounding decision robustness, Dsafe, rather than probabilistic robustness, Psafe,
employed for MNIST evaluation. Decision robustness is more appropriate here
due to the safety-critical nature of pneumonia classification, compared to hand-
written digit classification. In particular, we begin by computing lower bounds

Adversarial Robustness Certification for Bayesian Neural Networks 23

on Dsafe, which in turn allows us to compute adversarial robustness certificates
commensurate with those computed for deterministic neural networks. We find
(see the right-hand-side plot of Fig. 4) that an increase in resolution corresponds
to a significant decrease in the lower bounds computed by our approach, which is
a result of greater approximation introduced by bound propagation techniques.
Nevertheless, on images with 128 by 128 resolution, our guarantees continue to
provide non-trivial bounds.

In addition to computing lower bounds on Dsafe to certify the adversarial
robustness of our trained posteriors, we also compute upper bounds on Dsafe to
provide certificates that our posterior is provably, robustly uncertain on given
out-of-distribution inputs. To study this, we use the MNIST dataset as well as
the FashionMNIST dataset (consisting of greyscale, 28 by 28, images of cloth-
ing items) as out-of-distribution examples for pneumonia classification. We then
consider an example uncertain if the maximum value of the posterior predictive
distribution is less than 0.8 (an arbitrary, user-definable threshold, which may
require calibration to the specific setting). In Fig. 5 we plot the proportion of
test-set inputs for which the inferred posterior is robustly uncertain on MNIST
(left plot) and FashionMNIST (right plot). For very small values of ε, we notice
that the network is much more robustly uncertain on MNIST examples then on
FashionMNIST examples. Further, we find that, similarly to robustness certifi-
cation, we are unable to certify any non-trivial uncertainty properties for images
with 224 by 224 resolution.

Fig. 6. Analysis of BNN inferred on GTSRB dataset. Left: Example in-distribution
image (top left) and out-of-distribution images. Right: Adversarial robustness certifi-
cates (red) and uncertainty certificates (shades of green) using lower and upper bounds
on Dsafe respectively for different levels of ε. (Color figure online)

Traffic Sign Recognition Classification. Our final safety-critical case study
comes from autonomous navigation using the German Traffic Sign Recognition
Benchmark (GTSRB) [40]. In particular, we study a three-class subset of the

24 M. Wicker et al.

GTSRB dataset with a three-layer CNN model with parameters inferred using
the robust likelihood and VOGN. In Fig. 6 we plot an example of the 50 km/h
sign (an in-distribution image) and different examples from three different out-
of-distribution datasets: United States Traffic Signs, Nonsense Traffic Signs, and
random noise. The first two are small sets of images curated from royalty free
image databases online and the third is sampled from a unit normal distribution.
Using each of these datasets, we study both adversarial robustness (ensuring a
sufficiently high Dsafe lower bound) and uncertainty properties (ensuring suffi-
ciently low Dsafe upper bound) of the trained network that achieves 96% test-set
accuracy. In the right-hand-side plot of Fig. 6 (in red), we show that our method
is able to compute non-trivial adversarial robustness guarantees up to ε = 0.001.
In various shades of green, we show that the uncertainty guarantees we compute
are also non-trivial for similar values of ε.

8 Conclusion

In this work, we introduced a computational framework for evaluating robustness
properties of BNNs operating under adversarial settings. In particular, we have
discussed how probabilistic robustness and decision robustness can be upper-
and lower-bounded via a combination of posterior sampling, integral computa-
tion over boxes and bound propagation techniques. We have detailed how to
compute these properties for the case of HMC and VI posterior approximation,
and how to instantiate the bounds for interval and linear bound propagation
techniques. We emphasise that the framework presented is general and can be
adapted to different inference techniques, and to most of the verification tech-
niques employed for deterministic neural networks. The main limitation of the
approach presented here arises directly from the Bayesian nature of the under-
lying model, i.e., the need to bound and partition at the weight space level
(which is not needed for deterministic neural networks, with the weight fixed
to a specific value). Nevertheless, the methods presented here provide the first
general-purpose, formal technique for the verification of probabilistic and deci-
sion robustness, as well as uncertainty quantification, in Bayesian neural net-
works, systematically evaluated on a range of tasks and network architectures.
We hope this can serve as a sound basis for future practical applications in
safety-critical scenarios.

Acknowledgments. This project received funding from the ERC under the European
Union’s Horizon 2020 research and innovation programme (FUN2MODEL, grant agree-
ment No. 834115). MK further acknowledges funding from ELSA: European Lighthouse
on Secure and Safe AI project (grant agreement No. 101070617 under UK guarantee).
Preliminary work on this paper was done while Matthew Wicker, Andrea Patane and
Luca Laurenti were at the University of Oxford funded by FUN2MODEL.

Disclosure of Interests. The authors have no competing interests to declare that are

relevant to the content of this article.

Adversarial Robustness Certification for Bayesian Neural Networks 25

References

1. Adams, S., Patane, A., Lahijanian, M., Laurenti, L.: BNN-DP: robustness certi-
fication of Bayesian neural networks via dynamic programming. In: ICML, pp.
133–151. PMLR (2023)

2. Aggarwal, R., et al.: Diagnostic accuracy of deep learning in medical imaging: a
systematic review and meta-analysis. NPJ Digit. Med. 4(1), 1–23 (2021)

3. Batten, B., Hosseini, M., Lomuscio, A.: Tight verification of probabilistic robust-
ness in Bayesian neural networks. In: AISTATS (2024)

4. Bekasov, A., Murray, I.: Bayesian adversarial spheres: Bayesian inference and
adversarial examples in a noiseless setting. arXiv preprint arXiv:1811.12335 (2018)

5. Benussi, E., Patane, A., Wicker, M., Laurenti, L., Kwiatkowska, M.: Individual
fairness guarantees for neural networks. In: IJCAI (2022)

6. Berger, J.O.: Statistical Decision Theory and Bayesian Analysis. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-1-4757-4286-2

7. Berrada, L., et al.: Make sure you’re unsure: a framework for verifying probabilistic
specifications. In: NeurIPS, vol. 34 (2021)

8. Biggio, B., Roli, F.: Wild patterns: ten years after the rise of adversarial machine
learning. Pattern Recogn. 84, 317–331 (2018)

9. Bishop, C.: Neural Networks for Pattern Recognition. Oxford University Press,
Oxford (1995)

10. Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.: Weight uncertainty in
neural networks. In: ICML (2015)

11. Carbone, G., Wicker, M., Laurenti, L., Patane, A., Bortolussi, L., Sanguinetti, G.:
Robustness of Bayesian neural networks to gradient-based attacks. In: NeurIPS,
vol. 33, pp. 15602–15613 (2020)

12. Cardelli, L., Kwiatkowska, M., Laurenti, L., Paoletti, N., Patane, A., Wicker, M.:
Statistical guarantees for the robustness of Bayesian neural networks. In: IJCAI
(2019)

13. Cardelli, L., Kwiatkowska, M., Laurenti, L., Patane, A.: Robustness guarantees for
Bayesian inference with Gaussian processes. In: AAAI (2018)

14. Chang, S.H., Cosman, P.C., Milstein, L.B.: Chernoff-type bounds for the Gaussian
error function. IEEE Trans. Commun. 59(11), 2939–2944 (2011)

15. Chen, L., et al.: Deep neural network based vehicle and pedestrian detection for
autonomous driving: a survey. IEEE Trans. Intell. Transp. Syst. 22(6), 3234–3246
(2021)

16. De Palma, G., Kiani, B., Lloyd, S.: Adversarial robustness guarantees for random
deep neural networks. In: ICML, pp. 2522–2534. PMLR (2021)

17. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale
hierarchical image database. In: CVPR, pp. 248–255 (2009)

18. Doherty, A., Wicker, M., Laurenti, L., Patane, A.: Individual fairness in Bayesian
neural networks. arXiv preprint arXiv:2304.10828 (2023)

19. Dvijotham, K., Garnelo, M., Fawzi, A., Kohli, P.: Verification of deep probabilistic
models. arXiv preprint arXiv:1812.02795 (2018)

20. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.: Ai2: safety and robustness certification of neural networks with abstract inter-
pretation. In: 2018 IEEE S&P, pp. 3–18. IEEE (2018)

21. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016)

http://arxiv.org/abs/1811.12335
https://doi.org/10.1007/978-1-4757-4286-2
http://arxiv.org/abs/2304.10828
http://arxiv.org/abs/1812.02795

26 M. Wicker et al.

22. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572 (2014)

23. Gowal, S., et al.: On the effectiveness of interval bound propagation for training
verifiably robust models. In: SecML 2018 (2018)

24. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 1

25. Julian, K.D., Kochenderfer, M.J.: Guaranteeing safety for neural network-based
aircraft collision avoidance systems. In: DASC (2019)

26. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

27. Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for
computer vision? In: NeurIPS (2017)

28. Khan, M., Nielsen, D., Tangkaratt, V., Lin, W., Gal, Y., Srivastava, A.: Fast and
scalable Bayesian deep learning by weight-perturbation in Adam. In: ICML, pp.
2611–2620. PMLR (2018)

29. Lechner, M., Žikelić, D., Chatterjee, K., Henzinger, T.: Infinite time horizon safety
of Bayesian neural networks. In: NeurIPS, vol. 34, pp. 10171–10185 (2021)

30. LeCun, Y.: The MNIST database of handwritten digits (1998)
31. Liu, X., Li, Y., Wu, C., Hsieh, C.J.: Adv-BNN: improved adversarial defense

through robust Bayesian neural network. In: ICLR (2019)
32. Michelmore, R., Wicker, M., Laurenti, L., Cardelli, L., Gal, Y., Kwiatkowska, M.:

Uncertainty quantification with statistical guarantees in end-to-end autonomous
driving control. In: ICRA (2019)

33. Neal, R.M.: Bayesian Learning for Neural Networks. Springer, New York (2012).
https://doi.org/10.1007/978-1-4612-0745-0

34. Diep, N.H.: Efficient implementation of interval matrix multiplication. In:
Jónasson, K. (ed.) PARA 2010. LNCS, vol. 7134, pp. 179–188. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28145-7 18

35. Patane, A., Blaas, A., Laurenti, L., Cardelli, L., Roberts, S., Kwiatkowska, M.:
Adversarial robustness guarantees for Gaussian processes. J. Mach. Learn. Res. 23
(2022)

36. Raghunathan, A., Steinhardt, J., Liang, P.S.: Semidefinite relaxations for certifying
robustness to adversarial examples. In: NeurIPS, vol. 31 (2018)

37. Rump, S.M.: Fast and parallel interval arithmetic. BIT Numer. Math. 39, 534–554
(1999)

38. Smith, M.T., Grosse, K., Backes, M., Alvarez, M.A.: Adversarial vulnerability
bounds for Gaussian process classification. arXiv preprint arXiv:1909.08864 (2019)

39. Sosnin, P., Müller, M., Baader, M., Tsay, C., Wicker, M.: Certified robustness to
data poisoning in gradient-based training. arXiv preprint arXiv:2406.05670 (2024)

40. Stallkamp, J., Schlipsing, M., Salmen, J., Igel, C.: Man vs. computer: benchmarking
machine learning algorithms for traffic sign recognition. Neural Netw. 32, 323–332
(2012)

41. Stanforth, R., Gowal, S., Mann, T., Kohli, P., et al.: A dual approach to scalable
verification of deep networks. arXiv preprint arXiv:1803.06567 (2018)

42. Szegedy, C., et al.: Intriguing properties of neural networks. In: ICLR (2014)
43. Tjeng, V., Xiao, K., Tedrake, R.: Evaluating robustness of neural networks with

mixed integer programming. arXiv preprint arXiv:1711.07356 (2017)

http://arxiv.org/abs/1412.6572
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-1-4612-0745-0
https://doi.org/10.1007/978-3-642-28145-7_18
http://arxiv.org/abs/1909.08864
http://arxiv.org/abs/2406.05670
http://arxiv.org/abs/1803.06567
http://arxiv.org/abs/1711.07356

Adversarial Robustness Certification for Bayesian Neural Networks 27

44. Wei, T., Liu, C.: Safe control with neural network dynamic models. In: Learning
for Dynamics and Control Conference, pp. 739–750. PMLR (2022)

45. Weng, T.W., et al.: Towards fast computation of certified robustness for ReLU
networks. In: ICML (2018)

46. Wicker, M.: Adversarial robustness of Bayesian neural networks. Ph.D. thesis, Uni-
versity of Oxford (2021)

47. Wicker, M., Heo, J., Costabello, L., Weller, A.: Robust explanation constraints for
neural networks. arXiv preprint arXiv:2212.08507 (2022)

48. Wicker, M., Huang, X., Kwiatkowska, M.: Feature-guided black-box safety testing
of deep neural networks. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS,
vol. 10805, pp. 408–426. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-89960-2 22

49. Wicker, M., Laurenti, L., Patane, A., Chen, Z., Zhang, Z., Kwiatkowska, M.:
Bayesian inference with certifiable adversarial robustness. In: AISTATS, pp. 2431–
2439. PMLR (2021)

50. Wicker, M., Laurenti, L., Patane, A., Kwiatkowska, M.: Probabilistic safety for
Bayesian neural networks. In: UAI, pp. 1198–1207. PMLR (2020)

51. Wicker, M., Laurenti, L., Patane, A., Paoletti, N., Abate, A., Kwiatkowska, M.:
Certification of iterative predictions in Bayesian neural networks. In: UAI, pp.
1713–1723. PMLR (2021)

52. Wicker, M., Laurenti, L., Patane, A., Paoletti, N., Abate, A., Kwiatkowska, M.:
Probabilistic reach-avoid for Bayesian neural networks. Artif. Intell. (2024)

53. Wicker, M., et al.: Certificates of differential privacy and unlearning for gradient-
based training. arXiv preprint arXiv:2406.13433 (2024)

54. Wong, E., Kolter, Z.: Provable defenses against adversarial examples via the convex
outer adversarial polytope. In: ICML, pp. 5286–5295. PMLR (2018)

55. Wu, M., Wicker, M., Ruan, W., Huang, X., Kwiatkowska, M.: A game-based
approximate verification of deep neural networks with provable guarantees. Theo-
ret. Comput. Sci. 807, 298–329 (2020)

56. Yang, J., et al.: MedMNIST v2-a large-scale lightweight benchmark for 2D and 3D
biomedical image classification. Sci. Data 10(1), 41 (2023)

57. Yuan, M., Wicker, M., Laurenti, L.: Gradient-free adversarial attacks for Bayesian
neural networks. In: AABI (2020)

58. Zhang, G., Sun, S., Duvenaud, D., Grosse, R.: Noisy natural gradient as variational
inference. In: ICML, pp. 5852–5861. PMLR (2018)

59. Zhang, H., Weng, T.W., Chen, P.Y., Hsieh, C.J., Daniel, L.: Efficient neural net-
work robustness certification with general activation functions. In: NeurIPS, pp.
4939–4948 (2018)

60. Zhang, X., Wang, B., Kwiatkowska, M.: Provable preimage under-approximation
for neural networks. In: Finkbeiner, B., Kovács, L. (eds.) TACAS 2024. LNCS,
vol. 14572, pp. 3–23. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-
57256-2 1

http://arxiv.org/abs/2212.08507
https://doi.org/10.1007/978-3-319-89960-2_22
https://doi.org/10.1007/978-3-319-89960-2_22
http://arxiv.org/abs/2406.13433
https://doi.org/10.1007/978-3-031-57256-2_1
https://doi.org/10.1007/978-3-031-57256-2_1

28 M. Wicker et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Adversarial Robustness Certification for Bayesian Neural Networks
	1 Introduction
	2 Background on Bayesian Deep Learning
	3 Problem Statement
	3.1 Decision Robustness
	3.2 Approach Outline

	4 BNN Adversarial Robustness via Weight Sets
	4.1 Bounding Probabilistic Robustness
	4.2 Bounding Decision Robustness
	4.3 Computation of the Lower and Upper Bounds

	5 Explicit Bound Computation
	5.1 Integral Computation over Weight Intervals
	5.2 Bounding Bayesian Neural Network Output

	6 Complete Bounding Algorithm
	6.1 Lower-Bounding Algorithm
	6.2 Upper-Bounding Algorithm

	7 Experiments
	7.1 Airborne Collision Avoidance
	7.2 Image Classification

	8 Conclusion
	References

