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SUMMARY

The COVID-19 pandemic led to a steep rise in the worldwide demand for Personal
Protective Equipment (PPE) such as face masks, respirators, gloves, and goggles. PPE
can be divided into two categories: medical and non-medical. Medical PPE is certi-
fied and typically comes with a higher price and profit margin, making it an attractive
counterfeiting target for fraud-involved organizations, i.e., legitimate companies en-
gaged in fraud. As a result, a significant number of organizations engaged in fraud
entered the market after the initial stages of COVID-19, trying to sell non-medical
PPE as medical. However, detecting counterfeit PPE has been challenging for law en-
forcement as (1) criminals take advantage of legitimate supply chains to mask their
counterfeits, also known as piggybacking, (2) the legitimate supply chains for PPE to
battle COVID-19 were partly new as well, so there was little historical data, and (3)
fraud-involved organizations obfuscate their data as much as possible. Thus, detect-
ing and effectively intervening in this largely invisible supply chain is difficult for law
enforcement.

The counterfeit PPE case is just one example where supply chain visibility is of
the utmost importance. Supply chain visibility means the ability to track parts, com-
ponents, or products in transit from supplier to customer, addressing the actors’ ca-
pability to monitor and trace the movement of goods with accurate and timely infor-
mation. Even in this digital era, the data required to improve supply chain visibility,
such as data on demand, inventory levels, processing times of a manufacturer, and
transportation times, is often sparse due to the actors’ reluctance to share informa-
tion. This data sparseness leads to uncertainties about the operation within a supply
chain (e.g., inventory, travel times) as well as about the overall structural composition
and geographical boundaries (e.g., number and location of the actors). Illicit supply
chains, in particular, suffer from limited information and a high level of uncertainty,
making it challenging to effectively disrupt this criminal supply chain. In recent years,
many studies in the supply chain field have focused on a new generation of infor-
mation and communication technology systems to collect data for improving supply
chain visibility. However, gathering more data using, for example, collaboration be-
tween actors in the supply chain is not always possible, especially in the case of an
illicit supply chain.

An often-used method for gaining an understanding of a supply chain is simu-
lation modeling, which is used to get insight into the behavior of complex systems,
study relations over time, and explore future (“what-if”) scenarios. Model calibra-
tion, i.e., the process of tuning and estimating the simulation model parameters us-
ing observed data to match the real system, is essential. However, research on cali-
brating supply chain simulation models in cases where the available data is sparse, is
still lacking. Additionally, most research on model calibration in logistics is primarily
aimed at estimating the parameters (i.e., parametric uncertainty) rather than find-

xv
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ing the best fit for the model structure (i.e., structural uncertainty). When calibrating
a simulation model with sparse data, there is a large variety of plausible simulation
models that could explain the sparse observations about the real-world supply chain,
i.e., equifinality. Only focusing on one model for analysis could, therefore, lead to a
“poor” understanding of the system and, hence, ineffective interventions in the real
world. Thus, a diverse ensemble of models is needed to analyze the robustness of
interventions in such cases, rather than relying on a single model. Yet, it is harder to
find such an ensemble. Research on how to generate a diverse ensemble of recon-
structions of a supply chain that could be used for identifying robust intervention is
lacking. Therefore, this dissertation addresses the following research question:

How to generate a diverse ensemble of reconstructions of a supply chain, in cases
where the available data is sparse?

Throughout this dissertation, we use a simulation calibration approach in com-
bination with a ground truth set-up. For this, we develop a ground truth discrete
event simulation model of a stylized counterfeit PPE supply chain as case study. We
extract data from this model, systematically vary the degree of data sparseness, and
assess the extent to which various model calibration techniques can still reconstruct
the underlying supply chain. Four steps are taken to answer the main research ques-
tion.

First, we provide a classification of data sparseness for supply chain visibility. A
literature review is conducted on data sparseness and supply chain visibility, and a
quantitative analysis is performed to assess the impact of data sparseness on sup-
ply chain visibility. Based on a review of supply chain visibility and data quality lit-
erature, we propose to characterize data sparseness as a lack of data quality across
the entire supply chain, where data sparseness can be classified into three dimen-
sions: noise, bias, and missing values. The quantitative analysis relies on a stylized
simulation model of a moderately complex illicit supply chain. We use scenarios in-
volving actors with different data perspectives in the supply chain, either supply or
demand-oriented, to evaluate the combined effect of the individual dimensions of
data sparseness. Results show that when a data sparseness of 90% is applied, supply
chain visibility reduces to 52% for noise, to 65% for bias, and to 32% for missing val-
ues. The scenarios also show that companies with a supply-oriented view typically
have a higher supply chain visibility than those with a demand-oriented view. The
classification and assessment offer valuable insights for improving data quality and
for enhancing supply chain visibility.

Second, we analyze the extent to which various model calibration techniques can
identify the underlying parameters of a supply chain model when increasing the de-
gree of data sparseness. In this step, we investigate a subset of model calibration
techniques that are promising for handling sparse data: Approximate Bayesian Com-
puting and Genetic Algorithms. We evaluate the quality-of-fit of these two model
calibration techniques and a reference technique, Powell’s Method, with a counter-
feit PPE simulation model, given a systematic increase in missing values. The results
demonstrate that these techniques are suitable for calibrating the parameters of a lin-
ear supply chain model with randomly missing values. This step offers a first insight
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into the quality-of-fit for the model calibration techniques in the case of sparse data
with parametric uncertainty.

Third, we evaluate the quality-of-fit for the model calibration techniques for re-
constructing the underlying structure of a supply chain, i.e., for structural uncer-
tainty, when the available data is sparse. Calibration methods for simulation models
of illicit supply chains typically have to deal both with sparse data, and with a partially
unknown structure of the supply chain. We evaluate the quality-of-fit of a reference
technique, Powell’s Method, and three model calibration techniques that have shown
promise in the case of sparse data: Approximate Bayesian Computing, Bayesian Opti-
mization, and Genetic Algorithms. We parameterize structural uncertainty using the
System Entity Structure approach. The results demonstrate that Bayesian Optimiza-
tion and Genetic Algorithms are suitable for reconstructing the underlying structure
of an illicit supply chain for a varying degree of data sparseness. Both techniques
identify a structurally diverse set of optimal solutions that fit with the sparse data. For
a comprehensive understanding of the supply chain structures, or graphs, approxi-
mating the ground truth, we propose to combine the results of the two techniques.
This step indicates that future research should focus on developing a combined algo-
rithm and on incorporating solution diversity.

Fourth, we assess the potential of the Quality Diversity algorithm for generating
a diverse ensemble of supply chain simulation models (i.e., solution diversity) in the
case of sparse data, for both parametric and structural uncertainty. When calibrating
a simulation model, there is a large variety of plausible simulation models that could
explain the sparse observations about the real-world supply chain. A novel approach
for generating this diverse set of plausible models is the Quality Diversity algorithm.
The results show that the Quality Diversity algorithm is able to generate a diverse
ensemble of supply chain models, including the ground truth. As expected, the Qual-
ity Diversity algorithm successfully identifies the structure of the ground truth most
frequently at 0% of data sparseness. When more data sparseness is present, the Qual-
ity Diversity algorithm is prone to overfitting in more complex structures. We also
highlight the importance of gathering information on the upstream supply chain to
accurately reconstruct the counterfeit PPE supply chain.

In conclusion, this dissertation offers a first insight into generating a diverse en-
semble of reconstructions of a supply chain in the case of sparse data using a simu-
lation approach. We highlight three main scientific contributions. First, this disserta-
tion is the first study that systematically varies the degree of data sparseness to evalu-
ate the impact of the various model calibration techniques. Although the exact degree
of data sparseness is often unknown in real life, this research gives a scientific insight
into the impact of the degree of data sparseness on supply chain visibility and supply
chain modeling. This set-up allows us to first theoretically assess the quality-of-fit of
model calibration techniques before applying them in real life. Second, this disser-
tation fills the research gap of calibrating the structure of the supply chain simula-
tion model in addition to fitting its parameters. Especially in the case of illicit supply
chains, the structural composition and the geographical locations are of importance
for decision-making. This research proposes a tool for creating various structures of
a supply chain simulation model for model calibration, and presents metrics to com-
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pare these structures. Third, the results identify model calibration techniques that are
suitable for accurately reconstructing a supply chain characterized by sparse data, for
both parametric and structural uncertainty. However, the techniques often overfit to
more complex supply chain structures, or graphs, than the true underlying supply
chain. Additionally, when calibrating a simulation model with sparse data, diversity
should be included in terms of the use of multiple seeds, the combination of multiple
techniques, and the use of solution diversity.

For supply chain practitioners and decision-makers, this dissertation presents
three main contributions to practice. First, this dissertation offers insight into data
sparseness for supply chain visibility and modeling. It is valuable for supply chain
practitioners and decision-makers to have an understanding of how to cope with the
sparseness of currently available data and how this sparseness impacts supply chain
visibility. Second, this research highlights the importance of gathering information
on the upstream supply chain. Third, a contribution of this dissertation to practice is
that supply chain practitioners should recognize that there is not a single model for
a supply chain when the available data is sparse, but there could be multiple mod-
els. This could help in making more robust decisions on, for example, interventions
that are effective for disrupting an illicit supply chain. The next crucial step for future
research is to evaluate the effectiveness of this diverse ensemble of reconstructions
of supply chains for identifying these robust interventions, both theoretically and in
practice.
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De COVID-19 pandemie leidde tot een sterke stijging van de wereldwijde vraag
naar Personal Protective Equipment (PPE) zoals mondkapjes, handschoenen en
veiligheidsbrillen. PPE kan worden onderverdeeld in twee categorieën: medisch
en niet-medisch. Medische PPE zijn gecertificeerd en hebben meestal een hogere
prijs en winstmarge, waardoor ze een aantrekkelijk doelwit zijn voor frauduleuze
organisation (legitieme bedrijven die fraude plegen) om ze te vervalsen. Als gevolg
hiervan kwam er een aanzienlijk aantal frauduleuze organisaties op de markt ge-
durende COVID-19, die probeerden niet-medische PPE te verkopen als medisch.
Voor handhaving is het opsporen van vervalste PPE een grote uitdaging omdat
(1) criminelen gebruik maken van legitieme goederenketens, ofwel supply chains,
om hun vervalsingen te maskeren, ook bekend als piggybacking, (2) veel legitieme
supply chains voor PPE ten tijde van COVID-19 waren ook nieuw, waardoor er weinig
historische gegevens beschikbaar waren, en (3) frauduleuze organisaties maskeren
of manipuleren hun gegevens zoveel mogelijk om onder de radar te blijven. Daarom
is het voor handhavingsorganisaties zoals de Politie moeilijk om inzicht te krijgen in
deze grotendeels onzichtbare supply chain en om effectief in te grijpen.

De casus omtrent vervalste PPE is slecht één voorbeeld waarbij de zichtbaarheid
van de supply chain van groot belang is. De zichtbaarheid van de supply chain, ofwel
supply chain visibility, richt zich op het kunnen traceren van onderdelen, compo-
nenten of producten die worden vervoerd van leverancier naar klant. Hierbij gaat
het om in welke mate de actoren de verplaatsingen van goederen kunnen monito-
ren met accurate en actuele informatie. Zelfs in het huidige digitale tijdperk zijn de
gegevens die nodig zijn om de zichtbaarheid van de supply chain te verbeteren vaak
schaars. Denk hierbij aan informatie zoals vraag-aanbod gegevens, voorraadniveaus,
verwerkingstijdens van een fabrikant en transporttijden. Een reden is dat actoren in
de supply chain terughoudend kunnen zijn met het delen van data. Dit gebrek aan
informatie leidt tot onzekerheden over de operatie van de supply chain (bijvoorbeeld
voorraadhoogtes, transporttijden), en over de structurele samenstelling en geografi-
sche karakteristieken van de supply chain (bijvoorbeeld het aantal en de locatie van
actoren). Met name bij illegale supply chains is er sprake van beperkte informatie
en een hoge mate van onzekerheid, waardoor het effectief verstoren van deze illegale
supply chains een grote uitdaging is. In de afgelopen jaren heeft onderzoek in het
supply chain domein zich voornamelijk gericht op een nieuwe generatie informatie-
en communicatietechnologiesystemen om gegevens te verzamelen voor het verbe-
teren van de supply chain visibility. Het verzamelen van meer gegevens met behulp
van, bijvoorbeeld samenwerking tussen actoren in de keten, is echter niet altijd van-
zelfsprekend, zeker in het geval van illegale supply chains.

xix
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Een veelgebruikte methode om de supply chain te modelleren is simulatie, een
techniek om inzicht te krijgen in het gedrag van complexe systemen, het herkennen
van verbanden, en het verkennen van toekomst (“what-if”) scenario’s. Modelkalibra-
tie, het proces van het schatten van de parameters van een simulatiemodel met be-
hulp van observaties om het gedrag van het model af te stemmen op de werkelijkheid,
is essentieel. Onderzoek naar het kalibreren van supply chain simulatiemodellen in
situaties waar de beschikbare data schaars is, ontbreekt echter nog. Daarnaast heeft
het meeste onderzoek naar modelkalibratie in de logistiek voornamelijk betrekking
op het kalibreren van de parameters (parametrische onzekerheid) en niet op het ka-
libreren van de modelstructuur (structurele onzekerheid). Bij het kalibreren van een
simulatiemodel met schaarse data, is er sprake van equifinaliteit. Dit betekent dat er
meerdere plausibele simulatiemodellen zijn die de schaarse observaties van de wer-
kelijke supply chain kunnen verklaren. Slechts één model analyseren kan leiden tot
een verkeerd beeld van het systeem en daardoor tot mogelijk misplaatste interven-
ties in de echte wereld. Er is dus een gevarieerd ensemble van modellen nodig om
de robuustheid van interventies in dergelijke gevallen te analyseren, in plaats van ge-
bruik te maken van één model. Een ensemble is echter moeilijker te vinden. Onder-
zoek naar het genereren van een divers ensemble van reconstructies van een supply
chain die gebruikt kunnen worden voor het identificeren van robuuste interventies
ontbreekt. Daarom richt dit proefschrift zich op de volgende onderzoeksvraag:

Hoe genereren we een divers ensemble van reconstructies van een supply chain in
situaties waar de beschikbare data schaars is?

In dit proefschrift gebruiken we een simulatie-kalibratie methode in combina-
tie met een ground truth analyse. Hiervoor ontwikkelen we een ground truth simu-
latiemodel van een nagebootste supply chain van vervalste PPE als case study. We
gebruiken een discrete event simulatie model. We extraheren data uit dit model, va-
riëren systematisch de mate van de schaarste van de data en beoordelen in hoeverre
verschillende modelkalibratietechnieken nog steeds de onderliggende supply chain
kunnen reconstrueren. Vier stappen worden doorlopen om de onderzoeksvraag te
beantwoorden.

Als eerste classificeren we dataschaarste voor supply chain visibility. Er wordt
een literatuurstudie gedaan omtrent dataschaarste en de zichtbaarheid van supply
chains. Vervolgens wordt er een kwantitatieve analyse uitgevoerd om de impact van
de dataschaarste op supply chain visibility te meten. Op basis van de literatuurstudie,
karakteriseren we dataschaarste als een gebrek aan datakwaliteit in de hele supply
chain, waarbij dataschaarste kan worden onderverdeeld in drie dimensies: noise, bias
en missende datapunten. De kwantitatieve analyse is gebaseerd op een nagebootst
simulatiemodel van een redelijk complexe illegale supply chain. Scenario’s worden
gebruikt om het gecombineerde effect van de afzonderlijke dimensies te evalueren
vanuit actoren met verschillende perspectieven in de supply chain, zowel aanbod-
als vraaggericht. De resultaten laten zien dat bij een dataschaarste van 90% de zicht-
baarheid van de supply chain afneemt tot 52 % voor noise, tot 65% voor bias en tot
32% voor missende datapunten. Verder laten de scenario’s zien dat bedrijven met een
aanbodgeoriënteerde visie (begin van de supply chain) doorgaans een hogere zicht-
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baarheid van de supply chain hebben dan bedrijven met een vraaggeoriënteerde vi-
sie (eind van de supply chain). De classificatie en impact analyse bieden waardevolle
inzichten voor het verbeteren van de dataschaarste en voor het verbeteren van de
supply chain visibility. Deze classificatie wordt in de rest van het onderzoek gebruikt.

Ten tweede analyseren we de mate waarin verschillende modelkalibratietech-
nieken de parameters van een supply chain model correct kunnen identificeren bij
een toenemende mate van dataschaarste. In deze stap onderzoeken we een subset
van modelkalibratietechnieken die veelbelovend zijn met betrekking tot het omgaan
met schaarse data: Genetic Algorithms en Bayesian Optimization. We analyseren de
quality-of-fit van deze twee modelkalibratietechnieken en een referentietechniek,
Powell’s Method, voor een simulatiemodel over vervalste PPE, gegeven een systemati-
sche toename in missende datapunten. De resultaten tonen aan dat deze technieken
geschikt zijn voor het kalibreren van de parameters van een lineair supply chain
model met willekeurig missende datapunten. Deze stap biedt een eerste inzicht
in de kwaliteit van de modelkalibratietechnieken in het geval van schaarse data en
parametrische onzekerheid.

Ten derde testen we de quality-of-fit van de modelkalibratietechnieken voor
het reconstrueren van de onderliggende structuur van een supply chain, ofwel voor
structurele onzekerheid, wanneer de beschikbare data schaars is. Voor het simuleren
van illegale supply chains moet de modelkalibratie kunnen omgaan met schaarse
data. Daarnaast hebben deze supply chains te maken met structurele onzeker-
heid. Dit betekent dat de modelkalibratietechnieken de modelstructuur moeten
identificeren. We analyseren de quality-of-fit van een referentietechniek, Powell’s
Method, en drie modelkalibratie technieken die veelbelovend zijn voor het omgaan
van schaarse data: Approximate Bayesian Computing, Bayesian Optimization, en
Genetic Algorithms. Hiervoor gebruiken we een simulatiemodel van een nagebootste
supply chain van vervalste PPE als ground truth. We extraheren data uit dit model
en variëren systematisch de kwaliteit van de data op het gebied van noise, bias, en
missende datapunten. We formaliseren structurele onzekerheid met behulp van
System Entity Structures. De resultaten tonen aan dat Bayesian Optimization en Ge-
netic Algorithms geschikt zijn voor het reconstrueren van de onderliggende structuur
van een illegale supply chain, gegeven een variërende mate van schaarsheid van
de data. Beide technieken identificeren een diverse set van optimale oplossingen
die goed overeenkomen met de schaarse data. Voor een alomvattend beeld van
supply chains die de ground truth benaderen, raden wij aan om de resultaten van
de twee technieken te combineren. Vervolgonderzoek moet zich richten op het
ontwikkelen van een gecombineerd algoritme en op het integreren van diversiteit in
de oplossingen.

Ten vierde beoordelen we de potentie voor het Quality Diversity algoritme voor
het genereren van een divers ensemble van supply chain simulatiemodellen (diver-
siteit in de oplossingen) in het geval van schaarse data, voor zowel parametrische als
structurele onzekerheid. Bij het kalibreren van simulatiemodellen is er een grote di-
versiteit van plausibele supply chains die de schaarse observaties van de werkelijke
supply chain kunnen verklaren. Een relatief onbekende methode voor het genere-
ren van een diverse set van mogelijke simulatiemodellen is het Quality Diversity al-
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goritme. De resultaten laten zien dat het Quality Diversity algoritme in staat is om
een divers ensemble van supply chain simulatiemodellen te genereren, waaronder de
ground truth. Zoals verwacht vindt het Quality Diversity algoritme de structuur van
de ground truth het vaakst bij 0% dataschaarste. Wanneer de data schaarser wordt, is
het Quality Diversity algoritme gevoelig voor overfitting van complexere structuren.
We benadrukken hier nogmaals het belang van het verzamelen van informatie over
de upstream supply chain om de vervalste PPE supply chain te kunnen reconstrueren.

Concluderend, dit proefschrift biedt als eerste inzicht in het generen van een di-
vers ensemble van reconstructies van een supply chain in het geval van dataschaarse
met behulp van simulate. Dit proefschrift is het eerste onderzoek is dat systematisch
de mate van dataschaarste varieert om de impact van de verschillende modelkalibra-
tietechnieken te evalueren. Hoewel de exacte hoeveelheid dataschaarste in de prak-
tijk vaak onbekend is, geeft dit onderzoek wetenschappelijk inzicht in de impact van
dataschaarste op de zichtbaarheid van de supply chain en supply chain modellering.
Deze opzet stelt ons in staat om de kwaliteit van modelkalibratietechnieken theore-
tisch te beoordelen voordat ze in de praktijk worden toegepast. Daarnaast behandelt
dit proefschrift het kalibreren van de structuur van een supply chain simulatiemo-
del, als toevoeging op het schatten van de parameters. Vooral voor illegale supply
chains zijn de structurele samenstelling en de geografische locaties van belang voor
besluitvorming. Daarom presenteert dit onderzoek een methode voor het creëren
van verschillende structuren van een supply chain simulatiemodel, en presenteert
het metrieken om deze structuren te vergelijken. Een andere wetenschappelijke bij-
drage is dat de resultaten laten zien dat enkele modelkalibratie technieken geschikt
zijn voor het accuraat reconstrueren van een supply chain die gekenmerkt wordt door
schaarse data, voor zowel parametrische als structurele onzekerheid. De technieken
hebben last van overfitten van complexere supply chains dan de echte onderliggende
supply chain. Bij het kalibreren van een simulatiemodel met schaarse data moet re-
kening gehouden worden met diversiteit in de vorm van het gebruik van meerdere
seeds, de combinatie van meerdere technieken, en de oplossingsdiversiteit.

Voor supply chain professionals en besluitvormers biedt dit proefschrift inzicht
in het concept van dataschaarste voor de supply chain visibility en modellering van
supply chains. Het is waardevol voor supply chain professionals en besluitvormers
om inzicht te hebben in hoe om te gaan met de schaarste van de beschikbare data
en hoe dit de zichtbaarheid van de supply chain beïnvloedt. Daarnaast benadrukt dit
onderzoek het belang van het verzamelen van informatie over de upstream supply
chain. Een andere bijdrage aan de praktijk is dat supply chain professionals moeten
realiseren dat er niet één mogelijke beschrijving is van een supply chain wanneer
de beschikbare data schaars is, maar dat er meerdere mogelijke modellen zijn. Dit
kan helpen om robuustere beslissingen te nemen over, bijvoorbeeld, interventies die
effectief zijn voor het verstoren van een illegale supply chain. De volgende cruciale
stap voor toekomstig onderzoek is het evalueren van de effectiviteit van een divers
ensemble van reconstructies van supply chains voor het identificeren van robuuste
interventies, zowel theoretisch als in de praktijk.



1
INTRODUCTION

1.1. BACKGROUND

In today’s unpredictable and changing world, ensuring that the right quantity of a
product is at the right place at the right time is increasingly challenging. Disruptions
such as the outbreak of a global pandemic (2019), the blockage of the Suez Canal
(2021), the global semiconductor shortage (2021), the Ukraine war (2022), and the
Houthi attacks on container ships in the Red Sea (2024) led to the shutdown of facto-
ries, delays in maritime transport, shortage of essential products, and extremely high
prices (Zhao et al., 2023; Berger, 2024). In 2023, disruptions caused an average of $82
million in annual losses per company in key industries (Reuters, 2023). These disrup-
tions affect the legal supply chain as well as illicit supply chains, causing shortages
and losses in the former and opportunities and reduced risk in the latter.

In this dissertation, we use supply chains for counterfeit Personal Protective
Equipment (PPE) as the example case. The COVID-19 pandemic led to a steep
rise in the worldwide demand for PPE such as face masks, respirators, gloves, and
goggles (Omar et al., 2022). PPE can be divided into two categories: medical and
non-medical. Medical PPE is certified and typically comes with a higher price and
profit margin, making it an attractive target for fraud-involved organizations (i.e.,
legitimate companies engaged in fraud) (Ippolito et al., 2020). As a result, a signifi-
cant number of organizations engaged in fraud entered the market after the initial
stages of COVID-19, trying to sell non-medical PPE as medical (Hashemi et al., 2022).
However, detecting counterfeit PPE has been challenging for law enforcement as (1)
criminals take advantage of legitimate supply chains to mask their counterfeits, also
known as piggybacking, (2) legitimate supply chains are impacted by COVID-19, on
which there is little historical data, and (3) fraud-involved organizations obfuscate
their data as much as possible. Thus, detecting and effectively intervening in this
largely invisible supply chain is difficult for law enforcement.

The counterfeit PPE case is just one example where supply chain visibility is of
the utmost importance (Zhao et al., 2023). Supply chain visibility means the ability to
track parts, components, or products in transit from supplier to customer, address-
ing the actors’ capability to monitor and trace the movement of goods with accurate
and timely information (Saqib et al., 2019; Kalaiarasan et al., 2022). When supply
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chain visibility increases, logistical processes within the supply chain can be more ef-
fectively aligned (Srinivasan & Swink, 2018; Kalaiarasan et al., 2022). In recent years,
supply chain visibility has become key for improving supply chain management and
design (Busse et al., 2017; Roy, 2021). Successful supply chain management is heav-
ily dependent on the availability of information shared by multiple actors within the
supply chain (Brun et al., 2020). More specifically, a supply chain is a network of
actors that produce and distribute a specific product or service from supplier to end-
user, i.e., from raw materials to end-product (Fisher, 1997; Christopher, 2016). Three
main flows can be distinguished for supply chains: (1) goods flows, (2) information
flows, and (3) financial flows (Min & Zhou, 2002; Stadtler & Kilger, 2002).

Even in this digital era, the data required to improve supply chain visibility, such
as data on demand, inventory levels, processing times of a manufacturer, and trans-
portation times, is often sparse (Guida et al., 2023; Spreitzenbarth et al., 2024). Only
6% of the companies claim to have complete supply chain visibility, according to the
GEODIS Supply Chain Worldwide Survey, even though over 50% of the supply chain
companies use or are planning to use digital technologies (Macri, 2018; GEODIS,
2020; The Business Continuity Institute, 2022). One of the causes for data sparse-
ness is reluctance among actors within a supply chain to share (high-quality) data for
various reasons such as competition and high costs (Boone et al., 2019), or because
of illegal behavior of supply chain partners involved in fraud (Ficara et al., 2021).

Data sparseness leads to uncertainties about the operations of actors within the
supply chain (e.g., inventory levels, transportation times) as well as about the over-
all structural supply chain composition and geographical locations (e.g., how many
actors are involved, where the actors are located). Especially in the case of illicit sup-
ply chains, there is little information and there are many uncertainties around the
operations and the supply chain’s structural composition, making it challenging to
effectively disrupt this illegal supply chain. Criminals use various modi operandi,
routes, transportation modes, multiple actors, communication channels, and busi-
ness models, impacting the flow of goods and the structure and geographical aspects
of the supply chain (Duijn et al., 2014; Anzoom et al., 2021). Such a supply chain is
characterized by deep uncertainty due to the wide range of possible structural com-
positions within the supply chain. Deep uncertainty is defined as a situation “where
analysts do not know, or the parties to a decision cannot agree on, (1) the appropriate
conceptual models that describe the relationships among the key driving forces that
will shape the long-term future, (2) the probability distributions used to represent
uncertainty about key variables and parameters in the mathematical representations
of these conceptual models, and/or (3) how to value the desirability of alternative
outcomes” (Lempert et al., 2003, p. xii).

Improving supply chain visibility is very challenging for a supply chain character-
ized by complexity, sparse data, and (deep) uncertainty. Gaining more insight into the
effect of data sparseness on supply chain visibility is essential for making improve-
ments. The first step is to clearly define the concept of data sparseness in the context
of supply chains. Although a large variety of types of poor data is presented in the
literature, a clear and concise formalization of data sparseness is still lacking, espe-
cially in the field of supply chain management (Laranjeiro et al., 2015; Kalaiarasan
et al., 2022). Studies show that sparse data resulting from data errors impacts sup-
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ply chain visibility and decision-making (Oliveira & Handfield, 2019; Agrawal et al.,
2022). However, the exact effect of different dimensions of data sparseness on supply
chain visibility is still poorly understood in the literature.

In recent years, many studies in the supply chain field have focused on a new gen-
eration of information and communication technology (ICT) systems to collect data
for improving supply chain visibility (Topsector Logistiek, 2019; Kalaiarasan et al.,
2023). Examples of these systems are Internet-of-Things, Radio-frequency identifica-
tion transponders, and Blockchain (Pero & Rossi, 2014; Calatayud et al., 2019; Kumar
et al., 2022). One of the key aspects of many of these systems is the collaboration be-
tween actors within the supply chain (Pero & Rossi, 2014; Kalaiarasan et al., 2023). In
our example case of counterfeit PPE supply chains, collaboration and sharing of data
among fraud-involved organizations and between fraud-involved organizations and
law enforcement are out of the question, since data can potentially reveal illegal activ-
ities. Collaboration between supply chain partners is, therefore, not always a given.
So, the central question in this research is: how to improve supply chain visibility,
given that the currently available data is sparse?

1.1.1. MODELING SUPPLY CHAINS

For improving supply chain visibility, it is important to gain insight into the supply
chain itself (descriptive analytics), explore possible future situations (predictive an-
alytics), and examine how to transform the future supply chain into a desired state
(prescriptive analytics) (Wang et al., 2016; Tiwari et al., 2018). A powerful approach
for analyzing a supply chain is simulation (Tiwari et al., 2018). Simulation is a way
of getting insight into the behavior of complex systems, recognizing relations over
time, and exploring future (“what-if”) scenarios (Shannon, 1998; Law et al., 2000). A
simulation model is conceptualized as consisting of variables and relations. Many
variables in the model need an initial value to capture the initial model state and be-
havioral characteristics that are consistent with the behavior of the system. These
initial values are called parameters; more specifically, parameters of components of
the model. Some of the parameter values might be observed directly, while others
are unobservable and thus have to be tuned to match the state and behavior of the
simulation model with its real-world counterpart.

Model calibration is the process of tuning and estimating the model parameters,
using observed system data, to improve the similarity between the model and the
real-world system (Wigan, 1972; Ören, 1981). The goal of model calibration is to find
those parameter values for which the behavior of the simulation model is as close as
possible to the observed behavior of the real system using real data (Liu et al., 2017).
Two types of uncertainty in models for which calibration is needed can be distin-
guished: parametric uncertainty, i.e., uncertainty in the initial values of the model’s
parameters, and structural uncertainty, i.e., uncertainty in the structure of the model
like the modeling equations and structural composition of the model (Webster &
Sokolov, 1998; Park & Schneeberger, 2003; Park & Qi, 2005). Model calibration pri-
marily involves adjusting model parameters rather than altering the model structure
(Wigan, 1972; Ören, 1981; Coenen et al., 2018). Similarly, most studies in the field of
logistics have explored parametric uncertainty rather than addressing structural un-
certainty (Halim et al., 2016; Coenen et al., 2018; Moallemi & Köhler, 2019). Especially
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in a supply chain (for an illicit product) characterized by sparse data, the models are
characterized by both parametric and structural uncertainty.

Additionally, model calibration should be able to handle the available sparse data.
A subset of model calibration techniques that seems to be able to handle sparse data
in other fields can be identified. For example, Evolutionary Algorithms optimize high-
dimensional problems with sparse data (Ren & Wu, 2013), Bayesian Inference han-
dles sparse datasets in machine learning (Jalali et al., 2017), and Data Assimilation
predicts simulation models in real-time with sparse data (Xie, 2018). A number of
studies have investigated the calibration of simulation models in the context of data
sparseness (Liu et al., 2017; de Groot & Hübl, 2021; De Santis et al., 2022). These stud-
ies focus, however, on a case study, e.g., an emergency department, with one sparse
dataset, and they apply only one model calibration technique, making the effective-
ness of these techniques unclear for supply chains or broader levels of data sparse-
ness. Hence, it is still unknown how various model calibration techniques perform
for modeling supply chains given a varying degree of data sparseness.

1.1.2. MODELING ROBUST INTERVENTIONS
When modeling a complex system, like a supply chain, characterized by sparse data
and deep uncertainty, there is a level of equifinality among the simulation models.
In terms of model calibration, this means that multiple versions of the supply chain
simulation model are coherent with the sparse real-world data. Hence, a complex
system cannot be captured by a single theory or model (Page, 2021). Only focusing
on one model for analysis could lead to a “poor” understanding of the system, and
hence ineffective interventions in the real world (Thompson & Smith, 2019). Thus,
an ensemble of models is needed to analyze the effectiveness of interventions in such
cases instead of a single model (Veit, 2020).

In this case, the effectiveness of an intervention refers to the robustness of the in-
tervention. An intervention is robust when it performs in a satisfactory way across a
large majority of an ensemble of models (Walker et al., 2013). An analysis of robust-
ness includes evaluating the performance of an intervention in many plausible mod-
els varying over a large set of assumptions, instead of describing the best-estimate
model and evaluating the performance of the intervention only within this model
(Lempert et al., 2013). The models within the ensemble needed for robustness analy-
sis, therefore, have to be similar but distinct (Weisberg, 2012).

However, model calibration techniques typically lead to a single simulation model
that fits the data best, instead of multiple simulation models. An ensemble of models
can be created by choosing a user-defined number of near-optimal solutions, e.g.,
the top five. Yet, it is likely that this ensemble only contains very similar models, as
configurations with slightly different parameters from the optimal solution typically
outperform those with vastly different parameters. For robustness, a diverse group of
explainable models is more desirable, yet harder to find (Durán & Formanek, 2018)1.
Therefore, this research focuses on how to generate a diverse set of plausible supply
chain models, using a simulation calibration approach that can deal with sparse data.

1For example, when using Google Maps to navigate between city A and city B, it provides three distinct
routes using different highways. However, the three most optimal routes probably involve a slight adjust-
ment in direction at the beginning or the end within the city, rather than using different highways.
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1.2. RESEARCH GOAL AND QUESTIONS

This research aims to generate a diverse set of plausible supply chain models that
can be used to identify robust interventions, where the model calibration techniques
have to deal with sparse data. Hence, the main research question is:

How to generate a diverse ensemble of reconstructions of a supply chain, in cases
where the available data is sparse?

To answer this research question, the following sub-questions need to be
answered:

1. How to classify data sparseness for supply chain visibility?
Gaining more insights into the effect of data sparseness on supply chain vis-
ibility is essential for making improvements. As a first step, a clear and con-
cise classification of dimensions of data sparseness in the field of supply chain
management is needed. A systematic review of the current state-of-the-art lit-
erature on supply chain visibility and data quality will be performed. The exact
effect of different dimensions of data sparseness on supply chain visibility is
still poorly understood. To gain more insight, a quantitative analysis will be car-
ried out for a stylized simulation model of a moderately complex illicit supply
chain. This sub-question (1) provides a classification of data sparseness in the
context of supply chain visibility, and (2) assesses the impact of data sparseness
on supply chain visibility.

2. To what extent can various model calibration techniques identify the param-
eters of a supply chain simulation model when varying the degree of data
sparseness?

Complex supply chains, for example, those involving counterfeit PPE, are char-
acterized by partly unobservable behavior and sparse data, making it challeng-
ing to construct a reliable simulation model. Model calibration can help with
this, as it is the process of tuning and estimating the model parameters with
observed data of the system. A subset of model calibration techniques, Ge-
netic Algorithms and Bayesian Inference, seems to be able to deal with sparse
data in other fields (Vrugt & Beven, 2018; Mirjalili, 2019). However, it is un-
known how these techniques perform when calibrating simulation models with
sparse data. This sub-question analyzes the quality-of-fit of two model calibra-
tion techniques for a counterfeit PPE supply chain simulation model given an
increasing degree of data sparseness.

3. To what extent can various model calibration techniques reconstruct the un-
derlying structure of a supply chain when varying the degree of data sparse-
ness?

Data sparseness in complex supply chains, such as a counterfeit PPE supply
chain, makes the supply chain largely invisible, resulting in uncertainty about
its structural composition. This, in turn, makes it challenging to intervene and
stop crime in a complex system like a supply chain. Simulation is a way to get
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insight into the behavior of complex systems with computer models, using cal-
ibration to tune the parameters of the model to match its real-world counter-
part. However, the extent to which model calibration techniques can accurately
reconstruct the structure of a supply chain characterized by sparse data has not
yet been investigated. To answer this question, we have to model structural un-
certainty rather than only parametric uncertainty. This sub-question assesses
the quality-of-fit of various model calibration techniques given structural un-
certainty with a varying degree of data sparseness.

4. How feasible is the quality diversity algorithm for generating a diverse en-
semble of reconstructions of a supply chain when varying the degree of data
sparseness?
Data on supply chains is often sparse due to reluctance among actors to share
their data, making simulation modeling of supply chains difficult. Particu-
larly, supply chain simulation models suffer from parametric and structural
uncertainties as a result of this data sparseness. When calibrating a simula-
tion model, there is a large variety of plausible simulation models that could
explain the sparse observations about the real-world supply chain. A relatively
unknown approach to generate this diverse set of plausible models is the Qual-
ity Diversity algorithm (Mouret & Clune, 2015; Fontaine et al., 2020). This study
evaluates the feasibility of using the Quality Diversity algorithm to generate a
diverse ensemble of supply chain simulation models for a varying degree of
data sparseness.

Although generating a diverse ensemble of plausible supply chain models can poten-
tially help to design robust policies and interventions in cases where only sparse data
is available, this dissertation does not explicitly evaluate whether the plausible supply
chain models actually enable more effective interventions. This would be a follow-up
step after the development and evaluation of the model calibration techniques from
this dissertation.

1.3. RESEARCH METHODS
The main research goal of this dissertation is to more accurately model supply chains
in the presence of sparse data and theoretically evaluate various model calibration
techniques to improve the fit between the model and observations. This section de-
scribes the research method for each sub-question. First, the systematic literature
review for sub-question 1 is described. Second, the quantitative analysis for all sub-
questions using a ground truth set-up is outlined. Third, the method for developing
the ground truth simulation model is discussed. Last, the set-up of the model cali-
bration analysis for sub-questions 2 to 4 is presented.

1.3.1. LITERATURE REVIEW

The first sub-question is addressed by conducting a systematic literature review on
two bodies of literature: (i) supply chain visibility and (ii) data quality. We follow the
systematic search method described by van Wee and Banister (2016). Database en-
gines such as Scopus and Google Scholar are used to identify the relevant literature.
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The scope of this literature review is restricted to academic papers and books in En-
glish. Papers are selected based on the number of citations, while taking into account
how recently the papers are published, not to miss recent contributions. For both
streams of literature, the first step is to search the current state-of-the-art literature
on specific keywords within a date range of 2000 to 2023. The second step focuses on
finding additional papers using snowballing. Results of the literature review are used
for identifying and operationalizing a classification for data sparseness in the field of
supply chain visibility. This classification and its operationalization are the basis for
the quantitative analysis for each of the remaining sub-questions.

1.3.2. QUANTITATIVE ANALYSIS USING GROUND TRUTH SET-UP
Each sub-question (1-4) involves a quantitative analysis using (a part of) a ground
truth set-up. Figure 1.1 presents an overview of the ground truth set-up used in this
project. Sub-question 1 is answered using only the upper part of the figure. Sub-
questions 2, 3, and 4 are answered using the entire set-up. First, a ground truth sim-
ulation model of a stylized supply chain is developed. From this model, we extract
ground truth data representing the true maximum or 0% of data sparseness. Next,
we degrade the ground truth data by adding sparseness. For example, we randomly
delete 10% of the data to account for missing values. When extracting data from the
real world, data is inherently sparse and is therefore comparable to the sparse data
in this figure. With the sparse data from the ground truth set-up, we calculate supply
chain visibility to answer sub-question 1.

Figure 1.1: Overview of the Ground Truth Set-Up.

For the remaining sub-questions, we use the sparse data from the ground truth
set-up as “observed” data of the system for the simulation model calibration. The
simulation model calibration process involves creating many supply chain config-
urations and optimizing the most plausible configuration based on the smallest dis-
tance between the simulated data from the configurations and the sparse observation
data. This results in optimal solutions(s) for the configuration of the supply chain
simulation model, i.e., calibrated simulation model(s). While the model calibration
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techniques aim to minimize the distance between the simulated data and sparse ob-
servation data, it does not guarantee that the calibrated simulation model(s) will be
close to that of the ground truth model. The reasons are that the optimization is us-
ing sparse data, that different models can have a similar outcome, i.e., equifinality,
or that the calibration technique gets stuck in a local optimum. Hence, we evaluate
the quality-of-fit of the model calibration technique by comparing (the parameters
and structure of) the calibrated simulation model(s) with the ground truth simula-
tion model. Sub-questions 2 to 4 use this set-up to theoretically assess to what extent
various model calibration techniques can reconstruct the ground truth supply chain
when varying the degree of data sparseness.

1.3.3. GROUND TRUTH SIMULATION MODEL
The case study used for the ground truth simulation model is a stylized counterfeit
PPE supply chain. This supply chain is interesting as it is inherently characterized
by sparse data because (1) the production of counterfeit PPE during COVID-19 pre-
sented a new and unexpected phenomenon with little historical data, and (2) coun-
terfeit PPE supply chains are operated by organizations selling fraudulent products
that obfuscate as much data as possible (Hashemi et al., 2023). Corruption enables
counterfeit PPE by facilitating fake certifications, bypassing inspections, and allow-
ing illicit goods through customs, undermining law enforcement. In the supply chain
connecting suppliers in the source country to customers in the destination country,
different types of actors are involved, and a variety of transport modalities are used.
Data on the operations of the supply chain is gathered using openly available infor-
mation and expert interviews with multiple law enforcement agencies. This ensures
that the ground truth model is realistic, allowing the research findings to be applica-
ble in real-world settings. Joint research with the Terrorism, Transnational Crime &
Corruption Center at George Mason University in the USA allows for gathering real-
world information on the counterfeit PPE supply chain from a United States perspec-
tive. The gathered set of data is used for the development of a conceptual model of
the supply chain and its constraints. The conceptual model is validated with experts.
Figure 1.2 shows an example of a high-level conceptual model of a stylized counterfeit
PPE supply chain.

For simulating the PPE supply chain, we use a discrete event simulation model
since it is a widely used approach for simulating supply chains (Law et al., 2000;
Robinson, 2005; Schmitt & Singh, 2009). Discrete event modeling simulates the oper-
ations of a system as a sequence of events at discrete time points, where each event
changes the state within the system (Robinson, 2004). Discrete event simulation typi-
cally uses queues and resources to describe the system (Law et al., 2000). The models
are stochastic in nature and the parameters are often represented by the use of statis-
tical distributions (Tako & Robinson, 2008). This makes it suitable for representing the
stochastic dynamics of supply chain operations. A limitation of discrete event simu-
lation is that a lot of data is required to develop a model of the detailed operation of a
supply chain.
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Figure 1.2: Example of Counterfeit PPE Supply Chain.

The simulation models in this project are created using the library pydsol-core 2

and pydsol-model 3 in Python. The library pydsol-core is a Python implementation
of the Distributed Simulation Object Library (DSOL), originally implemented in Java
by Jacobs (2005), and based on the formal definition of simulation models of Zei-
gler et al. (2018). The library pydsol-model is an additional layer on pydsol-core and
includes standard model objects suitable for developing discrete event simulation
models. The libraries are developed during this Ph.D. project by Alexander Verbraeck
and Isabelle M. van Schilt. The code for the ground truth simulation model of this
dissertation is available at GitHub4.

2https://github.com/averbraeck/pydsol-core
3https://github.com/imvs95/pydsol-model
4The code for the ground truth simulation model is available at https://github.com/imvs95/complex_

stylized_supply_chain_model_generator, and for the graph generator of open source shipping data at
https://github.com/imvs95/port_data_graphs. The large datasets used in this research are available at
https://doi.org/10.4121/adf4373c-7a9a-4d9c-a1ff-0f893d8d0b06.v1.

https://github.com/imvs95/complex_stylized_supply_chain_model_generator
https://github.com/imvs95/complex_stylized_supply_chain_model_generator
https://github.com/imvs95/port_data_graphs
https://doi.org/10.4121/adf4373c-7a9a-4d9c-a1ff-0f893d8d0b06.v1
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1.3.4. CONFIGURATION OF THE MODEL CALIBRATION ANALYSIS
The main goal of sub-questions 2 to 4 is to evaluate the quality-of-fit of various model
calibration techniques when varying the degree of data sparseness. Table 1.1 gives an
overview of the model calibration analysis per sub-question.

Uncertainty
Dimensions
of Sparseness

Model Calibration
Techniques

Outcome

Sub-question 2 Parametric Missing values Powell, ABC, GA
One optimal
solution

Sub-question 3 Structural
Noise, Bias,
Missing values

Powell, ABC, GA,
BO

One optimal
solution

Sub-question 4
Parametric,
Structural

Noise, Bias,
Missing values

QD
Multiple optimal
solutions

Table 1.1: Overview of Model Calibration Analysis per Sub-Question. (Powell = Powell’s Method, ABC =
Approximate Bayesian Computing, GA = Genetic Algorithms, BO = Bayesian Optimization, QD = Quality
Diversity algorithm)

The first step is to assess to what extent model calibration techniques that seem
suitable for handling sparse data perform in the case of parametric uncertainty. Para-
metric uncertainty means uncertainty in the values of the parameters of the simula-
tion model (Webster & Sokolov, 1998; Parker, 2014). For sub-question 2, we focus
on calibrating parameters on one dimension of data sparseness. We choose miss-
ing values as this impacts the quantity of the data, making it a more straightforward
way of degrading data (Oliveira et al., 2005; Ehrlinger & Wöß, 2022). Regarding the
model calibration techniques, we select one reference technique and two techniques
that seem suitable for handling sparse data. We use Powell’s Method as the refer-
ence technique since it is commonly used for calibrating simulation models (Liu et
al., 2017). The reference technique is used to evaluate whether the other techniques
work better. The other two model calibration techniques are Approximate Bayesian
Computing (ABC) and Genetic Algorithms (GA). ABC is a technique for estimating the
posterior distribution of model parameters using Bayesian statistics (Sadegh & Vrugt,
2014; Vrugt, 2016). This technique seems to be one of the most suitable techniques
using Bayes’ theorem for calibrating with sparse data as it is likelihood-free (Vrugt &
Beven, 2018). GA is one of the oldest and most well-known evolutionary algorithms,
i.e., a population-based optimization technique. It is widely used for calibration, es-
pecially in high-dimensional optimization problems where data is often sparse (Park
& Qi, 2005; Ren & Wu, 2013; Slowik & Kwasnicka, 2020). The outcome of the model
calibration techniques for sub-question 2 is one single optimal solution for the pa-
rameters of the supply chain simulation model.

On top of parametric uncertainty, the structure of a supply chain characterized
by sparse data is often unknown, especially in the case of criminal activities. In the
case of a supply chain, many interdependencies exist among various actors, making it
difficult to view actors as independent components in a simulation model, unlike pa-
rameters (Baldissera Pacchetti, 2021). Since model calibration mostly focuses on tun-
ing the model parameters and not the model structure, tuning both simultaneously
is far more challenging than just tuning the parameters (Moore & Doherty, 2005; Co-
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enen et al., 2018). Thus, sub-question 3 focuses on model calibration given structural
uncertainty while keeping the parameters the same. This means that the model cali-
bration techniques aim to find the best fitting model structure to match the underly-
ing supply chain given a varying degree of data sparseness. For this sub-question, we
use three dimensions of data sparseness, noise, bias and missing values, for a holis-
tic analysis of their impact. We examine the impact of data sparseness dimensions
both individually and in combination. In terms of the model calibration techniques,
we again analyze Powell’s Method, ABC, and GA. We include Bayesian Optimization
(BO) as an additional prospective technique. BO is a technique that uses Bayes’ the-
orem to search for the optimum by constructing the posterior distribution (van Hoof
& Vanschoren, 2021). It is among the few techniques in the field of machine learning
that are able to handle small data sets (Jalali et al., 2017). Similar to sub-question 2,
the outcome of the selected model calibration techniques in sub-question 3 gives one
single optimal solution for the structure of the supply chain.

In sub-questions 2 and 3, the model calibration techniques result in one single op-
timal outcome. However, the overall goal of this research is to generate an ensemble
of reconstructions of a supply chain, not a single reconstruction. Thus, sub-question
4 focuses on generating a diverse set of plausible supply chain configurations. For
this, we use a quality diversity (QD) algorithm. QD algorithms use evolutionary con-
cepts to find optimal solutions at each point of the user-defined search space (Mouret
& Clune, 2015; Chatzilygeroudis et al., 2021). QD is mostly used in the field of robotics
and reinforcement learning (Pugh et al., 2015; Lim et al., 2022; Tjanaka et al., 2023).
Since QD is a relatively new approach, it is still unexplored to what extent the tech-
nique would work for calibrating simulation models and for dealing with data sparse-
ness (Schneider et al., 2022). For this sub-question, we combine the parametric and
structural uncertainty, meaning that the model is calibrated on both the parameters
and the structure. We design scenarios that incorporate all three chosen dimensions
of data sparseness, reflecting the type of sparseness we would expect in real-world
data of supply chains. The outcome of the QD algorithm is a diverse set of plausi-
ble configurations of the parameters and the structure of a supply chain simulation
model.

1.4. OUTLINE OF THESIS
The dissertation is structured as shown in Figure 1.3. Chapter 2, answering sub-
question 1, proposes a classification for data sparseness and assesses its impact on
supply chain visibility. Using this classification, Chapter 3 focuses on parametric
uncertainty and presents the quality-of-fit of various model calibration techniques
on parameters when systematically increasing the degree of data sparseness. This
chapter answers sub-question 2. Chapter 4 answers sub-question 3 by showing the
quality-of-fit of various model calibration techniques for identifying the underlying
structure when varying the degree of data sparseness. For generating more than one
optimal solution, Chapter 5 explores the use of the quality-diversity algorithm for cal-
ibrating simulation models in case of sparse data, answering sub-question 4. Chap-
ter 6 presents an overarching discussion of this research. Chapter 7 concludes the
research by answering the research questions and presenting recommendations for
further research.
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Figure 1.3: Outline of the dissertation.







2
DIMENSIONS OF DATA

SPARSENESS AND THEIR EFFECT

ON SUPPLY CHAIN VISIBILITY

Supply chain visibility concerns the ability to track parts, components, or products in
transit from supplier to customer. The data that organizations can obtain to establish
or improve supply chain visibility is often sparse. This chapter presents a classification
of the dimensions of data sparseness and quantitatively explores the impact of these
dimensions on supply chain visibility. Based on a review of supply chain visibility and
data quality literature, this study proposes to characterize data sparseness as a lack of
data quality across the entire supply chain, where data sparseness can be classified into
three dimensions: noise, bias, and missing values. The quantitative analysis relies on
a stylized simulation model of a moderately complex illicit supply chain. Scenarios
are used to evaluate the combined effect of the individual dimensions from actors with
different perspectives in the supply chain, either supply or demand-oriented. Results
show that when a data sparseness of 90% is applied, supply chain visibility reduces to
52% for noise, to 65% for bias, and to 32% for missing values. The scenarios also show
that companies with a supply-oriented view typically have a higher supply chain visi-
bility than those with a demand-oriented view. The classification and assessment offer
valuable insights for improving data quality and for enhancing supply chain visibility.

This chapter has been published as: van Schilt, I. M., Kwakkel, J. H., Mense, J. P., & Verbraeck, A. (2024)
Dimensions of data sparseness and their effect on supply chain visibility. Computers & Industrial Engi-
neering, 191, pp. 110108. https://doi.org/10.1016/j.cie.2024.110108.
The code is available at https://github.com/imvs95/scv_sparse_data.
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2.1. INTRODUCTION

The COVID-19 pandemic caused a steep rise in the worldwide demand for Personal
Protective Equipment (PPE) such as face masks, gloves, goggles, and glasses (Omar
et al., 2022). To enable proper planning for purchasing and producing PPE in such a
high-demand situation, a good insight into the overall supply chain is required. There
is a range of PPE products available, which can generally be classified as medical PPE
or non-medical PPE. Medical PPE is certified and has a higher price and profit margin.
This made it attractive for fraudulent organizations to enter the market, and sell non-
medical PPE as medical (Ippolito et al., 2020). Hashemi et al. (2022) found that during
the initial stages of the COVID-19 pandemic, the majority of PPE manufacturers pro-
ducing fraudulent products emerged in Asia. However, counterfeit PPE activities and
related logistics operations remained largely invisible due to little historical data on
COVID-19 and on organizations selling fraudulent products trying to obfuscate their
data (van Schilt et al., 2023). This counterfeit PPE case exemplifies a scenario where
supply chain visibility is of the utmost importance, but it is hampered by sparse data
(Zhao et al., 2023).

Supply chain visibility focuses on the ability to track parts, components, or prod-
ucts in transit from supplier to customer, addressing the actors’ capability to monitor
and trace the movement of goods with accurate and timely information (Saqib et al.,
2019; Kalaiarasan et al., 2022). When supply chain visibility increases, logistical pro-
cesses within the supply chain can be more effectively aligned (Srinivasan & Swink,
2018; Kalaiarasan et al., 2022). For example, hospitals can more effectively prepare for
stock-outs of medical PPE, or align with trustworthy organizations from whom they
can buy legitimate medical PPE.

Even in this digital era, many supply chain organizations still face challenges in
processing and retrieving visibility data. (Wang et al., 2016; Tiwari et al., 2018; Wang
& Zhuo, 2020). Additionally, the data required to improve supply chain visibility, such
as data on demand, inventory levels, processing times of a manufacturer, and trans-
portation times, is often sparse (Somapa et al., 2018; Kuipers, 2021). One of the causes
for data sparseness is reluctance among actors within a supply chain to share (high-
quality) data for various reasons such as competition and high costs (Boone et al.,
2019), or because of illegal behavior of supply chain partners engaged in fraud (Ficara
et al., 2021). Other potential problems in data collection and sharing are malfunc-
tioning sensors leading to biased values or missing data points, inconsistency in data
formats between different systems, or simply typos (Oliveira & Handfield, 2019).

Gaining more insight into the effect of data sparseness on supply chain visibil-
ity is essential for making improvements. A first step is to define data sparseness for
supply chains. Unfortunately, there is no clear and agreed definition of data sparse-
ness in the context of supply chain management. Various data quality issues can
be seen as data sparseness, such as noise, bias, missing values, out-of-date informa-
tion, different representations of the same data, or data that is not relevant for its
use (Laranjeiro et al., 2015; van Schilt et al., 2023). Laranjeiro et al. (2015) presents
a large variety of poor data instances and how they impact data quality. Although
a large variety of poor data instances is presented in the literature, a clear and con-
cise formalization of data sparseness is still lacking, especially in the field of supply
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chain management. Oliveira and Handfield (2019) found that information quality
plays a key role in supply chain visibility, and poor data resulting from data errors im-
pacts decision-making. For example, when supply chain partners act on incomplete,
inaccurate, and outdated data, this can lead to forecasting errors and supply chain
disruptions (Agrawal et al., 2022). Certain errors may have a more significant impact
on supply chain visibility than others. For example, missing data values can result in
a complete lack of knowledge of the supply chain, while noisy observations provide
some indication of the value’s magnitude in the supply chain (Laranjeiro et al., 2015).
The exact effect of these different types of data errors (i.e., data sparseness) on supply
chain visibility is still poorly understood.

This chapter, therefore, focuses on the conceptualization of data sparseness in
the context of supply chain management and the impact of data sparseness on supply
chain visibility. Based on a review of supply chain visibility and data quality literature,
a 3-dimensional classification of data sparseness is derived. Next, the effects of these
dimensions of data sparseness on supply chain visibility are quantitatively assessed
through a case study. A simulation model of a stylized supply chain of counterfeit
PPE is used as ground truth. Complete data is extracted from this model, and then
this data is systematically modified to increase sparseness along each of the three di-
mensions. Next, we assess how supply chain visibility changes. To evaluate the role
of interaction effects between the three dimensions, we use scenarios to investigate
the combined effect of the three dimensions of data sparseness. These scenarios de-
scribe data sparseness situations that could occur in real-life supply chains from the
perspective of different actors, such as those positioned at the beginning of the sup-
ply chain (supply-oriented) or at the end (demand-oriented).

The contribution of this research is two-fold: (i) to provide a classification of data
sparseness, and (ii) to assess its impact on supply chain visibility. By explicitly in-
cluding data sparseness, our study is novel compared to the most recent systematic
literature reviews on supply chain visibility of Kalaiarasan et al. (2022) and Somapa et
al. (2018). Although both studies discuss data quality, they do not specifically focus on
the dimensions of data sparseness and their impact on supply chain visibility. As for
managerial implications, it is important for companies in a supply chain to be aware
of the different dimensions of data sparseness and the differences in their impact on
supply chain visibility. This might help companies to prioritize how to improve their
data and, thereby, their visibility. Supply chain visibility is key for making the supply
chain operations more efficient (Srinivasan & Swink, 2018; Sodhi & Tang, 2019).

The chapter is structured as follows. Section 2.2 presents the method for perform-
ing the literature review. Section 2.3 discusses the current state-of-the-art for supply
chain visibility. Section 2.4 reviews the literature on data quality. Section 2.5 com-
bines these two bodies of literature and presents a classification of data sparseness.
Section 2.6 formalizes data sparseness and supply chain visibility, explains the design
of the simulation experiment, and introduces the case study. Section 2.7 presents the
effects of an increasing degree of sparseness for each of the identified dimensions of
data sparseness on supply chain visibility, and evaluates the effect of data sparseness
on supply chain visibility for plausible real-life scenarios. Section 2.8 discusses the
results. Section 2.9 concludes this study and provides directions for further research.
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2.2. LITERATURE REVIEW METHOD

A literature review was conducted for papers in the fields of supply chain visibility and
data quality. For a comprehensive overview, the authors have executed a systematic
search for relevant literature following the method described by van Wee and Banister
(2016). Database engines such as Scopus and Google Scholar were used to identify
the relevant literature. The scope of this literature review was restricted to academic
papers and books in English. Papers were selected based on the number of citations,
while taking into account how recently the papers were published, to not miss recent
contributions. Papers had to meet a minimum threshold of 50 citations, subject to
their year of publication and relevance to the topic, with the exception of a few papers
that provided a key insight into the literature but had fewer citations. The specified
publication date range is from 2000 to 2023, permitting a few exceptions for older
literature that is still heavily cited. This research examines two bodies of literature:
supply chain visibility, and data quality. In searching for the papers, we explicitly
looked for different viewpoints and approaches for supply chain visibility and data
quality over the years.

For supply chain visibility, the first step was to search for current state-of-the-art
literature defining supply chain visibility using the search keywords: “supply chain
visibility”, “supply chain transparency”, “supply chain visibility definition”, and “sup-
ply chain management and visibility”. The date range for filtering the literature is
from 2000 to 2023. Papers were selected based on the number of citations. In the
second step, additional papers were found using snowballing. In the third step, the
search was focused on the literature for measuring supply chain visibility with the
date range of 2000 to 2023 using the search keywords: “measure”, “calculate supply
chain visibility”, “assessing supply chain visibility”, and “operationalize”. We limited
the papers to those that include the calculation of supply chain visibility, and re-
jected papers that only mention the characterization of supply chain visibility. For
all papers, the title, keywords, introduction, conclusion, and approach section were
scanned. Papers were selected based on the number of citations, taking into account
the publication date of the paper. In the fourth step, related papers were searched
using snowballing.

For data quality, the first step was to search for current state-of-the-art litera-
ture on data quality with a date range from 2000 to 2023 using the specific search
keywords: “data quality”, “data quality dimensions”, “characterize data quality”, and
“sparse data quality”. In the second step, related papers were searched using snow-
balling. Some papers from before the year 2000 were also included in the literature
search as there is a relatively older body of literature about data quality. In the third
step, the search was targeted toward literature on data quality issues from year 2000
onwards using the keywords: “data issues”, “degraded data”, “data completeness”,
and “poor data”. More in-depth papers on the definition of data quality issues were
searched in the fourth step using snowballing and the specific keywords “measuring
data quality issues” and “calculate noise/bias/missing values”. In addition to recent
research from the years 2000 to 2023, literature from before 2000 has also been in-
cluded as a basis of reference.
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Through this systematic literature review of the two bodies of literature, the over-
lap between the topics was examined, facilitating the identification and classification
of dimensions of data sparseness in relation to supply chain visibility. The evaluation
of the obtained publications involved assessing their quality and comprehensiveness
through the application of a quality filter at the beginning of the search and during
snowballing. The quality filter checked the relevance of the literature based on the
publication’s keywords, title, and abstract, as well as the impact factor of the journal
of publication. The filter has been applied for the initial list of literature and for the
literature resulting from snowballing. To obtain extra feedback, the results were pre-
sented and discussed by the researchers during a conference in the field of transport
and logistics.

2.3. SUPPLY CHAIN VISIBILITY

In recent years, supply chain visibility has become key for improving supply chain
management and design (Busse et al., 2017; Roy, 2021). Successful supply chain
management is heavily dependent on the availability of information shared by mul-
tiple actors within the supply chain (Brun et al., 2020). Research shows that to im-
prove competitiveness by reducing costs, fulfilling demand, enhancing operational
efficiency, or increasing customer service, it helps to have a more visible supply chain
(Lavastre et al., 2014; Swift et al., 2019). Supply chain visibility creates a valuable op-
portunity to gain insights and exchange knowledge with other stakeholders in the
network, which in turn is beneficial for designing an efficient supply chain system
(Wei & Wang, 2010; Somapa et al., 2018). Moreover, it facilitates action and reduces
(decision) risk, making the supply chain more resilient (Saqib et al., 2019; Rogerson &
Parry, 2020).

The outbreak of COVID-19 showed the vulnerabilities of supply chains with low
visibility, leading to a vast array of distribution issues and shortages (Junaid et al.,
2023; Zhao et al., 2023). Both a lack of upstream visibility to the suppliers and down-
stream visibility to the customers existed (Busse et al., 2017; Kalaiarasan et al., 2022).

Our literature overview focuses on the definition of supply chain visibility, and the
methods for assessing and measuring it. The current state-of-the-art papers on these
topics are used for operationalizing supply chain visibility for this research.

2.3.1. DEFINITION

Supply chain visibility is a commonly and broadly used term in supply chain and lo-
gistics with a variety of meanings. Francis (2008, p. 182) proposes a general definition
based on a literature review: “Supply chain visibility is the identity, location and sta-
tus of entities transiting the supply chain, captured in timely messages about events,
along with the planned and actual dates/times for these events.” Similar to Saqib et al.
(2019), this definition assumes that a detailed picture of the entities, i.e., any object
moving through the supply chain, is needed. Providing complete information about
all objects in the supply chain presents a challenge for the stakeholders in the supply
chain, who might need to provide confidential and competitive information, and as
a result, they are often reluctant to share such information (Pero & Rossi, 2014; Wang



2

20 2. DIMENSIONS OF DATA SPARSENESS

& Zhuo, 2020). Second, not all stakeholders benefit from improved supply chain vis-
ibility: having too much information without a clear use case can be a distraction.
Barratt and Oke (2007) includes the extent to which data is key or useful for supply
chain visibility according to their definition. This definition is often referred to by
other authors (Kalaiarasan et al., 2022). Concluding, a weakness in the general defi-
nition offered by Francis (2008) is the absence of the relevance of the information for
the stakeholders. Schoenthaler (2003), McCrea (2005), and Barratt and Oke (2007) do
include this relevance in their definitions of supply chain visibility.

Later, Williams et al. (2013) adds the quality of supply and demand information on
accuracy, timeliness, completeness, and usability in their definition of supply chain
visibility. Kalaiarasan et al. (2022, p. 4) takes this a step further by defining supply
chain visibility as “the extent to which actors within a supply chain have visual access
to the timely and accurate demand and supply information that they consider to be key
or useful to their operations and supply chains.”

Most literature indicates that supply chain visibility is dependent on good data,
either stating usefulness or data quality dimensions. Some definitions require a
detailed picture of the entire supply chain (Francis, 2008), while other definitions
are more aggregated on either the supply or the demand side (Barratt & Oke, 2007;
Williams et al., 2013; Kalaiarasan et al., 2022). Combining the major insights from the
literature, supply chain visibility for this research is defined as:

Supply chain visibility refers to the ability of tracking parts, components or products
in transit from supplier to customer through relevant data of stakeholders.

Next to the dependence on good quality data, supply chain visibility also depends
on the willingness of organizations to share this data. Bartlett et al. (2007) uses trans-
parency as a measure of visibility, and combines it with a degree of obscurity. Sodhi
and Tang (2019) refers to supply chain visibility as the company’s effort to gather in-
formation and data, and supply chain transparency as the company’s willingness to
share information with the public. Brun et al. (2020) notes that collaboration amongst
supply chain partners and the level of trust should increase to achieve supply chain
visibility. Since our study does not focus on the general public but on supply chain
partners, transparency in the context of supply chain visibility is defined as the will-
ingness to share relevant data with stakeholders.

2.3.2. METHODS FOR ASSESSING SUPPLY CHAIN VISIBILITY
Somapa et al. (2018) is the most recent literature review that discusses the charac-
terization and the quantification of supply chain visibility in a network. They define
three characteristics to capture supply chain visibility: (1) accessibility of informa-
tion, (2) quality of information, and (3) usefulness of information. The first character-
istic focuses on the capability of information and communication technology (ICT)
systems to collect data, whereas the other two characteristics focus on the quality
of information for obtaining the organization’s goal. In recent years, a new genera-
tion of ICT systems has arisen to collect data for improving supply chain visibility.
One of the most interesting recent concepts is the Internet-of-Things (IoT), consist-
ing of Internet-embedded sensors and ICT components to provide data on supply
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chain and logistics activities (Calatayud et al., 2019). IoT can make more data acces-
sible such that the supply chain is more visible for all actors in real-time (Kumar et
al., 2022). Another useful concept is the Radio-frequency identification transponder
(RFID), an auto-identification system for detecting objects and elements while they
move along the supply chain (Pero & Rossi, 2014). Kalaiarasan et al. (2023) notes that
many studies show how these concepts can be used for improving supply chain visi-
bility. The authors show the potential of this new generation of ICT systems, includ-
ing IoT, RFID and blockchain, for collecting data in real-time from all stakeholders.
One of the key aspects for these systems is the collaboration between actors within
the supply chain (Pero & Rossi, 2014; Kalaiarasan et al., 2023). As mentioned before,
competition can limit the necessary collaboration between actors. In our example
case of counterfeit PPE supply chains, the necessary collaboration and sharing of data
are out of the question, since data can give away information about illegal activities.
Collaboration between supply chain partners is therefore not always a given.

Somapa et al. (2018) gives an overview of quantitative and qualitative approaches
for measuring supply chain visibility. Common quantitative methods are regression
analysis, visibility scorecards, utilization ratios, and mathematical models rooted in,
e.g., set theory. Only a few methods consider the global supply chain level instead
of the firm level (Somapa et al., 2018). One of these methods is presented by Zhang
et al. (2011) who measure supply chain inventory visibility by using set theory. They
define visibility as the capability to access and provide information among several
companies. Lee and Rim (2016) uses the Six Sigma method to evaluate the end-to-end
supply chain visibility with a focus on operational capabilities. In contrast to studies
that focus on the information perspective of visibility, they focus on the visibility of
processes to asses whether the supply chain has the capability to execute the supply
chain plan (Somapa et al., 2018). Lee and Rim (2016) calculate the mean and standard
deviation of individual processes for lead time, yield, quality, and utilization.

Another method to determine supply chain visibility that includes the end-to-end
supply chain is the calculation of geometric means of information quantity and qual-
ity shared between the other actors and the focal company, as designed by Caridi et al.
(2010, 2013). A strength of this paper is that the authors focus on measuring supply
chain visibility in complex networks, which is particularly challenging. In contrast,
most of the literature focuses on relatively simple two-tier or linear supply chains.
Caridi et al. (2010, 2013) is a notable exception by giving a quantitative approach to
assess the degree of supply chain visibility in complex systems for inbound and out-
bound logistics. They distinguish four types of information flows for supply chain
visibility: (1) transactions/events, (2) status information, (3) master data, and (4) op-
erational plans. They measure visibility as the amount and the quality of information
the focal company possesses, compared to the total information that could be ob-
tained. First, the visibility that the focal company has of each individual actor in the
supply chain is measured by supply chain managers who judge the quality and the
quantity of information available for providing visibility. These judgments are col-
lected for each type of information flow and for each supply chain actor on a rela-
tive scale from 1 (lowest) to 4 (best). An argument against this technique is that it is
subjective. After obtaining the judgments, the individual visibility measures are com-
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bined to calculate the global visibility. The global measure is the weighted average
of visibility for each actor. The weight for each actor is based on how much the focal
company purchases from an actor, and how much an actor buys from the focal com-
pany, and the distance between the companies in terms of the number of tiers and
vertical integration. So, the more an actor sells to or buys from the focal company or
the closer it is to the focal company in the supply chain, the higher the weight.

2.3.3. OPERATIONALIZATION

Combining the insights of Caridi et al. (2010, 2013), Somapa et al. (2018), Calatayud
et al. (2019) and Kalaiarasan et al. (2022), this research measures supply chain visibil-
ity as the weighted average of the available information quantity and quality divided
by their theoretical maximum for all actors in the supply chain given the goods, infor-
mation, and financial flows. The characteristics for measurement can be captured by
the quality and the quantity of information (Caridi et al., 2010, 2013; Somapa et al.,
2018). This means that accessibility of information (e.g., the capability of IT systems,
IoT, RFID) will be out of scope. Three types of flows can be distinguished for mea-
suring supply chain visibility: the goods flow, the information flow, and the financial
flow (Min & Zhou, 2002; Stadtler & Kilger, 2002). For each of these flows, data can be
extracted to assess visibility. This study primarily focuses on the goods flow.

To measure supply chain visibility, the available quantity and quality of the infor-
mation are compared to their theoretical maximum (Caridi et al., 2010). Instead of
using expert judgments, quantitative measures are used to calculate the quantity and
the quality. Quantity is measured as the percentage of the number of data points that
are available to the actor in comparison to the full data set. Quality is measured as
the mean absolute percentage error of the data set of the actor compared to the full
data set. Along the lines of Caridi et al. (2010), these percentages are combined into a
geometric mean to determine the supply chain visibility of an individual actor.

Similar to Caridi et al. (2010), supply chain visibility is first measured for each ac-
tor, but without the presence of a focal company. Next, the supply chain visibility
scores of individual actors are aggregated into a global measure using a weighted av-
erage. The weight of an actor is determined by the number of orders and the costs
they represent. The weight is assigned to each corresponding actor to determine the
weighted visibility of the actor. The sum of the visibility scores of all actors in the
supply chain results in a percentage value for the global supply chain visibility.

2.4. DATA QUALITY

Data quality is a topic that has been researched for many years and in various dis-
ciplines (Ehrlinger & Wöß, 2022). Data quality management involves data collection
(data profiling), the characterization of data quality, the measurement of data quality,
and data quality monitoring (Bronselaer, 2021). Our research focuses on sparse data
with a low volume, whereas big data literature focuses on high volumes of data (see
e.g., Günther et al. (2017), Jeble et al. (2018)). Therefore, literature on big data, e.g.,
the 5 V’s for the quality of data: Volume, Variety, Velocity, Veracity, and Value (Wamba
et al., 2015) is kept out of scope.
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2.4.1. DATA QUALITY DIMENSIONS

Several papers have provided a categorization of data quality. Wang and Strong (1996)
defines data quality as “the fitness of use” and presents a framework of data quality
aspects that are important to data customers. They identify four main categories: (1)
accuracy, (2) relevance, (3) representation, and (4) accessibility. Pipino et al. (2002)
defines a detailed list of sixteen data quality dimensions based on a survey of health-
care, finance, and consumer product companies. Most of them fall into the categories
of Wang and Strong (1996). One new dimension has been added: ease of modifi-
cation, i.e., the level to which data is easy to modify. Fan and Geerts (2012) states
five central issues for data quality: (1) data consistency, i.e., the validity of data to
the real-world, (2) data deduplication, i.e., multiple points referring to the same real-
world entity (3) data accuracy, i.e, closeness of a value to its true value, (4) information
completeness, i.e., complete data to answer the question, and (5) data currency, i.e.,
timeliness.

Huang (2013) aggregates data quality into three main categories: (1) syntactic
quality, the level to which data follows the rules of a data model, with subcriteria in-
cluding accuracy and consistency, (2) semantic quality, the level to which data is rele-
vant and required for the purpose, with subcriteria including accuracy, completeness,
and mapping consistency, and (3) pragmatic quality, the level to which data is suit-
able for a given application, with subcriteria including completeness, timelineness,
and presentation suitability. Hazen et al. (2014) defines four dimensions of data qual-
ity in the context of supply chain management: (1) accuracy, the degree to which data
has errors, i.e., the degree to which it is similar to the “real” value, (2) timeliness, the
degree to which data is up-to-date, (3) consistency, the degree to which similar data
is presented in the same format, and (4) completeness, the degree to which necessary
data is available. These dimensions are similar to the subcriteria of Huang (2013) and
the taxonomy presented in Gao et al. (2016). In a comparison study on data quality
frameworks, Cichy and Rass (2019) shows that accessibility, accuracy, completeness,
consistency, and timeliness have the highest number of occurrences as data quality
criteria. Although there is an ongoing discussion on the dimensions of data quality
in literature, the criteria identified by the above authors (accuracy, timeliness, con-
sistency, completeness) are the most frequently used ones to describe data quality
(Ehrlinger & Wöß, 2022).

2.4.2. DATA QUALITY ISSUES

Data quality issues such as data sparseness or errors in the data for one or more of the
dimensions of data quality lead to poor decision quality (Heinrich et al., 2018; Bron-
selaer, 2021). Accuracy decreases when data deviates from the “real” value; timeli-
ness decreases when the data is outdated; consistency decreases when different data
points are not presented in the same format; completeness decreases when there is
missing data (Souibgui et al., 2019). Additionally, in the case of (partly) illicit sup-
ply chains, data can be manipulated or masked to avoid detection (van Schilt et al.,
2023). In terms of the data quality dimensions, this study identifies and addresses
three main data quality issues that are relevant for decision-making: noise, bias, and
missing values (Oliveira et al., 2005; Janssen et al., 2017).
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Noise in data results in corrupted or distorted data, potentially rendering it mean-
ingless (Sáez et al., 2014). Noise in a data point is generally defined as a deviation of
that particular data point, where the distribution of the deviation has a mean and a
noise width (Gaussian noise) (Teng, 1999; Zhu & Wu, 2004; Zhu et al., 2004). So, a
data point with noise results in the original value plus or minus a deviation. There is
a difference between noise that is inherent (natural), and injected (artificial). When
analyzing noise, it is important to take this distinction into account (Seiffert et al.,
2014).

Bias in data means that the data is not representative of the population or the
phenomenon of study (Tripepi et al., 2010). Bias means that some members are more
likely to be included than others, thus the probability of a member being included
is unequally distributed. Data produced by humans may contain bias as a result of
human preferences or human observational capabilities. The most common types
of bias are (i) selection bias, i.e., group representation, (ii) reporting bias, i.e., some
observations are more likely to be reported than others, and (iii) detection bias, i.e., a
phenomenon is more likely to be observed than others (Ntoutsi et al., 2020).

Missing values relate to the completeness of a data set. Peng et al. (2023) presents
a review and notes that missing values are a widespread data quality problem. They
categorize missing values into three categories, building on research by Rubin (1976).
This first category addresses data that is missing completely at random, meaning the
absence of a data value is based on a random sample of the complete data set. The
second category of missing values is missing at random, meaning the absence of a
data value is related to some properties of the observed data (the data set without the
missing values) but not to the missing data. The third category is missing not at ran-
dom. meaning the absence of a data value is systematically correlated to properties
of the missing data itself (Fox, 2015). As an example of the second category, people
with a higher age are more likely to withhold information on their income, meaning
that the probability of missing data depends on the age (a property of the observed
data). As an example of the third category, people with a higher income are more
likely to withhold information on their income, meaning the probability of missing
data depends on the income level itself (a property of the missing data).

2.5. CLASSIFICATION OF DATA SPARSENESS

In this section, the literature on supply chain visibility is combined with the literature
on data quality for classifying data sparseness in the field of supply chain manage-
ment. First, the overlap between the two bodies of literature is discussed. Next, the
classification of data sparseness based on the literature review is presented.

Supply chain visibility is primarily determined by the quality and the quantity of
the data (Caridi et al., 2010; Kalaiarasan et al., 2022). For quality, the data quality
criteria of Huang (2013), Gao et al. (2016), and Ehrlinger and Wöß (2022) are used as
these are the most frequently used ones to describe data quality. Quality and quantity
of data are specified by the syntactic and semantic criteria, more specifically by their
accuracy, consistency, and completeness. In the field of supply chain management,
these data quality criteria are of relevance for enhancing supply chain visibility, and
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for informed decision-making (Munir et al., 2020; Kalaiarasan et al., 2022). Accuracy
ensures precise information on important supply chain variables such as inventory,
order status, and lead times. This helps, for example, to make accurate demand fore-
casts to prevent excess inventory, which is important for the predictive real-time na-
ture of the supply chain. Consistency ensures reliable data of supply chain operations
that is shared between stakeholders. For example, a consistent data format between
stakeholders helps to track the movement of goods. Considering the multi-sourced
and geospatial characteristics of a supply chain, a consistent data set shared among
the many stakeholders is of high importance to enhance supply chain visibility by
enabling the tracking of the movement of goods and inventory levels. Completeness
ensures comprehensive data of the supply chain operations. For example, this helps
to anticipate demand and avoid stockouts, or to enable efficient planning when look-
ing at the temporal characteristics of the supply chain.

For data sparseness, three main issues for data quality are distinguished: noise,
bias, and missing values (Oliveira et al., 2005; Janssen et al., 2017; van Schilt et al.,
2023). These issues are classified as the dimensions of data sparseness. The logi-
cal relationships between the dimensions of data sparseness and data quality criteria
including their impact on supply chain visibility are illustrated as follows: Noise im-
pacts the accuracy and the consistency of data quality. For example, in a case where
the inventory of medical PPE is monitored manually, a typo in the data leads to noise.
Inaccurate data on the inventory levels affects the accuracy and reliability of the sup-
ply chain visibility. Bias impacts the consistency and completeness of the data. For
example, using the PPE case again, large hospitals could be overrepresented in the
supply chain data, making small hospitals invisible. This would make the supply
chain data skewed and incomplete as there is less information on small hospitals.
As a result, fewer resources could be allocated to smaller hospitals, leading to stock-
outs. Missing values impact the completeness criteria. As an example in the PPE case,
there could be no data on the lead times from the supplier to the hospitals, meaning
that the hospitals have no visibility on how to manage their stock.

Other criteria, such as the pragmatic criteria of Huang (2013) and the timeliness
of Ehrlinger and Wöß (2022), are not included in our classification. These criteria
describe the relevance of the data, and indicate whether it is suitable and up-to-date
for a given application. However, relevance is a very different kind of criterion than
noise, bias, and missing values. Relevance concerns the applicability of the data set
as a whole given a specific type of analysis or decision, whereas the other dimensions
concern the modification of values within the data set for any analysis or decision
purpose (Bronselaer, 2021). Especially considering the temporal and dynamic nature
of a supply chain, the relevance of the data is subject to time-sensitive and up-to-date
information. For example, accurate demand forecasting needs a relevant and up-to-
date data set but still faces challenges when some data values with the data set are
inaccurate, inconsistent, and incomplete.

Data in a supply chain can either be sparse by itself (i.e., unintentional sparse-
ness) or sparse by manipulation (i.e., intentional sparseness) (Bartlett et al., 2007).
Intentional manipulation of data is also a data quality issue (Janssen et al., 2017). The
willingness of stakeholders to share this sparse data is the primary factor that deter-
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mines transparency in the context of supply chain visibility (Wang & Zhuo, 2020; Baah
et al., 2022). Combining (un)intentional sparseness and (non-)transparency leads to
four cases, where stakeholders are either (1) willing to share unintentionally sparse
data to improve supply chain management, (2) unwilling to share unintentionally
sparse data to hide data, (3) willing to share intentionally sparse data to mislead other
stakeholders, or (4) unwilling to share intentionally sparse data to prevent poor data
availability. The fraction of intentional sparseness of the data has an impact on how
to cope with data in supply chain management and how to use it in decision-making
(Oliveira & Handfield, 2019; Bronselaer, 2021). For example, if a supplier intentionally
withholds key production data about the fabric of medical PPE to gain a competitive
advantage, the manufacturer may make sub-optimal decisions on inventory levels,
leading to potential disruptions in the supply chain and increased costs.

This literature study led to the following definition of sparse data in relation to
supply chain visibility:

Sparse data in supply chain management refers to the lack of data quality across the
entire supply chain for the quality dimensions: noise, bias, and missing values, where

a certain fraction of data sparseness is intentional.

Table 2.1 presents the classification of sparse data in the context of supply chain
management. In summary, there are three dimensions of data sparseness: (1) noise,
i.e., values in the data set are distorted; (2) bias, i.e., values in the data set are not
representative of the population or the phenomenon of study; (3) missing values, i.e.,
values in the data set are missing. Each dimension has a certain fraction of intentional
sparseness. Thus, each dimension of data sparseness consists of (i) the level of data
quality, and (ii) the fraction of intentional sparseness.

Description Level of data quality Fraction of intentional sparseness

Noise Distortedness.
Value is modified by adding
a deviation following a distribution
in x% of original data elements.

Noise is for y% intentionally
sparse in the data.

Bias Representativeness.
Value is structurally
more likely to be present in
x% of the original data elements.

Bias is for y% intentionally
sparse in the data.

Missing values Completeness.
Value is missing in x% of
the original data elements.

Missing values is for y%
intentionally sparse in the data.

Table 2.1: Classification of data sparseness in three dimensions.

2.6. METHODS

In this research, the effect of the identified dimensions of data sparseness on supply
chain visibility is assessed by systematically increasing the degree of sparseness in
the data. First, the quantification of the dimensions of data sparseness is described.
Second, the formalization of global supply chain visibility is discussed. Next, the de-
sign of experiments using a ground truth simulation is explained. Last, the case study
used in this research for performing experiments is presented.
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an quantity percentage of data for node n
utn bias value of time t and node n for the ground truth data
vtn value of time t and node n for the ground truth data
v ′

tn value of time t and node n for the sparse data
scvn supply chain visibility for node n
scv global supply chain visibility
qn quality percentage of data for node n
wn weight for node n based on average inventory
An set of values that are not NaN for each node n, ∀t ∈ T
N set of nodes in the data of the supply chain model, n ∈ N , where each node

represents an actor in the supply chain network
T set of elements in the time domain in the ground truth data of the supply

chain model, t ∈ T
T ∗ set of elements in the time domain in the ground truth data indicating bias

Table 2.2: Table of Notation.

2.6.1. FORMALIZATION OF DIMENSIONS
Let t ∈ T be an index t in the set of elements of the time domain T in the data. Let
n ∈ N be a node n (in this case, an actor) in the set of nodes N in the data. Let vtn

be a value of time t and node n for the ground truth data, and let v ′
tn be a value of

time t and node n for the sparse data. The degree of data sparseness is systematically
increased on the three identified dimensions of data sparseness as follows:

Noise level of x% is defined as x% of original data elements are modified by adding
a deviation following a distribution. This means that, over the entire data set, x% of
the data has noise. It is randomly determined, using a discrete Uniform distribution,
which elements of the data set have noise. The deviation of the noise follows a Gaus-
sian distribution with a standard deviation of 1. A value with noise can be defined
as:

v ′
tn ∼ vtn +N (µ= 0,σ= 1) (2.1)

Bias level of x% is defined as values that are structurally more likely to be present
in x% of the original data elements. A sample of x% of the rows is randomly drawn to
represent bias. Every row is allocated a weight through a log-normal distribution with
µ= 0 and σ= 1, and a sample is selected based on these weights. For example, there
are 100 data rows with 25% bias. This means that on average 25 rows are sampled
using the weights resulting from the log-normal distribution, and replace a randomly
selected row from the ground truth data set. The higher the weight given the log-
normal distribution, the more likely the row will be sampled and will be more often
present in the data set. The other 75 rows remain the same as the ground truth data
set. Let T ∗ ⊂ T be the set of elements in the time domain indicating bias. Let utn be
a historical value that is already present in the data set, and used to create bias:

utn ∈ {vt ′n′ : t ′ ∈ T,n′ ∈ N } (2.2)
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A value with bias can be defined as:

v ′
tn =

{
vtn , ∀t ̸∈ T ∗,

utn , ∀t ∈ T ∗ (2.3)

Missing values level of x% means that a value is missing in x% of the original
data elements. Similar to the noise level, it is randomly determined which x% of data
points are missing over the entire data set by following a discrete Uniform distribu-
tion. A missing value can be defined by a non-value (NaN, indicating Not a Number)
as follows:

v ′
tn = NaN (2.4)

Important to note is that a non-value differs from a zero value. In the context of
supply chain management, many true values can be zero, such as zero inventory of
a product, so a missing value is encoded as NaN rather than as zero (Heinrich et al.,
2018).

2.6.2. FORMALISATION OF SUPPLY CHAIN VISIBILITY
Supply chain visibility is measured by comparing the available quantity and quality
of the information to its theoretical maximum, as described in Section 2.3.3. The
calculation of supply chain visibility in our research is as follows: first, the quantity
and the quality of the information at each node are measured. For each node n ∈ N ,
the quality as a percentage is defined as follows:

qn = 100−MAPE(vn , v ′
n) (2.5)

where MAPE is the mean absolute percentage error relative to the average of the
data elements of the node. Hereby, the magnitude of the mean absolute percentage
error is taken into account. MAPE is defined as,

MAPE(vn , v ′
n) = 100

#T

∑
t∈T

∣∣∣ vtn − v ′
tn

vn

∣∣∣ (2.6)

For each node n ∈ N , the quantity as a percentage is defined as follows:

an = 100× #An

#T
, An = {v ′

tn ̸= N aN ,∀t ∈ T } (2.7)

The supply chain visibility for each n ∈ N is calculated as:

scvn =p
qn ×an (2.8)

Second, the weight of each node in the supply chain is determined. The weight is
based on the average number of orders wn of each node n. The average number of
orders is normalized over all nodes. This gives,

wn = vn∑
n∈N

vn
(2.9)
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The global supply chain visibility as a percentage can be calculated as follows:

scv = ∑
n∈N

wn × scvn (2.10)

2.6.3. DESIGN OF EXPERIMENTS
This research uses a ground truth simulation model to evaluate and compare the sup-
ply chain visibility for varying degrees of data sparseness in each of the dimensions.
The simulation model calculates the ground truth values to obtain the theoretical
maximum quality and quantity of information. This set-up allows for correctly as-
sessing how supply chain visibility changes as the true maximum is known which is
often not the case in real life (Khondoker et al., 2016).

Figure 2.1 presents the method used for calculating supply chain visibility for var-
ious degrees of data sparseness using the ground truth. First, the ground truth data
for each time element t ∈ T and each node n ∈ N , vtn , is extracted from the simula-
tion model. This ground truth data does not include any sparseness. Then, a certain
percentage of data sparseness is added: noise, bias, and missing values. Next, the
ground truth data values (vtn) and the sparse data values (v

′
tn) are used to calculate

the supply chain visibility. First, the supply chain visibility is calculated for each node,
n ∈ N , using the ground truth data and the sparse data. The quantity and the quality
of the sparse data is compared to the ground truth. Next, the weights of each node are
determined based on the average number of orders. Then, these measures are com-
bined to a global supply chain visibility (indicated by SCV in Figure 2.1) as a percent
value.

Figure 2.1: Method for calculating global Supply Chain Visibility (SCV).

Two experiments are performed in this study: (1) systematically increase the de-
gree of data sparseness for each individual dimension, and (2) design and evaluate
plausible real-life scenarios with regard to data sparseness. First, the degree of data
sparseness is systematically increased by 10% for each dimension. More specifically,
the experiments are 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90%. For the
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ground truth data, i.e., the base case, there is no data sparseness in any dimension so
the supply chain visibility is always 100%.

Second, the effect of the three dimensions of data sparseness on stylized scenarios
that are theoretically plausible in real-life supply chains is evaluated. In these stylized
scenarios, all three dimensions of data sparseness are used as most real-world data
sets include all these dimensions of data sparseness. The dimensions are added in the
following order to the data set: (1) add bias, so bias only exists for true values of the
data, (2) add noise to this biased data set, (3) delete values to create missing values.
The configuration of these stylized scenarios is presented in Section 2.7.2.

Each experiment is performed with 200 unique seeds to account for the effect of
stochasticity on supply chain visibility. By transforming the ground truth data using
the same seeds for each experiment, it is ensured that the exact same observations
are modified for each dimension of data sparseness.

2.6.4. CASE STUDY
In this research, a stylized counterfeit PPE supply chain is used as a case study for
performing experiments. This supply chain is characterized by sparse data since (1)
the production of counterfeit PPE during COVID-19 presented a new and unexpected
phenomenon with little historical data, and (2) counterfeit PPE supply chains are op-
erated by organizations selling fraudulent products that obfuscate as much data as
possible (Hashemi et al., 2023).

Figure 2.2: Stylized Supply Chain of Counterfeit PPE.

Figure 2.2 visualizes the stylized counterfeit PPE supply chain simulation model.
The symbols in the figure represent the main actors in the supply chain, and the ar-
rows represent the transportation flows. The supply chain starts with the raw mate-
rials supplier, placed in this stylized case in Vietnam, who supplies products for PPE
such as fabrics. Next to China (source of the majority of the medical counterfeits) and
India, many PPE come from Vietnam including the general productive mask produc-
tion (Nikkei Asia, 2020). These products are transported over land to one of the two
manufacturers in the same country, Vietnam. These manufacturers produce protec-
tive masks (mislabeling them as medical) in the factory and pack them in batches for
transport. Each batch has a certain quantity of counterfeit PPE. For example, a batch
consists of 2000 boxes of 200 PPE which equals a quantity of 200,000 PPE in total.
Next, a batch of finished counterfeit PPE is transported from the manufacturers’ lo-
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cation via a truck to the export port in Hai Phong, Vietnam. The batch is loaded into
a 40 ft container and transported by a small container ship to the transit port, Tan-
jung Pelepas, Malaysia. The small container ship unloads the container with coun-
terfeit PPE at the transit port. At the same port, the container is loaded onto a larger
container ship for overseas transport. The destination of this ship, also the import
port, is either the Port of Rotterdam, The Netherlands, or the Port of Antwerp, Bel-
gium. The container is unloaded at one of these ports and waits for inland transport
to the (illegal) wholesales distributor in Eindhoven, The Netherlands. This means
when the container arrives in Antwerp, the truck crosses a land border to arrive at
the wholesales distributor. At the wholesales distributor, the batch of counterfeit PPE
in the container is equally divided into three smaller batches for the three retailers.
These smaller batches are transported by small trucks to the retailers in Amsterdam,
Utrecht, and Venlo in The Netherlands. When the counterfeit PPE arrives at the re-
tailer, the products are being sold with or without knowing that they are counterfeit.

A discrete event simulation model of this stylized configuration of a counterfeit
PPE supply chain from Vietnam to stores in the Netherlands is used to gather the
ground truth data. Table 2.3 shows the input parameters for the actors and the links
used in the stylized simulation model.

In the simulation model, most uncertainties such as delays of transport modali-
ties and speed of transport modalities follow triangular distributions inspired by real-
world data of a fashion retailer (Kuipers, 2021). Table 2.4 shows the input parame-
ters and the distributions of the speed and the delays of the transport modalities for
the simulation model of this study. This case study represents a complex network
suitable for our study due to the many uncertainties in the supply chain simulation
model (e.g., delay in transport modalities, loading and unloading times). For exam-
ple, the retailer’s inventory can fluctuate very much, depending on whether a vessel
has a 1-day delay or a 7-day delay.

Actors Links
Input Parameter Distribution Value Unit Name Value Unit
Interarrival time of product at supplier Exponential 1.5 days Supplier to manufacturer 1 50 km
Time at manufacturer None 2.5 days Supplier to manufacturer 2 45 km
Time at ports Triangular 1, 2, 2 days Manufacturer 1 to export port 125 km
Time at wholesales distributor Triangular 0.5, 1, 2 days Manufacturer 2 to export port 100 km
Time at retailers Exponential 0.2 days Export port to transit port 1656 nautical miles

Transit port to import port Rotterdam 9286 nautical miles
Transit port to import port Antwerp 9195 nautical miles
Import port Rotterdam to wholesales distributor 135 km
Import port Antwerp to wholesales distributor 100 km
Wholesales distributor to retailer Amsterdam 125 km
Wholesales distributor to retailer Utrecht 92 km
Wholesales distributor to retailer Venlo 60 km

Table 2.3: Input parameters of actors and links for the simulation model of the stylized counterfeit PPE
supply chain.
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Transport modalities
Input Parameter Distribution Value Unit Input Parameter Distribution Value Unit
Speed of small truck Triangular 0, 100, 120 km/h Delay of small truck Triangular 0, 0.2, 0.5 days
Speed of large truck Triangular 0, 80, 120 km/h Delay of large truck Triangular 0, 0.5, 1 days
Speed of feeder Triangular 10, 18, 25 knots Delay of feeder Triangular 0, 4, 16 days
Speed of vessel Triangular 10, 18, 25 knots Delay of vessel Triangular 0, 7, 16 days

Table 2.4: Input parameters of speed and delay of the transport modalities for the simulation model of the
stylized counterfeit PPE supply chain.

From this simulation model, time series data on the stylized supply chain is ex-
tracted as ground truth data. The time series data entails data on the inventory that is
located at each actor (e.g., manufacturer, export port, import port) in the supply chain
per day. Each data element in the time series data is thus the inventory of an actor
at a specific time. The mean inventory value per day is calculated for the multiple
replications of the simulation model. A simulation time of 52 weeks with 20 unique
replications is used. The simulation model has been developed with the library pyd-
sol in Python. This library is a Python implementation of the Distributed Simulation
Object Library (DSOL), originally implemented in Java (Jacobs, 2005).

2.7. RESULTS

This section presents the results of variations in supply chain visibility given an in-
creasing degree of sparseness for each of the identified dimensions of data sparse-
ness using the case study. Next, the plausible scenarios that could theoretically occur
in real life are described. These scenarios are evaluated for the impact of data sparse-
ness on supply chain visibility.

2.7.1. EFFECT OF THE INDIVIDUAL DIMENSIONS
Figures 2.3, 2.4, and 2.5 show, for each individual dimension of data sparseness, a
boxplot of global supply chain visibility for various degrees of data sparseness. The
boxplot displays the minimum, the 1st quartile (i.e., 25th percentile), the median,
the 3rd quartile (i.e., 75th percentile), and the maximum of the percentage of supply
chain visibility for each degree of data sparseness. Also, the average supply chain
visibility of each actor in the supply chain over various degrees of data sparseness
including a 95% confidence interval is shown. The size of the markers in the plot is
equal to the size of the 95% confidence interval.
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(a) Boxplot of global supply chain visibility.

(b) Supply chain visibility per node.

Figure 2.3: Results for dimension noise for 200 seeds for various degrees of data sparseness.

Figure 2.3a presents the boxplot of supply chain visibility when adding noise to
the ground truth data. It shows that the global supply chain visibility gradually de-
creases when more noise is present in the data with average steps of 4% to 7% per
10% of extra noise. The highest median value of supply chain visibility, excluding the
base case, is 95.9% at 10% noise. The lowest median value of supply chain visibility
is 52.9% at 90% noise. The spread of the supply chain visibility over the 200 seeds
becomes wider with a higher degree of noise, meaning that the interquartile distance
(i.e., the distance between the 1st and 3rd quartiles) becomes wider. However, this
distance stays limited to at most 4.3%. The distance between the minimum and the
maximum value of supply chain visibility becomes even wider over the various de-
grees of noise with the largest distance of 14% at 90% data sparseness.

When looking more closely at which actors contribute to this spread, Figure 2.3b
shows that most actors follow the same decreasing trend over the various degrees of
noise regarding their supply chain visibility. Represented by the size of the marker in
this figure, the retailer in Amsterdam has the widest confidence interval of 1.2% when
increasing the degree of noise in the data. Other actors have a confidence interval
between 0.8% to 1.0% at the highest degree of data sparseness (90%).
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(a) Boxplot of global supply chain visibility.

(b) Supply chain visibility per node.

Figure 2.4: Results for dimension bias for 200 seeds for various degrees of data sparseness.

Figure 2.4a shows the boxplot of global supply chain visibility when adding bias to
the ground truth data. The boxplot shows that supply chain visibility decreases when
more bias is present in the data with on average steps of 3% to 5% per 10% of extra
bias. The highest median value of supply chain visibility, excluding the base case, is
96.8% at 10% bias. The lowest median value of supply chain visibility is 64.9% at 90%
bias. The spread of supply chain visibility becomes wider up to 50% bias with an in-
terquartile distance from 0.5% to 1.4%, and the distance between the minimum and
the maximum values from 1.8% to 5.5%. At 60% bias, the spread becomes smaller
(4.5%) and afterwards, it increases by 2% for 70% data sparseness. After 70%, the
spread becomes wider with the widest spread at 90% bias with an interquartile dis-
tance of 4.9% and a distance between the minimum and the maximum of 8.8%.

When looking at the supply chain visibility per actor including the 95% confi-
dence interval in Figure 2.4b, it shows that the average supply chain visibility per-
centage of the actors retailer in Amsterdam converges to 2.7% at 90% bias. From 60%
onwards, the average supply chain visibility of retailer in Amsterdam is decreasing
steeply with steps of 10% to 20%, and with a confidence interval higher than 1.2%.
This could explain why the spread of the global supply chain visibility is smaller at
60% bias, and becomes considerably wider afterwards. Also, for this actor, the av-
erage supply chain visibility percentage decreases relatively steeply compared to the
other actors. The percentage of supply chain visibility of the manufacturers gradually
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decreases with on average steps of 1% to 2% per 10% bias increase over the various
degrees of bias as data sparseness. For the transit port, import ports, and whole-
sales distributor, supply chain visibility decreases with average steps of 2% to 3%. The
percentage of supply chain visibility of the actor export port decreases slightly more
steep with average steps of 4% to 5% when increasing bias in the data.

(a) Boxplot of global supply chain visibility.

(b) Supply chain visibility per node.

Figure 2.5: Results for dimension missing values for 200 seeds for various degrees of data sparseness.

Figure 2.5a presents the boxplot of global supply chain visibility when adding
missing values to the ground truth data. It shows that the supply chain visibility de-
creases when more missing values are present in the data. The decrease starts with
steps of 5% to 6% per 10% increase in missing values. From 50% missing values on-
wards, the median value of supply chain visibility decreases with 7% to 13% per 10%
step. The highest median value of supply chain visibility, excluding the base case,
is 94.8% at 10% missing values. The lowest median value of supply chain visibility
is 31.9% at 90% missing values in the data. The spread of the supply chain visibility
is relatively small but increases over the various degrees of missing values. The in-
terquartile distance is 0.8% at 10% missing values and is gradually increasing to 2.4%
at 90% missing values. The distance between the minimum and the maximum value
of supply chain visibility is increasing from 2.8% to 8.6%.

When looking at the supply chain visibility for each actor in Figure 2.5b, it shows
that most actors in the supply chain follow the same trend regarding the average per-
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centage of supply chain visibility over the various degrees of missing values. The 95%
confidence interval of all the actors, except for the retailer in Utrecht and the retailer
in Venlo, becomes slightly wider when the percentage of data sparseness increases.
However, this is still not more than 0.7%.

Noise Bias Missing
Percentage of
Data Sparseness

Mean Std Mean Std Mean Std

0% 100.0 0.0 100.0 0.0 100.0 0.0
10% 95.9 0.8 96.8 0.4 94.8 0.6
20% 91.7 1.2 93.4 0.5 89.5 0.9
30% 87.2 1.4 89.9 0.7 83.7 1.1
40% 82.4 1.6 86.3 0.8 77.5 1.2
50% 77.3 1.8 82.5 1.0 70.7 1.4
60% 71.8 2.0 78.5 1.0 63.2 1.5
70% 66.1 2.3 74.3 1.4 54.8 1.5
80% 59.9 2.7 69.8 1.5 44.9 1.7
90% 52.8 3.0 65.0 1.9 31.7 1.7

Table 2.5: Supply chain visibility (%) mean and standard deviation for each dimension of data sparseness
and for various degrees of data sparseness.

Table 2.5 shows the mean and the standard deviation, i.e., the spread, of the sup-
ply chain visibility as a percentage for each dimension in more detail. It can be ob-
served that the standard deviation of the supply chain visibility increases when more
noise is added to the data. The increase of the standard deviation from 0.8% at 10%
sparseness to 3.0% at 90% sparseness is the highest of all dimensions. The table also
makes clear that missing values assert the most influence on supply chain visibility.
For missing values, the average percentage of supply chain visibility decreases all the
way down to 31.7% for 90% data sparseness. Missing values has the lowest standard
deviation over most degrees of data sparseness compared to noise and bias.

2.7.2. SCENARIO ANALYSIS
To compare the effect of data sparseness on real-life supply chain cases, plausible
scenarios that theoretically could occur in a supply chain for assessing supply chain
visibility are developed. Table 2.6 presents the configuration of the percentages of
noise and missing values of four stylized scenarios: (i) competitor, (ii) key actor, (iii)
supply-oriented, and (iv) demand-oriented. For each scenario, a bias of 25% over
the entire data set is added as real-life data often includes values that are structurally
more present than others. For example, companies have structurally more informa-
tion on their own inventory than on the inventory of other actors.
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Scenarios
Competitor Key Actor Supply-Oriented Demand-Oriented
Noise Missing Noise Missing Noise Missing Noise Missing

Supplier 10 25 10 25 10 25 80 95
Manufacturer 1 10 25 10 25 20 35 70 85
Manufacturer 2 95 95 10 25 20 35 70 85
Export port 10 25 10 25 30 45 50 65
Transit port 10 25 95 95 40 55 40 55
Import port 1 & 2 10 25 10 25 50 65 30 45
Wholesales 10 25 10 25 70 85 20 35
Retailer 1, 2 & 3 10 25 10 25 80 95 10 25

Table 2.6: Configuration of percentage of noise and missing value for each actor in % for four scenarios.

The first scenario, competitor, reconstructs the case where only one of two actors
in a competitive position in a supply chain is willing to share data. A possible reason
is that an actor is reluctant to share good data for competitive reasons. In our case,
this is a manufacturer (referred to as manufacturer 2) with a noise of 95% and missing
values of 95%. In real life, it is unlikely that the data of the other actors is perfect. To
account for this, the other actors have a noise of 10% and 25% missing values.

The second scenario, key actor, shows the case where an actor at a key position,
i.e., in the middle of the supply chain, only provides sparse data to the rest of the sup-
ply chain with noise and missing values of 95%. Similar to the competitor scenario,
the other actors have a noise of 10% and 25% missing values.

The third scenario, supply-oriented, represents the case where much is known
on the supply side (starting with only 10% noise and 25% missing values for the sup-
plier), and less is known on the demand side (ending with 80% noise and 95% missing
values for the retailers). This often holds for suppliers as they have more high-quality
information on actors upstream than downstream, represented by gradually degrad-
ing data over the actors in the supply chain.

The fourth scenario, demand-oriented, represents the case where much is known
on the demand side (starting with only 10% noise and 25% missing values for the re-
tailers), and less is known on the supply side (ending with 80% noise and 95% missing
values for the supplier). The retailers have a higher quality and quantity of informa-
tion on the actors close to them, i.e., downstream. Similar to the supply-oriented sce-
nario, this is represented by a gradual increase in the percentage of noise and missing
values following the sequential ordering of the upstream actors in the supply chain.
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(a) Boxplot of global supply chain visibility.

(b) Supply chain visibility per node per scenarios. The size of the markers represents the 95% confidence
interval of the supply chain visibility for each actor.

Figure 2.6: Results of the scenarios (1) Competitor, (2) Key Actor, (3) Supply-Oriented, (4) Demand-
Oriented over 200 seeds.

Figure 2.6a shows the boxplot of the average global supply chain visibility percent-
age for each scenario. In the scenarios where only one actor provides sparse data, the
competitor and the key actor, the global supply chain visibility is 72.9% and 71.9%
respectively. The spread of these two scenarios over the 200 seeds is small as the in-
terquartile distance for both scenarios is only 1.3%, and the distance between the
minimum and the maximum values is at most 5.1%. Figure 2.6b presents the average
supply chain visibility percentage per actor with the size of the marker representing
the 95% confidence interval. From this, it can be observed that the decrease in global
supply chain visibility is directly correlated with a low average supply chain visibility
of the particular actor that has a high noise and a high number of missing values in
each of the two scenarios. The average supply chain visibility of Manufacturer 2 and
the transit port is around 9.2% with a 95% confidence interval of 0.6%. Other actors
have an average supply chain visibility between 69.5% to 86.6%.

In the scenarios where noise and missing values are gradually added to the ac-
tors in the supply chain, either supply-oriented or demand-oriented, the global sup-
ply chain visibility is 58.5% and 40.6% respectively (see Figure 2.6a). For the supply-
oriented scenario, the spread is small with an interquartile distance of 2.0% and a dis-
tance between the minimum and maximum values of 7.8%. For the demand-oriented
scenario, the spread is wider with an interquartile distance of 3.0% and a distance be-
tween the minimum and the maximum of 11.1%.
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When looking at the supply-oriented scenario, the average supply chain visibility
per actor in Figure 2.6b decreases over the supply chain. Given the sequential order-
ing of the actors in the supply chain, the supplier and the manufacturers have the
highest average supply chain visibility between 86.6% and 89.7%. The actors with the
lowest average supply chain visibility in the supply-oriented scenario are the retailers;
between 7.9% to 12.9% with a relatively wide confidence interval.

For the demand-oriented scenario, a similar pattern of sequentially decreasing
average supply chain visibility over the actors in the supply chain is present but then
reversed in comparison to the supply-oriented scenario. The actors with the highest
average supply chain visibility are the retailers in Utrecht and Venlo with 83.5%, and
the supply chain visibility of the retailer in Amsterdam is 69.6%. Actors with the lowest
average supply chain visibility are the manufacturers with 24.7% and a relatively small
confidence interval. Figure 2.6b also shows that the global supply chain visibility of
this scenario is the lowest and it has the widest spread.

2.8. DISCUSSION

Six main elements are addressed that are essential for properly understanding and in-
terpreting the results of this study: (1) impact of artifacts of the simulation model, (2)
use of sampling method, (3) way of calculation of supply chain visibility, (4) specificity
to a sequential supply chain, (5) lack of including intentionality, and (6) limitation on
the incorporation of the data collection process.

First, the results show that in all three individual dimensions of data sparseness,
the actors at the outer end of the supply chain, i.e., the supplier, the retailer in Utrecht,
and the retailer in Venlo, have zero to little spread in their supply chain visibility or
are not influenced (i.e., the visibility remains at 100%) when adding data sparseness.
A reason is that the inventory of these actors is often zero as this is the starting or the
ending node of the supply chain. This is an artifact of the simulation model as the
product does not stay at the supplier for long (e.g., not longer than 1 day), and prod-
ucts are assumed to be sold or used quite quickly after arriving at the retailer. Since
the average inventory of these actors is low, the weights for calculating the global
supply chain visibility are also low (Caridi et al., 2010, 2013). Therefore, these outliers
have little impact on the resulting global supply chain visibility. Interestingly, when
adding all three dimensions of data sparseness to each actor in the scenarios, the sup-
ply chain visibility of the supplier, the retailer in Utrecht, and the retailer in Venlo, are
somewhat affected by data sparseness, but the effects are very limited.

Second, the sampling method for the dimensions of data sparseness affects the
results depending on the data quality criterion for which data sparseness is intro-
duced (Laranjeiro et al., 2015). The missing values dimension results in a small 95%
confidence interval and the lowest standard deviation (not more than 1.7%) for the
supply chain visibility. An explanation is that the missing values dimension only im-
pacts the quantity of the data. It is more straightforward in which way the data is
transformed, so the spread is low. For noise and bias, dimensions that affect the
quality of the data, the ranges on how the data can be transformed are wider and,
therefore, the spread in supply chain visibility outcomes is larger. Also, as bias is
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sampled using a log-normal distribution, there is a higher probability that the cor-
rect information of some actors is more often present in the data than the correct
information of others. This leads to a higher quality of the data of those actors and,
therefore, a higher supply chain visibility (Kalaiarasan et al., 2022). It explains that, in
the bias dimension, the average supply chain visibility of most actors is relatively high
in comparison to the fast-decreasing supply chain visibility of the retailer in Amster-
dam. The data is sampled using a Uniform distribution for the dimensions noise and
missing values. As the data of all actors are equally likely to be modified following this
Uniform distribution, the actors logically follow the same trend regarding the impact
on visibility in these dimensions.

Third, the way of calculating supply chain visibility is of importance when inter-
preting the results. For the scenarios where only one actor is impacted, the competi-
tor scenario and the key actor scenario, the average supply chain visibility percentage
is approximately the same. However, in supply chain theory, a “bull-whip” effect of
information would be expected in the key actor scenario, i.e., every actor upstream
of the key actor would also be less visible due to the sparse data of the key actor (Lee
et al., 1997). This means that, theoretically, degrading data in the key actor scenario
leads to a lower global supply chain visibility than in the competitor scenario. How-
ever, this effect is not represented in the formulas of global supply chain visibility, and
therefore, the results of these two scenarios are the same. This lack of including the
“bull-whip” effect is a limitation for the calculation.

When comparing demand-orientation and supply-orientation, the results show
that the demand-oriented scenario has a lower global supply chain visibility than
the supply-oriented scenario. Additionally, the supply-oriented scenario includes
more actors with low supply chain visibility. A cause for this phenomenon is that
the weights assigned to each actor for calculating global supply chain visibility are
based on average order quantity in units (i.e., inventory levels), following Caridi et al.
(2010). Actors upstream in the supply chain generally have more average inventory
than those downstream as they use a make-to-stock approach. More specifically, the
PPE supply chain is a push supply chain where the supplier and manufacturer cre-
ate inventory for the long-term demand instead of a pull supply chain where they
respond to real-time demand (Nag et al., 2014). This entails that the supplier and
the manufacturer have a high weight, contributing more to the global supply chain
visibility according to the formula used in our study. Thus, the results hold for cases
where the average inventory is a key indicator for determining global supply chain
visibility. In other words, the supply chain characteristics are important for calculat-
ing the average inventory and, therefore, for the validity of our results. Next to the
push and pull characteristic, the structure of the supply chain plays a crucial role
in determining the average inventory of actors (Li et al., 2020). For example, if an
assembly supply chain of a car were studied with many suppliers of small products
like windows and steering wheels, the inventory load might be differently distributed
than in the case of PPE. It would be interesting to examine whether these results hold
for different types of complex supply chains where inventory is distributed differently.

Fourth, the results are specific to the linear counterfeit PPE supply chain model
used in our study. A supply chain is often represented as a sequential network, mean-
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ing that, for example, there is a one-directional flow between supplier and manufac-
turer. On the one hand, this direct and linear dependency between the actors could
lead to a more straightforward calculation of supply chain visibility, being a limitation
to the generalizability of the results. On the other hand, many supply chains are char-
acterized by a sequential network, even when there are more actors involved. Thus,
the effect of the dimensions of data sparseness on supply chain visibility is generaliz-
able to other supply chains with similar complexity.

Fifth, the quality and the quantity of the data, hence the supply chain visibil-
ity, are not directly affected by the intentionality of data sparseness as it does not
matter whether the actor intentionally transformed the data for calculating supply
chain visibility in this study. Therefore, the intentionality aspect of data sparseness
is not included in our analysis. However, coping with sparse data and using it for
decision-making is different when data is intentionally transformed (Janssen et al.,
2017; Oliveira & Handfield, 2019). For example, when bias is intentionally added to
the data of counterfeit PPE, it is most likely that fraud-involved organizations try to
mask their real activities, and planning effective interventions on this biased data is
difficult. Whereas, if data is unintentionally sparse, masking of data for one specific
actor in the supply chain does not take place, and effective interventions can still be
planned on the biased data. The studied scenarios for a key actor hiding information
and a competitor hiding information could be seen as first experiments with inten-
tional data sparseness. As the fraction of intentional sparseness impacts how to cope
with data and how to use it in decision-making, it would be interesting to examine the
impact of intentionality on data sparseness for decision-making (Bronselaer, 2021).

Last, a limitation of the systematic literature review on supply chain visibility and
data quality is that the data collection phase was kept out of scope. For the purpose of
this research, only the impact of data sparseness on supply chain visibility has been
studied. The literature study provided some possibilities on decreasing data sparse-
ness during the data collection phase, such as the use of IoT, RFID, and blockchain
(Pero & Rossi, 2014; Kumar et al., 2022). Extending this research by analyzing how to
improve data quality for all phases of the data management process and how to rank
these solutions would be interesting for academics and practitioners.

2.9. CONCLUSION

Improving data quality is crucial for enhancing supply chain visibility, because accu-
rate and comprehensive data allows for informed decision-making, monitoring op-
erations, enhancing resilience, and mitigating potential inefficiencies (Munir et al.,
2020; Bronselaer, 2021). Poorly informed supply chain management decisions may
result from data sparseness, creating challenges for stakeholders to coordinate effec-
tively, and potentially resulting in shortages of products (Janssen et al., 2017; Kala-
iarasan et al., 2022). Therefore, it is important to make supply chain practitioners
aware of the different dimensions of data sparseness and how these dimensions im-
pact supply chain visibility. However, no clear and concise formalization of data
sparseness exists in the current state-of-the-art literature on supply chain manage-
ment. Additionally, a knowledge gap exists in understanding the extent of the impact
caused by different dimensions of data sparseness. Addressing these knowledge gaps
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is essential for enhancing the ability of supply chain practitioners to deal with data
sparseness, and for contributing to further developments in the supply chain field by
explicitly including the notion of data sparseness and its impact.

This research addresses the gaps in the existing literature by providing a classifi-
cation of data sparseness in the context of supply chains and assessing its impact on
supply chain visibility. First, using a systematic literature review, data sparseness is
classified into three dimensions: (1) noise, i.e., values in the data set are distorted, (2)
bias, i.e., data is not representative of the population or the phenomenon of study, (3)
missing values, i.e., values are missing in the data. Each dimension has a certain frac-
tion of intentional sparseness. Thus, sparse data in relation to supply chain visibility
is referred to as: “lack of data quality across the entire supply chain for the quality di-
mensions: noise, bias, and missing values, where a certain fraction of data sparseness
is intentional”.

Next, the impact of these dimensions on the supply chain visibility is evaluated
for an increasing degree of data sparseness. A stylized counterfeit PPE supply chain
simulation model is used as ground truth. Data is extracted from this model, and
then data sparseness for the three dimensions is systematically added to this data.
Hereby, the magnitude of change in supply chain visibility for an increasing degree
of data sparseness on each individual dimension is assessed. Four stylized scenarios
that could occur in real life regarding data sparseness and their effect on supply chain
visibility are also examined.

The main research findings demonstrate that data sparseness greatly affects the
visibility of the counterfeit PPE global supply chain. More specifically, data sparse-
ness impacts supply chain visibility, leading to a reduction of up to 52.8% for noise,
65.0% for bias, and 31.7% for missing values. For all three individual dimensions, the
average percentage of global supply chain visibility decreases when more sparseness
is added to the data, and the visibility values have a small 95% confidence interval.
The missing values dimension has the largest impact on the decrease in supply chain
visibility, whereas bias has the least impact. The results show the relative importance
of the dimensions of data sparseness for actors in the supply chain. The scenario
analysis shows that the location of an actor who is unwilling to share data (either a
competitor or a key actor) makes no difference for the global supply chain visibil-
ity percentage when using the current formulas. The scenario analysis also shows
that the demand-oriented scenario has the lowest average global supply chain visibil-
ity at 40.6%. A reason is that the global supply chain visibility percentage decreases
more when actors with a high average inventory provide sparse data. It also shows
that companies with a supply-oriented view will have a better insight into the supply
chain visibility than those with a demand-oriented view.

To provide practical advice, this study helps supply chain practitioners by pro-
viding information on the relationship between dimensions of data sparseness and
supply chain visibility. The primary impact on supply chain visibility appears to be
missing data, suggesting that supply chain practitioners should prioritize address-
ing missing values to improve supply chain visibility. Additionally, companies with
a demand-oriented view should prioritize collecting data from upstream as much as
possible. This would enhance their decision-making capabilities.
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Future research should focus on evaluating the impact of data sparseness on dif-
ferent supply chain configurations in the context of supply chain visibility, e.g., non-
sequential supply chain networks. Following on this, expanding the complexity of the
simulation model (e.g., including more actors), and therefore, the complexity of the
data set is also a direction for future research. Another research direction is to investi-
gate the inclusion of the “bull-whip” effect in the calculation of supply chain visibility,
and to include intentionality for evaluating decision-making with data sparseness. A
final research direction is to research methods to enhance the data quality manage-
ment process.
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CALIBRATING SIMULATION

MODELS WITH SPARSE DATA
Counterfeit supply chains during Covid-19

COVID-19 related crimes like counterfeit Personal Protective Equipment (PPE) involve
complex supply chains with partly unobservable behavior and sparse data, making it
challenging to construct a reliable simulation model. Model calibration can help with
this, as it is the process of tuning and estimating the model parameters with observed
data of the system. A subset of model calibration techniques seems to be able to deal
with sparse data in other fields: Genetic Algorithms and Bayesian Inference. However,
it is unknown how these techniques perform when accurately calibrating simulation
models with sparse data. This research analyzes the quality-of-fit of these two model
calibration techniques for a counterfeit PPE simulation model given an increasing de-
gree of data sparseness. The results demonstrate that these techniques are suitable for
calibrating a linear supply chain model with randomly missing values. Further re-
search should focus on other techniques, larger set of models, and structural uncer-
tainty.

This chapter has been published as: van Schilt, I. M., Kwakkel, J. H., Mense, J. P., & Verbraeck, A. (2023)
Calibrating simulation models with sparse data: Counterfeit supply chains during COVID-19. In B. Feng,
G. Pedrielli, Y. Peng, S. Shashaani, E. Song, C. Corlu, L. Lee, E. Chew, T. Roeder, & P. Lendermann (Eds.),
Proceedings of the 2022 Winter Simulation Conference (pp. 496–507). https://doi.org/10.1109/WSC57314.
2022.10015241.
The code is available at https://doi.org/10.4121/a772fd6f-ec0b-4038-8e54-5b9901f060ad.v1.
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3.1. INTRODUCTION
During COVID-19, a rise in counterfeit Personal Protective Equipment (PPE) and re-
lated criminal activities was detected. Suddenly, there was a high worldwide demand
for PPE such as face masks, particulate filter respirators, gloves, goggles, and glasses
(Omar et al., 2022). Medical PPE for hospitals have stricter requirements, such as cer-
tification, than non-medical PPE. Certified PPE are more valuable than non-certified
PPE, making it attractive for criminals to try and sell non-certified PPE as certified
PPE. Detecting counterfeit PPE has been challenging since (1) COVID-19 is a new and
unexpected phenomenon so there is little historical data, and (2) criminals generally
try to share as little data as possible. Together, this makes it hard to get insight into
criminal activities pertaining counterfeit PPE, making it a complex system.

Simulation is a way to get insight into complex systems, recognizing relations,
and exploring future scenarios (Shannon, 1998). In particular, the focus of this chap-
ter is on discrete event simulation for representing complex socio-technical systems
(Schmitt & Singh, 2009). A model can be conceptualized as consisting of variables and
relations, and many variables need an initial value in the model to capture an initial
state and behavior that is consistent with the state and behavior of the system. These
initial values are called parameters; more specifically parameters of components of
the model. Some of the parameter values might be observed directly, while others
are unobservable and thus have to be tuned to match the behavior of the simulation
model with its real world counterpart.

Model calibration can help with constructing a model close to the real world. It
is the process of tuning and estimating the model parameters with observed data of
the system to improve the similarity between the model and the system. The goal
of model calibration is to find those parameter values for which the behavior of the
simulation model is as close as possible to the observed behavior of the real system
by using real data.

In case of criminal activities in general, and in particular for counterfeit PPE, data
is sparse. Criminals want to stay off the grid and generally do not voluntarily share
information about their criminal activities. In case of COVID-19 related crimes, data
sparseness is even more pronounced due to its novelty. This makes it even more chal-
lenging to calibrate models. In cases like this, model calibration should be able to
handle sparse observed data. Data sparseness can be classified in three dimensions:
(1) noise, (2) bias, and (3) missing values (Huang, 2013; Hazen et al., 2014). This re-
search focuses on one of the three dimensions of data sparseness, missing values.
The goal of model calibration with sparse data is to find the most likely model config-
uration that matches the underlying system.

A subset of model calibration techniques seems to be able to handle sparse data
in other fields. For example, Evolutionary Algorithms are widely applied for high-
dimensional optimization problems where data often becomes sparse (Ren & Wu,
2013). Bayesian Inference is often used for uncertainty analysis, and is one of the few
techniques in machine learning that is able to handle sparse data sets (Jalali et al.,
2017; Vrugt & Beven, 2018). Data Assimilation is a promising technique for predict-
ing simulation models in real-time with sparse data (Xie, 2018; Kuipers, 2021). How-
ever, it it yet unknown how these techniques perform for the calibration of simulation
models given sparse data.
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Therefore, this study analyzes two model calibration techniques that are likely
suitable for calibration in the case of sparse data. To test these techniques, a case
study of a counterfeit PPE supply chain with a focus on intentionally mislabeled PPE
is used. We use a stylized discrete event simulation model of a counterfeit PPE supply
chain as ground truth. We extract data from this model, systematically increase the
degree of sparseness of the data, and assess the extent to which the selected model
calibration techniques can still identify the underlying supply chain. We also test a
commonly used model calibration technique as reference. This chapter is the first
step towards analyzing and comparing various model calibration techniques on sim-
ulation models of complex systems in the case of sparse data.

The chapter is structured as follows. In Section 3.2, we discuss the current state-
of-the-art literature on model calibration with sparse data, and select the model cali-
bration techniques for this study. In Section 3.3, we explain the design of experiments
used to test the selected model calibration techniques. In Section 3.4, we outline the
simulation model of the case study, and present the results of the quality-of-fit of the
selected model calibration techniques on the case study given an increasing degree
of data sparseness. In Section 3.5, we discuss our results. In Section 3.6, we conclude
our study, and provide some directions of further research.

3.2. MODEL CALIBRATION TECHNIQUES

Calibration of simulation models is defined as finding values for parameters of the
model by using real data until there is a “good" agreement, i.e., as close as possible,
between the model data and the observed data over a given time interval (Wigan,
1972; Ören, 1981; Hofmann, 2005). Optimization techniques are commonly used for
model calibration as the objective is to parenting the difference between the model
data and the observed data (Liu et al., 2017).

3.2.1. RELATED WORK

Malleson (2014) discusses the calibration of simulation models in the field of crimi-
nology. The author focuses on the goodness-of-fit in spatial structures. He presents
three computer algorithms that help with exploring the parameter space: (1) Hill
Climbing, (2) Simulated Annealing, and (3) Genetic Algorithms. Malleson (2014) em-
phasizes the need for gathering reliable observed data from the criminal system as
this is not present yet. He notes that the calibrated model would not represent the
real system when data is sparse. In our study, we do not focus on gathering this data
but we focus on how to present the real system using model calibration given sparse
observed data.

Liu et al. (2017) are one of the first to explicitly addresses calibration of a sim-
ulation model under data sparseness. They propose a simulation-optimization ap-
proach to automatically calibrate a simulation model with sparse data. They for-
mulate the problem as a series of local minimum search problems. An agent-based
model of an emergency department is used as case study. Following from this, De
Santis et al. (2022) focus on calibration of a discrete event simulation model under
data sparseness. They use the observable values from the target system for finding
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values of the simulation model on the level of model parameters, e.g., the time dif-
ference between known time stamps. de Groot and Hübl (2021) use calibration as a
form of validation. In their case, validation of the simulation model is difficult due to
the sparseness of data. They manually adjust parameters and behavior of the model
to increase validity.

The main differences between the related work and our research are that (a) we
compare various optimization techniques in the case of data sparseness instead of
selecting one, and (b) we do not assume that one calibration technique works best
for all types of sparse data.

3.2.2. SELECTED TECHNIQUES FOR MODEL CALIBRATION WITH SPARSE

DATA
We select a commonly used model calibration technique as reference technique: an
exact solver using Powell’s Method. As a first attempt to analyze the performance
of techniques that seem to be able to deal with sparse data for calibrating simula-
tion models, we select two model calibration techniques: Genetic Algorithms and a
Markov Chain Monte Carlo sampling approximate Bayesian computation. The fol-
lowing sections describe these model calibration techniques in more detail.

POWELL’S METHOD

Exact solvers calibrate a model through exact mathematical optimization that guar-
antees to find (local or global) optimal solutions during model calibration (Puchinger
& Raidl, 2005). A commonly used exact algorithm for calibrating simulation models
is Powell’s Method (Liu et al., 2017). In a rugged high-dimensional fitness landscape
typical for discrete event simulations, Powell’s Method might be one of the best tech-
niques for calibrating due to its search speed (Zhong & Cai, 2015). Powell’s Method
is a gradient-free minimization algorithm using a repeated line search introduced by
Powell (1964). In more detail, the algorithm selects a starting point and draws two
different lines as search directions. On one of these lines, the algorithm performs an
one-dimensional optimization to find a new optimal point. From this point on, an
one-dimensional optimization is performed on the other line representing the differ-
ent search direction. With these optimal points, a conjugate search direction is drawn
where also an one-dimensional optimization is performed. These steps are repeated
until the algorithm finds the optimal solution or when stopping criteria are reached
(Vassiliadis & Conejeros, 2009). In this research, the number of iterations and func-
tions evaluations are used as stopping criteria.

GENETIC ALGORITHM

Evolutionary algorithms calibrate a model through population-based, i.e., “survival-
of-the-fittest", techniques. One of the oldest and well-known evolutionary algorithms
are Genetic Algorithms (GA) (Slowik & Kwasnicka, 2020). GA are widely applied as
optimization algorithm in the field of model calibration (Park & Qi, 2005; Malleson,
2014). Classic GA are based on Darwin’s theory of natural selection. The idea is that
fittest individuals have a higher change to survive, and thus their genes contribute
more to the reproduction of the next generation (Whitley, 1994). Each parameter of
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the optimization represents a gene. Each solution of the optimization corresponds to
a combination of genes, also known as a chromosome of an individual.

GA follow four steps: (1) initialization, (2) selection, (3) recombination, and (4)
mutation (Mirjalili, 2019). At the initialization, a random population to ensure diver-
sity in the solution space is spawned. Next, a selection of the best solutions based on
their fitness value is created. The fitness value is calculated by the user defined fitness
function, i.e., the objective function of the optimization. After this, the chromosomes
are combined to produce new chromosomes, also called recombination. This means
that two solutions (parents solutions) are selected to produce new solutions (children
solutions). Cross-over operators are used to combine and swap the genes of the par-
ent solutions to produce children solutions. In the last step, the genes of some chil-
dren solutions are altered, also called mutation. In this way, the algorithm maintains
the diversity of the population since a certain level of randomness is included in the
population. This avoids the probability that GA stay in the local optimum (Mirjalili,
2019).

GA are iterative processes, meaning that it keeps on creating new populations
using selection, recombination, and mutation until some user defined stopping cri-
terion is reached. In this research, we use the number of function evaluations as a
stopping criterion.

APPROXIMATE BAYESIAN COMPUTATION

Model calibration is a core application of Bayesian data analysis using Bayes’ theo-
rem (Csilléry et al., 2010). In the case of sparse data and uncertainties, approximate
Bayesian computing (ABC) is one of most suitable techniques for calibrating as it is
likelihood-free (Vrugt & Beven, 2018). ABC is a technique for estimating the posterior
distribution of model parameters using Bayesian statistics.

One of the most efficient sampling algorithms for ABC is Differential Evolution
Adaptive Metropolis (DREAM), a multi-chain Markov Chain Monte Carlo Sampling
algorithm (Sadegh & Vrugt, 2014). DREAM combines a multi-chain Markov Chain
with differential evolution, as also found in some GA, for population evolution with a
Metropolis selection rule. More specifically in the case of calibration, DREAM draws
samples using the Markov Chain Monte Carlo Sampling method. These samples are
used to run the simulation model, and to collect data. The distance between the sim-
ulated data and the observed data is used to either accept or reject a sample using an
adaptive selection rule. DREAM uses multiple parallel chains to explore the solutions
space adequately, and cross-over of solutions between the chains exists (Vrugt, 2016).

The above steps in each chain are repeated until a stopping criterion, i.e., the
number of draws, is reached. When this happens, the accepted samples are used
to approximate the posterior parameter distribution.

3.2.3. DISTANCE METRIC
In order to minimize the difference between the simulation model data and the ob-
served data, a so-called distance metric needs to be defined. The distance metric rep-
resent the distance between the simulation model data and the observed data given
a certain function. Generally, standard statistical functions such as the mean square
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error, Kolmogorov-Smirnov metrics, or Euclidean (L2) distance are used as distance
metric. However, most of these standard statistical functions do not properly adapt
to the data of a specific problem (Suárez et al., 2021). In our case, the metric has to in-
corporate data of stochastic models in combination with sparse observed data of the
system. Moreover, in simulating complex and large systems we typically deal with a
high-dimensional space as a result of the many components with their parameters,
which makes it challenging to find an appropriate and meaningful distance metric
(Aggarwal et al., 2001).

Mirkes et al. (2020) note that the classic distance metric, such as L1 and L2, are
highly efficient for complex and high-dimensional data applications. Thus, for the
purpose of this study, we use a classic distance metric: the Manhattan (L1) distance.
The Manhattan distance is the distance between data points as the sum of the abso-
lute differences normalized for all dimensions.

3.3. DESIGN OF EXPERIMENTS USING GROUND TRUTH

We perform experiments to analyze the quality-of-fit of the selected model calibra-
tion techniques for different degrees of data sparseness. First, we explain the set-up
for evaluating the quality-of-fit for the three selected model calibration techniques by
using the ground truth. Next, we discuss the configuration of each technique.

3.3.1. GROUND TRUTH SET-UP FOR EVALUATING THE QUALITY-OF-FIT

This research uses a ground truth set-up to evaluate the quality-of-fit of the model
calibration techniques over various degrees of data sparseness. For replicating the
observed data of the system, we use a simulation model that serves as a ground truth
and extract data from this model. By using this set-up, we can assess how close the
estimation of the calibration is to the true values as these are known. This is nearly
impossible with real data (Khondoker et al., 2016).

Figure 3.1 presents the method used for evaluating the model calibration tech-
niques. First, we define a ground truth simulation model with as input decision vari-
able X with ground truth X = x. The output of the ground truth simulation model
is the ground truth data, which does not include any sparseness. Next, we add data
sparseness to the ground truth data. For example, 10% of the ground truth data ele-
ments are transformed into missing values. This leads to sparse observed data. The
simulation model is calibrated to the sparse observed data. For the calibration, each
iterative model calibration technique in essence selects a candidate value for the de-
cision variable, X = v (Frank et al., 2013). Five replications of the simulation model
are ran based on the candidate values, leading to the simulation model data as out-
put. The replications are combined using the mean value, standard deviation, 5th
and 95th percentile, and the average time interval of quantity per actor type. Then,
the distance between the simulated model data and the sparse observed data is calcu-
lated using the distance metric. This distance is minimized by the model calibration
technique. Based on the distance, the model calibration technique selects new can-
didate values for the decision variable. This process stops when a stopping criterion
is reached. The result is a value for the decision variable, X = v∗, that best describes
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the ground truth model, according to the model calibration technique.
Although the model calibration techniques minimizes the distance between the

simulated and observed output data, the decision variable of the calibrated simula-
tion model is not necessarily close to the decision variable of the ground truth model.
So, we introduce the quality-of-fit of the decision variables which are defined as the
normalized distance between the ground truth decision variable, X = x, and the op-
timal decision variable resulting from the simulation model calibration, X = v∗. This
quality-of-fit is calculated by normalizing the difference between the ground truth
input, X = x, and the solution, X = v∗, given the upper and lower bounds of the de-
cision variable X . A quality-of-fit of 0 means that the optimal solution resulting from
the calibration is not close to the ground truth; a quality-of-fit of 1 means that the
optimal solution resulting from the calibration is the same as the ground truth.

Figure 3.1: Method for evaluating calibration of a simulation model with sparse data.

The above steps represent one experiment for evaluating the quality-of-fit of a
model calibration technique, given a certain degree of data sparseness. We systemat-
ically increase the degree of data sparseness added to the ground truth data. We eval-
uate for 10%, 25%, 50%, 75%, and 90% data sparseness. A degree of x% means that
x% of the original data elements are missing values. It is randomly determined which
x% of data elements are missing over the entire data set. Additionally, the model cal-
ibration techniques are examined for 0% of data sparseness, i.e., ground truth data,
as a base case. Each experiment is performed with 8 seeds to account for the effect of
stochasticity on the quality-of-fit. For each seed, we first transform x% of the data set
to missing values, and then we use this as input for all three model calibration tech-
niques. This means that the exact same observations were left out of the data set that
is presented to the different techniques for simulation model calibration.

3.3.2. CONFIGURATION OF MODEL CALIBRATION TECHNIQUES
To calculate the quality-of-fit for the selected model calibration techniques, the
ground truth decision variable, X = x, is compared to the optimal solution, X = v∗,
for each of the model calibration techniques. The result of Powell’s Method and GA
is a single optimal solution of the decision variable, so X = v∗. However, the result
of ABC is an approximate posterior distribution of the decision variable. To extract
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one optimal value of decision variable X from this resulting posterior distribution,
we select the value with the highest frequency, i.e., the mode, for that specific distri-
bution. In this way, the most often accepted value of the decision variable represents
the optimal solution for ABC as X = v∗.

For pragmatic reasons, we define a stopping criterion for finding the optimal so-
lution for each technique. The stopping criteria for these experiments are based on
an empirical analysis on the convergence of the model calibration techniques over 5
seeds. For the reference technique, Powell’s Method, we limit the number of function
evaluations to 1500 and the number of iterations to 100. For GA, we use 15.000 func-
tion evaluations as a stopping criterion. The analysis shows that with 15.000 function
evaluations, the number of improvements stays constant for every seed. For ABC, we
use 20.000 draws as the stopping criterion. The analysis shows that there is conver-
gence of ABC determined by the Gelman-Rubin statistics at 20.000 draws for 3 of the
5 seeds (Gelman & Rubin, 1992).

3.4. CASE STUDY: COUNTERFEIT PPE SUPPLY CHAIN

To evaluate the model calibration techniques, we use a case study of a counterfeit PPE
supply chain. First, we introduce the stylized simulation model based on this case
study. Next, we discuss the analysis and comparison of the various model calibration
techniques given the simulation model of this case study.

3.4.1. INTRODUCTION OF THE SIMULATION MODEL

A discrete event simulation model of a stylized configuration of a counterfeit PPE
supply chain from Vietnam to stores in the Netherlands is used. We assume that the
counterfeit PPE are produced in Vietnam; one of the countries where most PPE come
from, next to China and India. Most of these products are transported over sea to
Europe following the legitimate transport flows. After arrival in Europe, they are dis-
tributed over various stores.

Figure 3.2 visualizes the stylized counterfeit PPE supply chain in more detail. The
symbols represent the main actors in the supply chain, and the arrows represent the
transportation flows. Starting from the supplier, supplies for PPE such as fabrics are
delivered to the manufacturer over land in the production country, Vietnam. The
manufacturer produces the protective mask (mislabeling them as medical) PPE in
the factory and packs them in batches for transport. Each batch has a certain quan-
tity of counterfeit PPE. For example, a batch consists of 1000 boxes of 100 PPE that
equals a quantity of 100,000 PPE in total. Next, a truck transports a batch of finished
counterfeit PPE to the export port in Hai Phong, Vietnam. The batch is loaded into a
container and transported by a feeder to the transit port, Tanjung Pelepas, Malaysia.
Once the batch is loaded on the feeder, it becomes part of the legitimate transport
flow. At the transit port, the feeder unloads the container with counterfeit PPE. At the
same port, the container is loaded onto a vessel, i.e., a larger container ship, for inter-
national transport. After a certain amount of days on international waters, the vessel
arrives at the import port in Rotterdam, The Netherlands. The container is unloaded
here, and waits for inland transport to the wholesales distributor in Eindhoven, The
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Netherlands. The wholesales distributor can also be seen as the stash location for
the counterfeit PPE. At the wholesales distributor, the batch of counterfeit PPE in
the container is equally divided into three smaller batches for the retailers. These
smaller batches are transported by small trucks to the retailer. When the counterfeit
PPE arrive at the retailer, customers (either businesses or individual customers) can
purchase the products with or without being informed that they are counterfeit.

Figure 3.2: Visualization of the stylized counterfeit PPE supply chain.

The structure of the supply chain is linear. Due to the many uncertainties in the
supply chain (e.g., delay in transport modalities, loading and unloading times), the
supply chain becomes complex. For example, the retailer’s inventory can fluctuate
very much, depending on whether a vessel has a 1-day delay or a 7-day delay. In
the simulation model, most uncertainties such as delays of transport modalities and
speed of transport modalities follow triangular distributions inspired by real world
data of a fashion retailer (Kuipers, 2021).

In this research, the manufacturing duration, also referred to as manufacturing
time, is the system parameter to be calibrated. More specifically, we use the manu-
facturing time as the decision variable in the simulation model calibration, meaning
that we seek for the most likely value for the system parameter of manufacturing time.
Table 3.1 shows the configuration of the manufacturing time as a decision variable.
Manufacturing time has been chosen as an uncertain system parameter in this study
for three reasons: (1) manufacturing time in another country is typically unobserv-
able from the client’s location, (2) there were many orders due to COVID-19 that could
lead to extreme delays, and (3) delays at the beginning of the supply chain often have
an unpredictably high impact on the rest of the supply chain due to the snowball ef-
fect.

Decision Variable Ground Truth Lower Bound Upper Bound Unit
Manufacturing Time (X) 2.5 1 10 Days

Table 3.1: Configuration of manufacturing time.

Given the value of the decision variable, in this case the manufacturing time, the
simulation model is evaluated using a time series of the inventory levels of PPE for
each actor in the supply chain (e.g., manufacturer, export port, import port) per day.
The time series over multiple replications are combined using the mean values per
day. Aggregated statistics of these combined time series are created, serving as the
simulation model data. The statistics to represent the time series of each actor are
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the mean, standard deviation, 5th percentile, 95th percentile, and the average inter-
val time (i.e., interval between the arrival of batches at actors). The data used for
calibration includes the aggregated statistics of all actors.

The discrete event simulation model is developed with the library pydsol in
Python. This library is a Python implementation of the Distributed Simulation
Object Library (DSOL), originally implemented in Java (Jacobs, 2005).

3.4.2. ANALYSIS OF POWELL’S METHOD, GA & ABC
We analyze the quality-of-fit for the reference technique, Powell’s Method, and the
selected techniques, GA and ABC, given certain degrees of data sparseness and using
8 replications with unique seeds. For each technique, we show a graph of the average
quality-of-fit with a 95% confidence interval to visualize the spread of the solutions
over various replications. Besides, we show a boxplot of the calculated optimal values
of the decision variable manufacturing time resulting from the various replications.
In addition, a table is presented to compare the reference technique and the selected
model calibration techniques by the average quality-of-fit and the standard deviation.

(a) Average quality-of-fit with the 95% confidence
interval.

(b) Boxplot of the optimal values of manufacturing
time. The dashed gray line is the ground truth
value of manufacturing time: 2.5 days.

Figure 3.3: Results for Powell’s Method for 8 seeds for various degrees of data sparseness.

Figure 3.3a shows that Powell’s Method has an average quality-of-fit between 0.70
to 0.96. When data sparseness is more than 10%, the average quality-of-fit decreases
and the 95% confidence interval becomes wider. Figure 3.3b shows that from 10%
data sparseness onward, the algorithm finds optimal values of more than 6 days for
the manufacturing time. Interestingly, there are no optimal values found between 3
and 6 days. Surprisingly, Powell’s method has a high quality-of-fit with a small confi-
dence interval with 90% data sparseness.



3.4. CASE STUDY: COUNTERFEIT PPE SUPPLY CHAIN

3

55

(a) Average quality-of-fit with the 95% confidence
interval.

(b) Boxplot of the optimal values of manufacturing
time. The dashed gray line is the ground truth
value of manufacturing time: 2.5 days.

Figure 3.4: Results for Genetic Algorithm for 8 seeds for various degrees of data sparseness.

Figure 3.4a shows that GA has an average quality-of-fit between 0.92 and 0.99. The
quality-of-fit and the correlated spread stays constant for most of the chosen values
for data sparseness. The 95% confidence interval is narrow for the different degrees of
data sparseness. Only with 75% data sparseness, there are more solutions that have
a lower quality-of-fit and the 95% confidence interval is wider. In Figure 3.4b, we
see that for 75% data sparseness, most optimal solutions for the decision variable are
slightly above the ground truth value. There is one outlier where the optimal manu-
facturing time is calculated to be more than 6 days.

(a) Average quality-of-fit with the 95% confidence
interval.

(b) Boxplot of the optimal values of manufacturing
time. The dashed gray line is the ground truth
value of manufacturing time: 2.5 days.

Figure 3.5: Results for approximate Bayesian computation for 8 seeds for various degrees of data sparse-
ness.

Figure 3.5a shows that ABC has an average quality-of-fit between 0.78 and 0.98.
For most of the degrees of data sparseness, the average quality-of-fit is around 0.95
and the 95% confidence interval is narrow. Only at 50% data sparseness, the average
quality-of-fit is the lowest, i.e., around 0.78, and the confidence interval is relatively
wide. Figure 3.5b shows that at 50% data sparseness, the algorithm has a wide spread
of optimal solutions for the value of manufacturing time. Some solutions are close to
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the lower bound and the upper bound of this decision variable. Other solutions are
closer to the ground truth value, i.e., between 3 and 4 days, but are still relatively far
from the ground truth compared to experiments with other degrees of data sparse-
ness. The resulting posterior distribution of the algorithm for 50% data sparseness
follows a bimodal distribution.

Powell’s
Method

Genetic
Algorithm

Approximate
Bayesian
Computation

Percentage of
Data Sparseness

Mean Std Mean Std Mean Std

0% 0.93 0.00 0.98 0.01 0.93 0.05
10% 0.96 0.02 0.98 0.01 0.94 0.04
25% 0.90 0.13 0.98 0.00 0.95 0.04
50% 0.70 0.22 0.99 0.02 0.73 0.32
75% 0.79 0.18 0.92 0.15 0.94 0.05
90% 0.94 0.03 0.98 0.02 0.91 0.04

Table 3.2: Quality-of-fit in mean and standard deviation for each model calibration techniques for various
degrees of data sparseness.

Table 3.2 presents the results of the average quality-of-fit and the corresponding
standard deviation of the reference technique and the two selected model calibra-
tion techniques for various degrees of data sparseness. It shows that GA outperforms
Powell’s Method and ABC for all percentages of data sparseness in terms of a higher
average quality-of-fit and a lower standard deviation. ABC performs slightly better on
the average quality-of-fit than Powell’s Method. However, Powell’s Method and ABC
both have a relatively high standard deviation compared to GA, meaning that there is
more variation in the distance of the optimal solution to the ground truth value. Over
the various degrees of data sparseness, Powell’s Method has the highest standard de-
viation. It is quite remarkable that Powell’s Method and ABC have the lowest average
quality-of-fit and the highest standard deviation for 50% data sparseness. For both
techniques, the average quality-of-fit increases again for 75% and 90% data sparse-
ness.

Overall, GA and ABC outperform the reference technique for calibrating the coun-
terfeit PPE supply chain simulation model over various values for data sparseness.
From this analysis, GA shows to be the most promising for calibrating a simulation
model with sparse data due to the high average quality-of-fit, the narrow 95% confi-
dence interval, and a small standard deviation over all degrees of data sparseness.
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3.5. DISCUSSION

Overall, the results show that the selected model calibration techniques seem to have
a high quality-of-fit for calibrating the counterfeit PPE simulation model with sparse
data. There are three limitations for generalizing the results: (1) local vs. global op-
timum, (2) specific to supply chains, and (3) lack of including structural uncertainty
and of including other dimensions of data sparseness.

Regarding the local vs. global optimum, it is remarkable that Powell’s Method and
ABC both have the lowest quality-of-fit and the highest standard deviation at 50%
data sparseness. A possible explanation for this result for Powell’s Method is that the
algorithm sometimes gets stuck in a local optimum, instead of reaching the global
optimum (Powell, 1964), possibly caused by two input spaces of interest. A possible
explanation for ABC is that the algorithm results in a bimodal distribution, with more
than one region in the input space that results in optimal solutions. Calibration with
these algorithms can yield multiple counterfeit PPE supply chains that could repre-
sent the real world supply chain to a certain extent. We should therefore be careful
in choosing the configuration to gain insights from. Not doing so could lead to a
“wrong" view on criminal activities in the real world counterfeit PPE supply chain. In
addition, a wider set of optimization algorithms could be explored for their effective-
ness in model calibration.

The second limitation is that the results could be specific to the linear counterfeit
PPE supply chain model. In general, a supply chain is often presented as a sequential
network. This means, for example, that there is an one-directional flow between the
supplier and the manufacturer. On the one hand, this direct and linear dependency
between the actors could lead to more straightforward calibration of the simulation
model with sparse data. This challenges the generalizability of the results to other
systems. The linear supply chain also has a single parameter that needed to be cali-
brated, where in real situations, data of multiple parameters might be sparse. On the
other hand, the results of this chapter give a proof of concept on how data sparseness
effects the ability to calibrate a linear supply chain using sparse data.

The third limitation is that the lack of including structural uncertainty and of in-
cluding other dimensions of data sparseness. Keeping the structure of the simulation
model the same for the ground truth and the calibrated model could be a crucial ele-
ment for being able to find the optimal value for the parameter(s). When structure is
included as a parameter, this could mean that it is more difficult for the model cali-
bration techniques to converge to a solution with a high degree of data sparseness. In
our example case, data sparseness in the form of missing data values were random,
where in reality there could be patterns, such as missing data only during the night.
Finally, data sparseness consists of more dimensions than missing values: examples
are noise and bias. The effect of these other types of data sparseness on calibration
quality is still unknown, making it difficult to generalize the results to all types of data
sets. Nonetheless, this study gives insight in the quality-of-fit for one parameter when
increasing the percentage of missing values, a type of uncertainty that often occurs in
criminal cases, specifically during COVID-19.
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3.6. CONCLUSION AND FUTURE WORK

This research is a first attempt to analyze the quality-of-fit of model calibration tech-
niques that are likely to be suitable for calibrating simulation models in the case of
sparse data. Due to the high data sparseness in counterfeit PPE supply chains, we
used a PPE supply chain as our case study. We selected a reference technique that
is often used for calibration of simulation models: Powell’s Method. We selected GA
and ABC as model calibration techniques that are likely to be suitable in case of sparse
data. By using a ground truth set-up for evaluating the quality-of-fit, we assessed how
accurately the three model calibration techniques find the optimal system parameter
value for the simulation model with an increasing degree of data sparseness. The re-
sults demonstrate that the selected model calibration techniques are suitable for cal-
ibrating simulation models when faced with sparse data, at least for a linear supply
chain with randomly missing values. This shows that with sparse data due to COVID-
19 and criminals masking their data, the selected model calibration techniques can
help to gain insight in underlying counterfeit PPE supply chains.

The main directions for future research are including more model calibration
techniques, evaluating for a larger set of simulation models, introducing structural
uncertainty and other dimensions of data sparseness.







4
IDENTIFYING THE STRUCTURE OF

ILLICIT SUPPLY CHAINS WITH

SPARSE DATA
A simulation model calibration approach

Illicit supply chains for products like counterfeit PPE are characterized by sparse data
and great uncertainty about the operational and logistical structure, making criminal
activities largely invisible to law enforcement and challenging to intervene in. Simu-
lation is a way to get insight into the behavior of complex systems, using calibration
to tune model parameters to match its real-world counterpart. Calibration methods
for simulation models of illicit supply chains should work with sparse data, while also
tuning the structure of the simulation model. Thus, this study addresses the question:
“To what extent can various model calibration techniques reconstruct the underlying
structure of an illicit supply chain when varying the degree of data sparseness?” We
evaluate the quality-of-fit of a reference technique, Powell’s Method, and three model
calibration techniques for sparse data: Approximate Bayesian Computing, Bayesian
Optimization, and Genetic Algorithms. For this, we use a simulation model of a styl-
ized counterfeit PPE supply chain as ground truth. We parameterize structural uncer-
tainty using System Entity Structure. The results demonstrate that Bayesian Optimiza-
tion and Genetic Algorithms are suitable for reconstructing the underlying structure of
an illicit supply chain for a varying degree of data sparseness. Both techniques identify
a diverse set of optimal solutions that fit with the sparse data. For a comprehensive
understanding of illicit supply chain structures, we propose to combine the results of
the two techniques. Future research should focus on developing a combined algorithm
and incorporating solution diversity.

This chapter has been published as: van Schilt, I. M., Kwakkel, J. H., Mense, J. P., & Verbraeck, A. (2024)
Identifying the structure of illicit supply chains with sparse data: A simulation model calibration approach.
Advanced Engineering Informatics, 62, pp. 102926. https://doi.org/10.1016/j.aei.2024.102926.
The code is available at https://github.com/imvs95/structure_calibration_sparse_data.
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4.1. INTRODUCTION

During the COVID-19 pandemic, there has been a major increase in demand for Per-
sonal Protective Equipment (PPE) like face masks, gloves, and glasses (Omar et al.,
2022). PPE can be divided into two categories: medical and non-medical. Medical
PPE is certified and typically comes with a higher price and profit margin, making it
an interesting target for organizations engaged in fraud(Ippolito et al., 2020). A sig-
nificant number of fraud-involved PPE manufacturers entered the market during the
initial stages of COVID-19, trying to sell non-certified PPE as certified PPE (Hashemi
et al., 2023). Law enforcement detected and seized over 58 million counterfeit 3M
respirators since the pandemic’s beginning (as of May 2022), yet this only represents
a fraction of the total (Hashemi et al., 2022). Detecting counterfeit PPE has been chal-
lenging as little historical data on COVID-19 is available, and fraud-involved organi-
zations obfuscate their data as much as possible. Consequently, criminal activities
and the related logistics operations remain largely invisible (van Schilt et al., 2023).
Therefore, identifying counterfeit PPE and effectively intervening in this largely in-
visible supply chain is difficult for law enforcement.

The counterfeit PPE supply chain is just one example of an illicit supply chain in
which law enforcement faces challenges for intervening and stopping criminal activ-
ities (Nellemann et al., 2018). Often, only sparse information and data is available of
any illicit supply chain. This results in uncertainties regarding the operational and
logistical working of the illicit supply chain (e.g., processing times, travel times), as
well as the overall structural composition of the supply chain (e.g., how many actors
are involved, which sequence of supply chain activities is used, where the actors are
located) (Eser et al., 2015; Ficara et al., 2021). More information on the supply chain
can be gathered using the experiences of law enforcement, asking for information
from criminals, open-source data, and theories on legal supply chains (Magliocca et
al., 2019). Information collection is difficult in the context of illicit supply chains; for
example, data on police operations is often incident-based, criminals either withhold
information, or data is still insufficient for understanding the complete logistics op-
erations of the criminals (Anzoom et al., 2021).

Especially in the case of illicit supply chains, the operational and logistical
structure, including geographical boundaries, is often not known to law enforcement
(Ficara et al., 2021). This structure is crucial for identifying opportunities to disrupt
such a supply chain. Criminals use various modi operandi, routes, communica-
tion channels, and business models, impacting the flow of goods and, hence, the
structure and geographical context of the supply chain (Duijn et al., 2014; Anzoom
et al., 2021). Also, criminals often take advantage of legal supply chains to mask
their illicit activities, i.e., piggybacking, which could make the illicit supply chain
even more invisible (Grossman & Shapiro, 1986; Shelley, 2018). The structure and
geographical scope of supply chains for illicit products are also based on factors like
corruption that enable bypassing inspections, clearing customs, and weakening law
enforcement. This wide variety of possibilities for carrying out criminal activities and
their invisibility complicate the efforts of law enforcement to uncover details about
illicit supply chains, including the identities and details of particular persons, the
actual operational and logistical structure, methods, and modes. Complex supply
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chains characterized by sparse data and structural uncertainty make it challenging
to stop crime.

Simulation can help to get insight into complex systems, understand behavior
and relations, and explore future scenarios using computers (Banks, 1998; Zeigler et
al., 2018). This chapter focuses on the use of discrete event simulation models for
understanding illicit supply chains (Schmitt & Singh, 2009; Magliocca et al., 2022).
Simulation models require data to mimic the behavior of the real world, either for
the parameters of components of the model, such as processing times, or for defin-
ing the structure of the components in the model, such as the network of the supply
chain. For this, model calibration is used as it is the process of tuning and estimat-
ing the model parameters with observed data of the system to improve the similarity
between the model and the system (Wigan, 1972; Ören, 1981; Hofmann, 2005).

In the case of simulating illicit supply chains, model calibration should be able to
handle sparse observed data (Anzoom et al., 2021; Ficara et al., 2021; Lian et al., 2024).
Three dimensions of data sparseness are defined: (1) noise, (2) bias, and (3) missing
values (van Schilt et al., 2024). A number of studies have investigated the calibration
of simulation models in the context of data sparseness while assuming that the struc-
ture of the model is known and fixed (Liu et al., 2017; de Groot & Hübl, 2021; van
Schilt et al., 2023). However, it has not yet been investigated how simulation model
calibration techniques perform in the case of sparse data combined with structural
uncertainty. Assessing the performance of model calibration techniques in the case
of sparse data for studying illicit supply chains is further complicated by how struc-
tural uncertainty is modeled. Many interdependencies exist among various actors in
a supply chain, making it difficult to view actors as independent components in a
simulation model, unlike parameters (Baldissera Pacchetti, 2021). Since model cali-
bration mostly focuses on tuning the model parameters and not the model structure,
tuning both simultaneously is far more challenging than just tuning the parameters
(Moore & Doherty, 2005; Coenen et al., 2018).

This study assesses the extent to which model calibration techniques can accu-
rately reconstruct the underlying structure of the supply chain with a varying degree
of data sparseness. First, we review related work on the modeling and simulation of
illicit supply chains, and model calibration and its challenges when data is sparse.
Next, we evaluate the quality-of-fit of a set of model calibration techniques for ac-
curately reconstructing the structure of the illicit supply chain. For this, we use a
stylized ground truth simulation model of a counterfeit PPE supply chain based on
real-world data. We extract data from this simulation model, systematically vary the
degree of data sparseness, and assess to which extent the selected model calibration
techniques can reconstruct the structure of the supply chain.

More explicitly, our study aims to address the question: “To what extent can vari-
ous model calibration techniques reconstruct the underlying structure of an illicit sup-
ply chain when varying the degree of data sparseness?”. Accordingly, this chapter lays
the foundation for modeling (illicit) supply chains characterized by structural uncer-
tainty and sparse data, to get insights into their operations and hence, allow law en-
forcement agencies to effectively intervene to stop crime.
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This chapter is structured as follows. Section 4.2 presents the related work on
modeling and simulation for illicit supply chains. Section 4.3 discusses the current
state-of-the-art literature on model calibration and its challenges when dealing with
sparse data. Section 4.4 describes the design of experiments, the simulation model
of the case study, and the configuration of the selected model calibration techniques.
Section 4.5 shows the quality-of-fit for reconstructing the structure of the illicit supply
chain using the simulation model calibration approach. Section 4.6 discusses our
results. Section 4.7 concludes our work and provides directions for further research.

4.2. MODELING AND SIMULATION FOR ILLICIT SUPPLY

CHAINS

This section describes the current state-of-the-art literature on modeling and simu-
lation of illicit supply chains. First, related work on illicit supply chains using simu-
lation is examined. Second, structural uncertainty in illicit supply chain simulation
models is described.

4.2.1. RELATED WORK
Simulation is a vital computational approach for understanding the behavior of illicit
supply chains, and for exploring further scenarios like the effect of interventions (An-
zoom et al., 2021; Magliocca et al., 2022; van Schilt et al., 2023). Anzoom et al. (2021)
present a literature review of illicit supply chain network research focusing on opera-
tional research, management science, and industrial engineering. Most studies focus
on network design, optimization, or social science theories. Their review reveals that
only a few simulation studies of illicit supply chains have been conducted.

Some of these studies simulate the criminal network by focusing on the business
model, the roles, and how the network evolves over time, drawing on social science
theories. Duijn et al. (2014) simulates a criminal cannabis cultivation network to un-
derstand the dynamics of resilience in this network as a consequence of disruptions.
The authors primarily focus on the dynamics between different roles of actors within
the network, and not on the logistical operations. van der Zwet et al. (2019) design an
agent-based model for emergent opponent behavior, which is present in organized
crime groups that, for example, traffic illicit products.

Other simulation studies focus on replicating the supply and demand in the il-
licit supply chain to evaluate the effect of disruption strategies in the drug market
(Caulkins, 1993; Rydell et al., 1996). More recent studies focus on developing more
detailed simulation models to understand disruption strategies in a specific supply
chain. For instance, Dray et al. (2008) develop an agent-based model for interaction
between individuals and the supply in the heroin market. Kovari and Pruyt (2012)
create a system dynamic simulation model of human trafficking for evaluating the ef-
fect of policy interventions in the Netherlands. Kretschmann and Münsterberg (2017)
present a discrete event simulation model for testing one specific detection method
at the border.

Specifically on trafficking, Magliocca et al. (2019) develop a spatial agent-based
simulation model of cocaine traffickers to the United States via Central America
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based on qualitative data such as theoretical perspectives, media reports, empirical
studies, and field research. Their model produces realistic patterns of cocaine
trafficking in space and time in response to interventions. Jensen and Dignum
(2019) model the illegal cocaine trafficking supply chain based on legal supply chain
theories. The authors investigate the difference between the legal and illegal supply
chain with a focus on trust. They indicate that more work on the simulation model
itself has to be done to enhance its accuracy when representing illegal supply chains.
González Ordiano et al. (2020) identify potential geographical hotspots in the illicit
supply chain using a variable state resolution Markov Chain, assuming three scales
of connectivity (e.g., countries, regions, continents). Their approach consists of
two steps: (1) to create a series of Markov Chain models that describe the network
in different state spaces, and (2) to select the model that describes the network
best. Benatia et al. (2022) evaluates frequent pattern mining for tracing counterfeit
products in a supply chain, specifically cosmetics, using a multi-agent simulation
model.

In the most recent studies, simulation and optimization models are coupled to
analyze interventions in illicit supply chains. Magliocca et al. (2022) introduce cou-
pled agent-based and spatial optimization models for examining the deployment of
interventions and the correlated adaptive response of the drug network over time.
Their results show that increasing interventions lead to diversifying of the routes and
dispersing of the illicit shipment volumes, making it more difficult to seize illicit prod-
ucts. Hashemi et al. (2023) use a simulation-optimization framework to model coun-
terfeiters’ behavior and analyze different disruption strategies. They use a scenario
tree structure to model the uncertainties in the simulation and optimize the sup-
ply chain operations of the criminals on maximizing profit and minimizing risk. van
Schilt et al. (2023) test the performance of various optimization techniques for ac-
curately calibrating the parameters of a discrete event simulation model of an illicit
supply chain when increasing the degree of data sparseness. Their results show that
the simulation model calibration of parameters successfully works in situations with
sparse data. They note that an interesting further direction of research is to investi-
gate the performance for finding the underlying structure of the supply chain.

Unlike most previous research that typically uses a single simulation model struc-
ture with uncertain parameters, we address structural uncertainty. Our study uses a
similar simulation model calibration approach as van Schilt et al. (2023), but it fo-
cuses on finding the most representative structure of the real-world supply chain
instead of just finding the most likely parameters’ values for an assumed structure.
Compared to previous studies using a simulation-optimization approach, we focus
on calibrating the underlying structure of the supply chain rather than optimizing
interventions.

4.2.2. STRUCTURAL UNCERTAINTY IN ILLICIT SUPPLY CHAIN SIMULA-
TIONS

Building a simulation model for an illicit supply chain requires knowledge to ensure
it aligns with the system, e.g., the real-world illicit supply chain under study. Cer-
tain aspects of such an illicit supply chain remain uncertain, while others are observ-
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able. For an illicit supply chain, the knowledge that is required to design a simulation
model is often deeply uncertain, meaning that there is no clear consensus on the
conceptual model of the system, the probability distributions, or the desirability of
outcomes of the model (Lempert et al., 2003; Marchau et al., 2019; Ficara et al., 2021).

We can distinguish two types of uncertainty in illicit supply chain simulation
models that have to match the system’s counterpart: (1) parametric uncertainty, i.e.,
uncertainty in (initial) values of the model’s parameters or conditions, and (2) struc-
tural uncertainty, i.e., uncertainty in the structure of the model (Webster & Sokolov,
1998; Parker, 2013; Parker, 2014). Parametric uncertainty describes the uncertainty
in initial values of the model for capturing an initial state and behavior that matches
its real-world counterpart. For example, uncertainty about the parameters used
to choose a route based on maximizing profit of a fraudulent actor like the cost of
transport, or on minimizing risk like the parameter of the risk of getting caught.
Structural uncertainty describes uncertainty in the modeling equations, structure, or
behavior of the model (Baldissera Pacchetti, 2021). For example, uncertainty about
the number of fraudulent actors and their relation in a supply chain, and how these
actors choose a route.

In the field of logistics, research has been performed on exploring parametric un-
certainty but not on structural uncertainty (Halim et al., 2016; Coenen et al., 2018;
Moallemi & Köhler, 2019). Especially in the case of illicit supply chains, the struc-
ture is often uncertain (van Schilt et al., 2023). Therefore, the innovative contribution
of this research is addressing structural uncertainty for simulation models related to
illicit supply chains.

4.3. MODEL CALIBRATION AND THE CHALLENGES WITH

SPARSE DATA

This section describes the current state-of-the-art literature on model calibration and
its challenges in the case of sparse data. First, related work on model calibration with
sparse data is discussed. Second, an overview of model calibration techniques that
seem suitable for dealing with sparseness is presented. Third, a modeling approach
for structural uncertainty regarding calibration is described.

4.3.1. RELATED WORK
Few studies have investigated the calibration of simulation models in the context
of data sparseness. Liu et al. (2017) are one of the first to explicitly address the
calibration of a simulation model under data sparseness. They propose a simulation-
optimization approach to calibrate an agent-based simulation model with sparse
data automatically using an emergency department as a case study. The problem is
formulated as a series of local minimum search problems. Subsequently, De Santis
et al. (2022) focus on the calibration of a discrete event simulation model under data
sparseness. Observable values from a real-world system are used to determine the
parameter values of the simulation model, for example, the time interval between
known time stamps. de Groot and Hübl (2021) use calibration as a form of validation,
and in their case, the sparseness of data makes validating the simulation model
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challenging. Consequently, they manually fine-tune the parameters and dynamics
of the model to enhance validity. Hao et al. (2021) uses evolutionary neural networks
to build more accurate surrogate simulation models with limited data. van Schilt
et al. (2023) compare various calibration techniques for simulation models when
increasing the degree of data sparseness. They calibrate the parameters of a discrete
event simulation model on a counterfeit PPE supply chain.

In line with this, our study compares the performance of various calibration tech-
niques for data sparseness rather than selecting one. We assume that a single cali-
bration technique is most probably not able to deal with all types of sparse data. The
novelty of our work is that we apply the simulation model calibration approach to
identify the underlying structure of the simulation model, as opposed to only focus-
ing on the parameters.

4.3.2. MODEL CALIBRATION TECHNIQUES FOR SPARSE DATA

Calibration of simulation models involves finding parameter values by comparing
the model’s output with real data until a “good" match is achieved, meaning that
the model data closely matches the observed data over a given time interval (Wigan,
1972; Ören, 1981; Hofmann, 2005). As model calibration aims to minimize the dif-
ference between the model data and the observed data, optimization techniques are
commonly used for this purpose (Liu et al., 2017; van Droffelaar et al., 2024). We dis-
tinguish four families of calibration techniques that are interesting when dealing with
sparse data: (1) Deterministic mathematical solvers, (2) Evolutionary algorithms, (3)
Bayesian inference, and (4) Data assimilation.

Figure 4.1 shows an overview of the families, the techniques, and the algorithms
that can be applied for model calibration in the case of sparse data. Note that this is
a non-exhaustive overview.

Figure 4.1: Overview of model calibration families and techniques for sparse data.
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Deterministic mathematical solvers calibrate models through deterministic
mathematical optimization that guarantees to discover (local or global) optimal
solutions (Puchinger & Raidl, 2005). A commonly used deterministic algorithm for
calibrating simulation models is Powell’s Method (Liu et al., 2017). Powell’s Method
is a gradient-free minimization algorithm using a repeated line search introduced
by Powell (1964). Due to its fast search speed, this method is preferred for calibrat-
ing discrete event simulation models that are typically characterized by a rugged
high-dimensional fitness landscape (Zhong & Cai, 2015). Another example of a
deterministic mathematical solver for model calibration is the Nelder-Mead Simplex
algorithm (Olsson & Nelson, 1975). Moreover, the Branch-and-Bound algorithm
is also commonly used for optimizing linear or mixed-integer programs (Lawler &
Wood, 1966; Morrison et al., 2016).

Evolutionary algorithms calibrate a model through population-based, also called,
“survival-of-the-fittest", techniques. One of the oldest and well-known evolutionary
algorithms are Genetic Algorithms (GA) (Slowik & Kwasnicka, 2020). GA are widely
applied in the field of model calibration, especially in high-dimensional problems
where data is often sparse (Park & Qi, 2005; Ren & Wu, 2013; Malleson, 2014). Classic
GA are based on Darwin’s theory of natural selection. The main idea is that the fittest
individuals are more likely to survive, and thus contribute more to the next genera-
tion (Whitley, 1994). A classic and popular algorithm is Non-dominated Sorting Ge-
netic Algorithm II (NSGA-II) (Deb et al., 2002; Reed et al., 2013). Based on NSGA-II,
ε-NSGA-II was introduced that merges NSGA-II with a ε-search algorithm to define
the search precision for more efficiency, reliability, and more ease of use (Kollat &
Reed, 2007). For more complex and multi-objective problems, BORG is a suitable
algorithm (Salazar et al., 2016). BORG is an extension of ε-NSGA-II with adaptive op-
erator selection, meaning that it adapts to the most appropriate operator based on
the performance (Hadka & Reed, 2013).

Bayesian inference uses Bayes’ theorem to calibrate models. Model calibration
is a core application of Bayesian data analysis (Csilléry et al., 2010). Approximate
Bayesian Computing (ABC) is one of most suitable techniques for handling sparse
data and uncertainties due to its likelihood-free nature (Vrugt & Beven, 2018). ABC
is a technique for estimating the posterior distribution of model parameters using
Bayesian statistics. There are three sampling methods for ABC: (1) rejection sam-
pling, (2) Markov Chain Monte Carlo sampling, and (3) sequential Monte Carlo sam-
pling (Csilléry et al., 2010). An algorithm for ABC is the Differential Evolution Markov
Chain algorithm that combines an evolutionary algorithm with Markov Chain Monte
Carlo sampling (Braak, 2006). Another algorithm for ABC with Markov Chain Monte
Carlo sampling is Adaptive Metropolis (Wöhling & Vrugt, 2011). This algorithm up-
dates the Gaussian distribution for sampling using the information gathered so far in
the process. Sadegh and Vrugt (2014) introduce a multi-chain approximate Bayesian
computation with Markov Chain Monte Carlo Sampling algorithm, also called Dif-
ferential Evolution Adaptive Metropolis (DREAM). This sampling method is based on
a multi-chain Markov Chain method that uses differential evolution for population
evolution with a Metropolis selection rule. Additionally, subspace sampling is ap-
plied to enhance search efficiency. It is shown that DREAM is one of the most efficient
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sampling algorithms for ABC (Sadegh & Vrugt, 2014).

Another technique in the family of Bayesian inference is Bayesian Optimization
(BO). Bayesian optimization techniques are among the few techniques in the field of
machine learning that are able to handle small data sets (Jalali et al., 2017). BO is
a technique that uses Bayes’ theorem to search for the optimum by constructing the
posterior distribution. This can either be defined by Gaussian Processes, also referred
to as Kriging, or by using the Parzen-Tree Estimator (van Hoof & Vanschoren, 2021).
It balances between exploration and exploitation of the solution space based on a
Maximum Probability of Improvement, an Expected Improvement, or an Upper Con-
fidence Bound function. The most acquisition function for exploration is Expected
Improvement (Jones, 2001; Bischl et al., 2023).

The last family of methods is data assimilation that calibrates models by dynam-
ically incorporating observed data into the model. This is a promising technique for
calibrating with sparse data when estimating unobservable states in a running simu-
lation model (Hu & Wu, 2019; Kuipers, 2021). There are three approaches for data as-
similation for discrete event simulation models: (1) variational approach, (2) sequen-
tial approach, and (3) particle filtering (Xie, 2018). The variational approach chooses
a time interval and treats the data within that interval in the same manner to produce
estimates of the state variables of the system. The sequential approach assimilates
data sequentially over time with the goal to correct the estimated state when a new
observation becomes available. It only updates the specific state for the specific time
that an observation becomes available. Particle filtering follows the steps of the se-
quential approach but aims to estimate the conditional distribution of all states up to
a user-defined time given all available measurements. A commonly used algorithm
for particle filtering is the bootstrap filter algorithm (Xie, 2018).

In this research, we use a deterministic mathematical solver using Powell’s
Method algorithm as a reference, given it is one of the most commonly used model
calibration techniques. Moreover, we compare three model calibration techniques
that are most promising in the case of sparse data: (1) a Genetic Algorithm (GA) using
the ε-NSGA-II algorithm, (2) Approximate Bayesian Computation (ABC) using the
DREAM algorithm, and (3) Bayesian Optimization (BO) using Gaussian Processes
with the Expected Improvement function. Our study excludes the family of data
assimilation techniques since the focus is not on calibrating real-time (running)
simulation models.

4.3.3. MODELING STRUCTURAL UNCERTAINTY FOR CALIBRATION

Evaluating model calibration techniques’ performance in the case of sparse data is
further complicated by how structural uncertainty is modeled. Uncertainty in the
structure of a discrete event simulation model is often implemented by parametriza-
tion (Baldissera Pacchetti, 2021). A fully comprehensive model is built, incorporating
all potential components and links within specific search ranges. Binary parameters
are then utilized to determine the inclusion or exclusion of each component and/or
link in the model. Researchers can randomize the values of the binary parameters to
include uncertainty in their model runs, or can calibrate these binary parameters to
find a structure close to the real world (Baldissera Pacchetti, 2021). However, three
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primary drawbacks are encountered in our study when using this implementation:
(1) designing a fully comprehensive simulation model is time-consuming and mem-
ory heavy, (2) performing model runs or calibrating the model is computationally
heavy because of the many decision variables, and (3) designing for interdependen-
cies between the components and links (e.g., no links between suppliers and manu-
facturers is not realistic in a supply chain) causes many additional modeling rules or
optimization constraints (Folkerts et al., 2020). These three drawbacks make it diffi-
cult to capture the structural uncertainty in a supply chain simulation model easily.

Another way to include uncertainty in the structure of the simulation model for
experiments is model composability (Yilmaz, 2019; Folkerts et al., 2020). This means
that multiple distinct system configurations are created by coupling components of
the system (e.g., different actors in a supply chain and transport modes in various
ways). A system configuration defines the structure of the components in a system
and the associated parameters (Folkerts et al., 2020). To describe these components
of the system in a simulation model, a referential ontology is used. Referential on-
tologies, such as Extensible Markup Language, Unified Modeling Language, and Sys-
tem Entity Structure (SES), support the development of models by describing real-
world entities (Zeigler & Hammonds, 2007; Hofmann, 2013). In this study, we focus
on the ontology framework of SES as it is a powerful framework specifically designed
for modeling and (discrete event) simulation (Zeigler & Hammonds, 2007; Tolk et al.,
2023).

Zeigler (1984) introduces SES for composing multiple system configurations (e.g.,
various supply chain structures) for simulation. SES defines a set of system configu-
rations, helpful for generating a set of simulation models for a family of systems. It
is represented by a tree structure including entity nodes, descriptive nodes, and at-
tributes (Folkerts et al., 2020). Entity nodes describe an object of the system, e.g.,
an actor in the supply chain. Descriptive nodes describe the composition among at
least two entities using aspect nodes. An aspect node describes the composition of
an entity, either physical or non-physical. For example, a PPE manufacturer consists
of a production facility, supply inventory, and manufactured product inventory like
respirators. A multi-aspect node describes the composition of an entity consisting of
many entities of the same type. For example, the set of respirators consists of (many)
identical respirators. A specialization node describes the entity’s categorization. For
example, the respirator can either be certified or not.

The process of deriving a single configuration (e.g., a specific supply chain) of
the SES is called pruning. For each single configuration, a specific structure and
parametrization is defined. Given the increasing complexity of systems such as a sup-
ply chain and many possible system configurations, it is preferred to conduct pruning
automatically (Zeigler & Sarjoughian, 2013). Automated pruning for a specific system
requires knowledge on the degrees of freedom to ensure valid system configurations
and thus, valid simulation models (Folkerts et al., 2020). Each entity and descriptive
node has specific rules for composing a valid system. For example, in the case of a
supply chain, at least one type of each actor in the SES has to be present in a system
configuration. All knowledge and rules necessary for automatic pruning have to be
known at the beginning of the pruning process, using scripts or a set of constraints
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(Pawletta et al., 2016; Deatcu et al., 2018; Hermans, 2022).
The novelty of this study is that we focus on structural uncertainty for calibration

simulation models, instead of most research that only focuses on parametric uncer-
tainty. This study uses SES to examine structural uncertainty in simulation models.
This allows us to calibrate a supply chain simulation model using a set of system con-
figurations efficiently based on a theoretical ontology. More explicitly, the contribu-
tion of this study is to evaluate the quality-of-fit of various model calibration tech-
niques for identifying the structure of a supply chain with sparse data.

4.4. METHODS

In this research, we examine to which extent a set of model calibration techniques
can correctly match the structure of a simulation model for a varying degree of data
sparseness. First, the design of experiments using a ground truth simulation is ex-
plained. Second, the configuration of the selected model calibration techniques is
presented. Third, the formalization and parametrization of the simulation model as
a case study is described. Last, the formalization of the stylized system entity struc-
ture is presented.

4.4.1. DESIGN OF EXPERIMENTS USING THE GROUND TRUTH
This section presents the design of experiments for our study. First, the ground truth
set-up is presented. Second, the quality-of-fit is discussed. Last, the experiments are
described.

GROUND TRUTH SET-UP

A ground truth set-up is used to evaluate the performance of the selected model cal-
ibration techniques over various degrees of data sparseness. One stylized simulation
model acts as a ground truth to produce the observed data of the system, and data is
extracted from this model. This set-up allows us to measure the calibration’s close-
ness to the “true" values, which is challenging with real data that inherently has some
degree of sparseness (Khondoker et al., 2016).

Figure 4.2 shows the method used for evaluating the model calibration tech-
niques. In this research, we calibrate using the graphs representing the supply chain
model to identify the underlying structure. More specifically, we focus on a directed
acyclic graph that consists of vertices and edges, i.e., g = (V ,E). Vertices represent the
actors in the supply chain, meaning the type and number of actors. Edges represent
the connectivity between these actors in the supply chain.

First, we define a ground truth simulation model based on the directed ground
truth graph, g o , with vertices, V o , and edges, E o . The output of the ground truth sim-
ulation model is the ground truth data, not including any sparseness. Next, we add
data sparseness with a degree of x% to the ground truth data. A degree of x% means
that x% of the original data elements have noise, are biased, or are missing values. For
example, 10% of the ground truth data elements are transformed into missing values.
It is randomly determined which x% of data elements are sparse over the entire data
set. We adopt the detailed implementation of randomly assigning sparseness to data
on noise, bias, and missing values from van Schilt et al. (2024). This results in sparse
observed data.
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Figure 4.2: Method for evaluating calibration of a simulation model on the graph with sparse data.

When the sparse data is defined, the simulation model calibration process starts.
We have a large set of plausible graph configurations of the supply chain under study,
with many dependencies between the vertices and edges in such a graph. Thus, we
use SES to define a set of plausible graph configurations of the supply chain, G . Each
graph in this set, g ∈ G , is a randomly generated directed acyclic graph with vertices
and edges, (V ,E). A large set of graphs of plausible supply chains is created using
SES as input for the model calibration techniques to select candidate solutions. In
our study, we use a set of 40.000 randomly generated graphs, balancing between an
adequate size for exploration and computational efficiency.

The model calibration technique essentially selects a candidate graph, g = (V ,E) ∈
G . The simulation model is run for 5 unique replications based on this candidate
graph, resulting in simulation model data as output. Next, the distance between the
simulation model data and the sparse observed data is calculated using a distance
metric. Based on the resulting distance, the model calibration technique selects a
new candidate graph. The process repeats and stops when a stopping criterion is
reached, e.g., the number of iterations or a certain number of solutions close to the
ground truth. The solution is the graph, g∗ = (V ∗,E∗), that best describes the struc-
ture of the ground truth model according to the calibration technique.

QUALITY-OF-FIT

While model calibration aims to minimize the distance between the simulated and
sparse observed output data, it does not guarantee that the graph of the calibrated
simulation model will be close to that of the ground truth. Therefore, we assess the
quality-of-fit of the solution graph and the ground truth graph. Assessing the sim-
ilarity of graphs is complex, making it challenging and computationally expensive
to determine a single metric for evaluating the quality-of-fit (Wills & Meyer, 2020).
Thus, we compare the graphs using various feature-based distances of (1) the num-
ber of vertices, (2) the number of edges, and (3) average betweenness centrality, i.e.,
the average fraction of all shortest paths that pass through a vertex. Additionally, a
commonly used similarity measure is the graph edit distance (Wang et al., 2021). The
graph edit distance defines the cheapest set of graph edit operations (e.g., node inser-



4.4. METHODS

4

73

tion, edge deletion) needed to transform one graph to the other graph (Abu-Aisheh et
al., 2015). For computational reasons, we use an approximated greedy graph edit dis-
tance of Riesen et al. (2015) by transposing this problem to an assignment problem.
The python library GMatch4py1 is used.

EXPERIMENTS

The steps in Figure 4.2 outline a single experiment for evaluating the quality-of-fit of
a model calibration technique, given a certain degree of data sparseness. We system-
atically increase the degree of data sparseness added to the ground truth data with
steps of 10%. Thus, we evaluate for 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%.
Additionally, the model calibration techniques are examined for 0% of data sparse-
ness, i.e., ground truth data, as a base case. Following the results of the individual
dimensions, we analyze a set of experiments in which we combine the dimensions of
data sparseness to study the interaction effects.

Each experiment is conducted with 6 seeds to account for the impact of stochas-
ticity on the simulation model calibration outcome. Each seed produces a set of re-
sults that are presented individually. For each seed, we first transform x% of the data
set with sparseness, and then we use this as input for all the model calibration tech-
niques. This means that the exact same observations were transformed in the data
set and are provided to the different techniques for simulation model calibration.

4.4.2. CONFIGURATION OF THE MODEL CALIBRATION TECHNIQUES
Recalling the selected model calibration techniques for this research in Section 4.3.2,
Powell’s Method is considered as a reference technique, while ABC, BO, and GA are
identified as suitable options for dealing with sparse data.

A distance metric for the model calibration techniques needs to be defined to
minimize the difference between the simulation model data and observed data.
Common metrics like mean square error, Kolmogorov-Smirnov, or Euclidean dis-
tance are often used, but they may not adapt well to specific problems (Aggarwal
et al., 2001; Suárez et al., 2021). Our study requires a metric that considers stochastic
models and sparse observed data in complex, high-dimensional systems. According
to Mirkes et al. (2020), classic metrics like L1 and L2 are effective for complex, high-
dimensional data tasks. Therefore, we use the Manhattan (L1) distance, measuring
the sum of absolute differences between data points across all dimensions after
normalization.

For calculating the quality-of-fit for the selected model calibration techniques, we
compare the ground truth graph, g o = (V o ,E o), with the graph of the optimal solu-
tion, g∗ = (V ∗,E∗). The result of Powell’s Method, GA, and BO is a single optimal
solution of the decision variable; in this case, the value of the graph’s index. In con-
trast, ABC produces an approximate posterior distribution of the indexes of graphs.
To obtain one optimal solution of a graph from this resulting posterior distribution,
we select the graph’s index with the highest frequency, i.e., the mode, for that spe-
cific distribution. Thus, the most often accepted graph, obtained by this index value,
serves as the optimal solution for ABC.

1https://github.com/jacquesfize/GMatch4py
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For each technique, a stopping criterion for finding the optimal solution is de-
fined. The stopping criteria for these experiments are based on an empirical analysis
on the convergence of the model calibration techniques over 6 seeds. For the ref-
erence technique, Powell’s Method, we limit the number of function evaluations to
1500 and the number of iterations to 100. For ABC, we use 15.000 draws as the stop-
ping criterion. The analysis shows that there is convergence of ABC determined by
the Gelman-Rubin statistics at 15.000 draws for most of the 6 seeds (Gelman & Rubin,
1992). For BO, we use 3750 iterations as a stopping criterion. We use 100 initial points.
With this number of iterations, the number of improvements remained constant for
every seed. For GA, we use 10.000 function evaluations as a stopping criterion. The
analysis shows that with 10.000 function evaluations, the number of improvements is
stable across all seeds.

4.4.3. FORMALIZATION OF GROUND TRUTH SIMULATION MODEL
The case study used for the ground truth simulation model is a stylized counterfeit
PPE supply chain. Figure 4.3 visualizes the structure of the ground truth counterfeit
PPE supply chain simulation model from China to the northeast USA as a graph. The
symbols in the figure represent the main actors (vertices of the graph) in the supply
chain, and arrows represent the transportation flows (edges of the graph).

Figure 4.3: Stylized Supply Chain of Counterfeit PPE.

The supply chain starts at the supplier of raw materials, placed in Guangdong,
China, who supplies products for PPE such as fabrics. These products are transported
overland to one of the two manufacturers in the same area. These manufacturers
produce counterfeit PPE in the factory, pack them in boxes, and consolidate them
into batches for transportation. Each batch contains a specific quantity of counter-
feit PPE, such as 2000 boxes with 20 PPE units per box, resulting in a total of 20,000
PPE units per batch. Next, a batch of finished counterfeit PPE is transported from the
manufacturers’ location via a truck to the consolidation warehouse close to the bor-
der of Hong Kong. Batches from several manufacturers are stored here. We identified
two strategies for handling these batches: (1) wait until an order arrives; then the spe-
cific order is picked and shipped to the customer, or (2) wait until the stock reaches
the level required to directly fill one container. In the ground truth model, we assume
that batches are handled based on random order arrivals with an average interarrival
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time of 1.2 days. When the orders are picked in the warehouse, they are transported
overland by truck to the export seaport or airport in Hong Kong, depending on the
mode of transport. For transportation overseas, the batch is loaded into a 40 ft con-
tainer and transported by a small container ship to the transit port. Upon arrival at
the transit port, the small container ship unloads the container carrying counterfeit
PPE. At the same port, the container is loaded onto a larger container ship for over-
seas transport. Depending on the destination port, the route that the container fol-
lows is either (1) from Hong Kong to New York, USA via Singapore, or (2) from Hong
Kong to Boston, USA via Shanghai, China. For transportation via air, the batch is
loaded into the cargo hold of an international airplane using pallets. The destination
of this batch is either New York, USA (airport JFK) or Boston, USA (airport BOS). In
both cases, there is a transit at Amsterdam Schiphol Airport (AMS), where the batch
is moved from one airplane to another. Arriving at the import port, the batch in a
container or pallet is unloaded at one of these ports, and waits for inland transport to
one of the two (illegal) wholesales distributor in the area of New York, USA or Boston,
USA. Here, the batch of counterfeit PPE is equally divided into smaller batches for
the two distributors they serve. Small trucks directly transport these smaller batches
to distributors in New Hampshire, Connecticut, and New Jersey. Next, the distrib-
utors transport the batch to hospitals in Portsmouth, Providence, New Haven, and
Philadelphia. When the counterfeit PPE arrive at the hospital, the products are used
for medical reasons without knowing that they are counterfeit.

Actors
Input Parameter Distribution Value Unit
Interarrival time of product at supplier Exponential 10 days
Time at manufacturer Gamma 1.5, 0.8 days
Time at warehouse consolidator Triangular 0.5, 1, 1 days
Time to pickup at warehouse consolidator Triangular 0.5, 1, 2 days
Probability of counterfeit PPE in shipping container at warehouse consolidator 0.5
Time at sea ports Triangular 0.5, 1, 2 days
Time at air ports Triangular 0.5, 1, 1 days
Waiting time at yard for transport at import sea port Uniform 0.5, 3 days
Probability of counterfeit PPE extracted at import sea port 0.5
Waiting time at yard for transport at import air port Uniform 0.5, 1 days
Probability of counterfeit PPE extracted at import air port 0.5
Time at warehouse distributor Triangular 1, 2, 2 days
Time at distributor Exponential 0.2 days
Time at hospital Exponential 0.1 days

Table 4.1: Input parameters of actors for the simulation model of the stylized counterfeit PPE supply chain.

Table 4.1 and Table 4.2 show the input parameters for the actors and the links used
in the ground truth simulation model. In the simulation model, most uncertainties
such as delays of transport modalities and speed of transport modalities follow tri-
angular distributions inspired by real-world data of a fashion retailer and expert in-
terviews (Kuipers, 2021; Hashemi et al., 2022). Table 4.3 shows parametrization of
the speed and the delays of the transport modalities for the simulation model of this
study.
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Links
Name Value Unit
Supplier to manufacturer 1 50 km
Supplier to manufacturer 2 80 km
Manufacturer 1 to warehouse consolidator 140 km
Manufacturer 2 to warehouse consolidator 75 km
Warehouse consolidator to export sea port 45 km
Warehouse consolidator to export air port 60 km
Export sea port to transit sea port Shanghai 2.8 days
Export sea port to transit sea port Singapore 9 days
Transit sea port Shanghai to import sea port Boston 42.5 days
Transit sea port Singapore to import sea port New York 26 days
Export air port to transit air port Amsterdam 9274 km
Transit air port Amsterdam to import air port Boston and New York 5547, 5847 km
Import sea and air port Boston to warehouse distributor Boston 15, 20 km
Import sea and air port New York to warehouse distributor New York 80, 72 km
Warehouse distributor Boston to distributor New Hampshire, Connecticut 105, 150 km
Warehouse distributor New York to distributor Connecticut, New Jersey 175, 150 km
Distributor New Hampshire to hospital Portsmouth 15 km
Distributor Connecticut to hospital Providence, New Haven 140, 60 km
Distributor New Jersey to hospital Philadelphia 50 km

Table 4.2: Input parameters of links for the simulation model of the stylized counterfeit PPE supply chain.

Time series data is extracted from the simulation model of this specific system
configuration as ground truth data. The time series data entails data on when a quan-
tity of PPE arrives at an actor, including the location and the type of actor. For exam-
ple, a batch with a quantity of 20.000 PPE arrives at the export airport in Hong Kong
on day 3. Data of the time series is summed per day, and is aggregated over the actor
types that are represented in the SES (see Figure 4.4). Multiple replications are com-
bined using the mean value per day per actor type. A simulation time of 52 weeks
with 5 unique replications is used. The simulation model has been developed with
the library pydsol-core and pydsol-model in Python in combination with networkx.
The library pydsol is a Python implementation of the Distributed Simulation Object
Library (DSOL), originally implemented in Java (Jacobs, 2005).

Transport modalities
Input Parameter Distribution Value Unit Input Parameter Distribution Value Unit
Speed of small truck Triangular 0, 100, 120 km/h Delay of small truck Triangular 0, 0.2, 0.5 days
Speed of large truck Triangular 0, 80, 120 km/h Delay of large truck Triangular 0, 0.5, 1 days
Speed of train Triangular 25, 40, 75 km/h Delay of train Triangular 0, 0.3, 0.5 days
Speed of feeder Triangular 10, 18, 25 knots Delay of feeder Triangular 0, 4, 16 days
Speed of vessel Triangular 10, 18, 25 knots Delay of vessel Triangular 0, 7, 16 days
Speed of airplane Uniform 740, 930 km/h Delay of airplane Triangular 0, 1, 4 hours

Table 4.3: Input parameters of speed and delay of the transport modalities for the simulation model of the
stylized counterfeit PPE supply chain.
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4.4.4. FORMALIZATION OF SYNTHETIC STRUCTURAL UNCERTAINTY
In our research, we use a stylized SES to incorporate structural uncertainty for de-
signing the set of plausible simulation models. All configurations of the simulation
models result from the SES, including the ground truth model which is one specific
configuration. Figure 4.4 presents the SES of the counterfeit PPE supply chain simu-
lation model. The tree starts with a supply chain with multiple actors, shown by the
physical multi-aspect node. A discrete event simulation model of a supply chain has
the following model elements: source (i.e., creating entities), server (i.e., processing
entities), sink (i.e., destroying entities), and links to connect these elements (Banks,
1998). A supplier acts as a source in the simulation model, as the supply chain starts
here. The sink describes the end of the supply chain with the type (export) customer.
There are multiple types of servers, as indicated by the specialization node. Any actor
that processes entities, in this case PPE products, is a server. There are three types of
ports described in the SES of the stylized supply chain case: import port, transit port,
and export port. Moreover, a supply chain has links to connect the actors. This SES
includes two links: a sea link based on the travel time overseas, and a link for land
and air transport based on the distance.

Figure 4.4: System Entity Structure of the Counterfeit PPE Supply Chain Simulation Model.

For composing system configurations from the SES, specifying rules and con-
straints have to be set. One important rule for our case is to have at least one repre-
sentative of each actor type in the supply chain that is arranged in a specific sequence
and interconnected through links. For example, a supplier has to be connected to a
manufacturer, who in his turn has to be connected with a warehouse consolidator.
This determines the incoming and outgoing degrees of each actor. Also, counterfeit
PPE is commonly shipped across borders using routes that align with the legal sup-
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ply chains. Hence, the travel time and transit time of international transport overseas
(i.e., sea links) is based on open-source data of the shipping schedules given by MSC,
Maersk, HMM, and Evergreen. Through the distinct shipping alliances that these four
companies are part of, we gain a comprehensive understanding of the schedules of
the leading shipping firms. A distribution is fitted for the travel time of each leg for
the seaports (port-to-port) and the scheduled processing times at the transit ports
based on four months of schedules in 2023 and 2024. The airport network is based
on an open-source flight route database from 2017. The travel distance between the
airports is calculated using the Haversine distance between two airports (Robusto,
1957). The distance for links over land relies on expert interviews. For this, we use the
information from open-source data to identify the real-world locations of ports, and
from there, we determine the positions of other actors based on expert information.
For example, the warehouse locations are often driving distance from the ports. See
Appendix A.1 for more details on the specifying rules and distances.

For our study, we randomly generate a set of graphs using the synthetic SES. First,
the number of vertices is randomly determined using the SES, relying on the ac-
tor type and the corresponding constraint on the number of vertices per type. Sec-
ond, the edges are randomly defined based on the connectivity between the vertices,
i.e., the amount of incoming and outgoing degrees. Third, we use the open-source
data on ports to determine the international routes and their travel time. The gen-
erated export and import ports are randomly assigned to real-world locations. Given
the edges between the export and import ports, plausible real-world routes between
these ports are identified. Fourth, the travel distance between the other vertices are
defined, e.g., between suppliers and manufacturers. The distance per edge is chosen
using a Uniform distribution of the minimum and maximum distance between ac-
tors. Last, the graphs are sorted on their average betweenness centrality, i.e., the frac-
tion to which a vertex lies on the shortest path between other vertices averaged over
all vertices. In terms of illicit networks, the betweenness centrality of an actor deter-
mines the centrality of an actor in the network, e.g., an actor with a high betweenness
centrality often has a broker position (Morselli, 2010; Diviák et al., 2019). We use the
average betweenness centrality of the graph as a descriptor since it is shown to be the
most effective topology for planning interventions (Cavallaro et al., 2020; Ficara et al.,
2021).

4.5. RESULTS
We discuss the results of the model calibration techniques when varying the degree of
data sparseness, both individually per dimension and in combination. The results are
presented in a scatter plot where each point represents the optimal solution arising
from the model calibration technique for one unique seed.

4.5.1. ANALYSIS OF THE INDIVIDUAL DATA SPARSENESS DIMENSIONS
This section presents the analysis of the various metrics for quality-of-fit for the four
selected model calibration techniques when increasing the degree of the data sparse-
ness dimensions individually. We discuss the metric of graph edit distance, the rank-
ing of the average betweenness centrality, and the number of vertices and edges. For
more results on the average betweenness centrality and the Manhattan distance, see
Appendix A.2.
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GRAPH EDIT DISTANCE

The graph edit distance measures the difference between the ground truth graph and
the optimal graph chosen by the model calibration technique based on graph edit
operations (Abu-Aisheh et al., 2015). A graph edit distance of zero indicates that the
optimal graph and the ground truth are identical. Hence, the lower the graph edit
distance, the higher the quality-of-fit. Figure 4.5 shows the graph edit distance of
the optimal solutions of the model calibration techniques for six unique seeds per
percentage of missing values, noise, and bias.

(a) Missing Values (b) Noise

(c) Bias

Figure 4.5: Graph Edit Distance per Dimension of Data Sparseness for Powell’s Method, ABC, BO, GA

Powell’s Method demonstrates consistency in finding optimal solutions for miss-
ing values, noise, and bias. The graph edit distance for each solution is between 623
and 1098 across all percentages of data sparseness. Hence, the found solutions need
a relatively high number of graph edit operations to transform into the ground truth.
The spread of the solutions in terms of graph edit distance is relatively small com-
pared to other techniques. However, Powell’s Method fails to identify the ground truth
successfully.
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Similar to Powell’s Method, ABC shows consistency in terms of graph edit distance
for missing values, noise, and bias. The graph edit distance for most solutions is either
416 or 1243 graph edit operations across most percentages of missing values and all
percentages of noise and bias. At 40% and 60% missing values, Figure 4.5a shows an
outlier with a graph edit distance of only 254 node operations from the ground truth.
Nevertheless, ABC fails to identify the ground truth.

BO has a more diverse graph edit distance of the solutions across the various per-
centages of data sparseness, but the majority of the graph edit distances still lies be-
tween 400 and 707 operations. For a data sparseness of 0%, BO identifies the ground
truth represented by a graph edit distance of 0. With 10%, 20%, 40% and 60% miss-
ing values, BO finds optimal solutions that have a relatively low graph edit distance
between 334 to 400 edit operations. However, the ground truth is not identified for
any percentage of missing values. Comparatively, BO does identify the ground truth
at 80% noise. Additionally, the differences in graph edit distance between the solu-
tions for each percentage of noise are less spread out. Especially at 40%, 80%, and
90% noise, all solutions have a relatively low graph edit distance between 323 to 413
graph edit operations. For bias, we see in Figure 4.5c that BO finds optimal solutions
with a relatively high graph edit distance compared to missing values and noise for
each percentage of data sparseness, meaning more solutions with 942 to 1051 graph
edit operations from the ground truth. In contrast, the ground truth is identified most
frequently for bias at 40%, 80%, and 90%.

GA shows a diverse graph edit distance of the solutions across the various per-
centages of data sparseness, where we observe an identification of the ground truth
as well as relatively high graph edit distances. Other solutions have graph edit dis-
tances in the range of 236 to 801 graph edit operations. For 0% data sparseness, GA
finds an optimal solution with a relatively high graph edit distance of 1033 graph edit
operations. The ground truth is not found for 0% of data sparseness. GA identifies
the ground truth for 10%, 20%, 50%, and 60% of missing values. For noise, GA is able
to identify the ground truth most often as visible in Figure 4.5b. The ground truth is
identified for the majority of noise percentages, excluding 30% and 60%. Especially
for 40% and 90% of noise, the other solutions that are identified are in close proximity
to each other with a graph edit distance between 236 and 456 graph edit operations.
Overall, the graph edit distance for noise stays limited to 582 edit operations. Next,
GA identifies the ground truth at 10%, 20%, 40%, and 60% of bias. Solutions with a
relatively high graph edit distance, i.e., of 869 and 1051 operations, are found after
60% bias. This means that, for bias, GA found more complex graph structures that
explain the sparse data compared to missing values and noise.

RANKING OF AVERAGE BETWEENNESS CENTRALITY

The graphs in the set for calibration are ranked based on their average betweenness
centrality (as described in subsection 4.4.1), where higher rankings correspond to
higher average betweenness centrality scores. The ground truth graph ranking is
39520, with a ranking from 0 to 40000, and the average betweenness centrality is
0.046, with a range of 0.003 to 0.110. Figure 4.6 presents rankings for all dimensions of
data sparseness across the four techniques. Results on the exact values of the average
betweenness centrality are provided in Appendix A.2.
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(a) Missing Values (b) Noise

(c) Bias

Figure 4.6: Ranking of Average Betweenness Centrality per Dimension of Data Sparseness for Powell’s
Method, ABC, BO, GA

Figure 4.6 shows that Powell’s Method consistently identifies a few specific graphs
as optimal solutions over the increasing percentage of missing values, noise, and bias.
All optimal graphs of Powell’s Method are found in a specific area of the set of graphs
with a ranking of around 15000 and an average betweenness centrality of 0.01. How-
ever, the solutions are not close to the ground truth, based on their ranking nor on
their average betweenness centrality. The solutions of Powell’s Method typically have
minimal overlap with the solutions of the other techniques, especially for the dimen-
sion noise (see Figure 4.6b).

For ABC, we see that this technique reaches two optimal graphs consistently over
the increasing percentage of missing values, noise, and bias. One optimal graph with
a ranking of 0 is quite distant from the ground truth, while the other is in closer prox-
imity with a ranking of 34589. For missing values, Figure 4.6a displays that the outliers
of 40% and 60% of missing values have a ranking of betweenness of 39999, seemingly
in close proximity to the ground truth. Their graph edit distance of 254 graph edit op-
erations indicates that the graph is indeed close to the ground truth. Except for 70%
noise and for 50% and 60% bias, where only one optimal solution is discovered, the
two graphs consistently emerge as optimal solutions across increasing percentages of
data sparseness.
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Comparatively, BO finds a variety of graphs for missing values, noise, and bias
when looking at the betweenness ranking. For missing values, the diversity of solu-
tions increases when the percentage of missing values increases up to 50% of missing
values. Especially at 70% and 80% of missing values, the optimal graphs are relatively
close to each other in terms of average betweenness centrality. For noise, the optimal
graphs align closely with the ground truth in terms of betweenness ranking but they
display a wide spread in average betweenness centrality. For bias in Figure 4.6c, BO
identifies a diverse set of graphs based on betweenness ranking as optimal solutions,
yet most frequently finds the ground truth.

GA also identifies a variety of graphs as solutions for missing values, noise, and
bias based on the ranking of average betweenness centrality. As missing values in-
crease to 50%, the diversity of solutions increases, but decreases beyond that point.
This indicates a closer proximity in solutions, especially at 70% missing values. For
noise, Figure 4.6b shows that the optimal solutions are close to the ground truth for
betweenness ranking. Yet, their average betweenness centrality is relatively high and
wide spread. For bias, GA identifies diverse optimal graph solutions in terms of rank-
ing of betweenness and average betweenness centrality. As bias increases, the di-
versity of solutions increases, meaning a higher percentage of bias leads to a more
diverse set of optimal graph structures.

(a) Missing Values (b) Noise

(c) Bias

Figure 4.7: Number of Vertices per Dimension of Data Sparseness for Powell’s Method, ABC, BO, GA
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VERTICES AND EDGES

Figure 4.7 and Figure 4.8 show the number of vertices and edges of each solution
graph per dimension of data sparseness for the four techniques. The ground truth
graph contains 23 vertices and 29 edges.

For all three dimensions of data sparseness, Powell’s Method identifies optimal
graphs within a distinct range of vertices and edges, specifically between 58 to 78
vertices and between 130 to 293 edges. Particularly for noise, the range of vertices and
edges has a minimal overlap with other techniques. Next, ABC identifies two optimal
solutions for most percentages of data sparseness: one graph with 108 vertices and
325 edges, and the other graph with 38 vertices and 89 edges. For the outliers at 40%
and 60% missing values, an optimal graph is discovered with 21 vertices and 31 edges,
with a close proximity to the ground truth. The optimal solutions of ABC have limited
overlap with the other techniques in terms of vertices and edges.

(a) Missing Values (b) Noise

(c) Bias

Figure 4.8: Number of Edges per Dimension of Data Sparseness for Powell’s Method, ABC, BO, GA

BO identifies optimal solutions with a varying number of vertices and edges for
missing values, noise, and bias. These solutions generally have higher vertex and edge
counts compared to the ground truth, meaning a richer structure that is coherent
with the sparse data. Figure 4.7a shows that the number of vertices increases up to
30% of missing values. For noise, BO identifies graphs with vertex and edge counts
that are closer to, yet still higher than, the ground truth. For bias, Figure 4.7c and 4.8c
show that BO discovers a diverse range of graphs in terms of vertices and edges. The
vertices and edges of the optimal solutions of BO overlap mostly with those of GA.
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GA identifies optimal solutions with vertex and edge counts both lower and higher
than the ground truth across different percentages of noise and bias. For missing
values, GA only finds graphs that have higher vertex and edge counts than the ground
truth. For noise, GA discovers graphs closer to the ground truth in terms of vertices
and edges, also identifying optimal solutions with fewer vertices and edges. Figure
4.7b shows that GA typically finds an optimal graph with around 50 vertices for each
noise percentage except 40%. For bias, GA identifies a wide variety of graphs with
a varying number of vertexes and edges, with diversity notably increasing after 50%
bias.

4.5.2. ANALYSIS OF COMBINATIONS OF DATA SPARSENESS DIMENSIONS
Having analyzed the dimensions of data sparseness separately, we evaluate to what
extent the model calibration techniques can still reconstruct the supply chain struc-
ture when combining the different dimensions of data sparseness. For this, we use
the two best-performing techniques of individual analysis: BO and GA. The model
calibration techniques are evaluated using scenarios where the dimensions of data
sparseness are combined. Tabel 4.4 presents the percentage of data sparseness per
scenario. In the scenarios, we use percentages of noise and bias of 20% and 80%,
since BO most frequently identifies the ground truth with bias, and GA with noise.
The goal is to see whether these techniques can still find the ground truth when a
combination of the various dimensions of data sparseness is added.

Scenario Noise Bias Missing Values
High Noise 80% 20% 25%
High Bias 20% 80% 25%
High Noise & Bias 80% 80% 25%

Table 4.4: Configuration of Scenarios

Figure 4.9 shows that BO and GA fail to identify the ground truth for each sce-
nario. We see in Figure 4.9a that BO has a relatively low graph edit distance between
242 and 419 edit operations in all three scenarios, with two outliers with 650 and 779
operations, respectively, for the scenario High Noise and for the scenario High Noise
& High Bias. The graph edit distance of GA is relatively high with a range of 390 to 895
operations. The scenario High Noise has the highest graph edit distance, meaning GA
finds solutions that have denser graph structures. In line with this, Figure 4.9b shows
that the solutions of BO are in close proximity to the ground truth in terms of the
ranking of average betweenness centrality. Yet, GA identifies a diverse set of solutions
relatively distant from the ground truth, and it has a lower average centrality between-
ness. Also, Figure 4.9c and Figure 4.9d illustrate that BO identifies optimal graphs in
terms of the number of vertices and edges, closer to the ground truth, whereas GA
tends to be more distant from the ground truth. Especially for the scenario of High
Noise and the scenario of High Bias, the solutions of BO and GA are distant from each
other. For all three scenarios, BO and GA identify optimal solutions within distinct
subsets of the graph features. A pair plot is presented in Appendix A.2 for a more
detailed picture of the difference between BO and GA.
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(a) Graph Edit Distance (b) Ranking of Average Betweenness Centrality

(c) Number of Vertices (d) Number of Edges

Figure 4.9: Results of the Experiments for BO and GA

4.6. DISCUSSION

This section reflects on the results of the model calibration techniques and discusses
the limitations of our study.

4.6.1. REFLECTION ON MODEL CALIBRATION TECHNIQUES
The results show that Powell’s Method and ABC are not suitable techniques for cali-
brating the structure of a supply chain simulation model with sparse data. Similar to
van Schilt et al., 2023, Powell’s Method gets stuck in a local optimum instead of reach-
ing the global optimum. We see this in our results as Powell’s Method is consistent in
identifying a specific range of graphs for all features. Also, ABC consistently identifies
two optimal solutions that deviate from the ground truth across most percentages of
each data sparseness dimension. A possible explanation is ABC gets stuck in local
optima for two reasons: (1) the algorithm results in a bimodal distribution, meaning
multiple regions of the input space lead to optimality, and (2) the algorithm does not
mutate fast enough, hindering its ability to reach a global optimum. Moreover, de-
spite the different impact of data sparseness dimensions on Manhattan distance (Ap-
pendix A.2), Powell’s Method and ABC consistently generate similar outcomes across
varying percentages of missing values, noise, and bias.
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BO and GA are suitable techniques for calibrating the structure of a supply chain
simulation model with sparse data. Both techniques result in a diverse set of optimal
solutions with various graph edit distances when increasing the degree of sparseness
individually. The diverse set of optimal solutions for BO and GA largely overlap. BO
can identify the ground truth, especially for a high percentage of bias. The main prop-
erty of BO is that it uses a Gaussian process to model the distribution of the unknown
objective function while balancing exploration and exploitation, making it efficient
and relatively fast for sparse data situations (Jalali et al., 2017). However, especially in
a non-linear decision space such as calibrating discrete event simulation models and
having a combination of data sparseness, distinguishing between identifying promis-
ing regions and exploring uncertain regions may not be straightforward. Next, GA is
the only technique that successfully identifies the ground truth for all dimensions of
data sparseness, especially for noise. Through the population-based nature of GA
and the use of evolutionary operators such as crossover and mutation, GA is able to
cope with noise, and other dimensions of data sparseness relatively well since the
algorithm relies on the properties of the population rather than the individual evalu-
ations (Slowik & Kwasnicka, 2020).

Additionally, a reason for GA outperforming BO could be the implementation of
the decision variables in the algorithms. BO tries to fit a continuous distribution that
only works with floating point numbers, whereas the decision variable requires inte-
gers to rank the graphs. In BO, we rounded the floating point number to integers,
leading to possible smaller steps taken by the algorithm and fewer evaluations of
unique solutions. In contrast, GA allows for the direct use of the integers, allowing
for taking larger steps and more exploration.

Although BO and GA are suitable when varying individual dimensions of data
sparseness, they both fail to identify the ground truth when combining these dimen-
sions. In contrast to the individual analysis, the results of the combined scenario
show a minimal overlap between the optimal solutions of BO and GA. Further re-
search is needed to investigate the extent to which model calibration techniques can
cope with the combination of data sparseness dimensions for accurately identifying
the ground truth.

To obtain a comprehensive overview of the various graphs approximating the
ground truth with sparse data, we advise using a combination of the results of
BO and GA. For further work, it would be interesting to develop an algorithm that
combines the exploration and exploitation using the Gaussian process of BO with
the population-based approach of GA, and evaluate the suitability for calibrating the
structure with sparse data.

In both individual analyses and scenarios, BO and GA identify graphs with high
graph edit distances, which often indicates significantly more vertices and edges than
the ground truth. Having more vertices and edges suggests a more dense structure of
a graph and more complexity. This complexity carries a risk of overfitting as it allows
the simulation models of the dense graphs to reproduce the sparse data better than
those that slightly differ from the ground truth. Denser graphs, then, seem optimal
for the model calibration techniques. For example, with noise and bias, the simula-
tion models of the dense graphs fill in the gaps created by the data sparseness, and
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for missing values, “anything goes”. Especially in a highly rugged fitness landscape,
typical for discrete event simulations, BO and GA favor these dense structures over
those closer to the ground truth.

To address this, we shift towards a different direction in terms of the metric of
calibration, i.e., match the simulated data to the ground truth data. One possible ap-
proach is to limit the likelihood of dense graphs being considered optimal by penal-
izing denser structures in the objective of the calibration or by restricting the degrees
of freedom during the model calibration. In the case of illicit supply chains, the max-
imum number of vertices and edges of the graph can be limited to ensure less dense
graphs can be identified as optimal. However, the dense graphs found by BO and GA
do not necessarily lead to “wrong” results since they could explain the sparse data.
Restricting the degrees of freedom for model calibration could lead to an unrealistic
and (too) narrow view of the potential structures of the supply chain.

Another approach is to embrace and control the diversity of simulation models
that explain the sparse data. Instead of a model calibration technique leading to a
single optimal solution distant from the ground truth, we want a diverse set of opti-
mal solutions ranging from those relatively close to the ground truth to those further
away. For real-world illicit supply chains, this diverse set of plausible structures that
could explain the sparse data, including dense structures, is realistic. For example,
a dense structure with more actors and routes spreads risk effectively, but it also in-
creases vulnerability to detection since more actors are involved (Morselli, 2010; An-
zoom et al., 2021). Further research should focus on finding a diverse set of optimal
solutions in terms of simulation model calibration with sparse data.

4.6.2. LIMITATIONS

Designing a large set of graphs using System Entity Structures (SES) as input for the
model calibration techniques comes with limitations. First, the set of graphs is merely
a sample representation of potential structures, and the set is not exhaustive. This
could lead to an overrepresentation of certain configurations of supply chains based
on constraints. In this research, it results in many generated graphs in the set having
more vertices and edges than the ground truth. Second, the constraints of the SES are
chosen by the user. In our study, we use a known ground truth to inform constraint
selection. However, in real-world situations where the ground truth is unknown, set-
ting constraints can be difficult. Different perspectives result in varying constraints,
affecting the outcomes and optimal solutions of model calibration techniques (Her-
mans, 2022). Hence, incorporating diverse perspectives is crucial for modeling struc-
tural uncertainty. Despite the limitations, SES remains a powerful method for de-
scribing structural uncertainty within complex models, like an illicit supply chain
model, to approximate the ground truth.

Another limitation of this research is the assumption that the exact percentage of
the dimensions of data sparseness is known, whereas these are often unknown in real
life. Irrespective, the type and degree of dimensions of data sparseness can be deter-
mined based on the characteristics of a real-world supply chain. For example, crim-
inals try to hide data and overrepresent outdated information on their operations as
much as possible, resulting in a high degree of missing values and bias.
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4.7. CONCLUSION

This research addresses the question: “To what extent can various model calibration
techniques reconstruct the underlying structure of an illicit supply chain when varying
the degree of data sparseness?” We evaluate the quality-of-fit of a reference technique,
Powell’s Method, and three model calibration techniques that promise to be able to
handle sparse data: Approximate Bayesian Computing (ABC), Bayesian Optimization
(BO), and Genetic Algorithms (GA). For this, we use a case study of a counterfeit PPE
supply chain as ground truth, and formalize structural uncertainty with System Entity
Structures (SES). Our analysis shows that:

• SES is a powerful approach for defining structural uncertainty in a supply chain
simulation model to approximate the ground truth using calibration. Incorpo-
rating diverse perspectives of users on the system is crucial for modeling struc-
tural uncertainty.

• Powell’s Method and ABC fail to reconstruct the underlying structure of an illicit
supply chain for any dimension of data sparseness. These algorithms result in
local optima instead of global.

• GA and BO are suitable for reconstructing the underlying structure of an illicit
supply chain for a varying degree of data sparseness individually. For a compre-
hensive understanding of the various graphs approximating the ground truth,
we recommend combining the results of BO and GA.

• Denser graph structures, i.e., more vertices and edges, tend to describe and
reproduce the sparse data the best. Many optimal solutions from the model
calibration techniques are, therefore, distant from the ground truth but are not
necessarily incorrect. We highlight the need for identifying a diversity of solu-
tions that are optimal with sparse data, instead of only one.

Reconstructing the underlying structure of an illicit supply chain helps to get in-
sight into the operations of criminals, and it allows law enforcement agencies to ef-
fectively plan their interventions.

Further work is needed to investigate the extent to which model calibration tech-
niques can cope with a combination of the dimensions of data sparseness. Future
studies should focus on developing an algorithm that combines BO and GA, and
evaluating generalizability to various types of supply chains. Additionally, further re-
search should focus on incorporating the diversity of graphs that are coherent with
sparse data for analysis and measuring the quality-of-fit of model calibration tech-
niques.







5
A SIMULATION-BASED APPROACH

FOR RECONSTRUCTING A DIVERSE

SET OF SUPPLY CHAIN MODELS

WITH SPARSE DATA USING A

QUALITY DIVERSITY ALGORITHM

Data on supply chains is often sparse due to reluctance among actors to share their
data, making supply chain simulation modeling difficult. Particularly, supply chain
simulation models suffer from parametric and structural uncertainties as a result of
this data sparseness. When calibrating a simulation model, there is a large variety
of plausible simulation models that could explain the sparse observations about the
real-world supply chain. Constructing this diverse set is not an easy task. A relatively
unknown approach to generating this diverse set of plausible models is the Quality Di-
versity (QD) algorithm. This study evaluates the feasibility of using QD to generate a
diverse ensemble of supply chain simulation models for a varying degree of data sparse-
ness. The results show that QD is able to generate a diverse ensemble of supply chain
models, including the ground truth. As expected, QD successfully identifies the struc-
ture of the ground truth most frequently at 0% of data sparseness. When more data
sparseness is present, QD is prone to overfitting on more complex structures. Addition-
ally, this study highlights the importance of gathering information on the upstream
supply chain. Further research should focus on reviewing the calibration metric for
sparse data, and evaluating the effectiveness of the diverse ensemble of plausible sup-
ply chain configurations for identifying robust interventions.

This chapter is submitted as: van Schilt, I. M., Kwakkel, J. H., Mense, J. P., & Verbraeck, A. (2024) A
simulation-based approach for reconstructing a diverse set of supply chain models with sparse data us-
ing a quality diversity algorithm.
The code is available at https://github.com/imvs95/quality_diversity_simulation.
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5.1. INTRODUCTION

During COVID-19, there was a steep rise in demand for Personal Protective Equip-
ment (PPE), such as goggles, gloves, face masks, and respirators (Omar et al., 2022).
Many countries suddenly needed a large supply of medical PPE to protect caretak-
ers in hospitals. This high demand, unfortunately, also led to an opportunity for the
illicit market to produce and distribute counterfeit PPE (Hashemi et al., 2022). Fraud-
involved organizations were, for instance, selling non-medical PPE as medical PPE
with a high profit margin, leading to unacceptable health risks (Ippolito et al., 2020;
Hashemi et al., 2023). Due to the lack of historical data on COVID-19 and criminals
trying to obfuscate their data as much as possible, the illicit activities and related lo-
gistics of these organizations selling fraudulent products were mostly invisible (van
Schilt et al., 2023). This made it difficult for law enforcement to intervene effectively,
seize counterfeit PPE, and stop crime.

Simulation is a way to understand a system and to measure the effectiveness of
interventions by modeling the system’s behavior over time (Banks, 1998; Zeigler et
al., 2018). This chapter focuses on discrete event simulation models to represent il-
licit supply chains (Schmitt & Singh, 2009; Magliocca et al., 2022). A discrete event
simulation model consists of components, their parameters, and their behavior over
time, as well as the relations between the components. For example, a simulation
model of a supply chain consists of actors with parameters such as the time to pro-
cess a product, inventory levels, and transportation times. The relations define the
connections between the actors to represent the network, i.e., the structure, of the
supply chain. Calibration uses data to tune the parameters of a simulation model in
such a way that the model behavior sufficiently matches the system behavior in the
real world (Wigan, 1972; Ören, 1981; Hofmann, 2005).

However, data on supply chains, such as demand, inventory levels, processing
times, or transportation times, is often sparse due to reluctance among supply chain
actors to share their (correct) data (Somapa et al., 2018; van Schilt et al., 2024). This
reluctance has various causes, such as competition, high data cost, or illicit activities
in the case of fraudulent supply chains (Ficara et al., 2021). Given that data is sparse,
there is a high probability of equifinality during the calibration process, i.e., different
input values can result in the same outcome (van Schilt et al., 2023). More specifi-
cally, there are multiple versions of the supply chain simulation model that explain
the sparsely observed data. Especially for illicit supply chains, there are many possi-
ble involved actors, many steps in the process, a large variety of modi operandi, and
many possible transport routes (Duijn et al., 2014; Anzoom et al., 2021). Combining
this wide variety of possibilities to carry out criminal activities with data sparseness,
calibration can result in a large variety of plausible simulation models to describe a
real-world illicit supply chain.

Thus, a system with sparse data, such as an illicit supply chain, cannot be fully
explained by a single theory or model but needs a variety of models (Mitchell, 2002;
Veit, 2020). This is in line with the many-model thinking approach of Page (2021) that
emphasizes the need for an ensemble of models to understand and analyze a com-
plex system. More specifically for illicit supply chains, van Schilt et al. (2023) note that
choosing one supply chain configuration could lead to a “wrong” view on the crim-
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inal supply chain, and hence, making “wrong” decisions on interventions. Accord-
ingly, identifying effective interventions in a system with sparse data, such as a coun-
terfeit PPE supply chain, means evaluating the robustness of interventions over an
ensemble of models, i.e., multiple plausible explanations of the real world (Marchau
et al., 2019). Many calibration algorithms that can generate multiple model config-
urations often converge to similar solutions, as configurations with parameters that
differ slightly from the best-matching solution typically outperform those with vastly
different parameters (Page, 2021). Finding a diverse set of, say, 20 solutions during
calibration is, therefore, harder than finding the top-20 best solutions, yet a diverse
set is more desirable in terms of robustness (Durán & Formanek, 2018).

An approach for generating a diverse set of plausible models is Quality Diversity
(QD) algorithms. QD algorithms use evolutionary concepts to find optimal solutions
at multiple points of the user-defined search space (Mouret & Clune, 2015; Chatzi-
lygeroudis et al., 2021). It is mostly used in the field of robotics and reinforcement
learning (Pugh et al., 2015; Lim et al., 2022; Tjanaka et al., 2023). Recent work applied
QD for multi-objective optimization (Pierrot et al., 2022), hyperparameter tuning of
a machine learning model (Schneider et al., 2022), and for identifying the most pre-
ferred solutions to decision-makers (Kent & Branke, 2023). However, QD remains
unexplored in many other application areas, since it is a relatively new approach for
evolutionary computation (Pugh et al., 2015; Schneider et al., 2022). More specifically
to our study, it has not been researched yet whether QD algorithms can generate a di-
verse set of plausible configurations of supply chain simulation models characterized
by sparse data. This raises the question whether the simulation model configurations
proposed by the QD algorithms for such data-sparse supply chains align with plausi-
ble real-world supply chain configurations.

Therefore, we evaluate the feasibility of a QD algorithm for generating a diverse
ensemble of supply chain simulation models when varying the degree of data sparse-
ness. First, we review related work on generating a diverse set of simulation mod-
els that can be calibrated with sparse data, and on QD algorithms. Next, we assess
the feasibility of a QD algorithm for generating a diverse set of supply chain config-
urations that can explain the observed (sparse) data. To test the approach, we use
a ground truth simulation model of a synthetic counterfeit PPE supply chain. For
the analysis, we extract data from the ground truth model and vary the degree of
data sparseness. Next, we assess whether the QD algorithm can generate the ground
truth as a feasible solution among its diverse set of solutions. Hence, our study of-
fers a first insight into the potential of using QD algorithms to generate an ensemble
of diverse and plausible configurations of simulation models, particularly for supply
chains with sparse data. Such an ensemble of plausible configurations, in turn, en-
ables decision-makers to make more robust decisions on, for example, interventions
that are effective for the ensemble of supply chain models, rather than for a single
explanation of the observed data.

The chapter is structured as follows. Section 5.2 presents the relevant state-of-
the-art literature. Section 5.3 describes the method for evaluating the results of the
QD algorithm, and the used case study. Section 5.4 shows the results of the QD al-
gorithm when applying it to simulation models for sparse data. Section 5.5 discusses
our results. Section 5.6 concludes our work and presents further research.
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5.2. LITERATURE REVIEW

This section presents the current state-of-the-art for our research. First, we show the
related work on simulation with sparse data. Second, we position our chapter in re-
lation to the literature on a pluralist view on simulation modeling. Third, we examine
the related work on QD and provide more insight into the QD algorithm itself.

5.2.1. SIMULATION WITH SPARSE DATA

Simulating a real-world system becomes challenging when data is sparse (Srikrish-
nan & Keller, 2021). Data sparseness makes it more difficult to accurately mimic the
behavior of the real world in a simulation model (Vanbrabant et al., 2019; Anzoom
et al., 2021; van Schilt et al., 2023). Few studies have examined simulation models
calibration to the real world in the context of data sparseness.

One of the first authors to explicitly address the calibration of a simulation model
under data sparseness is Liu et al. (2017). They propose a simulation-optimization
approach to automatically tune the parameters of an agent-based simulation model
with sparse data using an emergency department as a case study. The problem is
formulated as a series of local minimum search problems. Vanbrabant et al. (2019)
present a framework for assessing real-world input data quality problems for emer-
gency department simulation models. Next, De Santis et al. (2022) focus on the cali-
bration of a discrete event simulation model under data sparseness. Observable val-
ues from the real-world system are used to determine the parameter values of the
simulation model, for example, values for time intervals. de Groot and Hübl (2021)
use calibration as a validation method; in their case, the sparseness of data makes
validating the simulation model challenging. They manually fine-tune the param-
eters and dynamics of the model to enhance validity. Srikrishnan and Keller (2021)
calibrate an agent-based simulation model on housing abandonment under flood
risk, and show that limited data can be insufficient for correctly identifying the model
structure. van Schilt et al. (2023) compare various calibration techniques for simula-
tion models when increasing the degree of data sparseness. They calibrate the pa-
rameters of a discrete event simulation model of a counterfeit PPE supply chain. van
Schilt et al. (2024) evaluate the effect of three dimensions of data sparseness (noise,
bias, and missing values) on supply chain visibility using simulation. They use a dis-
crete event simulation model of a counterfeit PPE supply chain. In line with van Schilt
et al. (2023, 2024), our study systematically varies the degree of data sparseness for
noise, bias, and missing values as well. This enables us to identify the extent to which
the behavior of the real world can be represented in a simulation model.

5.2.2. A PLURALIST VIEW ON SIMULATION MODELING

When modeling a complex phenomenon characterized by sparse data and uncer-
tainty, a level of equifinality among the simulation models can exist. This means that
many plausible simulation models are coherent with the available sparse data of the
real world. Only focusing on one model to analyze the system could lead to a “wrong”
view on the phenomenon, and hence ineffective interventions (van Schilt et al., 2023).
Thus, a complex phenomenon, such as a supply chain, cannot be captured by a sin-
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gle theory or model when data is sparse (Page, 2021). Illicit supply chains are a good
example of supply chains where data is intentionally sparse, but legal supply chains
also suffer from incomplete and erroneous data. Identifying the structure and param-
eter values of a supply chain for simulation purposes using sparse data is typically a
case where the research philosophy of pluralism applies.

Pluralism as a research philosophy refers to a diversity of views, theories, or mod-
els that are required to explain a complex phenomenon, rather than using just a single
view, theory, or model. From a research philosophy standpoint, Mitchell (2002) notes
that pluralism in science reflects complexity. Building on this, Lenhard and Winsberg
(2010) note that having a plurality of models for making forecasts is essential for fu-
ture science, especially in the field of global climate change models. With respect to
analysis with models, Weisberg (2012) refers to robustness analysis for a similar but
distinct group of models. The author argues that the more models are available, the
more likely robust properties amongst the models can be found that can be related
to the real world. Similarly, Durán and Formanek (2018) note that a heterogeneous
ensemble of models is needed for robustness analysis. Veit (2020) takes these state-
ments even further and argues that (1) any successful analysis should be focused on a
target set of models, and (2) for almost any aspect of a phenomenon, scientists require
multiple models to achieve a goal. As one simulation model is a limited representa-
tion of the world, it only gives one system view with a very precise formulation (Tolk
et al., 2023). This is especially undesirable for systems analysis when there is so little
data available about a model property, that it is not even possible to use probability
distributions in the model, a phenomenon also known as deep uncertainty (Marchau
et al., 2019).

From a modeling perspective, Thompson and Smith (2019) state that having an
ensemble of models reduces the possibility of errors. Simulation models require user-
defined initial conditions given by scientists based on real-world data. The idea is to
generate an ensemble of models with different initial conditions to account for these
errors in the initial conditions. Similarly, Page (2021) notes that scientists often can-
not use one single simulation model, and introduces the many-model approach. This
approach refers to the need for multiple models to understand a complex system.

Both from a research philosophy and from a modeling perspective, the current
state-of-the-art literature argues that pluralism in the context of model diversity is
essential to an analysis of a complex phenomenon. This holds especially for cases
where a phenomenon is characterized by uncertainty and data sparseness.

5.2.3. QUALITY DIVERSITY ALGORITHMS

Quality Diversity (QD) algorithms, or illumination algorithms, aim to find the most
diverse set of close-to-optimal solutions using evolutionary concepts (Mouret &
Clune, 2015). Traditional optimization algorithms aim to find the best solution
within a specific search space, while illumination algorithms focus on providing the
highest-performing solution at every user-defined point within that search space
(Mouret & Clune, 2015; Chatzilygeroudis et al., 2021). QD algorithms are a relatively
novel approach for evolutionary computation, and they are not yet heavily used in
many application areas (Pugh et al., 2015; Schneider et al., 2022).
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RELATED WORK

QD algorithms are widely applied in the field of reinforcement learning and robotics
(Lim et al., 2022; Tjanaka et al., 2023). A classic example is maze navigation where
QD is used to generate a set of diverse behaviors for the robot movement to solve the
maze (Pugh et al., 2015; Gravina et al., 2018; Fontaine & Nikolaidis, 2021; Grillotti &
Cully, 2022). The diverse behaviors are specified in the form of input parameters to
the robot. No trivial mapping of the input parameters to the robot movement exists,
making quality diversity interesting for these types of problems.

The application of QD algorithms for model calibration is a relatively unexplored
area. Schneider et al. (2022) compare various quality diversity algorithms for hyper-
parameter optimization of a machine learning model. To our knowledge, no research
has been performed on calibrating simulation models using QD.

QD algorithms can be used to present a diverse set of solutions to decision-
makers. Recent work of Kent and Branke (2023) combines a quality diversity search
with Bayesian optimization. Their approach efficiently identifies the most preferred
solutions by including the decision-makers in the process. This interactive illumi-
nation process helps decision-makers to understand the problem and to find the
most preferred solution(s). Although Bayesian optimization is known for creating
high-quality models with only a few observations, this chapter does not focus on
using an interactive approach to calibrate models with sparse data (Jalali et al., 2017;
Kent & Branke, 2023). Rather, we use QD for the automatic generation of a diverse set
of models that can explain the sparse data that is available for a supply chain.

Compared to the other studies, we examine the use of QD algorithms for calibrat-
ing simulation models as an emerging field of application. Additionally, we assess
the feasibility of QD algorithms in sparse data situations where it is desirable to have
model diversity (Page, 2021).

EXPLANATION OF THE QD ALGORITHM

QD algorithms are based on evolutionary concepts of “survival-of-the-fittest” (Pugh
et al., 2015; Chatzilygeroudis et al., 2021). The algorithms use three parameter spaces:
(1) input space, (2) behavior space, and (3) output space. The input space includes
the so-called genotypes x, also known as the input parameters. The behavior space
includes the so-called phenotypes b(x), also known as the dimensions describing the
behavior of the input parameters x. The output space is the solution space, f(x).

The general idea is that the QD algorithms create diversity by discretizing the be-
havior space, and fill each container in this space with an optimal solution (Chatzi-
lygeroudis et al., 2021). For this, a mapping between the input space and the behavior
space is needed. In a sense, a dimension reduction happens when mapping the geno-
types x to the phenotypes b(x). For example, the phenotypes when designing a robot
can be the height, weight and energy consumption of that robot (Mouret & Clune,
2015). A straightforward mapping from x to b(x), also direct encoding, occurs when
genotypes affect an independent component of the phenotypes. A complex mapping
from x to b(x), also known as indirect encoding, occurs when a genotype affects mul-
tiple components of the phenotypes, meaning that it is not independent (Mouret &
Clune, 2015). Choosing the mapping highly impacts the quality of the solutions, but
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unfortunately, it is quite challenging to define a good quality behavior space (Cully
& Demiris, 2017). One way to define the dimensions of the behavior space is to use
techniques such as Principal Component Analysis. However, in many cases, defining
the dimensions of the behavior space cannot be carried out automatically, and expert
knowledge is required (Chatzilygeroudis et al., 2021).

The behavior space needs to be discretized to identify subspaces or “containers”
in which optimality can be found. Discretization of the behavior space is often done
by a grid or a Centroidal Voronoi Tessellation (CVT) (Chatzilygeroudis et al., 2021). A
grid-based approach is easy to understand and implement for QD algorithms. A user-
defined number of discrete intervals per dimension of the behavior space is needed
to create the multi-dimensional hypercuboid containers using the grid. For high-
dimensional behavior spaces, Vassiliades et al. (2017) introduces CVT as a geometry
tool. CVT explicitly controls the number of containers, and the resulting containers
have a convex polygonal shape with corresponding centroids.

Finding the optimal solution for each container in the behavior space is done with
a QD algorithm. One of the first and most widely applied QD algorithms is MAP-Elites
(Mouret & Clune, 2015). MAP-Elites starts with generating a set of candidate solutions
with randomly chosen genotypes x following a Gaussian distribution. The behavior
b(x) and the output f(x) of these candidate solutions are calculated. Next, the can-
didate solutions are placed into the containers to which they belong in the behav-
ior space. When multiple candidate solutions are placed in the same container, the
highest-performing one (i.e., the best output) is kept. After initialization, the search
algorithm starts. It randomly selects a container in the discretized behavior space.
Mutation and crossover is used to generate offspring from the candidate solution in
the container. If the offspring has the highest-performing output, then it replaces the
current candidate solution. This process repeats until a stopping criterion, e.g., the
number of function evaluations, is reached.

Another commonly used QD algorithm is Novelty Search with Local Competition,
introduced by Lehman and Stanley (2011). This algorithm compares the quality and
the diversity of a candidate solution relative to its neighbor. It optimizes the candi-
date solutions on (1) quality: maximizing the output relative to its neighbors, and
(2) diversity: maximizing the novelty objective on how far the solution in the behav-
ior space is distant from its neighbors. The main limitation of this algorithm is that
this algorithm creates two individual sets of solutions for quality and diversity. This is
less effective than having one whole set of solutions generated by MAP-Elites (Chatzi-
lygeroudis et al., 2021).

More recently, Fontaine et al. (2020) proposed the Covariance Matrix Adaptation
MAP-Elites (CMA-ME). This algorithm combines the popular MAP-Elites with the
single-objective optimization algorithm called Covariance Matrix Adaptation Evo-
lution Strategy (CMA-ES). This hybrid algorithm efficiently explores new areas in
the search space using MAP-Elites, while using the selection and adaptation rules of
CMA-ES to find high-quality solutions. Fontaine and Nikolaidis (2021) shows that
CMA-ME outperforms MAP-Elites for finding a diverse set of optimal solutions, and
could work in the case of ill-conditioned objectives and measure functions.
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Another recent extension of MAP-Elites is the multi-objective MAP-Elites of Pier-
rot et al. (2022). In addition to MAP-Elites, it uses multi-objective optimization to
create a Pareto front for each container of the behavior space. This approach is inter-
esting for most real-life problems where multiple objectives are conflicting, providing
insights into trade-offs for this diverse set of Pareto optimal solutions.

The main limitation of QD algorithms is that it is not guaranteed that all the con-
tainers in the discretized behavior space are filled (Lehman & Stanley, 2011; Mouret
& Clune, 2015; Chatzilygeroudis et al., 2021). Since the discretization of the behav-
ior space is a user-defined process, it can be that the genotypes do not map to some
phenotypes. This especially plays a role in the case of a complex mapping process,
i.e., indirect coding. Another limitation is that the algorithm cannot directly search in
the behavior space due to the mapping (Mouret & Clune, 2015). This means that it is
possible that many candidate solutions with different genotypes could be present in
the same container.

5.3. METHOD

This section outlines the method for generating and evaluating a diverse set of opti-
mal supply chain configurations using a QD algorithm. First, the formalization of the
case study is discussed. Second, the configuration of the QD algorithm is presented.
Last, the design of experiments using a ground truth set-up is explained.

5.3.1. FORMALIZATION OF CASE STUDY
The case study used in this research is a stylized counterfeit PPE supply chain. Based
on open-source data and expert interviews, we use one specific configuration of a
stylized counterfeit PPE supply chain as ground truth.

Figure 5.1: Synthetic Ground Truth Supply Chain of Counterfeit PPE.

Figure 5.1 visualizes the structure of the ground truth counterfeit PPE supply
chain simulation model from China to the northeast United States of America (USA).
The symbols in the figure represent the main actors in the supply chain, and the
arrows represent the transportation flows. The supply chain starts at the supplier of
raw materials, located in Guangdong, China, who supplies products for PPE such as
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fabrics. These products are transported overland by a small truck to one of the two
manufacturers in the same area. The manufacturers produce counterfeit PPE in the
factory, pack them in boxes, and consolidate them into batches for transportation.
Each batch contains a specific quantity of counterfeit PPE, such as 2000 boxes with
20 PPE units per box, resulting in a total of 20,000 PPE units per batch.

Next, a batch of finished counterfeit PPE is transported from the manufacturers’
location via a truck to the consolidation warehouse close to the border of Hong Kong.
Batches from several manufacturers are stored here until an order arrives and then,
this specific order gets picked. On average every 1.2 days, an order is picked up from
the consolidation warehouse. The order of counterfeit PPE can either be directly put
in a shipping container for international transport at pickup, or it can be picked up
and put in a shipping container later at the port of destination. The probability that
the counterfeit PPE is in a shipping container at the warehouse consolidator is 0.5. In
both cases, the order is transported overland to the export seaport or airport in Hong
Kong.

For transportation over sea, the batch is loaded into a 40 ft shipping container and
transported by a small container ship to the transit port. Upon arrival at the transit
port, the small container ship unloads the shipping container carrying counterfeit
PPE. At the same port, the shipping container is loaded onto a larger container ship
for overseas transport. Depending on the destination port, the route that the shipping
container follows is either (1) from Hong Kong to New York, USA via Singapore, or (2)
from Hong Kong to Boston, USA via Shanghai, China. For transportation via air, the
batch is loaded into the cargo hold of an international airplane using pallets. The
destination of this batch is either New York, USA (airport JFK) or Boston, USA (airport
BOS). In both cases, there is a transit at Amsterdam Schiphol Airport (AMS), where
the batch is moved from one airplane to another.

Arriving at the import port, the batch in a shipping container or pallet is unloaded
at one of these ports, and waits at the yard for inland transport to one of the two (ille-
gal) warehouse distributor in the area of New York, USA or Boston, USA. The counter-
feit PPE can already be extracted from the shipping container at the import port, or it
can happen at the warehouse distributor. The probability of the counterfeit PPE being
extracted at the import port is 0.5. At the warehouse distributor, the batch of coun-
terfeit PPE is equally divided into smaller batches for the two distributors they serve.
Small trucks directly transport these smaller batches to distributors in New Hamp-
shire, Connecticut, and New Jersey. Lastly, the distributors transport the batch to
hospitals in Portsmouth, Providence, New Haven, and Philadelphia where the coun-
terfeit PPE are used as non-counterfeit.

We develop a discrete event simulation model of this stylized configuration of a
counterfeit PPE supply chain from China to hospitals in the northeast USA. In the
simulation model, most uncertainties such as processing times at actors, delays of
transport modalities, and speed of transport modalities follow triangular distribu-
tions inspired by real-world data of a fashion retailer and expert interviews (Kuipers,
2021; Hashemi et al., 2022). Table 5.1 and 5.2 show the input parameters for the
actors and the links used in the ground truth simulation model. Table 5.3 shows
parametrization of the speed and the delays of the transport modalities for the sim-



5

100 5. QUALITY DIVERSITY ALGORITHM

ulation model of this study. The simulation model has been developed with the li-
brary pydsol-core and pydsol-model in Python in combination with networkx. The
library pydsol is a Python implementation of the Distributed Simulation Object Li-
brary (DSOL), originally implemented in Java (Jacobs, 2005).

Actors
Input Parameter Distribution Value Unit
Interarrival time of product at supplier Exponential 10 days
Time at manufacturer Gamma 1.5, 0.8 days
Time at warehouse consolidator Triangular 0.5, 1, 1 days
Time to pickup at warehouse consolidator Triangular 0.5, 1, 2 days
Probability of counterfeit PPE in shipping container at warehouse consolidator 0.5
Time at sea ports Triangular 0.5, 1, 2 days
Time at air ports Triangular 0.5, 1, 1 days
Waiting time at yard for transport at import sea port Uniform 0.5, 3 days
Probability of counterfeit PPE extracted at import sea port 0.5
Waiting time at yard for transport at import air port Uniform 0.5, 1 days
Probability of counterfeit PPE extracted at import air port 0.5
Time at warehouse distributor Triangular 1, 2, 2 days
Time at distributor Exponential 0.2 days
Time at hospital Exponential 0.1 days

Table 5.1: Input parameters of actors for the simulation model of the synthetic counterfeit PPE supply
chain.

Links
Name Value Unit
Supplier to manufacturer 1 50 km
Supplier to manufacturer 2 80 km
Manufacturer 1 to warehouse consolidator 140 km
Manufacturer 2 to warehouse consolidator 75 km
Warehouse consolidator to export sea port 45 km
Warehouse consolidator to export air port 60 km
Export sea port to transit sea port Shanghai 2.8 days
Export sea port to transit sea port Singapore 9 days
Transit sea port Shanghai to import sea port Boston 42.5 days
Transit sea port Singapore to import sea port New York 26 days
Export air port to transit air port Amsterdam 9274 km
Transit air port Amsterdam to import air port Boston and New York 5547, 5847 km
Import sea and air port Boston to warehouse distributor Boston 15, 20 km
Import sea and air port New York to warehouse distributor New York 80, 72 km
Warehouse distributor Boston to distributor New Hampshire, Connecticut 105, 150 km
Warehouse distributor New York to distributor Connecticut, New Jersey 175, 150 km
Distributor New Hampshire to hospital Portsmouth 15 km
Distributor Connecticut to hospital Providence, New Haven 140, 60 km
Distributor New Jersey to hospital Philadelphia 50 km

Table 5.2: Input parameters of links for the simulation model of the synthetic counterfeit PPE supply chain.
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Transport modalities
Input Parameter Distribution Value Unit Input Parameter Distribution Value Unit
Speed of small truck Triangular 0, 100, 120 km/h Delay of small truck Triangular 0, 0.2, 0.5 days
Speed of large truck Triangular 0, 80, 120 km/h Delay of large truck Triangular 0, 0.5, 1 days
Speed of train Triangular 25, 40, 75 km/h Delay of train Triangular 0, 0.3, 0.5 days
Speed of feeder Triangular 10, 18, 25 knots Delay of feeder Triangular 0, 4, 16 days
Speed of vessel Triangular 10, 18, 25 knots Delay of vessel Triangular 0, 7, 16 days
Speed of airplane Uniform 740, 930 km/h Delay of airplane Triangular 0, 1, 4 hours

Table 5.3: Input parameters of speed and delay of the transport modalities for the simulation model of the
synthetic counterfeit PPE supply chain.

The ground truth discrete event simulation model is developed to produce the
observed data of the system. We extract time series data from the simulation model
that describes when a quantity of PPE arrives at an actor, including the location and
the type of actor. For example, a batch with a quantity of 20.000 PPE arrives at the
export airport in Hong Kong on day 3. Data of the time series is summed per day,
and is aggregated over the actor types. Multiple replications are combined using the
mean value per day per actor type. In this research, the model runs for a simulation
time of 52 weeks with 10 replications with unique seeds.

5.3.2. CONFIGURATION OF QUALITY DIVERSITY ALGORITHM

Our study uses a QD algorithm to generate a diverse ensemble of optimal supply
chain simulation models. In essence, this algorithm is used to calibrate the simu-
lation model to find a diverse set of plausible supply chain simulation models. The
configuration of the QD algorithm includes the description of the three spaces: the
input space, the behavior space, and output space. Next, we outline the configuration
of the algorithm for this study.

Input Space The input space of the QD algorithm defines the parameters to cali-
brate. These are uncertain parameters in the simulation model that need to be tuned
such that the model’s behavior matches the real-world behavior. In the case of illicit
supply chains, the structure and the actor’s parameters of the supply chain simula-
tion model are uncertain. We design various profiles of the input space that combine
structural and parametric uncertainty for specific parts of the supply chain. Table 5.4
gives an overview of the various profiles of the input space and the corresponding
parameters. Each parameter in the input space has bounds to ensure that the algo-
rithm chooses feasible candidate solutions. For example, a simulation model cannot
schedule an event in the past, so a parameter related to time cannot be lower than
zero. Note the parameters excluded from a composition’s input space are considered
known and correspond to the ground truth.

The first profile of the input space is defining the structure of the supply chain.
For the structural uncertainty, a large set of supply chain configurations with differ-
ent numbers of actors and connectivity is created using the System Entity Structure
approach (Zeigler, 1984; Zeigler & Hammonds, 2007). The set of graphs is ranked on
the density in each graph, and the graph index is part of the input space. Second, we
add parametric uncertainty to the existing structural uncertainty for the other pro-
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files of the input space. This means that both the structure of the supply chain (the
profile structure) and the parameters of a specific part within the supply chain are
uncertain. We divide the supply chain into five parts for defining the profiles of the
input space: modus operandi, source, legal, import, and destination.

Profiles Distribution Bounds Unit
Structure
Graph structure (index) (0, 40.000) int

Modus Operandi
Probability of counterfeit PPE in shipping container at warehouse consolidator (0, 1)
Probability of counterfeit PPE extracted at import sea port (0, 1)
Probability of counterfeit PPE extracted at import air port (0, 1)

Source
Interarrival time of product at supplier Exponential (1, 15) days
Time at manufacturer Gamma [(0.1, 10), 0.5] days
Time at warehouse consolidator Triangular [(0.1, 9.9), (0.1, 10), (0.2, 10)] days
Time to pickup at warehouse consolidator Triangular [(0.1, 10), (0.1, 20), (0.5, 20)] days

Legal
Time at sea ports Triangular [(0.5, 2), (0.5, 5), (1, 5)] days
Time at air ports Triangular [(0.1, 1), (0.1, 2.5), (0.3, 2.5)] days

Import
Waiting time at yard for transport at import sea port Uniform [(0.1, 1), (0.5, 5)] days
Waiting time at yard for transport at import air port Uniform [(0.1, 1), (0.3, 2)] days

Destination
Time at warehouse distributor Triangular [(0.1, 9.9), (0.1, 10), (0.2, 10)] days
Time at distributor Exponential (0.1, 5) days
Time at hospital Exponential (0.1, 5) days

Table 5.4: Overview of the profiles of the input space and the corresponding parameters. The actor’s pa-
rameters following a distribution have more parameters in the input space (min, mode, max) and hence,
more bounds.

Behavior Space The behavior space defines the dimensions on which the diverse
set of solutions is positioned. The input space is mapped to the behavior space to
ensure that the dimensions describe the behavior of the input parameters. For illicit
supply chains, it is interesting to find diverse and optimal supply chain simulation
models with different transport costs and various degrees of network vulnerability
(Anzoom et al., 2021). Transport costs are an essential part of profit-driven crime;
lower costs mean more profit (Snaphaan & van Ruitenburg, 2024). Network resilience
shows the extent to which the network is vulnerable to interventions of law enforce-
ment; more resilient is more interesting for fraudulent organizations (Ficara et al.,
2021). Both dimensions are important for fraudulent organizations when designing
a supply chain. For example, a supply chain with low transport costs and high net-
work resilience increases the profit and reduces the probability that their illicit busi-
ness will be inactive. Additionally, it could help law enforcement to gain an under-
standing of the supply chain configurations that fraudulent organizations most likely
choose depending on the organizations’ perspective on transport cost and network
resilience, and hence, business model.

In more detail, the 33 input parameters are mapped to the two dimensions in
the behavior space. First, the transport cost in the behavior space is defined as the
average transport cost of a product. Let the graph of interest be g = (V ,E), let p ∈ P be
the set of finished products at the end customers, and let m ∈ M be the set of possible
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transport modes with M = {smalltruck, largetruck, feeder, vessel, train, airplane}. Let
t tot al

p be the total time of product p in the supply chain, starting from the supplier to
the hospital. Let tp,e,m be the travel time of product p on edge e with transport mode
m. Let cm be the cost per time unit per mode of transport. Let v be a linear function
defining the time discount of the market value of PPE as v(t ) = −0.34

730 t + 0.59 1. The
starting market value of any PPE product p is v(0) = 0.59. The average transport cost
C over all products P is:

C =

∑
p∈P

∑
e∈E

∑
m∈M

cm tp,e,m

(
1− v(t tot al

p )−v(0)

v(0)

)
#P

(5.1)

Second, network resilience is the resistance of the network to disruption, being an
intervention from law enforcement, and the adaptation following this disruption (An-
zoom et al., 2021). From a criminal perspective, three factors influence the resilience
of the network: (1) a diversity of links in a complex network, (2) the nodal position
and their criticality, and (3) human capital (Cavallaro et al., 2020). On a network level,
a criminal network containing a diversity of links makes it tolerant to random disrup-
tions, and hence, resilient. On the node level, the position of the actor on centrality
and visibility determines the vulnerability or resilience of that actor (Morselli, 2010;
Diviák et al., 2019). In this research, the behavior space entails resilience on a net-
work level, and hence, the diversity of links. In line with this, Gao et al. (2016) state
that density, i.e., the ratio of the number of edges to the possible number of edges in
a network, is one of the key factors influencing a network’s resilience. Therefore, we
use density as a measure of network resilience in the behavior space. Equation 5.2
describes the formula of the density with g = (V ,E) as the directed graph of interest.

R = #E

#V (#V −1)
(5.2)

The behavior space is discretized in a grid of 10 x 10 containers. We refer to these
as QD containers. The range of transport costs in this behavior space is between $250
to $1250, and, for density, between 0.02 and 0.07. The behavior space only has two
dimensions, making a grid suitable for enhancing the understandability and inter-
pretability of the results (Chatzilygeroudis et al., 2021).

Output Space The output space defines the objective to minimize, in this case, the
distance between the ground truth output and the output of the candidate solution.
A distance metric is used to describe the distance between the simulation model data
and the observed data given a certain function. In this research, we use a classic dis-
tance metric: the Manhattan (L1) distance. The Manhattan distance is the sum of the

1Discount of the market value of PPE is extracted from the statistics on face masks from the beginning of
COVID-19 (2020) to the end (2022). See https://www.statista.com/outlook/cmo/tissue-hygiene-paper/
face-masks/worldwide#volume.

https://www.statista.com/outlook/cmo/tissue-hygiene-paper/face-masks/worldwide#volume
https://www.statista.com/outlook/cmo/tissue-hygiene-paper/face-masks/worldwide#volume
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absolute differences for each dimension of the data points. This distance metric is
highly efficient for complex and high-dimensional data applications such as discrete
event simulation models (Aggarwal et al., 2001; Mirkes et al., 2020). In our research,
we compare the aggregated time series data of each actor resulting from the ground
truth simulation model and the candidate simulation model. We normalize the Man-
hattan distance of each actor using the 5th percentile and 95th percentile of the ac-
tor’s ground truth data. Next, we sum the normalized Manhattan distance of each
actor to get the overall Manhattan distance between the ground truth and candidate
solution.

Configuration of Algorithm In this research, the QD algorithm Covariance Matrix
Adaptation MAP-Elites (CMA-ME) of Fontaine et al. (2020) is used for finding a di-
verse set of optimal solutions due to its high performance. Emitters are instances
of the CMA-ME algorithm that generate new candidate solutions, adapt, and save the
population of solutions. The algorithm is initialized with an emitter across ten unique
seeds. Each emitter generates 96 candidate solutions in each iteration. A convergence
analysis is performed on the number of quality improvements and diversity to deter-
mine the number of iterations required. For the profile structure, the QD algorithm is
run for 110 iterations, meaning a total of (96 x 110 = ) 10560 function evaluations per
seed. For the profiles that include parametric and structural uncertainty, we use (96
x 156 = ) 14976 function evaluations for convergence. The quality diversity algorithm
is implemented using the python library pyribs (Tjanaka et al., 2023).

5.3.3. DESIGN OF EXPERIMENTS
For our experiments, a ground truth set-up is used to assess the feasibility of apply-
ing QD under a varying degree of data sparseness. This set-up allows us to measure
how closely QD calibrates the “true” values, which is challenging when dealing with
real-world data (Khondoker et al., 2016; van Schilt et al., 2024). A stylized simula-
tion model serves as the ground truth, from which we extract data representing the
observed data of the system. Figure 5.2 visualizes the ground truth set-up using the
following steps:

Figure 5.2: Ground Truth Set-Up.
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• Start with the input data for the ground truth, being a graph with vertices and
edges, g o = (V o ,E o), and input parameters, X o . The ground truth is presented
in Section 5.3.1.

• Use the input data to design and run a ground truth simulation model. From
this model, we extract the ground truth data.

• Degrade the ground truth data on three dimensions of data sparseness (missing
values, noise, and bias) following van Schilt et al. (2024). For the experiments,
we design scenarios that incorporate all dimensions of data sparseness, reflect-
ing real-world data of supply chains. We categorize each dimension with a low
sparseness of 20%, a medium sparseness of 50%, and a high sparseness of 80%.
Table 5.5 presents an overview of the scenarios used in this study.

Scenarios Bias Noise Missing Values
All Low 20% 20% 20%
All Medium 50% 50% 50%
All High 80% 80% 80%
Bias Low 20% 50% 50%
Bias High 80% 50% 50%
Noise Low 50% 20% 50%
Noise High 50% 80% 50%
Missing Low 50% 50% 20%
Missing High 50% 50% 80%

Table 5.5: Scenarios for the Dimensions of Data Sparseness.

• Use the sparse data as input for the QD process. This research uses the CMA-
ES algorithm for calibration. From the input space, we select candidate graphs
and candidate input parameters as candidate solutions. Then, the simulation
runs 10 replications and compares the simulated output with the sparse data to
determine the objective Manhattan distance. Additionally, the transport cost
and the density of the network are outputs of the simulation model needed
for the behavior space. The QD process continues until a stopping criterion is
reached.

• Collect the set of optimal solutions resulting from the QD process. This set of
optimal solutions, S, contains one optimal solution for each QD container in
the behavior space, i.e., s∗C ,R ∈ S. Each solution entails a combination of a graph
and input parameters that assign the solution to a part of the behavior grid, i.e.,
s∗C ,R = {g∗

C ,R = (V ∗
C ,R ,E∗

C ,R ), X ∗
C ,R }.

• Analyze the quality-of-fit by comparing the ground truth input and the set of
solutions resulting from QD. While QD minimizes the gap between the simu-
lated data and the sparse data, this does not necessarily mean that the set of
solutions captures the ground truth. Hence, we determine the proximity of the
set of solutions to the ground truth by assessing how often the ground truth
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is identified by QD across various unique seeds. In addition, we compare the
solutions on various features such as transport cost, density, objective value
(Manhattan distance), the number of vertices, the number of edges, and the
graph edit distance, i.e., the cheapest set of graph edit operations needed to
transform one graph to the other graph (Abu-Aisheh et al., 2015). We use an
approximated greedy graph edit distance of Riesen et al. (2015) for computa-
tional reasons.

5.4. RESULTS
We discuss the results of calibrating the supply chain simulation model for each pro-
file using the QD algorithm when varying the degree of data sparseness. First, we
present the results of the convergence of the QD algorithm. Second, we analyze the
extent to which QD can identify the ground truth across the seeds. Third, we combine
the results of the seeds into a single QD front and examine the QD container where
the ground truth is expected. Last, we evaluate the overall QD front.

In this section, we refer to the Quality Diversity results mapped into the behavior
space as the QD front. Figure 5.3 presents an example of the QD front of the profile
structure with 0% of data sparseness. In this figure, we display the container on the
QD front where the ground truth is expected. The behavior values of the ground truth
model are $709.9 transport cost and 0.0573 density. In the discretized behavior space,
this means the ground truth fits in the QD container between $650 to $750 transport
cost and a density of 0.055 to 0.060. We refer to this as the ground truth container.

Figure 5.3: Quality Diversity Results of Profile Structure with 0% of Data Sparseness.

To properly compare the different data sparseness scenarios, the output space,
in terms of its Manhattan (L1) distance, is normalized using the minimum and the
maximum objective values of the QD front. This means the objective value closest to
the ground truth is 0, and the objective value the most far from the ground truth is 1.
The direction of desirability is towards 0. We refer to the normalized objective value
as normalized L1 distance. More information on the normalization can be found in
Appendix B.1.



5.4. RESULTS

5

107

5.4.1. CONVERGENCE OF QD ALGORITHM
We evaluate the convergence of the QD algorithm for calibrating the structure and
the parameters of the counterfeit PPE simulation model. For this, we focus on the
scenario with 0% of data sparseness. A measure for convergence is the quality of
the QD front per seed by the average L1 distance between the QD containers and
the ground truth. This measure indicates the magnitude of improvements from each
function evaluation. A constant value means no substantial improvements are made
to the front. Another measure for convergence is the diversity of the QD front per seed
by the coverage, i.e., the percent of QD containers in the behavior space that contains
a solution. A higher coverage means that more QD containers in the QD front contain
a solution. We divide the behavior space into 100 QD containers, so a coverage of 0.94
means that 94 of the 100 QD containers hold a solution.

(a) Quality Measured as Average L1 Distance Between the QD Containers and the Ground Truth per Profile

(b) Density Measured as Coverage Percent

Figure 5.4: Convergence on Quality and Diversity per Seed at 0% of Data Sparseness.

Figure 5.4 shows that the average L1 distance and the coverage are constant for
most of the seeds for all the profiles. In general, the average L1 distance across the QD
containers and the coverage stays relatively constant starting from the initial sample,
except for seed 11 and seed 19. There is still much room for improvement for these
seeds after initializing, but the average L1 distance and the coverage become closer in
proximity to the other seeds over the function evaluations. Overall, Figure 5.4a shows
that calibrating for the profile source and destination leads to the variation between
the seeds on the average L1 distance across the QD containers. Figure 5.4b shows
that most seeds have a high coverage percent and, therefore, lead to a high degree of
diversity.

In some experiments, the figures show that the average L1 distance over the QD
containers decreases, whereas the aim is to increase towards 0. This can be explained
by the diversity of the QD front in that experiment. For example, for the profile source
at seed 11, we see a peak of the average L1 distance at 5760 function evaluations of
-4.9 with a coverage of 0.74. For the next iteration at 6720 function evaluations, the
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Figure 5.5: Number of Times the Ground Truth Structure is Identified per Profile and per Scenario across
Ten Seeds.

Figure 5.6: Transport Cost of the Identified Ground Truth Structures per Profile and per Scenario across
Ten Seeds.

average L1 distance across the QD containers decreases to -11.8 with a coverage of
0.76. This means that the average L1 distance decreases when the coverage increases.

5.4.2. IDENTIFYING THE GROUND TRUTH ACROSS SEEDS

Figure 5.5 displays how many times the ground truth structure has been identified
across the ten seeds for each profile and the various data sparseness scenarios. Over-
all, the ground truth structure is most often identified at 0% of data sparseness, espe-
cially for the profile where only the structure is calibrated. Remarkable is that for the
profile source and the profile destination, QD fails to identify the ground truth struc-
ture at 0% of data sparseness. For the profile source, the ground truth structure is
successfully identified only once for the scenario all high. For the profile destination,
the ground truth structure has been identified in scenarios with more data sparseness
and, most frequently, in the case of the scenario with a low bias percentage. For the
other profiles, the results generally show that more sparseness leads to less or similar
identification of the ground truth structure.

Examining the solutions that contain the ground truth structure, Figure 5.6 shows
that many of these solutions have a higher transport cost compared to the ground
truth. This means that these solutions are placed in QD containers other than the
ground truth container. Especially for the profile legal and destination, the identified
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ground truth transport cost is often higher than the ground truth. This could mean
that the QD calibrates the legal and destination parameters often too high compared
to the ground truth such that the configuration results in a higher transport cost. For
the source profile, we see that, in the only scenario where the ground truth structure
has been identified, the configuration of the source parameters leads to extremely
high transport costs. This is caused by relatively low interarrival time and relatively
high warehouse consolidator times. Thus, the behavior of this specific solution does
not align closely with the ground truth in terms of transport cost. See Appendix B.2
for the graphs on the parameter values.

Figure 5.7: Normalized L1 Distance for the Ground Truth Container per Profile and per Scenario across Ten
Seeds. The solutions containing the ground truth structure have a black outer edge. The arrow represents
the direction of desirability.

Zooming in on the QD container in the behavior space where the ground truth is
expected, Figure 5.7 displays the most optimal supply chain configurations for each
seed over the various scenarios and profiles in this specific QD container. When com-
bining the results of the seeds to a single QD front, the solution with the lowest L1
distance is chosen. In the figure, we see that the solution containing the ground truth
structure is the most optimal for the majority of the profiles at 0% of data sparseness,
and the scenario all low. However, for the other scenarios of data sparseness, the so-
lution containing the ground truth frequently fails to be the most optimal across the
seeds and, consequently, does not appear in the single QD front.

5.4.3. ANALYZING THE GROUND TRUTH CONTAINER OF QD FRONT
The solutions of the seeds are combined to create a single QD front for each profile
in each scenario. Similar to the QD algorithm, the most optimal solution for each QD
container across the seeds is included in the QD front. We analyze the QD container
where the ground truth model fits to assess the quality-of-fit of the QD front for each
profile in each scenario.

Figure 5.8 shows the density, i.e., the ratio of the number of edges to the possible
number of edges in the graph, and the graph edit distance, i.e., the cheapest set of
graph edit operations to transform the graph to the ground truth. The figure shows
that the ground truth is most often identified for the scenario of 0% data sparseness
and the scenario of all dimensions having a low data sparseness. For the other scenar-
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ios, the optimal solutions found in the ground truth container have a higher density
(Figure 5.8a). The graph edit distance of solutions that did not result in the ground
truth structure is mostly between 276 and 621 edit operations (Figure 5.8b).

(a) Density.

(b) Graph Edit Distance.

Figure 5.8: Characteristics of the Solutions in the Ground Truth Container in the Quality Diversity Front
per Scenario and per Profile.

Figure 5.8 shows that two graph structures are most often identified as optimal
across most scenarios. The graph structure with a density of 0.0577 and a graph
edit distance of 621 is often identified as optimal for the profile structure and modus
operandi. The graph structure with a density of 0.0582 and a graph edit distance of
276 is often identified as optimal for the profile import and destination. An exception
is the profile source that did not identify either of the two optimal graph structures
for any scenario. This profile has identified solutions with a relatively high or rela-
tively low graph edit distance compared to the ground truth. Moreover, the solutions
identified for this profile have the highest graph edit distance, with a range between
362 to 873.

In more detail, Table 5.6 presents the ground truth structure and the graph struc-
tures of the two most often identified optimal solutions. The graph with a density
closer to the ground truth (1) has a higher graph edit distance and a higher number of
vertices and edges than the graph with a higher density (2). The figures of the graph
structures also show that graph (1) has many more transit ports, import ports, dis-
tributors, and hospitals than graph (2). Interestingly, all three structures have one
supplier, one or two manufacturers, and one warehouse consolidator. Additionally,
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Ground Truth (1) (2)
Density: 0.0573 Density: 0.0577 Density: 0.0582
Graph Edit Distance: 0 Graph Edit Distance: 621 Graph Edit Distance: 276
Vertices: 23 Vertices: 52 Vertices: 28
Edges: 29 Edges: 153 Edges: 44

Table 5.6: Characteristics of the graph structure of the ground truth and the two most often identified
solutions (1)-(2) in the ground truth container of the Quality Diversity front. Each step in the horizontal line
of the structure plot represents a set of actors, going from left to right: supplier, manufacturer, warehouse
consolidator, export port, transit port, import port, warehouse distributor, distributor, and hospital.

all graphs have a combination of sea and air transport, with an overlap of ports in the
graphs, such as Hong Kong, Amsterdam, Shanghai, and Singapore. Notably, the three
graphs have the airport in Boston as an import port. Additional figures on the trans-
port costs, the number of vertices, and the number of edges for each solution in the
ground truth container in the QD front can be found in Appendix B.3.

5.4.4. ANALYZING OVERALL QD FRONT

We analyze the overall QD front per profile and per scenario on diversity and quality.
Regarding diversity, the QD front for each scenario and each profile has a relatively
high coverage when merging the ten unique seeds (see Figure 5.4). For the single QD
front, the coverage is between 0.94 and 1.0.

Figure 5.9 shows the distribution of quality of the solutions in the QD front using
the number of occurrences (count) of the normalized L1 distance. A histogram with
a binwidth of 0.1 is used to determine the counts, meaning there are 10 bins in total.
We refer to each bin by using the minimum value of that particular bin, e.g., the bin of
0.1 to 0.2 is referred to as the value 0.1. A high count suggests that this value is more
frequently observed in the QD front. In general, we see that each profile has a high
count around a normalized L1 distance of 0.0, meaning that most solutions in the QD
front are relatively close to the ground truth. The distribution is skewed towards the
left. Most profiles have a normalized L1 distance of 0.4 to 0.8, with another small peak
around the bin of 0.9.

When looking at the modus operandi and legal profiles, the figure shows two dif-
ferent directions of counts across the data sparseness scenarios. One has a higher
number of occurrences around a normalized L1 distance of 0.2, whereas the other
has no occurrences around 0.2. The results show that the scenarios that have a high
number of occurrences in the modus operandi profile tend to have a low number of
occurrences in the legal profile. For example, the scenario with 0% of data sparse-
ness and all high have no occurrences at 0.2 of normalized L1 distance for the modus
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operandi profile. In contrast, the scenario of 0% of data sparseness and all high have
a count of 10 at a normalized L1 distance of 0.2.

For the other profiles (structure, source, import, and destination), a difference in
the number of occurrences between the scenarios is shown around the value 0. For
structure, source, and import, we see that all scenarios have the highest number of oc-
currences around the value 0.1 of the normalized L1 distance. Generally, the scenario
bias low generally has the lowest count. For destination, we see a high dispersion in
the number of occurrences between the scenarios for the normalized L1 distance of
0, where the scenario bias high has the highest count and the scenario all medium
has the lowest.

Figure 5.9: Number of Occurrences (Count) of the Normalized L1 Distance of the Solutions in the Quality
Diversity Front. A histogram with a binwidth of 0.1 is used for the counts, meaning a total of 10 bins
between 0 and 1. The points are the count of one particular bin, e.g., 80 occurrences between 0.0 and
0.1, and are plotted at the starting value of the bin. For visualization purposes, we added some jitter to
limit the overlap in the data points.

For the source, legal, import, and destination profiles, the scenario with 0% of
data sparseness is on the relatively low segment for the number of occurrences at
the value 0, with several occurrences for a higher normalized L1 distance. This could
suggest that the scenarios with more sparseness lead to more solutions with a lower
normalized L1 distance. Comparatively, the scenario with 0% of data sparseness has
a relatively high number of occurrences for the value 0, and little counts for a higher
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normalized distance for the profiles structure and modus operandi. This suggests
that the scenarios with more data sparseness lead to more solutions with a higher
normalized L1 distance.

5.5. DISCUSSION

This section reflects on the results of the Quality Diversity (QD) algorithm and dis-
cusses the implications of the results for real-world applications.

5.5.1. REFLECTION ON QUALITY DIVERSITY ALGORITHM

The QD algorithm successfully shows its feasibility for calibrating a supply chain sim-
ulation model. A key notion for using QD in this field is its sensitivity to the initial-
ization of the seeds of the algorithm, which determines the initial sample and the
randomness for selecting candidate solutions. The convergence results show that for
some seeds, there is still much room for improvement in terms of the average Man-
hattan distance of the solutions and the coverage, whereas other seeds instantly reach
a satisfactory level of quality and diversity. An explanation for this is that, in a highly
rugged fitness landscape typical for discrete event simulation (Azadivar, 1999), QD
needs to perform additional iterations to reach convergence when the initial sample
is chosen poorly. Thus, when using QD to calibrate a discrete event simulation model,
it is crucial to use various seeds.

In terms of diversity, the results demonstrate that QD fills at least 96% of the QD
containers for calibrating this counterfeit PPE supply chain model across all profiles
and scenarios of data sparseness. Although the main limitation of QD is that it does
not guarantee to fill every QD container in the discretized behavior space (Lehman
& Stanley, 2011; Mouret & Clune, 2015; Chatzilygeroudis et al., 2021), QD success-
fully reaches a high coverage for calibrating this simulation model. Nevertheless, it is
necessary to consider the trade-off between the diversity enforced by the algorithm,
e.g., solutions are “all over the place”, and the quality of the QD front, e.g., limited
solutions that are highly optimal.

In terms of the quality-of-fit for calibrating the structure, the results show that QD
is able to identify the ground truth for most profiles and various scenarios of data
sparseness across the seeds. The ground truth structure is most frequently identified
at 0% of data sparseness. In the case of more data sparseness, the solution containing
the ground truth structure often has a higher normalized L1 distance and is not the
most optimal solution across the seeds. Thus, solutions with another graph struc-
ture better fit the sparse data than the ground truth. These solutions have high graph
edit distances, and more vertices and edges than the ground truth, thus more com-
plexity. Simulation models with more complex structures often reproduce the sparse
data better than those that slightly differ from the ground truth, indicating a risk of
overfitting. However, the simulation models with more complex structures do not
necessarily lead to “wrong” results since they could explain the sparse data. In addi-
tion, the results of this study show much overlap between the ground truth structure
and the overfitted structures (Table 5.6), which is potentially interesting for decision-
making. For example, all structures include Boston Logan Airport as an import port,
and this could be marked as a potential intervention hotspot for counterfeit PPE.
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Regarding the quality-of-fit for calibrating the actors’ parameters, the results
demonstrate that the parameters of the source and destination actors seem to have
the most impact on the simulation outcomes and the resulting QD front. For the
source profile, QD has difficulty fitting the parameters and the structure, even with
0% of data sparseness. For the destination profile, the ground truth structure is
more often identified with sparse data, but the identified actors’ parameters result in
high transport costs, leading to a different container on the QD front. For the other
profiles, the actors’ parameters are not necessarily similar to the ground truth, but
the QD front does not substantially change. Even though some profiles have a higher
number of parameters to calibrate, the parameters have less impact on the simu-
lation model outcomes. In summary, the impact of the actors’ parameters on the
simulation model outcomes, rather than the quantity, influences the quality-of-fit
for QD.

However, the quantity of the parameters does appear to have an impact on the QD
algorithm. Specifically, for the profiles with the fewest parameters to calibrate — 1 for
structure and 4 for modus operandi — the scenario with 0% data sparseness shows
a high number of occurrences of the normalized L1 distance of 0 on the overall QD
front. This can be explained by the nature of the QD algorithm CMA-ME, which uses
a covariance matrix (Fontaine et al., 2020). With fewer parameters, the covariance
structure is simpler, enhancing the exploration of solutions with 0% of data sparse-
ness close to the ground truth than with more parameters. For calibrating a simu-
lation model with more than 5 parameters, the results demonstrate that more data
sparseness could lead to more solutions that are coherent with the sparse data. In
line, we see that the solutions with different structures and different actors’ parame-
ters than the ground truth could explain the sparse data better. This makes it increas-
ingly difficult to detect the ground truth when using the classical way of calibrating
a simulation model that minimizes the distance between the models’ data and the
observed data (Wigan, 1972; Ören, 1981; Hofmann, 2005). Therefore, it would be in-
teresting for future research to reconsider whether the classical way of calibrating and
its’ metric fits for sparse data situations.

5.5.2. REFLECTION ON REAL-WORLD APPLICATION

This study highlights the importance of gathering information on the upstream sup-
ply chain. The findings indicate that calibrating the source profile is the most chal-
lenging for QD. Additionally, the parameters of the source actors have a high impact
on the simulation model outcomes. Also, the detailed graph structures (Table 5.6)
show similarities with the ground truth, particularly on the source part of the supply
chain. More specifically, there is a correlation between the number of suppliers and
the objective value of QD; the more suppliers a structure has, the higher the normal-
ized L1 distance, and the more distant from the ground truth (Appendix B.4). In the
case of a push-pull supply chain, like counterfeit PPE, the upstream supply chain’s
effectiveness directly impacts the cost efficiency and the lead times of the remainder
of the supply chain. Thus, gaining more information on the upstream supply chain
helps to identify a diverse ensemble of plausible supply chains and, hence, potentially
helps to design robust interventions in real life.
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Next, the choice of the behavior space is crucial for applying the QD results in real
life. In this study, we only focused on the transport cost and the network vulnera-
bility, whereas other factors, such as the cost of bribing officials, the market value of
the counterfeit goods, the trust between actors, and the detectability of certain modi
operandi, also play a role in illicit supply chains. For further research, it would be
interesting to include these factors in the simulation models.

Last, the aim of generating a diverse ensemble of plausible supply chain config-
urations is to identify robust interventions for real-world applications. In this study,
we investigate the feasibility of the QD algorithm to generate such a diverse ensemble,
and highlight the potential for these plausible supply chain configurations to support
robust interventions for the counterfeit PPE supply chain. However, further research
should evaluate the actual effectiveness of this ensemble for identifying robust inter-
ventions, both theoretical and in practice.

5.6. CONCLUSION

This research examines the feasibility of the Quality Diversity (QD) algorithm for gen-
erating a diverse ensemble of supply chain simulation models when the available
data is sparse. For this, we use a case study of a counterfeit PPE supply chain as the
ground truth, extract data from the ground truth, and vary the degree of data sparse-
ness. We assess whether QD can identify the ground truth among the diverse set of
solutions, in the case of structural and parametric uncertainty.

Our analysis demonstrates that QD is able to generate a diverse ensemble of sup-
ply chain simulation models. Due to the algorithms’ sensitivity to seed initialization,
it is crucial to use various seeds. QD identifies the structure of the ground truth most
frequently for 0% of data sparseness. In case of more data sparseness, simulation
models of more complex structures, i.e., more vertices and edges, than the ground
truth, tend to describe and reproduce the sparse data better. These complex struc-
tures are not necessarily “wrong”, as they show overlap with the ground truth in parts
of the supply chain. For parametric uncertainty, the impact of the parameters on
the simulation model outcomes, rather than the quantity, influences the quality-of-
fit of the solutions of the QD algorithm for identifying the ground truth. Additionally,
the results show that, in the case of structural and parametric uncertainty, more data
sparseness could lead to more solutions that are coherent with the sparse data. Simu-
lation models with different structures and parameters can reproduce the sparse data
better than the ground truth, making it difficult to identify the ground truth when
only minimizing the models’ data with the observed data – the classical way of cali-
brating.

For practical implications, our study offers a first insight into the potential of using
QD algorithms to generate a diverse ensemble of reconstructions of a supply chain, in
particular for supply chains with sparse data. The results emphasize the importance
of gathering information on the upstream supply chain to identify such an ensemble.
This could help decision-makers to make more robust decisions on, for example, in-
terventions that are effective for the ensemble of supply chain models rather than for
a single model.
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Further research should focus on reviewing the way of calibrating simulation
models and their metrics in sparse data situations, and extending the simulation
model to other types of supply chains and adding additional (upstream) information.
It would also be interesting to systematically increase the degree of the dimensions of
data sparseness to assess the feasibility of QD instead of scenario-based. Last, further
research should evaluate the actual effectiveness of the diverse ensemble of plausible
supply chain configurations for identifying robust interventions, theoretically and in
practice.







6
DISCUSSION

This chapter presents a methodological reflection and a practical reflection regarding
this dissertation, showcasing directions for further research.

6.1. METHODOLOGICAL REFLECTION

This section reflects on the following methodological limitations and implications of
this dissertation: (1) the impact of the dimensions of data sparseness, (2) the proper-
ties of the model calibration techniques, (3) the overfitting of the dense graphs in the
calibration, and (4) the need for diversity.

Impact of Dimensions of Data Sparseness
Throughout this dissertation, we use three dimensions of data sparseness – noise,
bias, and missing values – as defined in Chapter 2. For all three dimensions of data
sparseness, the average percentage of global supply chain visibility decreases when
more sparseness is added to the data. The research results show that the “missing val-
ues” dimension has more impact on the decrease of supply chain visibility than noise
and bias. For model calibration purposes (Chapter 3, 4, and 5), we see a similar im-
pact of the different dimensions of data sparseness (as in Chapter 2) on the objective
value of the model calibration, the Manhattan (L1) distance. Also here, the Manhat-
tan distance decreases most when missing values are added, and decreases less for
noise and bias.

For the results of the model calibration techniques, the impact of the different
dimensions is less visible. For example, Powell’s Method and Approximate Bayesian
Computing generate the same solutions across a varying percentage of noise, bias,
and missing values. This implies that for certain algorithms, such as Powell’s Method
and Approximate Bayesian Computing, the dimension of data sparseness becomes
irrelevant since it does not impact the identified solutions. For the other model cali-
bration techniques – Bayesian Optimization, Genetic Algorithm, and the Quality Di-
versity algorithm – we see that the three dimensions of data sparseness affect the
identified solutions differently, though not as distinctly as for supply chain visibility
as observed in Chapter 2.

119
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Properties of Model Calibration Techniques
In this dissertation, we evaluate five model calibration techniques: Powell’s Method,
Approximate Bayesian Computing, Bayesian Optimization, Genetic Algorithm, and
the Quality Diversity algorithm. We examine to what extent these algorithms can re-
construct the underlying parameters and structure of the ground truth supply chain
when varying the degree of data sparseness.

In Chapter 3 and Chapter 4, we show that Powell’s Method and Approximate
Bayesian Computing have the lowest quality-of-fit for both parametric and structural
uncertainty, when we aim to identify a single optimal solution. The results show that
there are multiple input spaces of interest, meaning that different models explain
the same outcome, i.e., we observe the principle of equifinality. This causes Powell’s
Method to get stuck in a local optimum instead of converging to the global optimum
(Powell, 1964). For Approximate Bayesian Computing, the technique results in
a bimodal distribution if multiple regions of the input space lead to optimality,
implying it could get stuck in a local optimum as well (Vrugt & Beven, 2018). Addi-
tionally, the highly rugged fitness landscape -– typical for discrete event simulation
– makes it increasingly difficult to escape from this local optimum (Azadivar, 1999).
We see that Approximate Bayesian Computing seems to perform slightly better for
reconstructing the ground truth parameters (Chapter 3) than for reconstructing the
underlying structure (Chapter 4).

Bayesian Optimization and Genetic Algorithms both successfully reconstruct the
underlying structure of the counterfeit PPE supply chain when increasing the degree
of data sparseness for each dimension separately. Genetic Algorithms outperform
Bayesian Optimization as it identifies the ground truth most frequently for all dimen-
sions of data sparseness (Chapter 4). Due to the population-based nature of Genetic
Algorithms and the use of evolutionary operators such as crossover and mutation,
this algorithm is able to cope with all three dimensions of data sparseness (noise,
bias, and missing values) relatively well since the algorithm relies on the properties of
the population rather than on the individual population members (Slowik & Kwas-
nicka, 2020). This is in line with Chapter 3 in which Genetic Algorithms has the
highest quality-of-fit for identifying the parameters of the supply chain simulation
model across an increasing percentage of missing values. In comparison, the main
property of Bayesian Optimization is that it uses a Gaussian process to model the
distribution of the unknown objective function while balancing exploration and ex-
ploitation, making it efficient and relatively fast for sparse data situations (Jalali et al.,
2017). However, distinguishing between identifying promising regions and exploring
uncertain regions may not be straightforward in a highly rugged fitness landscape in
combination with data sparseness.

Although the Genetic Algorithms technique identifies the ground truth more fre-
quently than Bayesian Optimization, both techniques yield a diverse set of optimal
graph structures when multiple regions of the input space are of interest as shown in
Chapter 3. We recommend using both techniques when calibrating the underlying
structure of a supply chain simulation model in the case of sparse data to obtain a
comprehensive overview of the various graphs approximating the ground truth. For
further research, it would be interesting to develop an algorithm that combines the
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exploration and exploitation using the Gaussian process of Bayesian Optimization
with the population-based approach of Genetic Algorithm, and evaluate the suitabil-
ity of this combined method for calibrating the structure of a supply chain simulation
model with sparse data.

Chapter 5 shows that the Quality Diversity algorithm is able to reconstruct the
underlying supply chain simulation model successfully. The Quality Diversity algo-
rithm used in this chapter (Covariance Matrix Adaptation Evolution Strategy), draws
new candidate solutions from a multivariant Gaussian distribution using a covari-
ance matrix between all the input parameters (Fontaine et al., 2020). For the input
spaces with fewer parameters (including structural uncertainty), the covariance ma-
trix is simpler, enhancing the exploration of the solutions closer to the ground truth
compared to input spaces with more parameters. Chapter 5 shows that the ground
truth is most frequently identified for 0% of data sparseness compared to the other
scenarios where all dimensions of data sparseness are present. The Quality Diversity
algorithm has not been specifically selected for its ability to cope with data sparse-
ness, but rather for creating diversity. For this algorithm, it is necessary to consider
the trade-off between the diversity enforced by the algorithm, e.g., solutions that are
“all over the place”, and the quality of the Quality Diversity front, e.g., limited solu-
tions that are highly optimal. Further research should focus on combining the Quality
Diversity algorithm with the properties of Bayesian Optimization and Genetic Algo-
rithms to create an algorithm specifically designed to generate a diverse set of plausi-
ble simulation models when only sparse data is available. Additional research could
investigate different ways of creating diversity when calibrating simulation models.

Next, in Chapter 5, we only present scenarios of data sparseness when combin-
ing the dimensions of data sparseness instead of analyzing the dimensions individ-
ually. In Chapter 4, we show that Genetic Algorithms and Bayesian Optimization fail
to identify the underlying supply chain structure, when combining the dimensions
of data sparseness. For further research, it would be interesting to systematically in-
vestigate to which extent Genetic Algorithms, Bayesian Optimization, and Quality Di-
versity algorithm can cope with the combination of data sparseness dimensions for
accurately identifying the ground truth.

Overfitting of Dense Graphs in the Calibration
Chapter 4 concludes that denser graph structures, i.e., more vertices and edges, tend
to reproduce the sparseness in the data. Similarly, Chapter 5 shows that graphs with
more vertices and edges have a better fit to the sparse data than the ground truth,
even when controlling for diversity in the graph density. In both chapters, the model
calibration techniques are overfitting in more complex graph structures as they of-
ten explain and reproduce the sparse data better than those that slightly differ from
the ground truth. With noise and bias, the simulation models of the dense graphs fill
in the gaps created by the data sparseness, and for missing values, “anything goes”.
From a decision-making perspective, this does not necessarily lead to “wrong” re-
sults since the graphs are consistent with the sparse data. The results of Chapter 5
still show much overlap between the ground truth and the dense graphs in parts of
the supply chain, which is potentially interesting for decision-making (e.g., planning
interventions).
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Having structures that are much more complex than the ground truth is not de-
sirable from a classical model calibration perspective. The goal of model calibration
is to tune the model parameter such that it represents the real system by minimiz-
ing the difference between the model data and the observed data. Hence, the results
from the model calibration techniques should ideally be close to the ground truth. In
essence, a high-quality calibration should describe the sparse data using the small-
est set of assumptions, similar to Occam’s razor (Hamilton, 1861). This is in line with
one of the measures used for the quality-of-fit for the model calibration techniques
in Chapter 4 and Chapter 5: graph edit distance, i.e., the smallest set of graph edit
operations (e.g., node insertion, edge deletion) needed to transform one graph to the
other graph (Abu-Aisheh et al., 2015). Although the graph edit distance is used for
analyzing the results of the model calibration techniques in this dissertation, it has
not been incorporated in the model calibration process itself to, for example, penal-
ize for complexity. Further research should focus on reviewing the classical way of
calibration and its metric of quality in the case of sparse data while considering Oc-
cam’s razor.

Need for Diversity
This dissertation presents three main reasons that highlight the need for diversity
when calibrating a supply chain simulation model when the available data is sparse.
First, the highly rugged fitness landscape, which is typical for discrete event simu-
lation models (Azadivar, 1999), makes model calibration techniques sensitive to ini-
tialization. The initialization determines the initial sample and the operators for se-
lecting candidate solutions in this highly rugged fitness landscape. Especially for the
Quality Diversity algorithm in Chapter 5, the initial sample can differ a lot across the
seeds and, consequently, influences the number of function evaluations needed for
convergence. Additionally, Chapter 4 shows that Bayesian Optimization and Genetic
Algorithms result in a diverse set of solutions across the seeds. Thus, we need to use
multiple seeds to capture the diversity of the solutions.

Second, finding a single optimal solution in a highly rugged fitness landscape is
challenging, as described in Chapter 3 and Chapter 4. This dissertation shows that
there are multiple configurations of the counterfeit PPE supply chain that could rep-
resent the real-world supply chain given the sparse data that is available. Relying on
a single configuration for gaining insight and choosing the “wrong” one could lead to
a “wrong” view of the supply chain activities and, potentially, poor decision-making.
Thus, we emphasize the importance of a diverse ensemble of plausible calibrated
supply chain simulation models in the case of sparse data instead of a single model.

Third, this dissertation studies the effects of diversity in Chapter 5 by applying
the Quality Diversity algorithm. The results of this chapter show that, generally, more
data sparseness could lead to more supply chain configurations that are coherent
with the sparse data available. Additionally the algorithm identifies many supply
chain simulation models that reproduce the sparse data better than the ground truth,
where they still have an overlap in characteristics of the supply chain with the ground
truth. These results highlight the need for diversity in supply chain simulation mod-
eling, when the available data is sparse.



6.2. PRACTICAL REFLECTION

6

123

6.2. PRACTICAL REFLECTION

This section reflects on the following practical implications concerning this disser-
tation: (1) the importance of the upstream supply chain, (2) the sparseness in real-
world data, (3) the generalizability of the research to other supply chains, and (4) the
effectiveness of identifying robust interventions.

Importance of the Upstream Supply Chain
This dissertation highlights the importance of gathering upstream information on the
supply chain for real-world applications. In Chapter 2, we show that supply-oriented
companies have more visibility on the supply chain than demand-oriented compa-
nies. This result holds for a push-pull supply chain where upstream actors generally
have more inventory than those downstream. In Chapter 5, we demonstrate that the
parameters of the source actors in the supply chain, e.g., processing time at man-
ufacturer and warehouse consolidator, have a high impact on the outcomes of the
supply chain simulation model. Additionally, the chapter illustrates that most sim-
ilarities between the ground truth and the supply chains that reproduce the sparse
data the best, are in the sourcing part of the supply chain. This is in line with the
feature scoring analysis, i.e., the relationship between model inputs and outputs, in
Appendix C. The analysis shows that the number of suppliers has the highest impact
on the Manhattan (L1) distance, and the number of warehouse consolidators has the
highest impact on the transport cost.

For the real-world applications of illicit supply chain going through in the Nether-
lands, a destination country for international transport, disrupting a smaller number
of large shipments from the import (upstream) is supposedly more efficient than dis-
rupting a lot of small shipments at distribution (downstream). Additionally, most in-
formation on illicit supply chains is likely focused on the Netherlands, meaning it is
demand-oriented instead of supply-oriented. Therefore, it would be valuable for law
enforcement to gather more information on the upstream illicit supply chain.

Sparseness in Real-World Data
One of the key novelties of this dissertation is that the degree of data sparseness is
systematically varied for comparing its impact on supply chain visibility (Chapter 2),
and for evaluating the various model calibration techniques (Chapter 3 to Chapter
5). This allows us to theoretically assess the impact of the dimensions of data sparse-
ness on supply chain analysis with the use of the ground truth set-up. However, the
exact percentage of data sparseness per dimension is often unknown in real life. For
a real-world application of this dissertation’s results, the type and the degree of data
sparseness have to be measured or estimated based on the characteristics of the real-
world supply chain. For example, criminals try to hide data on their operations as
much as possible, resulting in a high degree of missing values (van der Plas, 2022;
Mendes, 2023). Also, data can either be sparse by itself or sparse by manipulation,
i.e., intentional sparseness (Chapter 2). The intentionality level can be of importance
for understanding the sparseness based on the characteristics of the real-world sup-
ply chain.
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In this dissertation, we focus on the data quality issues for the modification of the
values within a dataset, i.e., on numerical sparseness. In real life, datasets often face
non-numerical issues, such as timeliness or the relevance of the data set for a certain
analysis (Chapter 2). Timeliness is crucial for illicit supply chains, as criminals are
opportunistic, which causes information to get rapidly outdated (Anzoom et al.,
2021; Ficara et al., 2021). For further research, it would be interesting to assess
the impact of these non-numerical dimensions of data sparseness on supply chain
visibility, and on model calibration techniques.

Generalizability of the Research to Other Supply Chains
Throughout this dissertation, a stylized counterfeit PPE supply chain is used as a
case study. This supply chain is a sequential network, meaning that, for example,
there is a one-directional flow between the supplier and the manufacturer. This
leads to a direct and linear dependency between the actors within the supply chain,
where complexity arises due to the many actors and numerous steps involved in the
supply chain. Moreover, the case study is a relatively linear push supply chain up to
the warehouse consolidator and a diverged pull supply chain from the warehouse
consolidator onwards. The results are generalizable to other supply chains with a
similar push-pull structure, and a similar complexity in terms of actors, dependen-
cies between actors, and modalities. It would be interesting to examine whether the
results still hold for supply chains with other characteristics, such as a pull-push
supply chain, an assembly supply chain, or a circular supply chain.

The product moving through the supply chain is counterfeit PPE, a relatively small
and non-perishable product. Although the product is counterfeit, the steps in the
supply chain are similar to those of legitimate supply chains. In many cases, the coun-
terfeits even exploit the legitimate supply chain by piggybacking. Hence, the results
of this dissertation can be generalized to supply chains of other non-perishable prod-
ucts, such as clothes, tools, chocolate, coffee, or other illicit goods. For real-world
applications, the simulation calibration approach of this dissertation can remain the
same when using it for other supply chains, but the underlying simulation model
needs to be adjusted, and there is no guarantee that the algorithms give the same
quality results.

Last, this dissertation primarily focuses on the goods flow in the illicit supply
chain. To get a holistic understanding of the supply chain for real-world applica-
tions, the communication and the financial flow should also be analyzed. The main
challenge of adding these flows to the current counterfeit PPE supply chain simula-
tion model is that it would increase complexity in terms of the number of actors and
the number of geographical locations. For example, money can be transferred from
locations entirely different from where the goods are moving through, and intermedi-
ary companies can be used for information exchange. Moreover, the communication
and the financial flow of the illicit supply chain do not always follow similar steps as
the legitimate supply chains, making data most likely even sparser.
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In summary, this dissertation offers the first insight into generating a diverse
ensemble of plausible supply chain simulation models where the available data is
sparse. The results of this dissertation are generalizable to a sequential push-pull
supply chain for non-perishable products. For practical implications, the simulation
calibration approach of this dissertation can potentially be used for other supply
chains if the underlying simulation model is modified. A possible extension of the
current counterfeit PPE simulation model is adding the communication flows and
the financial flows.

Effectiveness for Identifying Robust Interventions
This dissertation offers a first insight into generating a diverse ensemble of recon-
structions of a supply chain, in cases where the available data is sparse. The goal of
such an ensemble is to support robust decision-making. For the example case of the
counterfeit PPE supply chain, this means disrupting the supply chain by identifying
robust interventions. This dissertation shows that, in the case of sparse data, it is
possible to reconstruct a supply chain simulation model close to or overlapping
with the ground truth. In particular, Chapter 5 illustrates that supply chains that
reproduce the sparse data the best, have structural similarities with the ground
truth. These similarities are potentially interesting for identifying robust interven-
tions and decision-making. However, this dissertation did not explicitly assess the
effectiveness of interventions using the ensemble of reconstructions. Hence, the
primary follow-up research of this dissertation should focus on explicitly evaluating
the effectiveness of a diverse ensemble of reconstructions (this dissertation) for
identifying robust interventions. It would be valuable to evaluate this theoretically
and in real life.

Due to the dynamic nature of a supply chain, the effectiveness of the diverse en-
semble of reconstructions for decision-making highly depends on the moment it is
generated. For example, the counterfeit PPE supply chain before, during, and after
COVID-19 has constantly changed -– e.g., there was a higher supply during COVID-
19, resulting in an increased use of air transport than before, where deep-sea shipping
was the default transportation mode (Hashemi et al., 2022). For effective decision-
making, the reconstructions of this supply chain have to change accordingly. Ad-
ditionally, an intervention changes the counterfeit PPE supply chain system as well.
For example, when customs control seizes many counterfeit PPE at Boston Logan Air-
port, the counterfeiters most likely do not send their counterfeits through this airport
anymore, and change their import port. This is called the “waterbed” effect, meaning
disrupting in one location will not lead to a decrease in the flow of goods, but they
will pop up at another location (Klaassen, 2021). For measuring the effectiveness, fu-
ture research should include the timeliness of the reconstructions and the “waterbed”
effect by techniques such as game theory (Aerden, 2023) and adversarial learning.
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Even in this digital era, the data required to improve supply chain visibility and to
identify robust interventions is often sparse due to the supply chain actors’ reluctance
to share information. This data sparseness leads to uncertainties about the opera-
tions within a supply chain (e.g., inventory, transportation times) as well as about the
overall structural composition and geographical locations (e.g., number and location
of the actors). Illicit supply chains, in particular, suffer from limited information and
a high level of uncertainty, making it challenging to effectively disrupt these supply
chains.

Simulation is a way of getting insight into the behavior of complex systems, rec-
ognizing relations over time, and exploring future (“what-if”) scenarios. Model cali-
bration, i.e., the process of tuning and estimating the simulation model parameters
using observed data to match the real system, is essential. However, research on cal-
ibrating supply chain simulation models, given a varying degree of data sparseness,
is still lacking. Additionally, most research on model calibration in logistics primarily
involves adjusting the parameters (i.e., parametric uncertainty) rather than altering
the model structure (i.e., structural uncertainty).

When calibrating a simulation model, there is a large variety of plausible simu-
lation models that could explain the sparse observations from the real-world supply
chain. Research on how to generate a diverse ensemble of plausible supply chain
models that could be used for identifying robust intervention is lacking.

In this dissertation, we investigate how to generate a diverse ensemble of recon-
structions of a supply chain that can be used to identify robust interventions, where
the model calibration techniques have to deal with sparse data. Throughout this dis-
sertation, we use a simulation calibration approach in combination with a ground
truth set-up of a stylized counterfeit Personal Protective Equipment (PPE) supply
chain as case study. We extract data from this model, systematically vary the degree of
data sparseness, and asses the extent to which various model calibration techniques
can still reconstruct the underlying supply chain.
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This research is carried out in four steps. First, a classification of data sparseness
for supply chain visibility is needed. A literature review is conducted on data sparse-
ness and supply chain visibility, and a quantitative analysis is performed to assess the
impact of data sparseness on supply chain visibility. This classification is used in the
remaining research steps. Second, we analyze the extent to which various model cal-
ibration techniques can identify a parameter of a supply chain model when varying
the degree of data sparseness. This step offers a first insight into the quality-of-fit of
model calibration techniques in the case of sparse data with parametric uncertainty.
Third, we evaluate the quality-of-fit for model calibration techniques for reconstruct-
ing a supply chain given structural uncertainty when only sparse data is available.
Fourth, we assess the feasibility of the Quality Diversity algorithm for calibrating sup-
ply chain simulation models in the case of sparse data, for both parametric and struc-
tural uncertainty. The aim of this step is to offer initial insights into the potential of
using the Quality Diversity algorithm for generating an ensemble of diverse and plau-
sible configurations of a supply chain simulation model with sparse data.

This chapter answers the research questions introduced in Chapter 1, and pro-
vides a general conclusion of this dissertation. Next, an outlook for future research is
given, and policy recommendations are listed.

7.1. ANSWERING THE RESEARCH QUESTIONS

The main research question of this dissertation is:

How to generate a diverse ensemble of reconstructions of a supply chain, in cases
where the available data is sparse?

The main research question is divided into four sub-questions. We present a con-
clusion for each of these sub-questions, and end with a general conclusion.

1. How to classify data sparseness for supply chain visibility?

The research for this sub-question provides a classification of data sparseness
in the context of supply chains and assesses its impact on supply chain visibil-
ity. First, using a systematic literature review, data sparseness can be classified
along three dimensions: (1) noise, i.e., values in the data set are distorted, (2)
bias, i.e., data is not representative of the population or the phenomenon of
study, (3) missing values, i.e., values are missing in the data. Thus, sparse data
in relation to supply chain visibility is referred to as: “lack of data quality across
the entire supply chain for the quality dimensions: noise, bias, and missing val-
ues, where a certain fraction of data sparseness is intentional”.

Next, the impact of sparseness for each of these dimensions on supply chain
visibility is evaluated. The main research findings demonstrate that data
sparseness greatly affects the visibility of the counterfeit PPE global supply
chain, leading to a reduction of visibility up to 52.8% for noise, 65.0% for bias,
and 31.7% for missing values. For all three individual dimensions, the average
percentage of global supply chain visibility decreases when more sparseness
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is added to the data. The missing values dimension has the largest impact
on the decrease in supply chain visibility, whereas bias has the least impact.
The results show the relative importance of the dimensions of data sparseness
for supply chain visibility. In addition, our analysis shows that the location
of an actor in the chain who is unwilling to share data (either a competitor
or a key actor) makes no difference for the global supply chain visibility
percentage when using the calculations in this dissertation. We also show
that the demand-oriented scenario has the lowest average global supply chain
visibility at 40.6%. A reason is that the global supply chain visibility percentage
decreases more when actors with a high average inventory provide sparse data.
It also shows that companies with a supply-oriented view will have a better
insight into the supply chain visibility than those with a demand-oriented
view.

To provide practical advice, the primary impact on supply chain visibility seems
to be missing data, suggesting that supply chain practitioners should prioritize
addressing missing values to improve supply chain visibility. Additionally, com-
panies with a demand-oriented view should prioritize collecting upstream data
as much as possible, to enhance their decision-making capabilities.

2. To what extent can various model calibration techniques identify the param-
eters of a supply chain simulation model when varying the degree of data
sparseness?

The research in this sub-question is a first attempt to analyze the quality-of-
fit of model calibration techniques that are likely to be suitable for calibrating
simulation models in the case of sparse data. We select a reference technique
that is often used for the calibration of simulation models: Powell’s Method. We
select Genetic Algorithm (GA) and Approximate Bayesian Computing (ABC) as
model calibration techniques that seem to be able to handle sparse data. By
using a ground truth set-up for evaluating the quality-of-fit, we assess how ac-
curately the three model calibration techniques find the ground truth system
parameter values for the simulation model when we apply an increasing de-
gree of data sparseness. The results demonstrate that the selected model cali-
bration techniques are suitable for calibrating the parameter values of the sim-
ulation models when faced with sparse data, at least for a linear supply chain
with randomly missing values. For our case study, this shows that with sparse
data due to COVID-19 and criminals masking their data, the selected model
calibration techniques can help to gain insight in underlying counterfeit PPE
supply chains.
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3. To what extent can various model calibration techniques reconstruct the un-
derlying structure of a supply chain when varying the degree of data sparse-
ness?

The research in this sub-question evaluates the quality-of-fit of various model
calibration techniques to reconstruct a supply chain characterized by struc-
tural uncertainty and sparse data. We analyze a reference technique, Powell’s
Method, and three model calibration techniques that promise to be able to
handle sparse data: Approximate Bayesian Computing (ABC), Bayesian Opti-
mization (BO), and Genetic Algorithms (GA). For this, we formalize structural
uncertainty with System Entity Structures (SES). Our analysis shows that:

• SES is a powerful approach for defining structural uncertainty in a supply
chain simulation model to approximate the ground truth using calibra-
tion.

• Powell’s Method and ABC fail to reconstruct the underlying structure of
an illicit supply chain for all three dimensions of data sparseness. These
algorithms often converge to local optima instead of global ones.

• GA and BO are suitable for reconstructing the underlying structure of an
illicit supply chain for a varying degree of data sparseness individually. For
a comprehensive understanding of the various graphs approximating the
ground truth, we recommend combining the results of BO and GA.

• Denser graph structures, i.e., more vertices and edges, tend to describe
and reproduce the sparse data the best. Many optimal solutions from the
model calibration techniques are, therefore, distant from the ground truth
but are not necessarily incorrect. We highlight the need to identify a di-
verse set of solutions that have a good fit with the sparse data instead of
only one solution.

For the case of the illicit PPE supply chain, reconstructing the underlying struc-
ture of this supply chain helps to get insight into the operations of criminals,
and it potentially allows law enforcement agencies to effectively plan their in-
terventions.

4. How feasible is the quality-diversity algorithm for generating a diverse en-
semble of reconstructions of a supply chain when varying the degree of data
sparseness?

The research of this sub-question examines the feasibility of using the Qual-
ity Diversity (QD) algorithm for generating a diverse ensemble of supply chain
simulation models when the available data is sparse. We assess whether QD can
identify the ground truth (the stylized counterfeit PPE supply chain) among the
diverse set of solutions, in the case of structural and parametric uncertainty.

Our analysis demonstrates that QD is able to generate a diverse ensemble of
supply chain simulation models. Due to the algorithm’s sensitivity to seed ini-
tialization, it is crucial to use various seeds. QD identifies the structure of the
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ground truth most frequently for 0% of data sparseness. In case of more data
sparseness, simulation models of more complex structures, i.e., more vertices
and edges than the ground truth, tend to describe and reproduce the sparse
data better. These complex structures are not necessarily “wrong”, as they show
overlap with the ground truth in parts of the supply chain. For parametric un-
certainty, the impact of the parameters on the simulation model outcomes,
rather than the quantity, influences the quality-of-fit of the solutions of the
QD algorithm for identifying the ground truth. Additionally, the results show
that, in the case of structural and parametric uncertainty, more data sparseness
could lead to more solutions that are coherent with the sparse data. Simulation
models with different structures and parameters can reproduce the sparse data
better than the ground truth, making it difficult to identify the ground truth
when only minimizing the models’ data with the observed data – the classical
way of calibrating.

The research of this sub-question offers a first insight into the potential of us-
ing QD algorithms to generate an ensemble of diverse and plausible configura-
tions of simulation models, particularly for supply chains with sparse data. The
results emphasize the importance of gathering information on the upstream
supply chain to identify such an ensemble. This could help decision-makers
to make more robust decisions on, for example, interventions that are effective
for the ensemble of supply chain models rather than for a single explanation of
the observed data.

7.2. GENERAL CONCLUSION

This dissertation offers a first insight into generating a diverse ensemble of recon-
structions of a supply chain in the case of sparse data using a simulation approach.
We highlight three main scientific contributions. First, this dissertation is the first
study that systematically varies the degree of data sparseness to evaluate the effec-
tiveness of various model calibration techniques. Although the exact degree of data
sparseness is often unknown in real life, this research gives a scientific insight into the
impact of the degree of data sparseness on supply chain visibility and supply chain
modeling. This set-up allows us to first theoretically assess the quality-of-fit of model
calibration techniques before applying them in real life.

Second, this dissertation fills a research gap concerning the calibration of the
structure of a supply chain simulation model in addition to fitting its parameters.
Especially in the case of (illicit) supply chains, the structural composition and geo-
graphical locations are of importance for decision-making. Using the QD algorithm,
this research provides a method for creating various structures of a supply chain sim-
ulation model by using model calibration, and presents metrics to compare these
structures.

Third, the results identify model calibration techniques that are suitable for accu-
rately reconstructing a supply chain characterized by sparse data, for both paramet-
ric and structural uncertainty. However, the techniques often overfit to more complex
graphs than the true underlying supply chain. Additionally, when calibrating a sim-
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ulation model with sparse data, diversity should be included in terms of the use of
multiple seeds, the combination of multiple techniques, and the generation of a va-
riety of solutions.

For supply chain practitioners and decision-makers, this dissertation presents
three main contributions to practice. First, this dissertation offers insight into data
sparseness for supply chain visibility and modeling. It is valuable for supply chain
management to have an understanding of how to cope with data sparseness and how
this impacts supply chain visibility. Second, this research highlights the importance
of gathering information on the upstream supply chain. Third, a contribution of this
dissertation to practice is that supply chain practitioners should recognize that there
is not a single model for a supply chain when the available data is sparse, but there
are multiple feasible models. This could help in making more robust decisions on,
for example, effective interventions.

7.3. FUTURE RESEARCH

Based on the chapters in this dissertation and the reflection in Chapter 6, we present
suggestions for future research on the model calibration techniques, the possible ex-
tensions of this research, and the further application of this research. This disserta-
tion is the first study to evaluate model calibration techniques given a systematically
varying degree of data sparseness. Our study has revealed limitations in the appli-
cability of several common model calibration techniques, it has shown the risk of
overfitting by the model calibration techniques when using sparse data, and it has
highlighted the need for diversity in several dimensions. We recommend the follow-
ing steps for future research on model calibration techniques that are dependent on
sparse data:

• Investigate the extent to which Bayesian Optimization, Genetic Algorithms,
and Quality Diversity can cope with the combination of data sparseness
dimensions for accurately identifying the ground truth.

• Develop an algorithm that combines the exploration and exploitation phases
using the Gaussian process of Bayesian Optimization together with the
population-based approach of Genetic Algorithms, and evaluate its suitability
for calibrating the underlying structure of a supply chain simulation model
with sparse data.

• Combine the properties of Bayesian Optimization, Genetic Algorithms, and the
Quality Diversity algorithm to develop an algorithm specifically suitable for
generating a diverse ensemble of plausible simulation models when the avail-
able data is sparse.

• Investigate different algorithms for creating diversity, next to the Quality Diver-
sity algorithm used in this dissertation.

• Review the metric that defines the quality of the calibration process for a simu-
lation model in cases of data sparseness.



7.4. POLICY RECOMMENDATIONS

7

133

Second, it would be valuable to include additional characteristics of illicit supply
chains into the supply chain simulation models and data, and extend the research
of this dissertation in the following ways:

• Assess the impact of non-numerical dimensions of data sparseness, e.g., time-
liness, on supply chain visibility, and on the model calibration techniques.

• Examine the “waterbed” effect of an illicit supply chain using techniques such
as game theory and adversarial learning.

Third, it would be interesting to examine whether the results of this dissertation hold
for the following application areas:

• Supply chains with other characteristics, like a pull-push supply chain, an as-
sembly supply chain, or a circular supply chain.

• Different types of simulation models, such as agent-based models or System
Dynamics models.

Finally, this dissertation presents a simulation approach for generating a diverse en-
semble of reconstructions of an illicit supply chain given sparse data, which is po-
tentially useful for identifying robust interventions. The primary follow-up research
should focus on explicitly evaluating the effectiveness of the diverse ensemble of
plausible supply chain configurations for identifying these robust interventions.

7.4. POLICY RECOMMENDATIONS

We present policy recommendations that emerge from the practical implications of
this dissertation and from the lessons learned when executing this research. First,
this dissertation shows the importance of data sparseness for improving supply chain
visibility, and it highlights the importance of the upstream supply chain for disrupting
illicit supply chains. This leads to the following recommendations:

• Raise awareness among decision-makers about the dimensions of data sparse-
ness and its impact on supply chain visibility.

• Prioritize the reduction of missing values in supply chain data to improve sup-
ply chain visibility, and prioritize the collection of data from upstream actors.

Second, this dissertation presents a simulation calibration approach for gaining more
insight into illicit supply chains. The following recommendations relate to the appli-
cation of this approach in real life:

• Examine how the simulation calibration approach from this dissertation can be
embedded in the workflow of decision-makers, e.g., law enforcement agencies,
to gain more understanding about the illicit supply chain and to make better
informed decisions.
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• Investigate whether and how to use the simulation calibration approach in the
security and law enforcement domain from a legal perspective.

• Collaborate with partners in the security domain, e.g., law enforcement agen-
cies, and with transport alliances, to get more insight into the illicit supply
chain in a systematic manner. In particular, it is recommended to collaborate
with upstream stakeholders for information collection.

Third, it would be interesting to extend the research of this dissertation to make it
better applicable for various applications:

• Integrate communication and financial flows of the supply chain into the sim-
ulation model. This adds complexity regarding geographical interactions, such
as meetings and financial transactions that occur independently of logistical
flows.

• Extend this research to other supply chains with sparse data in different do-
mains, such as illicit supply chains for drugs or human trafficking. Another
example could be to study sustainability issues and violations of supply chains
for products like chocolate or coffee.

• Study supply chains that merge different domains; for example, persons in-
volved in selling counterfeit PPE likely engage in the sale of other counterfeit
items, such as bags.

• Expand this research to consider the possible impact of interventions on liv-
ability. While disrupting illicit supply chains reduces the availability of illicit
goods in society, it could negatively affect the overall livability of a region or
a country. In the case of drug supply chains, increased drug detection might
result in increased violence.

Finally, this dissertation successfully demonstrates how to generate a diverse ensem-
ble of reconstructions of a supply chain with sparse data using a simulation approach.
The aim of this ensemble is to help identify effective interventions in the case of legal
and illicit supply chains. The next crucial step for this research is to evaluate the effec-
tiveness of this diverse ensemble of reconstructions of a supply chain for identifying
these robust interventions, both theoretically and in practice.
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A
APPENDIX FOR CHAPTER 4:
SUPPLEMENTARY RESULTS

A.1. DETAILS OF SYSTEM ENTITY STRUCTURE

This appendix presents a detailed overview of the specifying rules and distances used
for the SES of our study.

Type
Number Incoming

Type
Outgoing
Type

Incoming
Degree

Outgoing
Degree

min max min max min max
Supplier 1 5 Manufacturer 0 0 1 5

Manufacturer 1 5 Supplier
Warehouse
Consolidator

1 5 1 6

Warehouse
Consolidator

1 10 Manufacturer Export Port 1 6 1 inf

Export
Port

1 21
Warehouse
Consolidator

Transit Port 1 10 1 inf

Transit
Port

1 10 Export Port Import Port 1 inf 1 inf

Import
Port

1 26 Transit Port
Warehouse
Distributor

1 inf 1 inf

Warehouse
Distributor

1 5 Import Port Distributor 1 26 1 inf

Distributor 1 10
Warehouse
Distributor

Hospital 1 inf 1 inf

Hospital 1 15
Warehouse
Distributor

(Export)
Customer

1 inf 1 1

(Export)
Customer

1 1 Hospital 1 inf 0 0

Table A.1: Specifying rules for the actor types in the SES.
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Table A.1 shows the specifying rules for each type of actor, including the incom-
ing and outgoing actors, to ensure a feasible sequence. Each actor must appear at
least once and must be linked to other actors, requiring a minimum count of one for
each actor. Additionally, every actor must have incoming and outgoing connections
with a minimum degree of one, except for the supplier and export customer, since
they represent the start and end of the supply chain. To limit the complexity of the
problem, each actor is assigned a maximum value determined through expert inter-
views. The maximum number of export ports and import ports is determined given
the real-world number of ports of interest for the case study, i.e., the origin countries
China and Hong Kong, and the destination country, the northeast United States of
America (USA). Each actor has an incoming and outgoing type of actor that deter-
mines the sequence of the randomly generated supply chain. The maximum value
for both incoming and outgoing degrees is typically constrained by the maximum al-
lowable number for the incoming or outgoing actor’s type, or it may be unbounded
(infinite). Moreover, we make the assumption that there is a single (export) customer
serving as the final destination of the supply chain, implying that hospitals have only
one outgoing connection.

From To Bounds (km) From To Bounds (km)

Export Port
Warehouse
Consolidator

[5, 150] Import Port
Warehouse
Distributor

[5, 150]

Warehouse
Consolidator

Manufacturer [50, 300]
Warehouse
Distributor

Distributor [25, 200]

Manufacturer Supplier [25, 200] Distributor Hospital [5, 100]

Table A.2: Parameters for determining the travel distance of the land link per actor type pair with the min-
imum and maximum bounds in kilometers.

The distance for links over land relies on expert interviews, and follows a Uni-
form distribution with a minimum and maximum distance between actors (see Table
A.2). We use the information from open-source data to identify the real-world lo-
cations of ports. From there, we determine the positions of other actors based on
expert information in ascertaining direction. First, the warehouse consolidator and
the warehouse distributor can be next to the port (in this case, 5 kilometers distance)
or at driving distance from the port with a maximum of 150 kilometers. On the ori-
gin country side (China and Hong Kong), the manufacturer is the most vulnerable
location as the PPE products are made here. Therefore, this location is often kept se-
cret and can be far from the warehouse consolidator, e.g., even in another country.
For this, the minimum and maximum values of 50 to 300 kilometers are chosen as
distance. The supplier can be close to the manufacturer to ensure quick delivery to
the manufacturer (e.g., 25 kilometers) or further away with a maximum of 200 kilo-
meters. On the destination country side (northeast USA), the distance between the
warehouse distributor and the distributor location can be 25 kilometers to 200 kilo-
meters as the distributor is often located close to a city. The hospital can be next to
the distributor (5 kilometers) or in the surroundings of that particular city (up to 100
kilometers).
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A.2. RESULTS

This appendix presents the results of the average betweenness centrality and the
Manhattan distance for the individual analysis. Also, we show the results of the
scenario analysis in a pairplot.

AVERAGE BETWEENNESS CENTRALITY

(a) Missing Values (b) Noise

(c) Bias

Figure A.1: Average Betweenness Centrality per Dimension of Data Sparseness for Powell’s Method, ABC,
BO, GA

Figure A.1 demonstrates that, generally, the average betweenness centrality of solu-
tions across each techniques tends to be lower than the ground truth. Solutions of
ABC result in the lowest average betweenness centrality of 0.005. In Figure A.1a, ABC
identifies two outliers that have a high average betweenness centrality of 0.11. Pow-
ell’s Method has an average centrality betweenness of around 0.01 for all three dimen-
sions of data sparseness. For BO and GA, a diversity of average betweenness central-
ity of each solution exists between 0.01 and 0.06. The diversity is the highest for the
dimension of noise (see Figure A.1b), especially for GA. In this case, many optimal
solutions from GA exist that have a higher average betweenness centrality than the
ground truth. For noise, BO also identifies solutions with a higher variety of average
betweenness centrality.
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MANHATTAN DISTANCE

(a) Missing Values (b) Noise

(c) Bias

Figure A.2: Manhattan Distance per Dimension of Data Sparseness for Powell’s Method, ABC, BO, GA

Figure A.2 shows that the Manhattan distance, i.e., the objective value, follows the
same trend for each model calibration technique on the three dimensions of data
sparseness. For missing values in Figure A.2a, the Manhattan distance increases ex-
ponentially when more data is randomly removed. Powell’s Method and ABC result
in a higher Manhattan distance than BO and GA, meaning a larger gap between the
solution and the ground truth with more missing values. For noise and bias, the Man-
hattan distance of the solutions stays relatively constant over the various percentages
of data sparseness. In both cases, ABC has a higher Manhattan distance. Figure A.2c
shows a slight increase in Manhattan distance when increasing the percentage of bias.
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PAIRPLOT FOR SCENARIOS

Figure A.3: Pair plots of the scenarios for BO and GA. Green represents the solutions of BO, and purple
represents the solutions of GA. Gray dotted line is the ground truth.

Figure A.3 shows that BO and GA identify optimal solutions within distinct subsets
of all features. BO identifies optimal graphs with a (ranking of) average betweenness
centrality, the number of vertices and edges, closer to the ground truth. Compara-
tively, GA tends to be more distant from the ground truth, but shows more proximity
in terms of Manhattan distance. Moreover, the pair plot shows that a graph with fewer
vertices tends to have fewer edges, a lower average betweenness centrality and graph
edit distance.
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B.1. NORMALIZED L1 DISTANCE

Figure B.1 presents the objective value (Manhattan distance) and the normalized L1
distance over the Quality Diversity (QD) front of all solutions across the ten seeds. We
see that the minimum and the maximum Manhattan distance differ for the various
scenarios. For example, the source profile shows that with more data sparseness, the
Manhattan distance becomes lower, but the solution is not necessarily less optimal
for that particular data sparseness scenario. This makes it difficult to compare the QD
fronts of the various scenarios on the objective value for the quality-of-fit (van Schilt
et al., 2024). Therefore, we normalize the objective value using the minimum and the
maximum of the QD front.

In more detail, Table B.1 shows the minimum and the maximum Manhattan dis-
tance for the solutions in the QD front where the ten seeds are merged. We also see
that the maximum Manhattan distance the QD front achieved is lower with more data
sparseness, especially for the scenario all high and missing high.
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Profile Structure
Modus

Operandi
Source Legal Import Destination

Scenario min max min max min max min max min max min max
0% -194 0 -795 -12 -96 -1 -50 0 -185 0 -275 -1
All Low -258 -7 -76 -6 -454 -5 -102 -6 -414 -6 -635 -9
All Medium -498 -12 -123 -12 -64 -7 -510 -12 -475 -12 -572 -14
All High -1124 -67 -1035 -66 -1713 -38 -414 -64 -1623 -65 -2566 -68
Bias Low -341 -11 -306 -10 -41 -6 -155 -11 -319 -11 -741 -13
Bias High -531 -17 -134 -17 -4073 -9 -317 -16 -482 -17 -1246 -18
Noise Low -498 -12 -123 -12 -1649 -7 -120 -12 -492 -12 -958 -13
Noise High -448 -13 -121 -12 -216 -7 -285 -12 -425 -12 -881 -14
Missing Low -575 -7 -256 -7 -235 -5 -72 -7 -493 -7 -375 -9
Missing High -1186 -83 -432 -83 -2091 -51 -545 -81 -1194 -78 -2030 -86

Table B.1: Minimum and Maximum Value of the Manhattan (L1) Distance for the Solutions in the QD Front
per Profile and per Scenario. We refer to the QD front where the results of the seeds are combined.

(a) Manhattan (L1) Distance Between QD Container and the Ground Truth.

(b) Normalized L1 Distance Between QD Container and the Ground Truth.

Figure B.1: Objective Value of the Solutions of the Ten Seeds.

B.2. PARAMETER VALUES FOR THE IDENTIFIED GROUND

TRUTH STRUCTURES

Figure B.2 shows the parameter values of the identified ground truth structures versus
the normalized L1 distance per profile across seeds. For each profile, we display the
actor’s parameters that had to be calibrated. The modus operandi, legal, and import



B.2. PARAMETER VALUES FOR THE IDENTIFIED GROUND TRUTH STRUCTURES 161

profile show no correlation between the parameter values, the normalized L1 dis-
tance, and whether it fits in the ground truth container or not (so transport cost). For
the source profile, there is only one solution that identifies the ground truth struc-
tures. This solution has a low normalized L1 distance, so it is relatively close to the
ground truth. The interarrival time is relatively low compared to the ground truth,
whereas the warehouse consolidator parameters are relatively high compared to the
ground truth. This explains the high transport cost. For the destination profile, we see
that the higher the warehouse distributor and retailer time, the higher the normalized
L1 distance. The figure also shows that even with a marginal difference in the actor’s
parameter value of the destination, the solution does not fit within the ground truth
container.

Figure B.2: Parameter Values for the Solutions that Identified the Ground Truth Structure. Orange indicates
that the solution fits in the ground truth container, and blue indicates that the solution does not fit in the
ground truth container. The grey line indicates the ground truth value.
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B.3. ADDITIONAL FEATURES OF SOLUTIONS IN GROUND

TRUTH CONTAINER

Figure B.3 visualizes the solutions in the ground truth container of the single QD front
per scenario and per profile. Figure B.3a shows that most solutions have a lower trans-
port cost than the ground truth. For the profile where only the structure is calibrated,
it shows that the transport cost is constant for each graph structure. For all the other
profiles, the transport cost also depends on the calibrated parameters and not only
on the graph structure. Figure B.3b and Figure B.3c show that all graph structures
that are found (not being the ground truth) have a higher number of vertices and
edges than the ground truth. The source profile identifies the graph structures with
the highest number of vertices and edges.

(a) Transport Cost.

(b) Number of Vertices.

(c) Number of Edges.
Figure B.3: Additional Features of Solutions in Ground Truth Container.
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B.4. IMPACT OF THE NUMBER OF SUPPLIERS, MANUFAC-
TURERS, AND WHOLESALES CONSOLIDATORS

Figure B.4 shows the normalized L1 distance for all solutions of the ten seeds for each
scenario per the number of suppliers in the graph. It displays that, for each scenario,
the more suppliers a graph has, the higher the normalized L1 distance. Also, most
solutions seem to have a graph with only one or two suppliers.

Figure B.4: Normalized L1 Distance per Scenario per Number of Suppliers.

Figure B.5 shows the normalized L1 distance for all solutions of the ten seeds for
each scenario per the number of manufacturers in the graph. It displays that most
solutions have one to three manufacturers. There is no clear correlation between the
number of manufacturers and the normalized L1 distance.

Figure B.5: Normalized L1 Distance per Scenario per Number of Manufacturers.
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Figure B.6 shows the normalized L1 distance for all solutions of the ten seeds for
each scenario per the number of warehouse consolidators in the graph. It displays
that most solutions have one warehouse consolidator with a normalized L1 distance
between 0 and 0.3. Also, graphs with more warehouse consolidators lead to a lower
spread of the solutions around a normalized distance of 0.

Figure B.6: Normalized L1 Distance per Scenario per Number of Warehouse Consolidators.
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FEATURE SCORING

The feature scoring analysis identifies the relationship between the model inputs and
the model outputs. A high feature score indicates that the model input has a great
impact on the model output. For each model output, the model input scores sum
up to 1. The synthetic counterfeit PPE supply chain simulation model is used for the
feature scoring analysis. As model inputs, we use the actors’ input parameters, and
graph characteristics such as the number of vertices, the number of edges, and the
number of actors (based on the System Entity Structure). As model outputs, we use
the Manhattan (L1) distance, the transport cost, and the graph edit distance. More
information on the model inputs and outputs can be found in Chapter 4 & 5.
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First, the ground truth simulation model is analyzed using feature scoring with
10.000 different variations of the actors’ parameters. The underlying supply chain
graph does not change, and therefore, the graph edit distance is not included as
model output. Figure C.1 shows that all actors’ parameters have a similar impact
on the Manhattan (L1) distance and on the Key Performance Indicator (KPI) trans-
port cost. The color map displays some slight differences between the parameters in
terms of impact (maximum difference around 0.003), and this is seen as negligible.

Figure C.1: Feature Scoring Analysis for the Ground Truth.
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Second, we analyze the impact of the different supply chain structures on the
model outputs while keeping the actors’ parameters constant. We run 10.000 dif-
ferent configurations of the structure of the supply chain. Figure C.2 shows that the
number of edges and vertices have the highest impact on the graph edit distance.
Next, the number of suppliers has the highest impact on the Manhattan (L1) distance,
followed by the warehouse distributor. For the transport cost, the number of ware-
house consolidators has a very high impact with 0.53. This is followed by the number
of suppliers.

Figure C.2: Feature Scoring Analysis for the Supply Chain Structures.

Third, we analyze the impact of the actors’ parameters combined with various
supply chain structures on the model outputs. We run 25 different supply chain struc-
tures for 5.000 different variations of the actors’ parameters, so in total, 125.000 model
runs. Similar to the ground truth analysis, Figure C.3 shows that all actors’ parame-
ters present a similar relationship for each model output. These parameters have the
most impact on the transport cost, with a maximum difference of 0.002. Figure C.4
presents the impact of the graph characteristics on the model outputs. We see that
the number of suppliers has a very high impact on the Manhattan (L1) distance. The
impact of the number of warehouse distributors has become almost negligible com-
pared to varying only the structure. Moreover, we see that the number of warehouse
consolidators has a high impact on transport costs. However, it is much less than
when only varying the structure of the supply chain.
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Figure C.3: Feature Scoring Analysis for Actors’ Parameters and Supply Chain Structures: Parameters

Figure C.4: Feature Scoring Analysis for Actors’ Parameters and Supply Chain Structures: Graph Charac-
teristics
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in Equilibrium: A study on the criminal supply chain in the Port of Rotterdam, using
simulation and game theory. M.Sc. Thesis. Delft University of Technology. URL: http:
//resolver.tudelft.nl/uuid:f83b7feb-5d6f-4613-9155-dbc8f9fe4601

4. van der Plas, R., van Schilt, I.M., van Halem, G.H., van Rijswijk, E., Stoppelenburg, P.,
van der Wal, C.N., & Kwakkel, J.H. (2022) Trafficking and Trust: Understanding the role
of trust in a criminal supply chain. M.Sc. Thesis. Delft University of Technology. URL:
http://resolver.tudelft.nl/uuid:a581592f-b006-4b2c-a50a-3655d6bfa28a

5. Hermans, B., van Schilt, I.M., Huang, Y., & Kwakkel, J.H. (2022) Structural uncertainty
in supply chain simulation models: An approach to account for structural uncertainty
in supply chain simulation models. M.Sc. Thesis. Delft University of Technology. URL:
http://resolver.tudelft.nl/uuid:e19d2957-eb33-4171-8dc1-8053de3d9e1c

6. Klaassen, R., van Schilt, I.M., van den Bosch, R., Baas, H., van der Voort, H.G.,
Kwakkel, J.H., & Verbraeck, A. (2021) The Route of Crime: Analysing the im-
pact of risk vs gain trade-offs on international criminal supply chains. M.Sc.
Thesis. Delft University of Technology. URL: http://resolver.tudelft.nl/uuid:
c1bce36d-1c92-4657-b410-83b29336fac6

7. Kuipers, L., van Schilt, I.M., Zandanel, F., Huang, Y., Kwakkel, J.H., & Verbraeck, A.

(2021) Increasing supply chain visibility with limited data availability: Data assimila-

tion in discrete event simulation. M.Sc. Thesis. Delft University of Technology. URL:

http://resolver.tudelft.nl/uuid:5f68b82f-205e-4509-9a64-22082c46065f

http://resolver.tudelft.nl/uuid:04bd0498-8414-43e8-af15-e67b02b3b508
http://resolver.tudelft.nl/uuid:04bd0498-8414-43e8-af15-e67b02b3b508
http://resolver.tudelft.nl/uuid:f83b7feb-5d6f-4613-9155-dbc8f9fe4601
http://resolver.tudelft.nl/uuid:f83b7feb-5d6f-4613-9155-dbc8f9fe4601
http://resolver.tudelft.nl/uuid:a581592f-b006-4b2c-a50a-3655d6bfa28a
http://resolver.tudelft.nl/uuid:e19d2957-eb33-4171-8dc1-8053de3d9e1c
http://resolver.tudelft.nl/uuid:c1bce36d-1c92-4657-b410-83b29336fac6
http://resolver.tudelft.nl/uuid:c1bce36d-1c92-4657-b410-83b29336fac6
http://resolver.tudelft.nl/uuid:5f68b82f-205e-4509-9a64-22082c46065f




TRAIL THESIS SERIES
The following list contains the most recent dissertations in the TRAIL Thesis Se-
ries. For a complete overview of more than 400 titles, see the TRAIL website:
www.rsTRAIL.nl.

The TRAIL Thesis Series is a series of the Netherlands TRAIL Research School on
transport, infrastructure and logistics.

Schilt, I.M. van, Reconstructing illicit supply chains with sparse data: A simulation
approach, T2025/2, January 2025, TRAIL Thesis Series, the Netherlands

Ruijter, A. de, Two-Sided Dynamics in Ridesourcing Markets, T2025/1, January 2025,
TRAIL Thesis Series, the Netherlands

Fang, P., Development of an Effective Modelling Method for the Local Mechanical Anal-
ysis of Submarine Power Cables, T2024/17, December 2024, TRAIL Thesis Series, the
Netherlands

Zattoni Scroccaro, P., Inverse Optimization Theory and Applications to Routing Prob-
lems, T2024/16, October 2024, TRAIL Thesis Series, the Netherlands

Kapousizis, G., Smart Connected Bicycles: User acceptance and experience, willingness
to pay and road safety implications, T2024/15, November 2024, TRAIL Thesis Series,
the Netherlands

Lyu, X., Collaboration for Resilient and Decarbonized Maritime and Port Operations,
T2024/14, November 2024, TRAIL Thesis Series, the Netherlands

Nicolet, A., Choice-Driven Methods for Decision-Making in Intermodal Transport: Be-
havioral heterogeneity and supply-demand interactions, T2024/13, November 2024,
TRAIL Thesis Series, the Netherlands

Kougiatsos, N., Safe and Resilient Control for Marine Power and Propulsion Plants,
T2024/12, November 2024, TRAIL Thesis Series, the Netherlands

Uijtdewilligen, T., Road Safey of Cyclists in Dutch Cities, T2024/11, November 2024,
TRAIL Thesis Series, the Netherlands

Liu, X.,Distributed and Learning-based Model Predictive Control for Urban Rail Tran-
sit Networks, T2024/10, October 2024, TRAIL Thesis Series, the Netherlands

Clercq, G. K. de, On the Mobility Effects of Future Transport Modes, T2024/9, October
2024, TRAIL Thesis Series, the Netherlands

Dreischerf, A.J., From Caveats to Catalyst: Accelerating urban freight transport sus-
tainability through public initiatives, T2024/8, September 2024, TRAIL Thesis Series,
the Netherlands

177



178 TRAIL THESIS SERIES

Zohoori, B., Model-based Risk Analysis of Supply Chains for Supporting Resilience,
T2024/7, October 2024, TRAIL Thesis Series, the Netherlands

Poelman, M.C., Predictive Traffic Signal Control under Uncertainty: Analyzing and
Reducing the Impact of Prediction Errors, T2024/6, October 2024, TRAIL Thesis Series,
the Netherlands

Berge, S.H.,Cycling in the age of automation : Enhancing cyclist interaction with auto-
mated vehicles through human-machine interfaces, T2024/5, September 2024, TRAIL
Thesis Series, the Netherlands

Wu, K., Decision-Making and Coordination in Green Supply Chains with Asymmetric
Information, T2024/4, July 2024, TRAIL Thesis Series, the Netherlands

Wijnen, W., Road Safety and Welfare, T2024/3, May 2024, TRAIL Thesis Series, the
Netherlands

Caiati, V., Understanding and Modelling Individual Preferences for Mobility as a Ser-
vice, T2024/2, March 2024, TRAIL Thesis Series, the Netherlands

Vos, J., Drivers’ Behaviour on Freeway Curve Approach, T2024/1, February 2024, TRAIL
Thesis Series, the Netherlands
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Summary

Even in this digital era, the data for improving supply chain visibility is 

often sparse due to the actors’ reluctance to share information or because 

of illicit activities. This dissertation demonstrates a simulation approach 

for reconstructing illicit supply chains with sparse data, that could help 

robust decision-making on effective interventions.  We use a simulation 

calibration approach in combination with a ground truth simulation model 

of a stylized counterfeit Personal Protective Equipment (PPE) supply chain 

as case study.
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