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Abstract

agda2hs is a tool which translates a subset of Agda to readable Haskell. Using
agda2hs, programmers can implement libraries in this subset of Agda, formally verify
them, and then convert them to Haskell. In this paper we present a new, verified
implementation of the lens data type, which is used to access data structures in a
readable yet functionally pure way. We show successfully verified lenses for record
types and tuples, and also present a lens operating on lists that could not be translated
properly. We discuss the obstacles encountered during development, and offer thoughts
on possible improvements to agda2hs.

1 Introduction
When developing software, it is invaluable to know beforehand that the code written will
do exactly what was intended by its author, and nothing more or less. In functional pro-
gramming languages such as Haskell [1], functions are pure, and therefore programs can be
proven correct by reasoning about them. However, these proofs need to be done outside
of Haskell, resulting in proofs becoming invalid as the code is updated. In languages like
Agda [2], proofs can be written in the language itself because of its dependent type system,
but Agda’s ecosystem is relatively lacking compared to that of a more mature language such
as Haskell. To this end, the tool agda2hs [3] was created, which translates Agda code to
readable Haskell code within a certain subset of the two languages.

Some Haskell data structures and libraries have already been reimplemented using agda2hs
by previous authors, like Sequences [4], QuadTrees [5], Maps [6], Ranged-sets [7], and In-
ductive Graphs [8], but many commonly used abstractions still remain unverified through
this method.

This paper explores the reimplementation of an additional abstraction: lenses. A lens is
a reference to a specific subpart of a data structure, and can be created for any nested data
structure in order to ease access to its members in a functionally pure way. This results in
code that is easier to write, read and maintain [9], as illustrated in Listing 1.

data Status = Status { _health :: Int, _level :: Int } deriving Show

data Player = Player { _name :: String, _status :: Status } deriving Show

data Game = Game { _player :: Player, _isStarted :: Bool } deriving Show

healPlayer :: Int -> Game -> Game

healPlayer points game = game { _player =

(_player game) { _status =

(_status (_player game)) { _health =

_health (_status (_player game)) + points }}}

healPlayer' :: Int -> Game -> Game

healPlayer' points game = over (player ⊙ status ⊙ health) game (+ points)

Listing 1: An example use case for lenses. The function healPlayer increments a player’s health
without lenses. The much smaller and more readable function healPlayer' does the same by com-
posing the lenses player, status, and health. The lens implementations have been left out for
brevity.

Lenses are divided into different classes: well-behaved lenses, very well-behaved lenses,
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and bijective lenses. These classes each satisfy different lens laws and provide different
guarantees to their user [10][11][12]. In this research, we set out to implement very well-
behaved lenses using agda2hs, and to verify their behavior by proving the different lens
laws. In doing so, we answer the following questions:

1. Do the language features used by the Haskell implementation of lenses fall into the
common subset of Agda and Haskell provided by agda2hs? If not, can agda2hs be
extended to make this possible, or is an alternative lens implementation thinkable that
does fall in this subset?

2. What laws need to be satisfied for each lens class (bijective, well-behaved or very
well-behaved), and can these laws be formally verified in Agda?

3. Does agda2hs actually translate the Agda implementation of lenses resulting from
question 1 and 2 to valid and idiomatic Haskell?

4. If question 3 is true, is the generated implementation similar to existing Haskell imple-
mentations, and what are the differences, if any? If question 3 is false, why is agda2hs
not capable of translating the Agda lenses to valid Haskell, and what changes or ad-
ditional features would agda2hs need for this to be possible?

The rest of this paper is structured as follows: first, in Section 2, some preliminaries
necessary to answer these questions are explained. We then discuss the implementation of
the lens library in Section 3, and its formal verification in Section 4. Section 5 (Responsible
Research) discusses reproducibility, and Section 6 (Related work) places this research in a
broader context. Finally, we draw our conclusions in Section 7.

2 Preliminaries
In order to understand the rest of the paper, some preliminary knowledge of Agda, proving
in Agda, agda2hs and lenses is necessary, on which we elaborate in this section.

2.1 Agda, the Curry-Howard correspondence and agda2hs
Agda is a total, dependently typed functional programming language. Agda being total
means that a function promising to return some type a always returns exactly that type a,
and never another type or an error. Languages that are not total, like Haskell, are called
partial. Because Agda is dependently typed, the types in a definition’s signature can depend
upon one another.

The Curry-Howard correspondence (Table 1) defines an isomorphic mapping between
propositional logic and type systems [13]. We do this by representing truth as non-empty
types, and falsity as empty types: if we then take a value of a type that represents a certain
proposition as an argument to a function, this function can only be called when that type
has any values we can provide, that is, if we can provide a proof for this property.

Moreover, Agda is smart enough to understand that function definitions can be used
to imply equivalence: if one expression can be translated to another by applying function
calls, Agda can confirm for us that these expressions are indeed equivalent. If they are not
equivalent or additional information is needed, we will of course get a relevant error message
telling us so.
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Propositional logic Type system
proposition P type

proof of proposition p : P program of type
implication P → Q function type

truth > unit type
falsity ⊥ bottom/empty type

negation P → ⊥ function to ⊥
equivalence (P → Q)× (Q → P ) pair of two functions

universal quantification (x : A) → Px dependent function type
existential quantification ΣA(λx → Px) dependent pair type

Table 1: The Curry-Howard correspondence is an isomorphism between propositional logic and
type systems [13].

agda2hs is a tool that translates a subset of Agda to readable Haskell. The advantage
of taking this extra step is that libraries can be implemented in Agda, formally proven to
behave as expected using the Curry-Howard correspondence, and then translated to readable
Haskell that can be used in production code. agda2hs will not indiscriminately translate
all code in its input to Haskell: instead, we have to mark code we wish to translate explicitly
with the COMPILE AGDA2HS x compiler directive (or pragma), where x is the name of the thing
we want to translate. We also have the FOREIGN AGDA2HS x pragma at our disposal, which
inserts the Haskell code given at x verbatim into our resulting Haskell. Listing 2 gives a
usage example of these pragmas.

-- `double` will be checked by Agda,

-- and translated using agda2hs.

double : Int → Int

double x = 2 * x

{-# COMPILE AGDA2HS double #-}

-- `triple` will be checked by Agda,

-- but ignored by agda2hs.

triple : Int → Int

triple x = 3 * x

-- `quadruple` will be inserted

-- verbatim into our result.

{-# FOREIGN AGDA2HS

quadruple :: Int -> Int

quadruple x = 4 * x

#-}

double :: Int -> Int

double x = 2 * x

quadruple :: Int -> Int

quadruple x = 4 * x

Listing 2: double will be translated using agda2hs, triple will not, and quadruple’s Haskell def-
inition will be inserted in the output exactly as given in the pragma. Agda on the left, resulting
agda2hs Haskell output on the right.

Because Agda is a total language and Haskell is not, agda2hs facilitates a way to write
partial functions. We write a function that requires a proof of some specific preconditions.
We can then use a special error function for cases where the proofs that are supposed to be
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supplied are missing, which agda2hs translates to a partial function.

2.2 Lenses
To implement lenses in Agda and formally verify them, it is important to understand how
a lens works beneath the hood. Lenses are, however, not defined by their implementation,
but by their behavior. To formalize this, we consider as lens any type isomorphic to a pair
of getters and setters [14], as illustrated in Equation 1. For example, the player lens in
Listing 1 is of type Lens Game Player.

Lens s a ' (s → a)× (s → a → s) (1)

Due to this permissive definition, many possible lens implementations exist [15]. One
could simply implement a lens as a literal pair of a getter and setter functions, or, more
efficiently, as a pair of getter and modifier functions, as shown in Equation 2 and 3 respec-
tively. We will refer to these implementations as a record lens. More involved alternatives
using for example a Store comonad (Equation 4) or functors (Equation 5) are also possible.

This last mentioned version using functors, known as a Van Laarhoven lens, is especially
interesting, since it can be combined using regular function composition [15][16].

(s → a)× (s → a → s) (2)

(s → a)× (s → (a → a) → s) (3)

s → Store a s (4)

∀f.Functorf ⇒ (a → fa) → s → fs (5)

In this paper we focus on record lenses, because of their simplicity, and Van Laarhoven
lenses, because of their inherent composability and the fact that they are used by Haskell’s
most downloaded lens library1.

2.3 Lens laws
There exist several lens laws [12]. The most important of these, the core laws, are illustrated
in the equations below. Here, p(s, v) = s′ is the set (or “put”) function which maps a value
v and a structure s to an updated structure s′, and g(s) = v is the get function which maps
a value s to a value v.

The GetPut law requires that updating a structure with its own field does nothing,
since the new value is equal to the old. The StrongGetPut law is a stronger version of
this, requiring that the structure is solely identified by this field. The PutGet law requires
that setting a value and then immediately retrieving it yields the value just set. Finally, the
PutPut law requires that updating a field twice in a row is equivalent to only performing
the second update, since the first update is overridden by the second.

Note that there also exist a number of weaker lens laws that imply the core laws, and
that could thus be used to prove the core laws indirectly [11].

1hackage.haskell.org/package/lens
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p(s, g(s′)) ' s′ ∀s, s′ ∈ S (StrongGetPut)
p(s, g(s)) ' s ∀s ∈ S (GetPut)
g(p(s, v)) ' v ∀s ∈ S,∀v ∈ V (PutGet)

p(p(s, v), v′) ' p(s, v′) ∀s ∈ S,∀v, v′ ∈ V (PutPut)

We divide lenses into three classes depending on which of these laws they obey [10]:
1. Well-behaved lenses satisfy the GetPut and PutGet laws.

2. Very well-behaved lenses satisfy the GetPut, PutGet and PutPut laws.

3. Bijective lenses satisfy the StrongGetPut and PutGet laws.
In this paper we mostly focus on very well-behaved lenses, since this class is the most

practical when writing application code [17].

2.4 Lens methods
There exist a number of common methods that can be applied on lenses to use them. We
consider four of them in this paper:

• get : s → a – given a structure of type s, returns the value of its field. This method
is occasionally also called view in some libraries.

• over : s → (a → a) → s – given a structure of type s and a function from a to a,
returns an updated structure with the given function applied to its field. This method
is occasionally called modify in the literature.

• put : s → a → s – given a structure of type s and a value of type a, returns an
updated structure with the given value replacing its field. This method is occasionally
called set in the literature. It can be seen as a specialized case of over, where the
method applied returns a constant value.

• � : Lens t a → Lens s t → Lens s a – the lens composition operator, that, given
two lenses, produces a new lens. With Van Laarhoven lenses, this is equal to normal
function composition; other lens implementations need to have a distinct definition of
this operator.

3 Implementation
In this section we explain why implementing Van Laarhoven lenses using agda2hs is cur-
rently not an option, and then present our implementation of record lenses.

3.1 Van Laarhoven lenses
Ideally, we would like to implement Van Laarhoven lenses via agda2hs, so we can use this
powerful abstraction in a formally verified way in Haskell. In order to do this, we need to
translate the type signature in Equation 5 to Agda. However, it turns out that while both
Haskell and Agda support explicit forall types, agda2hs does not. While implementing
this feature is an interesting exercise, it is out of the scope of this research, and we shall
therefore continue to look into record lenses and their verification.
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3.2 Record lenses
To implement the record lens definition from Equation 2, we simply create a record contain-
ing two values as in Listing 3: a getter and a setter function. We also show the modification
function over for this implementation. It needs to iterate the structure s twice: once to re-
trieve the current value, and once to set the new value. This is a downside, as this operation
is potentially very costly for large or complicated types.

record Lens (s a : Set) : Set where

field

get : s → a

put : s → a → s

over : {s a : Set} → Lens s a → s → (a → a) → s

over l o f = (put l) o (f ((get l) o))

Listing 3: A get/put record lens.

To avoid this, we can instead implement Equation 3 and ask lens implementors to provide
a get and an over function, after which we implement put in terms of applying the const

function to this over method. This would result in the definitions of Lens and put shown in
Listing 4.

record Lens (s a : Set) : Set where

field

get : s → a

over : s → (a → a) → s

open Lens public

{-# COMPILE AGDA2HS Lens #-}

put : {s a : Set} → Lens s a → s → a → s

put l o v = (over l) o (const v)

{-# COMPILE AGDA2HS put #-}

data Lens s a = Lens { get :: s -> a

, over :: s -> (a -> a) -> s }

put :: Lens s a -> s -> a -> s

put l o v = over l o (const v)

Listing 4: A get/modify lens and a matching implementation of put defined in terms of get and
modify. Agda on the left, agda2hs Haskell output (with manually adjusted whitespace) on the
right.

This is the Agda definition of lenses we use in the rest of this paper. We furthermore
define the lens composition operator � in Listing 5 in order to be able to arbitrarily combine
lenses matching the necessary type constraints.

_⊙_ : {s t a : Set } → Lens s t → Lens t a → Lens s a

(l ⊙ m) = record { get = (get m) ∘ (get l)

; over = λ o f →

over l o (const (over m (get l o) f)) }

{-# COMPILE AGDA2HS _⊙_ #-}

(⊙) :: Lens s t -> Lens t a -> Lens s a

l ⊙ m

= Lens (get m . get l)

(\ o f -> over l o (const (over m (get l o) f)))

Listing 5: The lens composition operator � combines some Lens s t and Lens t a into a new Lens
s a. Agda on the left, agda2hs Haskell output on the right.
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3.3 Concrete examples of lenses
Now that we have defined our lenses as in Equation 3, we define a few concrete example
lenses to translate and verify. We present lenses operating on the members of tuples, records,
and lists.

3.3.1 Lenses for tuples

Tuples, finite ordered collections, can be indexed using lenses. Listing 6 shows implementa-
tions of lenses one and two, which operate on the first and second element of any 2-tuple,
respectively.

To define the get function of these lenses, we simply take the fst and snd functions,
which return the relevant member of the tuple. To define the over function, we create a
function of two arguments: a structure o : (q × r), and a function f : q → q for one or
r → r for two. We then apply f to the relevant member of the tuple, and construct a new
tuple consisting of this updated member and the other, unchanged member.

Note that in our over function we use the fst and snd functions again to reconstruct
the given structure o. Normally, we would want to pattern match here, so that o would be
split into its left and right parts. We are here however hindered by agda2hs’s inability to
translate pattern matching lambdas with more than one argument.

one : {q r : Set} → Lens (q × r) q

one = record { get = fst

; over = (λ o f → f (fst o) , (snd o)) }

{-# COMPILE AGDA2HS one #-}

two : {q r : Set} → Lens (q × r) r

two = record { get = snd

; over = (λ o f → (fst o) , f (snd o)) }

{-# COMPILE AGDA2HS two #-}

one :: Lens (q, r) q

one = Lens fst (\ o f -> (f (fst o), snd o))

two :: Lens (q, r) r

two = Lens snd (\ o f -> (fst o, f (snd o)))

Listing 6: Lenses one and two, which operate on the first and second fields of 2-tuples. Agda on the
left, agda2hs Haskell output on the right.

3.3.2 Lenses for records

Because programs dealing with real life data often define new record types, we want to be
able to create lenses for arbitrary records. In Listing 7 we provide an example record type
Foo, and a matching lens bar to access one of its fields, _bar, with. We prefix the actual field
with an underscore and give the lens the more easily writable name bar. This is common
practice when using lenses, since the lens is the default way to access this field.

To define the get function of bar, we simply use the field accessor _bar. Our over func-
tion, given a structure o : Foo, and a function f : (Int × Int) → (Int × Int), returns
a record o with its _bar field replaced by its mapping from the given function f.

Although the translated version of bar is correct Haskell, the code generated is not
entirely idiomatic:

• The get function is translated to a lambda expression, whereas a Haskell programmer
would simply write _bar.
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• The over function uses the Foo constructor instead of a record update expression like
\ o f -> o {_bar = f (_bar o)}, even though we do use a record update expression
in Agda. The advantage of such a record update expression is that only the field
relevant to the lens is explicitly set in the code. In a record with this few fields this
distinction does not matter much, but in records with many fields this poses a problem
for readability, as every field would be mapped to itself explicitly.

record Foo : Set where

field

_word : String

_bar : Char × Int

open Foo public

{-# COMPILE AGDA2HS Foo #-}

bar : Lens Foo (Char × Int)

bar = record { get = _bar

; over = (λ o f → record o

{ _bar = (f (_bar o)) } ) }

{-# COMPILE AGDA2HS bar #-}

data Foo = Foo{_word :: String, _bar :: (Char, Int)}

bar :: Lens Foo (Char, Int)

bar = Lens (\ r -> _bar r) (\ o f -> Foo (_word o) (f (_bar o)))

Listing 7: Lens bar can be used to operate on the _bar field of Foo. Agda on the left, agda2hs
Haskell output on the right.

3.3.3 Lenses for lists

A commonly used family of lenses for lists is ix i : Int → Lens [a] a. This function
creates a lens that operates on the ith element of a list. To understand why this lens proves
to be more difficult to recreate than those operating on records or tuples, consider the Haskell
code in Listing 8. In this example, we first instantiate a version of ix that accesses element
five (the sixth element, since Haskell lists are 0-indexed) of a list. We then apply this to
a list that contains only four elements. If we look at the types involved, nothing illegal is
happening, yet this operation is obviously not valid, since we cannot access elements out of
bounds of the list.

myList :: [Char]

myList = ['a', 'g', 'd', 'a']

main :: IO ()

main = print $ view (ix 5) myList

Listing 8: A problematic usage of the ix lens that is nonetheless correct to the type checker. First
ix 5, the lens to access the sixth element, is created, then it is applied to a list of only 4 elements.

There are multiple solutions thinkable to deal with this discrepancy:

1. The common way to deal with this problem in Haskell implementations is to make the
get and set functions of ix partial: that is, to return an error when an ix lens is trying
to access an element out of bounds. Although agda2hs does support this in some
cases as explained in Section 2.1, we need to provide a proof that a lens is in or out of
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_!!!_ : (xs : List a) (n : Integer) → Maybe a

[] !!! _ = Nothing

(x ∷ xs) !!! n = if n == 0

then Just x

else xs !!! (n - 1)

{-# COMPILE AGDA2HS _!!!_ #-}

maybeSetHead : List a → Maybe a → List a

maybeSetHead [] _ = []

maybeSetHead (x ∷ xs) Nothing = (x ∷ xs)

maybeSetHead (x ∷ xs) (Just v) = (v ∷ xs)

{-# COMPILE AGDA2HS maybeSetHead #-}

maybeOverList : (List a) → Integer →

(Maybe a → Maybe a) → List a

maybeOverList [] _ _ = []

maybeOverList (x ∷ xs) n f =

if n == 0

then maybeSetHead (x ∷ xs) (f (Just x))

else x ∷ (maybeOverList xs (n - 1) f)

{-# COMPILE AGDA2HS maybeOverList #-}

mix : Integer → Lens (List a) (Maybe a)

mix i = record { get = λ o → o !!! i

; over = (λ o f → maybeOverList o i f) }

{-# COMPILE AGDA2HS mix #-}

(!!!) :: [a] -> Integer -> Maybe a

[] !!! _ = Nothing

(x : xs) !!! n = if n == 0 then Just x else xs !!! (n - 1)

maybeSetHead :: [a] -> Maybe a -> [a]

maybeSetHead [] _ = []

maybeSetHead (x : xs) Nothing = x : xs

maybeSetHead (x : xs) (Just v) = v : xs

maybeOverList :: [a] -> Integer -> (Maybe a -> Maybe a) -> [a]

maybeOverList [] _ _ = []

maybeOverList (x : xs) n f

= if n == 0 then maybeSetHead (x : xs) (f (Just x)) else

x : maybeOverList xs (n - 1) f

mix :: Integer -> Lens [a] (Maybe a)

mix i = Lens (\ o -> o !!! i) (\ o -> maybeOverList o i)

Listing 9: mix i is a family of lenses that operates on lists, maybe returns a value on get, and that
may or may not update a structure on over. Agda on the left, agda2hs Haskell output on the
right.

bounds of the list it is applied to, which we cannot do: after all, we do not know what
list we are applying the lens to because lenses are always created for a type and not
for the specific instance they are supposed to access. This could be worked around
by adding a member of the empty type ⊥ (which denotes falsity, see Table 1) to the
Lens record type, and then checking locally if we are in bounds. If not, we use our
lens’s built in empty element to throw an error. This would however mean that we are
proving things from nothing, and from falsehood one can prove anything. Therefore
this option is not viable, since it cannot be implemented without breaking trust in all
lens proofs.

2. A solution not involving preconditions or proofs is presented in Listing 9. We make
the lens return a Maybe type wrapping the list’s actual type: applying get would then
return Nothing on an invalid index and Just a on a valid index, and applying over on
an invalid index would simply not update the structure. However, in doing so, the
PutGet law would be broken: after all, if we first put a value v to too large an index
and then try to retrieve that value from the overly large index, the result would be
Nothing, and not v. Therefore, this option can be implemented, but does not produce
a well-behaved lens.
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3. In dependently typed languages like Agda, the above problem might be solved by
using a data type with a set length, like Vec in the standard library. This type is
parameterized at runtime with a number indicating its length. However, we cannot
translate Agda code like this to Haskell directly, since parameterizing a type with a
concrete number is not possible due to Haskell’s lack of dependent types. Therefore,
this option can be implemented using our Lens type in Agda like in Listing 10, but
cannot be translated to Haskell.

getVec : ∀ {n} → Fin n → Vec a n → a

getVec zero (x ∷ xs) = x

getVec (suc i) (x ∷ xs) = getVec i xs

overVec : ∀ {n} → Fin n → Vec a n → (a → a) → Vec a n

overVec zero (x ∷ xs) f = f x ∷ xs

overVec (suc i) (x ∷ xs) f = x ∷ overVec i xs f

vix : ∀ {n} → Fin n → Lens (Vec a n) a

vix i = record { get = getVec i

; over = overVec i }

Listing 10: vix i is a family of lenses that operates on the Vec type in Agda’s standard library.
Due to Haskell’s lack of dependent types, this example cannot be easily translated and no agda2hs
Haskell result can be shown.

4 Verification
Now that we have defined our implementation of the Lens type, its methods, and a number
of concrete lenses, we start verifying our lenses. We want them all to be very well-behaved
lenses, meaning we try to prove the GetPut, PutGet and PutPut laws. Since all three
of these laws consist of equalities, we leverage Agda’s equational reasoning for our proofs.

It is important to state here that our proofs do not end up in the agda2hs Haskell
output, since we do not add a pragma to compile them. This has the nice effect that Agda
checks the validity of our proofs for us and then agda2hs discards them, since the proofs
would do nothing in our Haskell code if they would compile at all.

Proving the lens laws for very well-behaved lenses turns out to be trivial for tuples and
records, both types with a fixed size. We use our proof of the PutGet law for the two
lens as an example, as shown in Listing 11. Every step in this proof consists of nothing
more than function application. Although writing proofs in this step by step manner has
the benefit of being more readable for humans, the Agda compiler can actually do the whole
proof for us, as demonstrated in Listing 12. Both of the tuple lenses and the record lens we
defined in Section 3 satisfy the GetPut, PutGet and PutPut laws, and are thus very
well-behaved lenses.

The lens for lists, which have sizes that can change during runtime, presented much
greater challenges, as Section 3 already detailed. Here we go over the same three options we
mentioned there, and discuss them in the context of verification:

1. Creating an implementation that compiles to a partial function will break trust in all
further proofs concerning lenses because of the empty type we need for it in our Lens
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two-putget : {q r : Set} → (s : (q × r)) → (a : r) → get two (put two s a) ≡ a

two-putget s a =

begin

get two (put two s a)

≡⟨⟩

snd (put two s a)

≡⟨⟩

snd (over two s (const a))

≡⟨⟩

snd ((fst s) , (const a (snd s)))

≡⟨⟩

snd ((fst s) , a)

≡⟨⟩

a

�

Listing 11: Proof of the PutGet law for the two lens using human-readable steps.

two-putget : {q r : Set} → (s : (q × r)) → (a : r) → get two (put two s a) ≡ a

two-putget s a = refl

Listing 12: The same proof as Listing 11 of the PutGet law for the two lens using only Agda’s
reflexivity.

type. Although a disciplined programmer might indeed only use this empty type in
places where it is necessary, we cannot know that any proofs written using the lens
type are sound and do not use it without checking the proof manually, which we were
trying to avoid by using Agda.

2. The implementation using Maybe as a return type is not a very well-behaved lens.
The GetPut law does not hold, since putting Just v with v some valid value will do
nothing if our index is too high, and getting it immediately after will in this case return
Nothing instead of Just v. As an aside, the PutGet law does hold, since getting a
value in range and then putting it will not modify the structure, and setting a value
out of range will never modify the structure. The PutPut law does hold: doing this
on a valid index indeed first puts the first value, and then puts the second value, which
is equivalent to only performing the second put. Doing it on an invalid index is doing
nothing twice, which is equivalent to doing nothing once.

3. Because the implementation using Agda’s Vec type could not be converted to Haskell
because of its dependent types, no proofs have been written for it. The problems with
the first option should however not be an obstacle here, since this implementation uses
an argument of a finite type to index the sized vector, so that using it on structures
that are too small will not pass the type checker. The problems of the second option
are also not present here, since this lens maps directly to the type of its field without
wrapping it in another type.

11



5 Responsible research
It is of vital importance that research can be reproduced. In order to do so, this paper
describes its verified version of lenses in detail, and mentions the decisions and trade-offs
that were made in creating them. Furthermore, in this section we offer some guidance on
how to reproduce our exact set up, so our implementation can be studied, expanded upon
or used as-is in Haskell.

The code itself is made available to the public domain from its repository.2 It contains
complete instructions on how the code contained in it is structured and on how to compile
and use it. The code presented depends on The Glasgow Haskell Compiler (GHC), Agda,
Agda’s standard library, and agda2hs. The versions used are as follows:

• GHC 8.10.7

• Agda 2.6.3

• agda-stdlib 1.7.1

• agda2hs on branch master, commit 160478a51bc78b0fdab07b968464420439f9fed6

No other ethical concerns have been identified.

6 Related work
6.1 Prior Van Laarhoven lenses in agda2hs
In their work about porting QuadTrees to agda2hs, Brouwer implements the Van Laarhoven
lens shown in Listing 13 [5], avoiding agda2hs’s lack of support for explicit forall by telling
agda2hs to insert a verbatim Haskell translation of their Lens definition. This is a clever
workaround that allowed them to implement and verify QuadTrees, justified by the fact
that lenses were not the focus of their research. Nevertheless, it is not a true agda2hs
translation of lens types, which is why we have not re-used this definition in this paper.

Lens : Set -> Set -> Set₁

Lens s a = {f : Set -> Set} -> {{ff : Functor f}} -> (a -> f a) -> s -> f s

{-# FOREIGN AGDA2HS type Lens s a = forall f. Functor f => (a -> f a) -> s -> f s #-}

Listing 13: Brouwer’s Van Laarhoven lens [5]. Note that the pragma below the lens is not COMPILE

AGDA2HS, which would compile the definition using agda2hs, but FOREIGN AGDA2HS, which inserts the
given Haskell code verbatim in agda2hs’s Haskell output.

6.2 hs-to-coq
hs-to-coq is a project that translates total Haskell code to Coq [18], for the purpose of
verifying it in Coq [19]. As a result, instead of writing verified code that is then ported to
Haskell, one would first write Haskell and then verify it externally.

Although to our knowledge no translations of lenses have been performed yet, hs-to-coq
supports explicit forall quantifications in type signatures, and could therefore theoretically
be used to verify Van Laarhoven lenses.

2github.com/knarka/verified-lenses
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hs-to-coq can only translate total Haskell programs to Coq, meaning that the problems
we encountered with implementing the ix lens using agda2hs will here too cause issues:
after all, the usual implementation of ix that throws an error on invalid indices is partial,
not total.

6.3 Liquid Haskell
Liquid Haskell is a program verifier for Haskell that enables programmers to write proofs
as annotations within their Haskell codebase, and checks functions for totality and termi-
nation [20]. Liquid Haskell might be easier to pick up for the average Haskell programmer
than agda2hs, because learning a separate language for verification is not necessary.

We are not aware of any verification of lenses in Liquid Haskell, nor of any information
about its support for explicitly using forall in function type signatures. It is therefore hard
to say if Van Laarhoven lenses could be verified using Liquid Haskell.

Liquid Haskell’s ability to perform proofs on partial functions does look promising: one
can prove partial functions to be conditionally total in Liquid Haskell, that is, total given
that some precondition holds [21]. Writing such a proof would mean that every usage of
this lens would need to be annotated with a proof that that specific call is valid, but unlike
agda2hs, this proof would not require its own type parameter in the abstract Lens type.
Nevertheless, having to prove validity of every single call using a lens could be seen as either
good practice or as simply cumbersome, depending on the programmer.

7 Conclusions
As shown in Section 3 and 4, creating a lens type usable in Haskell using agda2hs is possible
in principle, as is verifying specific lenses created this way. We have shown that for fixed size
types like 2-tuples and records these proofs can be trivial, but that for dynamically sized
types like lists there are still many limitations to what is possible.

It appears this generalizes to most fixed sized and all dynamically sized types: after
all, for types with a set number of fields we can usually write total functions for our Agda
lenses that agda2hs can therefore translate, and we can write proofs that consist of simply
applying function calls. For types which can change size during runtime on the other hand,
we necessarily have cases where the lens we created is too large, small, or otherwise out of
bounds for the structure it is applied to, and we need to write partial functions. This is still
a large limitation for which a solution needs to be found before a fully usable lens library
could be created with agda2hs.

7.1 Suggested changes to agda2hs
• The implementation of Van Laarhoven lenses, which is the normal way of implementing

lenses in Haskell, is currently impossible because agda2hs is not able to translate
explicit forall types in Agda to their counterparts in Haskell. Adding support to
agda2hs for this feature, which both languages already support, would open up the
possibility of properly implementing Van Laarhoven lenses using agda2hs.

• The agda2hs translation of pattern matching on numbers is flawed, which proves
to be a minor problem when implementing indexed lenses such as those for lists.
In Agda, natural numbers are defined as zero and (suc n), so that 2 for example
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would be written as (suc (suc zero)). An exhaustive pattern matching function would
then match on zero and (suc n). In Haskell, we would pattern match on 0 and
n. However, agda2hs explicitly converts the successor function suc to the Haskell
output, where its definition is absent. This can be worked around by translating Agda’s
number definition to Haskell, but the resulting code would not be idiomatic Haskell,
and this solution would thus contradict agda2hs’s goal of producing readable Haskell.
Another workaround is to forgo the pattern match and use an if-statement, as we did
in Listing 9, but this makes proving things about the Agda definition more convoluted.
Therefore, the possibility to compile these Agda pattern matches to idiomatic Haskell
pattern matches would be a good addition to agda2hs.

• Another minor issue with pattern matching is the fact that agda2hs does not translate
Agda’s record update syntax to Haskell’s yet, as we saw in Listing 7. Although this
does not appear to cause any functional problems, it will cause trouble when updating
record types with many fields.

• Lambda expressions that use pattern matching on multiple variables are supported by
Agda and Haskell, but not by agda2hs as we saw in Listing 6. This shortcoming can
be worked around by nesting multiple pattern matching lambdas, but this workaround
reduces readability of both the input and the output code, and this would therefore
be a nice feature to add.

7.2 Other future research
Future research could be done into finding an implementation of lenses that is better able to
support types of dynamic sizes. Another logical follow up to this research would be making
agda2hs able to translate explicit forall usages in types, so that Van Laarhoven lenses can
be translated properly.

Research could thereafter be done into a more complete translation of popular Haskell
lens libraries, such as lens3 and microlens4. These libraries include other, related constructs,
such as Prisms and Isos [22], which may prove to pose their own interesting challenges during
translation with agda2hs.

Moreover, it is worth looking into verifying lens laws on lenses for dynamically sized
structures in Liquid Haskell. As we described in Section 6.3, verifying lenses operating
on dynamically sized structures like lists may be more feasible in Liquid Haskell than in
agda2hs, but this needs to be looked into further before any definite conclusions can be
drawn.

Lastly, an interesting direction of research would be proving properties of Van Laarhoven
lenses using hs-to-coq, since the required features for this do appear to be supported. If
one would succeed at this, it might become possible to prove properties of the commonly
used lens libraries mentioned before.
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