
Delft University of Technology
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft Institute of Applied Mathematics

Performance of cyclic redundancy checks using error-correcting codes
(Dutch title: Performantie van Cyclische Redundantie Checks in combinatie met

fout-verbeterende codes

Thesis submitted to the
Delft Institute of Applied Mathematics
in partial fulfillment of the requirements

for the degree

BACHELOR OF SCIENCE
in

APPLIED MATHEMATICS

by

Jochem de Jong
5169046

Delft, The Netherlands
June 29, 2023

Copyright © 2023 by Jochem de Jong. All rights reserved.

BSc thesis Applied Mathematics

Performance of cyclic redundancy checks using error-correcting codes

(Dutch title: Performantie van Cyclische Redundantie Checks in combinatie

met fout-verbeterende codes

Jochem de Jong

5169046

Delft University of Technology

Supervisor

Dr. Ir. J.H. Weber

Thesis committee
Dr. J.A.M. de Groot

June 29, 2023, Delft

Preface

This thesis that I have written marks the final part of the Bachelor Applied Mathematics at Delft
University of Technology. In this thesis an application of coding theory is discussed which is quite
important in many sectors of mathematics, computer science and electrical engineering. Prior to
this project I followed the courses Linear Algebra 1, Algebra 1 and the minor course Computer
Organisation, from which grew the interest in applications of vector spaces, group theory, modular
arithmetic and storing data. This, thereafter led to choosing the elective course Applied Algebra:
Codes. This course discussed the fallibility of message transmission and the power of error-correcting
codes using Linear Algebra. After finishing these courses I knew that I wanted to do a project related
to these subjects, in particular related to coding theory, because coding theory is quite vast and
there is a lot more to be studied, given its many applications in telecommunication, for instance in
5G [1] .

In the course there is an extensive focus on the performances of codes with respects to error
correction, this power, once again became clear in this project where the focus will be on cyclic
redundancy checks in combination with such an error-correcting code and how this impacts the
probability that an undetected error occurs. Cyclic redundancy checks also play an important role
in telecommunication systems.

I would like to use this part of the thesis to express my gratitude towards my supervisor Dr.
Jos Weber for guiding me in the right direction and giving me insights into the project and useful
background information.

Jochem de Jong
Delft, June 29, 2023

Abstract

Every day an extremely large amount of messages get sent over the internet, radio, WiFi, etc.
These messages need to be encoded in order to protect the important data. However just like
many of these systems messages can get corrupted over a certain channel due to noise, fluctuations
in power or temperature etc. [2] Therefore cyclic redundancy checks (CRC), which are bits that
are appended to message words to protect the data, are used to detect these errors. This is done
by using CRC polynomials. An occurring undetected error is possible in any case, therefore we
need to study closely the probability of an undetected error occurring, that is the probability that
the received, erroneous data is accepted as the transmitted message. The code words that are
the results of adding cyclic redunancy checks (CRC) can also be combined with an error-correcting
codes like BCH codes. As shown in [3] combining CRC polynomials with error-correcting can reduce
the previously mentioned probability, but one CRC polynomial can perform better. In this thesis
these CRC polynomials are studied in combination with certain different codes and are evaluated
based on their performance with respects to their undetected error probability. Two examples of
codes are given, in the first example a CRC polynomial is found that does not perform well in
the system without using an error-correcting code, but performs the best in the system with an
error-correcting code. An analysis is done which shows that by looking at consecutive roots of the
generator polynomial, optimal CRC polynomials can be found. The second example uses a different
code and finds another optimal CRC polynomial.

6

Contents

Preface 5

Abstract 6

1 Introduction 9

1.1 Motivation . 9

1.2 Thesis Statement . 9

1.3 Organization . 9

2 Prerequisites 11

2.1 Channel Assumptions . 11

2.2 Coding Theory . 12

2.2.1 Definition Linear Code . 12

2.2.2 Polynomial Representation . 12

2.2.3 Polynomial code . 13

2.2.4 Cyclic Codes . 13

2.2.5 Decoding . 13

2.3 CRC without error correcting codes . 14

2.3.1 CRC encoding . 14

2.3.2 CRC decoding . 15

2.3.3 Undetected error probability . 16

2.4 CRC system with error-correcting codes . 16

2.4.1 Undetected error probability . 17

3 CRC systems with BCH codes 19

3.1 Definition BCH Code . 19

3.2 [31,21,5] BCH code . 20

3.3 CRC polynomials of degree 5 . 21

3.3.1 Undected error probability in the pure system 22

3.3.2 Undetected error probability for the coded system 22

3.4 Weight Analysis . 23

3.5 [31,16,7] BCH code . 30

4 Conclusion and Discussion 33

4.1 Conclusion . 33

4.2 Discussion . 33

References 36

7

A Weight Distributions 37
A.1 [31,21,5] BCH code . 37

A.1.1 Pure system . 37
A.1.2 Coded scheme . 39

A.2 [31,16,7] BCH code . 40
A.2.1 Pure scheme . 41
A.2.2 Coded scheme . 42

B Mapping Analysis 43
B.1 gCRC1

(x) = x5 + x3 + x+ 1 and
gBCH(x) = x10 + x9 + x8 + x6 + x5 + x3 + 1 . 44

B.2 gCRC2
(x) = x5 + x2 + 1 and

gBCH(x) = x10 + x9 + x8 + x6 + x5 + x3 + 1 . 47
B.3 gCRC3

(x) = x5 + x4 + x3 + x2 + 1 and
gBCH(x) = x10 + x9 + x8 + x6 + x5 + x3 + 1 . 51

C Field Table 56

D Python Code 57
D.1 weights finder pure.py . 57
D.2 weights finder coded .py . 58
D.3 undetected error.py . 59
D.4 calculate roots.py . 61
D.5 subset crc code.py . 63
D.6 main.py . 64

8

Chapter 1

Introduction

1.1 Motivation

The worst outcome in telecommunication is when mistakes are made but not detected and thus go
through as though it were correct. However due to fallibility this cannot be prevented. It is vital
that communication is done without interference or corruption. We can however detect failure by
using cyclic redundancy checks (CRC). Systems that use CRC are implemented in many sectors of
telecommunication. The disadvantage of CRC systems however is that errors can only be detected
but not corrected since in case of failure a resubmission request is made. However error-correcting
codes can be used together with CRC systems to be able to correct the errors that are made. In
this case the probability that errors are undetected decreases because this scheme uses two steps
for decoding, and thus there is a higher probability of detecting the error. This makes it a useful
implementation but it gives rise to re-evaluate the respective performance of CRC polynomials
when comparing both implementations, one without the error-correcting code and the other with
an error-correcting code. In this thesis these two systems are compared in terms of CRC polynomial
evaluation.

1.2 Thesis Statement

The paper of K.A. Abdel-Ghaffar named ”CRC in Coded Schemes with Bounded-Distance Decod-
ing” [3] is what gives rise to the purpose of this thesis. In this paper it is discussed that some
CRC polynomials perform well in the regular CRC systems, whereas in combination with an error-
correcting code they perform less optimal. Here a selection method is also given in finding an
optimal CRC polynomial by selecting those polynomials that generate the fewest amount of lower
weight code words. This however is a selection based on continuously dividing polynomials which
can take a long time. In this thesis the focus will generally be on the polynomials themselves and
specifically the amount of consecutive roots that they have to be able to say something about the
minimal weight before looking at the actual weight distribution and aims to find a method that
finds optimal CRC polynomials based on comparing the amount of consecutive roots.

1.3 Organization

In this section a general summary of the chapters is given of this thesis

Chapter 2: Prerequisites
In this chapter the back ground information on error-correcting codes is given and the set up is given

9

for the two CRC systems that will be evaluated later and the formulas that are used to calculated
the undetected error probability are given, which are later used to find the results.

Chapter 3: CRC systems with BCH codes
This chapter gives the main results that are found in this thesis. Two different BCH codes are
used to compare CRC polynomial performance and a method is given to explain why some CRC
polynomials perform better.

Chapter 4: Conclusions and Discussion
This chapter gives all the conclusions based on the results of this thesis and a discussion is done
with respect to future research.

10

Chapter 2

Prerequisites

In this chapter some basic concepts are explained before looking into the different kind of CRC
polynomials. In Section 2.1 we will give the assumptions on the channel that we will use throughout
this thesis to avoid any ambiguity. In Section 2.2 the relevant concepts of coding are given, followed
by the explanation in full detail of CRC encoding and decoding and the two different systems in
Section 2.3 and 2.4 and we will give the corresponding formulas for the probability of an undetected
error occurring.

2.1 Channel Assumptions

Before we can look into CRC polynomials the assumptions on the channel need to be clear to not
create any ambiguity or unclarity. First we assume all transferred messages to be binary words of
fixed length, so bits are only equal to 0’s or 1’s. We assume that no insertions or deletions are
created during transmission, that is no bits are deleted or inserted resulting in a different length of
code words. Data corruption can only occur through bit flipping which is the process of 0’s changing
in 1’s and vice versa. Throughout the thesis we use a binary symmetrical channel, which means
that these respective probabilities are equal. The probability of a bit flipping will be denoted by
p, this in turn means that 1 − p is the general probability of a bit not changing. This process of
bit flipping is what makes the process vulnerable to undetected errors, which is what we want to
prevent and therefore we need to reduce the probability of an undetected error occurring. This can
also be seen in Figure 2.1.

Figure 2.1: A symmetrical channel with probability p that a bit flips

We will also assume that these bit flips are independent on each other, i.e., the event that a bit
flips (and thus an error occurs) does not depend on the event that a neighbouring bit (or any other

11

bit) flips. It is a realistic process that these probabilities are not independent, because errors can
come in bursts, for example and can definitely cause significant data loss, as explained in [6]. The
problem of burst errors can be resolved with a process called interleaving, however that will be
outside the scope of this thesis.

2.2 Coding Theory

In this section we will first give an introduction on linear codes. Linear codes are used because they
have special linear algebra properties. Codes are sets of binary words that have a fixed length, in
particular cyclic codes, which are a special type of linear codes are used widely because there a
lot of properties that come from linear algebra that can be used to determine the error-correcting
performance of the code. There are many different kind of cyclic codes such as BCH codes, that
will also be used in this thesis.

2.2.1 Definition Linear Code

Let (F2)
n be the set of binary words of length n, i.e:

(F2)
n = {a = a0a1 · · · an−1 such that a0, . . . , an−1 ∈ {0, 1}}

A code C is a subset of (F2)
n. Note that the words from (F2)

n can equivalently be regarded as (row)
vectors of length n. This immediately gives rise to use linear algebra, therefore we first define linear
codes.

Let C ⊂ (F2)
n be a code. C is linear if all combinations of code words are also code words, i.e., a

linear code is contained under addition and multiplication with a scalar, with the scalar being either
a 0 or a 1 since we use a binary field. This immediately implies that all linear codes contain the
zero-vector, i.e., the word that has all bits equal to 0. Notice that the code words can equivalently
be represented as (row) vectors, thus we can regard a linear code as a linear vector space. Hence
we can find a basis for the code, that is, a set of linearly independent words (vectors) that span
the whole code. The amount of code words in a basis for C is given by the parameter k, which is
the dimension of the code. All codes have another parameter which is the minimal distance d. d is
such that d(x,y) ≥ d for all x,y ∈ C, where d(x,y) is equal to the amount of bits in which x and y
differ. The handy property of linear codes is that d is equal to the code word with minimal weight
of C, i.e., the code word that has the least amount of bits equal to 1. We write that C is a [n, k, d]
code with length n, dimension k and minimal distance d.

2.2.2 Polynomial Representation

In Section 2.2.1 we have given the defintion of a linear code. As stated, each binary word of length
n can be represented as a (row) vector of length n. An equivalent way of writing a code word
is by writing its polynomial representation. For a binary word c = c0c1 . . . cn−1 of length n, its
polynomial representation is given by

c(x) =

n−1∑
i=0

cix
i = c0 + c1x+ c2x

2 + · · ·+ cn−1x
n−1

We denote its degree by deg(c(x)) and note that deg(c(x)) ≤ n−1, since the coefficients c0, . . . , cn−1

can all be equal to either 0 or 1.

12

2.2.3 Polynomial code

Now that we have given the polynomial representation we can define a polynomial code. A poly-
nomial code is a special type of linear codes. Let g(x) be a polynomial. Suppose that C is a linear
code. Then C is called a polynomial code if for each code word c ∈ C, c(x) is divisible by g(x).
Suppose that g(x) has degree l. This means that for c ∈ C it holds that c(x) = a(x)g(x) for some
binary word a(x) for which deg(a(x)) < n− l. In other words, we can write any cyclic code C that
has g(x) as corresponding polynomial in the following way:

C = {a(x)g(x) | deg(a(x)) < n− l}

We call g(x) the generator polynomial of C, since it generates the codes.

2.2.4 Cyclic Codes

A cyclic code C is a linear code that is contained under cyclic shifts. That is, for all code words
c = c0c1 · · · cn−1 ∈ C, its cyclic shift π(c) = cn−1c0c1 · · · cn−2 ∈ C. The handy property is that a
cyclic code is generated by a generator polynomial g(x), such that g(x) divides xn − 1, or in other
words, cyclic codes are a special type of polynomial codes. This generator polynomial g(x) is used
to encode our messages. Suppose a transmitted message u of length k is sent. This message gets
encoded, using code C to a code word c of length n, by multiplying its polynomial representation
with the generator polynomial g(x). Therefore there is a redundancy of l = n − k bits. c is the
code word that gets sent over the channel, where errors can occur. The resulting word c̃, then gets
decoded over a decoding channel.

2.2.5 Decoding

The decoder that is used is a t-bounded-distance decoder, that works as followed and is described
in [3]. Given two words x and y, the Hamming Distance d(x,y) between x and y is defined as the
amount of bits in which x and y differ. Let d be the minimal distance between any two code words
in C. Suppose now that c ∈ C is the transmitted code word over the channel. The received word
c̃ might be unequal to c due to possible errors occurring. The word c̃ is then sent to a decoding
channel that is capable of correcting at most t = ⌊d−1

2 ⌋ errors. It finds a code word a ∈ C closest
to c̃ such that the Hamming Distance between a and c̃ is at most t. Therefore if at most t errors
occur, the decoding is successful. If however more than t errors occur, two things can happen:

• There is another code word a ∈ C within hamming distance less than t to c̃, and thus the
decoded message is other than c, since c and c̃ have hamming distance higher than t. Therefore
the decoding returns the wrong code word. This results in an undetected error.

• The received word c̃ is not a code word from C and there are no other code words within distance
t to c̃, therefore the channel is not able to decode the message, in which case resubmission is
requested, this results in a decoding failure.

In the first of these two cases there is an undetected error, since the channel finds a code word other
than c within t distance of the c̃, despite the fact that more than t errors occurred. Therefore the
message gets wrongfully decoded and thus the message is distorted. In the case of the decoding
failure re-submission is requested resulting in no problem since the error is still being detected.
Therefore it is highly important to be able to reduce the undetected error probability.

13

Figure 2.2: Undetected error occurring in a t-bounded-distance decoder

In Figure 2.2 the decoding system is visually described in the case that an undetected error occurs.
The larger circle represents (F2)

n, which is the full collection of binary code words of length n. The
middle of the smaller circles represent the code words of C. If the word c̃ is inside the smaller circle
corresponding to c, then at most t errors have occurred and the code word is successfully decoded.
If however c̃ is in a different smaller circle, as visualised in Figure 2.2, it means that more than t
errors have occurred and thus the decode result is a code word a and there is an undetected error.
Lastly if c̃ is outside of any smaller circle it means that it is in (F2)

n\C and thus also more than t
errors have occurred, but in this case there is no code word with distance t closest to c̃ and thus a
decode failure occurs and resubmission is requested.

2.3 CRC without error correcting codes

With the use of CRC polynomials in combination with an error-correcting code we wish to reduce
the probability of an undetected error occurring. But we have to be careful with our polynomial
choice since the performance of CRC polynomials can change respectively when combining the CRC
polynomials with an error-correcting code, as is already discussed in [3]. Before we introduce the
combination of error-correcting codes we will explain how CRC works when not combining with
an error-correcting code. We can view a CRC polynomial gCRC(x) as a generator polynomial that
generates a linear code CCRC, thus CCRC is a polynomial code.

2.3.1 CRC encoding

Suppose a = (am−1, am−2, . . . , a0) of is the message of m bits we want to send and that the degree
of gCRC(x) is l. Then a is encoded to a code word c ∈ CCRC of m+ l bits. This is done by appending
l bits, depending on a division. This is done by noting the following:

xla(x) ≡ r(x) mod gCRC(x)

14

for some remainder polynomial r(x), for which deg(r) < l. This remainder is found by dividing
xla(x) by gCRC(x), as the modular arithmetic implies. CRC works by calculating this remainder
polynomial r(x) and then appending the corresponding bits to the message a(x). In Figure 2.3 the
encoding system is visualised.

Figure 2.3: Encoding scheme for CRC codes

Before we introduce the decoding scheme we will first show that, this way of encoding the messages
is well-defined, that is: CCRC forms a polynomial code with generator polynomial gCRC(x).

Theorem 2.1. Let c be a CRC-word and let gCRC(x) be the corresponding CRC-polynomial with
degree l, then gCRC(x) generates a polynomial code CCRC.

Proof. We only need to show that gCRC(x) generates the code, by showing that each CRC-word is
indeed divisible by gCRC(x). Let a = (am−1, am−2, . . . , a0). Therefore, equivalently a(x) = a0+a1x+
a2x

2 + · · · + am−1x
m−1. Note that xla(x) ≡ r(x) mod gCRC(x), where r(x) = (rl−1, rl−2, . . . , r0).

Also note that c = (a, r), thus we can write, equivalently in polynomial representation:

c(x) = am−1x
m+l−1 + am−2x

m+l−2 + · · ·+ a0x
l + rl−1x

l−1 + rl−2x
l−2 + · · ·+ r0

= xla(x) + r(x)

But xla(x) + r(x) is divisible by gCRC(x) by definition of r(x), thus c is divisible by gCRC(x)

Therefore, gCRC(x) is indeed the generator polynomal of a cyclic code CCRC.

2.3.2 CRC decoding

CRC decoding is done solely by checking whether the received word is a CRC-word or not. If the
word is a CRC-word, the word is accepted and is the decoded word. The CRC word c gets sent
over the channel and the result is a word c̃. If c̃ is divisible by gCRC(x), the received word is a
CRC-word and is thus accepted as the decoded word. If however c̃(x) is not divisible by gCRC(x),
an error has occurred and thus a decoding failure occurs and resubmission is requested. If this is
not the case the message gets rejected and thus there is a decoding failure, as is visualized in Figure
2.4.

15

Figure 2.4: Decoding system for CRC codes

2.3.3 Undetected error probability

Remember that the probability that an individual bit flips equals p, as defined in Section 2.1. We
will now calculate the probability that an undetected error occurs for the CRC-system. Remem-
ber that an undetected occurs in the following case: First a message of m bits is encoded using
CRC-encoding and the resulting code word c of length m+ l bits is transmitted through a certain
channel. A word c̃ ̸= c is then received and thus an error has occurred. In the case of an undetected
error, c̃ is a different CRC code word and is wrongly accepted as the transmitted code word. Now,
let AgCRC

w denote the amount of code words of weight w in CCRC, that is the amount of the words
with weight w that are divisible by gCRC(x). A

gCRC
w are called the weight enumerators of CCRC. We

will now give the following theorem:

Theorem 2.2. Suppose the length of the message words is m. Let CCRC be the linear code generated
by gCRC(x), with deg(gCRC(x)) = l and let AgCRC

w be the weight enumerators of CCRC . Then, for a
transmitted code word, and channel error rate p, the probability that an undetected error, Pue occurs
is equal to:

Pue(p) =

m+l∑
w=1

AgCRC
w pw(1− p)m+l−w

Proof. We can assume W.L.O.G. that the transmitted code word is 0, which is the zero code word,
because CCRC is a linear code. Let c̃ be a CRC-word of weight w, that is: c̃ consists of w bits equal
to 1 and m + l − w bits equal to 0. The probability that 0 turns into c̃, is therefore equal to the
probability that w bits equal to 0 turn into bits equal to 1 and that the remaining m+ l − w bits,
do not flip. Thus

P (0 turns into c̃) = pw(1− p)m+l−w

Note that c̃ was an arbitrary code word of weight w and thus:

P (0 turns into a code word of weight w) = AgCRC
w pw(1− p)m+l−w (2.1)

Now we only need to sum 2.1 for all weights w and this gives the result.

2.4 CRC system with error-correcting codes

So far we have only introduced the encoding and decoding system for CRC systems without using
an error-correcting code. In this section we will explain how the CRC system works when combining

16

with an error-correcting code. The system works as follows.
Given a CRC polynomial gCRC(x), we can encode a message a to a CRC-word c. Denote the

length of c by k. We can then use a [n, k, d] cyclic code, denote C, to encode c of length k to a
new code word u of length n. After this, u is transmitted over the channel and ũ is received. A
t-bounded distance decoder is then used to decode the messages. If the t-bounded-distance decoder
returns a different code word u1, an undetected error has occurred, but the advantage of this system
is that now the message needs to be translated back to a message of k and therefore the resulting
word might not be divisible by gCRC, therefore still detecting the error and resubmission of the
message is asked.

2.4.1 Undetected error probability

Since we have now introduced an error-correcting code the probabilty that an undetected error
occurs is a little more tedious to calculate, since there is a t-bounded distance decoder involved.
Let gC(x) be the generator polynomial generating the polynomial code C. Now we note that C
consists of code words that can be found by multiplying gC(x) with a message word of length k,
which are not all necessarily CRC-words. As defined in [3] we denote AgCRC

w (C) as the amount of
code words in C of weight w that are the result of encoding a CRC-word using gC(x). These are
the code words that cause an undetected error, in other words: if the CRC-word of length k is en-
coded to c ∈ C and any other code word in C is received, an undetected error occurs. Thus we need
to calculate the probability that this happens. We give the following theorem of a result found by [3]:

Theorem 2.3. Let gCRC(x) be a CRC-polynomial that encodes messages to CRC words of length
k and let C be the [n, k, d] error-correcting code (d > 0) used to encode the CRC-words. Suppose a
t-bounded distance decoder is used to decode the received message, then:

Pue(C, t, p) =
n∑

w=1

AgCRC
w (C)

∑
t0,t1≥0
t0+t1≤t

(
w

t0

)(
n− w

t1

)
pw+t1−t0(1− p)n−w−t1+t0 (2.2)

Proof. W.L.O.G. we assume that 0 is transmitted, which is possible since C is a linear code. Suppose
that the channel causes errors and that c ∈ C, with weight w ≥ 1, is the decoded word which comes
from encoding a CRC-word. This means that an undetected error has occurred. Hence the received
word through the channel is a word c̃ which is closer to c than to 0. Notice that t is always strictly
smaller than d and thus that w∗ > t, where w∗ is the minimal weight of C , therefore d(0, c̃) ≥ w∗ > t
(∗). This is true, because the minimal weight w∗ of C is equal to d, since C is linear. In other words:
more than t errors have occurred. Suppose that c̃ is found by bit-flipping t0 1’s and t1 0’s of the
bits of c, such that t0 + t1 ≤ t. Then, by construction: d(c, c̃) = t0 + t1 ≤ t (∗∗). Thus, by (∗)
and (∗∗), c̃ is closer to c than to 0, and therefore the decoder returns c. As a consequence, the
probability that 0 turns into c̃ is:

P (0 turns into c̃) = pw−t0(1− p)t0pt1(1− p)n−w−t1

= pw−t0+t1(1− p)n−w−t1+t0 (2.3)

Indeed, c has weight w and c̃ is obtained by bit-flipping t0 (of w) 1’s and t1 (of n − w) 0’s, thus
c̃ consists of w − t0 1’s that are also 1’s in c and of t1 1’s that are 0’s in c and the remaining bits
are 0’s. Hence c̃ has weight w − t0 + t1, in other words: To obtain c̃ from 0, w − t0 + t1 bits need
to be flipped and the remaining n− w − t1 + t0 bits remain the same which gives result (2.3). An
example has been sketched in Figure 2.5

Now we need to count the amount of code words c̃ within distance t of c. Notice that we can
choose which of the w 1’s and which of the n − w 0’s to flip in order to get a code word c̃ within

17

distance t of c, thus we choose t0 out of w 1’s to flip and t1 out of n− w 0’s to flip. This gives us
the following result:

P (0 turns into a code word c̃ within distance t of c) =
∑

t0,t1≥0
t0+t1≤t

(
w

t0

)(
n− w

t1

)
pw+t1−t0(1−p)n−w−t1+t0

(2.4)
Notice that c was an arbitrarily chosen code word of weight w such that an undetected error occurs,
the amount of such code words is equal to AgCRC

w (C), this can then be done for any weight w and
this proves the result.

Figure 2.5: An example of the bit-flips that occur in case of an undetected error

Now that we have the formulas for the probability of an undetected error occurring we will give a
short overview of them to highlight the difference:

• For the system without an error-correcting code, i.e., the pure CRC system, Pue is given by:

Pue(p) =

k∑
w=1

AgCRC
w pw(1− p)k−w

• For the CRC system in combination with an error-correcting code, i.e. the coded CRC system,
Pue is given by:

Pue(C, t, p) =
n∑

w=1

AgCRC
w (C)

∑
t0,t1≥0
t0+t1≤t

(
w

t0

)(
n− w

t1

)
pw+t1−t0(1− p)n−w−t1+t0

18

Chapter 3

CRC systems with BCH codes

In this chapter we will divide our evaluation into a few parts. Firstly, in Section 3.1 the definition
of a BCH (Bose-Chaudhuri-Hocquenghem) code, which was first introduced in ”On a Class of Error
Correcting Binary Group” by R.C. Bose and D.K. Ray-Chadhuri [4] is given. Then, in Section 3.2
we will look at a first example of a BCH code. In Section 3.3 we will introduce CRC polynomials
that are known in literature to perform quite well and we will see how the BCH codes influences
the performance on those polynomials. Then in Section 3.4 we will do a weight analysis in which
we will look at the weight distributions of the coded system to see where good performance of CRC
polynomials in the coded system comes from. Lastly we will look at a second BCH code in Section
3.5 and do a similar weight analysis on the polynomials.

3.1 Definition BCH Code

The advantage of BCH codes is that we can control the minimal distance (its lower bound) of the
code by constructing the generator polynomial in a handy way. This will come in handy later when
we want to optimize the performance of the CRC polynomials.

Let n be the length of the binary, cyclic code that we will generate. Let δ > 0 be an integer,
which we will call the designed distance. Let β, β2, . . . , βδ−1 be such that β is a n-th primitive root
of unity, i.e., β satisfies βn = 1. Note that β ∈ F2m , where m is such that n satisfies n | 2m − 1.
Now, gBCH(x) is the generator polynomial equal to the product of the different minimal polynomials
of β, β2, · · · , βδ−1. Note that we emphasize the fact that gBCH(x) only consists of those minimal
polynomials that are different, because it is possible that some of them are equal. Equivalently, we
have that:

gBCH(x) = LCM
(
mβ(x),mβ2(x), . . . ,mβδ−1(x)

)
So we know that for any word w holds that:

gBCH(x) | w(x) ⇐⇒ mβ(x) | w(x) and mβ2(x) | w(x) . . . and mβδ−1(x) | w(x)
w(β) = 0 and w(β2) = 0 . . . and w(βδ−1) = 0 (3.1)

Note that (3.1) holds, because for any minimal polynomial mβ(x), it holds that mβ(β) = 0, thus
if mβ(x) | w(x), this implies that w(x) = q(x)mβ(x), for some function q and hence w(β) =
q(β)mβ(β) = 0. Now by (3.1) we note that w ∈ C if and only if:

wH = 0

19

with H satisfying

H =

1 1 1 · · · 1
β β2 β3 · · · βδ−1

β2 (β2)2 (β3)2 · · · (βδ−1)2

...
...

...
...

βn−1 (β2)n−1 (β3)n−1 · · · (βδ−1)n−1

 (3.2)

which we can rewrite to

H =

β0 (β0)2 (β0)3 · · · (β0)δ−1

β β2 β3 · · · βδ−1

β2 (β2)2 (β2)3 · · · (β2)δ−1

...
...

...
...

βn−1 (βn−1)2 (βn−1)3 · · · (βn−1)δ−1

 (3.3)

Now notice that we can take any δ − 1 pair of rows to get a matrix A of the form

A =

a1 (a1)

2 (a1)
3 · · · (a1)

δ−1

a2 (a2)
2 (a2)

3 · · · (a3)
δ−1

a3 (a3)
2 (a3)

3 · · · (a3)
δ−1

...
...

...
...

aδ−1 (aδ−1)
2 (aδ−1)

3 · · · (aδ−1)
δ−1

 (3.4)

Where ai ∈ {β0, β, β2, . . . , βn−1} for all i = 1, . . . , δ − 1 and ai ̸= aj , for i ̸= j. This is a square
matrix so we can calculate its determinant to find

det(A) = a1a2 · · · aδ−1

∣∣∣∣∣∣∣∣∣
1 a1 a21 · · · aδ−2

1

1 a2 a22 · · · aδ−2
2

...
...

...
...

1 aδ−1 a2δ−1 · · · aδ−2
δ−1

∣∣∣∣∣∣∣∣∣ (3.5)

= a1a2 · · · aδ−1

∏
1≤j≤i≤(δ−1)

(ai − aj) (3.6)

̸= 0 (3.7)

Note that the determinant in (3.5) is a Vandermonde matrix, which gives (3.6) (proof in [5]). Hence
each pair of δ − 1 rows is independent and we can conclude that d > δ − 1 or in other words d ≥ δ.

3.2 [31,21,5] BCH code

In [3] a great example is given where a collection of CRC polynomials are compared in the pure
system and in the coded system. The peculiar result is that a CRC polynomial that performs well
in the pure system, might not perform as good in the coded system. In the article the code used
is a BCH code with n = 31, the dimension, k = 21 and the designed distance δ = 5. Thus we
get a BCH code that has minimal distance d ≥ δ = 5 that is generated by a generator polynomial
consisting of the distinct minimal polynomials of β, β2, β3 and β4, where β31 = 1 and β is a primitve
n-th unity root from F32. Using the method described in Section 3.1 we get the following generator
polynomial:

20

gBCH(x) = x10 + x9 + x8 + x6 + x5 + x3 + 1 (3.8)

Note that 0 ≤ t ≤ ⌊d−1
2 ⌋, thus we can use a 2-bounded-distance decoder. By generating all the code

words we find that there exists a code word of weight w = 5 and therefore w∗ = 5. Note that if
c(x) = x20 + x19 + x17, then gBCH(x)c(x) = x17 + x19 + x24 + x25 + x30. The word c(x) is a message
word of 21 bits and gBCH(x)c(x) is a BCH code word of weight 5, so indeed w∗ = 5. This BCH
code is used in systems such as in paging protocols [7]. In [3] an example is illustrated of 6-bits
CRC polynomials, i.e., CRC polynomials that add 6 bits to message words. Here the polynomials
gCRC1

(x) = x6 + x2 + x + 1, gCRC2
(x) = x6 + x5 + x2 + x + 1, gCRC3

(x) = x6 + x4 + x3 + 1 and
gCRC4

(x) = x6+x5+x4+x3+x+1 are defined. In the pure system w∗
gCRC1

= w∗
gCRC3

= w∗
gCRC4

= 4 and

w∗
gCRC2

= 3. The article shows that A
gCRC1
w = A

gCRC4
w for all w, so that only gCRC3

(x) and gCRC4
(x)

have to be compared, since gCRC2
(x) performs worse due to a lower minimal weight . gCRC3

performs
optimally in the pure system since A

gCRC1

w∗ = 204 < 205 = A
gCRC4
w . Here gCRC3

(x) gives only a slight
improvement. However in the coded system the minimal weights are w∗

gCRC1
= w∗

gCRC2
= 6 and

w∗
gCRC3

= w∗
gCRC4

= 7, with A
gCRC4

w∗ (C) = 310 < 465 = A
gCRC3

w∗ (C), so gCRC4
(x) is optimal in the coded

system. The article showed that the respective performance of the CRC polynomials is different
when comparing the results in the pure system to those in the coded system. However, this is only
one example and gCRC3

(x) performs only slightly better than gCRC4
(x) in the pure system.

We want to find other CRC polynomials that show the same behaviour of CRC polynomials that
perform well in the pure system, but perform badly in the coded system, or the other way around.
In the next section we will give such an example.

3.3 CRC polynomials of degree 5

In this example we will examine the performance of CRC polynomials in both CRC systems, i.e., the
pure system and the coded sytem, for CRC polynomials of degree 5. These are CRC polynomials
that append 5 bits to the data. Since we use a [31, 21, 5] BCH code and CRC polynomials of
degree 5, the CRC polynomials must append to 16 bits of data, to get message words of length
k = 5 + 16 = 21 that can be used to be encoded into a BCH code word of length n = 31. As
discussed by Koopman in [8] a variety of choices of CRC polynomials can be made. We will look
at the polynomials that are denoted by 0x15, 0x12, 0x1e in the Koopman notation [9]. In Table
3.1 we give an overview of these polynomials and their corresponding notation and the name that
these polynomials have been given in literature. Note that their are often multiple names given to
certain polynomials, here the names are used that are given in [8].

Notation CRC Polynomial Name
0x15 gCRC1

(x) = x5 + x3 + x+ 1 CRC-5, (CCITT-5 [10])
0x12 gCRC2(x) = x5 + x2 + 1 CRC-USB-5
0x1e gCRC3(x) = x5 + x4 + x3 + x2 + 1 CRC-5F/3

Table 3.1: The polynomial representation of the CRC polynomials CRC-5, CRC-USB-5 and CRC-5F/3
together with their (Koopman) notation

In [8] it is discussed that the minimal distance of each of these CRC codes (in the pure system)
that are generated by the corresponding CRC polynomials varies by the amount of data bits the
CRC polynomials append to and by the polynomial that is used. CRC-USB-5 is a polynomial that
is mainly used in USB systems, to protect USB token packets [11]. According to [8], CRC-5 has
the largest corresponding minimal distance (when appending to data of up to 10 bits) and thus
usually this polynomial is chosen as optimal, since a higher minimum weight contributes less to

21

Pue than lower weights for small values of p. However we do note that our data consists of 16 bits
and therefore the minimal weight of the code generated by CRC-5 is lower and we predict that the
performance of this polynomials will be less optimal.

3.3.1 Undected error probability in the pure system

The minimum weights of the codes corresponding to the CRC polynomials in the pure system are
given by w∗

gCRC1
= 2, w∗

gCRC2
= 3 and w∗

gCRC3
= 3. Therefore either gCRC2

(x) or gCRC3
(x) performs

optimally. In Appendix A the weight distributions of these three CRC polynomials is given. Notice
that A

gCRC2

w∗ = 45 < 47 = A
gCRC3

w∗ , so gCRC2
(x) performs slightly better than gCRC3

(x). In Figure 3.1
the undetected error probability Pue is plotted against p for the three different CRC polynomials.
As can be seen, gCRC2

(x) indeed seems to perform the best and gCRC1
(x) is performing the worst.

Thus, as predicted, in the pure system when using these parameters for the data (16 bits of data),
CRC-5 does not perform well in the pure system and CRC-USB-5 performs the best.

Figure 3.1: Pue(p) for the three different CRC polynomials using the pure system

3.3.2 Undetected error probability for the coded system

Now if we combine these CRC polynomials with the BCH code generated by gBCH(x) = x10 +
x9 + x8 + x6 + x5 + x3 + 1, the weight distribution changes. The minimum weights are given by
w∗
gCRC1

= 6, w∗
gCRC2

= 5 and w∗
gCRC3

= 5. Thus the minimum weight of CRC-5 is now the highest
of the three. Therefore CRC-5, which is the only polynomial of these three with minimal weight
equal to 6, will perform optimally. Also note that A

gCRC2

w∗ (C) = A
gCRC3

w∗ (C) = 6 and A
gCRC2

3 (C) = 18 <
27 = A

gCRC3

4 (C), which can be seen in Appendix A. So gCRC4
(x) performs the worst of these three in

the coded system. For the undetected error probability we get the following results that are shown
in Figure 3.2. Notice that, indeed CRC-5 performs the best out of the three polynomials and the
best performing polynomial in the pure system, CRC-USB-5, is now performing worse in the coded
system. Thus the best option when choosing a CRC polynomial that appends 5 bits to 16 bits of

22

data, is CRC-USB-5 in the pure system and CRC-5 in the coded system when using the BCH code
generated by gBCH(x).

Figure 3.2: Pue(C, 2, p) for the three different CRC polynomials using the coded system

One way to see why these weights have improved is to look at the roots of the polynomials
gCRC1

(x)gBCH(x), gCRC2
(x)gBCH(x) and gCRC3

(x)gBCH(x), which will be explained in the next sec-
tion.

3.4 Weight Analysis

The first obvious thing to do is to see to where the CRC words map to in the resulting BCH code.
For each CRC code we can take the words of a fixed weight and look at the words they produce in
the coded system, to see whether there is a pattern visible. Unfortunately there does not seem to
be a very clear pattern in the code words. The results are shown in Appendix B.

For this weight analysis we will first note a few things. In the coded scheme any message word
a is first converted into a CRC word c by multiplying with a CRC polynomial gCRC(x), whereafter
the CRC word is converted into a BCH word u using the BCH generator polynomial gBCH(x).
Equivalently, we can directly convert a into u by multiplying with the product of the two generator
polynomials gCRC(x)gBCH(x). Thus when encoding we can multiply any message word a with g(x)
to get the same cyclic code. This gives rise to analyse the generator polynomial gCRC(x)gBCH(x).
For the three chosen CRC polynomials in the previous section we get the following polynomials:

g1(x) = gCRC1
(x)gBCH(x) = x15 + x14 + x12 + x11 + x10 + x9 + x8 + x7 + x6 + x4 + x+ 1

g1(x) = gCRC2
(x)gBCH(x) = x15 + x14 + x13 + x12 + x10 + x9 + x8 + x7 + x6 + x5 + x3 + x2 + 1

g1(x) = gCRC3
(x)gBCH(x) = x15 + x13 + x12 + x11 + x9 + x5 + x4 + x2 + 1

23

Now, as noted in Section 3.2, by construction β, β2, β3 and β4 are roots from F32. Where β is a
primitive n-th unity root. We can write F32 = {0, 1, β, β2, . . . , β30} = F2 [x] /(f(x)), where f(x) is
an irreducible polynomial of degree 5. Any irreducible polynomial of degree 5 can be chosen but in
this example we have chosen for x5 + x2 + 1. The table for F32 [12]can be found in Appendix C.

Now, using Table C.1 we can calculate g(βi) for i = 0, . . . , 30 for a generator polynomial g(x).
If g(βi) = 0, then βi is a root of g(x). We do this for the generator polynomials g1(x), g2(x) and
g3(x). The results are shown in Table 3.2. For comparison we have also shown the roots of gBCH(x)
and of gCRC1

(x), gCRC2
(x) and gCRC3

(x).

Polynomial Roots from F32

g1(x) 1, β, β2, β3, β4, β6, β8, β12, β16, β17, β24

g2(x) β, β2, β3, β4, β6, β8, β12, β16, β17, β24

g3(x) β, β2, β3, β4, β6, β8, β12, β16, β17, β24

gBCH(x) β, β2, β3, β4, β6, β8, β12, β16, β17, β24

gCRC1
(x) 1

gCRC2
(x) β1, β2, β4, β8, β16

gCRC3
(x) β3, β6, β12, β17, β24

Table 3.2: The roots from F32 for each generator polynomial. For g1(x), g2(x), g3(x) and gBCH(x) the
consecutive roots have been marked

The peculiar thing that can be seen from Table 3.2 is that g1(x) has the same roots as g2(x), g3(x)
and gBCH(x), except g1(x) also has 1 as root. This becomes immediately clear when you notice
that gCRC(x) also has 1 as root, which is a root that gBCH(x) does not have. Also notice that with
the extra root 1, g1(x) has now 5 consecutive powers of β as roots, whereas gBCH(x) has only 4.
Also notice that the other CRC polynomials do not have any roots different from gBCH(x), this is
the deciding factor for the minimum weights of the coded CRC systems. The following theorem is
taken from [3] and the proof is basically the same as the proof that any BCH code with designed
distance δ has minimal distance d ≥ δ, taken from [13].

Theorem 3.1. Let g(x) be a generator polynomial of a cyclic code C, with length n. Suppose that
g(x) has δ− 1 roots that are consecutive powers of β, i.e. βb, βb+1, · · · , βb+δ−2. Then the minimum
weight w∗ of the corresponding cyclic code satisfies w∗ ≥ δ.

Proof. We start by noting that βb, βb+1, · · · , βb+δ−2 are roots of g(x). So we know that:

LCM
(
mβb(x),mβb+1(x), . . . ,mβb+δ−2(x)

)
| g(x) (3.9)

Thus for any word w of length n it holds that w ∈ C ⇐⇒ w(βb) = 0 and w(βb+1) = 0 . . . and
w(βb+δ−2) = 0, or equivalently:

w ∈ C ⇐⇒ wH = 0

with

H =

1 1 1 · · · 1
βb βb+1 βb+2 · · · βb+δ−2

(βb)2 (βb+1)2 (βb+2)2 · · · (βb+δ−2)2

...
...

...
...

(βb)n−1 (βb+1)n−1 (βb+2)n−1 · · · (βb+δ−2)n−1

 (3.10)

24

which we can rewrite to:

H =

(β0)b (β0)b+1 (β0)b+2 · · · (β0)b+δ−2

βb βb+1 βb+2 · · · βb+δ−2

(β2)b (β2)b+1 (β2)b+2 · · · (β2)b+δ−2

...
...

...
...

(βn−1)b (βn−1)b+1 (βn−1)b+2 · · · (βn−1)b+δ−2

 (3.11)

Now notice that we can take any δ − 1 pair of rows to get a matrix A of the form

A =

ab1 ab+1

1 ab+2
1 · · · ab+δ−2

1

(a22)
b (a22)

b+1 (a22)
b+2 · · · (a22)

b+δ−2

...
...

...
...

(aδ−1
δ−1)

b (aδ−1
δ−1)

b+1 (aδ−1
δ−1)

b+2 · · · (aδ−1
δ−1)

b+δ−2

 (3.12)

Where ai ∈ {β0, β1, β2, . . . , βn−1} for all i = 1, . . . , δ − 1 and ai ̸= aj , for i ̸= j. This is a square
matrix so we can calculate its determinant to find

det(A) = (ab1a
b
2 · · · abδ−1)

∣∣∣∣∣∣∣∣∣∣∣

1 a1 a21 · · · aδ−2
1

1 a2 a22 · · · aδ−2
2

1 a3 a23 · · · aδ−2
3

...
...

...
...

1 aδ−1 a2δ−1 · · · aδ−2
δ−1

∣∣∣∣∣∣∣∣∣∣∣
(3.13)

Notice that the determinant in (3.13) is exactly the same as the determinant in (3.5), and thus we
conclude that det(A) ̸= 0. Since we had chosen an arbitrary subset of rows, we conclude that all
pairs of δ − 1 rows of H are independent and therefore minimal distance d of C satisfies d ≥ δ and
since d = w∗, the result is proven.

Now we can immediately conclude by Theorem 3.1 that w∗
CRC1

≥ 6, w∗
CRC2

≥ 5 and w∗
CRC3

≥ 5 in the
coded system. Note that the fact that gCRC1

(x) has an even amount of terms, is the determining
factor that makes the lower bound for the minimum weight better compared to the other CRC
polynomials. This is indeed the case since an even amount of terms immediately implies that
gCRC1

(1) = 0, and thus also g1(1) = 0. The other two polynomials have an odd amount of terms,
wherefore these polynomials have one less consecutive root compared to gCRC1

(1) which explains
the lower bound. Thus when combining with the BCH code, the best strategy is to choose a CRC
polynomial that has the most amount of roots different to the roots of the BCH code such that
they form a larger set of consecutive roots. Thus, to optimize we can look at all the different CRC
polynomials of 5 bits and examine their roots. In our case we need to find CRC polynomials that
have roots consecutive to β, β2, β3 and β4. Therefore we will look at the roots (from F32) of all the
possible CRC polynomials of 5 bits, to find the one having the best possible lower bound on the
minimal weight. These roots are found by plugging all powers of β in the generator polynomial and
if it equals zero, that power of beta is a root. Below I have made a list of CRC polynomials and
the powers of beta that are roots of the CRC polynomials .

25

Polynomial Definition Roots from F32 w∗ ≥
gCRC1

(x) x5 + x3 + x+ 1 1 6
gCRC2

(x) x5 + x2 + 1 β1, β2, β4, β8, β16 5
gCRC3

(x) x5 + x4 + x3 + x2 + 1 β3, β6, β12, β17, β24 5
gCRC4

(x) x5 + x+ 1 None 5
gCRC5(x) x5 + x4 + x3 + 1 1 6
gCRC6(x) x5 + x3 + x2 + 1 1 6
gCRC7

(x) x5 + x4 + x+ 1 1 6
gCRC8

(x) x5 + x4 + x3 + x2 + x+ 1 1 6
gCRC9

(x) x5 + x2 + x+ 1 1 6
gCRC10

(x) x5 + x4 + x2 + 1 1 6
gCRC11(x) x5 + x3 + x2 + x+ 1 β7, β14, β19, β25, β28 5
gCRC12(x) x5 + x4 + x2 + x+ 1 β5, β9, β10, β18, β20 7
gCRC13

(x) x5 + x3 + 1 β15, β23, β27, β29, β30 5
gCRC14

(x) x5 + x4 + 1 None 5
gCRC15

(x) x5 + 1 1 6
gCRC16

(x) x5 + x4 + x3 + x+ 1 β11, β13, β21, β22, β26 5

Table 3.3: The roots from F32 for each CRC polynomial and a lower bound for the minimal weight in the
coded system with gBCH(x) according to Theorem 3.1

As can be seen from Table 3.3 gCRC12
(x) has the best lower bound on the minimal weight in the

coded CRC scheme. If we look at the weight distribution, we see that indeed gCRC12
(x) has the

highest minimal weight with w∗
CRC12

= 7. See also Table 3.4, where the lower bound is compared to
the actual value of w∗. Notice that gCRC16

(x) also has minimal weight w∗ = 7. However gCRC16
(x)

has exactly the same weight distribution as gCRC12
(x) (see Appendix A), both in the pure and in

the coded system and will thus generate the same results in terms of undetected error as gCRC12
(x).

Thus one can interchange both polynomials.

Polynomial Lower bound on w∗ Actual w∗

gCRC1
(x) 6 6

gCRC2
(x) 5 5

gCRC3
(x) 5 5

gCRC4(x) 5 6
gCRC5(x) 6 6
gCRC6(x) 6 6
gCRC7

(x) 6 6
gCRC8

(x) 6 6
gCRC9

(x) 6 6
gCRC10(x) 6 6
gCRC11(x) 5 6
gCRC12

(x) 7 7
gCRC13

(x) 5 5
gCRC14

(x) 5 5
gCRC15

(x) 6 5
gCRC16(x) 5 7

Table 3.4: A lower bound on w∗ provided by Theorem 3.1 and the actual value of w∗

We also note that gCRC12
(x) has w∗

CRC12
= 3 in the pure system and therefore will probably have

similar performance compared to gCRC1
(x), which can also be seen in Appendix A. Another thing

that can be noticed from Table 3.3 is that the square of each root is again a root for each of the
polynomials. This is no coincidence, which will be shown in the following lemma:

26

Lemma 3.1.1. If β is a root of a polynomial g(x), then β2 is also a root.

Proof. Suppose that β is a root of g(x). Suppose that g(x) has degree k. Write

g(x) = a0 + a1x+ a2x
2 + a3 + x3 · · ·+ ak−1x

k−1

Then:

g(β2) = a0 + a1β
2 + a2(β

2)2 + a3(β
2)3 + · · ·+ ak−1(β

2)k−1

= a20 + a21β
2 + a22(β

2)2 + a23(β
3)2 + · · ·+ a2k−1(β

k−1)2

= a20 + (a1β)
2 + (a2β

2)2 + (a3β
3)2 + · · ·+ (ak−1β

k−1)2

Where we used that ap = a (mod p) for any prime number p, by Fermat’s Little Theorem, with
p = 2. Now note that (a + b)2 = a2 + 2ab + b2 = a2 + b2 for any a, b when calculating binary. By
induction it can easily be proven that (a0+ a1+ · · ·+ an−1)

2 = a20+ a21+ · · ·+ a2n−1 for any n, when
calculating binary. Therefore:

g(β2) = (a0 + a1β
1 + a2β

2 + a3β
3 + · · ·+ ak−1β

k−1)2

= (g(β))2 = 0

Which proves the result.

This is a result that we will use later when we introduce a different BCH code.
Now that we have found that gCRC12

(x) has the highest minimal weight, we can compare the
results of gCRC12

(x) to those of gCRC1
(x), gCRC2

(x) and gCRC3
(x) with respect to the undetected

error both in the pure and in the coded system. The results are shown in Figure 3.3.

Figure 3.3: The undetected error Pue against the channel error rate p for gCRC1
(x), gCRC2

(x) and gCRC3
(x)

in the pure system.

Notice that in the pure system gCRC12
(x) does not necessarily improve on the other three CRC

polynomials. However if we look at the curve of the undetected error in the coded system we get
different results, which is expected since the minimal weight produced by gCRC12

(x) is higher than
the other three. The results are shown in Figure 3.4.

27

Figure 3.4: The undetected error Pue against the channel error rate p for gCRC1(x), gCRC2(x) and gCRC3(x)
in the coded system.

As can be seen from Figure 3.4 gCRC12
(x) does seem to improve on the polynomial gCRC1

(x), but
only for values of p between 0.0 and approximately 0.16. Finally to make sure there are no better
performing CRC polynomials we will compare all 16 CRC polynomials to each other. The results
for the pure system can be seen in Figure 3.5. Note that the plot for some of the CRC polynomials
is not visible, this is due to the fact that for all w holds that A

gCRC1
w = A

gCRC10
w , A

gCRC2
w = A

gCRC13
w ,

A
gCRC3
w = A

gCRC11
w , A

gCRC4
w = A

gCRC14
w , A

gCRC5
w = A

gCRC9
w , A

gCRC12
w = A

gCRC16
w . Therefore there are only 9

distinct weight distributions for these CRC polynomials, so the plot of 7 of these CRC polynomials
is not visibile, but that is no problem since one can look at the plot of their respective equivalent
CRC polynomial, i.e., the one that generates the same weight distributions. One thing that can be
seen from Figure 3.5 is that the plot of some of these CRC polynomials is not increasing. We note

that for p = 1
2 , Pue =

k∑
w=1

AgCRC
w (12)

k. Also note that
k∑

w=1
AgCRC

w = 2m − 1, where m is the amount of

data bits that the CRC polynomial appends to. So Pue(
1
2) =

2m−1
2k . So for p = 1

2 , m data bits, the
undetected error probability is the same for any CRC polynomial of degree l = k −m. Therefore,
as can also be seen from Figure 3.4, if p → 1

2 , Pue → 216−1
221 ≈ 0.031. Note that lim

p→ 1

2

Pue(p) = Pue(
1
2),

because Pue(p) is a continuous function. This at least gives an explanation to the fact that for some

of these plots the value for Pue decreases whenever Pue >
216−1
221 , for some 0 < p < 1

2 .

If you look closely, it can be seen that gCRC14
(x) performs the best for the pure system, together

with gCRC4
(x), because they have the same weight distribution in the pure system as can be seen

in Appendix A. This is due to the fact that gCRC14
(x) has the highest minimal weight w∗ = 3 and

the least amount of code words of minimal weight (A
gCRC14

3 = 42). Therefore it is advised to choose
either gCRC14

(x) or gCRC4
(x) when using the pure system.

28

Figure 3.5: The undetected error Pue against the channel error rate p for the gCRC1(x), . . . , gCRC16(x) CRC
polynomials in the pure system.

Figure 3.6: The undetected error Pue against the channel error rate p for the gCRC1(x), . . . , gCRC16(x) CRC
polynomials in the coded system.

In Figure 3.6 the performance of gCRC1
(x), . . . gCRC16

(x) is plotted together for the coded system.
Notice that gCRC16

(x) performs the best, and therefore also gCRC12
(x) since they have the same

weight distribution in both systems, however only for small values of p. For larger values (starting
from somewhere between 0.1 and 0.2) of p, gCRC12

(x) seems to perform better. Therefore it is
advised to choose gCRC16

(x) or gCRC11
(x) for small values of p and gCRC11

(x) for larger values of
p when using the coded system. Thus, indeed with conditions on the value for p we can conclude
that Theorem 3.1 can provide a method in finding the optimal CRC polynomial for the coded
system. Also note that in the coded system Pue(p) decreases for p high enough, for some CRC

polynomials. In the coded system Pue(C, t, 12) = 2m−1
2n

t∑
w=0

(
n
w

)
, as found in [3], for each CRC

polynomial that appends l = k − m to m bits of data in combination with an [n, k, d] code. So

29

lim
p→ 1

2

Pue(C, t, p) = 2m−1
2n

t∑
w=0

(
n
w

)
, which explains why Pue(C, t, p) has to decrease for p high enough,

whenever Pue(C, t, p) > 2m−1
2n

t∑
w=0

(
n
w

)
for some 0 < p < 1

2 .

3.5 [31,16,7] BCH code

In this section we will look at a second BCH code, a [31,16,7] BCH code, to see whether the results
also apply to other codes. In theory we could look at any cyclic error-correcting code but the
handy property of BCH codes is that they are constructed by taking the minimal polynomials of
consecutive roots. In this section we will look at a BCH code with length n = 31, dimension k = 16
and designed distance δ = 7. This implies that we have a generator polynomial that is equal to the
product of all the distinct minimal polynomials of the β, β2, β3, β4, β5 and β6, where β31 = 1, and
β is a primitive n-th unity root ∈ F32. Using the method described in Section 3.1 and [12]we get
the following generator polynomial:

gBCH2
(x) = x15 + x11 + x10 + x9 + x8 + x7 + x5 + x3 + x2 + x+ 1

Notice that δ = 7 and thus d ≥ δ = 7 hence w∗ ≥ 7. Also, since 0 ≤ t ≤ ⌊d−1
2 ⌋, we can use a

3-bounded distance decoder.
If we let β to be the primitive element of F32

∼= F2 [x] /(x
5+x2+1), i.e., β satisfies β5 = β2+1, we

find that β, β2, β3, β4, β5, β6 , β8, β9, β10, β12, β13, β16, β17, β18, β20 and β24 are the roots from F32

of gBCH2
(x). Thus by Theorem 3.1 we confirm that indeed w∗

BCH2
≥ 7, because it has 6 consecutive

roots from F32. This gives rise to search for a CRC polynomial gCRC(x) that has β7 as a root,
because in that case the polynomial gCRC(x)gBCH2

(x) will have 10 consecutive roots (β, β2, . . . , β10)
thus implying, by Theorem 3.1, that the minimum weight in the coded system is at least 11. From
Table 3.3, we see that gCRC11

(x) is the only CRC polynomial (of 5 bits) that has β7 as root, therefore
we immediately know that combining gCRC11

(x) with gBCH2
(x) will give a coded CRC system with

minimal weight w∗ ≥ 11. If we find polynomials that have β7 and β11 our code will do even better,
since the minimal weight w∗ in the coded system will be at least 14.

Note that using Lemma 3.1.1 we see that any polynomial that has β7 as root, also has β14, β19, β25

and β28 as root. And any polynomial that has β11 as roots, also has β13, β21, β22 and β26 as roots.
Hence we know that the CRC polynomial has to be at least of degree 10 in order to have both β7

and β11 as roots. Notice that β14 is also the root of such polynomials, which is also consecutive to
β1, . . . , β13, which implies that the minimal weight of the coded system of such polynomials is at
least 15. Therefore we will look at CRC polynomials of degree 10 to see whether there any of such
CRC polynomials.

The CRC polynomial gCRC(x) = x10 + x9 + x4 + x3 + 1 is the only CRC polynomial of 10 bits
(which has the term 1) that has β7 and β11 as roots and it generates a code that in the coded
system has minimal weight w∗ = 15. Interestingly there are two other polynomials of 10 bits that
have the same weight distribution as gCRC(x) and thus have the same undetected error probability
for all values of p. One can therefore choose any of these polynomials in the coded system. To
give a comparison in terms of undetected error we will look at the plot of the undetected error of
gCRC(x) compared to that of the polynomials 0x29b, 0x28e and 0x2b9 which are reported as
good polynomials in the pure system in [8].

30

Notation CRC Polynomial Name
0x29b gCRC1

(x) = x10 + x8 + x5 + x4 + x2 + x+ 1 CRC-10F/7)
0x28e gCRC2

(x) = x10 + x8 + x4 + x3 + x2 + 1 CRC-10/6sub8
0x2b9 gCRC3

(x) = x10 + x8 + x6 + x5 + x4 + x+ 1 CRC-10F/5
- gCRC4

(x) = x10 + x9 + x4 + x3 + 1 -

Table 3.5: The polynomial representation of the CRC polynomials 0x29b, 0x28e, 0x2b9 and gCRC4(x)

As can be seen in the pure system, in Figure 3.7 depending on the value of p, the best CRC
polynomial to choose is gCRC2

(x) for lower values of p and gCRC3
(x) for higher values of p. The

minimum weights in the pure system are w∗
gCRC1

= 2, w∗
gCRC2

= 6, w∗
gCRC3

= 5 and w∗
gCRC4

= 5 (see

Appendix A).

Figure 3.7: The undetected error probability Pue against the channel error rate p for the
gCRC1(x), gCRC2(x), gCRC3(x) and gCRC4(x)

Instead, in the coded system, which can be seen in Figure 3.8, it is clear that gCRC4
(x) performs the

best for all values of p. We note that the minimum weights in the coded system are w∗
gCRC1

= 11,

w∗
gCRC2

= 12, w∗
gCRC3

= 11 and w∗
gCRC4

= 15 (see Appendix A).

Figure 3.8: The undetected error probability Pue against the channel error rate p for the
gCRC1

(x), gCRC2
(x), gCRC3

(x) and gCRC4
(x)

31

So also in this example we have found a CRC polynomial that performs very well in the coded
system compared to other CRC polynomials that usually perform well in the pure system, but
perform less good in the coded system.

32

Chapter 4

Conclusion and Discussion

In this chapter conclusions are given based on the results found in Chapter 3 and a discussion is
given in terms of future research.

4.1 Conclusion

In this thesis the goal was to find a method in finding optimal CRC polynomials, in terms of
undetected error probability in the coded system, i.e., together with BCH codes and how they
relate to their performance in the pure system, based on the results that were found in [3] by K.
A. Abdel-Ghaffar. In Section 3.3 it was discussed that CRC polynomials of degree 5 that tend to
perform well in the pure system might not perform well in the coded system, i.e. in combination with
a BCH code, and vice versa. In Section 3.4 a method was created to find good CRC polynomials in
combination with BCH codes by looking at the amount of consecutive roots of these polynomials
and comparing them to those of the BCH code. CRC polynomials that have many roots that are
consecutive to those of the BCH generator polynomial tend to perform better since they generate
codes that have higher minimum weight. For the coded system, one can select the best CRC
polynomial by looking at all the consecutive roots of the product of the BCH generator polynomial
and the CRC polynomial, since it will give a lower bound on the minimum weight. One does need
to be careful since in some cases the actual minimal weight of a coded CRC system, might be higher
than the lower bound that Theorem 3.1 gives, as was seen in Section 3.4 where gCRC16

(x) had a
lower bound of 5 on the minimal weight, whereas the actual minimal weight is w∗ = 7, therefore
besides looking at the amount of consecutive roots it is strongly advised to generate the weight
distributions of the different CRC polynomials in the coded system, since the lower bound on the
weight is not always a tight bound.

4.2 Discussion

Based on the conclusion given in the previous section, the actual minimal weight of a code is not
always equal to the lower bound that was given by Theorem 3.1, therefore further research into
the weight distributions is recommended, one might focus on trying to find good upper bounds to
limit the search of CRC polynomials and focus on the ones that have tight and high bounds, or
find special conditions in which CRC polynomials have minimal weight equal to the lower bound
provided by Theorem 3.1. As noted in 3.4, CRC polynomials which have the best minimal weight
in the coded system might also perform less optimal when increasing the value of p, future research
is advised to look into the influence of specific weights, or weight amounts on performance of a CRC
polynomial in terms of undetected error probability in combination with the channel error rate

33

p. Some CRC polynomials have an undetected error probability function that decreases when the
channel error rate is high enough, further research needs to be done to give an explanation for when
the function behaves in this way, because it might also be useful in finding a good CRC polynomil.
This thesis mainly focused on BCH codes, given their handy properties such as having a generator
consisting of products of minimal polynomials, which immediately gives us control on the amount
of consecutive roots and consequently the minimal distance of the code. However it is advised that
future research be done on the CRC systems in combination with other error correcting codes such
as the Golay code or Reed-Muller codes [14], given that the minimal distance of these codes is
known and since these codes have other handy properties that might be of use when combining
with CRC polynomials.

In this thesis a method was given to try and find optimal CRC polynomials for CRC systems in
combination with error-correcting codes, some improvements have definitely been made based on
this method since it selects codes that have higher lower bounds on the minimal weight, however
more research needs to be done to improve these methods.

34

References

[1] M. V. Patil, S. Pawar, and Z. Saquib, (2020), Coding techniques for 5G networks:
A Review. 2020 3rd International Conference on Communication System, Computing
and IT Applications (CSCITA).

[2] Goodin, D. (2021, March 4). Bitflips when PCs try to reach windows.com: What
could possibly go wrong? Ars Technica. https://arstechnica.com/gadgets/2021/
03/windows-com-bitsquatting-hack-can-wreak-unknown-havoc-on-pcs/

[3] K. A. Abdel-Ghaffar, “CRC in coded schemes with bounded-distance decoding (2023),”
2023 IEEE Wireless Communications and Networking Conference (WCNC).

[4] Bose, R.C., Ray-Chaudhuri, D.K. (March 1960), ”On A Class of Error Correcting
Binary Group Codes”, Information and Control

[5] Hughes, T. (2020, August 10). The Vandermonde Determinant, A Novel Proof.
Towards Data Science. https://towardsdatascience.com/the-vandermonde-

determinant-a-novel-proof-851d107bd728

[6] Veloce. (2023). What Is a Burst Error? Veloce Network. https://www.

velocenetwork.com/tech/what-is-a-burst-error/#Impact_of_Burst_Errors_

on_Data_Transmission_and_Storage

[7] Hickerson, A. (n.d.). The POCSAG paging protocol. Raveon. https://www.raveon.
com/pdfiles/AN142(POCSAG).pdf

[8] Koopman, P. (2018). Best CRC Polynomials. https://users.ece.cmu.edu/

~koopman/crc/

[9] Koopman, P. (2010) What’s the best CRC polynomial to use? Better Embedded System
SW https://betterembsw.blogspot.com/

[10] Baicheva, T. (2008) Determination of the Best CRC Codes with up to 10-Bit Redun-
dancy. IEEE Transactions on Communications

[11] Cyclic redundancy checks in USB (n.d.) USB Retrieved May 31, 2023 from https:

//www.usb.org/sites/default/files/crcdes.pdf

[12] Soukthavy, S. (n.d.) Binary BCH (31,16,7) linear cyclic code work out. https://
souktha.github.io/misc/bch31_16_7/

[13] Reed, I.S., Chen, X. (1999). BCH Codes. In: Error-Control Coding for Data Networks.
The Springer International Series in Engineering and Computer Science, vol 508. 189-
231 Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5005-1_5

35

https://arstechnica.com/gadgets/2021/03/windows-com-bitsquatting-hack-can-wreak-unknown-havoc-on-pcs/
https://arstechnica.com/gadgets/2021/03/windows-com-bitsquatting-hack-can-wreak-unknown-havoc-on-pcs/
https://towardsdatascience.com/the-vandermonde-determinant-a-novel-proof-851d107bd728
https://towardsdatascience.com/the-vandermonde-determinant-a-novel-proof-851d107bd728
https://www.velocenetwork.com/tech/what-is-a-burst-error/#Impact_of_Burst_Errors_on_Data_Transmission_and_Storage
https://www.velocenetwork.com/tech/what-is-a-burst-error/#Impact_of_Burst_Errors_on_Data_Transmission_and_Storage
https://www.velocenetwork.com/tech/what-is-a-burst-error/#Impact_of_Burst_Errors_on_Data_Transmission_and_Storage
https://www.raveon.com/pdfiles/AN142(POCSAG).pdf
https://www.raveon.com/pdfiles/AN142(POCSAG).pdf
https://users.ece.cmu.edu/~koopman/crc/
https://users.ece.cmu.edu/~koopman/crc/
https://betterembsw.blogspot.com/
https://www.usb.org/sites/default/files/crcdes.pdf
https://www.usb.org/sites/default/files/crcdes.pdf
https://souktha.github.io/misc/bch31_16_7/
https://souktha.github.io/misc/bch31_16_7/
https://doi.org/10.1007/978-1-4615-5005-1_5

[14] D. E. Muller, (September 1954) Application of Boolean algebra to switching
circuit design and to error detection, Transactions of the I.R.E. Professional
Group on Electronic Computers, vol. EC-3, no. 3, pp. 6-12, Sept. 1954, doi:
10.1109/IREPGELC.1954.6499441.

36

Appendix A

Weight Distributions

A.1 [31,21,5] BCH code

In this Section we will look at the weight distributions for the CRC polynomials of degree 5 in the
pure system and together with the [31,21,5] BCH code. In Section A.1.1 the weight distributions
are given for the CRC polynomials in the pure system, i.e., the CRC polynomials of degree 5 that
append to 16 bits of data. In Section A.1.2 the weight distributions are given when combining these
CRC polynomials with the [31,21,5] BCH code.

A.1.1 Pure system

w A
gCRC1
w A

gCRC2
w A

gCRC3
w A

gCRC4
w A

gCRC5
w A

gCRC6
w A

gCRC7
w A

gCRC8
w

1 0 0 0 0 0 0 0 0
2 6 0 0 0 7 9 18 27
3 0 45 47 42 0 0 0 0
4 397 205 205 210 388 384 408 300
5 0 632 616 651 0 0 0 0
6 3352 1672 1672 1638 3388 3360 3196 3492
7 0 3620 3676 3570 0 0 0 0
8 12754 6370 6370 6468 12670 12810 12978 12774
9 0 9240 9128 9310 0 0 0 0
10 22036 11032 11032 10878 22162 21882 22032 21762
11 0 10934 11074 10878 0 0 0 0
12 18354 9170 9170 9310 18228 18536 18192 18668
13 0 6440 6328 6468 0 0 0 0
14 7288 3640 3640 3570 7372 7176 7332 7140
15 0 1652 1708 1638 0 0 0 0
16 1261 637 637 651 1225 1293 1317 1281
17 0 200 184 210 0 0 0 0
18 86 40 40 42 95 85 62 91
19 0 5 7 0 0 0 0 0
20 1 1 1 0 0 0 0 0
21 0 0 0 1 0 0 0 0

Table A.1: The weight distributions of the pure CRC system for the first eight CRC polynomials

37

w A
gCRC9
w A

gCRC10
w A

gCRC11
w A

gCRC12
w A

gCRC13
w A

gCRC14
w A

gCRC15
w A

gCRC16
w

1 0 0 0 0 0 0 0 0
2 7 6 0 0 0 0 34 0
3 0 0 47 47 45 42 0 47
4 388 397 205 204 205 210 465 204
5 0 0 616 616 632 651 0 616
6 3388 3352 1672 1680 1672 1638 3256 1680
7 0 0 3676 3676 3620 3570 0 3676
8 12670 12754 6370 6342 6370 6468 12194 6342
9 0 0 9128 9128 9240 9310 0 9128
10 22162 22036 11032 11088 11032 10878 22956 11088
11 0 0 11074 11074 10934 10878 0 11074
12 18228 18354 9170 9100 9170 9310 18250 9100
13 0 0 6328 6328 6440 6468 0 6328
14 7372 7288 3640 3696 3640 3570 6904 3696
15 0 0 1708 1708 1652 1638 0 1708
16 1225 1261 637 609 637 651 1341 609
17 0 0 184 184 200 210 0 184
18 95 86 40 48 40 42 130 48
19 0 0 7 7 5 0 0 7
20 0 1 1 0 1 0 5 0
21 0 0 0 0 0 1 0 0

Table A.2: The weight distributions of the pure CRC system for the last eight CRC polynomials

A.1.2 Coded scheme

w A
gCRC1
w (C) A

gCRC2
w (C) A

gCRC3
w (C) A

gCRC4
w (C) A

gCRC5
w (C) A

gCRC6
w (C) A

gCRC7
w (C) A

gCRC8
w (C)

1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0
5 0 6 6 0 0 0 0 0
6 29 18 27 23 53 57 66 46
7 0 85 67 95 0 0 0 0
8 543 233 199 233 477 450 474 478
9 0 591 655 504 0 0 0 0
10 2553 1340 1387 1325 2599 2646 2501 2621
11 0 2640 2592 2628 0 0 0 0
12 8944 4496 4464 4452 8936 8944 9048 8968
13 0 6164 6084 6100 0 0 0 0
14 15706 7724 7734 7834 15714 15626 15820 15636
15 0 9426 9566 9498 0 0 0 0
16 18791 9467 9495 9471 18859 18917 18653 18805
17 0 7790 7758 7830 0 0 0 0
18 12282 6192 6126 6062 12158 12180 12186 12282
19 0 4504 4440 4420 0 0 0 0
20 5344 2608 2656 2668 5368 5336 5456 5376
21 0 1294 1342 1316 0 0 0 0
22 1161 594 591 623 1209 1221 1162 1142
23 0 241 231 255 0 0 0 0
24 169 91 81 71 151 144 160 164
25 0 27 21 21 0 0 0 0
26 13 7 5 5 11 14 9 17
27 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0

Table A.3: The weight distributions of the coded CRC system for the first eight CRC polynomials

w A
gCRC9
w (C) A

gCRC10
w (C) A

gCRC11
w (C) A

gCRC12
w (C) A

gCRC13
w (C) A

gCRC14
w (C) A

gCRC15
w (C) A

gCRC16
w (C)

1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0
5 0 0 0 0 31 9 0 0
6 49 39 31 0 0 11 42 0
7 0 0 0 155 0 72 0 155
8 477 492 310 465 310 247 507 465
9 0 0 775 0 620 597 0 0
10 2619 2658 1116 0 1271 1365 2552 0
11 0 0 2852 5208 2852 2684 0 5208
12 8936 8864 4340 8680 4340 4412 9040 8680
13 0 0 5580 0 5890 6094 0 0
14 15674 15638 8370 0 8060 7770 15596 0
15 0 0 9393 18259 9393 9436 0 18259
16 18859 18969 9393 18259 9393 9523 18815 18259
17 0 0 8370 0 8060 7838 0 0
18 12198 12188 5580 0 5890 6118 12328 0
19 0 0 4340 8680 4340 4468 0 0
20 5368 5304 2852 5208 2852 2628 5280 5208
21 0 0 1116 0 1271 1305 0 0
22 1189 1211 775 0 620 603 1210 0
23 0 0 310 465 310 236 0 465
24 151 162 0 155 0 85 149 155
25 0 0 31 0 0 29 0 0
26 15 10 0 0 31 5 16 0
27 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0
31 0 0 1 0 1 0 0 1

Table A.4: The weight distributions of the coded CRC system for the last eight CRC polynomials

A.2 [31,16,7] BCH code

In this section the weight distributions are given of the polynomials , 0x29b, 0x28e and 0x2b9,
gCRC4

(x) denoted respectively by gCRC1
(x), gCRC2

(x), gCRC3
(x) and gCRC4

(x), in the pure system
and the coded system with the [31,16,7] BCH code generated by gBCH2

(x) as discussed in Section 3.5.
In Section A.2.1 the weight distributions are given for these CRC polynomials in the pure system.
In Section A.2.2 the weight distributions are given for these CRC polynomials in combination with
the [31,16,7] code.

A.2.1 Pure scheme

w A
gCRC1
w A

gCRC2
w A

gCRC3
w A

gCRC
w

2 1 0 0 0
3 0 0 0 0
4 0 0 0 0
5 0 0 4 7
6 0 21 6 10
7 22 0 13 11
8 23 22 17 9
9 8 0 11 7
10 7 15 6 10
11 0 0 3 5
12 0 5 2 2
13 0 0 1 2
14 0 0 0 0
15 2 0 0 0

Table A.5: The weight distributions of the pure CRC system for gCRC1
(x),gCRC2

(x), gCRC3
(x) and gCRC4

(x)

A.2.2 Coded scheme

w A
gCRC1
w (C) A

gCRC2
w (C) A

gCRC3
w (C) A

gCRC4
w (C)

2 0 0 0 0
3 0 0 0 0
4 0 0 0 0
5 0 0 0 0
6 0 0 0 0
7 0 0 0 0
8 0 0 0 0
9 0 0 0 0
10 0 0 0 0
11 4 0 8 0
12 8 11 4 0
13 0 0 0 0
14 0 0 0 0
15 20 0 12 31
16 16 45 23 31
17 0 0 0 0
18 0 0 0 0
19 8 0 12 0
20 6 7 4 0
21 0 0 0 0
22 0 0 0 0
23 0 0 0 0
24 1 0 0 0
25 0 0 0 0
26 0 0 0 0
27 0 0 0 0
28 0 0 0 0
29 0 0 0 0
30 0 0 0 0
31 0 0 0 1

Table A.6: The weight distributions of the coded CRC system for gCRC1(x),gCRC2(x), gCRC3(x) and gCRC4(x)

42

Appendix B

Mapping Analysis

In this part of the appendix the results are shown for the mapping analysis described in Section
3.4. In the first column the weight of the CRC words are given. In the second column the weights
that the code words have in the coded system obtained by mapping the CRC words of fixed weight
to the BCH code. In each table the minimum weight in the coded system is highlighted in red

B.1 gCRC1
(x) = x5 + x3 + x+ 1 and

gBCH(x) = x10 + x9 + x8 + x6 + x5 + x3 + 1

CRC code BCH code
CRC words of weight Weights BCH code Amount

wCRC = 2 w = 14 6
wCRC = 4 w = 8 42

w = 10 61
w = 12 77
w = 14 88
w = 16 85
w = 18 34
w = 20 10

wCRC = 6 w = 8 106
w = 10 222
w = 12 716
w = 14 908
w = 16 771
w = 18 450
w = 20 146
w = 22 31
w = 24 2

wCRC = 8 w∗ = 6 9
w = 8 153
w = 10 709
w = 12 2170
w = 14 3267
w = 16 3413
w = 18 2026
w = 20 815
w = 22 168
w = 24 24

wCRC = 10 w∗ = 6 16
w = 8 149
w = 10 851
w = 12 2946
w = 14 5425
w = 16 6402
w = 18 4104
w = 20 1752
w = 22 346
w = 24 40
w = 26 5

Table B.1: The weight distribution of the coded scheme generated by the CRC words of a fixed weight, using
gCRC1

(x) = x5 + x3 + x+ 1 together with gBCH(x) = x10 + x9 + x8 + x6 + x5 + x3 + 1 (part A)

45

CRC code BCH code
CRC words of weight Weights BCH code Amount

wCRC = 12 w∗ = 6 4
w = 8 84
w = 10 513
w = 12 2199
w = 14 4192
w = 16 5479
w = 18 3711
w = 20 1700
w = 22 394
w = 24 71
w = 26 7

wCRC = 14 w = 8 7
w = 10 165
w = 12 708
w = 14 1564
w = 16 2254
w = 18 1629
w = 20 752
w = 22 179
w = 24 30

wCRC = 16 w = 8 2
w = 10 31
w = 12 120
w = 14 245
w = 16 355
w = 18 307
w = 20 157
w = 22 41
w = 24 2
w = 26 1

wCRC = 18 w = 10 1
w = 12 8
w = 14 11
w = 16 31
w = 18 21
w = 20 12
w = 22 2

wCRC = 20 w = 16 1

Table B.2: The weight distribution of the coded scheme generated by the CRC words of a fixed weight, using
gCRC1

(x) = x5 + x3 + x+ 1 together with gBCH(x) = x10 + x9 + x8 + x6 + x5 + x3 + 1 (part B)

46

B.2 gCRC2
(x) = x5 + x2 + 1 and

gBCH(x) = x10 + x9 + x8 + x6 + x5 + x3 + 1

CRC code BCH code
CRC words of weight Weights BCH code Amount

wCRC = 3 w = 13 16
w = 15 21
w = 17 5
w = 19 3

wCRC = 4 w = 8 27
w = 10 47
w = 12 13
w = 14 58
w = 16 50
w = 18 10

wCRC = 5 w = 9 65
w = 11 101
w = 13 164
w = 15 191
w = 17 70
w = 19 33
w = 21 8

wCRC = 6 w = 8 29
w = 10 148
w = 12 403
w = 14 322
w = 16 387
w = 18 250
w = 20 102
w = 22 19
w = 24 6

wCRC = 7 w = 7 21
w = 9 153
w = 11 420
w = 13 750
w = 15 1102
w = 17 756
w = 19 310
w = 21 93
w = 23 14
w = 25 1

wCRC = 8 w∗ = 6 3
w = 8 43
w = 10 415
w = 12 1041
w = 14 1635
w = 16 1691
w = 18 1079
w = 20 401
w = 22 51
w = 24 11

Table B.3: The weight distribution of the coded scheme generated by the CRC words of a fixed weight, using
gCRC2

(x) = x5 + x2 + 1 together with gBCH(x) = x10 + x9 + x8 + x6 + x5 + x3 + 1 (part A)

48

CRC code BCH code
CRC words of weight Weights BCH code Amount

wCRC = 9 w = 7 41
w = 9 171
w = 11 877
w = 13 1896
w = 15 2649
w = 17 2091
w = 19 1143
w = 21 314
w = 23 55
w = 25 3

wCRC = 10 w = 6 8
w = 8 90
w = 10 370
w = 12 1542
w = 14 2710
w = 16 3230
w = 18 2014
w = 20 846
w = 22 198
w = 24 23
w = 26 1

wCRC = 11 w∗ = 5 6
w = 7 13
w = 9 135
w = 11 779
w = 13 1989
w = 15 3115
w = 17 2691
w = 19 1639
w = 21 464
w = 23 89
w = 25 14

wCRC = 12 w = 8 32
w = 10 261
w = 12 1109
w = 14 2076
w = 16 2798
w = 18 1863
w = 20 790
w = 22 206
w = 24 32
w = 26 3

Table B.4: The weight distribution of the coded scheme generated by the CRC words of a fixed weight, using
gCRC2

(x) = x5 + x2 + 1 together with gBCH(x) = x10 + x9 + x8 + x6 + x5 + x3 + 1 (part C)

49

CRC code BCH code
CRC words of weight Weights BCH code Amount

wCRC = 13 w = 7 10
w = 9 53
w = 11 360
w = 13 1076
w = 15 1869
w = 17 1677
w = 19 1016
w = 21 310
w = 23 64
w = 25 5

wCRC = 14 w = 6 1
w = 8 12
w = 10 95
w = 12 319
w = 14 794
w = 16 1104
w = 18 807
w = 20 384
w = 22 106
w = 24 18

wCRC = 15 w = 9 13
w = 11 91
w = 13 254
w = 15 432
w = 17 435
w = 19 317
w = 21 89
w = 23 17
w = 25 4

wCRC = 16 w = 10 4
w = 12 61
w = 14 117
w = 16 201
w = 18 158
w = 20 81
w = 22 14
w = 24 1

wCRC = 17 w = 9 1
w = 11 12
w = 13 18
w = 15 47
w = 17 64
w = 19 42
w = 21 14
w = 23 2

Table B.5: The weight distribution of the coded scheme generated by the CRC words of a fixed weight, using
gCRC2

(x) = x5 + x2 + 1 together with gBCH(x) = x10 + x9 + x8 + x6 + x5 + x3 + 1 (part D)

50

CRC code BCH code
CRC words of weight Weights BCH code Amount

wCRC = 18 w = 12 8
w = 14 12
w = 16 5
w = 18 11
w = 20 4

wCRC = 19 w = 13 1
w = 17 1
w = 19 1
w = 21 2

wCRC = 20 w = 16 1

Table B.6: The weight distribution of the coded scheme generated by the CRC words of a fixed weight, using
gCRC2(x) = x5 + x2 + 1 together with gBCH(x) = x10 + x9 + x8 + x6 + x5 + x3 + 1 (part E)

B.3 gCRC3
(x) = x5 + x4 + x3 + x2 + 1 and

gBCH(x) = x10 + x9 + x8 + x6 + x5 + x3 + 1

51

CRC code BCH code
CRC words of weight Weights BCH code Amount

wCRC = 3 w = 9 13
w = 11 12
w = 15 15
w = 17 7

wCRC = 4 w = 8 14
w = 10 30
w = 12 33
w = 14 22
w = 16 87
w = 18 17
w = 20 2

wCRC = 5 w = 9 60
w = 11 90
w = 13 179
w = 15 139
w = 17 93
w = 19 45
w = 21 9
w = 23 1

wCRC = 6 w = 6 12
w = 8 46
w = 10 154
w = 12 350
w = 14 425
w = 16 418
w = 18 183
w = 20 77
w = 22 7

wCRC = 7 w = 7 21
w = 9 103
w = 11 468
w = 13 908
w = 15 969
w = 17 715
w = 19 370
w = 21 110
w = 23 11
w = 25 1

Table B.7: The weight distribution of the coded scheme generated by the CRC words of a fixed weight, using
gCRC3

(x) = x5 + x4 + x3 + x2 + 1 together with gBCH(x) = x10 + x9 + x8 + x6 + x5 + x3 + 1 (part A)

52

CRC code BCH code
CRC words of weight Weights BCH code Amount

wCRC = 8 w = 6 6
w = 8 52
w = 10 412
w = 12 1020
w = 14 1475
w = 16 1861
w = 18 1019
w = 20 434
w = 22 77
w = 24 14

wCRC = 9 w = 7 33
w = 9 240
w = 11 741
w = 13 1842
w = 15 2742
w = 17 2070
w = 19 1080
w = 21 320
w = 23 55
w = 25 5

wCRC = 10 w = 6 8
w = 8 41
w = 10 473
w = 12 1537
w = 14 2704
w = 16 3221
w = 18 2017
w = 20 816
w = 22 192
w = 24 20
w = 26 3

wCRC = 11 w∗ = 5 6
w = 7 9
w = 9 154
w = 11 793
w = 13 1945
w = 15 3328
w = 17 2693
w = 19 1575
w = 21 463
w = 23 92
w = 25 16

Table B.8: The weight distribution of the coded scheme generated by the CRC words of a fixed weight, using
gCRC3

(x) = x5 + x4 + x3 + x2 + 1 together with gBCH(x) = x10 + x9 + x8 + x6 + x5 + x3 + 1 (part B)

53

CRC code BCH code
CRC words of weight Weights BCH code Amount

wCRC = 12 w = 8 30
w = 10 222
w = 12 1084
w = 14 2184
w = 16 2657
w = 18 1900
w = 20 862
w = 22 196
w = 24 34
w = 26 1

wCRC = 13 w = 7 4
w = 9 78
w = 11 388
w = 13 969
w = 15 1823
w = 17 1657
w = 19 1029
w = 21 323
w = 23 53
w = 25 4

wCRC = 14 w = 6 1
w = 8 14
w = 10 83
w = 12 383
w = 14 803
w = 16 1028
w = 18 828
w = 20 396
w = 22 90
w = 24 12
w = 26 2

wCRC = 15 w = 9 7
w = 11 88
w = 13 216
w = 15 501
w = 17 469
w = 19 302
w = 21 106
w = 23 18
w = 25 1

wCRC = 16 w = 8 2
w = 10 11
w = 12 54
w = 14 120
w = 16 203
w = 18 151
w = 20 66
w = 22 28
w = 24 1
w = 26 1

Table B.9: The weight distribution of the coded scheme generated by the CRC words of a fixed weight, using
gCRC3

(x) = x5 + x4 + x3 + x2 + 1 together with gBCH(x) = x10 + x9 + x8 + x6 + x5 + x3 + 1 (part C)

54

CRC code BCH code
CRC words of weight Weights BCH code Amount

wCRC = 17 w = 11 12
w = 13 23
w = 15 49
w = 17 53
w = 19 35
w = 21 11
w = 23 1

wCRC = 18 w = 10 2
w = 12 3
w = 14 1
w = 16 20
w = 18 11
w = 20 2
w = 22 1

wCRC = 19 w = 13 3
w = 17 1
w = 19 4

wCRC = 20 w = 20 1

Table B.10: The weight distribution of the coded scheme generated by the CRC words of a fixed weight,
using gCRC3

(x) = x5 + x4 + x3 + x2 + 1 together with gBCH(x) = x10 + x9 + x8 + x6 + x5 + x3 + 1 (part D)

55

Appendix C

Field Table

0 00000 β7 10100 β15 11111 β23 01111
1 00001 β8 01101 β16 11011 β24 11110
β 00010 β9 11010 β17 10011 β25 11001
β2 00100 β10 10001 β18 00011 β26 10111
β3 01000 β11 00111 β19 00110 β27 01011
β4 10000 β12 01110 β20 01100 β28 10110
β5 00101 β13 11100 β21 11000 β29 01001
β6 01010 β14 11101 β22 10101 β30 10010

Table C.1: F32 with primitive element β such that β5 = β2 + 1

56

Appendix D

Python Code

D.1 weights finder pure.py

from numpy.polynomial import polynomial as P

import numpy as np

import math

import itertools

def add_bin(a,b):

return (a + b) % 2

def multiply(p, q, n):

res = P.polymul(p,q)

res %= 2

return np.pad(res, (0,n-len(res)))

the following finds the weights distribution of a code using

the generator polynomial

generator polynomial has degree r = n-k

so every product of the generator polynomial with a polynomial

of degree <= n-r is a code-word

def code_gen(gen, k):

code = []

r = len(gen)

lst = [list(i) for i in itertools.product([0,1], repeat = k-r+1)]

del lst[0]

for pol in lst:

word = multiply(gen, pol,k)

code.append(word)

return code

create a subset of the code of only the words that have the specified weight

def find_subset(code, weight):

subset = []

57

for word in code:

if sum(word) == weight:

subset.append(word)

return subset

Find the weights of any pre-generated code

def w_finder(code):

weights = {}

res = 0

for word in code:

w = int(sum(word))

if w in weights:

weights[w] += 1

else:

weights[w] = 1

return weights

def find_min_weight(weights):

res = float(’inf’)

for weight in weights:

if weight < res:

res = weight

return res

D.2 weights finder coded .py

import math

import numpy as np

from weights_finder_pure import *

given a generator polynomial return generator matrix

def gen_matrix(gen, n):

r = len(gen)-1

k = n-r

G = np.zeros((k,n))

for i in range(k):

for j in range(r+1):

G[i][i+j] = int(gen[j]) % 2

return G

find the weights of the coded scheme using a generator polynomial

def w_finder_coded(gen,n,g_crc,k):

G = gen_matrix(gen,n)

code = code_gen(g_crc,k)

code_new = [code[i].dot(G)%2 for i in range(len(code))]

weights = w_finder(code_new)

return weights

58

find the weights of the coded scheme using the already generated CRC code

def w_finder_coded_2(gen,n,code):

G = gen_matrix(gen,n)

code_new = [code[i].dot(G)%2 for i in range(len(code))]

weights = w_finder(code_new)

return weights

Find the weight distribution of the code

that is generated by a subset of a CRC code of a certain weight

def partition(gen,n,crc,k):

w_lst = []

for weight in range(k+1):

code = find_subset(crc,weight)

weights = w_finder_coded_2(gen,n,code)

w_lst.append(weights)

return w_lst

D.3 undetected error.py

import matplotlib.pyplot as plt

import numpy as np

from math import comb

from weights_finder_pure import *

from weights_finder_coded import *

from matplotlib.pyplot import cm

Calculate the undetected error for the pure system

def pue_pure(pch, weights,k):

p_ue = 0

for w in weights:

value = weights[w]

p_ue += value * (pch ** w) * (1-pch) ** (k-w)

return p_ue

Calculate the undetected error for the coded system

def pue_coded(t, pch, weights, n):

p_ue = 0

for w in weights:

value = weights[w]

t_0 = 0

t_1 = 0

while t_0 + t_1 <= t:

part_sum = value * comb(w,t_0) * comb(n-w,t_1) * \

59

pch**(w + t_1 - t_0) * (1-pch)**(n-w-t_1+t_0)

p_ue += part_sum

if t_0 + t_1 == t:

t_1 += 1

t_0 = 0

else:

t_0 += 1

return p_ue

Generate a single plot of the undetected error of a CRC polynomial

In the pure system for all values of p

def single_plot_pure(weights, k):

fig = plt.figure()

xpoints = np.linspace(0, 0.5,51)

y = []

for pch in xpoints:

a = pue_pure(pch, weights, k)

y.append(a)

plt.plot(xpoints, y, ’o’)

plt.show()

Generate a plot of the undetected error of a list of CRC polynomials

In the pure system for all values of p

def full_plot_pure(w_lst, k):

fig = plt.figure(figsize=(10,6))

xpoints = np.linspace(0, 0.5, 100)

y = []

i = 1

color = iter(cm.rainbow(np.linspace(0,1,len(w_lst))))

for weights in w_lst:

y_1 = []

for pch in xpoints:

a = pue_pure(pch, weights, k)

y_1.append(a)

y.append(y_1)

for el in y:

c = next(color)

plt.plot(xpoints, el, ’o’,label = ’$g_{CRC%s}$’ % i, markersize = 4, c = c)

i+=1

plt.xlabel(’p’)

plt.ylabel(’P_{ue}’)

plt.legend(loc = "upper left")

plt.savefig(’pure_plot.png’)

plt.show()

Generate a plot of the undetected error of a CRC polynomial

In the coded system for all values of p

60

def single_plot(t, weights, n):

fig = plt.figure()

xpoints = np.linspace(0, 0.5,51)

y = []

for pch in xpoints:

a = pue_coded(t, pch, weights, n)

y.append(a)

plt.plot(xpoints, y, ’o’)

plt.show()

Generate a plot of the undetected error of a list of CRC polynomials

In the coded system for all values of p

def full_plot(t, w_lst, n):

fig = plt.figure(figsize=(10,6))

xpoints = np.linspace(0, 0.5, 100)

y = []

i = 1

color = iter(cm.rainbow(np.linspace(0,1,len(w_lst))))

for weights in w_lst:

y_1 = []

for pch in xpoints:

a = pue_coded(t, pch, weights, n)

y_1.append(a)

y.append(y_1)

for el in y:

c = next(color)

plt.plot(xpoints, el, ’o’, label = ’$g_{CRC%s}$’ % i,markersize = 4, c = c)

i+=1

plt.xlabel(’p’)

plt.ylabel(’P_{ue}’)

plt.legend(loc = "upper left")

plt.style.use(’seaborn-v0_8’)

plt.savefig(’coded_plot.png’)

plt.show()

D.4 calculate roots.py

import numpy as np

import galois

import itertools

from weights_finder_pure import add_bin, multiply

from numpy.polynomial import polynomial as P

The field F_{32} as binary arrays of 5 bits

gf = np.array([[0,0,0,0,1],\

[0,0,0,1,0],\

[0,0,1,0,0],\

[0,1,0,0,0],\

[1,0,0,0,0],\

61

[0,0,1,0,1],\

[0,1,0,1,0],\

[1,0,1,0,0],\

[0,1,1,0,1],\

[1,1,0,1,0],\

[1,0,0,0,1],\

[0,0,1,1,1],\

[0,1,1,1,0],\

[1,1,1,0,0],\

[1,1,1,0,1],\

[1,1,1,1,1],\

[1,1,0,1,1],\

[1,0,0,1,1],\

[0,0,0,1,1],\

[0,0,1,1,0],\

[0,1,1,0,0],\

[1,1,0,0,0],\

[1,0,1,0,1],\

[0,1,1,1,1],\

[1,1,1,1,0],\

[1,1,0,0,1],\

[1,0,1,1,1],\

[0,1,0,1,1],\

[1,0,1,1,0],\

[0,1,0,0,1],\

[1,0,0,1,0]])

Create a list of all possible CRC polynomials of k bits, that have +1

As a term

def create_crc_list(k):

res = []

lst = [list(i) for i in itertools.product([0,1], repeat = k-1)]

for i in range(len(lst)):

res.append([1] + lst[i] + [1])

return np.array(res)

find g(beta**power) for any power

def check_root(g,power):

res = np.array([0]*5)

if power == 0:

res[-1] = sum(g)%2

return res

else:

for i in range(len(g)):

new_pow = (power * i)%31

res += gf[new_pow]*g[i]

return res%2

62

find all the roots of a generator polynomial

def return_roots(g):

root_powers = []

for i in range(len(gf)):

if sum(check_root(g, i)) == 0:

root_powers.append(i)

return root_powers

####################################

def main():

Find the roots of the CRC polynomials of 5 bits

crc_5 = create_crc_list(5)

for crc in crc_5:

print(np.poly1d(crc[::-1]))

beta_lst = return_roots(crc)

print(beta_lst)

print(’\n’)

Find the the CRC polynomials of 10 bits that have beta^7 and

beta^11 as roots

for i in range(1,16):

print(’\n’, "CRC of %s bits:"%i, ’\n’)

crc_i = create_crc_list(i)

for crc in crc_i:

beta_lst = return_roots(crc)

if len(beta_lst) >= 10 and (7 in beta_lst) and (11 in beta_lst):

print(np.poly1d(crc[::-1]))

print(beta_lst)

print(’\n’)

if __name__ == "__main__":

main()

D.5 subset crc code.py

from weights_finder_pure import *

from weights_finder_coded import *

import numpy as np

import math

import itertools

My own example with 5 CRC bits

g1 = [1,1,0,1,0,1] #0x15 HD = 2 ----> w* = 6

g2 = [1,0,1,0,0,1] #0x12 HD = 3 ----> w* = 5

g3 = [1,0,1,1,1,1] #0x1e HD = 3 ----> w* = 5

##glst = [g1,g2,g3]

n,k,t = 31,21,2

63

g_C = [1,0,0,1,0,1,1,0,1,1,1]

##g_C = [1,1,1,1,0,1,0,1,1,1,1,1,0,0,0,1]

crc1 = code_gen(g1,k)

crc2 = code_gen(g2,k)

crc3 = code_gen(g3,k)

subset_lst = partition(g_C,n,crc1,k)

subset_lst2 = partition(g_C,n,crc2,k)

subset_lst3 = partition(g_C,n,crc3,k)

print(subset_lst,’\n’)

print(subset_lst2,’\n’)

print(subset_lst3,’\n’)

D.6 main.py

from undetected_error import *

from calculate_roots import create_crc_list

from weights_finder_coded import *

from weights_finder_pure import *

from numpy.polynomial import polynomial as P

BCH code 1

n,k,t = 31,21,2

g_C = [1,0,0,1,0,1,1,0,1,1,1]

g1 = [1,1,0,1,0,1]

g2 = [1,0,1,0,0,1]

g3 = [1,0,1,1,1,1]

g12 = [1,1,1,0,1,1]

First example with 3 CRC polynomials

glst = [g1,g2,g3]

Second example with 4 g_CRC_12(x) compared to the other 3

glst2 = [g1,g2,g3,g12]

Third example with the CRC polynomials of 5 bits

g1 = [1,1,0,1,0,1]

g2 = [1,0,1,0,0,1]

g3 = [1,0,1,1,1,1]

g4 = [1,1,0,0,0,1]

g5 = [1,0,0,1,1,1]

g6 = [1,0,1,1,0,1]

g7 = [1,1,0,0,1,1]

g8 = [1,1,1,1,1,1]

g9 = [1,1,1,0,0,1]

g10 = [1,0,1,0,1,1]

g11 = [1,1,1,1,0,1]

64

g12 = [1,1,1,0,1,1]

g13 = [1,0,0,1,0,1]

g14 = [1,0,0,0,1,1]

g15 = [1,0,0,0,0,1]

g16 = [1,1,0,1,1,1]

glst_5 = [g1,g2,g3,g4,g5,g6,g7,g8,g9,g10,g11,g12,g13,g14,g15,g16]

w_lst_pure = []

w_lst_coded = []

for g in glst:

print(np.poly1d(g[::-1]))

weights = w_finder(code_gen(g,k))

w_lst_pure.append(weights)

print(weights)

print("min weight w* = ",find_min_weight(weights),’\n’)

print(’And now the coded scheme:\n’)

for g in glst:

print(np.poly1d(g[::-1]))

weights = w_finder_coded(g_C,n,g,k)

w_lst_coded.append(weights)

print(w_finder_coded(g_C,n,g,k),’\n’)

print("min weight w* = ",find_min_weight(weights))

full_plot_pure(w_lst_pure,k)

full_plot(t,w_lst_coded,n)

w_lst_pure = []

w_lst_coded = []

for g in glst2:

print(np.poly1d(g[::-1]))

weights = w_finder(code_gen(g,k))

w_lst_pure.append(weights)

print(weights)

print("min weight w* = ",find_min_weight(weights),’\n’)

print(’And now the coded scheme:\n’)

for g in glst2:

print(np.poly1d(g[::-1]))

weights = w_finder_coded(g_C,n,g,k)

w_lst_coded.append(weights)

print(w_finder_coded(g_C,n,g,k),’\n’)

print("min weight w* = ",find_min_weight(weights))

full_plot_pure(w_lst_pure,k)

full_plot(t,w_lst_coded,n)

w_lst_pure = []

65

w_lst_coded = []

for g in glst_5:

print(np.poly1d(g[::-1]))

weights = w_finder(code_gen(g,k))

w_lst_pure.append(weights)

print(weights)

print("min weight w* = ",find_min_weight(weights),’\n’)

print(’And now the coded scheme:\n’)

for g in glst_5:

print(np.poly1d(g[::-1]))

weights = w_finder_coded(g_C,n,g,k)

w_lst_coded.append(weights)

print(w_finder_coded(g_C,n,g,k),’\n’)

print("min weight w* = ",find_min_weight(weights))

full_plot_pure(w_lst_pure,k)

full_plot(t,w_lst_coded,n)

########################

BCH code 2

n,k,t = 31,16,3

g_C = [1,1,1,1,0,1,0,1,1,1,1,1,0,0,0,1]

The CRC polynomials of 10 bits compared to each other

g1 = [1,1,1,0,1,1,0,0,1,0,1]

g2 = [1,0,1,1,1,0,0,0,1,0,1]

g3 = [1,1,0,0,1,1,1,0,1,0,1]

g4 = [1,0,0,1,1,0,0,0,0,1,1]

glst_10 = create_crc_list(10)

glst = [g1,g2,g3,g4]

for g in glst_10:

print(np.poly1d(g[::-1]))

weights = w_finder(code_gen(g,k))

print(weights)

print("min weight w* = ",find_min_weight(weights),’\n’)

print(’And now the coded scheme:\n’)

for g in glst_10:

weights = w_finder_coded(g_C,n,g,k)

if find_min_weight(weights) >= 13:

print(np.poly1d(g[::-1]))

print(weights,’\n’)

66

print("min weight w* = ",find_min_weight(weights))

#######################################

Comparison of 4 CRC polynomials of 10 bits

w_lst_pure = []

w_lst_coded = []

for g in glst:

print(np.poly1d(g[::-1]))

weights = w_finder(code_gen(g,k))

print(weights)

print("min weight w* = ",find_min_weight(weights),’\n’)

w_lst_pure.append(weights)

print(’And now the coded scheme:\n’)

for g in glst:

print(np.poly1d(g[::-1]))

weights = w_finder_coded(g_C,n,g,k)

print(weights)

print("min weight w* = ",find_min_weight(weights),’\n’)

w_lst_coded.append(weights)

full_plot_pure(w_lst_pure,k)

full_plot(t,w_lst_coded,n)

67

	Preface
	Abstract
	Introduction
	Motivation
	Thesis Statement
	Organization

	Prerequisites
	Channel Assumptions
	Coding Theory
	Definition Linear Code
	Polynomial Representation
	Polynomial code
	Cyclic Codes
	Decoding

	CRC without error correcting codes
	CRC encoding
	CRC decoding
	Undetected error probability

	CRC system with error-correcting codes
	Undetected error probability

	CRC systems with BCH codes
	Definition BCH Code
	[31,21,5] BCH code
	CRC polynomials of degree 5
	Undected error probability in the pure system
	Undetected error probability for the coded system

	Weight Analysis
	[31,16,7] BCH code

	Conclusion and Discussion
	Conclusion
	Discussion

	References
	Weight Distributions
	[31,21,5] BCH code
	Pure system
	Coded scheme

	[31,16,7] BCH code
	Pure scheme
	Coded scheme

	Mapping Analysis
	gCRC1(x) = x5 + x3 + x + 1 and gBCH(x) = x10 + x9 + x8 + x6 + x5 + x3 + 1
	gCRC2(x) = x5 + x2 + 1 and gBCH(x) = x10 + x9 + x8 + x6 + x5 + x3 + 1
	gCRC3(x) = x5 + x4 + x3 + x2 + 1 and gBCH(x) = x10 + x9 + x8 + x6 + x5 + x3 + 1

	Field Table
	Python Code
	weights_finder_pure.py
	weights_finder_coded_.py
	undetected_error.py
	calculate_roots.py
	subset_crc_code.py
	main.py

