

Aerospace Polymers are Shaping up Structural and functional properties can go hand in hand T. Dingemans, Faculty of Aerospace Engineering

A closer look at the materials in use

Titanium Aluminum Aluminum glass polymer Ceramic **Polymers** Steel and wood 1903 2010 UNI-DIRECTIONAL **BI-DIRECTIONAL** PN 01-00641 PN 01-00642 Carbon fiber 7oz 38" Width Threads per inch: 8.8oz 38' Width Threads per inch: 80L x 18W 54L x 48W

Can structural and functional go hand in hand?

Research

1-Structural polymers and composites:

High strength and *compression stable* polymer fibers Tune the *Fiber-resin interface The role of nano reinforcement In-situ health monitoring Failure management –self healing*

2-Structural polymers for energy generation and storage:

Li-ion batteries Membranes for fuel-cells Gas separation and fuel (H₂) storage *Polymer-based solar cells*

3-Structural polymers with actuating capabilities:

TUDelft

Shape memory polymers Electro-active polymers *Morphing wing using light sensitive polymers*

CO₃/CH

Fiber spinning

The resin component...

Sample	E' (GPa) at 24 °C	E' (GPa) at 100 ℃	E' (GPa) at 200 °C	Т _g (°С)
TA/HQ/IA(50)-5K	4.2	3.5	1.2	220
PPS	2.9	-	-	94
Vectra	4.3	1.4	0.3	110

US Patent 6,939,940 (2005), US Patent 7,507,784 B2 (2009), Macromolecules, 2006, 39(20), 6936.

The resin fiber interface

Finding matching chemistries...

The role of nano reinforcement

The role of nano reinforcement

- Significant improvement in E'
- Minimal loss in elongation at break
- Doubling of the tensile strength
- Progress is slow but moves in the right direction

TUDelft

Aerospace polymers are shaping up 14

In-situ health monitoring of composites...

How to add function to structural?

TUDelft

In-situ health monitoring of composites...

How to add function to structural?

Structural composite + sensing function

Chem Mater. **2004**, *16*, 966-974; *Thin Solid Films* **2006**, *500*, 9-14; *J. Vac. Sci. Technol. B.* **2006**, *24(6)*, 2653-2658

Functional polymers and the space environment

MISSE 3 Long duration space exposure test facility

Polymer films as used on satelites are vulnerable to AO and UV

Silicon solar cells...

- Crystalline silicon wafers
- 0.3 mm thick, brittle and heavy
- 99.9999 % pure material
- 25 % conversion efficiency

...polymer-based solar cells?

00/05104 2000/12/00 18:49:30

TUDelft

- Expensive materials (monomers, catalysts, PCBM)
- Lack of e⁻ accepting polymers
- Challenging synthetic, polymer clean-up and processing step
- Low efficiencies ~ 8%
- Limited life time top electrode due to O₂

- Cheap, simple and affordable chemistry
- Use of cheap e⁻ acceptor TiO₂
- One step device preparation

J. Mater. Chem. 2010, 20, 937-944

- Cheap, simple and affordable chemistry
- Use of cheap e⁻ acceptor TiO₂
- One step device preparation?

AFM (ODPA-M1)+ Ti(IV)isopropoxide (50/ 50 wt%)

SEM meso-porous structure TiO₂ (60% pore volume)+ ODPA-M1

- + high Tg and thermal stability
- + LC order in order to promote chain-to-chain
- charge transfer and nano-scale separation
- + good tunability with respect to optoelectronic properties
- + useful for large-scale film production

IKAROS

Interplanetary Kite-craft Accelerated by Radiation Of the Sun (JAXA)

Tafelkleed dat zeilt op de zon...

Volkskrant, zaterdag 29 mei 2010

Morphing wings: light actuated?

Are aerospace polymers for aerospace only?

Fibers, ropes, composites

Polymers and society?

Education

Education

A typical TU Delft materials professor

Involve me and I will learn...

Design Synthesis Exercise (DSE)
Hands on laboratory exercises
Internships at NASA and Boeing

1

Energy

Actuator

Structural

Involve me and I will learn...

- Design Synthesis Exercise (DSE)
- Hands on laboratory exercises
- Internships at NASA and Boeing

Involve me and I will learn...

- Design Synthesis Exercise (DSE)
- Hands on laboratory exercises
- Internships at NASA and Boeing

Facilities

Infrastructure before...

Infrastructure after...

Physical characterization lab

Partners

Funding and industrial partners

Delft Centre for Materials

SKF

Dutch Space An EADS Astrium company

TELIN Human Chemistry, Human Solutions

39

"I' ve spend more time than many will believe [making microscopic observations], but I' ve done them with joy...."

