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Abstract

More and more aquaculture structures are installed in open water and further offshore

due to the fact that a variety of conflicts have arisen with coastal water, eco-system,

and inhabitants who live nearby. They can additionally benefit from a high en-

ergy environment, for example, strong currents and waves could disperse fish farm

waste. However, an open water environment accompanies longer or steeper waves

and harsher weather conditions where the structures could be exerted by a higher

environmental loading and damaged by larger displacements or motions. Therefore,

non-linear interaction between wave and structure needs to be investigated to get a

better understanding of an accidental phenomenon which might impact on structures.

The collar structure above nets, shaped typically in a torus, consists of either single

or double pipes, usually made of high-density polyethylene. Due to its slenderness

and the material properties, the structure should be regarded as a flexible body and

treated so in the structural analysis. In order to study its non-linearity, in addition, a

coupling between structure and fluid surrounding the structure should be taken into

account.

In this thesis, a 3-dimensional beam model is used for the collar structure and New-

mark method is adopted for the time integration of structural dynamic analysis. To

verify and validate a structure solver, which is developed in MATLAB, the results

from the solver are examined with reliable sources including literatures and a commer-

cial code, ANSYS Mechanical APDL 19.1. A free floating fluid model is established

using an open-source CFD (Computational Fluid Dynamics) solver REEF3D. This

fluid solver is capable of solving the Navier-Stokes equations for both water and air.

With both solvers this thesis presents the numerical models and these set-ups as a

good foundation to tackle nonlinear fluid-structure problem under the assumption the

structures are flexible bodies. As a further step from the starting point this structural

solver will be integrated into REEF3D to investigate fluid-structure interaction (FSI).
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Abstrakt

I denne oppgaven brukes en 3-dimensjonal str̊alemodell for fiske merd strukturen,

og Newmark-metoden er vedtatt for tidintegrasjon av strukturell dynamisk analyse.

For åverifisere og validere strukturløsningen utviklet i MATLAB sammenlignes resul-

tater fra løsninger fra kjente kilder, som literatur og en kommersiell kode, ANSYS

Mechanical APDL 19.1. En fri flytende modell er opprettet i den åpen kilde CFD

(Computational Fluid Dynamics) modellen REEF3D. Modellen løser Navier-Stokes

ligningene for b̊ade vann og luft. Med begge løsninger presenterer denne avhandlin-

gen de numeriske modellene og disse oppsettene som et godt grunnlag for åtakle det

ikke-lineære fluid-struktur problemet under antagelsen at strukturen er fleksibel. Som

et ytterligere trinn fra utgangspunktet vil denne strukturelle løsningen bli integrert i

REEF3D for åundersøke fluid-struktur-interaksjon (FSI).
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Chapter 1

Introduction

1.1 Background

Traditional aquaculture industry has steadily managed lots of conflicts with natural

and societal environments in coastal areas where the aquaculture structures would

exploit those environments. For example, coastal water and ecosystem were degraded

by wastes from fish farms. In addition, inhabitants have suffered from the degradation

of their living environment due to disturbances in their neighbourhood.

A higher energy environment in open ocean is attractive to fish farmers. These

natural environment conditions disperse the waste and ensure clear water. However,

higher wave loading could affect fish cages because they are exposed a harsher weather

condition which leads to larger motion or more severe damage to the structure.

According to a study conducted by Jensen[11], the structure failure is one of the

major causes for fish escape. Considering the the aftermath of fish escape, eventually,

the structure failure could escalate the severity of consequences up to the loss of

investment, and the loss of reputation of operating companies.

In fact, there was a structure failure accident1 in 2018 due to a winter storm in Nova

Scotia, Canada, where a total structural failure occurred. The parts of the cage were

torn and drifted to the coast. The most severe loss was that all the fishes were escaped

and the operating company was fined.

1.1.1 Aquaculture structure

Aquaculture structures where fishes grow are called by net pens or fish cages. The

shape of the structure is basically either rectangular or circular. A circular or a torus-

1Source: https://responsibleaquaculture.wordpress.com
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Figure 1.1: An example of structure failure

shaped fish cage is made of high-density Polyethylene (HDPE) while the rectangular

cage is usually of steel material.[3]

The figure below shows a schematic drawing of a typical aquaculture structure.

waves

current

buoy

bridle

Floating collar

Flexible enclosure

Mooring line

Figure 1.2: A simplified model of aquaculture structure

Floating collars provide the necessary buoyancy such that the whole structure swims.

Net structures beneath the collars are permeable. Thus water can freely inflow from

outside and flooded out from the structure inside again. Mooring lines are attached

to the floating collar. The mooring lines prevent the whole structure being drifted

away from the original location and withstand the loads from the environment by

utilising its tensioning capability and rigidity.

Since the most of the structural parts have basically positive buoyancy, a heavy

weight - for instance, the weight inside sinker pipes in Figure 1.3 - should be in place

to stabilise the whole structure. The inertia bears vertical load and by the gravity the

2



external energy is dissipated into the motion of the structure. This energy is even-

tually transferred to wave-making energy by the motion of the structures. Mooring

lines primarily withstand the horizontal load from waves and currents.

1.1.2 Collar structure

Floating collars are pipe-looking structures or a group of these structures in case the

structures are made of plastic, i.e. HDPE, connected to net and mooring line, as

shown in Figure 1.3.2

Not to mention its material properties, the slenderness of a collar structure lets

Figure 1.3: The configuration of typical aquaculture structures floating collar

analysers regard the structure as a flexible body when large motions or displacements

of the structure are examined since the structure becomes very subject to bending

failure. Thus, shear stress might be rather less important attributed to relatively

2Source: https://www.akvagroup.com/pen-based-aquaculture/pens-nets/plastic-pens
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small cross section areas due to its slenderness, whereas most of the deflections can

be contributed by bending stress. The chapter 2 will deal with this.

1.1.3 Environmental load

The site condition for open water fish farms is relatively rough compared to the

place in which the aquaculture structures commonly used to be located onshore or

nearshore. Therefore, the aquaculture structures in open water should withstand

harsher environmental load without mitigation measures due to its difficulty of human

intervention such as disconnecting and sheltering, of which a means of mitigation is

taken against accidental events in other industries such as oil and gas industry. Thus,

this higher environmental loading is inevitable.

1.2 Failure Modes

A failure of aquaculture structure can be defined by any accidental event resulting

in a loss of people, investment, or reputation of operating companies. In most cases,

the structure itself is operated without residential supervision by human. Thus,

the fatalities due to the failure is very remote. Nonetheless, loss of investment or

reputation could be caused by a significant structure failure or by an accidental fish

escape. Therefore, the followings are possible examples of failure modes of aquaculture

structures induced by interactions between structures and surrounding fluid.

• Direct damage to piping

A rougher wave or current load could concentrate a small part of the structure

and it could damage the part resulting in a puncture or a buckling of the

structure due to the excessive bending moment or shear stress. The root cause

of this damage is not easily defined and identified that is why fluid-structure

interaction need to be investigated.

• Wave overtopping

Literally water can go beyond the floating collar, in terms of vertical displace-

ment. Hydrostatic or -dynamic pressure will instantaneously soar and lead to

structural deformation so the relation between fluid and structure should be

examined.

• Submergence induced by current drag [3]

When a cage is subjected to a current, the net will generate a drag force that

will be loaded on the mooring system. The buoys of the mooring system are

subjected to a resulting downward pull generated by the cumulative effect of

loads on the bridle - floater to buoy (See Figure 1.2) - and mooring line. This

4



downward load is contrasted with the upward buoyancy. If the buoys are too

small, buoyancy will be less than the downward load, and the buoy and the

cage collar will become submerged in strong current conditions.

• Net integrity failure

There are a number of reasons to cause net integrity failure, for example, ex-

cessive shear stress, predator bite, caged fish bite, rope knotting failure.[3] This

means a penetration through the net, which allows fish to escape.

Some of these failures or resultant damages cannot be handled by a simple engineer-

ing tool and theory especially when the consequences of the accidental events should

be investigated in a precise way. For example, non-linear wave structure interaction

could play a role in some failure modes including direct damage and wave overtopping

amongst those of the mentioned above.

1.3 State of the Arts

There is a limited number of literature that has dealt with dynamic behaviour of

aquaculture collar structure while considering the non-linearity from the resultant

behaviour of the structure by the exerted forces and stresses.

Huang, Tang and Liu [10] analysed net and mooring lines as a flexible body using

a lumped mass method but did not consider collar structures. Xu et al.[24] carried

out physical experiment and numerical analysis. They used a torus collar model with

linear wave but they did not study any interaction between fluid and structure.

Kristiansen and Faltinsen [17], studied both numerical analysis and physical exper-

iment. In addition, they used a more sophisticated model including collar, net, and

mooring line. They found a significant load increase due to wave overtopping in longer

and steeper wave. They introduced a modal theory to represent bending stiffness and

hydrodynamic nonlinearity. But, they did not directly use flexible body analysis.

Fredriksson and Tsukrov[21] [7] [6] constructed a methodical numerical modelling

which incorporated the finite element method (FEM), particularly, the equivalent

truss method solved by a Newmark method. Regarding the environmental load, they

used a wave spectrum representing a storm case and employed the Morrison equation

for hydrodynamic forces to apply on the elements. Instead of using CFD, they ap-

plied hydrodynamic coefficient for the equation of motions and Morrison’s equation

for hydrodynamic force calculations.
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1.4 Objectives

In this thesis, the idea of using flexible body in a numerical model will be examined

and validated with reliable sources. It is suggested under the circumstances where

diverse failure mechanisms would drive structural failure, particularly induced by

nonlinear wave actions. The idea itself is not supported by using either a rigid body

analysis or the potential theory or a combination of them. Thus, a beam model using

the finite element method is dedicatedly constructed which can be integrated into a

Computational Fluid Dynamics (CFD). This could give an insight from a different

perspective than existing studies while pinpointing the nonlinear interaction between

fluid and structure.

The objectives of this thesis is to build the basis for modelling the fluid-structure

interaction between aquaculture collar structure and the surrounding fluid in waves

and currents by using a finite element (FE) model for the collar and the open source

CFD code, REEF3D, for solving the surrounding fluid. For this purpose, some of

input parameters and their effects can be assumed to be negligible in case they do

not play a significant role in achieving this objective.

There might be a question about the development of a new code since several open

library of finite element method exist. The thesis work is, however, a part of an

ambitious project where the application could extend to higher order scheme compu-

tation to accommodate other structural models and to construct whole aquaculture

structure models eventually.

1.5 Terminology

Common terminologies within the thesis are summarised below:

• Accuracy

The level of closeness or agreement to the exact (analytic) solution for a numer-

ical scheme. In order for a numerical scheme to be accurate, the scheme simply

should not introduce numerical damping too much. In this sense, higher-order

methods are generally less stable but more accurate. Thus, an appropriate

balance between stability and accuracy needs to be found.

• Integration error

For structural analysis, Bathe [1] defined the errors in integration can be mea-

sured in terms of period elongation and amplitude decay compared to the exact

solution. In this thesis, therefore, a phase error is defined by the average period

elongation among multiple oscillations in a transient solution and the amplitude

6



error is defined by maximum amplitude decay among these oscillations. When

these errors are presented by percentage, the error-to-reference value ratio is

used where the reference value is the exact solution and the error is presented

in the absolute value.

• Consistency

A relation between a numerical scheme and a differential equation. The numer-

ical scheme is consistent if the error converges to zero as ∆t → 0.

• Convergence

The solution of the numerical scheme converges towards the exact solution of a

differential equation for ∆t,∆x → 0.

• Stability

A stable method should not diverge over time. For example, an error caused

by a small perturbation in the numerical solution would not be regarded as

unstable.
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Chapter 2

Numerical model

As addressed in Chapter 1, this thesis deals with the subjects concerned structural

problems and interactions with surrounding fluid. Some of these problems and dam-

ages cannot be handled by a popular engineering method and tool such as potential

theory and rigid body analysis, which is relatively simple to follow. Due to the lim-

itation of the compatibility of these methods and tools, however, CFD and finite

element analysis are used in this thesis to tackle those problems that include atypical

characteristics such as nonlinear interaction.

2.1 Structural Model

A structural model eventually will be solved using the equation of motions for 3-

dimensional (”3-D”) beam model. The following features and those explanations will

comprise a structural solver and determine the capability of the solver.

2.1.1 Governing equation

A floating collar is modelled by a flexible body composed of by a finite number of

elements. Consulting ANSYS BEAM object definitions [16] [25], both bending and

shear stress are importantly considered in a beam model. Both elongation and tor-

sion are considered with respect to the axis of the beam model. ”BEAM” specifically

stands for a type of ANSYS object, whereas the model developed to analyse here is

called by ”beam” model.

The governing equation for dynamic behaviour for the beam model is identical to an

equation of motion for a mass-spring system.

The structural solver that this Chapter explains will solve this following equation:
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!
M

"
ü(t) +

!
K
"
u(t) = F(t) (2.1)

Where, K is a stiffness matrix and M is a mass matrix. u(t) is a displacement vector

as a function of time and F(t) is a time-varying force vector. The dimensions of

matrices and vectors are determined by the number of elements and the dimension

of the beam model, e.g. 2-D or 3-D.

In the governing equation of the thesis, Equation 2.1, a hydrodynamic damping term

is neglected at this moment for the simplification of the model. If required, the damp-

ing term can be determined by hydrodynamic damping coefficients with respect to

the six degree of freedoms e.g. surge, sway, heave, roll, pitch, and yaw, generally

obtained by free-decaying tests.

2.1.1.1 Displacement vector

The 3-dimensional beam has six degree of freedom per node. Thus, a single element

has twelve degrees of freedom in total. That is why 12 components are assigned for a

displacement vector in Equation 2.2, where each n-th component of the displacement

vector denotes each numbered axis in a local coordinate system as shown in Figure

2.1. Either columns or rows of the matrix K or M for one element follow the same

numbering in terms of the order of components with those of Figure 2.1.

In short, the numbers in the Figure 2.1 stand for the n-th components in an element

ZL
YL

!ZG

XG
YG

Global

Local

XL
"

#

Figure 2.1: The local and global coordinate system for an element

displacement with respect to the local coordinate system. The superscript e in Equa-

tion 2.2 means ”element” so each element has its own displacement vector. Thus, the
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rotation matrix is introduced to transform from the orientation of the local coordi-

nate system to the orientation of the global coordinate system as shown in Equation

2.3. Here, the rotation is made by such a linear operator so the rotation preserves

the origin of the rotation. In other words, the magnitudes of the position vectors are

preserved even after they have been transformed.

ue =

#
$$$$$$$$$$$$$$$$$$$$%

$$$$$$$$$$$$$$$$$$$$&

uxi

uzi

uyi

θxi
θyi
θzi
uxj

uyj

uzj

θxj
θzj
θyj

'
$$$$$$$$$$$$$$$$$$$$(

$$$$$$$$$$$$$$$$$$$$)

−→ linear displacement in x direction for node i

−→ linear displacement in z direction for node i

−→ linear displacement in y direction for node i

−→ angular displacement (torsion) for node i

−→ angular displacement in z direction for node i

−→ angular displacement in y direction for node i

−→ linear displacement in x direction for node j

−→ linear displacement in z direction for node j

−→ linear displacement in y direction for node j

−→ angular displacement (torsion) for node j

−→ angular displacement in z direction for node j

−→ angular displacement in y direction for node j

(2.2)

In this particular case, the local coordinate makes use of right-handed coordinate

system while the global coordinate employs the left-handed coordinates. Indeed, it has

nothing to do with final results no matter which coordinate system is chosen. Here as

shown in Figure 2.1 the angles α,β, and γ stand for angles between a local coordinate

system and the global coordinate system in x, y, and z direction, respectively.

RZRYRX =

*

+
cosγ −sinγ 0

sinγ cosγ 0

0 0 1

,

-

*

+
cosβ 0 sinβ

0 1 0

−sinβ 0 cosβ

,

-

*

+
1 0 0

0 cosα −sinα

0 sinα cosα

,

-

=

*

+
cosγcosβ −sinγcosα + cosγsinβsinα sinγsinα + cosγsinβcosα

sinγcosβ cosγcosα + sinγsinβsinα −cosγsinα + sinγsinβcosα

−sinβ cosβsinα cosβcosα

,

-

(2.3)
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2.1.1.2 Mass matrix

According to a ANSYS document [16] and Yokoyama [25], a mass matrix for one

element is constituted up by the components below:

!
ML

"
= Mt

.

/////////0

1/3
0 Az
0 0 Ay Symmetric
0 0 0 Jx/3A
0 0 −Cy 0 Ey

0 Cz 0 0 0 Ez

1/6 0 0 0 0 0 1/3
0 Bz 0 0 0 Dz 0 Az
0 0 By 0 −Dy 0 0 0 Ay

0 0 0 Jx/6A 0 0 0 0 0 Jx/3A
0 0 Dy 0 Fy 0 0 0 Cy 0 Ey

0 −Dz 0 0 0 Fz 0 −Cz 0 0 0 Ez

1

2222222223

(2.4)

where, Mt = (ρA+m)L(1− &) [kg],

A = cross-section area of element [m2], L = the length of element [m]

ρ = the density of element material [kg/m3]

m = added mass per unit length [kg/m], & = prestrain [−]

Here, the added mass, m, and the prestrain, &, were assumed to be zero for the

purpose of this thesis described in Section 1.4.

A(r,Φ) =
13
35

+ 7
10

Φ+ 1
3
Φ2+ 6

5
(r/L)2

(1+Φ)2

B(r,Φ) =
9
70

+ 3
10

Φ+ 1
6
Φ2− 6

5
(r/L)2

(1+Φ)2

C(r,Φ) =
( 11
210

+ 11
120

Φ+ 1
24

Φ2+( 1
10

− 1
2
Φ)(r/L)2)L

(1+Φ)2

D(r,Φ) =
( 13
420

+ 3
40

Φ+ 1
24

Φ2−( 1
10

− 1
2
Φ)(r/L)2)L

(1+Φ)2

E(r,Φ) =
( 1
105

+ 1
60

Φ+ 1
120

Φ2+( 2
15

+ 1
6
Φ+ 1

3
Φ2)(r/L)2)L2

(1+Φ)2

F (r,Φ) =
−( 1

140
+ 1

60
Φ+ 1

120
Φ2+( 1

30
+ 1

6
Φ− 1

6
Φ2)(r/L)2)L2

(1+Φ)2

Az = A(rz,Φy) Ay = A(ry,Φz)

Bz = B(rz,Φy) By = B(ry,Φz)

...

Fz = F (rz,Φy) Fy = F (ry,Φz)

Φy =
12EIz

GAzL
2 [−] Φz =

12EIy

GAyL
2 [−]
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where, Φ : Shear deformation parameter [25],

ry =
4

Iyy

A
[m] : radius of gyration with reference to y-axis of a cross section in case of a beam

rz =
4

Izz

A
[m] : radius of gyration with reference to z-axis of a cross section in case of a beam

2.1.1.3 Stiffness matrix

A stiffness matrix, K, whereas, is composed of the following components.

!
KL

"
=

.

/////////0

AE/L

0 az
0 0 ay Symmetric
0 0 0 GJ/L

0 0 dy 0 ey

0 cz 0 0 0 ez

−AE/L 0 0 0 0 0 AE/L

0 bz 0 0 0 dz 0 az
0 0 by 0 cy 0 0 0 ay

0 0 0 −GJ/L 0 0 0 0 0 GJ/L

0 0 dy 0 fy 0 0 0 cy 0 ey

0 cz 0 0 0 fz 0 dz 0 0 0 ez

1

2222222223

(2.5)

where, E = Young’s modulus [N/m
2],

G = Shear modulus = E

2(1+PR)
[N/m

2],

PR = Poisson’s ratio [-],

J = torsional moment of inertia =

5
Jx if Ix = 0

Ix if Ix ∕= 0

6
[m4]

ay = a(Iy,Φz),

bz = b(Iz,Φy),

...

fy = f(Iy,Φz),

fz = f(Iz,Φy),

and where,

a(I,Φ) = 12EI

L3(1+Φ)
b(I,Φ) = − 12EI

L3(1+Φ)
c(I,Φ) = 6EI

L2(1+Φ)

d(I,Φ) = − 6EI

L2(1+Φ)
e(I,Φ) = (4+Φ)EI

L(1+Φ)
f(I,Φ) = (2−Φ)EI

L(1+Φ)

Φy =
12EIz

GAzL
2 [−] Φz =

12EIy

GAyL
2 [−]

In case the number of elements is extremely small, the shear deformation param-

eter Φ → 0, since GAL
2 ≫ 12EI , Φy and Φz → 0. Here is the example calculation

if the collar is modelled of either steel or HDPE, where the floater pipe diameter is
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Table 2.1: Material properties for steel and HDPE

unit Steel HDPE

G Pa = N/m
2 7.692e+ 10 6.897e+ 7

PR - 0.3 0.45
E Pa = N/m

2 2e+ 11 2e+ 8

Table 2.2: Φ value with respect to the number of element (Total Length = 180 m)

n=30 n=60 n=90

Steel HDPE Steel HDPE Steel HDPE
L[m] 6 6 3 3 2 2
Φ 2.41e-02 2.68e-02 9.62e-02 1.0e-01 2.16e-01 2.41e-01

assumed to 0.5 m and the thickness of the pipe is 30 mm. Assuming that the total

length of the structure to be calculated is 180 m, and the number of elements can

vary with 30, 60, and 90.

As the length of an element decreases and the number of elements increases, e.g. 2

m and n= 90, however, Φ value is way greater than those of longer element lengths’

cases. Thus, the shear deformation cannot be disregarded in this application.

An application case in the thesis requires at least 30 elements considering the rep-

resentation of torus shape. Accordingly, Φ parameter is around 2.7 % in case the

number of element is 30. As the number of element increases e.g. 90, a gravity effect

would play a role in deformations since shear deformations account for a significant

portion of total deformations.[25]

2.1.1.4 Force vector

Pel fnj
qel

fni

i j

Figure 2.2: Element forces and nodal forces under vertical loading
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Force vectors, F , are calculated by a shape function as described below for relevant

component to a vertical load. The vectors superpose the multiple loads such as nodal

loads, fn, element point loads, Pel and element distributed loads, qel, and transform

eventually into equivalent nodal loads in both ends (nodes). In order to do so, each

summation over the equivalent nodal loads is applied for respective corresponding

components. Equation 2.6 shows an example in case of a combination of multiple

vertical loads are only applied.

7
FL

8
=

9
Pel + qel: ;< =
element force

+ fn:;<=
nodal force

>
=

#
$$$$$$$$$$$$$$$$$$$$%
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2
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1
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0
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$$$$$$$$$$$$$$$$$$$$)

(2.6)

where, qel is an evenly distributed load along an element, Pel means a point load ap-

plying on midspan of the element. fn is a point load exerting on a node. The reason

why only 2nd, 6th, 8th and 12th components are non-zero is that only vertical com-

ponents (z− direction in local coordinate) of the load are applied here. If there are

horizontal (x− direction in local coordinate) or lateral (y− direction in local coordi-

nate) components for an applying load, other vector components should be non-zero

by the definition of the force vector.

The terminology ”force” is commonly used for both external force and internal force

in structural analysis. Still, the forces mean external forces, which is simultaneously

called ”load” in this matter. In the thesis, hydrodynamic loading can be discretized

by a form of element point load and then transformed into equivalent nodal load for

matrix calculations.

2.1.1.5 Assembling of matrices

To solve the equation of motion, transformations in a global coordinate system are

prerequisite due to that there are finite number of respective local coordinate systems

co-exist. Accordingly, it is compulsory to assemble M and K matrices into the global
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coordinate. It enables analysers to calculate finite number of elements at a time by

inverting matrices in static analyses and by numerical integration in dynamic analy-

ses.

While the element-wise matrices are assembled, the components for the same node

from different matrices are summated by superposition. Thus, Figure 2.3, where the

overlapped areas in matrices mean summations over the components from different

element-wise matrices, illustrates how the assembled matrix looks if elements are

linked up either in a way of being unclosed or enclosed.

Once the equation is solved, one will find the result value in a form of global dis-

placement vector which can be decomposed by a finite number of element-wise dis-

placement vectors. The dimension of the global displacement vector is determined by

the total degree of freedom of the corresponding numerical model. As illustrated in

Figure 2.3, an enclosed type of beam model has less degree of freedom in total than

an unclosed types of beam model does. That is because the first element and the last

element have been coupled in the former during assembling the M and K matrices.

Here in the thesis, an enclosed type of beam has been used.

! =

!#

!$

!%

!&

' =

'#
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'%

'&

[#] [$] [%] [&]

! =
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!&

' =

'#

'$

'%
'&

[#]

[$]

[%]

[&]

'&

'&

'& !& !&

!&

Unclosed beam

Enclosed beam

Figure 2.3: Assembling of M and K element-wise matrices

2.1.2 Material properties

A beam model imitating collar structures has been assumed to have a torus or a

ring shape on overall and a circular cross-section. In fact, the cross-section of the

beam mostly has a hollow part inside, like a cross-section of a pipe. According to a

report for aquaculture structure manufacturing [3], some of pipes can be filled with

polystyrene inside to ensure that the cage afloat even if the pipes become damaged

and flooded. In the numerical model, this high reserve buoyancy is not modelled
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for the simplicity. Instead, a hollow section inside - a very low density - has been

compensated with an effective material density of the total volume. A pipe element

is assumed to be submerged by the radius of its outer circle of cross section as shown

in Figure 2.4 because other parts of aquaculture structure have not been involved in

the numerical model. e.g. net, mooring lines, or handrails. That is the reason why

the effective density has been introduced for the material density.

However, this does not mean the density of floating structure requested by REEF3D

should be identical to this effective density. That is because the effective density is

introduced to reflect the state of being afloat and the thickness of the material which

determine the moment of inertia of the cross section resulting in the corresponding

stiffness. Consequently, the applicable densities of the material should be different

in two solvers since the fluid solver does not take the thickness of the element into

account. The effective density can be derived as the submerged volume is assumed

Buoyancy = "# $%&'()*+,*-

Gravity = "./01 $%2345

= "# $
1
2 %

= 89:: ;<=>?@

"# = 1025	
D$
EF , "./01 = 950	

D$
EF

Figure 2.4: Effective density

to be a half of the intact cylinder volume with a outer diameter:

ρeff = ρw
V

2VHDPE

= ρw
πR2

o
L

2π(R2
o
−R

2
i
)L

=
ρwR

2
o

2(R2
o
−R

2
i
)

(2.7)

Where, Ro: outer radius, Ri: inner radius, V : intact cylinder volume, VHDPE: HDPE

pipe volume, Vsubmerged : Submerged volume = a halved intact cylinder volume

2.1.3 Meshing

There are three meshing processes during the entire analysis of the thesis work. First

one is required to solve the structural analysis i.e. finite element analysis. Thus, each

element can be regarded as a mesh here, where the mesh is cut perpendicular to the

longitudinal axis of the beam like BEAM object is in ANSYS, specifically BEAM3 or
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BEAM4 objects, as illustrated in Figure 2.5. This mesh is rather called by “element”

not to confuse with other mesh processes.

Secondly, a meshing is required to transfer data to fluid solver. A STL (stereolithog-

Figure 2.5: ANSYS BEAM Object and meshes i.e. 5 elements

raphy) file format is used for this data exchange and a triangular type of mesh is

needed here, constituting a surface. Figure 2.6 shows a plot from a STL format that

is used in the meshing process.

Lastly, the fluid solver requires a meshing of calculation domain as well. The follow-

Figure 2.6: A STL format output and triangular meshes

ing chapter will handle this.

2.1.4 Boundary condition

There is no fixed point vertically in a floating collar model when the vertical loads

only apply. In case horizontal or lateral load apply e.g. current load, however, a fixed

point should be defined in order to prevent the model being drifted.
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2.1.5 Time integration : Newmark Method

For the time integration of the numerical computation to solve the dynamic beam

equation, the Newmark method is adopted for the structural solver. The method

is introduced by Newmark in 1959.[1] Newmark method is one of proper numerical

schemes for the purpose of thesis in that the scheme is second order, popular in fluid-

structure interaction. [1] Above all, it is an implicit method in that the scheme is

always stable regardless of time step sizing. Newmark was originally proposed the

scheme as an unconditionally stable scheme, where δ = 1
2
, α = 1

4
as shown in Equa-

tion 2.8. However, the scheme can have unstable condition if it employs different

trapezoidal parameters of δ and α.

To be noted here is that any numerical solution has its own accuracy whether it is

implicit or explicit. That is why a thorough preparation should be implemented for

setting input parameters, e.g. time step, corresponding a numerical scheme. Regard-

ing a higher accuracy in general, the following Section 2.1.5.3 will explain more.[1]

2.1.5.1 Definition

From Bathe’s definition [1], the numerical scheme can be described by the objective

where one needs to find the acceleration vector for a new time step. Thus, a kinds

of numerical technique is required to deal with this because the scheme is implicit

so still there are unknown arguments in the right hand side in Equations 2.8, e.g.

Üt+∆t. That is the reason why so-called ”effective stiffness matrix” and ”effective

load” should be introduced. Therefore, the new displacement can be found first and

then the new acceleration can be evaluated later on.

u̇t+∆t = u̇t + [δüt+∆t + (1− δ)üt]∆t

ut+∆t = ut + u̇t∆t+ [αüt+∆t + (
1

2
− α)üt]∆t

2
(2.8)

Where, the trapezoidal parameters, δ = 1
2
and α = 1

4
.

2.1.5.2 Application

To construct this method in a practical computation, integration constants should be

introduced:

a0 =
1

α∆t2
; a1 =

δ

α∆t
; a2 =

1

α∆t
; a3 =

1

2α
− 1;

a4 =
δ

α
− 1; a5 =

∆t

2
(
δ

α
− 2); a6 = ∆t(1− δ); a7 = δ∆t;

(2.9)
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The effective stiffness matrix can be derived as:

K̂ = K+ a0M (2.10)

Where, stiffness matrix K and mass matrix M. And, the effective loads at time t+∆t

can be calculated by:

F̂t+∆t = Ft+∆t +M(a0ut + a2u̇t + a3üt) (2.11)

Solving for displacement at the new time, t+∆t,

ut+∆t = K̂−1F̂t+∆t (2.12)

Accordingly, accelerations and velocities at time t+∆t can be calculated by:

üt+∆t = a0(ut+∆t − ut)− a2u̇t − a3üt (2.13a)

u̇t+∆t = u̇t + a6üt + a7üt+∆t (2.13b)

2.1.5.3 Time step

The Newmark scheme is implicit that is why the scheme has no restriction on the

time step size, however, the schemes is not always accurate compared to exact solution

as mentioned above. According to Bathe [1], while using an unconditionally stable

operator like the Newmark method, the time step has to be chosen to yield an accurate

and effective solution. According to Bathe[1] and Kleiven [15], it is generally suggested

that a required time step for each element is dependent on the stiffness, in terms of

elastic modulus (E), the characteristic length (L), and the density of each element.

Here, the time step implies the time it takes for the sound to pass the smallest element

(or element side) in the model. However, this time step cannot be regarded as an

crucial requirement in this thesis but considered as a reference.

∆t <
L

c
(2.14)

where, c2 = E

ρ
and the characteristic length, L= length of the smallest beam element

in case of beam object. Apperently, c= the speed of sound in a material.

Wiebe and Stanciulescu [23] studied inconsistent stability of Newmark’s method in

structural dynamics applications, where the method implies Newmark family. The

term ”family” accounts for more general expression of the scheme, in which δ and α

can vary in some applications. In order to check the stability of these applications,

the approximate time step check can be used. e.g. ∆t <

?
−1/ω2

0α , where ω2
0 is
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function Cal_FEM

FECase declaration/definitions
Key parameters input

function Initialise_FECase

function eqL

function Newmark

function Assemble_K

function Assemble_M

function Plot_collar

MATLAB 
built-in function

Structural solver

floating_i.stl**
load.txt / Force.txt

R_mat

R_mat

R_mat*
eqL*

*) for time variant load only   
**) for each time step

GetMeshPoint
convhulln
patch

triangulation
stlwrite

Figure 2.7: The structural solver work flow and functions

most negative (unstable) eigenvalue of a mass-spring system.

2.1.6 Structural solver work flow

The structural solver comprises several functions newly written and built-in functions

from MATLAB library. The all the codes used for these functions are found in Ap-

pendix A. The following explains briefly what happen in each step of the work flow

as illustrated in Figure 2.7.

• Key parameters input

By using class definition in MATLAB, each calculation case will be handled as

an individual class object. The class type object is called ”FECase” here. Before

setting-up one case, there are important input parameters to be defined such as

21



a cross section diameter, a collar diameter, the dimension of beam model, e.g.

2-D or 3-D beam, and the simulation end time.

• Initialise FECase function

This function basically sets up required parameter to perform the specific cal-

culation. A number of variables are initially defined and set to zero if required.

Both element-wise K and M matrices are defined here.

• Assemble K function

Each local stiffness matrix is assembled in this function. In order to perform this

operation, a transformation of coordinate system is required in advance since

every element will have its own orientation angle, considering circular type of

collar structure.

• Assemble M function

Element-wise mass matrices should also be assembled in the same manner as

the stiffness matrices. In case of static analysis, these matrices are ignored.

• Cal FEM function

This function comprises calculation parts of beam transient analysis. First of

all, equivalent load should be identified and then the numerical scheme applies

to the parameters to be calculated.

• eqL function

The function introduces equivalent nodal loads from the results of shape func-

tion in case either a point load on midspan or a distributed along the beam.

To be noted here is that this calculation case only assume vertical loads. Thus,

this function should be updated if horizontal and lateral loads are concurrently

considered.

• Newmark function

This function includes a core part of this structural solver. Variables of func-

tions can be a local type of variables for more flexibility in verifications and

validations. If one has functional loads to be applied, which means time-variant

loads, the loads should be defined within this function. However, constant load

can be defined in the main body m-file, the outside of this function.
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In order to check the input values, load data can be printed out this stage with

respect to each node and time step. Forces and stresses are also tabulated for

every nodes and time step.

• Plot collar function

This function performs several features. Firstly, the snapshots of collar struc-

tures can be found here and can be saved in the GIF format. Secondly, trian-

gular meshes are identified and visualised. Lastly, triangular mesh data can be

exported in a STL format.

• R mat function

As Figure 2.7 illustrated, this function is used in other functions like Assemble M

or Assemble K and Newmark. This rotation can be explained by multilinear ro-

tation where an origin of rotation has been preserved. Here, n × n matrix is

introduced which is called ”Rotation matrix”. This matrix is orthogonal so the

determinant of the matrix becomes 1.

• GetMeshPoint function

A beam element inherently does not have volume but have axis vectors, which

are solely 3-dimensional here, and cross section information. In this sense, some

says the beam object in finite element method is regarded as 1-dimensional since

meshing always takes place perpendicular to the axis vectors. In a 3-dimensional

coordinate system, therefore, additional particular meshing is required to trans-

fer the geometrical data to the fluid solver. In order to do that, this function

defines position vector of the axis of each element. Then, two perpendicular

vectors should be found to this (axis) position vector. By means of Rodrigues

rotation, one could identify transformed point vectors with reference to the axis

vector. By default, this function provides 16 mesh point per node, which is

hard-coded.

• Output files

To be noted is that STL format files are produced with a certain time interval.

Apparently they can be printed out for each time step. Whereas, a load data

file and forces/stresses data file contains the values for all the time steps.
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2.2 Fluid Model

In this study, the open source CFD solver REEF3D is used to solve the governing

equation of a fluid model. This section deals with the basic concepts of the compu-

tational methods employed in REEF3D.

REEF3D is an open-source CFD program developed at the Department of Civil and

Transport Engineering with special focus on solving problems in the field of marine,

coastal and ocean engineering, for example, the applications such as numerical wave

tank, wave forces, breaking waves, floating body and open channel flow. It has been

validated for a wide range of marine applications which are relevant for this thesis.

[2] [14] From these studies the code showed a good agreement with experiments for

the fluid and structure.

In particular, fluid flow problems with structures accompany non-linear effects due

to wave steepness, non-linear wave-wave and wave-structure interactions. [13]

REEF3D employs the fifth-order WENO scheme for convection discretization and the

level set method for obtaining a realistic representation of the free surface. These such

a advanced numerical techniques - higher order discretization and the sharp represen-

tation of the free surface - enable users to achieve a more accurate modelling of waves.

The model describes the flow using incompressible RANS equations [4]. Turbulence

is modelled with the two-equation k − ω model.

2.2.1 Reynolds-Averaged Navier Stokes Equations (RANS)

2.2.1.1 Governing equations

To describe Computational Fluid Dynamics (CFD) simply, solving the RANS equa-

tions matters. The equations are derived from the continuity equation and the con-

servation of momentum equation under the assumption of an incompressible fluid.

The RANS equations provides a description of fluid flow:

∂vi
∂t

+ vj
∂vi
∂xj

= −1

ρ

∂p

∂xi

+
∂

∂xj

@
ν

5
∂vi
∂xj

+
∂vj
∂xi

6A
+ gi (2.15)

where, v is the velocity averaged over time t,

ρ is the fluid density, p is the pressure,

ν is the kinematic viscosity and g is the gravitational acceleration.

i, j are one coordinate direction and one another of a quantity varying.
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where, i is the direction to which the gravitational force applies, in particular.

2.2.1.2 Solution to Navier-Stokes Equations : Projection Method

In order to solve Equation 2.15 one of important things to consider is to treat a

non-linear term in the equation. Since Navier-Stokes equations are derived from the

continuity equation and momentum conservation equation, it is inevitable to obtain

a non-linear term in the equations.

The left hand side of Equation 2.15 has a set of convection terms while it has a

diffusive term and source terms in the right hand side. However, there is no defini-

tion for the evolution of the pressure with respect to space. Thus, it is not possible

to obtain even a numerical solution directly because one can not determine the pres-

sure at the next grid point. Alternatively, the numerical model REEF3D offers some

techniques for the treatment of the pressure term such as Projection Method.

∂(v∗ − v
n

i
)

∂t
+ v

n

j

∂vn
i

∂xj

=
∂

∂xj

@
ν(φn)

5
∂vi
∂xj

+
∂vj
∂xi

6A
+ gi (2.16)

In the method proposed by Chorin [5], an intermediate velocity field is first obtained

by ignoring the pressure gradient. A starting point is to consider the time-discrete

RANS equations using a forward Euler scheme without pressure terms. Thus, it will

explicitly obtain the solution vn+1 at time tn+1 from the solution of the previous time

step vn. One of the advantages of using this method is that the first step decouples the

velocity and pressure field and computes an intermediate velocity field v
∗
i
by omitting

pressure gradient terms.

In the second step, the pressure can determine the velocity at time step n + 1 since

the equation has been decoupled as described in the previous step.

∂(vn+1
i

− v
∗
i
)

∂t
+

1

ρ(φn)

∂pn+1

∂xi

= 0 (2.17)

To solve Equation 2.17, one needs to know the pressure term because the term is still

unknown. Here is called Poisson pressure equation by which one can calculate the

pressure term. The formula is in the following:

∂

∂xi

5
1

ρ(φn)

∂p

∂xi

6
=

1

∆t

∂v∗
i

∂xi

(2.18)

Then, the pressure value obtained from Equation 2.18 can be used in Equation 2.17

and eventually the velocity at the new time step can be obtained.
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2.2.2 Spatial discretization

As mentioned in Section 2.2.1.2 the RANS equations comprise convective, diffusive

and source terms. These terms need to be discretized first in order to solve the

equations numerically. There are few schemes using finite difference in space such

as First Order Upwind, Central Difference Scheme, Sharp and Monotonic Algorithm

for Realistic Transport (SMART) and Weighted Essentially Non-Oscillatory (WENO)

Scheme. The following paragraph will explain WENO scheme, employed by REEF3D.

WENO is a non-oscillatory scheme therefore, it can be applied especially for a calcu-

lation where a higher stability is required with minimum risk. This method allows ro-

bust solutions and permits higher-order solutions at a point where a dramatic changes

occurs in terms of physical quantities variation. This method fulfills the requirement

of no overshoots or oscillations as well.

The first ENO scheme is given by Harten [8]. The third and fifth-order finite dif-

ference WENO schemes in a multi space dimension were constructed by Jiang and

Peng [12], with a general framework for the design of the smoothness indicators and

the nonlinear weights. An example of the implementation of this scheme in the

Hamilton-Jacobi form to the level set function, φx in x-direction is presented as:

φx =

Bφ−
x

if vl > 0

φ−
x

if vl < 0

0 if vl = 0

(2.19)

Where, vl is the velocity at a location. The WENO approximation for a given level

set function is a combination of three possible approximations:

φ±
x
= ω1φ

1±
x

+ ω2φ
2±
x

+ ω3φ
3±
x

(2.20)

The three ENO stencils defined for φ are formulated below:

φ1±
x

=
q
±
1

3
− 7q±2

6
+

11q±3
6

;

φ2±
x

= −q
±
2

6
+

5q±3
6

+
q
±
4

3
;

φ3±
x

=
q
±
3

3
+

5q±4
6

− q
±
5

6
;

(2.21)

26



with,

q
−
1 =

φi−2 − φi−3

∆x
, q

−
2 =

φi−1 − φi−2

∆x
, q

−
3 =

φi − φi−1

∆x
,

q
−
4 =

φi+1 − φi

∆x
, q

−
5 =

φi+2 − φi+1

∆x

(2.22)

and,

q
+
1 =

φi+3 − φi+2

∆x
, q

+
2 =

φi+2 − φi+1

∆x
, q

+
3 =

φi+1 − φi

∆x
,

q
+
4 =

φi − φi−1

∆x
, q

+
5 =

φi−1 − φi−2

∆x

(2.23)

the weights are written as:

ω±
1 =

α±
1

α±
1 + α±

2 + α±
3

, ω±
2 =

α±
2

α±
1 + α±

2 + α±
3

, ω±
3 =

α±
3

α±
1 + α±

2 + α±
3

, (2.24)

and

α±
1 =

1

10

1

(&̃+ IS
±
1 )

2
, α±

2 =
6

10

1

(&̃+ IS
±
2 )

2
, α±

3 =
3

10

1

(&̃+ IS
±
3 )

2
, (2.25)

where, the regularization parameter, &̃ = 10−6 and the following smoothness indica-

tors:

IS
±
1 =

13

12
(q1 − 2q2 + q3)

2 +
1

4
(q1 − 4q2 + 3q3)

2
,

IS
±
2 =

13

12
(q2 − 2q3 + q4)

2 +
1

4
(q2 − q4)

2
,

IS
±
3 =

13

12
(q3 − 2q4 + q5)

2 +
1

4
(3q3 − 4q4 + q5)

2
,

(2.26)

2.2.3 Time discretization

REEF3D provides with the 2nd order Adam-Bashforth, the third order- Total Vari-

ance Diminishing (TVD) and the fourth order Runge-Kutta schemes as time integra-

tion methods for the purpose of a higher accuracy, as fluid properties change swiftly

with respect to the time. This study uses the third-order TVD Runge-Kutta scheme.

Third Order TVD Runge Kutta Scheme is an explicit 3rd order scheme which sup-

presses the oscillations of a numerical solution by controlling the local extrema [9].
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An example of a such implementation is[20]:

φ(1) = φn +∆tL(φn)

φ(2) =
3

4
φn +

1

4
φ(1) +

1

4
∆tL(φ(1))

φn+1 =
1

3
φn +

2

3
φ(2) +

2

3
∆tL(φ(2))

(2.27)

2.2.4 Turbulence modelling : k − ω Model

The k − ω model is a system of two-equation model based on the energy transport

equations. One of the variables transported is the turbulent kinetic energy, k and the

other one is the turbulent dissipation, ω. Then the eddy viscosity, νt is calculated by

using k and the ω.(Equation 2.30) The transport equations for k and ω are formulated

as :
∂k

∂t
+ vj

∂k

∂xj

=
∂

∂xj

[(ν +
νt
σk

)
∂k

∂xj

] + Pk − βkkω (2.28)

∂ω

∂t
+ vj

∂ω

∂xj

=
∂

∂xj

[(ν +
νt
σk

)
∂ω

∂xj

] +
ω

k
αPk − βω2 (2.29)

νt = cµ
k

ω
(2.30)

where, Pk is the production rate and the closure coefficients σk = 2, σω = 2,α =
5
9
, βk =

9
100

, β = 3
40
.

2.2.5 Free surface modelling : Level Set Method (LSM)

A large collection of fluid problems involve moving interfaces such as air-water dynam-

ics, breaking surface waves. In such applications, the interplay between the interface

dynamics and the surrounding fluid motion is complex, with factors such as density

ratios, temperature jumps across the interface, surface tension effects and boundary

conditions playing significant roles in the dynamics. The free surface of water is

modelled using a two-phase flow approach on a fixed Eulerian mesh. Aside from the

interface, the level set function is a signed distance function:

φ(−→x , t)

B
> 0 if −→x ∈ phase 1

= 0 if −→x ∈ Γ

< 0 if −→x ∈ phase 2

(2.31)

Level set methods are computational techniques for tracking moving interfaces. They

rely on an implicit representation of the interface whose equation of motion is numer-

ically approximated using schemes built from those for hyperbolic conservation laws.
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Thus, the level set function here in Equation 2.32 is coupled to the flow field with a

pure convection equation:
∂φ

∂t
+ vj

∂φ

∂xj

= 0 (2.32)

2.2.6 Wave generation

2.2.6.1 Linear wave theory

In 1845, George B. Airy established a theory describing the wave kinematics and

dynamics by using a first-order equation for surface gravity waves. According to this

theory, which is also known as linear wave theory or small amplitude wave theory,

continuity equation in Equation 2.34 will satisfy with Laplace equation if the ve-

locity potential, Φ, exists. Basically it has already been assumed that the fluid is

homogeneous, inviscid, incompressible and irrotational to hold continuity equation.

Horizontal and vertical velocities are denoted by v and w, respectively. (A general

case substitutes x and u for y and v, respectively)

∂Φ

∂y
= v,

∂Φ

∂z
= w (2.33)

∂v

∂y
+

∂w

∂z
=

∂2Φ

∂y2
+

∂2Φ

∂z2
= 0 (2.34)

To solve this Laplace equation, several assumptions and boundary conditions are

introduced. [18] First of all, the bottom of the water column with a limited water

dept is not permeable to the water, and therefore the vertical water velocity at the

bottom must be zero at all times. At the closed bottom, accordingly:

w(y, z = −h, t) =
∂Φ

∂z
(y, z = −h, t) = 0 (2.35)

From the physical condition where a fluid particle at the surface should remain at the

surface at all times, the following can be derived:

∂η

∂t
+ v

∂η

∂y
= w (2.36)

Another physical condition in terms of dynamic behaviour of free surface is repre-

sented by Bernoulli’s Equation. From this equation which deal with irrotational flow,

the following can be derived at the surface z = η:

∂Φ

∂t
+

1

2
(v2 + w

2) + gη = 0 (2.37)
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As mentioned above, there are additional assumptions to be considered to conclude

the wave kinematics and dynamics in the following:

• Small amplitude, i.e. amplitude to wavelength ratio is supposed to be much

smaller than 1

• Plane waves or long-crested (two-dimensional)

With these assumptions, those boundary conditions explained in Equation 2.35, 2.36

and 2.37 are linearized so that the variables can be summarised with respect to known

parameters. Therefore, η, Φ and the dispersion relation in Equation 2.40 are obtained

as follows:

η = asin(ωt− ky) (2.38)

Φ =
ag

ω

cosh(k(z + h))

cosh(kh)
cos(ωt− ky) (2.39)

ω2 = gk · tanh(kh) (2.40)

2.2.6.2 2nd order Stokes wave

2nd order Stokes wave is a way of representing non-linear waves. To tackle finite

amplitude waves, this theory uses second order approximation. Stokes developed

through the perturbation method to take into account the non-linear terms.

The second-order Stokes boundary value problem is governed by the Laplace equa-

tion in Equation 2.34 with both the kinematic and dynamic boundary conditions as

well. In addition to these, the lateral boundary conditions and initial conditions are

considered. Wave steepness is not used any longer in shallow waters to characterise

the non-linearity of the waves. Therefore, the theory is applicable to deep waters and

some range of intermediate waters. It formulates the wave characteristics in form of

a power series of H

λ
. The non-dimensional factor used in the power series are known

as the perturbation factor. Here, η, Φ, v and w can be described:

η = asin(ωt− ky) +
πH

8

H

λ

cosh(kh)(2 + cosh2kh)

sinh3(kh)
cos2(ky − ωt) (2.41)

Φ =
ag

ω

cosh(k(z + h))

cosh(kh)
cos(ωt− ky) +

3πcH

16

H

λ

cosh2k(h+ z)

sinh4(kh)
sin2(ky − ωt) (2.42)

where, c = ω
k

v =
∂Φ

∂y
= aω

coshk(z + h)

sinh(kh)
sin(ky+ωt)+

H

λ

3π2
Hsinh2k(h+ z)

4Tsinh4(kh)
cos2(ky−ωt) (2.43)
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Figure 2.8: Maximum Significant Wave Height in the North Sea on the Norwegian
Continental Shelf [22] (Sta. No. 3: 3.21E, 60.49N; 4:2.07E, 60.88N, 5:7.17E, 65.14N)

w =
∂Φ

∂z
= aω

coshk(z + h)

sinh(kh)
sin(ky+ωt)+

H

λ

3π2
Hcosh2k(h+ z)

4Tsinh4(kh)
sin2(ky−ωt) (2.44)

In this thesis, 2nd order Stokes waves are generated and used in numerical wave tanks.

2.2.6.3 Wave height

Generally a wave height to apply to the analyses is estimated based on preferably ac-

tual measurements since extreme wave loading could limit the design and determine

the dimension of structures. From a literature review [22], where actual measurements

were carried out for several stations in the Norwegian Continental Shelf, it is found

that the Station 3 and 4 are close to Bergen and the Station 5 is located in front of

Trondelag region, from both of which lots of aquaculture activities are ongoing.

Figure 2.8 is plotted based on regression data from the literature, e.g. maximum

significant wave height for 1 year and 100 years of return period, and an estimation

under the assumption that the maximum significant wave height follow Weibull dis-

tribution. e.g. the values for 10 and 50 years of return period.

Considering the regression trend line in the literature ended with year 1999 and the

wave values increase as the reference year goes by, there is an uncertainty by which

the reading as of 2019 can be overrated.

Another thing to consider is a return period. From a piece of information [3] about

the material lifetime of 50 years in HDPE’s case, the expected life time for aquacul-

ture structure is less than that and the life cycle for net structure is much less than
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that e.g. 4 to 6 years for nylon and 14 years for polyethylene terephthalate [3]. Thus,

30 years of return period is assumed to be a lifetime of a whole aquaculture structure.

As a result, it is assumed that 10 m of maximum wave height is probable considering

the life time of aquaculture structure and uncertainties in the prediction. Moreover,

it is a fact that stations in the article are farther offshore compared to popular aqua-

culture sites. Thus, this value will be used as an extreme case loading and it would

not be reasonable to employ a higher wave height than this. Also, 5 m and 0.6 m of

wave heights will also be presented as a more credible loading case. Therefore, three

wave height values will be used as input parameter of the presentation of the fluid

model.

2.2.7 Numerical Wave Tank

In order to design or analyse an ocean and coastal engineering problem, a numerical

wave tank (NWT) can be an useful tool as a part of a numerical model which can

be an alternative to physical modelling. Numerical wave tanks can work with diverse

ocean and coastal engineering structures or obstacles.

In this thesis, to elaborate the collar model set-up in a numerical wave tank, a 2-

dimensional horizontal cylinder is modelled and presented in advance. The detail

information about these preparations is found in Section 3.2.
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Chapter 3

Results

This thesis yields the results which comprise a set of validations for the structural

solver and a series of presentations for the fluid model with rigid body structures.

This chapter does not provide with any validation only for the fluid solver, because

a number of validations have already been carried out with this CFD code to verify

free surface flow and its effect on structure. [13] [19]

3.1 Validation of Structure Solver

For transient analysis, the dynamic equation in Equation 2.1 is numerically solved by

the Newmark scheme as mentioned above. The results between the structural solver

and a commercial tool have been compared in case the exact solution is not easily

derived.

From a chronological order of development of this solver, it is more logical and natural

that the static analysis should be checked prior to a validation the dynamic analysis

in order to make sure of element connectivity and stiffness matrix.

The following section explains 2-dimensional(”2-D”) beam model analysed by static

equation first and a comparison with examples from Bathe [1]. Lastly, dynamic

analyses for a 3-dimensional beam model have been validated with the results from

ANSYS Mechanical APDL 19.1, hereafter also referred as ”ANSYS”.

3.1.1 2 - dimensional beam model static analysis

This section explains about a static analysis. A simple formula below can summarise

what the analysis incorporates:

!
K
"
u = F (3.1)
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Table 3.1: Input parameter for 2-D Beam validation with exact solutions

Properties Unit Value

The number of element n - up to more than 30
Beam Object - - 2D
Element length L m 1.0

Point load P N 1000
Distributed load q N/m 100
Sectional Area A m

2 1
Bending Stiffness EI Nm

2 1e+ 3

where, u is a displacement vector along the corresponding domain.

K is a stiffness matrix and F is a force (or load) vector.

In order to find the displacement vector, the inverse matrix of K should be multiplied

to the left side of the force vector. However, the K is singular so this matrix is

not invertible. By means of Gauss Elimination - also known as row reduction or

row striking-, therefore, a part of the stiffness matrix becomes invertible so that the

displacement can be evaluated.

Input values used in this validation case are summarised in Table 3.1, where the values

are not realistic values.

3.1.1.1 Distributed load

In case a distributed load applies along with a beam, bound by one end, i.e. cantilever,

the exact solution of vertical displacements, w(x), can be derived in the following as

a function of x, horizontal distances:

w(x) =
q

24EI
x
2(x2 + 2L(3L− 2x)) (3.2)

EI: Bending stiffness in Nm
2,

q : Distributed load in N/m,

L : Length of the beam in m

In Figure 3.1a and 3.1b, exact solutions were compared to the numerical solutions by

the solution of the structure solver. The orders of error in these cases were 10−14 and

10−13 when the number of element, n, is 2 and 4, respectively.

In this load case, the amount of errors can be negligible. It implies that possibly the

error occurred due to computation limitation e.g. an error induced by round-off. To

conclude, the almost same value has been obtained by two different calculations by

34



the exact hand calculation and by the structural solver, for the distributed load cases.

(a) Distributed load (n=2) (b) Distributed load (n=4)

Figure 3.1: Distributed load on cantilever (Exact solution vs. Structural solver)

3.1.1.2 Point load at midspan

When a point load applies to the midspan of the cantilever beam, the exact solution

of the vertical deflection can be obtained by:

w(x) =
FL

2

24EI
(3x− L

2
) ,when x >

L

2
(3.3a)

w(x) =
Fx

2

6EI
(
3L

2
− x) ,when x <

L

2
(3.3b)

The order of errors in these cases might not be disregarded since they are maximum

2.2 % and 0.2 % when the number of element, n, is 3 and 9, respectively. This is

under the expectation because only errors occurred in the free end side - a half of

right hand side - from the location where the point load is applied. Thus, this is

certainly caused by the un-defined angle of the free end.

In case the number of element are even getting greater than 9, one can find the order

of error becoming smaller. Figure 3.3 shows that the magnitude of error becomes

exponentially smaller as the number of elements become larger.
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(a) Point load (n=3) (b) Point load (n=9)

Figure 3.2: Point load at midspan of cantilever (Exact solution vs. Structural solver)
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Figure 3.3: Convergence check for errors in point load at midspan case

3.1.2 Differential equations from Bathe

There are limited number of sources that one can refer to while validating the results

of the newly developed solver here in the study. Bathe [1] demonstrated the numerical

solution of few differential equations by Newmark scheme, which is thought as reliable.
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3.1.2.1 Decoupled two differential equations

The example case equation is described as below:

ü1 + 2u1 =
10√
3

ü2 + 5u2 = −10

C
2

3

(3.4)

This validation case is focusing on the numerical scheme itself rather than the finite

element method. Thus, the Newmark scheme were computed by this thesis work and

this plot is compared with the solution from Bathe, where ”Newmark by Sung” in

the legend of Figure 3.4 means the one developed for this thesis and ”Newmark by

Bathe” in the legend of the same figure stands for Bathe’s solutions.

Figure 3.4 shows a good agreement among the computed schemes and Bathe’s solu-

tion.
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Figure 3.4: Decoupled two differential equations

3.1.2.2 Coupled differential equations

Equation 3.5 described the coupled differential equations.
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2ü1 + 6u1 − 2u2 = 0

ü2 − 2u1 + 4u2 = 10 (3.5)

Figure 3.5 also shows that the computed numerical schemes have a good agreement

with Bathe’s computation by Newmark scheme.
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Figure 3.5: Coupled differential equations

3.1.3 Structural dynamic analysis

From the precedent sections a set of validations has proved the structural solver’s

accuracy and the capability to deal with ordinary differential equation as described

in Section 3.1.2. With respect to the performance for the structural dynamic analysis

aiming at structural dynamics of the collar, a 3-dimensional beam model is eventually

required to be validated. That is because the 3-dimensional model will be coupled to

the fluid solver and the data will be transferred in both ways between the fluid solver

and the structural solver for investigating fluid-structure interaction in future work.

Now, the validation work is concentrating on a 2-dimensional and 3-dimensional can-
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tilever case, 5 meter long and forced by either a point load at a free end or distributed

load along the beam.

Due to the fact that it is difficult to find a proper exact solution of 3-dimensional

beam dynamic analysis, a series of transient analysis were compared with the result

from a commercial code, ANSYS, varying a number of combination of input param-

eters such as time step and the number of elements.

This validation case is so ”stiff”, which means relatively high bending stiffness in a

physical context, EI ≈ 1e + 8 or 1e + 9. At the same time, it implies a high ratio

between the largest eigenvalue and the smallest one in a mathematical context that

is why a high frequent vibration is captured even though one pushes down the free

end of the cantilever beam steadily. In addition, a very small time step, e.g. 1e− 05

or 1e− 06, is required to obtain a reliable solution which fits the corresponding result

from ANSYS. As a result, these validations from the structural solver, denoted by

”MATLAB Newmark” in the legend, yields a good agreement in terms of amplitudes

and its phase within order of negligible level if one can choose a proper time step

associated with the number of element.

3.1.3.1 Input parameter

Table 3.2 summarises the input parameters that have been used in the validations.

*) BEAM3 and BEAM4 are objects from ANSYS

Table 3.2: Input parameter for validations with ANSYS

Properties Unit Value

Time steps ∆t s 1e-04, 1e-05, 1e-06
The number of element n - 5, 20, 60, 80

Beam Object - - 2D(BEAM3*), 3D(BEAM4*)
Total length L m 5.0
Diameter D m 0.2
Density ρ kg/m

3 7850
Point load P kN 0.1 or 1

Distributed load q kN/m 0.1
Shear Modulus G Pa = N/m

2 7.692e+ 10
Poisson’s ratio PR - 0.3
Sectional Area A m

2 0.0314
Young’s Modulus E Pa = N/m

2 2e+ 11
Area moment of inertia I m

4 7.854e− 3

In the following sections, errors from either 2 or 3 dimensional beam model valida-
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tions are tabulated where the both beams are either forced by a point load and a

distributed load. The number of element, n, plays a role of one variable since it

affects the accuracy.

The definition of error (or integration error) can be altered by the difference be-

tween two results from respective Newmark method e.g. by the structural solver for

this thesis work and by ANSYS since no available exact solution exists. When the

errors are presented, the ratios are calculated from the absolute errors over the corre-

sponding ANSYS results as a reference to make them be non-dimensionalised. Table

3.3, 3.4, 3.5 and 3.6 were tabulated to present errors in percentage.

3.1.3.2 Point load at 2-D Beam

In case of a point load applying at a free end of a 2-dimensional beam, a vibration is

captured as explained in Section 3.1.3. 100 N of the point load is applied and Figure

3.6 presents the vertical displacement with respect to simulation time. The beam

properties are stipulated in Table 3.2.
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Figure 3.6: Transient solution of the 2-D Beam with a point load (n=20)

Compared to Figure 3.6b, however, Figure 3.6a does not show a good fit between two

solutions by MATLAB and ANSYS in terms of the amplitudes and the phase errors.

However, the solution looks not unstable even though it is less accurate. In case the

number of element is 20, less than 1e-05 of time step would produce way accurate

results than any other longer time step cases.

Overall, the convergence against time steps has been observed since the accuracy

has improved as time steps are reduced. When the beam has a very limited number

of elements e.g. 5, however, the improvement of the accuracy for transient solutions
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is stagnated for even shorter time step than 1e-05 second as shown in 19% and 13%

for amplitude error and phase error, respectively.

Table 3.3: Summary of errors, 2D-Beam, Point load

Category n Error

Time step 1e-03 1e-04 1e-05 1e-06 1e-07
The number of time steps 1e+3 1e+04 1e+05 1e+06 1e+07

5 82% 17% 19% 19% 19%
Amplitude error 20 100% 39% 4% 4% 4%

60 100% 243% 2% 0%

5 42% 11% 13% 13% 13%
Phase error 20 462% 21% 1% 2% 1%

60 462% 105% 1% 0%
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Figure 3.7: Errors by the structural solver compared to ANSYS, 2-D Beam, Point
load

3.1.3.3 Distributed load along 2-D Beam

When a distributed load, 100 N/m, applies along the 2-dimensional beam, bound by

one end, e.g. cantilever, the global patterns of transient solution is similar to that

of point load case in Section 3.1.3.2. In general, the amounts of errors are slightly

greater than those of point load cases as shown in Table 3.4.

Table 3.4 and Figure 3.10 present the errors induced by the structural solver compared

to ANSYS results.
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Figure 3.8: Transient solution of the 2-D Beam with distributed load (n=20)
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Figure 3.9: Transient solution of the 2-D Beam with distributed load (n=60)

Table 3.4: Summary of errors, 2D-Beam, Distributed load

Category n Error

Time step 1e-03 1e-04 1e-05 1e-06 1e-07
The number of time steps 1e+3 1e+04 1e+05 1e+06 1e+07

5 102% 20% 21% 21% 21%
Amplitude error 20 100% 50% 3% 4% 4%

60 100% 322% 4% 0%

5 44% 11% 13% 13% 13%
Phase error 20 468% 22% 2% 2% 2%

60 468% 107% 2% 0%
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Figure 3.10: Errors by the structural solver compared to ANSYS, 2-D Beam, Dis-
tributed load

3.1.3.4 Point load at 3-D beam

A 3-dimensional(”3-D”) beam has inherently different properties such as 6 of the

number of degree of freedom per node while a 2-dimensional beam has 3 per node.

Input parameters for 3-dimensional beams are identical to those for 2-dimensional

cases as shown in Table 3.2.

Table 3.5: Summary of errors, 3-D Beam, Point load

Category n Error

Time step 1e-03 1e-04 1e-05 1e-06 1e-07
The number of time steps 1e+3 1e+04 1e+05 1e+06 1e+07

20 1878% 10% 9% 10% -
Amplitude error 60 1000% 154% 0% 3% -

80 - - - - -

20 417% 6% 7% 7% -
Phase error 60 417 74% 0% 1% -

80 - - - - -

Table 3.5 summarises integration errors produced by 3-D Beam structural dynamic

analyses compared with ANSYS analyses. One thing to be noted here is that the

minimum level of error, about 10% in amplitude, from all the number of time step

cases computed is greater than that of 2-D cases which is around 4%, comparing 20

of the number of elements.
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Thus, 3-D analyses are more likely to require such a sufficiently larger number of

elements in order for a certain case to be calculated. Surely, even with such that

number of element, the time step should be sufficiently small to conduct the case.

One thing to be noted in Figure 3.12 is that the best fit can be produced by a
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Figure 3.11: Transient solution of the 3-D beam with a point load (n=20)

computation with a more longer time step. One might think that it is strange when

even a smaller time step yields less accurate solution. That is because, however, it

might be more related to mode of vibrations. [1]
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Figure 3.12: Transient solution of the 3-D beam with a point load (n=60)
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3.1.3.5 Distributed load along 3-D Beam

Lastly, a distributed load along the 3-D Beam has been applied to validate the results

with the ANSYS results. Table 3.6 presents the summary of errors in this set of

validations.

Table 3.6: Summary of errors, 3-D beam, Distributed load

Category n Error

Time step 1e-03 1e-04 1e-05 1e-06 1e-07
The number of time steps 1e+3 1e+04 1e+05 1e+06 1e+07

20 2432% 14% 12% 12% 12%
Amplitude error 60 100% 204% 1% 3%

80 100% 304% 2% 2%

20 423% 7% 6% 6% 6%
Phase error 60 468 78% 0% 2%

80 468% 105% 1% 0%

One similar thing to point load cases is lower overall accuracy compared to that of 2-D

cases when one can be notified by looking up the case where the number of elements

is 20.

So far the validation with ANSYS results have been carried out. There is, however,
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Figure 3.13: Transient solution of the 3-D Beam with distributed load (n=20)

an uncertainty about the accuracy with respect to parameters like the time steps and

the number of elements. This uncertainty is induced by several features to make the

results of ANSYS more accurate, which might be set by default values, regardless of
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Figure 3.14: Transient solution of the 3-D Beam with distributed load (n=60)

these parameters. Nonetheless, to discover the reason in detail is not a purpose of

this thesis thus it is assumed that the result of ANSYS is sufficiently accurate by the

verification of those ANSYS results varying a number of elements.

3.1.4 Collar drop simulation

q(z,t) = Buoyancy(t) – Gravity  = "# $	&(()

A(z)+

-

x

Where, ( = (/ + (1
2

(/

(1

q(z,t)

Figure 3.15: Buoyancy and gravity force

In this section, vertical displacements from respective nodes can be captured by the

structural solver with respect to time. These series of simulations figure out how the
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model and actual structures behaviours would be alike. 1e − 03 s of time step is

used since HDPE material is less stiff than steel material. Here, buoyancy function

is defined and applied with gravity force to the right hand side of Equation 2.1 as a

time-variant force. Figure 3.15 and Equation 3.6 shows how the forces are calculated

by measuring the average draft of every element.

A(z) = 2R2(sin−1(
z

R
) +

1

2
sin(2sin−1(

z

R
))) (3.6)

Where, R : Outer radius of pipe, z = z1+z2

2
.

3.1.4.1 1m of initial displacement

In case all the nodes have the same initial displacement of 1 m, the collar bounces

back by buoyancy force while keeping its original shape as if it is a rigid body. Thus,

all the nodes have the same trajectory with respect to time.
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Figure 3.16: Collar drop for 1 m of initial displacement

3.1.4.2 1 to 4 m of initial displacement

In this presentation case, every node has its own initial displacement, which gradually

increases by the order of nodes.
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Figure 3.17: Collar drop from 1 to 4m of initial displacement

3.1.4.3 -3 to 3 m of initial displacement

This case presents more extreme case, where the initial displacement of one to another

is 6 m of difference. In this assumption, more modes of vibrations are observed as

shown in Figure 3.18a.

48



0 0.5 1 1.5 2
time(sec)

-5

0

5

di
sp

la
ce

m
en

t(m
)

HDPE torus, initial displacement = -3 to 3(m)

First node 3D-Beam, n= 30, dt= 1.000000e-03
Second node 3D-Beam, n= 30, dt= 1.000000e-03
Last node 3D-Beam, n= 30, dt= 1.000000e-03

(a) Vertical trajectory for nodes (b) Snapshot of collar (t=0.6s)

(c) Snapshot of collar (t=1.2s) (d) Snapshot of collar (t=2.0s)

Figure 3.18: Collar drop from -3 to 3m of initial displacement

3.1.5 Summary of structural model validation

To sum up the validations with ANSYS as well as other reliable sources, it can be

concluded that the structural solver has a capability to solve a dynamic beam equa-

tions with a great accuracy provided that a proper time step is given. Figure 3.19 and

Figure 3.20 present maximum amplitude errors and average phase errors compared

to ANSYS results for converged validations cases. Few cases not dealt with here did

not show a convergence due to a coarse time step to calculate such a validation case.

From these two summary figures, a general pattern is observed where the increased

number of elements yields more accurate results. Another key finding is that a finer

time step is required to get a similar level of accuracy in case of a larger number of

elements. Thus, even higher computing resource is needed for a larger number of ele-

ments. That is why a proper number of elements should be decided before calculating

dynamic beam equations.
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Figure 3.19: Summary of maximum amplitude error
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Figure 3.20: Summary of average phase error
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3.2 Presentation of Fluid Model

This section will present the intermediate results from the prepared fluid model

which will be used in fluid-structure interaction investigation for future work. Here,

REEF3D is capable of calculating over 6 degree of freedom for the motion of a struc-

ture in waves and/or currents. In this section, the setups and results from the simula-

tions performed on both 2-D cylinder and 3-D collar model are shown. As presented

in Figure 3.21 and 3.26, the respective preparations for the simulations were set up.

A numerical beach prevents wave reflections at the outlet of the tank in case waves

are used in numerical wave tanks.

Firstly, it is necessary to verify the numerical domain and motions depicted by mesh.

The procedure used in this presentation section follows the order of bulleted items

below:

• Waves on a fixed structure

• Heave decay test of structure

• Waves on a free floating structure

To define mesh of the calculation domain an open source code DIVEMesh is used. For

the post-processing of the calculation, ParaView is employed to visualise the physical

quantities of the calculation domain and the behaviours of structures.

3.2.1 2-D cylinder model

A floating 3-D collar itself has a relatively complicated shape when it comes to a

numerical calculation. There will be a lot of errors and difficulties if anyone tries to

run directly the 3-D collar case without building up a relevant know-how and lessons

learned. In order to save computational cost and efforts it is checked first that a

simplified 2-dimensional object, which is a cylinder structure lain on the surface, is

well prepared to be analysed.

3 m

6 m 0.5 m

1.24m
x

z

Numerical 
beach

Initial displacement

0.076 m

Figure 3.21: Numerical wave tank for 2-dimensional cylinder
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3.2.1.1 Simulation set-up

Table 3.7 tabulated the main parameters that are used in this presentation case. The

numerical wave tank used in this simulation is 2 dimensional such that it has a single

cell in y direction. As illustrated in Figure 3.21 the numerical wave tank has 6 m

long and 1.24 m of water depth. In case of wave action, 0.5 m of the numerical beach

is applied in the leeward side of the cylinder.

Table 3.7: Input parameters for the numerical wave tank of the 2-D cylinder model

Properties Unit Value Properties Unit Value

Length m 6 Cylinder density kg/m
3 500

Width m 0.02 Cylinder radius m 0.076
Depth m 2.48 Wave height m 0.06 / 0.2

Water Depth m 1.24 Wave period m 1.0 / 1.5
Relaxation zone m 0.5
Number of cells - 12 000

(a) Stretched calculation domain (b) Mesh grid around the cylinder

Figure 3.22: Numerical mesh for the 2-D cylinder model

As presented in Figure 3.22, the stretched mesh grid is applied both in x and z

direction to refine the mesh around the solid structure. Accordingly, around 10 cells

in x direction and 8 cells in z direction are prepared corresponding to the diameter of

the cylinder since minimum cell side of ∆x = 0.01653 m and ∆z= 0.0128 m around

the cylinder.

3.2.1.2 Waves on fixed model

Firstly, the structure is fixed while waves are exerting on the structure. 2nd order

Stokes wave is applied here and the parameters of the wave are stipulated in Table
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3.7. A numerical beach is applied in downwind side of the cylinder. In REEF3D wave

forces can be calculated.

Figure 3.23: Waves on fixed 2-D cylinder (0.2m of wave height)

3.2.1.3 Heave decay test

It is important to understand heave motions of floating structures in terms of period

and damping action in that the structures and their support structures e.g. mooring

line, are designed by such these input values. During the test, all sides of numerical

wave tanks are bound by wall boundary without waves. In Figure 3.24, a small
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Figure 3.24: Heave decay test of the 2-D cylinder model

perturbation is observed after 4 seconds of elapsed time. It is recognised that the

wall boundaries reflect the incoming waves made by the cylinder so that the reflected

waves affect the cylinder again. To validate with any reliable source, this effect should

be aware of and investigated how the reference dealt with these reflective waves.
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3.2.1.4 Waves on free floating 2-D cylinder

This presentation case allows heave and pitch motions of the 2-D cylinder in waves.

2nd order Stokes waves are generated with wave heights H = 0.06 m and 0.2 m and

wave period T = 1.0 s and 1.5 s, respectively. The motion of structure is captured

with respect to its centre of gravity.
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Figure 3.25: Positions and forces of the free floating 2-D cylinder
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3.2.2 3-D collar model

Unlike the 2-D cylinder model presented above, 1:10 scaled model is applied in 3-

D collar model. With the similarity, one can figure out the magnitude of physical

quantities qualitatively and quantitatively compared to the actual structure the one

is aiming for.

3.2.2.1 Simulation set-up

The considered wave tank is 8 m long, 1.5 m high (0.75 m water depth) and 8 m

wide. A floating collar of 5.73 m diameter is placed inside the tank at (x,y,z) = (4m,

4m, 0.75m). Its cross section diameter is 0.15 m and the density is 811.8 kg/m
3. The

incoming waves are regular 2nd order Stokes waves and have a height of 0.06, 0.5 and

1.0 m, a period T = 1 , 2 and 4 s, respectively.

Table 3.8: Input parameters for the numerical wave tank of the 3-D collar model

Properties Unit Model value Actual value

Length m 8 80
Width m 8 80
Depth m 1.5 15

Water Depth m 0.75 7.5
Relaxation zone m 0.5 5
Number of cells - 4 485 000 -
Wave height m 0.06 / 0.12 / 0.18 0.6 / 1.2 / 1.8
Wave period m 1.0 / 1.5 / 1.8 3.16 / 4.74 / 5.69

Table 3.9: Input parameters for the collar structure model

Properties Unit Model value Actual value

Collar density kg/m
3 811.8 811.8

Collar cross section diameter m 0.15 1.5
Volume m

3 0.293871 293.871
Mass kg 238.565 238 565

Mass moment of inertia (Ixx / Iyy) kgm
2 978.95 97 895 211

Mass moment of inertia (Izz) kgm
2 1957.90 195 790 422

Table 3.8 and 3.9 summarise the main parameters that are used in this presentation

case. In case of wave action similar to 2-D cylinder model, 0.5 m of numerical beach

is applied in the leeward side of the collar. The mesh of calculation domain is refined
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Figure 3.26: A schematic drawing for a collar model set-up in the numerical wave
tank

Figure 3.27: A perspective view of the numerical wave tank for 3-D collar model

by equidistant size of mesh in all the direction so that around maximum 5 to 6 cells

in all the directions are prepared corresponding to the diameter of the collar cross

section. Here, the minimum ∆x = 0.027 m, ∆y= 0.027 m and ∆z= 0.03 m over the

domain.

It has been suggested in Section 2.2.6.3 that an extreme wave loading is eventually

applied for verifying a limiting case in terms of the structural design. However,

this study establishes the basis for the advanced investigation of the fluid-structure

interaction and its effects on the design. Thus, a relative small wave heights are

assumed and applied by an engineering judgement as presented in Table 3.8.
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Figure 3.28: A perspective view (a cut by profile) of the calculation domain

(a) Mesh grids for calculation domain (b) Mesh grid around the cylinder

Figure 3.29: Numerical mesh for the 3-D collar model

3.2.2.2 Waves on fixed model

The collar model is fixed on the initial location and 2nd order Stokes waves were

generated and acting on the structure. The wave heights and periods are stipulated

in Table 3.8. From the results of the wave forces, it is observed that the forces increase

nonlinearly for all kinds of components as the wave height increases.

Considering the scale ratio is 1:10, the magnitude of lift force and drag force would
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(c) Vertical force - z direction - for the collar model

Figure 3.30: Wave forces on the 3-D collar model

be the order of 1 000 000 N and 500 000 N in actual scale. Thus, these values can

be an input value, for instance, to inaugurate the design process if this calculation

becomes more quantitatively reliable by validating the results.
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3.2.2.3 Heave decay test

On heave test for the 3-D collar model, two different initial displacements were ap-

plied, 0.05 m and 0.14 m, as plotted in Figure 3.31.
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Figure 3.31: Heave decay test of the 3-D collar model

Similarly, 3-D collar model has a small perturbation observed after 4 seconds of

elapsed time as 2-D cylinder case had. Since all the sides of numerical wave tanks are

bounded by wall boundary, generated waves by the heave motion have been reflected

and have interrupted the structure again.

3.2.2.4 Waves on free floating 3-D collar

Lastly, this simulation concerns two motions out of 6 degree of freedom of the floating

collar model. Surge and heave motions are allowed in the simulation, which are lon-

gitudinal - x direction - and vertical - z direction - components both in displacements

and in forces.

In Figure 3.32, a small initial displacement in heave was observed and the displace-

ment had decayed as time goes by. The surge forces were fluctuating irregularly while

the displacement roses due to Stokes drift.
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Figure 3.32: Surge and heave displacement and forces on the 3-D collar model
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Chapter 4

Conclusions

In this thesis a structure solver has been introduced for the collar modelling using a

3-D beam model. The solver handles the dynamic beam equation by which one could

have a basis for FSI model that interact with fluid in both ways. Indeed, this will be

another capable feature from REEF3D.

4.1 Key Findings and Discussions

To summarise the work done by this thesis, the significant findings are observed as

below:

• The FEM Solver showed a good agreement in validation with other reliable

sources providing a high accuracy given that a proper time step is chosen.

• The number of element is one of parameters to determine the accuracy of the

numerical schemes so that a finer time step is required in a larger number of

element to acquire a certain level of accuracy.

• The required time step is a function of stiffness in general Newmark family

schemes.

• The fluid model proved that REEF3D has a capability to calculate a torus

shaped collar model in waves both in fixed position and in floating state of the

model.

In conclusion, the following discussion can be followed for the structure model and

the fluid model. Firstly, for the structural model:

• Newmark scheme is unconditionally stable but not always accurate that is why

a collection of verifications needs to be performed to determine a proper time

step for a specific case.
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• Appropriate number of elements should be selected considering computational

cost and the accuracy of the numerical solution.

Secondly, the fluid model should be optimised considering the following:

• Configurations of different cell sizes and their effects on the results

• How boundary condition affect the results and the structure to validate an

experimental results or another reliable calculations.

• Presenting of extremes wave case which would limit the structure design

• Finite water depth and its effects on wave propagations compared to actual

aquaculture sites since in this thesis a very shallow water depth is employed to

reduce the computational cost.

4.2 Future Work

Based on this thesis work, the next step is to construct a coupling model where both

structural solver and fluid solver are integrated. The coupling model can be explained

by the work flow in the figure 4.1, presenting fluid-structure interaction.

Convergence 
check

New time step

Data transfer / 
Interpolation

End of time step

Yes

No

Fluid model 
solver

Structural model 
solver

Pressure

Displacement

Figure 4.1: The work flow of analysis for fluid-structure interaction
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From the work flow, for a certain time, displacements calculated by both solvers

should be agreed within a tolerance, otherwise, another iteration will be performed

for the displacements to converge from either solvers. To evaluate each iterative

computation, a data transfer and a convergence check feature should be prepared

as already mentioned, where the common surface information has been formed by

a stl format, which requires trianglarized meshes. Also, an interpolation function is

required to estimate unknown values due to a different reference point between two

numerical models.
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Appendix A

FEM Solver Documentation

A.1 m-files and functions

Execution m-file (Collar r7.m)

%% Calculate the torus collar

clear all; clc; close all;

Q2=FECase;

Q2.TotalLength=18; % Circumference length

Q2.op=2; % Transient analysis=2 , Static analysis =1

Q2.Dimension=3; %Dimension; 3D Beam (BEAM4 in Ansys) = 3, 2D Beam (BEAM3

in Ansys) = 2

Q2.NumMethod=1; %Newmark=1, Runge-Kutta(ode45)=2, no more used

Q2.D=0.15; % Diameter of circle

Q2.op2=2; % connectivity = Closed circle

Q2.tend=0.2; %the end of simulation time

% Initialise parameter and default inputs

Q2=initialise FECase(Q2,30);

Q2.K = Assemble K(Q2);

Q2.M = Assemble M(Q2);

dt=0.001;

% Main Calculation by Newmark method

tt2,u2

=cal FEM(Q2,dt);

%% Plot the time series

figure(2),

plot(tt2,u2(2,:),’-ob’,’DisplayName’,sprintf(’First node %dD-Beam,

n= %d, dt= %e’, Q2.Dimension, Q2.nele, dt),’MarkerSize’,3,’LineWidth’,2);

hold on;
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plot(tt2,u2(8,:),’-.k’,’DisplayName’,sprintf(’Second node %dD-Beam,

n= %d, dt= %e’, Q2.Dimension, Q2.nele, dt),’MarkerSize’,3,’LineWidth’,2);

hold on;

plot(tt2,u2(Q2.ndof-10,:),’--r’,’DisplayName’,sprintf(’Last

node %dD-Beam, n= %d, dt= %e’, Q2.Dimension, Q2.nele,

dt),’MarkerSize’,3,’LineWidth’,2);

legend(’-DynamicLegend’,’FontSize’,12);

legend show;

axis([0 1.0 -5.0 5.0]);

set(gcf, ’Position’, [100, 100, 500, 300])

set(gca,’FontSize’,13)

title(’HDPE torus, initial displacement = -3 to 3(m)’,’FontSize’,16)

xlabel(’time(sec)’,’FontSize’,15);

ylabel(’displacement(m)’,’FontSize’,15);

%% 3D Plot (GIF)

% this function takes some time to run, of course it is depending on the

% machine condtion and the number of meshes

plot collar(Q2,u2,dt);

FECase.m
classdef FECase

properties

Dimension; NumMethod; nele; ndof; dof; EAe; EIe; EIye; Le; alphae;

phie;thetae;

load; %nodal load

loadf; %function type load

load backup;

elload; %element load on midspan

elloadf; %function type element load

support;

displ;

KeL;

K; MeL; M; rho; Ar; Ay; Ir; Ix; Iy; tspan; dt; op; op2; ec; D; Di; t;

YM; PR; G; Jx; TotalLength; total displ; total t; g; rhow; tend; th;

end

end

%%
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Assemble K.m
function K=Assemble K(obj )

K = zeros(obj .ndof);

for i=1:obj .nele

R=R mat(obj .alphae(i),obj .phie(i),obj .thetae(i),obj .Dimension);

RT=R.’;

Ke(:,:,i)=RT*obj .KeL(:,:,i)*R;

for j=1:obj .dof

for k=1:obj .dof

K(obj .ec(i,j),obj .ec(i,k))=K(obj .ec(i,j),obj .ec(i,k))

+Ke(j,k,i);

end

end

end

if obj .op2==2 % Reduce last 6 degree of freedom for Enclosed type of

beam since last node = first node

N=(obj .dof/2)*(obj .nele);

K(:,N+1:N+6)=[];

K(N+1:N+6,:)=[];

end

end

Assemble M.m
function M=Assemble M(obj )

M=zeros(obj .ndof);

for i=1:obj .nele

R=R mat(obj .alphae(i),obj .phie(i),obj .thetae(i),obj .Dimension);

RT=R.’;

Me(:,:,i)=RT*obj .MeL(:,:,i)*R;

for j=1:obj .dof

for k=1:obj .dof

M(obj .ec(i,j),obj .ec(i,k))=M(obj .ec(i,j),obj .ec(i,k))+Me(j,k,i);

end

end

end

67



if obj .op2==2 % Reduce last 6 degree of freedom for Enclosed type of

beam since last node = first node

N=(obj .dof/2)*(obj .nele);

M(:,N+1:N+6)=[];

M(N+1:N+6,:)=[];

end

end

Cal FEM.m
function [tt,u]=cal FEM(obj ,dt)

for i=1:obj .nele % only for initial condition!! don’t make a comment

line

R=R mat(obj .alphae(i),obj .phie(i),obj .thetae(i),obj .Dimension);

RT=R.’;
feqLq, feqLF

=eqL(obj .Le(i),obj .elload(i,1),obj .elload(i,2),obj .Dimension);

feqq=RT*feqLq’;

feqF=RT*feqLF’;

Fe(i,:)=zeros([1 obj .dof]);

Fe(i,:)=Fe(i,:)+feqq’+feqF’;

for j=1:obj .dof

obj .load(1,obj .ec(i,j))=obj .load(1,obj .ec(i,j))+Fe(i,j);

end

end

if obj .op2==2 %Torus(ring) shape

obj .load(:,obj .ndof-5:obj .ndof)=[];

end

if obj .op==2 % Dynamic

u0=zeros([1 obj .ndof]);

ud0=zeros([1 obj .ndof]);

N=obj .nele+1;

if obj .op2==2

u0=zeros([1 obj .ndof-6]);

ud0=zeros([1 obj .ndof-6]);

N=obj .nele;

end

%%% Initial displacement input here !!!!!!! for collar drop case only
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for i=1:N

u0(1,2+(i-1)*6)=0;%-3+i*0.2;

end

tt,u

=Newmark(dt,obj .tspan(end),u0,ud0,obj .M .load’,obj .load,obj );

%Newmark(dt,tmax,u0,ud0,udd0,ndof,f0,M,K)

else % Static analysis

for i=1:obj .ndof

if obj .support(i)==1

for j=1:length(obj .support)

obj .K(i,j)=0.0;

obj .K(j,i)=0.0;

end

obj .K(i,i)=1.0;

end

end

u=obj .K .load’;

tt=0;

for i=1:obj .ndof

if obj .support(i)==1

u(i)=0.0;

end

end

end

end

eqL.m

function [feqLq , feqLF ]=eqL(L , q , F ,dimension )

%This function evaluates equivalent distributed loads and nodal forces

if dimension ==3

feqLq =[0 (1/2)*q *L 0 0 0 -(1/12)*q *L .^2 0 (1/2)*q *L 0 0 0

(1/12)*q *L .^2];

feqLF =[0 F /2 0 0 0 -F *L /8 0 F /2 0 0 0 F *L /8];

else

feqLq =[0 (1/2)*q *L -(1/12)*q *L .^2 0 (1/2)*q *L (1/12)*q *L .^2];

feqLF =[0 F /2 -F *L /8 0 F /2 F *L /8];

end

end

GetMeshPoint.m
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function pm=GetMeshPoint(p0,p1,Di)

delp=p1-p0;

ps0=[delp(1) delp(2) delp(3)+Di/2];

% finding perpendicular vectors of element axis

h=null((ps0’).’);

pv=(h(:,1)’/norm(h(:,1)));

ph=(h(:,2)’/norm(h(:,2)));

pv1=rodrigues rot(pv,delp,pi/4);

ph1=rodrigues rot(ph,delp,pi/4);

pv2=rodrigues rot(pv,delp,pi);

ph2=rodrigues rot(ph,delp,pi);

pv3=rodrigues rot(pv,delp,5*pi/4);

ph3=rodrigues rot(ph,delp,5*pi/4);

pv4=rodrigues rot(pv,delp,pi/8);

ph4=rodrigues rot(ph,delp,pi/8);

pv5=rodrigues rot(pv,delp,3*pi/8);

ph5=rodrigues rot(ph,delp,3*pi/8);

pv6=rodrigues rot(pv,delp,9*pi/8);

ph6=rodrigues rot(ph,delp,9*pi/8);

pv7=rodrigues rot(pv,delp,11*pi/8);

ph7=rodrigues rot(ph,delp,11*pi/8);

% Basically 32 mesh points per node, which means 11.25 degree between

two

% mesh points when we look at the section of one node

pm(1,:)=p0+Di/2*pv; pm(2,:)=p0+Di/2*pv4; pm(3,:)=p0+Di/2*pv1;

pm(4,:)=p0+Di/2*pv5; pm(5,:)=p0+Di/2*ph; pm(6,:)=p0+Di/2*ph4;

pm(7,:)=p0+Di/2*ph1; pm(8,:)=p0+Di/2*ph5; pm(9,:)=p0+Di/2*pv2;

pm(10,:)=p0+Di/2*pv6; pm(11,:)=p0+Di/2*pv3; pm(12,:)=p0+Di/2*pv7;

pm(13,:)=p0+Di/2*ph2; pm(14,:)=p0+Di/2*ph6; pm(15,:)=p0+Di/2*ph3;

pm(16,:)=p0+Di/2*ph7;

end

Newmark.m
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function [t,u]=Newmark(dt,tmax,u0,ud0,udd0,f0,obj )

fileID = fopen(’load.txt’,’w’);

fileID2 = fopen(’Force.txt’,’w’);

fprintf(fileID,’time(s) node load(N)’);

fprintf(fileID2,’time node force(N) stress(N/m2)’);

fileID=fopen(’load.txt’,’a+’);

fileID2=fopen(’Force.txt’,’a+’);

delta=0.5;

alpha=0.25*(0.5+delta)^2;

t=0:dt:tmax;disp(t);

if obj .op2==2

N=obj .ndof-6;

else

N=obj .ndof;

end

u=zeros(N,length(t));u(:,1)=u0;

fh=zeros(N,length(t));fh(:,1)=f0;

ud=zeros(N,length(t));ud(:,1)=ud0;

udd=zeros(N,length(t));udd(:,1)=udd0;

a0=1/alpha/dt^2;

% a1=delta/alpha/dt; %Not used here

a2=1/alpha/dt;

a3=1/2/alpha-1;

% a4=delta/alpha-1; %Not used ahere

% a5=dt/2*(delta/alpha-2); %Not used here

a6=dt*(1-delta);

a7=delta*dt;

Kh=obj .K+a0*obj .M; % Damping coefficient=0

for k=1:N

if obj .support(k)==1

u(k,1)=0.0;

end

end

fhe=fh;

for i=1:length(t)-1

if t(i)<0.0

% fh(obj.ndof-4,i)=-0.1; % in case forcing within a second

% fh(:,i)=0;
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else % Make a comment line when cantilever validations

% % if functional load e.g. time vairant, should be defined here inside

% % in case constant load, this definition can be waste of time.

obj .load = zeros([1 N]);

for j=1:obj .nele

z1=u(2+(obj .dof/2)*(j-1),i);

if (2+(obj .dof/2)*(j))>N

z2=u(2,i);

else

z2=u(2+(obj .dof/2)*(j),i);

end

zz=(z1+z2)/2;

Az=real(2*obj .D^2/4*(asin(zz/(obj .D/2))+0.5*sin(2*asin(zz/(obj .D/2)))));

obj .elload(j,1)=-obj .rhow*obj .g*Az;

R=R mat(obj .alphae(j),obj .phie(j),obj .thetae(j),obj .Dimension);

RT=R.’;
feqLq, feqLF

=eqL(obj .Le(j),obj .elload(j,1),obj .elload(j,2),obj .Dimension);

feqq=RT*feqLq’;

feqF=RT*feqLF’;

Fe(j,:)=zeros([1 obj .dof]);

Fe(j,:)=Fe(j,:)+feqq’+feqF’;

% Printing load calculated by initial displacement

for k=1:obj .dof

obj .load(1,obj .ec(j,k))=obj .load(1,obj .ec(j,k))+Fe(j,k);

fprintf(fileID,’%8.4f %d %8.4f’,i,j,obj .load(1,obj .ec(j,k)));

end

end

fh(:,i)=obj .load; % don’t make a comment line

end

fhe(:,i+1)=fh(:,i)+(obj .M*(a0*u(:,i)+a2*ud(:,i)+a3*udd(:,i)));

u(:,i+1)=Kh(:,i+1);

%%% This 5 lines below are necessary but it is waste of time for no %

boundary condition

for k=1:obj .ndof

if obj .support(k)==1

u(k,i+1)=0.0;

end

end
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% Bathe (1982)

udd(:,i+1)=a0*(u(:,i+1)-u(:,i))-a2*ud(:,i)-a3*udd(:,i);

ud(:,i+1)=ud(:,i)+a6*udd(:,i)+a7*udd(:,i+1);

% % printing nodal forces / stresses

F2(:,i)=obj .K*u(:,i);

S2(:,i)=F2(:,i)/obj .Ar(1); % Assuming that each cross section area is

identical throught all the element

for j=1:N

fprintf(fileID2,’%d %d %e %e’,i,j,F2(j,i),S2(j,i));

end

end

fclose(fileID2);

end

initialise FECase.m and plot collar.m are not included here.
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