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Abstract

Coding techniques for correcting combinations of deletion, insertion and substitution
errors are implemented in novel data storage applications. Error correcting codes have
been well-studied for either substitution errors, or deletion and insertion (indel) errors,
but the understanding of codes that correct combinations of these errors falls short. To
achieve an efficient implementation in terms of redundancy, we are interested in the
maximal size of a code that can correct t indels and s substitutions. Determining this
maximal size in general is a difficult task, and thus in many instances we have to rely
on bounds. In this thesis, we review existing bounds on the maximal size of both t-indel
correcting codes and s-substitution correcting codes. Thereafter, we study how these
bounds can be generalized to the setting of t-indel s-substitution correcting codes.

The main contributions of this thesis include two new explicit lower bounds, which
are based on generalizations of the Gilbert-Varshamov bound. Furthermore, we show
that the Singleton upper bound, several existing sphere-packing upper bounds and an
upper bound based on matchings in hypergraphs can all be generalized to upper bounds
on the maximal size of t-indel s-substitution correcting codes. Several of these bounds
provide improvements upon existing results in literature. Moreover, we argue that the
asymptotic redundancy of maximally sized t-indel s-substitution correcting codes lies
between (t+ s) logq(n) and 2(t+ s) logq(n) + o(logq(n)).
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Samenvatting

Tijdens het versturen of langdurig opslaan van digitale berichten bestaat de kans dat er
fouten optreden in het bericht. Deze fouten zorgen er voor dat het ontvangen bericht
niet identiek is aan het verstuurde bericht. In deze scriptie, ligt de focus op een drietal
type fouten waarbij enkele symbolen in een bericht worden aangetast. Allereerst, kan een
symbool wegvallen (deletion). Daarnaast kan een symbool veranderen naar een ander
symbool (substitution). Ten derde, kan een symbool worden ontvangen terwijl het niet is
verstuurd (insertion). Bijvoorbeeld, het woord ‘raden’ kan zo in drie stappen veranderen
naar:

raden→ rade→ rede→ trede.

Om dergelijke fouten te kunnen verbeteren worden op geavanceerde wijze extra symbolen
toegevoegd aan het bericht en mee verstuurd of opgeslagen. Door het analyseren van
zowel het bericht als deze extra symbolen is de ontvanger meestal in staat om de fouten
te verbeteren. Het toevoegen van deze extra symbolen zorgt voor redundantie omdat
deze symbolen moeten worden verstuurd, maar geen informatie bevatten. Daarom is het
wenselijk dat het aantal extra symbolen zo klein mogelijk is. Dit leidt tot het volgende
vraagstuk: voor een gegeven verzameling met berichten, wat is het minimaal aantal
extra symbolen dat kan worden toegevoegd aan deze berichten zodat het altijd mogelijk
is om een bepaald aantal fouten te verbeteren? In veel gevallen is het alleen mogelijk
om grenzen te bepalen voor het minimaal aantal extra benodigde symbolen. In andere
woorden, dit aantal ligt tussen ondergrens x en bovengrens y.

In het geval dat er maar één type fout kan optreden dan is dit vraagstuk veelvuldig
bestudeerd en zijn er meerdere grenzen bekend in de literatuur. Daarentegen is er minder
bekend over de grenzen als er combinaties van het drietal fouten kunnen optreden. In
deze scriptie worden bestaande grenzen voor enkele typen fouten geanalyseerd. Op basis
daarvan wordt onderzocht hoe deze grenzen kunnen worden gegeneraliseerd of gecom-
bineerd tot grenzen voor de combinatie van deze drie fouten. In het bijzonder worden
meerdere nieuwe onder- en bovengrenzen aangetoond. In sommige gevallen vormen deze
grenzen een verbetering ten opzichte van bestaande grenzen in de literatuur.
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Preface

This thesis forms the final part of my master program in Applied Mathematics at Delft,
University of Technology. I was first introduced to the topic of coding theory in a
pre-university course called Junior TU-Delft, which sparked my interest in this field of
mathematics. During my studies in Delft, the interest only increased after I followed
courses and wrote my bachelor thesis in this field. For this reason, I approached Jos
Weber to write a master thesis in coding theory as well.

The project was originally aimed towards DNA data storage, and constrained coding
challenges arising from this application. After a preliminary literature review I noticed
that little was stated in literature about the maximal cardinality of codes that correct
combinations of deletion, insertion and substitution errors. Moreover, I realized that it is
possible to generalize a well-known existing lower bound on maximum size of substitution
correcting codes to this more general setting. Therefore, in consultation with Jos Weber,
I changed the direction of the project and focused on bounds on the maximal size of codes
that correct a combination of deletion, insertion and substitution errors.

In hindsight, this change in direction of the project has been a good choice, because
it enabled me to tackle and solve certain problems that had not been solved before. This
made the project both challenging and rewarding. Discussing these problems with my
supervisor Jos Weber during the bi-weekly meetings and with Khaled Abdel-Ghaffar and
Ludo Tolhuizen via (e-mail) contact, has been helpful and lead to many new ideas. Fur-
thermore, it was interesting and informative to attend the Workshop on Combinatorics
in Digital Communication in Eindhoven, and the Symposium on Information Theory and
Signal Processing in the Benelux in Brussels. At the symposium in Brussels, I presented
a poster about a key result from this thesis. Furthermore, I submitted a conference
paper co-authored by Jos Weber.

Finally, this thesis project has shown me that I enjoy working on challenging math-
ematical problems, and discussing these problems in an academic setting. This is some-
thing I would like to pursue in my future career.
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Lists of terminology and notation

Term Meaning
Alphabet Finite set of symbols, i.e., Bq.

Symbol Element in Bq.
Word Element in Bq(n), i.e., a string/sequence/vector of symbols.

Empty word Unique word of length zero denoted by Λ.
Run Sequence of consecutive and identical symbols in a word that is

· · · not contained within a longer such sequence.
Code Subset of Bq(n).

Codeword Element of a code.
Hamming distance The number of positions in which two words of equal length differ.

Redundancy Loosely, the number of redundant symbols in an
· · · arbitrary codeword, i.e., n− logq(|C|).

Relative redundancy Redundancy relative to the codeword length, i.e., 1− logq(|C|)/n.
Deletion Removal of a single symbol from a word.
Insertion Addition of a single symbol into a word.

Substitution Replacement of a single symbol by different symbol in a word.
Indel Insertion or deletion.
Edit Deletion, insertion or substitution.

Notation Meaning
Z :=

⋃∞
i=0{−i, i} Set of integers.

Z≥a :=
⋃∞

i=a{i} Set of integers at least a.
Sn := S × S × · · · × S n times Cartesian product of the set S.
|S| ∈ Z≥0 Cardinality of a finite set S.(
a
b

)
:= a!

b!(a−b)!
Binomial coefficient. For a < 0, b < 0 or b > n,
· we use the convention that

(
a
b

)
= 0.

n ∈ Z≥1 Word length.
q ∈ Z≥2 Alphabet size.
t′ ∈ {0, 1, ..., n} Number of deletions.
t′′ ∈ Z≥0 Number of insertions.

Continued on the next page
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t ∈ Z≥0 Number of indels.
s ∈ {0, 1, ..., n} Number of substitutions.
τ ∈ (0, 1) Number of indels relative to n.
σ ∈ (0, 1) Number of substitutions relative to n.
r ∈ {1, 2, ..., n} Number of runs.
d ∈ Z≥0 Minimum Hamming distance.
Bq := {0, 1, ..., q − 1} q-ary alphabet.

Bq(n) := {0, 1, ..., q − 1}n Set of q-ary words of length n.
B∗
q :=

⋃∞
n=0{0, 1, ..., q − 1}n Set of q-ary words of arbitrary length.

x,y, z ∈ Bq(n) Generic q-ary words of length n.
Λ ∈ Bq(0) Empty word, the unique q-ary word of length 0.

u1
n,r ∈ B2(n) Binary word with r runs, a first run of zeros with

· length n− r + 1 and the remaining unit runs
· alternate between 0 and 1, e.g., u1

7,5 = 0001010.
C ⊆ Bq(n) (Block) code, a set of fixed-length q-ary words.
c ∈ C Codeword, element of a code.

d(x,y) ∈ {0,1, ..., n} Hamming distance between x,y ∈ Bq(n), i.e., the
· number of symbols in which x and y differ.

r(x) ∈ {1, ..., n} Number of runs in x ∈ Bq(n).
Rn,q(r) := {x ∈ Bq(n): Set of q-ary words of length n with precisely r runs.

· r(x) = r}
Mq(n, t, s) := max{|C| : C ⊆ Bq(n) The maximum cardinality of a t-indel

· s.t. C is a t-indel · s-substitution correcting code.
· s-substitution
· correcting code}

Vt′,t′′,s(x) ⊆ Bq(n− t′ + t′′) Set of words that can be obtained from x ∈ Bq(n)
· by precisely t′ deletions, t′′ insertions and
· at most s substitutions.

Dt(x) ⊆ Bq(n− t) Set of words that can be obtained from x ∈ Bq(n)
· by precisely t deletions.

It(x) ⊆ Bq(n+ t) Set of words that can be obtained from x ∈ Bq(n)
· by precisely t insertions.

Ss(x) ⊆ Bq(n) Set of words that can be obtained from x ∈ Bq(n)
· by at most s substitutions.

Hq(p) := p logq(q−1)−p logq(p) The q-ary entropy function, defined for
· −(1− p) logq(1− p) · p ∈ [0, 1− 1

q
] with Hq(0) := 0.

H∗
q (p) := Hq(min{x, 1− 1

q
}) Extended q-ary entropy function, for p ∈ [0,∞).

R+
q (τ, σ) := lim supn→∞

(
1− 1

n
· Superior asymptotic relative redundancy function.

· logq(Mq(n, ⌊τn⌋, ⌊σn⌋))
)

R−
q (τ, σ) := lim infn→∞

(
1− 1

n
· Inferior asymptotic relative redundancy function.

· logq(Mq(n, ⌊τn⌋, ⌊σn⌋))
)

H := (V, E) Hypergraph with set of vertices V and set of
· hyperedges E .

M ⊆ E Matching, i.e., pairwise disjoint set of hyperedges.
ν(H) ∈ Z≥0 Matching number, maximum size of a matching

· in H.
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1
Introduction

Digital communication and data storage have become omnipresent in today’s society.
Sending messages via e-mail, listening to music on wireless earbuds and storing photos
on an SD-card are all examples of applications in which information is communicated
from one place to another. Unfortunately, most communication and storage media are
subject to noise and the message inevitably incurs occasional errors [1]. This results in
(partial) loss or alterations of the message. The receiver of the message does not know
whether the message contains errors. Therefore, the sender must employ error correction
techniques so that the receiver is able to detect and even correct potential errors. Without
such techniques, reliable communication and data storage are not possible.

A message is commonly expressed as a sequence of symbols. A well-known example
is the ASCII scheme [2] in which sequences of eight bits are used to represent letters,
numerals and other characters. In this thesis, we focus on the correction of errors that
affect single symbols in a sequence. In particular, we consider symbols being substituted
(changed) for different symbols, symbols being deleted (lost) and inserted (gained). For
instance, suppose that the binary sequence 00110101 is sent. Due to noise, an insertion
followed by a substitution and a deletion, may turn this sequence into

00110101→ 001110101→ 101110101→ 10111010,

before the receiver obtains the message. It is important to state that the number of
errors, error types and error positions within the message are all not known to the re-
ceiver. The receiver only knows the final sequence 10111010. It is the goal of the sender
and receiver to come up with an efficient technique that allows the receiver to correct
10111010 to the original message 00110101.

Error-correction techniques have a long-standing interest because of their application in
digital communication and data storage. 75 years ago Shannon [1] initiated research on
this topic and laid the foundations for coding theory and in particular error correcting
codes. Loosely speaking, error correcting codes cleverly add extra symbols to a message.
These additional symbols enable the receiver to correct up to certain number of errors.
Examples that show how error correcting codes can be constructed for different types of
errors are given in Sections 1.2 & 1.6. The capability of correcting errors in a message
comes at the cost of losing efficiency: the extra symbols are redundant, but should be
sent as well. Obviously, we aim to use as little redundant symbols as possible in order

1



Chapter 1. Introduction

to improve the efficiency, while still being able to correct the errors. This raises the
following question. Given a set of messages and a number t, what is the least number
of redundant symbols that can be added to each message so that it is always possible
to correct up to t errors in a message? Answering this question is a central problem in
coding theory.

For substitution errors, this problem was first addressed around the 1950’s by Ham-
ming [3], Gilbert [4], Varshamov [5] and others. Their contributions focused mainly on
substitution errors, because this type of error is common in practice. Since then, great
progress has been made towards solving this problem for substitution errors [6]. How-
ever, it has become clear that providing a general and exact answer for this problem is
challenging. For this reason, the exact answer is not known in many instances and we
have to rely on lower and upper bounds.

For deletion and insertion errors, this problem has also been studied extensively
(e.g., [7–10]), but not as much is known in comparison to substitution errors. In 1965,
Levenshtein applied Shannon’s framework in a seminal paper on codes that are able
to correct combinations of deletion and insertion errors [7]. He showed an interesting
property that a code which can correct any t deletions can also correct any t insertions,
and vice versa. In other words, correcting a deletion can be done with the same code
as correcting an insertion. We will provide a more precise statement and proof of this
property in Chapter 2. This property shows that there is no reason to consider deletions
and insertions separately. Therefore, they are often jointly called indels: an insertion or
a deletion. Indels are particularly interesting because other types of errors can be formed
by combining multiple indels. For instance, every a → b substitution can be obtained
by two indels: a deletion of a followed by an insertion of b in the same position.

In this thesis, we consider the central problem in coding theory for codes that correct
a combination of indels and substitutions. In the remainder of this introduction, we
will motivate why the study of these codes is both theoretically and practically relevant.
Thereafter, we will provide a more mathematically formal setting for indel and substi-
tution correcting codes and the central problem in coding theory. This will allow us to
formulate the research question of this thesis.

1.1 Motivation for studying indel and substitution cor-
recting codes

The motivation for studying codes that correct combinations of indels and substitutions
is twofold. Below, we briefly elaborate on these two points.

Firstly, the study of the central problem in coding theory for indel and substitution
correcting codes is driven by the limited theoretical understanding of this problem. To
the best of the author’s knowledge, there are only several results within literature that
address this problem for the combination of indels and substitutions. In [11], this is
done by constructing non-trivial bounds on the size of indel and substitution correcting
codes. Furthermore, Sima et al. constructed a class of such codes in [12] and showed
how it can used to correct a combination of indels and substitutions. Later, Song et
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al. provided improved constructions in terms of redundancy in [13] and [14]. These
codes are constructed for a general number of indels and substitutions that need to be
corrected. Other codes presented in [11,15,16] can correct only a fixed number of errors.
This limited number of bounds on the size of codes and code constructions stands in
pale contrast with the numerous results for both indel correcting codes and substitution
correcting codes.

Secondly, novel data storage media require techniques that can correct indel and
substitution errors for successful recovery of the stored information. An example of
these novel techniques is given by DNA data storage. Inspired by the way in which DNA
molecules store the biological information of organisms, researchers have successfully
managed to artificially create DNA molecules and stored an entire book, eleven JPEG
images and a JavaScript program [17] in these molecules. The inherent properties of DNA
such as its long-life, non-volatility and unparalleled information density are advantageous
for storing data in DNA [18]. Significant progress in the research and usability of DNA
data storage systems over the last decade (see e.g., [19–24]) indicates that it may offer
a viable alternative for traditional storage media in the future [25]. However, analysis
shows that the DNA molecules occasionally incur combinations of deletion, insertion or
substitution errors while stored [26]. Consequently, codes that can correct these errors
efficiently are vital for this new technology to succeed. Concepts related to indel and
substitution correcting codes are also used in language processing applications such as
spell-checking and translation [27–29] and in another data storage application known as
racetrack memory [30–32].

1.2 Example of indel and substitution correction

The following example introduces indel and substitution correction for DNA data storage.

Example 1.1. Suppose Alice wants to write a letter to Bob and store this letter in
DNA so that Bob can read it in the far future. A DNA molecule consists of a long string
of small units, called nucleobases. For each nucleobase there are four options: Adenine
[A], Cytosine [C], Guanine [G] and Thymine [T]. In this way, a DNA molecule can be
represented by a long sequence letters from the set {A, C, G, T}.

For writing the letter to Bob, Alice counts that she needs at most 64 different char-
acters: 26 lowercase letters, 26 uppercase letters and 12 punctuation symbols. Then, she
converts each character into a DNA sequence of length three as follows:

Character DNA sequence
a ←→ AAA,

b ←→ AAC,

c ←→ AAG,

...
! ←→ TTG,

. ←→ TTT.

Notice that there exist 43 = 64 DNA sequences of length three and thus each character
can be converted. After Alice has written the letter, she converts each individual charac-
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ter into a separate DNA sequence of length three. Each DNA sequence is then separately
converted into a physical DNA molecule, and safely stored for a long time. Bob recovers
these DNA molecules and reads back the DNA sequences. However, during this process
some sequences may have undergone unwanted changes. For example, a stored sequence
CGA might have turned into CTA (a substitution), into CG (a deletion) or into CGGA (an
insertion). For simplicity, we assume that at most one error occurs within a sequence.

Bob does not know which DNA sequences Alice wrote, and has to rely fully on what
he receives by reading the stored DNA molecules. The possibility of errors in the storage
process means that Bob cannot be sure if the sequence that he recovers is identical to
the sequence that was stored by Alice. Only if the length of a recovered sequence is
not equal to three, he can be sure that an indel occurred. Nevertheless, if Bob recovers
CGGA he has no way of knowing whether it originally was CGG, CGA or GGA. This makes it
impossible for Bob to convert the DNA sequences back into characters and be sure that
he recovers the original letter in a correct way.

In order to avoid this issue, Alice decides to convert each character into a DNA sequence
of length nine. Alice uses the same conversion as before, but repeats each DNA sequence
three times. For instance, this gives a conversion: c←→ AAGAAGAAG. Again, Alice stores
these sequences in DNA and they are later read back by Bob. Moreover, we assume
that at most one error occurs per sequence, and that Bob is aware that Alice used this
repetition procedure. We will argue that this enables Bob to correct any single error.

Namely, Bob knows that the original sequence must have been of the form XYZXYZXYZ

for some X, Y, Z ∈ {A, C, G, T}. By counting the length of the recovered sequence Bob can
identify whether a deletion (length 8), a substitution (length 9), or an insertion (length
10) occurred. In these cases, it is not hard to uniquely recover the original sequence. For
instance, suppose Bob recovers the sequence TCGTCGCG of length 8, then he determines
that a deletion occurred. Furthermore, the symbols 1 to 3 are identical to the symbols
4 to 6. By the assumption that at most one error occurred per sequence, Bob finds that
the original sequence must have been TCGTCGTCG. The process of correcting an insertion
is similar.

In case the recovered sequence has length 9, then either a substitution occurred or no
error at all. Whenever this word is of the form XYZXYZXYZ then Bob concludes that no
error has happened. Otherwise, he compares the symbols 1 to 3, 4 to 6 and 7 to 9. One
of these three sub-sequences will differ from the other two as a result of the substitution.
By the assumption that at most one error occurred per sequence, this allows Bob to also
correct the substitution.

All in all, the repetition procedure makes sure that Bob can correct up to one error per
sequence. Then, Bob can simply convert these corrected sequences back to the characters
and read the original letter.

4
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1.3 Mathematical description of indel and substitution
correcting codes

Next, we introduce indel and substitution correcting codes in a mathematical setting.
Furthermore, we discuss other terminology and notation that will be used in this thesis.

Consider the alphabet Bq := {0, 1, ..., q − 1} consisting of q ≥ 2 elements, called
symbols. A sequence or string of these symbols is called a word. The length of a word
is denoted by n and the size of the alphabet by q. The set of q-ary words of length n is
denoted by Bq(n) := {0, 1, ..., q − 1}n. By convention, Bq(0) consists of a unique word
called the empty word and which is denoted by Λ. Furthermore, B∗

q := ∪∞n=0Bq(n) gives
the collection of all q-ary words of arbitrary length1. For a finite set S we denote by |S|
the cardinality or size of S. For instance, it holds that |Bq(n)| = qn. For x ∈ Bq(n) we
write x = (x1, x2 . . . , xn) or shortly x = x1x2 · · ·xn for ease of notation. For two words
x,y ∈ Bq(n), the number of positions in which x and y differ is called the Hamming
distance, and it is denoted by d(x,y) := |{i ∈ {1, ...n} : xi ̸= yi}|.

Example 1.2. The word x = (2, 3, 1, 0, 0, 1) = 231001 is an element of the set B4(6).
Moreover, the set B2(3) contains 23 = 8 words and is given by

B2(3) = {000, 001, 010, 011, 100, 101, 110, 111}.

The Hamming distance between 00120, 31122 ∈ B4(5) is given by d(00120, 31122) = 3.

A run in a word x ∈ Bq(n) is a sequence of consecutive and identical symbols from x
that is not contained within a longer such sequence. The number of runs in x is denoted
by r(x). For 1 ≤ r ≤ n, we denote the set of words with precisely r runs by

Rn,q(r) := {x ∈ Bq(n) : r(x) = r}.

The cardinality ofRn,q(r), i.e., the number of words in Bq(n) with r runs will be discussed
in Section 2.2.

Example 1.3. Consider the word y = 02331 ∈ B4(5). Then, y contains the runs 0, 2,
33, 1 and satisfies r(y) = 4. Remark that 3 is not considered to be a run in y, because
it is contained within the run 33.

A non-empty subset of words from Bq(n) is called a (block) code2 and the elements in
a code are called codewords. It follows that the size of any code is trivially bounded
between 1 and qn. Only the codewords of a code C ⊆ Bq(n) are used to communicate
information. In contrast, the words in Bq(n) \ C are not used and are thus redundant.
Hence, considering the ratio between |C| and |Bq(n) \ C| gives an indication of the infor-
mation capacity versus the redundancy of a code. Instead of considering |C| and |Bq(n)|
directly, it is common to consider their ratio on a logarithmic scale. The (information)
rate of a code is given by 1

n
logq(|C|). On the other hand, the relative redundancy of

C is given by 1 − 1
n
logq(|C|). Notice that both the information rate and the relative

redundancy are bounded between 0 and 1, and that they add to 1.
1Notice that Bq and Bq(n) are not defined as a finite field and vector space, respectively, which is

common in coding theory. This additional structure is not needed in this thesis.
2the prefix ‘block’ refers to the fact all codewords have equal length. In this thesis, we solely consider

block codes and therefore we will simply use ‘code’, for brevity.
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Example 1.4. Let the code C ⊂ B3(6) of size 9 with codewords of length 6 be given by

C = {000000, 000111, 000222, 111000, 111111, 111222, 222000, 222111, 222222}.

Note that knowing the first and fourth symbol in each codeword is sufficient to fully
characterize a codeword, because the other symbols are solely copies of these two symbols.
In other words, the first and fourth symbol carry information, while the other four
symbols are redundant. Intuitively, this corresponds well the information rate of C
being equal to 1

n
logq(|C|) = 1

6
log3(9) = 1

3
, while the relative redundancy of C equals

1− 1
n
logq(|C|) = 1− 1

6
log3(9) =

2
3
.

In this thesis, we consider three types of errors that may occur to a word x ∈ Bq(n).
Firstly, a deletion is an operation of the form a → Λ for a ∈ Bq. A deletion of the
symbol xi in position i ∈ {1, ..., n} of x results in the word (x1, . . . xi−1, xi+1, . . . xn).
The opposite operation of a deletion is an insertion. It is an operation of the form
Λ→ a. An insertion of the symbol a between positions i− 1 and i of x yields the word
(x1, . . . xi−1, a, xi, . . . xn). Lastly, a substitution is a → b type operation with a, b ∈ Bq
and a ̸= b. Hence, a substitution from xi into b gives (x1, ..., xi−1, b, xi+1, ..., xn). For
example, the word x = 330112 ∈ B4(6) can be turned into

330112→ 33012→ 32012→ 132012

by a deletion, substitution and an insertion. A deletion or an insertion is called an indel.
In literature, (e.g., [13, 33]), the term ‘edit’ is commonly used for a multitude of errors
that affect a single symbol. Therefore, in the context of this thesis, we refer to an edit
as a deletion, insertion or a substitution.

Next, we are ready to give a formal definition of an indel and substitution correcting
code. The following idea lies at the basis of this definition. Instead of using all qn

words in Bq(n) for communication or data storage, a code C ⊂ Bq(n) is selected and
only the words in C are used. Suppose the word z ∈ B∗

q is received after some codeword
c ∈ C was sent. Moreover, assume that at most t errors occurred to c. In case c is
the only codeword in C from which z can be obtained by at most t edits, then z must
have originated from c. By ensuring that this property holds for all z ∈ B∗

q it is always
possible to correct at most t errors using the code C.

Definition 1.5. For integers n ≥ 1, q ≥ 2, 0 ≤ t ≤ n and 0 ≤ s ≤ n, a code C ⊆ Bq(n)
is said to be a t-indel s-substitution correcting code if any q-ary word (not necessarily of
length n) can be obtained from no more than one codeword of C by precisely t′ deletions,
t′′ insertions and at most s substitutions, whenever t′ + t′′ ≤ t.3

A 0-indel s-substitution correcting code is simply called an s-substitution correcting
code. Analogously, a t-indel 0-substitution correcting code is called a t-indel correcting
code.

3Given the indifference of deletions and insertions, we argue that the term t-indel s-substitution
correcting code suits the capability of the code well. In literature, these codes are often called t-deletion
s-substitution correcting codes, e.g., in [11, 13]. However, this ignores their capability of correcting
insertions as well.
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In Section 1.6 we will provide three concrete examples of t-indel s-substitution correcting
codes. For each set of integers n ≥ 1, q ≥ 2, 0 ≤ t ≤ n and 0 ≤ s ≤ n we are interested
finding the maximal size of a t-indel s-substitution correcting code. This maximal size
is denoted by,

Mq(n, t, s) := max{|C| : C ⊆ Bq(n), s.t. C is a t-indel s-substitution correcting code}.

A t-indel s-substitution correcting code C ⊆ Bq(n) that attains this size is called optimal.
Such codes maximize the information rate and minimize the relative redundancy. In
other words, these codes are most efficient in terms of redundancy while still being able
to correct errors.

1.4 Problem statement and research question

In this thesis, the problem of determining the maximal size of t-indel and s-substitution
correcting codes is studied. In other words, we aim to determine Mq(n, t, s) or construct
upper and lower bounds when computing the exact value is not viable.

This problem is what we previously reffered to as the central problem in coding
theory. It has already been studied extensively for the specific cases of t-indel correct-
ing codes and s-substitution correcting codes. This has lead to numerous bounds on
Mq(n, t, 0) and Mq(n, 0, s) within literature, and to the exact value of these two quan-
tities in highly specific cases. For an overview of existing bounds, see Section 4.1 and
Chapter 5. In contrast, there is limited understanding of the more general problem for
t-indel s-substitution correcting codes, as we have motivated in Section 1.1. Given that
in many instances only bounds on Mq(n, t, 0) and Mq(n, 0, s) are known, it is unrealistic
that exact values of Mq(n, t, s) can be easily determined in general. Hence, we focus on
constructing bounds for Mq(n, t, s). This leads to the following research question:

How can existing bounds on the maximum size of t-indel correcting codes
and s-substitution correcting codes be generalized to construct bounds on

the maximum size of t-indel s-substitution correcting codes?
In short, we investigate how existing bounds on Mq(n, t, 0) and Mq(n, 0, s) can be used
to construct bounds on Mq(n, t, s).

1.5 Organisation of the thesis

In order to address the research question we employ the following organisation in this
thesis. Firstly, we provide three concrete code constructions of t-indel s-substitution
correcting codes in the next section. Chapters 2 & 3 deal with the properties and
the cardinality of the set of words that can be reached from a word x ∈ Bq(n) by
precisely t′ deletions, t′′ insertions and at most s substitutions. These chapters do not
answer the research question directly, but provide results that will be useful in the
subsequent chapters. Next, Chapter 4 considers the research question aimed at lower
bounds. Chapters 5 & 6 address the research question from the perspective of upper
bounds. At last, in Chapter 7 we summarize the results of this thesis in order to answer
the research question. Furthermore, several directions for future research are discussed.
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1.6 Three code constructions

In this section, we discuss three code constructions for correcting various types of errors.
We demonstrate how a code can be used to correct errors. The main idea of designing
a code is making sure that the codewords are ‘sufficiently different.’ In case a certain
number of errors occur, the resulting word should still ‘resemble’ the original word, but
not any of the other codewords. An easy example of this principle is given by the
following repetition code.

1.6.1 Repetition code

Let n ≥ 1 and q ≥ 2 be integers. Then the class of repetition codes is given by Cn,q =
{(a)n : a ∈ Bq}. For instance C5,4 = {00000, 11111, 22222, 33333}. This class of codes
has a high capability of correcting various types of errors. Up to n− 1 deletions can be
corrected by simply viewing which symbol is present in the resulting word. This follows
because each codeword uses only a single symbol. For instance, if the word 22 is received
it must have originated from 22222. Furthermore, up to n − 1 insertions can also be
corrected by counting which symbol occurs at least n times. Since the resulting word
has a length of at most 2n− 1 the symbol a ∈ Bq for which this holds is unique. Hence,
the original codeword must be (a)n. For example, if 001001002 is received after sending
a codeword from C5,4, then we note that that 0 occurs six times. Then, we decode to
00000. Using the repetition code Cn,q up to ⌊n−1

2
⌋ substitutions can be corrected. Since

strictly less than half of the symbols are substituted, counting the symbol that occurs at
least ⌈n

2
⌉ times indicates which codeword was used. We remark that Cn,q cannot correct

these n− 1 deletions, n− 1 insertions and ⌊n−1
2
⌋ substitutions if they occur all together.

Nevertheless, it is also possible to correct combinations of deletions, insertions and
substitutions using a suitable repetition code. For instance, any combination of at most
one deletion, at most one insertion and at most one substitution can be corrected with
C5,4. Namely, consider an arbitrary codeword from C5,4 consisting solely of the symbol
a ∈ Bq. In case one deletion occurred and possibly one insertion and one substitution,
then the resulting word has length four or five and contains at least three times the
symbol a. In case no deletion and possibly one insertion and one substitution occurred
then the resulting word has length five or six and contains at least four times the symbol
a. In both cases there is a unique symbol that occurs more often than the other sym-
bols combined, which necessarily must be the symbol a. This uniquely indicates which
codeword was used and allows the combination of errors to be corrected.

This example illustrates that C5,4 can correct many combinations of edits. Namely, we
established that the C5,4 repetition code can correct either 4 deletions, or 4 insertions, or
2 substitutions, or the combination of 1 deletion, 1 insertion and 1 substitution.

The high capability of correcting errors comes at the cost of needing many redundant
symbols. Only one out of the n symbols in a codeword contains information, while
the others are copies and thus redundant. This leads to a large relative redundancy of
1 − 1

n
logq(|Cn,q|) = 1 − 1

n
. Hence, the repetition code can correct many errors at the

cost of a high redundancy. The following two classes of codes can only correct a single
substitution and indel, respectively, but need few redundant symbols.
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1.6.2 Binary Hamming code

Next, we illustrate a class of single-substitution correcting codes that is well-known in
coding theory: binary Hamming codes [3]. Hamming codes are commonly defined as
a special class of linear codes [6], but we choose an alternative approach that requires
no prior knowledge about linear codes. This approach is similar to the way in which
Hamming codes were first described by Hamming [3] in 1950.

For the construction of Hamming codes, we first briefly introduce the concept of parity.
For a q-ary word x ∈ Bq(n) its parity is given by the least non-negative integer which
is equal to

∑n
i=1 xi mod q. For instance, x = 0123210 ∈ B4(7) has a parity of 1, since

0 + 1 + 2 + 3 + 2 + 1 + 0 ≡ 9 ≡ 1 mod 4. Note that a single substitution in a word
always changes the parity of that word. Using this observation it follows that the code
{x ∈ Bq(n) :

∑n
i=1 xi ≡ 0 mod q} can always detect one substitution error. Indeed, the

parity of the corrupted word is non-zero whenever one substitution error occurs.
For the remainder of this construction we consider only q = 2. The key idea from

Hamming in the code design is that by computing the parity on a subset of the positions
instead of the entire word, it is possible to detect a single substitution in that subset.
By carefully selecting multiple subsets on which to compute the parity, one is able to
precisely pinpoint the position of the substitution. For binary words, the position of the
substitution is sufficient for correction: a 0 must change into a 1, and vice versa.

In particular, we construct the binary Hamming code with codewords of length 15.
Each codeword will contain 11 information symbols and 4 redundant symbols. This code
is denoted by Ham(15, 11). A word x ∈ B2(15) is codeword of Ham(15, 11) if and only
if it satisfies the following set of parity checks,

x8 + x9 + x10 + x11 + x12 + x13 + x14 + x15 ≡ 0 mod 2,

x4 + x5 + x6 + x7 + x12 + x13 + x14 + x15 ≡ 0 mod 2,

x2 + x3 + x6 + x7 + x10 + x11 + x14 + x15 ≡ 0 mod 2,

x1 + x3 + x5 + x7 + x9 + x11 + x13 + x15 ≡ 0 mod 2.

Note that x1, x2, x4 and x8 only occur in a single parity check. Hence, in a word x ∈
B2(15) the other eleven symbols can be chosen freely, while these four redundant symbol
are fixed so that x satisfies the four parity checks. It follows that Ham(15, 11) has a car-
dinality of 215−4 = 2048. The relative redundancy equals 1− 1

15
log2(|Ham(15, 11)|) = 4

15

which corresponds to the fact that 4 out of the 15 symbols are redundant.

The code Ham(15, 11) is able to correct up to one substitution error, as we will show
below. The same four parity checks that are used to define codewords of Ham(15, 11),
can also be used to correct a potential substitution. These parity checks are chosen
in such a way that the position of a potential error is narrowed down by checking the
parity checks one by one. In the end, either the position of the substitution error is
determined or it is concluded that no error occurred. Suppose y ∈ B2(15) is obtained
from an unknown codeword of Ham(15, 11) by at most one substitution. We perform
the first parity check on y which determines whether an error occurred in the last eight
positions of y. In case

∑15
i=8 yi ≡ 1 mod 15, then there is an error in positions 8 to

15. Otherwise, we conclude that either an error occurred in the first seven positions, or
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no error occurred at all. We proceed to the second parity which determines whether an
error is present in positions 4, 5, 6, 7, 12, 13, 14, or 15. In case

∑7
i=4 yi +

∑15
i=12 yi ≡ 1

mod 15, then an error occurred these positions. Combined with the conclusion from the
first parity check, the error can be narrowed down to either the positions 4 to 7 or 12
to 15. If the second parity check for y equals 0, then we conclude that either the error
occurred in the other positions or no error occurred at all. Again, combining this with
the information of the first parity check narrows down the possible position of the error
to 1,2,3 or 8, 9, 10, 11. The third and fourth parity check follow the same procedure.

After checking the four parities, either the position of the error is located, or it can
be concluded that no error occurred (assuming there is at most one substitution error).
Indeed, in case all parity checks yield 0 then there is no error, because the first parity
check excludes the possibility of an error in positions 8 to 15. Subsequently, the following
three parity checks exclude positions 4, 5, 6, 7, and 2, 3, and lastly 1. This leaves only
the possibility that no error occurred. On the other hand, when at least one parity
check is non-zero, an error occurred. Note that after the j-th parity check at most 24−j

positions for the error remain possible, where j ∈ {1, 2, 3, 4}. Hence, after performing
four parity checks the position of the error is located.

Example 1.6. Suppose that y = 101 0100 1101 0010 is obtained from an unknown
codeword c ∈ Ham(15, 11) by substituting at most one symbol. We aim to recover c
from y. The four parity checks yield

1 + 1 + 0 + 1 + 0 + 0 + 1 + 0 ≡ 0 mod 2,

0 + 1 + 0 + 0 + 0 + 0 + 1 + 0 ≡ 0 mod 2,

0 + 1 + 0 + 0 + 0 + 1 + 1 + 0 ≡ 1 mod 2,

1 + 1 + 1 + 0 + 1 + 1 + 0 + 0 ≡ 1 mod 2.

The occurrence of at least one non-zero parity check indicates that a substitution error
occurred. The first and second parity check being 0 indicate that the error does not
occur in positions 8 to 15 and also not in 4 to 7 and 12 to 15, respectively. This leaves
positions 1, 2 and 3 for the error. The third parity check being 1 shows that the error
is in position 2, 3, 6, 7, 10, 11, 14 or 15. This narrows the position of the error further
down to position 2 and 3. Similarly, the fourth parity check implies that the error is in
the positions 1, 3, 5, 7, 9, 11, 13 or 15. This localizes the error in third position position.
Hence, we carry out a 1 → 0 substitution in the third position of y and recover that
c = 100 0100 1101 0010. It can easily verified that c is a codeword of Ham(15, 11) by
checking that all four parity checks are equal to zero for c.

1.6.3 Tenengolts’ single indel correcting code

Lastly, we review Tenengolts’ construction of a class of q-ary codes for correcting a single
indel [34]. This construction is the q-ary generalization of a class of binary codes, called
Varshamov-Tenengolts codes [15]. Levenshtein [7] showed that Varshamov-Tenengolts
codes are capable of correcting a single indel. The following construction uses Leven-
shtein’s reasoning to localize the position of a deletion and adds a simple parity check
to determine the value of the deleted symbol.
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For this construction, the set Bq(n) is partitioned into q · n classes. For each pair
of integers 0 ≤ α ≤ q − 1 and 0 ≤ β ≤ n − 1 we define the class Kα,β

n,q as follows. A
word x ∈ Bq(n) belongs to Kα,β

n,q if and only if x = x1x2 · · ·xn satisfies the following two
congruences,

n∑
i=1

xi ≡ α mod q, (1.1)

n∑
i=1

(i− 1) · x′
i ≡ β mod n, (1.2)

where x′ = x′
1x

′
2 · · · x′

n is defined according to the rule x′
1 = 1 and

x′
i =

{
1, if xi ≥ xi−1,

0, if xi < xi−1.
(1.3)

Remark that the classes are not necessarily of equal size [34]. For instance, B3(5) con-
tains 35 = 243 words and is partitioned into 15 classes. Given that 15 is no divisor of
243, it follows that not all classes have equal size. A word in B3(5) belongs to one and
only one class, and thus there must be a class of size at least ⌈243

15
⌉ = 17. In general,

there exist parameters α and β such that Kα,β
n,q has size of at least ⌈ qn

q·n⌉.

Each class Kα,β
n,q forms a single-indel correcting code [34]. Here, we show how to correct a

single deletion using Kα,β
n,q . By requiring that all codewords in Kα,β

n,q satisfy the same two
congruences, the value of the deleted symbol can be recovered via (1.1) and the position
of the deletion via (1.2) and (1.3). Let 0 ≤ α ≤ q − 1 and 0 ≤ β ≤ n − 1 be fixed and
suppose that the sender transmits a codeword x ∈ Kα,β

n,q . As a result of a single deletion,
the word y = y1y2 · · · yn−1 is obtained by the receiver. Before correcting the deletion, we
make several remarks.

The code parameters n, q, α and β as well as the word y are all known to the receiver.
Therefore, the receiver can also compute y′ = y′1y

′
2 · · · y′n−1 with y′1 = 1 according to rule

(1.3). In contrast, both x and x′ are not known to the receiver. The receiver can directly
detect that one deletion occurred by comparing length of y with n. For ease of notation,
we denote by j ∈ {1, ..., n} the position of the deletion in x. That is, deleting symbol xj

from x yields y. Note that j is unique up to the run to which xj belongs. For instance,
deleting the third or fifth symbol in 02111 both give 0211. Similarly, by k ∈ {1, ..., n}
we denote the position of the deletion in x′, so that deleting x′

k from x′ gives y′.
This last statement actually requires a proof that y′ can be obtained from x′ by

means of a single deletion. We claim that y′ is obtained from x′ by means of a single
deletion in the run(s) of x′ that include(s) x′

j and x′
j+1. Clearly, it does not matter

which symbol from a run is deleted, because always the same word is obtained. From
(1.3) it follows that y′i = x′

i for all i < j and y′i−1 = x′
i for all i > j + 1. So the

claim holds if y′j ∈ {x′
j, x

′
j+1}. In case x′

j ̸= x′
j+1, then it trivially holds, because x′

and y′ are binary words. On the other hand, if x′
j = x′

j+1 = 1, then the sequence
xj−1, xj, xj+1 is non-decreasing according to rule (1.3). Therefore, it holds that y′j = 1,
since yj−1 = xj−1 ≤ xj+1 = yj. Analogously, we find y′j = 0 whenever x′

j = x′
j+1 = 0.

Hence, the claim is true and also shows that it does not necessarily hold that j = k.

11



Chapter 1. Introduction

Now, we are ready to correct the deletion. The description of this process in [34] is quite
brief, while it is rather complex. Therefore, we provide a more detailed description, and
divide the process into the following four steps:

1. Recover the (q-ary) value of xj.

2. Recover the (binary) value of x′
k.

3. Recover the position of k, and consequently recover x′.

4. Recover the position of j using x′ and the value of xj. The position j and the value
xj jointly recover x.

Step 1. The value of the deleted symbol can be reconstructed using (1.1). Notice
that (1.1) acts as a parity check for the codewords. After the deletion, the parity of
the received word is changed precisely by xj. Since the parity of x is known to be α
and the parity of y can be computed, xj can be determined by assessing the difference
between α and the parity of y. Let S1 be the smallest non-negative integer such that
S1 = α−

∑n−1
i=1 yi mod q, then S1 can be computed by the receiver. It holds that

xj ≡
n∑

i=1

xi −
n−1∑
i=1

yi ≡ α−
n−1∑
i=1

yi ≡ S1 mod q.

Since it holds that 0 ≤ xj ≤ q − 1 and 0 ≤ S1 ≤ q − 1, the previous congruence shows
that xj = S1. The receiver has thus determined the value of the deleted symbol by
computing S1.

Step 2. Define W =
∑n−1

i=1 y′i and let S2 be the smallest non-negative integer such
that S2 ≡ β −

∑n−1
i=1 (i − 1)y′i mod n. Note that W and S2 can be computed by the

receiver. Intuitively, W denotes the number of ones in y and S2 indicates how (1.2) is
changed due to the deletion. Note that after the deletion of x′

k from x′, the contribution
of (k−1)x′

k is removed from the summation in (1.2). Moreover, the symbols to the right
of x′

k have shifted to the left by one in y′ with respect to x′. It follows that

S2 ≡ β −
n−1∑
i=1

(i− 1)y′i ≡
n∑

i=1

(i− 1)x′
i −

n−1∑
i=1

(i− 1)y′i ≡ (k − 1)x′
k + n1 mod n,

where n1 denotes the number of ones in x′ to the right of x′
k. Since both 0 ≤ S2 ≤ n− 1

and 0 ≤ (k − 1)x′
k + n1 ≤ k − 1 + (n− k) = n− 1, it follows that S2 = (k − 1)x′

k + n1.
Recall that W and S2 are both known to receiver, but n1 is not.

This allows us to recover x′
k. Namely, it holds that S2 < W if and only if x′

k = 0,
which is equivalent to stating that S2 ≥ W if and only if x′

k = 1. In order to prove
these equivalences, it suffices to show that x′

k = 0 implies S2 < W and x′
k = 1 implies

S2 ≥ W . Indeed, if x′
k = 0, then it holds that S2 = n1 < W because x′

1 = 1 by
definition. Moreover, if x′

k = 1, then it holds that S2 = k − 1 + n1 ≥ W . This holds
because

∑k−1
i=1 y

′
i ≤ k − 1 and

∑n−1
i=k y′i =

∑n
i=k+1 x

′
i = n1. We conclude that x′

k = 0 if
S2 < W , whereas x′

k = 1 if S2 ≥ W .
Step 3. For the recovery of x′ it remains to determine the position of x′

k in x′. In
case S2 ≥ W , then it follows from the previous step that x′

k = 1 and S2 = k − 1 + n1.

12
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Notice that S2 −W = k − 1 + n1 −W denotes the number of zeros to the left of x′
k.

This indicates where x′
k should be inserted in y′. Namely, the receiver inserts a 1 in y′

so that the number of zeros to left of the insertion is equal to S2 −W .
In the other case that S2 < W , then we know from the previous step that x′

k = 0 and
S2 = n1. Recall that n1 denotes the number of ones in x′ to the right of x′

k. Therefore,
the receiver inserts a 0 in y′ so that the number of ones to right of the insertion is equal
to S2. Hence, we recovered x′ in both cases.

Step 4. We recover the position of the deletion in x, i.e., the index j. Recall the
claim which states that y′ is obtained from x′ by means of a single deletion in the run(s)
of x′ that include(s) x′

j and x′
j+1. Let h denote the run in x′ that contains x′

k, then this
claim implies that x′

j lies in the h-th or (h− 1)-th run in x′. Note that rule (1.3) implies
that a binary run in x′ of length l corresponds to a non-decreasing or strictly decreasing
sequence of symbols in x of length l + 1. Here, we ignore the first 1 in x′. For instance,
with z = 1233013210 and z′ = 1111011000, then the first run ‘111’ in z′ (ignoring the
first 1) corresponds to the non-decreasing sequence ‘1233’. Similarly, ‘0’ corresponds to
‘30’, ‘11’ to ‘013’ and ‘000’ to ‘3210’. Indeed, the binary runs in z′ are one shorter than
the lengths of the corresponding monotonic sequences in z.

Recall that we know y and that we recovered x′. Next, consider the lengths of the
h-th and (h − 1)-th run in x′. If we compare these lengths to the lengths of the corre-
sponding monotonic sequences in y, then one of these sequences must be one short due
to the deletion. Hence, xj must be inserted in that monotonic sequence. The position
of the insertion of xj within that sequence is determined by the value of xj, which is
computed in step 1, and the fact that this sequence is monotonic.

To summarize, we give a concrete example of this class of codes and the decoding algo-
rithm.

Example 1.7. Let n = 9, q = 4, α = 2 and β = 4, so that we consider the code K2,4
9,4.

The word x = 302331110 and its associated word x′ = 101110110 satisfy

9∑
i=1

xi ≡ 3 + 0 + 2 + 3 + 3 + 1 + 1 + 1 + 0 ≡ 14 ≡ 2 mod 4,

9∑
i=1

(i− 1)x′
j ≡ 0 · 1 + 1 · 0 + 2 · 1 + 3 · 1 + 4 · 1 + 5 · 0 + 6 · 1 + 7 · 1 + 8 · 0 ≡ 22 ≡ 4 mod 9.

Hence, x is a codeword of K2,4
9,4.

Suppose that the word y = 30231110 is received, and that the receiver knows that
it originated from a word in K2,4

9,4 and that at most one deletion occurred. However, the
receiver does not know x nor x′. By checking the length of y it is immediately clear that
one deletion occurred. Next, we show how the four aforementioned steps can be used to
recover x.

Step 1. We compute S1 given by,

S1 ≡ 2− (3 + 0 + 2 + 3 + 1 + 1 + 1 + 0) ≡ 2− 11 ≡ 3 mod 4,

and conclude that the deleted symbol is a ‘3’.

13



Chapter 1. Introduction

Step 2. The received word y = 30231110 yields the associated word y′ = 10110110,
according to rule (1.3). Hence, it holds that W = 5. The parameter S2 satisfies

S2 ≡ 4− (0 · 1 + 1 · 0 + 2 · 1 + 3 · 1 + 4 · 0 + 5 · 1 + 6 · 1 + 7 · 0) ≡ 4− 16 ≡ 6 mod 9

which gives S2 = 6. Since S2 > W we conclude that x′
k = 1. In other words, x′ can be

obtained from y′ by inserting a ‘1’ (in a yet unknown position).
Step 3. From the previous step, we know that we need to insert a ‘1’ into y′, and

that S2 > W . This ‘1’ is inserted so that the number of zeros to the left of this insertion
equals S2 −W = 6− 5 = 1. Hence, we recover that x′ = 101110110.

Step 4. The recovered word x′ = 101110110 has runs ‘0’, ‘111’, ‘0’, ‘11’ and ‘0’, where
we ignore the first 1. The word y = 30231110 consists of the non-decreasing and strictly
decreasing sequences ‘30’, ‘023’, ‘31’, ‘111’ and ‘01’. Notice that the second sequence
‘023’ has the same length as its corresponding binary run ‘111’. This means that this
sequence is short by one. Hence, the symbol ‘3’ must be inserted in the sequence ‘023’.
By definition, this sequence must be non-decreasing also after the insertion, and thus we
obtain ‘0233’.

All in all, we find that x = 302331110, and thus the correction is successful.

14



2
Deletion, insertion and substitution set

In this chapter we set out to discuss the set of words that can be reached from a q-ary
word by means of precisely t′ deletions, t′′ insertions and at most s substitutions. For
x ∈ Bq(n), this set is denoted by Vt′,t′′,s(x). In particular, we formally define this set
and discuss how this set is related to t-indel s-substitution correcting codes in Section
2.1. In Section 2.2, we consider how the set Vt′,t′′,s(x) and the number of runs in x are
related. The next chapter is dedicated to the cardinality of this set.

The contents of these two chapters do not answer the research question directly. More
so, they provide the tools for answering these questions in subsequent chapters. The set
Vt′,t′′,s(x) is important in this regard because it lies at the heart of the definition of t-indel
s-substitution correcting codes. Therefore, properties of the set Vt′,t′′,s(x) and results on
its cardinality are often needed in order to derive bounds on the maximum cardinality
of t-indel s-substitution correcting codes.
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Chapter 2. Deletion, insertion and substitution set

2.1 Description of Vt′,t′′,s(x) and its basic properties

Let us start by giving a formal definition of the set of words that can be reached from a
q-ary word by a certain number of deletions, insertions and substitutions.

Definition 2.1. Let n ≥ 1, q ≥ 2, t′, t′′ ≥ 0 and s ≥ 0 be integers such that n−t′+t′′ ≥ 0.
For a q-ary word x ∈ Bq(n), let Vt′,t′′,s(x) ⊆ Bq(n− t′ + t′′) denote the set of words that
can be reached from x by precisely t′ deletions, t′′ insertions and at most s substitutions
(not necessarily in that order)1.

Moreover, define the deletion set by Dt′(x) = Vt′,0,0(x), the insertion set by It′′(x) =
V0,t′′,0(x) and the substitution set by Ss(x) = V0,0,s(x).

Note that t′ deletions reduce the length of a word by t′, t′′ insertions increase the length
by t′′, whereas s substitutions leave the length unaffected. Therefore, for a q-ary word
x of length n, the words in the set Vt′,t′′,s(x) have length n − t′ + t′′. In this definition
and throughout the sequel of this thesis, we use the following conventions. Firstly, we
use V0,0,0(x) = {x}. Secondly, for n− t′ + t′′ = 0 and x ∈ Bq(n), we set Vt′,t′′,s(x) = {Λ}
and |Vt′,t′′,s(x)| = 1, where we recall that Λ denotes the empty word of length 0.

In Appendix B, a Python script is given that can be used to compute the set Vt′,t′′,s(x)
for concrete words and parameters. In the following example, we illustrate how to
determine the words in the set V2,1,1(2221).

Example 2.2. Consider the word 2221 ∈ B3(4) and the parameters t′ = 2, t′′ = 1 and
s = 1. It holds that n = 4 and q = 3. In this example, we compute the set V2,1,1(2221).
The words in this set have length n − t′ + t′′ = 3. Note that there exist qn−t′+t′′ = 27
ternary words of length 3. As a first step, we consider the words that are obtained
via the specific order of t′ deletions followed by t′′ insertions and lastly by at most s
substitutions. These words clearly form a subset of V2,1,1(2221).

After two deletions from 2221 it holds that D2(2221) = {21, 22}. Indeed, it is possible
to delete either twice a symbol 2 from 2221 resulting in 21, or delete the symbol 1 and
one 2 giving 22 which gives 22. Next, we compute

I1(21) = {021, 121, 221, 201, 211, 210, 212},
I1(22) = {022, 122, 222, 202, 212, 220, 221}.

The union of these two sets gives all words that can be obtained from 2221 by two
deletions followed by one insertion. This union is given by

I1(21) ∪ I1(22) = {021, 022, 121, 122, 201, 202, 210, 211, 212, 220, 221, 222}.

Lastly, we consider the single substitution. That means that we compute S1(y) for all
y ∈ I1(21)∪I1(22), and again take the union of these sets. For brevity, we mention only⋃
y∈I1(21)∪I1(22)

S1(y) = {001, 002, 010, 011, 012, 020, 021, 022, 101, 102, 110, 111, 112
120, 121, 122, 200, 201, 202, 210, 211, 212, 220, 221, 222}.

(2.1)
1For ease of remembering, the subscripts in Vt′,t′′,s(x) are ordered alphabetically: deletions,

insertions and substitutions.
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It is not hard to verify that each of these 25 words in this set can be obtained by at
most one substitution from a word in I1(21) ∪ I1(22). For instance, the word 001 can
be obtained from 201 by a 0 → 2 substitution of the first symbol. The only two words
in B3(3) that are not in this set are 000 and 100. Indeed, these two words cannot be
reached from I1(21) ∪ I1(22) by at most one substitution.

To summarize, we have constructed the set of words that can be reached from 2221
by precisely two deletions, one insertions and at most one substitutions, in that specific
order of edits. This set is given by (2.1). According to Definition 2.1, we still need to
verify whether additional words (i.e., 100 and/or 000) are contained in V2,1,1(2221). These
words might be obtained by considering the edits in a different order. Fortunately, we
will show that is not the case, and that in fact we have found all elements in V2,1,1(2221).

The aforementioned definition of the set Vt′,t′′,s(x) does not impose the order in which
the deletions, insertions and substitutions are considered. The following lemma shows
that the order does not matter. Every order of the edits (e.g., first all deletions, followed
by the insertions and lastly the substitutions) leads to the same set. In other words,
specifying a particular order of the edits does not lead to a more restricted set of words.
Therefore, we are free to choose any order of the edits.

This property has been proven in [35, Lem. 1] for deletions and insertions only. It has
been stated for deletions, insertions as well as substitutions in [36, Sec. 2], but without
a proof nor a reference. Here, we extend the proof of [35] to also include substitutions,
and thus provide a proof for the statement in [36].

Lemma 2.1. Let n ≥ 1 and q ≥ 2 be integers and x ∈ Bq(n). Let t′1, t′′1, s1, t′2, t′′2, s2 ≥ 0
be integers such that n − t′1 + t′′1 ≥ 1 and n − t′1 − t′2 + t′′1 + t′′2 ≥ 1. Then, the following
holds2,

Vt′2,t′′2 ,s2(Vt′1,t′′1 ,s1(x)) = Vt′1+t′2,t
′′
1+t′′2 ,s1+s2(x).

Proof. Firstly, we observe that the requirements n − t′1 + t′′1 ≥ 1 and n − t′1 − t′2 +
t′′1 + t′′2 ≥ 1 imply that the set Vt′2,t′′2 ,s2(Vt′1,t′′1 ,s1(x)) is well-defined. It suffices to show
the following six properties, which together will prove the lemma. For a, b ≥ 1, we
claim that D1(I1(x)) = I1(D1(x)), D1(S1(x)) = S1(D1(x)), I1(S1(x)) = S1(I1(x)),
Da(Db(x)) = Da+b(x), Ia(Ib(x)) = Ia+b(x) and Sa(Sb(x)) = Sa+b(x). By repeatedly
applying these properties the result follows. The latter three properties follow directly
from Definition 2.1, so we prove solely the first three properties. In what follows, the
superscripts + and − denote that the variables are elements of Bq(n+ 1) and Bq(n− 1)
respectively, and an omission thereof represents variables in Bq(n).

To this end, let y ∈ D1(I1(x)) which means that there exists some z+ ∈ I1(x) such
that y ∈ D1(z

+). Hence, x,y ∈ D1(z
+) and thus there exists some word z− ∈ D2(z

+)
such that z− ∈ D1(x) and z− ∈ D1(y). In turn, this implies that y ∈ I1(z−) and y ∈
I1(D1(x)). This shows that D1(I1(x)) ⊆ I1(D1(x)). The converse inclusion follows from
considering a similar argument in the reverse order and its proof is therefore omitted.

Next, let y− ∈ D1(S1(x)) then there exists some z ∈ Bq(n) such that d(x, z) ≤ 1 and
y− ∈ D1(z) where d denotes the Hamming distance. Let i denote the leftmost position
that can be deleted from z to yield y−. Define the word z− as the word which is obtained

2Hereforth, we will use the slight abuse of notation: Vt′2,t′′2 ,s2(Vt′1,t′′1 ,s1(x)) =⋃
y ∈Vt′1,t′′1 ,s1

(x) Vt′2,t′′2 ,s2(y).
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from x by performing a deletion on position i. Since the deletions are performed on the
same positions, it follows that d(z−,y−) ≤ 1. Hence, z− satisfies both d(z−,y−) ≤ 1 and
z− ∈ D1(x). This shows that y− ∈ S1(D1(x)) and D1(S1(x)) ⊆ S1(D1(x)). Again, the
proof of the converse inclusion follows similarly and is left out.

Lastly, let y+ ∈ I1(S1(x)) which implies that there exists some z ∈ Bq(n) such that
d(x, z) ≤ 1 and y+ ∈ I1(z). Define z+ as the word that is obtained by performing
the same insertion on x as the insertion that transforms z into y+. In case multiple
insertions can transform z into y+, the leftmost insertion is taken for uniqueness. Since
both the placement and symbols of the two insertions in x and z are equal, we find also
that d(z+,y+) ≤ 1. Combined with z+ ∈ I1(x) this gives y+ ∈ S1(I1(z)). We conclude
that I1(S1(x)) ⊆ S1(I1(x)). In a similar way the proof of the converse inclusion can be
obtained and it is thus omitted.

So far, we have formally described the set Vt′,t′′,s(x) and shown that the order of the
edits in this set can be chosen freely. Next, we make the connection between this set
and t-indel s-substitution correcting codes more concrete. Namely, we will state five
equivalent ways to characterize t-indel s-substitution correcting codes in terms of the set
Vt′,t′′,s(x). Before doing so, we treat two simple properties that will be useful for proving
this result. The first property deals with reversing the order of the edits.

Lemma 2.2 ([36]). Let n ≥ 1, q ≥ 2, t′, t′′ ≥ 0 and s ≥ 0 be integers such that
n− t′ + t′′ ≥ 1. Let x ∈ Bq(n) and y ∈ Bq(n− t′ + t′′), then y ∈ Vt′,t′′,s(x) if and only if
x ∈ Vt′′,t′,s(y).

Proof. For a single edit the statement clearly holds. Namely, a deletion can be reversed
by an insertion and vice versa. Moreover, an a → b substitution is reversable by b → a
substitution. In other words, y ∈ D1(x) if and only if x ∈ I1(y) and y ∈ S1(x) if and
only if x ∈ S1(y).

Suppose that y ∈ Vt′,t′′,s(x), then we will show that x ∈ Vt′′,t′,s(y). Beware that the
order of t′ and t′′ is reversed in the previous statement. Consider a sequence of edits
that turns x into y using t′ deletions, t′′ insertions and s substitutions. We apply this
sequence of edits to y in reverse order. That is, the first edit in the sequence that turns
x into y will be the last edit in the sequence that turns y into x, et cetera. Moreover,
we also reverse the type of edits: a deletion is carried out instead of an insertion, an
insertion instead of a deletion and an a→ b substitution instead of a b→ a substitution.
Using the observations from the first paragraph, it follows that x can be obtained from
y by precisely t′′ deletions, t′ insertions and at most s substitutions, i.e., x ∈ Vt′′,t′,s(y).
For symmetry reasons, the converse statement follows analogously.

The second property was stated by Cullina and Kiyavash in [35, Lem. 1], and will be
helpful in the next proof. For completeness, we restate their short proof.

Lemma 2.3 ([35], Lemma 1). Let n ≥ 1, q ≥ 2 and 0 ≤ t ≤ n be integers, and let
x,y ∈ Bq(n). Then it holds that Dt(x) ∩ Dt(y) ̸= ∅ if and only if It(x) ∩ It(y) ̸= ∅.

Proof. Suppose that Dt(x)∩Dt(y) is non-empty and let z− ∈ Dt(x)∩Dt(y). By Lemma
2.2 it holds that z− ∈ Dt(x) and y ∈ It(z−). In turn, this jointly gives y ∈ It(Dt(x)). By
Lemma 2.1 the order of the edits can be reversed which gives y ∈ Dt(It(x)). Thus there
exists a z+ ∈ It(x) such that y ∈ Dt(z

+). Rearranging the last relation gives z+ ∈ It(y)
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by Lemma 2.2. Hence, we find z+ ∈ It(x) ∩ It(y). We conclude that It(x) ∩ It(y) is
non-empty as well. The converse statement follows analogously.

Now we are ready to show the connection between the set Vt′,t′′,s(x) and t-indel s-
substitution correcting codes. The next lemma collects several similar results from
e.g., [11, Lem. 2], [13, Sec. II], [35, Lem. 2] and [37, Cor. 2]. None of these results
state the following lemma in full, but collectively they imply the following lemma. We
provide a proof of the entire statement below.

Lemma 2.4. Let n ≥ 1, q ≥ 2, 0 ≤ t ≤ n and 0 ≤ s ≤ n be integers, and let C ⊆ Bq(n)
be a code. Then, the following statements are equivalent:

1. C is a t-indel s-substitution correcting code.

2. Vt′,t′′,s(c1)∩Vt′,t′′,s(c2) = ∅ for all distinct codewords c1, c2 ∈ C, and for all integers
t′, t′′ ≥ 0 such that t′ + t′′ ≤ t.

3. Vt,0,s(c1) ∩ Vt,0,s(c2) = ∅ for all distinct codewords c1, c2 ∈ C.

4. V0,t,s(c1) ∩ V0,t,s(c2) = ∅ for all distinct codewords c1, c2 ∈ C.

5. c2 /∈ Vt,t,2s(c1) for all distinct c1, c2 ∈ C.

Proof. We show five implications in a circular manner which proves the equivalence of
all statements. Recall that by definition C is called a t-indel s-substitution correcting
code if any q-ary word (not necessarily of length n) can be obtained from no more than
one codeword of C by precisely t′ deletions, t′′ insertions and at most s substitutions,
whenever t′ + t′′ ≤ t.

(1 ⇒ 2 ). Suppose that C ⊆ Bq(n) is a t-indel s-substitution correcting code. Let c1
and c2 be two distinct codewords of C and t′, t′′ ≥ 0 be integers such that t′ + t′′ ≤ t.
Suppose for contradiction that there exists some z ∈ Vt′,t′′,s(c1) ∩ Vt′,t′′,s(c2), then z can
be obtained from two codewords from C by t′ deletions, t′′ insertions and s or fewer
substitutions. This violates the definition of the t-indel s-substitution correcting code C.
Hence, this proves the first implication.

(2 ⇒ 3 ). This implication is immediate when setting t′ = t and t′′ = 0.
(3 ⇒ 5 ). Let c1 and c2 be two distinct codewords of C and assume that Vt,0,s(c1) ∩

Vt,0,s(c2) = ∅. Moreover, assume for contradiction that c2 ∈ Vt,t,2s(c1). This implies that
c2 can be obtained from c1 by precisely t deletions, t insertions and k ≤ 2s substitutions.
By Lemma 2.1 it follows that this can be done in any ordering of the edits. In particular,
it follows that there exists a z ∈ Bq(n − t) such that z can be reached by from c1 by t
deletions and ⌈k

2
⌉ ≤ s substitutions. Moreover, c2 can be obtained from z by t insertions

and k − ⌈k
2
⌉ = ⌊k

2
⌋ ≤ s substitutions. All in all, it follows that z ∈ Vt,0,s(c1) and

c2 ∈ V0,t,s(z), which gives z ∈ Vt,0,s(c1)∩Vt,0,s(c2) according to Lemma 2.2. However, this
contradicts the assumption that this intersection is empty. Hence, the third statement
implies the fifth statement of this lemma.

(5 ⇒ 4 ). Let c1 and c2 be two distinct codewords of C and assume c2 /∈ Vt,t,2s(c1).
Assume for contradiction that there exists a z ∈ V0,t,s(c1) ∩ V0,t,s(c2). Then, by Lemma
2.2, it holds that c2 ∈ Vt,0,s(z). However, this implies together with z ∈ V0,t,s(c1) that
c2 ∈ Vt,0,s(V0,t,s(c1)). From Lemma 2.1 it follows that c2 ∈ Vt,t,2s(c1) which contradicts
the first assumption.
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c1 u1 u2 c2

v1 v2

x

y

z

n
n+ t′′ − t′
n+ t′′

n+ t′ + t′′
n+ t

Figure 2.1: Schematic representation of the variables in the proof of implication (4 ⇒
1 ) in Lemma 2.4. On the right, the lengths of the variables are given. Horizontal lines
indicate that these variables can be obtained from each other by substitutions. Diagonal
and vertical lines imply that the bottom variable can be obtained from the top variable
via deletions, or vice versa through insertions.

(4 ⇒ 1 ). Assume that V0,t,s(c1) ∩ V0,t,s(c2) = ∅ for all distinct codewords c1, c2 ∈ C.
Let t′, t′′ ≥ 0 be integers such that t′ + t′′ ≤ t, and x ∈ Bq(n − t′ + t′′) be an arbitrary
word. Then, we will show by contradiction that x cannot be obtained from more than
one codeword by precisely t′ deletions, t′′ insertions and at most s substitutions. Clearly,
any q-ary word x′ of different length than x cannot be reached by a codeword in C in
such a way. In order to keep track of the variables in the following paragraph, we refer
to Figure 2.1 for a schematic representation.

To this end, suppose for contradiction that there exist c1, c2 ∈ C such that x can be
reached by both c1 and c2 using precisely t′ deletions, t′′ insertions and at most s substi-
tutions. By Lemma 2.1, this implies that x ∈ Dt′(It′′(Ss(c1))) and x ∈ Dt′(It′′(Ss(c2))).
Thus there exist u1 ∈ Ss(c1), u2 ∈ Ss(c2) and v1 ∈ It′′(u1), v2 ∈ It′′(u2) such that
x ∈ Dt′(v1) and x ∈ Dt′(v2). Then by Lemma 2.3 it follows that there exists a
y ∈ Bq(n + t′ + t′′) such that y ∈ It′(v1) and y ∈ It′(v2). Thus we have the rela-
tions y ∈ It′(v1) and v1 ∈ It′′(u1) which combine to y ∈ It′+t′′(u1). Analogously, it also
holds that y ∈ It′+t′′(u2). If we invoke the relations u1 ∈ Ss(c1) and u2 ∈ Ss(c2) and
Lemma 2.1 again, we find that y ∈ V0,t′+t′′,s(c1) ∩ V0,t′+t′′,s(c2). As a last step, insert
t − (t′′ − t′) ≥ 0 times the zero symbol in front of y to obtain the word z. Then, it
holds that z ∈ V0,t,s(c1) ∩ V0,t,s(c2), but this contradicts the first assumption that this
intersection is empty. This proves the last implication.

From the previous lemma we observe the following when we set s = 0. In that case,
we consider t-indel correcting codes. Note that the third statement intuitively states
that C can correct t deletions, and the fourth statement that C can correct t insertions.
In other words, this proves again a fundamental property from Levenshtein [7] that a
(binary) code capable of correcting only deletions is also able to correct equally many
insertions. In fact, Lemma 2.4 is slightly more general because it considers codes over a
q-ary alphabet instead of binary codes, and it also includes substitutions.

The previous lemma provides a concrete tool for checking that a set C ⊆ Bq(n) is a
t-indel s-substitution correcting code.

Example 2.3. Recall the repetition code Cn,q = {(a)n : a ∈ Bq} from Subsection 1.6.1.
For instance, C4,5 is given by {0000, 1111, 2222, 3333, 4444}. Let ci in C4,5 be the codeword
that consists solely of the symbol i ∈ B5, then it holds that D3(ci) = {i}. Hence, Lemma
2.4 shows that C4,5 is a 3-indel correcting code.
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Moreover, note that V1,0,1(ci) consists of all words of length 3 that contain at least
twice the symbol i. As a result, V1,0,1(ci) and V1,0,1(cj) are disjoint whenever i ̸= j. Again
using Lemma 2.4 shows that C4,5 is also a single-indel single-substitution correcting code.

Observe that each substitution can be obtained by two indels; a deletion followed by
an insertion. Therefore, a code that can correct two indels can also correct one sub-
stitution. For this reason, after we established that C4,5 is 3-indel correcting code in
the previous example, we could have directly concluded that C4,5 is also a single-indel
single-substitution correcting code. This idea is captured in the following lemma.

Lemma 2.5 ([13], Section 1). Let n ≥ 1, q ≥ 2, t ≥ 0 and s ≥ 0 be integers such that
t+2s ≤ n. Let C ⊆ Bq(n) be a (t+2s)-indel correcting code. Then, it holds that C is also
a t-indel s-substitution correcting code. As a consequence, Mq(n, t+2s, 0) ≤Mq(n, t, s).

Proof. According to Lemma 2.4, the code C satisfies Vt+s,s,0(c) ∩ Vt+s,s,0(c
′) = ∅ for all

distinct c, c′ ∈ C, because C be a (t + 2s)-indel correcting code. Using the observation
that a substitution can be obtained by a deletion followed by an insertion, it is immediate
that Vt,0,s(x) ⊆ Vt+s,s,0(x) for all x ∈ Bq(n). This implies that Vt,0,s(c) ∩ Vt,0,s(c′) = ∅
for all distinct c, c′ ∈ C. Therefore, we find that C is a t-indel s-substitution correcting
code, using again Lemma 2.4.

Let C ′ ⊆ Bq(n) be a (t + 2s)-indel correcting code of maximal size. Then, we have
|C ′| = Mq(n, t + 2s, 0) and that C ′ is also t-indel s-substitution correcting code by the
observations in the previous paragraph. Obviously, the size of C ′ is at most Mq(n, t, s).
Therefore, it holds that Mq(n, t+ 2s, 0) = |C ′| ≤Mq(n, t, s).

In contrast, the converse statement of Lemma 2.5 does not hold. This is not surprising,
since there are many words that can be obtained from one deletion and one insertion, but
not from one substitution. Therefore, it is often more difficult to correct two arbitrary
indels than one arbitrary substitution. This is shown in the following counterexample.

Counterexample 2.4. Consider the binary code C = {010, 101} ⊆ B2(3). It holds that

S1(010) ∩ S1(101) = {010, 110, 000, 011} ∩ {101, 001, 111, 100} = ∅,
V1,1,0(010) ∩ V1,1,0(101) = {000, 001, 010, 100, 011, 101, 110} ∩ {001, 010, 100, 011, 101, 110, 111}

= {001, 010, 100, 011, 101, 110}.

This shows that C is a 1-substitution correcting code by Lemma 2.4, because the first
intersection is empty. On the other hand, C is no 2-indel correcting code, because
V1,1,0(010) ∩ V1,1,0(101) is clearly non-empty.

This counterexample illustrates that the condition to be a 2-indel correcting code is more
stringent than the condition to be a 1-substitution correcting code. As a result, there
are instances in which a 2-indel correcting code of maximal size is strictly smaller than
a 1-substitution correcting code of maximal size, as the following example shows.

Example 2.5. In this example, we show that M2(15, 2, 0) ≪ M2(15, 0, 1). In other
words, we provide an instance in which 2-indel correcting codes are far from optimal
within the class of 1-substitution correcting codes.
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Recall the binary Hamming code Ham(15, 11) from Subsection 1.6.2 consisting of 211
words of length 15. We have shown that Ham(15, 11) is a single-substitution correcting
code. Obviously, Ham(15, 11) is at most as large as the largest binary single-substitution
correcting code with codewords of length 15. As a result, it holds that3 M2(15, 0, 1) ≥
211 = 2048.

On the other hand, we mention already the following upper bound on the maximum
size of a t-indel correcting code

M2(n, t, 0) ≤
2n+t∑t

i=0

(
n+t
i

) ,
which will be discussed in Lemma 5.4. In particular, it holds for binary 2-indel correcting
codes that M2(15, 2, 0) ≤ 217

1+17+136
≈ 851.12. This implies that any 2-indel correcting

code contains at most 851 words, since a code size is necessarily integer-valued. It follows
that M2(15, 2, 0) ≤ 851. All in all, it holds clearly that M2(15, 2, 0)≪M2(15, 0, 1).

This example illustrates that we should not limit the search for a 1-substitution correcting
code of maximum size to the class of 2-indel correcting codes. For the same reason, we
should not limit the search for an optimal t-indel s-substitution correcting code to the
class of (t + 2s)-indel correcting codes, whenever s ≥ 1. For the purpose of this thesis,
it motivates why it makes sense to consider bounds on Mq(n, t, s) and not restrict our
attention to (existing) bounds on Mq(n, t+ 2s, 0).

2.2 Relation between Vt′,t′′,s(x) and the number of runs
of x

In this section we explore the number of runs in an arbitrary word x ∈ Bq(n) in relation
with the set Vt′,t′′,s(x). Recall that a run in x is a subsequence with identical and con-
secutive symbols that is not contained within a longer such run. For example, the word
211130 consists of the four runs 2, 111, 3 and 0. The subsequence 11 is not considered
a run, because it is contained within the longer subsequence 111.

Next, we answer a question that will repeatedly arise in this thesis. Given that x ∈ Bq(n)
has r(x) runs, how does the number of runs change after applying a certain number of
deletions, insertions and/or substitutions. Intuitively, we show that r(y) cannot be very
different from r(x) when y ∈ Vt′,t′′,s(x) and t′, t′′ and s are small. More specifically, we
bound the difference between r(x) and r(y) for x ∈ Bq(n) and y ∈ Vt′,t′′,s(x) in terms of
t′, t′′ and s.

The following lemma is a generalization of [11, Claim 1] in which the statement
was made for a single deletion and s substitutions only. However, neither a proof nor
a reference for this claim was provided in [11]. Here, we generalize their claim to an
arbitrary number of t′ deletions, t′′ insertions and s substitutions. A proof of this more
general statement can be found in Appendix A.1.

3In fact, M2(15, 0, 1) = 2048 which follows from the Hamming bound in Lemma 5.3. Namely, it
states that M2(15, 0, 1) ≤ 215

1+15 = 2048. However, this is not relevant for this example.
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Lemma 2.6. Let n ≥ 1, q ≥ 2, t′ ≥ 0, t′′ ≥ 0 and s ≥ 0 be integers such that
n− t′ + t′′ ≥ 1. Let x ∈ Bq(n) and y ∈ Vt′,t′′,s(x), then the following holds,

r(x)− 2(t′ + s) ≤ r(y) ≤ r(x) + 2(t′′ + s).

The bounds in this lemma are tight and cannot be improved in general. Namely, there
exist words x ∈ Bq(n) and y ∈ Vt′,t′′,s(x) that attain these bounds with equality. The
following example provides concrete words x and y for which this is the case.

Example 2.6. Let q = 2, t, s ≥ 0, and consider the binary alternating word x =
0101 · · · 010 of length 2(t + s) + 1. Clearly, it holds that r(x) = 2(t + s) + 1, and that
x consists of t+ s+ 1 zeros and t+ s ones. By deleting the first t ones from x followed
by substituting the remaining s ones to zeros, we obtain the all-zero word y = (0)t+s+1.
By construction, it follows that y ∈ Vt,0,s(x). Given that r(y) = 1, the words x and y
satisfy the lower bound on r(x) from Lemma 2.6 with equality.

By considering this example in reverse, i.e., by turning y into x using t insertions
and s substitutions it follows that the upper bound from Lemma 2.6 is tight as well.

Before concluding this chapter we count the number of words in Bq(n) with precisely r
runs. Recall that we denote the set of these words by Rn,q(r). It is obvious that each
word contains at least one run and at most n. Hence, we consider the cardinality of
Rn,q(r) for 1 ≤ r ≤ n. The following result follows from a simple counting argument.

Lemma 2.7 ([38], Section II). Let n ≥ 1, q ≥ 2 and 1 ≤ r ≤ n be integers. The number
of words in Bq(n) with precisely r runs is given by

|Rn,q(r)| = q

(
n− 1

r − 1

)
(q − 1)r−1.

Proof. For words of length n, the first position always starts a new run and from the
remaining n−1 positions, r−1 positions are chosen where a new run can start. Therefore,
there are

(
n−1
r−1

)
configurations that indicate where new runs start. Moreover, note that

the symbols of a run may not be equal to that of the previous run, as otherwise the runs
would form one single run together. Hence, the first run can take all q possible symbols,
whereas the remaining runs have only q − 1 options. It follows from these observations
that |Rn,q(r)| = q

(
n−1
r−1

)
(q − 1)r−1.

In Figure 2.2 the number of q-ary words with length 25 and r runs is depicted on a
logarithmic scale for each 1 ≤ r ≤ 25. For q = 2, we observe a symmetry of the graph
around r = 13. More specifically, we observe that there are equally many binary words
with r runs as with n− r + 1 runs, where 1 ≤ r ≤ n and n = 25. Although this follows
directly from the relation

(
n−1
r−1

)
=
(
n−1
n−r

)
, it can also intuitively be explained by the

following observations. Note that if we know the positions of the runs within a binary
word x, then there are only two options for x. By additionally specifying the value of
x1 ∈ B2 only one option for x remains. For instance, suppose positions 1, 2, 3 and 4, 5
and 6, 7 form the runs in a word x, then either x = 0001100 or 1110011. Based on the
value of x1 the specific word is fixed. The positions of the runs can either be specified
using the r − 1 out of the n− 1 positions where a run can start, or the n− r positions
out of n − 1 that do not start a run. Here, we ignore the first position in a word that
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Chapter 2. Deletion, insertion and substitution set

Figure 2.2: The number of words of length n = 25 with 1 ≤ r ≤ n runs is shown
logarithmically for alphabet sizes q = 2 (left) and q = 4 (right).

necessarily starts a run. This explains why there are equally many binary words with r
runs as with n− r + 1 runs.

This is certainly not the case for non-binary words. In Figure 2.2, this can be observed
for q = 4 because the graph is no longer symmetric around r = 13. When q ≥ 3, it does
not suffice to know the positions of the runs and the value of the first run in order to
determine which word is considered. Knowing the value of a run does not determine the
value of a neighbouring run, because there are q − 1 ≥ 2 options for the value of the
neighbouring run.
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3
Cardinality of the deletion, insertion

and substitution set

This section sets out to discuss the cardinality of Vt′,t′′,s(x). For an arbitrary word
x ∈ Bq(n) and general parameters t′, t′′ and s, counting the number of elements in the
set Vt′,t′′,s(x) is a non-trivial task. As recent as 2019, Abu-Sini and Yaakobi [39] stated
the following about this task: “to the best of our knowledge, finding the size of the ball
Vt′,t′′,s(x) has not been studied before and it is a challenging problem by itself”. Only
for highly specific sets of parameters or words the cardinality of the deletion, insertion
and substitution set Vt′,t′′,s(x) is known. In the other cases we must rely on bounds.

Similar to the previous chapter, this chapter is not meant to answer the research
question from Section 1.4 directly. The results in this chapter will be useful in subsequent
chapters where we aim to answer this question.
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Chapter 3. Cardinality of the deletion, insertion and substitution set

3.1 Cardinality of Ss(x) and It(x)
By only considering substitutions, we first restrict our attention to the set Ss(x) =
V0,0,s(x) for general s ≥ 0. It is rather straightforward to count the number of elements
in this set for any x ∈ Bq(n). Indeed, for a word x ∈ Bq(n) of length n there are

(
n
i

)
ways in which the positions for precisely i ∈ {1, ..., n} substitutions can be chosen. Each
substitution can turn a symbol into one of q − 1 different symbols. It follows that there
are

(
n
i

)
(q− i)i distinct words in Bq(n) that can be obtained from x by means of precisely

i substitutions. Hence, the number of words that can be obtained by substituting at
most s symbols is given by

|Ss(x)| = |V0,0,s(x)| =
s∑

i=0

(
n

i

)
(q − 1)i, (3.1)

for each x ∈ Bq(n). Notice that |Ss(x)| depends on x only through the parameters n
and q and not on the structure of the word x. In other words, the cardinality of Ss(x)
is equal for all x ∈ Bq(n).

For insertions solely, the cardinality of the set It(x) is less obvious to determine than
for substitutions, but still an explicit formula can be found. According to [35] and [38],
the following lemma was first proven by Levenshtein in [40]. Since the author has not
been able to retrieve this Russian article, we refer to a brief proof from [41]. We present
a more detailed version of this proof in Appendix A.2.

Lemma 3.1 ([40]). For integers n ≥ 1, q ≥ 2 and t ≥ 0 the cardinality of the set It(x)
is given by

|It(x)| = |V0,t,0(x)| =
t∑

i=0

(
n+ t

i

)
(q − 1)i,

for each x ∈ Bq(n).

The previous lemma shows that the cardinality of It(x) is equal for all x ∈ Bq(n). We
have also observed that the same property holds for the set Ss(x). This suggests that
this might also be true for the set of words in Bq(n+ t) that can be reached from x by t
insertions and at most s substitutions, i.e., the set V0,t,s(x). Surprisingly, the following
example shows that is not true in general.

Counterexample 3.1. Consider the binary words x = 00 ∈ B2(2) and y = 01 ∈ B2(2).
After applying one insertion and at most one substitution, we obtain

V0,1,1(x) = {000, 001, 010, 100, 011, 101, 110},
V0,1,1(y) = {000, 001, 010, 100, 011, 101, 110, 111}.

Note that 111 cannot be obtained from x = 00 by one substitution and one insertion.
Therefore it holds that 111 /∈ V0,1,1(x). This example shows that the cardinality of the set
V0,t,s(z) depends on the word z ∈ Bq(n) and is not only determined by the parameters
n, q, t and s. The cardinality of V0,1,1(z) for arbitrary z ∈ Bq(n) will be discussed in
Section 3.3.
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3.2 Cardinality of Dt(x)

Next, we consider the cardinality of the set Dt(x). In contrast to the cardinalities of It(x)
and Ss(x) which are known and easy to compute for each x ∈ Bq(n) and t, s ≥ 0, the
cardinality of Dt(x) is more difficult to determine. The main reason for this complexity
is that |Dt(x)| depends not only on the parameters t, n and q, but also on the structure
of the word x. The following example investigates the cardinality of Dt(x) for various
words x ∈ Bq(n) and values of t, and it will show that |Dt(x)| indeed depends on the
structure of x.

Example 3.2. Let t = 1 and consider the words x = 001122, y = 111022 and z = 010212
in B3(6). Observe that after a single deletion it holds that

D1(x) = {01122, 00122, 00112},
D1(y) = {11022, 11122, 11102},
D1(z) = {10212, 00212, 01212, 01012, 01020, 01022}.

Although the parameters t, n and q are equal, the cardinalities of D1(x) and D1(z) differ.
Notice that each word in D1(x) can be uniquely determined by specifying the run from
which a symbol is deleted. For instance, deleting either the third or the fourth symbol
from x both yield 00122, because the third and fourth symbol belong to the same run.
It follows that |D1(x)| = 3 = r(x). Analogously, we find that |D1(y)| = 3 = r(y) and
|D1(z)| = 6 = r(z). In general, the property |D1(w)| = r(w) holds for all w ∈ Bq(n).

For multiple deletions, the number of runs of an arbitrary word w ∈ Bq(n) is no
longer sufficient to characterize |Dt(w)|. Namely, x and y both have three runs, but it
holds that

D2(x) = {1122, 0022, 0011, 0122, 0112, 0012},
D2(y) = {1022, 1112, 1122, 1102, 1110}.

Nevertheless, the number of runs may still give an indication of the size of |Dt(w)|.
Loosely speaking, |Dt(w)| is small if w has few runs, whereas it is large if w contains
many runs. For example, it holds that D2(000000) = {0000} and

D2(z) = {1022, 0102, 1021, 0112, 1212, 0101, 0021, 0121, 0012, 0122, 1012, 0022, 0212},

while these words contain one and six runs, respectively.

Example 3.2 shows that knowing the parameters n, q and t is not sufficient to determine
|Dt(x)| for x ∈ Bq(n). Moreover, it shows that the number of runs in a word x ∈ Bq(n)
is related to the cardinality of Dt(x), but is also not sufficient to characterize |Dt(x)| for
t ≥ 2. In particular, it is argued that for t = 1 it holds that

|D1(x)| = r(x) (3.2)

for all x ∈ Bq(n). This has already been established by Levenshtein in [7].
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For 2 ≤ t ≤ 5 the exact cardinality of |Dt(x)| has been determined by Mercier et al. [42],
who provided an analytic expression based on the structure of a word x ∈ Bq(n). In
theory, this process can be used for arbitrary t, but the authors of [42] noted that this is
not feasible in practice, because “the terms become increasingly complex and the size of
the formulas grows exponentially with t”. Therefore, we must rely on upper and lower
bounds for t ≥ 6.

All subsequent bounds are based on the idea that the number of runs of a word is
highly related to the cardinality of Dt(x). This idea was also observed in Example 3.2.
In 1966, Levenshtein [7] showed the following bounds,(

r(x)− t+ 1

t

)
≤ |Dt(x)| ≤

(
r(x) + t− 1

t

)
, (3.3)

for all x ∈ B2(n) and 0 ≤ t ≤ n. For a proof of these bounds we refer to [7]. Although
Levenshtein’s paper considered solely words over the binary alphabet, these bounds hold
for arbitrary values of q ≥ 2 as well according to [38]. For t = 1, the two bounds agree
and this provides a different proof for Equation (3.2).

In 2002, Hirschberg and Regnier [43] improved Levenshtein’s lower bound for all t ≥ 2
by showing

t∑
i=0

(
r(x)− t

i

)
≤ |Dt(x)|, (3.4)

for all x ∈ Bq(n). The fact that this is an improvement for t ≥ 2 follows from the
observation(

r(x)− t+ 1

t

)
=

(
r(x)− t

t

)
+

(
r(x)− t

t− 1

)
=

t∑
i=t−1

(
r(x)− t

i

)
≤

t∑
i=0

(
r(x)− t

i

)
.

Here, we used the recurrence
(
a
b

)
=
(
a−1
b

)
+
(
a−1
b−1

)
for binomial coefficients, and omit the

terms for which 0 ≤ i ≤ t − 2 from the summation. We refer to [43] for a proof of this
bound. In 2015, this lower bound was even further improved by Liron and Langberg [44].
However, their bound applies only to binary words. For this reason, we do not consider
their lower bound in detail.

Lastly, we consider the cardinality of Dt(x) averaged over all x ∈ Bq(n). Recall that
x ∈ It(y) if and only if y ∈ Dt(x) from Lemma 2.2. Using this observation, it was shown
in [38] that the average cardinality of Dt(x) is given by

1

qn

∑
x∈Bq(n)

|Dt(x)| =
1

qn

∑
y∈Bq(n−t)

|It(y)|

=
qn−t

qn

t∑
i=0

(
(n− t) + t

i

)
(q − 1)i,

=
1

qt

t∑
i=0

(
n

i

)
(q − 1)i, (3.5)

where we used Lemma 3.1 for the cardinality of |It(y)| for all y ∈ Bq(n− t).
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3.3 Cardinality of V1,0,1(x) and V0,1,1(x)
In this section, we consider the cardinalities of V1,0,1(x) and V0,1,1(x) for arbitrary x ∈
Bq(n). In both cases, an analytic formula for the cardinality of these sets is known, but
the formula for V0,1,1(x) holds only for binary words. The cardinalities of these sets are
useful for deriving bounds on single-indel single-substitution correcting codes.

We consider first a single deletion and a single substitution, i.e., the cardinality of
the set V1,0,1(x). The expression for |V1,0,1(x)| for a q-ary word x was stated without a
proof in [11, Lem. 2]. The authors referred to a proof of [39, Thrm. 2], but the statement
in [39] and its proof only hold for binary words. We present a proof of this formula for
general alphabet size q ≥ 2 which extends the ideas from [39]. However, this proof is
rather lengthy and does not provide many new insights that are needed for the remainder
of this thesis. Hence, we have relegated the proof to Appendix A.3.

Lemma 3.2. Let n ≥ 1 and q ≥ 2 be integers and x ∈ Bq(n). Then, the following holds,

|V1,0,1(x)| = Ln,q
1,0,1(r(x)) :=

{
(n− 1)(q − 1) + 1 if r(x) = 1,

r(x) ((n− 2)(q − 1)− 1) + q + 2 if r(x) ≥ 2.

Example 3.3. Let x = 00000 and y = 01201 both be words in B3(5). Then, it holds
that r(x) = 1 and r(y) = 5. The previous lemma gives that

|V1,0,1(x)| = (5− 1)(3− 1) + 1 = 9,

|V1,0,1(y)| = 5((5− 2)(3− 1)− 1) + 5 = 5 · 5 + 5 = 30.

We remark that it is important to state that q = 3. For instance, both words x and y
could also be viewed as words in B8(5), i.e., with q = 8. In that case it holds that

|V1,0,1(x)| = (5− 1)(8− 1) + 1 = 29,

|V1,0,1(y)| = 5((5− 2)(8− 1)− 1) + 10 = 5 · 20 + 10 = 110.

It is not surprising that these sets are much larger than before, since for q = 8 a single
substitution can turn a symbol into seven (instead of two) different other symbols.

Observe that the cardinality of V1,0,1(x) depends on x only via the parameters n, q and
r(x). For fixed parameters n and q, the expression for |V1,0,1(x)| in Lemma 3.2 can be
seen as a function Ln,q

1,0,1 in terms of r = r(x). In subsequent chapters, it will be useful
to know that Ln,q

1,0,1 is non-decreasing in r for n ≥ 3 and q ≥ 2. Indeed, we have

Ln,q
1,0,1(1) = (n− 1)(q − 1) + 1 ≤ 2(n− 2)(q − 1) + q = Ln,q

1,0,1(2).

Moreover, it holds that (n − 2)(q − 1) − 1 ≥ 0 for n ≥ 3 and q ≥ 2. It follows that
Ln,q
1,0,1(r) ≤ Ln,q

1,0,1(r + 1) for all r ≥ 2.

Next, we move towards a single insertion and a single substitution. Abu-Sini and Yaakobi
[39] derived a formula for |V0,1,1(x)| for x ∈ B2(n). This formula holds for binary words
only.
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Chapter 3. Cardinality of the deletion, insertion and substitution set

Lemma 3.3 ([36], Theorem 10). Let n ≥ 1 be an integer and let x ∈ B2(n) be a binary
word with r = r(x) runs of lengths l1, l2, . . . lr. The number of words that can be obtained
from x by one insertion and one substitution is given by

|V0,1,1(x)| = (n+ 2)2 − 2−
r∑

i=1

li(li + 5)

2

For a proof of this lemma, we refer to [36]. For the purpose of this thesis, we are highly
interested in a formula of |V0,1,1(x)| that holds for x ∈ Bq(n) and arbitrary q ≥ 2.
However, to the best of our knowledge, such a formula has not been stated in literature.
The authors of [36] do not consider the case q ≥ 2, and it is not clear to the author of this
thesis how the proof of Lemma 3.3 can be extended to q ≥ 2. In the following example
we make the expression from Lemma 3.3 more concrete for the binary alternating word.

Example 3.4. Consider the binary alternating word x = 1010 · · · 10 ∈ B2(n) for even
n ≥ 2 and x = 1010 · · · 1 ∈ B2(n) for odd n ≥ 1. In both cases, it holds that x has
r(x) = n runs, which are all of length 1. It follows that

|V0,1,1(x)| = (n+ 2)2 − 2−
n∑

i=1

1 · (1 + 5)

2
= n2 + 4n+ 4− 2− 3n = n2 + n+ 2.

In contrast to the set V1,0,1(x), the cardinality of the set V0,1,1(x) cannot be characterized
by the parameters n and r(x) only. Additional information on the lengths of the indi-
vidual runs in x is needed to fully determine the cardinality of this set. In subsequent
chapters, we do not always know the lengths of all individual runs. Instead, we often
only know the parameters n and r = r(x) about the structure of x ∈ B2(n). Therefore,
we cannot apply Lemma 3.3 in this setting.

Fortunately, we establish a work-around in the following lemma. Namely, this lemma
provides a lower bound on |V0,1,1(x)| in terms of n and r = r(x). To this end, define
the binary word u1

n,r of length n consisting of r runs as follows. The binary word u1
n,r

is defined such that its first run has length n − r + 1 and contains only zero symbols.
The remaining r − 1 runs of u1

n,r are unit runs which alternate between 1 and 0. More
specifically, the i-th run consists of zeros if i ≡ 1 mod 2 and it consists of ones if i ≡ 0
mod 2. For example, u1

8,4 = 00000101. Indeed, the word u1
8,4 contains 4 runs, a first run

of length n − r + 1 = 5 which is followed by r − 1 = 3 unit runs. To the best of the
author’s knowledge the following lemma has not been stated before in literature.

Lemma 3.4. Let n ≥ 1 be an integer. For all binary words x ∈ B2(n) with r = r(x)
runs, it holds that

|V0,1,1(x)| ≥ |V0,1,1(u1
n,r)| = Ln,2

0,1,1(r) := −
1

2
r2 + (n+

1

2
)r +

1

2
(n2 + n+ 4).

Moreover, for fixed n, the function Ln,q
0,1,1(r) is increasing in r on the set {1, ..., n}.

Proof. Firstly, we state a claim and show that this claim implies |V0,1,1(x)| ≥ |V0,1,1(u1
n,r)|.

Let x ∈ B2(x) be an arbitrary binary word with r runs of lengths l1, ..., lr. From Lemma
3.3 it follows that |V1,0,1(x)| is invariant under permutations of the runs in x. Therefore,
without loss of generality we can assume that l1 is the longest run, i.e., l1 ≥ lj for all
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3.4. Cardinality of Vt′,t′′,s(x)

2 ≤ j ≤ r. Moreover, we can also assume without loss of generality that the first run
consists of zeros. Otherwise, we consider x instead, and note that |V1,0,1(x)| = |V1,0,1(x)|.
Here x denotes the binary complement of x.

Next, we are able to state and prove the claim. Let 2 ≤ j ≤ r be an integer and x∗

be the binary word obtained from x by shortening the j-th run by one and extending
the first run by one, then it holds that |V0,1,1(x)| ≥ |V0,1,1(x∗)|. Apart from the first and
the j-th run, the lengths of the other runs remain unchanged. Therefore, it holds that

|V0,1,1(x)| − |V0,1,1(x∗)| = −1

2
l1(l1 + 5)− 1

2
lj(lj + 5) +

1

2
(l1 + 1)(l1 + 6) +

1

2
(lj − 1)(lj + 4)

=
1

2
(−5l1 − 5lj + 7l1 + 3lj + 2)

= l1 − lj + 1 ≥ 0,

where we used that l1 ≥ lj and Lemma 3.3. This proves the claim. By repeatedly
applying the claim to runs for which lj ≥ 2 and j ≥ 2, the first inequality of the lemma
follows. Indeed, the first run becomes strictly longer after each step, while the other
runs become shorter. This process necessarily terminates at the word u1

n,r after a finite
number of iterations.

Secondly, we show that |V0,1,1(u1
n,r)| = Ln,2

0,1,1(r) by applying Lemma 3.3. Note that
for u1

n,r it holds that l1 = n− r + 1 and l2 = l3 = · · · = lr = 1. Therefore, we find

|V0,1,1(u1
n,r)| = (n+ 2)2 − 2− 1

2
(n− r + 1)(n− r + 6)− 3(r − 1)

= n2 + 4n+ 2− 1

2
(n2 + r2 + 6− 2nr − 7r + 7n)− 3r − 3

= −1

2
r2 + (n+

1

2
)r +

1

2
(n2 + n+ 4).

For fixed n, the function Ln,2
0,1,1(r) is a concave quadratic polynomial in r which is sym-

metric around n+ 1
2
. Hence, it is increasing in r on the set {1, ..., n}.

3.4 Cardinality of Vt′,t′′,s(x)
As stated before, finding a general expression for cardinality of Vt′,t′′,s(x) is a challenging
task. In this section, we review and derive various steps in this direction.

3.4.1 Exact results

For completeness, we mention two exact results on the cardinality of Vt′,t′′,s(x) in lit-
erature. Firstly, a general expression for the cardinality of V1,1,0(x) for all x ∈ Bq(n)
was derived by Sala and Dodeleck in [45]. The set of words that can be reached by one
deletion and one insertion from x ∈ Bq(n) is of lesser importance in this thesis, since we
mainly focus on the combination of indels and substitutions.

Secondly, we consider the parameters t′ = 1, t′′ = 0 and s ≥ 0 and binary words
x ∈ B2(n). In this setting, an exact expression for |V1,0,s(x)| for all x ∈ B2(n) has
been provided by Abu-Sini and Yaakobi in [36]. From this expression it is apparent that

31



Chapter 3. Cardinality of the deletion, insertion and substitution set

|V1,0,s(x)| only depends x via the parameters n and r(x). We state that the outline of
the proof of this result resembles the proof of Lemma 3.2 on the cardinality of V1,0,1(x).
Here, we omit a proof because it is lengthy and this result is not of great importance for
the sequel of this thesis. For a detailed proof, we refer to [36].

3.4.2 Lower bound on the cardinality of Vt,0,s(x)
In this section we derive a novel non-asymptotic lower on the cardinality of Vt,0,s(x) for
general t, s ≥ 0 and x ∈ Bq(n). To the best of the author’s knowledge this bound has
not been stated before in literature and even forms the only non-trivial lower bound
|Vt,0,s(x)| that holds for general t, s ≥ 0.

Lemma 3.5. Let n ≥ 1, 0 ≤ t ≤ n
2

and 0 ≤ s ≤ n
2

be integers. Let x ∈ Bq(n) be a word
for which its number of runs r = r(x) satisfies ⌊ r

2
⌋ ≥ s and ⌊ r

2
⌋ ≥ t. Then, it holds that

s∑
i=0

(
⌊ r
2
⌋
i

)
(q − 1)i ·

t∑
j=0

(
⌈ r
2
⌉ − t

j

)
≤ |Vt,0,s(x)|.

Proof. For this proof, we will use the following idea. We consider only the words which
are obtained by at most s substitutions in the first ⌊ r

2
⌋ runs and precisely t deletions in

the remaining runs. This is possible since, t ≤ ⌊ r
2
⌋ ≤ n− ⌈ r

2
⌉. Naturally, a lower bound

on the number of words constructed in this way also forms a lower bound on |Vt,0,s(x)|.
Let x1 be the word which consists of the first ⌊ r

2
⌋ runs of x, and x2 be the word

which consists of the last r−⌊ r
2
⌋ = ⌈ r

2
⌉ runs of x. In other words, x is the concatenation

of x1 and x2. Denote by n1 and n2 the lengths of x1 and x2, respectively. It holds
that n1 ≥ ⌊ r2⌋ ≥ s and n2 ≥ ⌈ r2⌉ ≥ t, since each run has a length of at least one.
By concatenating a word u ∈ Ss(x1) with a word v ∈ Dt(x

2), we obtain the word1

(u|v) ∈ Vt,0,s(x). Each such distinct pair of words u,v yields a distinct word in Vt,0,s(x)
and thus there exist at least |Ss(x1)| · |Dt(x

2)| words in Vt,0,s(x). As a result, we get

|Vt,0,s(x)| ≥ |Ss(x1)| · |Dt(x
2)|

≥
s∑

i=0

(
n1

i

)
(q − 1)i ·

t∑
j=0

(
n2 − t

j

)

≥
s∑

i=0

(
⌊ r
2
⌋
i

)
(q − 1)i ·

t∑
j=0

(
⌈ r
2
⌉ − t

j

)
,

where we used (3.1) for the cardinality Ss(x1) and (3.4) as a lower bound on |Dt(x
2)|.

The lower bound in this lemma counts only words which are obtained in a very specific
way. This results in a weak bound of |Vt,0,s(x)|. This is also illustrated by the following
example.

1By the notation (u|v) we denote the concatenation of the words u ∈ Bq(n1) and v ∈ Bq(n2) into
the concatenated word in Bq(n1 + n2). For instance, let u = 1023 ∈ B4(4) and v = 302 ∈ B4(3), then
(u|v) = 1023302 ∈ B4(7).
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Example 3.5. Let n = 7, q = 4 and t = s = 1. For these parameters, note that the
previous lemma only applies to the words in Bq(n) with r ≥ 2 runs. Consider the words
x = 000111, y = 1102333 and z = 0123012 in B4(7). These words have r(x) = 2,
r(y) = 4 and r(z) = 7 runs, respectively. The lower bound from Lemma 3.5 gives

|V1,0,1(x)| ≥
1∑

i=0

(
⌊ r(x)

2
⌋

i

)
3i ·

1∑
j=0

(
⌈ r(x)

2
⌉ − 1

j

)
= (1 + 3) · (1 + 1) = 8,

|V1,0,1(y)| ≥
1∑

i=0

(
⌊ r(y)

2
⌋

i

)
3i ·

1∑
j=0

(
⌈ r(y)

2
⌉ − 1

j

)
= (1 + 6) · (1 + 1) = 14,

|V1,0,1(z)| ≥
1∑

i=0

(
⌊ r(z)

2
⌋

i

)
3i ·

1∑
j=0

(
⌈ r(z)

2
⌉ − 1

j

)
= (1 + 9) · (1 + 3) = 40.

On the other hand, recall that Lemma 3.2 yields the exact cardinalities. This gives
|V1,0,1(x)| = r(x)((n − 2)(q − 1) − 1) + q + 2 = 2 · 14 + 6 = 34. Similarly, we find that
|V1,0,1(y)| = 62 and |V1,0,1(z)| = 104. This shows that for the words x y and z, the lower
bound performs rather weak.

The main purpose of this lower bound lies in the asymptotic regime. Loosely speaking,
we will use this bound to show that for words with sufficiently many runs, the cardinality
of Vt,0,s(x) is asymptotically equal to O(nt+s). This will be addressed in Section 6.8.

3.5 q-ary entropy function

In this section we introduce the q-ary entropy function and discuss its properties. This
function plays an important role to bound the size of the Hamming sphere of radius
r, which is given by the quantity

∑r
i=0

(
n
i

)
(q − 1)i. This quantity arises often when

determining the cardinality of Vt′,t′′,s(x). For instance, recall that this term occurs in
the cardinalities of the sets Ss(x) and It(x) (after some appropriate scaling). For deriv-
ing asymptotic results it will be crucial to bound these terms using the q-ary entropy
function.

Definition 3.6. Let q ≥ 2 be an integer, then the q-ary entropy function Hq : [0, 1− 1
q
]→

R is defined by

Hq(x) = x logq(q − 1)− x logq(x)− (1− x) logq(1− x),

where Hq(0) = 0 for continuity. Moreover, define the extended q-ary entropy function
H∗

q : [0,∞)→ R by

H∗
q (x) = Hq(min{x, 1− 1

q
}).

Figure 3.1 shows a plot of Hq for various parameters q. Based on this figure it is not
surprising that on the interval [0, 1 − 1

q
] the q-ary entropy function has the following

basic and useful properties. According to [6, Sec. 4.5], it holds that Hq is continuous,
non-negative, ∩-concave, invertible and attains its minimum value of 0 at x = 0 and its
maximum value of 1 at x = 1− 1

q
.
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Chapter 3. Cardinality of the deletion, insertion and substitution set

Figure 3.1: The q-ary entropy function for 2 ≤ q ≤ 5.

The following lemma gives a lower and upper bound on the size of the Hamming sphere
in terms of the q-ary entropy function. For a proof of these bounds we refer to [6].

Lemma 3.6 ([6], Lemma 4.7 & 4.8). Let n ≥ 1, q ≥ 2 and r ≥ 0 be integers such that
0 ≤ r

n
≤ 1− 1

q
. Then the following holds,

1

n+ 1
qnHq(

r
n
) ≤

r∑
i=0

(
n

i

)
(q − 1)i ≤ qnHq(

r
n
).

The bounds in this lemma can be sharpened according to [6], but for the purpose of this
thesis these bounds suffice. In the asymptotic regime the following result will be useful.

Lemma 3.7 ([9], Equation (4)). For each λ ∈ (0, 1) the following holds,

lim
n→∞

1

n
logq

⌊λn⌋∑
i=0

(
n

i

)
(q − 1)i

 = H∗
q (λ).

For a proof of this result we refer to [9].
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4
Lower bounds for t-indel s-substitution

correcting codes

This chapter sets out to derive lower bounds on the maximal size of t-indel s-substitution
correcting codes. In line with our research question, we first review two existing lower
bounds on Mq(n, 0, s) and Mq(n, t, 0) in Section 4.1. Thereafter, these bounds are gener-
alized to form a novel lower bound on the maximal size of t-indel s-substitution correcting
codes in Section 4.2. Next, we take a closer look at the derivation of this novel bound,
and identify an improvement. This leads to a second novel lower bound on Mq(n, t, s)
in Section 4.3. The lower bounds on Mq(n, t, s) are then compared in a non-asymptotic
setting in Section 4.4. Lastly, we derive two asymptotic results on Mq(n, t, s) using the
lower bounds from this Chapter.
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4.1 Two existing lower bounds for s-substitution cor-
recting codes and t-indel correcting codes

For s-substitution correcting codes, we consider first the Gilbert-Varshamov lower bound
on Mq(n, 0, s). This bound was proven by Gilbert [4] and later independently by Var-
shamov [5]. Here, we restate this result and prove it using the original argument from
Gilbert. This proof uses a sphere-covering argument and is arguably the most common
proof of this result.

Lemma 4.1 ([4,5] Gilbert-Varshamov bound). For integers n ≥ 1, q ≥ 2 and 0 ≤ s ≤ n,
the following gives a lower bound on Mq(n, 0, s),

Mq(n, 0, s) ≥
qn∑2s

i=0

(
n
i

)
(q − 1)i

.

Proof. Let C ⊆ Bq(n) be an s-substitution correcting code of maximal size. For all c ∈ C
consider the substitution spheres S2s(c). Recall that S2s(c) contains the words in Bq(n)
that can be obtained from c by at most 2s substitutions.

Observe that for each x ∈ Bq(n) there exists a codeword c ∈ C with x ∈ S2s(c) and
equivalently c ∈ S2s(x). In order to prove this statement, assume by contradiction that
there exists some x ∈ Bq(n) such that S2s(x)∩C = ∅. This implies that c /∈ S2s(x) for all
c ∈ C. Therefore, C ∪ {x} is also an s-substitution correcting code. Namely, this follows
directly from Lemma 2.4 which states that C ∪{x} is an s-substitution correcting code if
and only if c1 /∈ S2s(c2) for all c1, c2 ∈ C∪{x}. However, this contradicts the maximality
of C and proves the statement that for each x ∈ Bq(n), there exists a codeword c ∈ C
with x ∈ S2s(c).

This statement implies that each x ∈ Bq(n) is covered by some S2s(c) for at least one
c ∈ C. In other words, the union of sets S2s(c) over all c ∈ C is a subset of Bq(n). This
union is necessarily also a subset of Bq(n) and thus they must be equal. It follows that

qn = |Bq(n)| =

∣∣∣∣∣⋃
c∈C

S2s(c)

∣∣∣∣∣ ≤∑
c∈C

|S2s(c)| = |C|
2s∑
i=0

(
n

i

)
(q − 1)i. (4.1)

Here, we used that |S2s(c)| =
∑2s

i=0

(
n
i

)
(q − 1)i for all c ∈ C, (cf. (3.1)). By noting that

C is maximal, i.e., |C| = Mq(n, 0, s), and by rewriting (4.1), the result of this lemma
follows.

This sphere-covering proof of the Gilbert-Varshamov bound is an existence proof. It
does not suggest how to actually construct an s-substitution correcting code with a size
that meets (or exceeds) the lower bound. The Gilbert-Varshamov bound does not always
provide a strong lower bound, as illustrated by the following example.

Example 4.1. In this example, we are interested in bounding M2(15, 0, 1) from below.
The aforementioned Gilbert-Varshamov lower bound gives

M2(15, 0, 1) ≥
215∑2

i=0

(
15
i

)
(2− 1)i

=
32768

1 + 15 + 105
≈ 270.8.
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This implies that there exists a single-substitution correcting code of size at least 271,
because a code size is necessarily integer-valued. However, recall the binary single-
substitution Hamming code with words of length 15 from Subsection 1.6.2. We estab-
lished that Ham(15, 11) has a cardinality of 215−11 = 2048. In other words, this code
construction shows that M2(15, 0, 1) ≥ 2048, which greatly exceeds the lower bound of
271 by Gilbert and Varshamov.

In the proof of the Gilbert-Varshamov bound the set Bq(n) is covered with the spheres
S2s(c) centered around the codewords c ∈ C. A natural question is whether a similar
argument can be used to derive a lower bound for t-indel correcting codes. Recall that a
code C is a t-indel correcting code if and only if c1 /∈ Vt,t,0(c2) for all c1, c2 ∈ C. Therefore
we may ask, is possible to cover Bq(n) with the sets Vt,t,0(c) and deduce a bound in the
same way?

The short answer to this question is no. However, it is possible to adapt the argument
in order to derive a bound. Namely, we have implicitly used in (4.1) of Lemma 4.1 that
the sets S2s(c) are all of equal size. As we have seen in Chapter 3, this is not the case for
the sets Vt,t,0(c). Therefore, the argument in the proof of Lemma 4.1 cannot be repeated
for t-indel correcting codes. Fortunately, Tolhuizen [46] provided an alternative strategy
to prove the Gilbert-Varshamov bound of Lemma 4.1 that does not rely on the fact
that the sets S2s(c) are of equal size. This allowed Levenshtein [38] to apply Tolhuizen’s
strategy to the sets Vt,t,0(c) in order to derive a lower bound on Mq(n, t, 0). In [38], only
a brief outline of the proof has been provided. We give a detailed proof below based on
this outline and the strategy by Tolhuizen.

Lemma 4.2 ([38], Theorem 1). For integers n ≥ 1, q ≥ 2 and 0 ≤ t ≤ n, the following
gives a lower bound on Mq(n, t, 0),

Mq(n, t, 0) ≥
qn+t(∑t

i=0

(
n
i

)
(q − 1)i

)2 .
Proof. This proof is divided into two major steps. First, we aim to apply the main result
from Tolhuizen [46] in order to show that

Mq(n, t, 0) ≥
qn

1
qn

∑
x∈Bq(n)

|Vt,t,0(x)|
. (4.2)

Secondly, we show that the denominator in this expression is upper bounded by

q−t

(
t∑

i=0

(
n

i

)
(q − 1)i

)2

.

Together, these steps show the desired result. For the first step, let (X , ρ) be a metric
space and d ≥ 1 an integer. The main result of [46] states that there exists a subset
(i.e., a code) C ⊆ X that satisfies ρ(c, c′) ≥ d for all distinct c, c′ ∈ C and |C|V avr

d−1 ≥ |X |.
Here, V avr

d−1 denotes the average size of the spheres Vd−1(x) = {y ∈ X : ρ(x, y) ≤ d − 1}
over all x ∈ X . For a proof of this result, we refer to [46]. In Lemma 4.3 we will prove a
similar statement using a graph-theoretical argument. Hence, we omit a proof here.
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Next, we apply this result to the context of t-indel correcting codes. Let X be given
by Bq(n) and ρ denote the deletion/insertion metric, which equals the minimum number
of deletions and insertions needed to translate x into y. Given that X = Bq(n) we will
write x ∈ X instead of x ∈ X , et cetera. In Section I of [7], Levenshtein showed that ρ
is indeed a metric and that C is a t-indel correcting code if and only if ρ(c, c′) ≥ 2t + 1
for distinct codewords c, c′ ∈ C. All together, this implies that there exists a t-indel
correcting code C ⊆ X = Bq(n) for which

|C| ≥ |X |
V avr
2t (x)

=
|X |

1
|X |
∑

x∈X |V2t(x)|
=

qn

1
qn

∑
x∈Bq(n)

|V2t(x)|
.

Naturally, this t-indel correcting code C satisfies |C| ≤ Mq(n, t, 0). Hence, in order to
conclude the first step we will show that V2t(x) = Vt,t,0(x).

To this end, observe that for x,y ∈ Bq(n) the following statements are equivalent; it
holds that ρ(x,y) ≤ 2t if and only if y ∈ Vt,t,0(x). Indeed, suppose that y ∈ Vt,t,0(x) then
it follows directly from the definitions of ρ and Vt,t,0(x) that ρ(x,y) ≤ 2t. Conversely,
suppose that ρ(x,y) ≤ 2t. For the words x and y of the same length, the minimal
number of deletions and insertions that turn x into y must contain an equal number of
t′ deletions and t′ insertions, where t′ ≤ t. Hence, x can be turned into y by t′ deletions
and t′ insertions. Clearly, x can also be turned into y by t deletions and t insertions.
This can be done inserting t − t′ zeros in front of x and deleting these zeros again, fol-
lowed by turning x into y by t′ deletions and t′ insertions. This shows the equivalence.
By the definition of the set V2t(x), this equivalence implies that V2t(x) = Vt,t,0(x). This
concludes the first step and shows (4.2).

For the second step, note that each y ∈ Vt,t,0(x) can be reached from x by first deleting
t symbols from x followed by inserting t symbols according to Lemma 2.1. Therefore, it
holds for all x ∈ Bq(n) that

|Vt,t,0(x)| ≤
∑

y∈Dt(x)

|It(y)|. (4.3)

Recall that the cardinality of It(y) is given by

|It(y)| =
t∑

i=0

(
(n− t) + t

i

)
(q − 1)i, (4.4)

for all y ∈ Bq(n−t) according to Lemma 3.1. Moreover, the cardinality of Dt(x) averaged
over all x ∈ Bq(n) was given in (3.5) by

q−n
∑

x∈Bq(n)

|Dt(x)| = q−t

t∑
i=0

(
n

i

)
(q − 1)i. (4.5)
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This allows us to derive the following bound on the average of |Vt,t,0(x)| over all x ∈ Bq(n),

q−n
∑

x∈Bq(n)

|Vt,t,0(x)|
(4.3)
≤ q−n

∑
x∈Bq(n)

∑
y∈Dt(x)

|It(y)|

(4.4)
= q−n

∑
x∈Bq(n)

∑
y∈Dt(x)

t∑
i=0

(
n

i

)
(q − 1)i

= q−n

t∑
i=0

(
n

i

)
(q − 1)i

∑
x∈Bq(n)

|Dt(x)|

(4.5)
= q−t

(
t∑

i=0

(
n

i

)
(q − 1)i

)2

.

In the third step we used that the expression
∑t

i=0

(
n
i

)
(q − 1)i does not depend on both

x and y. Moreover, we used that
∑

y∈Dt(x)
1 = |Dt(x)|. This proves the bound from the

second step and finalizes the over-all proof.

Example 4.2. In this example we bound M3(11, 1, 0) from below. The previous lower
bound by Levenshtein gives

M3(11, 1, 0) ≥
311+1

(
(
11
0

)
(3− 1)0 +

(
11
1

)
(3− 1)1)2

=
312

232
≈ 1004.61.

Therefore, there exists a single-indel correcting code C ⊆ B3(11) of size at least 1005. On
the other hand, recall from Tenengolts’ construction of single-indel correcting codes in
Subsection 1.6.3 that there exists such a code of size ⌈ qn

q·n⌉ = ⌈
311

3·11⌉ = 5369. This implies
that M3(11, 1, 9) ≥ 5369. Hence, Levenshtein’s bound is rather weak for this specific set
of parameters.

Remark 4.3. It is not hard to adapt the proof of Lemma 4.2 to the setting of s-
substitution correcting codes. Namely, consider the metric space (X , d) where X = Bq(n)
and d denotes the Hamming distance function. In the context of the first step in the
proof of Lemma 4.2, let V2s(x) := {y ∈ X : d(x,y) ≤ 2s}. Hence, V2s(x) consists of
all words in Bq(n) that differ in at most 2s positions from x. This means they can be
reached from x by at most 2s substitutions. Therefore, it holds that V2s(x) = S2s(x)
and we find that

Mq(n, 0, s) ≥
|X |

V avg
2s (x)

=
qn

1
qn

∑
x∈Bq(n)

|S2s(x)|
=

qn∑2s
i=0

(
n
i

)
(q − 1)i

.

Here, we used that the sets S2s(x) have equal size for all x ∈ Bq(n) according to (3.1).
For brevity, we do not consider all details and refer to [46] for a detailed proof. The main
purpose of this remark is to convince the reader that this strategy (with more details)
leads to the an alternative proof of the Gilbert-Varshamov bound.

To summarize, we proved the Gilbert-Varshamov bound for s-substitution correcting
codes using the original sphere-covering argument. Based on the fact that the sets
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Chapter 4. Lower bounds for t-indel s-substitution correcting codes

Vt,t,0(x) are not of equal size for all x ∈ Bq(n), we established that this sphere-covering
argument does not easily extend to t-indel correcting codes. For this reason, we reviewed
a different strategy by Tolhuizen and Levenshtein. This strategy leads to the lower bound
from Lemma 4.2 for t-indel correcting codes as well as the Gilbert-Varshamov bound for
s-substitution correcting codes.

These similarities raise the natural question whether this strategy can be general-
ized to obtain a lower bound for t-indel s-substitution correcting codes as well. In the
following section this question will be addressed.

4.2 Gilbert-Varshamov inspired lower bound on Mq(n, t, s)

In this section, we derive a novel Gilbert-Varshamov inspired lower bound for t-indel s-
substitution correcting codes. First, we formulate an implicit Gilbert-Varshamov bound
in Lemma 4.3. Subsequently, we obtain an explicit lower bound for t-indel s-substitution
correcting codes in Theorem 4.4. The statement of Lemma 4.3 resembles the first step
in the proof of Lemma 4.2, whereas Theorem 4.4 is similar to the second step in this
proof. To the best of the author’s knowledge, both results have not been stated before
within literature.

The proof of the following lemma is based on the discussion in Sections I and II of [46]
by Tolhuizen. This statement is a straightforward adaptation thereof to suit the setting
of t-indel s-substitution correction codes.

Lemma 4.3. Let n ≥ 1, q ≥ 2, 0 ≤ t ≤ n and 0 ≤ s ≤ n be integers. The following
gives a lower bound on Mq(n, t, s),

Mq(n, t, s) ≥
qn

Vavr
t,t,2s

, (4.6)

where Vavr
t,t,2s = q−n

∑
x∈Bq(n)

|Vt,t,2s(x)|.

Proof. The idea of this proof is to translate the problem of finding a large code in the
setting of coding theory, to the problem of finding a large clique1 in a graph in the setting
of graph theory. For the latter problem, we apply Turán’s theorem which states that a
graph with sufficiently many edges contains a large clique, which in turn induces a large
code.

Define the undirected graph G = (V,E) without loops or double edges as follows.
Let V = Bq(n) be the set of nodes of G. Two distinct nodes x and y from V are joined
by an edge if x /∈ Vt,t,2s(y). This is well-defined because x /∈ Vt,t,2s(y) if and only if
y /∈ Vt,t,2s(x) by Lemma 2.2. Intuitively, two vertices x and y are joined by an edge if
and only if they can both belong to the same code. Then, the number of nodes of G

1A clique of a graph G is an induced subgraph of G that is complete. In other words, all pairs of
vertices in a clique are connected by an edge. See Figure 4.1.
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Figure 4.1: On the left, complete graphs with 1 to 5 vertices. On the right, a clique of
size 4 (in red) within a larger graph.

equals |V | = qn and the number of edges equals

|E| = 1

2

∑
x∈V

(|V \ Vt,t,2s(x)|)

=
1

2

∑
x∈V

(|V | − |Vt,t,2s(x)|)

=
1

2
q2n − 1

2

∑
x∈Bq(n)

|Vt,t,2s(x)|

=
1

2
qn(qn − Vavr

t,t,2s),

where the first equality follows from the fact that each x ∈ V has |V \Vt,t,2s(x)| incident
edges. Therefore, summing |V \ Vt,t,2s(x)| over all nodes in x ∈ V equals 2|E| because
each edge is counted twice. Observe that from the definition of the edges in G and
Lemma 2.4 it follows that a clique of size k in G corresponds to a t-indel s-substitution
correcting code of size k.

Turán’s theorem [46, Sec. II] implies that the graph G = (V,E) contains a clique of
size k whenever k is an integer such that 2 ≤ k ≤ n and

|E| > k − 2

2(k − 1)
|V |2. (4.7)

By substituting the cardinalities of V and E into the expression above and dividing by
1
2
qn, this condition can be rewritten as

qn − Vavr
t,t,2s >

k − 2

k − 1
qn = qn − 1

k − 1
qn,

which in turn is equivalent to

k < 1 +
qn

Vavr
t,t,2s

.

Note that the integer k∗ := ⌈ qn

Vavr
t,t,2s
⌉ satisfies this last condition. In turn, k∗ also satisfies

(4.7). Hence, we conclude that there exists a clique in G of size k∗, which implies
that there exists a t-indel s-substitution correcting code of size k∗. By the definition of
Mq(n, t, s) we find Mq(n, t, s) ≥ k∗ ≥ qn

Vavr
t,t,2s

, as desired.
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Chapter 4. Lower bounds for t-indel s-substitution correcting codes

The previous proof depends on a version of Turán’s theorem as stated in [46, Sec. II]. A
slightly stronger version of Turán’s theorem can be found in [47] together with a short
proof by induction on k. In the following section, we will take a closer look at Turán’s
theorem and therefore we omit a proof here.

Example 4.4. In this example, we bound M3(11, 1, 1) from below using Lemma 4.3.
Since n and q are rather small in this example, we can compute Vavr

1,1,2 using the script in
Appendix B. For each x ∈ B3(11) we determine |V1,1,2(x)| and get for instance,

|V1,1,2(00000000000)| = 1563,

|V1,1,2(01201201201)| = 20427.

As an average result over all x ∈ B3(11), we obtain Vavr
1,1,2 = 1

311

∑
x∈B3(11)

|V1,1,2(x)| ≈
13023.0569. Using Lemma 4.3 we obtain the following lower bound,

M3(11, 1, 1) ≥
311

13023.0569
≈ 13.60.

Since M3(11, 1, 1) is integer-valued, this result gives M3(11, 1, 1) ≥ 14. Note that knowing
Vavr
1,1,2 up to four decimals is sufficient, because the numerical lower bound on M3(11, 1, 1)

is rounded up to arrive at a final result.

Given that the size of Bq(n) grows exponentially in n, computing this average is imprac-
tical for large n and q with the script from Appendix B. In order to be able to use the
lower bound in the previous lemma for all parameters n, q, t and s, we employ an upper
bound for Vavr

t,t,2s. This makes the bound explicit at the cost of obtaining a weaker bound.

Theorem 4.4. For integers n ≥ 1, q ≥ 2, 0 ≤ t ≤ n and 0 ≤ s ≤ n, the following gives
a lower bound on Mq(n, t, s),

Mq(n, t, s) ≥
qn+t(∑t

i=0

(
n
i

)
(q − 1)i

)2 (∑2s
i=0

(
n−t
i

)
(q − 1)i

) . (4.8)

Proof. We claim that size of Vt,t,2s(x) averaged over all x ∈ Bq(n) can be bounded by

Vavg
t,t,2s = q−n

∑
x∈Bq(n)

|Vt,t,2s(x)| ≤ q−t

(
t∑

i=0

(
n

i

)
(q − 1)i

)2( 2s∑
i=0

(
n− t

i

)
(q − 1)i

)
.

In that case, the result of this theorem follows immediately from applying this upper
bound to Lemma 4.3. Therefore, this proof is limited to proving this claim. In what
follows, a superscript − will denote a variable in Bq(n− t), whereas an omission thereof
means that the variable is an element of Bq(n).

To this end, recall that each element in Vt,t,2s(x) can be reached from x ∈ Bq(n) by
first deleting precisely t symbols, followed by substituting at most 2s symbols and lastly
inserting exactly t symbols. Hence, it follows that

|Vt,t,2s(x)| =

∣∣∣∣∣∣
⋃

y−∈Dt(x)

⋃
z−∈S2s(y−)

It(z−)

∣∣∣∣∣∣ ≤
∑

y−∈Dt(x)

∑
z−∈S2s(y−)

|It(z−)|. (4.9)
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4.2. Gilbert-Varshamov inspired lower bound on Mq(n, t, s)

In order to evaluate the right-hand side of this expression, recall that the cardinalities
of the sets It(x−) and S2s(x−) for any x− ∈ Bq(n− t) are given by

|It(x−)| =
t∑

i=0

(
(n− t) + t

i

)
(q − 1)i, (4.10)

|S2s(x−)| =
2s∑
i=0

(
n− t

i

)
(q − 1)i. (4.11)

Furthermore, the cardinality of Dt(x) averaged over all x ∈ Bq(n) is given by

1

qn

∑
x∈Bq(n)

|Dt(x)| =
1

qt

t∑
i=0

(
n

i

)
(q − 1)i. (4.12)

in accordance with (3.5). By carefully taking into account the lengths of the words in
the following expression we find

1

qn

∑
x∈Bq(n)

|Vt,t,2s(x)|
(4.9)
≤ 1

qn

∑
x∈Bq(n)

∑
y−∈Dt(x)

∑
z−∈S2s(y−)

|It(z−)|

(4.10)&(4.11)
=

1

qn

∑
x∈Bq(n)

∑
y−∈Dt(x)

(
2s∑
i=0

(
n− t

i

)
(q − 1)i

)(
t∑

i=0

(
n

i

)
(q − 1)i

)

=
1

qn

(
2s∑
i=0

(
n− t

i

)
(q − 1)i

)(
t∑

i=0

(
n

i

)
(q − 1)i

) ∑
x∈Bq(n)

|Dt(x)|

(4.12)
=

1

qt

(
t∑

i=0

(
n

i

)
(q − 1)i

)2( 2s∑
i=0

(
n− t

i

)
(q − 1)i

)
.

This proves the claim and consequently concludes the proof.

Theorem 4.4 provides a lower bound on the size of a maximal t-indel s-substitution
correcting code. Notice that both the Gilbert-Varshamov bound on Mq(n, 0, s) of Lemma
4.1 and the Levenshtein’s bound on Mq(n, t, 0) from Lemma 4.2 are implied by Theorem
4.4 by setting t = 0 and s = 0, respectively.

Example 4.5. In Example 4.4 we established that M3(11, 1, 1) ≥ 14 using Lemma 4.3.
Next, we compute a lower bound on M3(11, 1, 1) based on Theorem 4.4, which gives,

M3(11, 1, 1) ≥
312((

11
0

)
+
(
11
1

)
· 2
)2 · ((10

0

)
+
(
10
1

)
· 2 +

(
10
2

)
· 4
) =

312

232 · 201
≈ 4.9981.

This implies that M3(11, 1, 1) ≥ 5. It is not surprising that this result is weaker than the
previous result from Example 4.4. In Theorem 4.4 we used a non-tight bound on Vavg

1,1,2

instead of the exact value which leads to this deterioration.

Next, we aim to improve the lower bounds on Mq(n, t, s) from this section.
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Chapter 4. Lower bounds for t-indel s-substitution correcting codes

4.3 Improving the Gilbert-Varshamov inspired lower
bound on Mq(n, t, s)

In this section, we take a closer look at the strategy that was used to derive the bounds
in the previous section. In doing so, we identify an improvement for the lower bound
on Mq(n, t, s) from Lemma 4.3. The following results are inspired by a discussion by
Sala et al. in [48]. They argue how to derive lower bounds on Mq(n, t, 0) that im-
prove upon Levenshtein’s bound from Lemma 4.2. Here, we adapt their argument to the
setting of t-indel s-substitution correcting codes, and derive a lower bound on Mq(n, t, s).

Recall that for the lower bound on Mq(n, t, s) of Lemma 4.3 the following idea is used.
Instead of trying to find a large code which leads to a lower bound on Mq(n, t, s), the
problem is translated to a graph-theoretical setting. By defining an appropriate graph
G, a t-indel s-substitution correcting code C ⊆ Bq(n) corresponds to a clique in G of size
|C|. Thereafter, Turán’s theorem is used to show that there exists a large clique in G.
This implies that there exists a t-indel s-substitution correcting code of equal size.

We note the following about this strategy. In essence, the strength of the lower bound
on Mq(n, t, s) is determined by how well Turán’s theorem is able to find a large clique in
the graph G. In other words, if there is a method to show that there is an even larger
clique in G, then this results in a better lower bound on Mq(n, t, s) as well. With this in
mind, we make a side step to discuss cliques in graphs.

4.3.1 Intermezzo - maximally sized clique of a graph

We are interested in finding the size of a large clique within a general graph, and prefer-
ably of a largest clique. Recall that a clique in a graph G is an induced subgraph of
G that is complete, see Figure 4.1. Obviously, the size of such a clique depends of the
structure of the graph. For example, in Figure 4.2 the graphs G1 and G2 contain both
equally many vertices and edges. However, the size of maximal cliques differs per graph.

G1 G2 G3

Figure 4.2: Two graphs G1 and G2 with 9 vertices and 11 edges, and one graph G3

with 9 vertices and 20 edges. For each graph, a maximal size clique is indicated in red.
For instance, the indicated clique in G1 is maximal, since there is no triplet of vertices
in G1 that are all connected by an edge. None of the maximal cliques are unique.
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At this point, we recall Turán’s theorem [46]. Let G = (V,E) be a graph and 2 ≤ k ≤ |V |
be an integer such that

|E| > k − 2

2(k − 1)
|V |2 ⇐⇒ 2|E|

|V |2
> 1− 1

k − 1
⇐⇒ |V |2

|V |2 − 2|E|
> k − 1, (4.13)

then Turán’s theorem states that G contains a clique of size k.

Example 4.6. In this example, we investigate what can be concluded about the size of
the cliques in the graphs from Figure 4.2 based on Turán’s theorem. For Gi = (Vi, Ei)
with i ∈ {1, 2, 3} it holds that

|Vj|2

|Vj|2 − 2|Ej|
=

92

92 − 2 · 11
≈ 1.37, for j ∈ {1, 2},

|V3|2

|V3|2 − 2|E3|
=

92

92 − 2 · 20
≈ 1.98.

Given that these values are all smaller than 2, we conclude based on Turán’s theorem
that all three graphs contain a clique of size 2. This result is optimal for G1 because
G1 does not contain a clique of size three (or larger). On the other hand, it is clearly
suboptimal for the graphs G2 and G3.

A reason why Turán’s theorem does not always provide the size of a largest clique is
because it only considers the parameters |V | and |E| about the structure of the graphs.
Indeed, observe that (4.13) only contains |V | and |E| as the information on G = (V,E).
Obviously, these two parameters are not sufficient to characterize the full and complex
structure of a graph. As a result, it is also not possible in general to conclude what the
largest size of a clique in G is based only on |V | and |E|.

Therefore, we visit another result by Caro [49] and Wei [50] on the existence of large
cliques in graphs. This result considers the degree of each vertex, instead of only graph
parameters |V | and |E|. The degree of a vertex v ∈ V is denoted by deg(v), and it is
defined as the number of edges incident to v, i.e., the number of edges that use v as an
endpoint. For example, in Figure 4.2 the vertices in the left-bottom of the graphs G1,
G2 and G3 have a degree of 3, 1 and 4, respectively. The following result can be proven
using induction on |V |, as was originally done by Caro [49]. For a full proof we refer to
Appendix A.4.

Theorem 4.5 ([49,50] Caro & Wei). Let G = (V,E) be a simple graph, then G contains
a clique of size ∑

v∈V

1

|V | − deg(v)
. (4.14)

Let us revisit Figure 4.2 in relation to the Caro-Wei theorem.

Example 4.7. In this example, we consider the graph G3 from Figure 4.2. Note that
this graph has no vertices of degree at most two, four vertices of degree three, one vertex
of degree four, two vertices of degree five and two vertices of degree six. Hence, Theorem
4.5 gives that G3 has clique of size at least∑

v∈V

1

|V | − deg(v)
= 4 · 1

9− 3
+

1

9− 4
+ 2 · 1

9− 5
+ 2 · 1

9− 6
≈ 2.03.
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Given that the size of a clique is necessarily integer-valued, we conclude based on the
Caro-Wei theorem that G3 has a clique of size three. This is still sub-optimal, since
G3 has a clique of size four. Nevertheless, it forms a strict improvement over the result
implied by Turán’s theorem, see Example 4.6.

It is clear that the degrees of the vertices contain more information about the structure
of a graph than only the parameters |V | and |E|. Hence, it might not be surprising that
the Caro-Wei theorem improves Turán’s theorem.

Lemma 4.6 ([48,51]). Let G = (V,E) be a simple graph, then it holds that

|V |2

|V |2 − 2|E|
≤
∑
v∈V

1

|V | − deg(v)
. (4.15)

Consequently, the Caro-Wei theorem implies Turán’s theorem of (4.13).

For a proof of this lemma we refer to Appendix A.5. For completeness, we mention that
there exist even stronger results than the Caro-Wei theorem on the size of a maximal
clique within literature, e.g., [52, 53]. These results require even more details about the
structure of the graph. For example, the results in [52, 53] are based on the number
of certain sub-graphs within a graph. However, we have to keep in mind that for our
purpose these graph-theoretical results need to translated to coding-theoretical results.
In this case, we note that this specific information about the sub-graphs in terms of
codes is not known (to us). Therefore, we do not consider these results in this thesis.

Next, we return our attention to the setting of t-indel s-substitution correcting codes.

4.3.2 Improved lower bound using the Caro-Wei theorem

In this subsection, we present another lower bound on the maximal size of a t-indel s-
substitution correcting code. This result will improve upon the bound from Lemma 4.3.
The reason for this improvement is that we use the same derivation as in Lemma 4.3,
but we use the result from Caro-Wei instead of from Turán. To the best of the author’s
knowledge, the following bound has not been stated before within literature.

Lemma 4.7. Let n ≥ 1, q ≥ 2, 0 ≤ t ≤ n and 0 ≤ s ≤ n be integers. The following
gives a lower bound on Mq(n, t, s),

Mq(n, t, s) ≥
∑

x∈Bq(n)

1

|Vt,t,2s(x)|
.

Proof. For the proof of this lemma, we follow a similar reasoning as in Lemma 4.3.
Consider the same simple graph G = (V,E) as defined in Lemma 4.3. That is, let
V = Bq(n) be the set of vertices. Two distinct vertices x,y ∈ Bq(n) are joined by an
edge if and only if x /∈ Vt,t,2s(y). Intuitively, two vertices are joined by an edge precisely
if both vertices can be elements of the same t-indel s-substitution correcting code. From
this definition of G, it follows that the degree of a vertex x ∈ Bq(n) is given by

deg(x) = |Bq(n) \ Vt,t,2s(x)| = qn − |Vt,t,2s(x)|.
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In this setting, Theorem 4.5 implies that G contains a clique of size∑
x∈Bq(n)

1

|Bq(n)| − deg(x)
=

∑
x∈Bq(n)

1

qn − (qn − |Vt,t,2s(x)|)
=

∑
x∈Bq(n)

1

|Vt,t,2s(x)|
. (4.16)

Recall from Lemma 4.3 that a clique of size k in G corresponds to a t-indel s-substitution
correcting code of size k. Therefore, we conclude that there exists a t-indel s-substitution
correcting code with a size as given by (4.16). Naturally, the size of this code forms a
lower bound on Mq(n, t, s), which finalizes our proof.

Example 4.8. In Example 4.4, we found that M3(11, 1, 1) ≥ 14 according to Lemma
4.3. Here, we investigate whether Lemma 4.7 improves upon this result. To this end, we
computed the cardinality of V1,1,2(x) for every x ∈ B3(11) using the script in Appendix
B. Using these cardinalities and Lemma 4.7 we find,

M3(11, 1, 1) ≥
∑

x∈B3(10)

1

|V1,1,2(x)|
= 14.38.

It follows that M3(11, 1, 1) ≥ 15. Therefore, Lemma 4.7 gives a strictly greater lower
bound than Lemma 4.3.

The previous example shows that there is an instance in which Lemma 4.7 gives a strictly
better bound than Lemma 4.3. For general parameters, it holds that Lemma 4.7 performs
at least as well as Lemma 4.3.

Lemma 4.8. Let n ≥ 1, q ≥ 2, 0 ≤ t ≤ n and 0 ≤ s ≤ n be integers. Then, the
following holds

qn

Vavr
t,t,2s

=
qn

q−n
∑

x∈Bq(n)
|Vt,t,2s(x)|

≤
∑

x∈Bq(n)

1

|Vt,t,2s(x)|
.

Consequently, Lemma 4.7 offers a lower bound that is at least as strong as the bound in
Lemma 4.3.

Proof. The (first) equality in this lemma holds trivially, because Vavr
t,t,2s is given by

q−n
∑

x∈Bq(n)
|Vt,t,2s(x)|, (cf. Lem. 4.3). For the inequality in this lemma, define the

reciprocal function f : (0,∞) → (0,∞) given by f(x) = 1
x
. Note that f is convex on

the entire interval (0,∞), because the second derivative f ′′(x) = 2
x3 is non-negative on

(0,∞). Using the convexity of f is follows directly that

1

qn

∑
x∈Bq(n)

1

|Vt,t,2s(x)|
=

1

qn

∑
x∈Bq(n)

f(|Vt,t,2s(x)|)

≥ f
( 1

qn

∑
x∈Bq(n)

|Vt,t,2s(x)|
)

=
qn∑

x∈Bq(n)
|Vt,t,2s(x)|

.

By multiplying the last chain of (in)equalities with qn, the result of this lemma follows.
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Without a concrete expression for |Vt,t,2s(x)| for all x ∈ Bq(n) the aforementioned lower
bound is implicit. For small n and q it is possible to evaluate the bound using a script
such as in Appendix B, but this is impractical for large n and q. Unfortunately, as
discussed in Chapter 3 a general expression for |Vt,t,2s(x)| is not known to us. Therefore,
we must rely on an upper bound in order to get an explicit result. In doing so, we
obtain the following result. As far as the author is aware, the following lower bound on
Mq(n, t, s) has not been stated before within literature.

Theorem 4.9. For integers n ≥ 1, q ≥ 2, 0 ≤ t ≤ n and 0 ≤ s ≤ n, the following gives
a lower bound on Mq(n, t, s),

Mq(n, t, s) ≥
n∑

r=1

q
(
n−1
r−1

)
(q − 1)r−1(

r+t−1
t

) (∑t
i=0

(
n
i

)
(q − 1)i

) (∑2s
i=0

(
n−t
i

)
(q − 1)i

) . (4.17)

Proof. First, we claim that the cardinality of Vt,t,2s(x) can be upper bounded by

|Vt,t,2s(x)| ≤
(
r(x) + t− 1

t

)( t∑
i=0

(
n

i

)
(q − 1)i

)(
2s∑
i=0

(
n− t

i

)
(q − 1)i

)
.

Thereafter, we will apply Lemma 4.7 together with this claim to arrive at the desired
lower bound on Mq(n, t, s).

In order to prove this claim, recall that each element in Vt,t,2s(x) can be reached
from x ∈ Bq(n) by first deleting precisely t symbols, followed by substituting at most
2s symbols and lastly inserting exactly t symbols, according to Lemma 2.1. Hence, it
follows that

|Vt,t,2s(x)| =

∣∣∣∣∣∣
⋃

y−∈Dt(x)

⋃
z−∈S2s(y−)

It(z−)

∣∣∣∣∣∣ ≤
∑

y−∈Dt(x)

∑
z−∈S2s(y−)

|It(z−)|. (4.18)

In order to evaluate the right-hand side of this expression, recall that the cardinalities
of the sets It(x−) and S2s(x−) for any x− ∈ Bq(n− t) are given by

|It(x−)| =
t∑

i=0

(
(n− t) + t

i

)
(q − 1)i,

|S2s(x−)| =
2s∑
i=0

(
n− t

i

)
(q − 1)i.

Furthermore, it holds that |Dt(x)| ≤
(
r(x)+t−1

t

)
for all x ∈ Bq(n) according to the upper

bound in (3.3). Here, r(x) denotes the number of runs in the word x. By combining
these results, we find

|Vt,t,2s(x)|
(4.18)
≤

∑
y−∈Dt(x)

∑
z−∈S2s(y−)

|It(z−)|

=

(
r(x) + t− 1

t

)( t∑
i=0

(
n

i

)
(q − 1)i

)(
2s∑
i=0

(
n− t

i

)
(q − 1)i

)
.
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So the claim holds true. Next, we apply this claim to Lemma 4.7, and obtain

Mq(n, t, s) ≥
∑

x∈Bq(n)

1

|Vt,t,2s(x)|

≥
∑

x∈Bq(n)

1(
r(x)+t−1

t

) (∑t
i=0

(
n
i

)
(q − 1)i

) (∑2s
i=0

(
n−t
i

)
(q − 1)i

)
=

n∑
r=1

q
(
n−1
r−1

)
(q − 1)r−1(

r+t−1
t

) (∑t
i=0

(
n
i

)
(q − 1)i

) (∑2s
i=0

(
n−t
i

)
(q − 1)i

) .
where we used Lemma 2.7 to count the number of words with r runs in Bq(n). The last
chain of (in)equalities concludes the proof.

Example 4.9. In this example, we continue with finding a lower bound for M3(11, 1, 1).
In this regard, the previous theorem states that

M3(11, 1, 1) ≥
11∑
r=1

3 ·
(

10
r−1

)
· 2r−1

r ·
((

11
0

)
+
(
11
1

)
· 2
)
·
((

10
0

)
+
(
10
1

)
· 2 +

(
10
2

)
· 4
) =

11∑
r=1

3 ·
(

10
r−1

)
· 2r−1

r · 4623
≈ 5.22.

It follows that Theorem 4.9 gives M3(11, 1, 1) ≥ 6. Let us compare this result, to what
has been found with other lower bounds in this chapter. This result is strictly stronger
than M3(11, 1, 1) ≥ 5 from Example 4.5 which was found using the explicit result of
Theorem 4.4. So we find that the explicit bound with Caro-Wei improves the explicit
bound with Turán for this set of parameters. Moreover, the result from this example
weaker than M3(11, 1, 1) ≥ 15 which was found in Example 4.8 with Lemma 4.7. This
is not surprising, since Theorem 4.9 was derived using this stronger implicit lemma.
In the previous example we have seen an instance in which Theorem 4.9 is strictly
stronger than Theorem 4.4. Remark that it is a priori unclear whether this holds in
general. Namely, a stronger result was used in the proof of Theorem 4.9, namely Lemma
4.7 instead of Lemma 4.3. However, the upper bound on |Vt,t,2s(x)| from Theorem 4.9
might be weaker than the bound on Vavg

t,t,2s that was used in Theorem 4.4. In the next
section, we will show that this is indeed the case. In other words, we show that there
exist also instances in which Theorem 4.4 outperforms Theorem 4.9.

4.4 Non-asymptotic comparison of the lower bounds

In the previous sections, we established various lower bounds on Mq(n, t, s). Here, we
compare these lower bounds in a non-asymptotic setting. We also include the lower
bound on Mq(n, t, 0) from Lemma 4.2 in the comparison. This is possible, since any
(t + 2s)-indel correcting code is also a t-indel s-substitution correcting code according
to Lemma 2.5. Therefore, lower bounds on Mq(n, t + 2s, 0) also form lower bounds on
Mq(n, t, s) and can be compared as well.

The lower bounds on Mq(n, t, s) behave exponentially in n, and thus tend to become
large even for relatively small n and q. For this reason, we compare the relative redun-
dancy of an optimal code, i.e., 1− 1

n
logq(Mq(n, t, s)) instead of Mq(n, t, s). The relative

redundancy of any code lies between 0 and 1, since the size of a code C ⊆ Bq(n) is trivially
bounded between 1 and qn. Note that the lower bounds on Mq(n, t, s) turn into upper
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bounds on 1− 1
n
logq(Mq(n, t, s)). Consider Figure 4.3 in which several bounds from this

chapter are compared. Lemmas 4.3 & 4.7 are only compared for q = 2 and small n,
because computation times for these bounds are long. The graphs in this figure indicate
the upper bounds on 1 − 1

n
logq(Mq(n, t, s)). In other words, the exact (and unknown)

value of 1 − 1
n
logq(Mq(n, t, s)) lies in the region indicated in grey. The graphs show a

continuous behavior in n, but they should obviously only be considered for integer values
of n. Let us highlight some observations about this figure.

1. We observe that the graphs from Lemma 4.2, Theorem 4.4 and Theorem 4.9 are
equal to 1 for small n, and then show a (mostly) decreasing behavior in n. The
sets of parameters for which a graph equals 1 correspond to the trivial bound
1 − 1

n
logq(Mq(n, t, s)) ≤ 1 or equivalently Mq(n, t, s) ≥ 1. Hence, for sufficiently

large n, all bounds become non-trivial. The decreasing behavior of the graphs
for large n could be expected. Namely, for fixed q, t and s and increasing n, the
number of errors decreases relative to n. Therefore, it is reasonable that the number
of redundant symbol needed to correct these errors decreases as well relative to n.

2. We observe that both Theorem 4.4 and Theorem 4.9 outperform the existing lower
bound from Lemma 4.2 for the given sets of parameters, except for a few instances.
Although Lemma 4.2 and Theorem 4.4 have been derived using analogous reason-
ing, this figure shows that different results can be obtained with both bounds. The
improvements from Theorem 4.4 compared to Lemma 4.2 show that it was worth
the effort to reconsider this lemma in terms of t-indel s-substitution correcting
codes and derive the novel bound of Theorem 4.4.

3. It is apparent that the explicit bounds from Theorem 4.4 and Theorem 4.9 are
almost alike numerically. On a logarithmic scale these differences seem small,
but they can be significant on a linear scale. For instance, Theorem 4.4 gives
M2(30, 1, 1) ≥ 5126 and M4(20, 2, 1) ≥ 3917, while Theorem 4.9 gives M2(30, 1, 1) ≥
5297 and M4(20, 2, 1) ≥ 3671, respectively. It might be surprising that there are
instances in which Theorem 4.4 provides a better bound than Theorem 4.9. A
reason for this behavior was given in the last paragraph of the previous section.

4. In Figure 4.3, the bounds from Lemma 4.3 and 4.7 have been compared as well for
q = 2. We have computed the cardinality of V1,1,2(x) for all x ∈ Bq(n) using the
script in Appendix B, and evaluated the respective bounds. It is not surprising
that these results improve upon the bounds from Theorem 4.4 and Theorem 4.9,
respectively. Indeed, both theorems have been derived using these implicit lemmas,
and are thus weaker by construction. It is also not surprising that Lemma 4.7
performs at least as well as Lemma 4.3, because in Lemma 4.8 we showed that
this holds in general. The increasing behaviour for small n can be explained as
follows. These cases correspond to the bound M2(n, t, s) ≥ 2, or equivalently,
1− 1

n
log2(M2(n, t, s)) ≤ 1− 1

n
, which is indeed increasing in n for n ≥ 6.

5. We note that in view of computation time, computing |Vt,t,2s(x)| for all x ∈ Bq(n)
and all sets of parameters n, q, t and s is not viable using the script in Appendix
B. Indeed, the number of words in Bq(n) is qn, and the sizes of the set |Vt,t,2s(x)|
grow polynomially in n. Therefore, the computation times grow exponentially in
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n. Hence, evaluating Lemma 4.3 and 4.7 is only possible for a limited number of
parameters. Although Theorem 4.4 and Theorem 4.9 provide weaker results, these
bounds have the advantage that they are explicit.

(a) q = 2, t = 1 and s = 1. (b) q = 4, t = 1 and s = 1.

(c) q = 2, t = 2 and s = 1. (d) q = 4, t = 2 and s = 1.

(e) q = 2, t = 1 and s = 2. (f) q = 4, t = 1 and s = 2.

Figure 4.3: Comparison of the upper bounds on 1− 1
n
logq(Mq(n, t, s)) for various sets

of parameters. The true values of 1 − 1
n
logq(Mq(n, t, s)) lie in the grey regions. These

upper bounds are based on the lower bounds on Mq(n, t, s) in this chapter. For Lemma
4.2 we use that Mq(n, t, s) ≤Mq(n, t+ 2s, 0).
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4.5 Asymptotic implications

In this section, we consider several asymptotic implications of the lower bounds on
Mq(n, t, s) from this chapter. Firstly, we show that the asymptotic redundancy of an
optimal t-indel s-substitution correcting code is at most logarithmic in n. Secondly, we
consider the asymptotic behavior of Theorem 4.4 when t and s grow linearly with n.

Consider the asymptotic setting where q, t and s are fixed integers and n→∞. Then,
we use Theorem 4.4 to investigate the redundancy of an optimal t-indel s-substitution
correcting code. In particular, we will show that the maximal size of a t-indel s-
substitution correcting code has an asymptotic redundancy of at most (2t+2s) logq(n)+
o(logq(n)). To this end, consider the following result.

Theorem 4.10. Let q ≥ 2 be an integer. For integers t, s ≥ 0 such that s + t ≥ 1, the
following holds,

lim sup
n→∞

n− logq(Mq(n, t, s))

(2t+ 2s) logq(n)
≤ 1.

The proof is stated in Appendix A.6 for brevity. The following statement is immediate
from the previous theorem.

Corollary 4.11. A maximal size t-indel s-substitution correcting code has an asymptotic
redundancy of at most (2t+ 2s) logq(n) + o(logq(n)).

Let us put this result into perspective with regard to other results in literature. In [7],
Levenshtein showed two asymptotic bounds on M2(n, t, s) which imply that a binary
t-indel s-substitution correcting code of maximal size has an asymptotic redundancy
between (t+ s) log2(n)+ o(log2(n)) and 2(t+ s) log2(n)+ o(log2(n)). Our result, extends
this asymptotic upper bound to q-ary codes as well. To the best of our knowledge, this
was not done before. Moreover, we note that it has been achieved using a different
technique. Levenshtein’s results are proven using asymptotic bounds on M2(n, t, s). On
the other hand, Corollary 4.11 uses the non-asymptotic lower bound on Mq(n, t, s) from
Theorem 4.4.

In [54], Sima et al. presented t-indel correcting codes with an asymptotic redundancy
of 4t logq(n). According to Song et al. [13], their construction is also able to correct sub-
stitutions as long as the total number of edits does not exceed t. In other words, they
constructed t-indel s-substitution correcting codes with an asymptotic redundancy of
4(t+ s) logq(n). In [13], Song et al. improved this result by presenting a code construc-
tion that achieves an asymptotic redundancy of (4t + 4s − 1 − ⌊2s−1

q
⌋) logq(n). To the

best of our knowledge, this code construction of a t-indel s-substitution correcting code
has the smallest asymptotic redundancy within literature. Although our result does not
induce a concrete code construction, it shows that there is a gap in terms of asymptotic
redundancy between the best code construction in literature, and what is optimally pos-
sible. Indeed, note that 4t + 4s − 1 − ⌊2s−1

q
⌋ ≥ 4t + 3s − 1 > 2t + 2s for q ≥ 2 and

t, s ≥ 1. A reason for this gap could be the following. The constructions in [13, 54] not
only aim to optimize the relative redundancy of a code, but are also designed with fast
and efficient encoding and decoding schemes. This might come at the cost of needing
more redundancy.
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In the previous asymptotic results, the parameters t and s are considered fixed. It is
also interesting to consider the asymptotic setting in which t and s behave linearly in n,
and n tends to infinity. This also corresponds to the more realistic case that the error
rates do not depend on the length of the codeword. Let τ, σ ∈ [0, 1] and set t = τn and
s = σn. In this case, we define the (superior) asymptotic relative redundancy function

R+
q (τ, σ) := lim sup

n→∞

{
1− 1

n
logq(Mq(n, ⌊τn⌋, ⌊σn⌋)) | n ∈ Z≥1

}
(4.19)

The reason that this function is defined using a limit superior instead of simply a limit
is to ensure that (4.19) is well-defined. In this setting, consider the following asymptotic
result. Recall that H∗

q denotes the extended q-ary entropy function, see Section 3.5.

Theorem 4.12. Let q ≥ 2 be an integer and τ, σ ∈ (0, 1). Then, it holds that

R+
q (τ, σ) ≤ −τ + 2H∗

q (τ) + (1− τ)H∗
q (

2σ

1− τ
).

Proof. By applying Theorem 4.4 to (4.19), it readily follows that

R+
q (τ, σ) ≤ lim sup

n→∞
1− 1

n
logq

(
qn+τn(∑τn

i=0

(
n
i

)
(q − 1)i

)2 (∑2σn
i=0

(
n−τn

i

)
(q − 1)i

))

= −τ + lim sup
n→∞

2

n
logq

(
τn∑
i=0

(
n

i

)
(q − 1)i

)

+ lim sup
n→∞

1

n
logq

(
2σn∑
i=0

(
n− τn

i

)
(q − 1)i

)

= −τ + lim sup
n→∞

2

n
logq

(
τn∑
i=0

(
n

i

)
(q − 1)i

)

+ lim sup
n′→∞

1− τ

n′ logq

 2σ
1−τ

n′∑
i=0

(
n′

i

)
(q − 1)i


= −τ + 2H∗

q (τ) + (1− τ)H∗
q (

2σ

1− τ
),

where we used the change of variables n = n′

1−τ
. Moreover, we used Lemma 3.7 to

evaluate both limit superiori.

Note that it is not possible to obtain a better result on the asymptotic relative redun-
dancy function based on Theorem 4.4. Indeed, in the proof of Theorem 4.12 we applied
the bound from Theorem 4.4, and thereafter all subsequent steps are equalities.

Example 4.10. Let q = 2, τ = 1
25

and σ = 1
50

. Loosely speaking, this corresponds
to each type of error (deletions, insertions and substitutions) occurring at most once in
every 50 symbols. In this case, Theorem 4.4 gives that

R−
2

(
1
25
, 1
50

)
≤ − 1

25
+ 2 ·H∗

2

(
1
25

)
+ (1− 1

25
) ·H∗

2

(
1
24

)
≈ 0.7645.

This result implies that asymptotically at most 76.45% of the symbols have to be redun-
dant when correcting up to three errors (one of each type) per 50 symbols.
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5
Existing upper bounds for t-indel

correcting codes and s-substitution
correcting codes

This chapter discusses several existing non-asymptotic upper bounds for t-indel correct-
ing codes and s-substitution correcting codes. The results are to a lesser extent meant
as a literature review that provides a complete overview of the existing results. More
so, the aim of this section will be to review various methods and collect ideas from the
proofs of these bounds. By identifying similarities in the derivations of bounds for t-indel
correcting codes and s-substitution correcting codes, we aim to find ways to generalize
these bounds to t-indel s-substitution correcting codes. In the next chapter, we utilize
these similarities in order to construct upper bounds on Mq(n, t, s).

In particular, Section 5.1 discusses two Singleton bounds both for s-substitution
correcting codes and t-indel correcting codes. Next, three sphere-packing bounds are
discussed in Section 5.2. In Section 5.3, an upper bound on t-indel correcting codes is
discussed based on matchings in hypergraphs. These upper bounds are compared in a
non-asymptotic setting in Section 5.4.
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5.1 Two Singleton upper bounds

In this section we discuss two Singleton bounds, one upper bound for s-substitution cor-
recting codes [55] and one upper bound for t-indel correcting codes [56]. The derivations
of both bounds rely on the same ideas.

Lemma 5.1 ([55], Singleton bound for s-substitution correcting codes). For integers
n ≥ 1, q ≥ 2 and 0 ≤ s ≤ n

2
the following gives an upper bound on Mq(n, 0, s),

Mq(n, 0, s) ≤ qn−2s.

Proof. Let C ⊆ Bq(n) be an s-substitution correcting code of maximal size. Consider the
code C− ⊆ Bq(n − 2s) that is obtained from C by deleting the first 2s symbols from all
codewords in C. We claim that each pair of distinct codewords c1, c2 ∈ C corresponds to
a pair of distinct codewords c−1 , c

−
2 ∈ C−, that are obtained from c1 and c2, respectively,

by deleting the first 2s symbols. In order to prove this claim, let c1, c2 ∈ C then it holds
that Ss(c1) ∩ Ss(c2) = ∅ by Lemma 2.4, because C is an s-substitution correcting code.
It follows that c1 and c2 differ in at least 2s+ 1 positions, as otherwise the intersection
is non-empty. As a result, after 2s deletions, the words c−1 and c−2 must differ in at least
1 position. Hence, they are distinct and thus the claim holds.

This claim gives that C and C− have the same number of elements. Obviously, it
holds that |C−| ≤ qn−2s, because the codewords in C− have length n− 2s and there exist
qn−2s words in Bq(n− 2s). By combining the previous observations, it follows that

Mq(n, 0, s) = |C| = |C−| ≤ qn−2s,

since C was chosen to be maximal. This concludes the proof.

Example 5.1. In this example, we bound M2(15, 0, 1) from above using the Singleton
bound. This upper bound yields,

M2(15, 0, 1) ≤ 215−2·1 = 213 = 8192.

On the other hand, recall that the binary Hamming code Ham(15, 11) from Subsection
1.6.2 has size 211 = 2048. Together, these results imply that the size of Ham(15, 11) lies
at most a factor of four away from the size of an optimal code. Namely, it holds that
211 ≤M2(15, 0, 1) ≤ 213.

The previous Singleton bound is a rather simple bound. This results in a weak bound
for some particular sets of parameters. For instance, the previous example shows that
M2(15, 0, 1) ≤ 213, whereas we will see in the next section that this upper bound can be
significantly improved.

The simplicity of this bound does not make it weak in all cases. The Singleton bound
for substitution errors is tight for q ≥ n. There exists an extensive class of s-substitution
correcting codes, called Reed-Solomon codes [57], with a size that attains the Singleton
bound and with q ≥ n. These codes have been widely applied in practice [6]. One of the
reasons that Reed-Solomon codes are appealing for practical use is that they attain the
Singleton bound. In other words, these codes are optimal in terms of redundancy: there
do not exist other codes with the same parameters n and q that need fewer redundant
symbols in order to correct s substitutions.
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A similar argument as in Lemma 5.1 can be used to bound Mq(n, t, 0) from above.

Lemma 5.2 ([56], Singleton bound for t-indel correcting codes). For integers n ≥ 1,
q ≥ 2 and 0 ≤ t ≤ n, the following gives an upper bound on Mq(n, t, 0),

Mq(n, t, 0) ≤ qn−t.

Proof. This statement can be proven analogously to Lemma 5.1. Let C ⊆ Bq(n) be an
t-indel correcting code of maximal size. In that case, Lemma 2.4 shows that Dt(c1) ∩
Dt(c2) = ∅ for any the distinct c1, c2 ∈ C. Consider the code C− ⊆ Bq(n − t) that is
obtained from C by deleting the first t symbols from all codewords in C. The remainder
of the proof is analogous to the proof of Lemma 5.1 and it is therefore omitted for
brevity.

Example 5.2. In this example we recall the class of n-repetition codes Cn,q = {(a)n :
a ∈ Bq} of size |Cn,q| = q, for integers n ≥ 1 and q ≥ 2. In Subsection 1.6.1, we
established that Cn,q is an (n − 1)-indel correcting code. From this fact, it follows that
Mq(n, n − 1, 0) ≥ q. In this setting, the Singleton bound for (n − 1)-indel correcting
codes yields

Mq(n, n− 1, 0) ≤ qn−(n−1) = q.

All in all, we conclude that Mq(n, n − 1, 0) = q for all n ≥ 1 and q ≥ 2. Moreover, the
class of q-ary n-repetition codes is optimal in the set of (n− 1)-indel correcting codes.

In the previous example we verified that the Singleton bound for t-indel correcting codes
is tight for t = n − 1. It is not hard to show that Lemma 5.2 is tight in the edge cases
t = 0 and t = n as well. Indeed, for t = 0 it holds that Mq(n, 0, 0) ≤ qn and the code
C = Bq(n) is a 0-indel correcting code of size qn, which shows Mq(n, 0, 0) = qn. This
code C is a 0-indel correcting code because D0(c) ∩ D0(c

′) = {c} ∩ {c′} = ∅ for distinct
c, c′ ∈ C. Similarly, the code C = {(0)n} is an n-indel correcting code of size 1, while the
Singleton bound yields Mq(n, n, 0) ≤ qn−n = 1. Therefore, it holds that Mq(n, n, 0) = 1.

As recent as in 2023, it was shown in [56] by that these three trivial cases (t = 0,
t = n−1 and t = n) are the only cases in which the Singleton bound for t-indel correcting
codes is tight. For 1 ≤ t ≤ n − 2, a strictly better upper bound was provided in [56]:
Mq(n, t, 0) ≤ 1

2
(qn−t + qn−t−1). The right-hand side of this expression is clearly strictly

smaller than qn−t for 1 ≤ t ≤ n − 2. This improved bound holds for all integers n ≥ 1
and q ≥ 2 [56]. This is a rather surprising result, because it implies that there is no
analog for the Reed-Solomon codes within the set of indel correcting codes, i.e., a class
of t-indel correcting codes that attains the Singleton bound for 1 ≤ t ≤ n− 2.

We conclude this section by remarking that the two Singleton upper bounds are seemingly
alike. This suggest that an analogous argument may also yield an upper bound for t-
indel s-substitution correcting codes. In Subsection 6.2, this is shown to be possible and
a Singleton bound for t-indel s-substitution correcting codes is derived.
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5.2 Three sphere-packing upper bounds

In this section one existing upper bound for s-substitution correcting codes and two
existing upper bounds for t-indel correcting codes are discussed. The derivations of
these bounds are all based on the concept of sphere-packing.

In short, the sphere-packing concept works as follows. Each codeword induces a
sphere of words around it which cannot intersect with the spheres of other codewords.
Hence, finding a large code corresponds to packing many disjoint spheres in the space
Bq(n). Clearly, the combined sizes of these spheres cannot exceed the number of words
in Bq(n). Otherwise there would be a word in Bq(n) that is contained in at least two
spheres, which is not allowed. By relating the sizes of the spheres with the size of Bq(n),
this leads to an upper bound on the maximum code size.

Remark 5.3. Sphere-packing should not be confused with the sphere-covering tech-
niques from Chapter 4. With sphere-packing we aim to ‘pack’ as many non-overlapping
spheres in the set Bq(n) as possible. As a result, not all elements Bq(n) are necessarily
contained in a sphere. Sphere-packing leads to an upper bound on the number of spheres
and consequently also to an upper bound on the maximal size of codes.

In contrast, with sphere covering we aim to ‘cover’ each element of Bq(n) by at least
one sphere. This means that the spheres are allowed to overlap. The restricting property
of sphere-covering is that the centers of each sphere, i.e. the codewords, cannot be within
any other sphere. Sphere-covering leads to a lower bound on the maximal size of a code.

5.2.1 Sphere-packing with substitutions

In 1950, Hamming [3] used the concept of sphere-packing in order to derive an upper
bound on the maximal size of binary s-substitution correcting codes. His bound can be
easily generalized to q-ary codes [6], as follows.

Lemma 5.3 ([3, 6], Hamming bound). For integers n ≥ 1, q ≥ 2 and 0 ≤ s ≤ n, the
following gives an upper bound on Mq(n, 0, s),

Mq(n, 0, s) ≤
qn∑s

i=0

(
n
i

)
(q − 1)i

.

Proof. Let C ⊆ Bq(n) be an s-substitution correcting code of maximal size. For any
codeword c ∈ C, consider the set given by Ss(c). From Lemma 2.4 it follows that these
sets are disjoint, i.e., Ss(c) ∩ Ss(c′) = ∅ because C is an s-substitution correcting code.
This implies that the code C gives rise to a disjoint union of sets centered around the
codewords in C. Naturally, the number of words in this union cannot exceed the total
number of words in Bq(n). Hence, the following bound is obtained,

∑
c∈C

|Ss(c)| =

∣∣∣∣∣⋃
c∈C

Ss(c)

∣∣∣∣∣ ≤ |Bq(n)| = qn, (5.1)

where we used that the spheres Ss(c) for c ∈ C are disjoint. Recall the size of Ss(c)
equals

∑s
i=0

(
n
i

)
(q − 1)i for each c ∈ C. Moreover, we recall that C was chosen to be
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maximal and hence it holds that |C| = Mq(n, 0, s). It follows that∑
c∈C

|Ss(c)| = |C| ·
s∑

i=0

(
n

i

)
(q − 1)i = Mq(n, 0, s) ·

s∑
i=0

(
n

i

)
(q − 1)i. (5.2)

The result follows from combining (5.1) and (5.2), followed by rearranging terms.

Example 5.4. This example forms a continuation of Example 5.1, where we estab-
lished that 211 ≤ M2(15, 0, 1) ≤ 213. The lower bound follows from the fact that the
Ham(15, 11) code has size 211. The upper bound follows from the Singleton bound for
substitution correcting codes. Using the Hamming bound, we obtain

M2(15, 0, 1) ≤
215(

15
0

)
+
(
15
1

) =
215

1 + 15
=

215

24
= 211 = 2048.

Therefore, we conclude that M2(15, 0, 11) = 211. It follows that the Hamming bound
does not only improve upon the Singleton bound, but it also shows that Ham(15, 11) is
optimal.

5.2.2 Sphere-packing with insertions

Next, we move towards indel correcting codes. More specifically, we consider t-indel cor-
recting codes from the perspective of codes that correct solely insertions. The following
upper bound on Mq(n, t, 0) is based on the same reasoning as the Hamming bound.

Lemma 5.4 ([9], Theorem 1). For integers n ≥ 1, q ≥ 2 and t ≥ 1, the following gives
an upper bound on Mq(n, t, 0),

Mq(n, t, 0) ≤
qn+t∑t

i=0

(
n+t
i

)
(q − 1)i

.

Proof. Let C ⊆ Bq(n) be a t-indel correcting code of maximal size, i.e., |C| = Mq(n, t, 0).
We proceed with a similar argument as for the Hamming bound of Lemma 5.3. To each
codeword c ∈ C, we associate the set It(c) consisting of all words that can be reached
from c by precisely t insertions. Given that C is a t-indel correcting code, Lemma 2.4
implies that It(c) ∩ It(c′) = ∅ for all distinct c, c′ ∈ C. Naturally, these insertion sets
are subsets of Bq(n+ t). Hence, it holds that ∪c∈CIt(c) ⊆ Bq(n+ t). It follows that∑

c∈C

|It(c)| =

∣∣∣∣∣⋃
c∈C

It(c)

∣∣∣∣∣ ≤ |Bq(n+ t)| = qn+t,

where we used that the sets It(c) are disjoint. Furthermore, recall that

|It(c)| =
t∑

i=0

(
n+ t

i

)
(q − 1)i,

for all c ∈ C. By combining the previous results, we find

|C|
t∑

i=0

(
n+ t

i

)
(q − 1)i =

∑
c∈C

|It(c)| ≤ qn+t.

Lastly, note that |C| = Mq(n, t, 0), since C was chosen to be maximal. Rearranging the
terms in the last line yields the desired result.
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Example 5.5. In this example, we compute a concrete upper bound for M3(10, 1, 0)
based on the previous lemma. Recall that M3(10, 1, 0) denotes the maximum size of a
ternary single-indel correcting code with codewords of length 10. Lemma 5.4 gives

M3(10, 1, 0) ≤
311(

11
0

)
(3− 1)0 +

(
11
1

)
(3− 1)1

=
311

1 · 1 + 11 · 2
=

311

23
≈ 7702.04.

It follows that M3(10, 1, 0) ≤ 7702. In order to put this result into perspective, note
that the Singleton bound gives M3(10, 1, 0) ≤ 310−1 = 19683, which is significantly
worse. Moreover, recall Tenengolts’ construction for single indel correcting codes from
Subsection 1.6.3. Using this construction, we found that there exists a single indel
correcting code in Bq(n) of size ⌈ qn

q·n⌉. In the setting of this example, we obtain the lower
bound M3(10, 1, 0) ≥ ⌈ 310

3·10⌉ = 1969. All in all, it holds that 1969 ≤M3(10, 1, 0) ≤ 7702.

5.2.3 Sphere-packing with deletions

Lemma 5.4 uses the sphere-packing technique by correcting only insertions. An obvious
next step is to consider sphere-packing from the perspective of correcting solely deletions.
However, in this case we run into the same issue as in the previous chapter. Namely,
the sets Dt(x) are not of equal size for all x ∈ Bq(n) which makes the argument more
complicated.

It is possible to simply use the previous argument, but this leads to the Singleton
bound. This can be explained as follows. For insertions, |It(x)| does not depend on
x ∈ Bq(n). Therefore, in the proof of Lemma 5.4 we were able to use that

|C|
t∑

i=0

(
n+ t

i

)
(q − 1)i =

∑
c∈C

|It(c)| ≤ |Bq(n+ t)| = qn+t

in order to derive a bound. Notice that for the first equality it is crucial that |It(c)| does
not depend on c, and is always equal to

∑t
i=0

(
n+t
i

)
(q− 1)i. For deletions, the sets Dt(c)

are not of equal size, and thus we can only rely on

|C|min
c∈C
|Dt(c)| ≤

∑
c∈C

|Dt(c)| ≤ |Bq(n− t)| = qn−t.

This follows from an analogous argument as in Lemmas 5.3 & 5.4 which will be made
precise in the next proof. Hence, we need an expression for minc∈C |Dt(c)|. Notice that
this minimum could potentially be equal to 1 whenever (0)n is a codeword of C, because
|Dt((0)

n)| = 1. In that case, the previous bound simplifies to the Singleton bound,
Mq(n, t, 0) = |C| · 1 ≤ qn−t. Given that it is not known which particular codewords
belong to the code C, we cannot use a stronger result.

With this in mind, Levenshtein modified the sphere-packing argument in order to
find a different bound [38]. Intuitively, he used the following idea. Recall that1 the
words x ∈ Bq(n) with ‘few’ runs give rise to a small set Dt(x). Hence, the codewords
with few runs cause that minc∈C |Dt(c)| is small. By excluding these words Levenshtein
is able to obtain a better bound because it guarantees that minc∈C |Dt(c)| is not small.
Lastly, he adds a correctional term to account for these excluded words.

1For example, this was observed in Example 3.2.
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In [38], Levenshtein provided only a very brief outline of the proof. A compact proof
was given in [9]. Here, we state a more detailed version of the latter proof.

Lemma 5.5 ([38], Theorem 2). For integers n ≥ 1, q ≥ 2 and 1 ≤ t ≤ n, the following
gives an upper bound on Mq(n, t, 0) for each integer r such that max{1, t− 1} ≤ r ≤ n,

Mq(n, t, 0) ≤
qn−t∑t

i=0

(
r+1−t

i

) + q

r∑
i=1

(
n− 1

i− 1

)
(q − 1)i−1.

Proof. Let C ⊆ Bq(n) be a maximum size t-indel correcting code. The idea of the proof
is to partition Bq(n) into two clusters A− and A+ that contain the words with at most
r runs and at least r + 1 runs respectively. The bound on the cardinality of C is then
obtained by deriving separate bounds for |C ∩ A−| and |C ∩ A+|. For |C ∩ A−| a trivial
bound is used, and |C ∩ A+| is bounded using a sphere-packing argument.

Trivially, |A−| is an upper bound for the number of codewords from C in A−, i.e,
|C ∩ A−|. Using Lemma 2.7, which counts the number of words with a given number of
runs, the following bound is obtained

|C ∩ A−| ≤ |A−| = q
r∑

i=1

(
n− 1

i− 1

)
(q − 1)i−1. (5.3)

For a codeword c ∈ C ∩ A+, consider the set Dt(c). Lemma 2.4 implies that these sets
are pairwise disjoint, because C is a t-indel correcting code. Clearly, the union of the sets
Dt(c) for c ∈ C ∩ A+ cannot exceed the total number of words in Bq(n− t). Therefore,
we deduce the following bound,

∑
c∈C∩A+

|Dt(c)| =

∣∣∣∣∣ ⋃
c∈C∩A+

Dt(c)

∣∣∣∣∣ ≤ |Bq(n− t)| = qn−t,

where we used that the sets Dt(c) do not intersect for c ∈ C ∩ A+.
By the definition of A+, it follows for all c ∈ C ∩ A+ that r(c) ≥ r + 1. From (3.4),

we recall the lower bound |Dt(cc)| ≥
∑t

i=0

(
r(c)−t

i

)
for any x ∈ Bq(n). Consequently, it

holds that

min
c∈C∩A+

|Dt(c)| ≥ min
c∈C∩A+

t∑
i=0

(
r(c)− t

i

)
≥

t∑
i=0

(
r + 1− t

i

)
. (5.4)

Note that r is chosen so that r + 1 − t ≥ 0, and thus the expression on the right-hand
side of (5.4) is at least equal to one, because we use the convention that

(
a
0

)
= 1 for all

a ≥ 0. This avoids division by zero in denominator in first term of this lemma. Next,
we find that

∑
c∈C∩A+

|Dt(c)| ≥ |C ∩ A+| · min
c∈C∩A+

|Dt(c)| ≥ |C ∩ A+| ·
t∑

i=0

(
r + 1− t

i

)
. (5.5)
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By combining the previous results and by noting that C was chosen to be maximal, we
obtain the desired result. Namely,

Mq(n, t, s) = |C|
= |C ∩ A+|+ |C ∩ A−|

(5.5)&(5.3)
≤

∑
c∈C∩A+ |Dt(c)|∑t

i=0

(
r+1−t

i

) + q

r∑
i=1

(
n− 1

i− 1

)
(q − 1)i−1

(5.4)
≤ qn−t∑t

i=0

(
r+1−t

i

) + q

r∑
i=1

(
n− 1

i− 1

)
(q − 1)i−1.

This concludes the proof.

The previous lemma offers a family of upper bounds. For each parameter r, we get a
different bound. Therefore, this bound should be minimized over the parameter r in
order to get the strongest bound. For general parameters n, q and t it is not a priori
clear which r yields the strongest bound. In a non-asymptotic setting we compute the
optimal bound for various sets of parameters n, q and t in Section 5.4 and will compare
it to other result in this chapter.

Example 5.6. In this example, we bound M3(10, 1, 0) from above using Lemma 5.5.
Note that for each 1 ≤ r ≤ 10 we get a different bound:

M3(10, 1, 0) ≤

⌊
39∑1

i=0

(
r
i

)⌋+ 3
r∑

i=1

(
9

i− 1

)
2i−1

=

⌊
39

r + 1

⌋
+ 3

r∑
i=1

(
9

i− 1

)
2i−1

:= T1(r) + T2(r).

The first term can be rounded down, because it bounds the number of codewords with
at least r runs, which is integer-valued. Note that T2(r) is also an integer for each r.
The following table lists these upper bounds for all 1 ≤ r ≤ 10.

r 1 2 3 4 5 6 7 8 9 10
T1(r) 9841 6561 4920 3936 3280 2811 2460 2187 1968 1789
T2(r) 3 57 489 2505 8553 20649 36777 50601 57513 59049

T1(r)+T2(r) 9844 6618 5409 6441 11833 23460 39237 52788 59481 60838

From this table it follows that the smallest upper bound is achieved at r = 3. In that
case, we find M3(10, 1, 0) ≤ 5409. This improves upon the bound M3(10, 1, 0) ≤ 7702
which was found in Example 5.5 using Lemma 5.4.

It is worth to remark that for r = 10 the term T2(r) counts the number in B3(10)
with 10 of fewer runs, i.e., all words in B3(10). In this particular case, the upper bound
from Lemma 5.5 performs worse than the trivial bound M3(10, 1, 0) ≤ |B3(10)| = 310.

To recap, we observe that the three main upper bounds of this section are all derived
using a sphere-packing approach. Depending on the specific setting, i.e., substitutions,
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insertions, or deletions, a different bound is obtained. Nevertheless, the similarities in the
derivations of these bounds suggest that it is possible to generalize the sphere-packing
approach to the setting of t-indel s-substitution correcting codes. This generalization to
upper bounds on Mq(n, t, s) will be addressed in Sections 6.3 and 6.4.

5.3 Hypergraph and matching upper bound

In this section, we visit a strategy to derive an upper bound for t-indel correcting codes
from Kulkarni and Kiyavash [8]. This strategy uses the concepts of hypergraphs and
matchings. Before stating these results, we first provide some background on these
concepts which we sourced from [8].

A hypergraph is a generalization of a simple graph in which the edges are subsets
of the vertices of arbitrary size instead of size two. More specifically, a hypergraph
H = (V, E) is a tuple of a finite set of vertices V and a collection E of non-empty subsets
of V , called hyperedges, which together span V . The definition of hyperedges as sets
allows notions such as disjoint hyperedges, or the intersection/union of hyperedges. A
matching in H is a collection of pairwise disjoint hyperedges E1, ..., Ej ∈ E . The maxi-
mum integer j ≥ 1 for which such a collection exists, is called the matching number and
is denoted by ν(H). In other words, ν(H) denotes the size of the largest matching in
H. To each hypergraph H, a |V | × |E| matrix A can be associated which is the called
an adjacency matrix of H. The rows of A are indexed by the vertices x1, ..., x|V | and the
columns by the hyperedges E1, ..., E|E| and the entries are defined by Ai,j = 1 if xi ∈ Ej

and 0 otherwise.

The hypergraph and matching strategy to derive an upper bound on Mq(n, t, 0) is rather
lengthy. For this reason, we divide this strategy into the following three steps.

1. An upper bound on the maximum size of a matching in a hypergraph is found using
an integer linear programming approach. In other words, the matching number of
a general hypergraph H, i.e. ν(H), is bounded from above.

2. The maximum size of a matching in H is related to the maximum size of a t-indel
correcting code in Bq(n). As a result, the bound from the first step can be used to
obtain an upper bound on Mq(n, t, 0). This upper bound on Mq(n, t, 0) is implicit,
because it depends on the cardinality of Dt(x) which is not known in general.

3. The upper bound on Mq(n, t, 0) is made explicit using a lower bound on |Dt(x)| at
the cost of obtaining a weaker bound.

Step 1. The maximum size of a matching in a hypergraph is bounded from above in
the next lemma. The idea of the proof is to formulate the matching number ν(H) of a
general hypergraph H in terms of the optimal value of an integer linear program. Then,
a feasible point in the dual of a linear programming relaxation of this integer linear
program is constructed. The objective value of this dual feasible point gives an upper
bound on the optimal value of the primal program. In turn, this yields the desired upper
bound on ν(H). A complete proof of the next lemma can be found in Appendix A.7.
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Lemma 5.6 ([8], Lem. 2.4). Let H = (V, E) be a hypergraph. Let w = (w(x))x∈V be a
real-valued vector that satisfies the following two conditions,

1. w(x) ≥ 0 for all x ∈ V ,

2.
∑

x∈E w(x) ≥ 1 for all E ∈ E.

Then, it holds that ν(H) ≤ 1⊤w =
∑

x∈V w(x). Here, 1 denotes the all-one column-
vector of the appropriate length.

The previous lemma offers an upper bound on the maximum size of a matching in a gen-
eral hypergraph. This bound relies on the construction of a vector w which satisfies the
aforementioned two conditions. Hence, different vectors w can yield different bounds.

Step 2. Next, we relate the problem of finding a maximum size matching to the prob-
lem of finding a maximum size t-indel correcting code. Then we use this relation and
the bound from the previous lemma to derive an upper bound on Mq(n, t, 0).

Lemma 5.7 ([8], Theorem 4.1). For integers n ≥ 1, q ≥ 2 and t ≥ 0 such that 2t < n,
the following gives an upper bound on Mq(n, t, 0),

Mq(n, t, 0) ≤
∑

y∈Bq(n−t)

1

|Dt(y)|

Proof. The aim of this proof will be to translate the problem of bounding the maximum
size of a t-indel correcting code to the equivalent problem of bounding the size of a
maximal matching in a hypergraph. Then, we apply the previous lemma to find an
upper bound on Mq(n, t, 0). In what follows, x will denote a word of length n, whereas
y denotes a word of length n− t.

Define the following hypergraph HD
n,q,t := {Bq(n − t), {Dt(x),x ∈ Bq(n)}}. The

vertices of HD
n,q,t are given by the words in Bq(n− t) and the hyperedges are formed by

the sets Dt(x). This hypergraph is well-defined because the words in Dt(x) are elements
of Bq(n−t) for x ∈ Bq(n). Then, we will show that Mq(n, t, 0) = ν(HD

n,q,t). Let C ⊆ Bq(n)
be a t-indel correcting code. By Lemma 2.4 this is equivalent to stating that the sets in
M := {Dt(c), c ∈ C} ⊆ E are disjoint. In turn, this holds if and only ifM is a matching
in HD

n,q,t by the definition of a matching. Clearly, it holds that |M| = |C|. Therefore,
a t-indel correcting code in Bq(n) induces a matching in HD

n,q,t of equal size and vice
versa. Since this also holds for maximum sized codes and matchings, it follows that
Mq(n, t, 0) = ν(HD

n,q,t). This translates the problem of upper bounding the maximum
size of a t-indel correcting code, to finding an upper bound for ν(HD

n,q,t).
Next, we apply Lemma 5.6 for the hypergraph HD

n,q,t. This means that we con-
struct a vector w = (w(y))y∈Bq(n−t) that satisfies the conditions: 1) w ≥ 0 and 2)∑

y∈Dt(x)
w(y) ≥ 1 for all x ∈ Bq(n). Define the vector w∗(y) := 1

|Dt(y)| . This vector is
well-defined because the words in Dt(y) have length n − 2t > 0 since y ∈ Bq(n − 2t).
The conclusion of Lemma 5.6 gives the desired upper bound

Mq(n, t, 0) = ν(HD
n,q,t) ≤

∑
y∈Bq(n−t)

w∗(y) =
∑

y∈Bq(n−t)

1

|Dt(y)|
.

Therefore, it remains to be shown that w∗ satisfies the two conditions. To this end,
we first note that w∗ ≥ 0 holds, because |Dt(y)| ≥ 1 for all y ∈ Bq(n − t) and thus
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w∗(y) = 1
|Dt(y)| is strictly positive for each y ∈ Bq(n − t). The second constraint is also

satisfied, because it holds that∑
y∈Dt(x)

w∗(y) =
∑

y∈Dt(x)

1

|Dt(y)|
≥

∑
y∈Dt(x)

1

|Dt(x)|
= 1,

where we used the monotonicity property, |Dt(y)| ≤ |Dt(x)| if y ∈ Dt(x) [8, Lem. 4.1].
Hence, w∗ satisfies the aforementioned two conditions which concludes the proof.

The previous bound is implicit in its current form, because we do not have an exact
expression for |Dt(x)| for all x ∈ Bq(n) for general t ≥ 1, see Chapter 3. On the other
hand, when t = 1 it holds that |D1(x)| = r(x) for all x ∈ Bq(n). In that case, it
is possible to make the upper bound from the previous lemma explicit. To this end,
consider the following example.

Example 5.7. In this example, we continue with deriving an upper bound for M3(10, 1, 0).
So far, we established in previous examples that 1969 ≤M3(10, 1, 0) ≤ 5409.

For n ≥ 1, q ≥ 2 and t = 1, Lemma 5.7 gives the following upper bound

Mq(n, 1, 0) ≤
∑

y∈Bq(n−1)

1

|Dt(y)|
=

∑
y∈Bq(n−1)

1

r(y)
=

n−1∑
r=1

q
(
n−2
r−1

)
(q − 1)r−1

r
.

In the last step, we used that there are q
(
n−2
r−1

)
(q−1)r−1 words in Bq(n−1) with precisely

r runs, according to Lemma 2.7. In particular, this yields

M3(10, 1, 0) ≤
9∑

r=1

3 ·
(

8
r−1

)
· 2r−1

r
≈ 3280.33.

Hence, we conclude that M3(10, 1, 0) ≤ 3280 which improves upon the Singleton bound
from Lemma 5.2 as well as the best sphere-packing upper bound from Section 5.2.

Step 3. In this third and last step, we make the bound on Mq(n, t, 0) explicit for general
t ≥ 1 using a lower bound for |Dt(y)| where y ∈ Bq(n − t). In [8], this is done with a
lower bound from Liron and Langberg [44]. However, we note that to the best of our
understanding their bound was meant for q = 2 only, whereas it was applied for q ≥ 2
in [8]. Therefore, we present an alternative explicit upper bound in the following the
corollary which holds for general q, using the lower bound from (3.4).

Corollary 5.8. For integers n ≥ 1, q ≥ 2 and t ≥ 0 such that 2t < n, the following
gives an upper bound on Mq(n, t, 0),

Mq(n, t, 0) ≤
n−t∑
k=1

q
(
n−t−1
k−1

)
(q − 1)k−1

max{1,
∑t

i=0

(
k−t
i

)
}
.

Proof. From Lemma 2.7 it is known that the number of words in Bq(n) with precisely k
runs equals q

(
n−1
k−1

)
(q − 1)k−1. Moreover, recall from (3.4) the lower bound

|Dt(y)| ≥
t∑

i=0

(
r(y)− t

i

)
(5.6)
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which holds for all y ∈ Bq(n − t). Note that for r(y) < t this lower bound yields zero,
because of our convention that

(
a
b

)
= 0 whenever a < 0. In order to avoid division by

zero, we also use the trivial lower bound |Dt(y)| ≥ 1. Combining these results with the
upper bound from Lemma 5.7 gives

Mq(n, t, 0) ≤
∑

y∈Bq(n−t)

1

|Dt(y)|
=

n−t∑
k=1

∑
y∈Bq(n−t);

r(y)=k

1

|Dt(y)|
≤

n−t∑
k=1

q
(
n−t−1
k−1

)
(q − 1)k−1

max{1,
∑t

i=0

(
k−t
i

)
}
,

which concludes the proof.
Example 5.8. We compute the upper bounds on M3(10, 1, 0) and M3(12, 2, 0) based
on Corollary 5.8. Note that the denominator in the expression of Corollary 5.8 sim-
plifies to

∑t
i=0

(
r(y)−t

i

)
= r(y) for t = 1. Therefore, we obtain the same upper bound

M3(10, 1, 0) ≤ 3280 as in Example 5.7. On the other hand, using Corollary 5.8 we find

M3(12, 2, 0) ≤
10∑
k=1

3 · 2k−1 ·
(

9
k−1

)
max{1,

∑2
i=0

(
k−2
i

)
}

=
3 · 1
1

+
6 · 9
1

+
12 · 36

2
+

10∑
k=4

3 · 2k−1 ·
(

9
k−1

)
1 + k − 2 + 1

2
(k − 2)(k − 3)

= 273 +
10∑
k=4

3 · 2k−1 ·
(

9
k−1

)
1
2
(k2 − 3k + 4)

≈ 4656.85.

Hence, it follows that M3(12, 2, 0) ≤ 4656. The first three terms in the previous summa-
tion have been considered separately in order to carefully evaluate the maximum.
Before concluding this section, we remark that only deletions were used in the derivation
of the bound on Mq(n, t, 0). Indeed, the hypergraph HD

n,q,t as defined in Lemma 5.7 is
based on the sets Dt(x) for x ∈ Bq(n). It is natural to ask whether a similar strategy
also leads to an upper bound using only insertions or substitutions, i.e., the sets It(x)
or Ss(x), respectively. This is possible in both cases. However, it was stated in [8]
that in the case of insertions the same bound as in Lemma 5.4 is obtained. Indeed,
by considering the hypergraph HI

n,q,t = {Bq(n + t), {It(x),x ∈ Bq(n)}} and by setting
w(y) = 1

|It(y)| the following bound can be found using analogous reasoning,

Mq(n, t, 0) ≤
∑

y∈Bq(n+t)

1

|It(y)|
=

qn+t∑t
i=0

(
n+t
i

)
(q − 1)i

.

For substitutions this leads to the Hamming bound of Lemma 5.3,

Mq(n, 0, s) ≤
∑

y∈Bq(n)

1

|Ss(y)|
=

qn∑s
i=0

(
n
i

)
(q − 1)i

,

if we set HS
n,q,s = {Bq(n), {Ss(x),x ∈ Bq(n)}} and w(y) = 1

|Ss(y)| [8]. We conclude
that for insertions and substitutions, the hypergraph and matching strategy and sphere-
packing strategies lead to the same upper bounds. The reason that different bounds are
found in the case of deletions, is because the sets Dt(x) are not of equal size.

The fact that the hypergraph and matching strategy also leads to upper bounds
using insertions and substitutions indicates that a similar strategy might work to derive
an upper bound on Mq(n, t, s) as well. This generalization to the setting of t-indel
s-substitution correcting codes will be considered in Section 6.5.
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Chapter 5. Existing upper bounds for t-indel correcting codes and s-substitution
correcting codes

5.4 Non-asymptotic comparison of the upper bounds
for t-indel correcting codes

In this section, the upper bounds for t-indel correcting codes from this chapter are com-
pared in a non-asymptotic setting. For an insightful comparison, we consider bounds
on relative redundancy of an optimal code 1 − 1

n
logq(Mq(n, t, 0)) instead of Mq(n, t, 0),

because the bounds on Mq(n, t, 0) becomes large even for small n. By doing so, the upper
bounds on Mq(n, t, 0) from this chapter, become lower bounds on 1− 1

n
logq(Mq(n, t, 0)).

The upper bounds on Mq(n, t, 0) have been rounded down to the nearest integer before
computing the relative redundancy. Figure 5.1 displays the bounds of this chapter for
6 ≤ n ≤ 40, q ∈ {2, 4} and 1 ≤ t ≤ 3. For a given set of parameters n, q and t, a
large value for 1− 1

n
logq(Mq(n, t, 0)) corresponds to a strong bound. The exact values of

1− 1
n
logq(Mq(n, t, 0)) lie in grey region of the figures. Several remarks and observations

about this figure are worth pointing out.

1. We remark that the upper bounds from Lemma 5.5 and Corollary 5.8 both use
same lower bound; |Dt(x)| ≥

∑t
i=0

(
r(x)−t

i

)
. Therefore, the comparison is ‘fair’ in

that sense. For Lemma 5.5 the bound has been optimized over r for each set of n,
q and t separately. In this way, for each set of parameters the best possible bound
that can be achieved using this lemma is shown. The optimization in terms of r
means that for different sets of n, q and t also different values of r are used. This
causes the seemingly oscillatory behavior in the graphs from Lemma 5.5.

2. The performance of the bounds is highly dependent on the values of the parameters
n, q and t. It is striking that for each of the four bounds, there exists a set of
parameters n, q and t in which it performs strictly better than the other bounds.
Despite its simplicity, the Singleton bound from Lemma 5.2 outperforms the other
bounds for M4(6, 3, 0). On the other hand, Levenshtein’s upper bound from Lemma
5.5 yields the strongest bound for n = 16, q = 2 and t = 3, for example. This is
especially surprising since the second term in this bound is crude. We conclude that
Figure 5.1 shows that there is no single strongest bound on Mq(n, t, 0) amongst the
bounds that we considered. Therefore, it makes sense to consider all these bounds
in the generalization to t-indel s-substitution correcting codes in the next chapter.

3. We observe in Figure 5.1 that the graphs of the Singleton bound seem not to differ
for q = 2 and q = 4. This can be explained, because it holds that

1− 1

n
logq(Mq(n, t, 0)) ≥ 1− 1

n
logq(q

n−t) = 1− n− t

n
=

t

n
.

Indeed, this does not depend on q. The other bounds show different behavior for
q = 2 than for q = 4. For example, for n = 12 and t = 1, Figure 5.1 indicates that
an optimal binary single-indel correcting code contains at least 28.8% redundant
symbols. On the other hand, for an optimal quaternary (q = 4) code, this is at
least 18.1%.
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5.4. Non-asymptotic comparison of the upper bounds for t-indel correcting codes

(a) t = 1, q = 2. (b) t = 1, q = 4.

(c) t = 2, q = 2. (d) t = 2, q = 4.

(e) t = 3, q = 2. (f) t = 3, q = 4.

Figure 5.1: Lower bounds on the relative redundancy of an optimal code, i.e., 1 −
1
n
logq(Mq(n, t, 0)) based on the upper bounds in this chapter. Lemma 5.5 has been

optimized over r, for each set of n, q and t separately. The feasible region for 1 −
1
n
logq(Mq(n, t, 0)) based on the considered bounds is indicated in grey.
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6
Upper bounds for t-indel s-substitution

correcting codes

In this chapter we focus on upper bounds for t-indel s-substitution correcting codes.
In line with the research question, our main goal is to generalize the concepts from
the previous chapter on upper bounds for t-indel correcting codes and s-substitution
correcting codes. As a result, we will derive multiple upper bounds on Mq(n, t, s). In
particular, we first discuss existing results within literature on upper bounds for t-indel
s-substitution correcting codes in Section 6.1. Subsequently, we generalize the Singleton
bounds, sphere-packing bounds and the upper bound based on the hypergraph and
matching strategy in Sections 6.2 – 6.5. In Section 6.6 the performance of the upper
bounds on Mq(n, t, s) is compared for t = s = 1 in a non-asymptotic setting. In Section
6.7, we briefly compare the upper bounds from this chapter with the lower bounds from
Chapter 4 for t = s = 1. Lastly, we consider several asymptotic results based on the
upper bounds on Mq(n, t, s) from this chapter.

Based on the results in the previous chapters, it is not surprising that several upper
bounds on Mq(n, t, s) depend on the cardinality of the set Vt′,t′′,s(x). However, within
literature there is no expression for this cardinality that holds for general parameters, as
far as the author is aware. For this reason, we choose to present the upper bounds on
Mq(n, t, s) in this chapter in the following way. First, we derive implicit upper bounds
for general n, q, t and s. These bounds are implicit because they depend on an unknown
expression for |Vt′,t′′,s(x)|. Second, we derive explicit upper bounds on Mq(n, 1, 1). This
is possible using the known formulas for |V1,0,1(x)| and |V0,1,1(x)| from Chapter 3.

Remark that it is not possible to use existing upper bounds on Mq(n, t+2s, 0) as upper
bounds on Mq(n, t, s), in a similar way as with lower bounds on Mq(n, t + 2s, 0) from
Chapter 4. Indeed, in Chapter 2 we established that Mq(n, t+2s, 0) ≤Mq(n, t, s), which
shows that upper bounds on Mq(n, t+2s, 0) do not lead to upper bounds on Mq(n, t, s).
Nevertheless, we will show in this chapter that is possible to use the ideas from the upper
bounds on Mq(n, t, 0) and Mq(n, 0, s) to prove similar bounds on Mq(n, t, s). However,
this will require separate proofs.
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6.1. Existing upper bounds for t-indel s-substitution correcting codes

6.1 Existing upper bounds for t-indel s-substitution
correcting codes

In literature, there are few contributions regarding upper bounds on Mq(n, t, s) for t, s ≥
1. To the best of our knowledge, the following two upper bounds on Mq(n, t, s) are the
only non-asymptotic and non-trivial upper bounds for t, s ≥ 1. Recently, Smagloy et al.
showed in [11, Thrm. 4 & Thrm. 7, resp.] that

Mq(n, 1, 1) ≤
3qn−1

(n− 3)(n− 5)(q − 1)
+ 5q, (6.1)

M2(n, 1, s) ≤
s!(2s+ 1)

(n− 2s)s(n− 1)
·
(
2n +

2(n− 1)2s+1

2s+ 1

)
. (6.2)

The first bound holds for n ≥ 6, q ≥ 2 and n ≥ q, whereas the second bound holds for1

n ≥ 3, q = 2, s ≥ 1 and n > 2s. Both bounds are proven using an approach which
resembles the hypergraph and matching strategy from Section 5.3. This approach will
be detailed in Section 6.5 for t-indel s-substitution correcting codes. Hence, we omit a
proof of these bounds here.

We note that Smagloy et al. simplified several expressions to arrive at the bounds
(6.1) and (6.2). These simplifications yield easy-to-compute bounds, but they come at
the cost of weaker bounds. The following example shows that (6.1) and (6.2) are indeed
crude for particular sets of parameters.

Example 6.1. Let n = 10, q = 3 and t = s = 1. In this case, the bound (6.1) yields

M3(10, 1, 1) ≤
3 · 39

7 · 5 · 2
+ 5 · 3 ≈ 858.56.

Hence, it holds that M3(10, 1, 1) ≤ 858. For comparison, we will show that this bound
can be improved to M3(10, 1, 1) ≤ 320 in Example 6.8.

Furthermore, let n = 15, q = 2, t = 1 and s = 3. The upper bound in (6.2) gives

M2(15, 1, 3) ≤
3! · 7

(15− 6)3 · 14
·
(
215 +

2 · 147

7

)
≈ 124077.8

To put this result into perspective, notice that there are only 215 = 32768 words in B2(15).
Hence, this existing upper bound exceeds even the trivial upper bound Mq(n, t, s) ≤ qn

for this particular set of parameters. In the next section, we will show that Mq(n, t, s) ≤
qn−t−2s and thus M2(15, 1, 3) ≤ 215−1−2·3 = 28 = 256.

All in all, this example shows that there is room for improvement with the existing upper
bounds, at least for these particular sets of parameters. In what follows, we will show
that these existing bounds can be improved.

1The requirement n > 2s is not stated in [11] , but it is evident that it should be satisfied.
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Chapter 6. Upper bounds for t-indel s-substitution correcting codes

6.2 Singleton bound

In this section, we revisit the two Singleton bounds from Section 5.1 and derive a similar
upper bound for t-indel s-substitution correcting codes. Based on the similarities between
the Singleton bounds for Mq(n, 0, s) and Mq(n, t, 0), this generalization to an upper
bound for Mq(n, t, s) is rather straightforward. To the best of the author’s knowledge,
the following bound was not stated before in literature in its current form.

Theorem 6.1. Let n ≥ 1, q ≥ 2, 0 ≤ t ≤ n and 0 ≤ s ≤ n be integers such that
n− t− 2s ≥ 0. Then, the following holds,

Mq(n, t, s) ≤ qn−t−2s. (6.3)

Proof. Let C ⊆ Bq(n) be a t-indel s-substitution correcting code of maximal size. Lemma
2.4 shows that Vt,0,s(c1) ∩ Vt,0,s(c2) = ∅ for all pairs of distinct codewords c1, c2 ∈ C,
since C is a t-indel s-substitution correcting code. Consider the shortened code C− ⊆
Bq(n − t − 2s) that is obtained from C by deleting the first t + 2s symbols from all
codewords in C. This is possible because t+ 2s ≤ n.

We claim that two distinct codewords c1, c2 ∈ C yield two distinct codewords c−1 , c
−
2 ∈

C−. For contradiction, suppose that there exist two codewords c1, c2 ∈ C that agree on
the last n − t − 2s symbols, i.e., that they yield the same word after deleting the first
t+2s symbols. Then, we construct a word z ∈ Vt,0,s(c1)∩Vt,0,s(c2). First, delete the first
t symbols from both c1 and c2, to obtain z1 and z2, respectively. Notice that z1 and z2
agree on the last n−2s symbols. Hence, they differ in at most 2s places. This means that
there exists some z ∈ Bq(n− t) that can be obtained from both z1 and z2 by at most s
substitutions. It follows that z ∈ Ss(c1)∩Ss(c2) and in turn that z ∈ Vt,0,s(c1)∩Vt,0,s(c2).
This forms a contradiction, because in the previous paragraph we established that this
intersection is empty. Therefore, we conclude that the claim holds.

This claim implies that C and C− have the same number of elements. Obviously, it
holds that |C−| ≤ qn−t−2s, because C− ⊆ Bq(n− t− 2s) and there exist qn−t−2s words in
Bq(n− t− 2s). By combining the previous observations, it follows that

Mq(n, t, s) = |C| = |C−| ≤ qn−t−2s,

since C was chosen to be maximal in the set of t-indel s-substitution correcting codes.
The last chain of (in)equalities concludes the proof.

In the following example, we show that the repetition codes from Subsection 1.6.1 satisfy
the aforementioned Singleton bound with equality, whenever t+ 2s = n− 1.

Example 6.2. Recall the repetition code C5,4 = {(a)5 : a ∈ B4} ⊆ B4(5) of size 4. In
Subsection 1.6.1 we showed that C5,4 is a 2-indel 1-substitution correcting code. This
implies that M4(5, 2, 1) ≥ 4. On the other hand, the previous Singleton bound gives that
this code is optimal, because M4(5, 2, 1) ≤ 45−2−2·1 = 4.

In general, let n ≥ 1, q ≥ 2, 0 ≤ t ≤ n and 0 ≤ s ≤ n be integers such that
t+2s = n− 1, then we show that the repetition code Cn,q = {(a)n : a ∈ Bq} satisfies the
Singleton bound with equality for these parameters. Notice that each word in Vt,0,s((a)n)
has length n− t = 2s+1 and consists of at least s+1 times the symbol a, where a ∈ Bq.
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6.3. Sphere-packing bounds using two clusters

Therefore, it holds that Vt,0,s(c1)∩Vt,0,s(c2) = ∅ for all distinct c1, c2 ∈ Cn,q. This implies
that the repetition code Cn,q is a t-indel s-substitution correcting code by Lemma 2.4.
Since it holds that |Cn,q| = q, we find Mq(n, t, s) ≥ q for t + 2s = n − 1. On the other
hand, we have Mq(n, t, s) ≤ qn−t−2s = q by the Singleton bound, since we required that
t+2s = n−1. All in all, we find that the Singleton bound is tight whenever t+2s = n−1
and that the class of repetition codes is optimal in this case.

6.3 Sphere-packing bounds using two clusters

In this section we revisit the sphere-packing strategy from Section 5.2 and adapt it to
the setting of t-indel s-substitution correcting codes. In particular, we derive an implicit
family of upper bounds on Mq(n, t, s) in Subsection 6.3.1. Moreover, we will show that
this result implies several bounds from Chapter 5. In Subsection 6.3.2 this family of
implicit bounds is made explicit for t = s = 1.

6.3.1 Family of implicit sphere-packing upper bounds for Mq(n, t, s)

Recall Lemma 5.5 which uses a sphere-packing argument based on deletions in order
to derive an upper bound on Mq(n, t, 0). The statement of the following theorem and
its proof resemble this lemma, because this theorem offers a family of bounds as well.
Namely, a different bound is obtained for each set of parameters r, and 0 ≤ t′, t′′ ≤ n
such that t′+t′′. This result has not been stated before in literature, up to the knowledge
of the author.

Theorem 6.2. Let n ≥ 2, q ≥ 2, 0 ≤ t < n and 0 ≤ s ≤ n be integers. The following
gives an upper bound on Mq(n, t, s) for all integers 0 ≤ r ≤ n and 0 ≤ t′, t′′ < n such
that t′ + t′′ = t,

Mq(n, t, s) ≤
qn−t′+t′′

minx∈Bq(n)
r(x)>r

|Vt′,t′′,s(x)|
+ q

r∑
i=1

(
n− 1

i− 1

)
(q − 1)i−1.

For r = 0 the second addend denotes the empty sum and equals 0 and for r = n the first
addend is taken to be 0.

Proof. Let C ⊆ Bq(n) be a maximum size t-indel s-substitution correcting code. The
outline of the proof is similar to that of Lemma 5.5. The idea is to partition Bq(n) into
two clusters A− and A+ that contain the words with at most r runs and at least r + 1
runs, respectively. Then, for both clusters we upper bound the number of codewords in
C that they can contain, i.e., |C ∩ A−| and |C ∩ A+|. Together, these bounds will form
an upper bound on Mq(n, t, s).

Trivially, |A−| is an upper bound for the number of codewords from C in A−. Using
Lemma 2.7 which counts the number of words with a given number of runs, the following
bound is obtained

|C ∩ A−| ≤ |A−| = |{x ∈ Bq(n) : r(x) ≤ r}| = q

r∑
i=1

(
n− 1

i− 1

)
(q − 1)i−1.
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Chapter 6. Upper bounds for t-indel s-substitution correcting codes

For the codewords c ∈ C ∩ A+, we consider a sphere-packing argument for the sets
Vt′,t′′,s(c). Since C is a t-indel s-substitution correcting code it follows from Lemma 2.4
that the sets Vt′,t′′,s(c) are disjoint for all c ∈ C ∩ A+. Note that the words in Vt′,t′′,s(c)
have length n− t′ + t′′. Clearly, the size of the union of the sets Vt′,t′′,s(c) for c ∈ C ∩A+

cannot exceed the total number of words in Bq(n − t′ + t′′). Therefore, we deduce the
following bound,

∑
c∈C∩A+

|Vt′,t′′,s(c)| =

∣∣∣∣∣ ⋃
c∈C∩A+

Vt′,t′′,s(c)

∣∣∣∣∣ ≤ |Bq(n− t′ + t′′)| = qn−t′+t′′ ,

where we used in the first equality that the sets Vt′,t′′,s(c) are disjoint for c ∈ C ∩ A+.
Moreover, it holds that∑

c∈C∩A+

|Vt′,t′′,s(c)| ≥ |C ∩ A+| · min
c∈C∩A+

|Vt′,t′′,s(c)| ≥ |C ∩ A+| · min
x∈Bq(n)
r(x)>r

|Vt′,t′′,s(x)|.

In the last inequality, we used that words in A+ have more than r runs. Next, recall that
C was defined to be maximal, i.e., |C| = Mq(n, t, s). By combining the previous results,
we obtain the desired result. Namely,

Mq(n, t, s) = |C|
= |C ∩ A+|+ |C ∩ A−|

≤ qn−t′+t′′

minx∈Bq(n)
r(x)>r

|Vt′,t′′,s(x)|
+ q

r∑
i=1

(
n− 1

i− 1

)
(q − 1)i−1,

where we used that the sets A+ and A− partition Bq(n). This concludes the proof.

Theorem 6.2 provides a family of upper bounds on Mq(n, t, s). In other words, for each
set of parameters r, t′ and t′′ we obtain a different bound. In order to evaluate this
family of upper bounds, an expression for the implicit term minx∈Bq(n),r(x)>r |Vt′,t′′,s(x)|
is needed. Unfortunately, to the best of our knowledge, no expression for |Vt′,t′′,s(x)| has
been stated in literature for general parameters n, q, t′, t′′ and s. Therefore, we find that
evaluating Theorem 6.2 in its most general form is complicated. We note the following
about this problem.

1. For small parameters n and q, it is possible to compute the minimum using a brute
approach. It is rather straightforward to compute |Vt′,t′′,s(x)| for all x ∈ Bq(n), and
minimize over all outcomes using a Python script such as in Appendix B. However,
this becomes impractical for large n and q, given that the number of elements in
Bq(n) grows exponentially in n. Moreover, using these numerical results it is not
possible to derive asymptotic results.

2. In the special case of single-indel single-substitution correcting codes, i.e., t′+t′′ = 1
and s = 1, analytic formulas for |V1,0,1(x)| and |V0,1,1(x)| are known for all x ∈
Bq(n). These formulas are given in Lemmas 3.2 and 3.3, respectively. This enables
us to compute an explicit expression for the minimum and to derive concrete upper
bounds. This will be treated in more detail in the next subsection.
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6.3. Sphere-packing bounds using two clusters

3. Given that the minimum is located in the denominator, a lower bound on this
minimum can be used to make the result explicit at the cost of possibly obtaining
a weaker bound. Note that Lemma 3.5 provides such a lower bound on |Vt,0,s(x)|
which is also increasing in r. Hence, for each max{2t + 1, 2s + 1} ≤ r ≤ n we
obtain

Mq(n, t, s) ≤
qn−t∑s

i=0

(⌊ r
2
⌋

i

)∑t
j=0

(⌈ r
2
⌉−t
j

) + q
r∑

i=1

(
n− 1

i− 1

)
(q − 1)i−1,

However, we established in Subsection 3.4.2 that this lower bound on |Vt,0,s(x)| is
weak for small n. Therefore, we will only consider this result in an asymptotic
setting in Section 6.8. Instead, we focus on the stronger explicit bounds in case
t = s = 1 for small n.

t′

r ··0 ··1 ··2 ··3
0 0.488 0.477 0.461 0.439
1 0.495 0.503 0.489 0.466
2 0.501 0.519 0.504 0.483
3 0.506 0.529 0.522 0.501
4 0.4938 0.5096 0.5092 0.4977
5 0.4346 0.4383 0.4386 0.4370
6 0.3572 0.3578 0.3579 0.3577

··... ··... ··... ··... ··...
19 0.00002 0.00002 0.00002 0.00002
20 0.0 0.0 0.0 0.0

n = 20, q = 3, t = 3, s = 2.

Table 6.1: Lower bounds on the optimal relative redundancy 1 − 1
20
log3(M3(20, 3, 2))

based on Theorem 6.2. The bound in each entry is computed using the indicated values
of r (row) and t′ (column) with t′′ = t− t′ = 3− t′. The best bound in each row has been
underlined, whereas the best bound over-all is indicated in bold. The unstated values
for 7 ≤ r ≤ 18 do not contain a better bound than that was found for r = 3 and t′ = 1
and t′′ = 2. All values have been rounded down to the respective number of decimals.

Example 6.3. In this example, we aim to upper bound M3(20, 3, 2) using Theorem 6.2.
Since these upper bounds may become large, we compute the relative redundancy, i.e.,
1− logq(Mq(n, t, s))/n instead of Mq(n, t, s).

For instance, let r = 2, t′ = 2 and t′′ = 1 in order to bound M3(20, 3, 2) from above.
In this case, we find using the script in Appendix B that

min
x∈B3(20),r(x)>2

|V2,1,2(x)| = 21979.

Next, we apply Theorem 6.2 and obtain,

M3(20, 3, 2) ≤
320−2+1

21979
+ 3

2∑
i=1

(
19

i− 1

)
2i ≈ 52997.5.
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Chapter 6. Upper bounds for t-indel s-substitution correcting codes

We conclude that M3(20, 3, 2) ≤ 52997 and in turn 1 − 1
20
log3(M3(20, 3, 2)) ≥ 0.504.

Recall that Theorem 6.2 offers a family of bounds, i.e., for each 0 ≤ r ≤ n and each
pair 0 ≤ t′, t′′ ≤ n such that t′ + t′′ = t a different bound is obtained. Obviously, we
might get better bounds if we choose different r, t′ and t′′. Therefore, we performed this
computation for all possible sets of parameters r, t′ and t′′ for M3(20, 3, 2). The results
are listed in Table 6.1. The best over-all bound is indicated in bold. For instance, we
find 1− 1

20
log3(M3(20, 3, 2)) ≥ 0.529 which corresponds to

M3(20, 3, 2) ≤ 320·(1−0.529) ≈ 31223.

Intuitively, this means that the codewords of an optimal 3-indel 2-substitution correcting
code in B3(20) contain at least 52.9% redundant symbols. This redundancy is the price
for being able to correct three indels and two substitutions in codewords of length 20.
Note that the improvement in relative redundancy from 0.529 to 0.504 seems small
due to the logarithmic scale. However, on a linear scale this difference is significant:
M3(20, 3, 2) ≤ 31223 versus M3(20, 3, 2) ≤ 52997, respectively.

Next, we show that several results from Chapter 5 are implied by Theorem 6.2. For
instance, setting t′ = t and r = t′′ = s = 0 in Theorem 6.2 results in the Singleton bound
for t-indel correcting codes,

Mq(n, 0, t) ≤
qn−t

minx∈Bq(n) |Vt,0,0(x)|
= qn−t,

where we used that minx∈Bq(n) |Vt,0,0(x)| = 1. This holds because |Vt,0,0(x)| ≥ 1 for all
x ∈ Bq(n), while |Vt,0,0((0)n)| = 1. Indeed, deleting t symbols from the all-zero word
always yields the all-zero word of length n− t, and thus |Vt,0,0((0)n)| = 1. Moreover, by
setting r = t = t′ = t′′ = 0, the Hamming bound is obtained,

Mq(n, 0, s) ≤
qn

minx∈Bq(n) |V0,0,s(x)|
=

qn∑s
i=0

(
n
i

)
(q − 1)i

.

Similarly, setting t′′ = t and t′ = s = r = 0 gives the bound from Lemma 5.4,

Mq(n, t, 0) ≤
qn+t

minx∈Bq(n) |V0,t,0(x)|
=

qn+t∑t
i=0

(
n+t
i

)
(q − 1)i

.

Lastly, by setting t′ = t and t′′ = s = 0 Levenshtein’s bound from Lemma 5.5 is retrieved.
Suppose that the additional requirement from Lemma 5.5 that max{1, t − 1} ≤ r ≤ n
holds, then it follows that |Dt(x)| ≤

∑t
i=0

(
r+1−t

i

)
whenever r(x) > r (cf. Section 3.2).

In that case, it follows that

Mq(n, t, 0)≤
qn−t

min
x∈Bq(n), r(x)>r

|Vt,0,0(x)|
+q

r∑
i=1

(
n− 1

i− 1

)
(q−1)i≤ qn−t

t∑
i=0

(
r+1−t

i

)+q
r∑

i=1

(
n− 1

i− 1

)
(q−1)i,

which equals the statement of Lemma 5.5.
We conclude that Theorem 6.2 generalizes the sphere-packing results from Section 5.2

and even one Singleton bound to the setting of t-indel s-substitution correcting codes.
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6.3.2 Explicit sphere-packing upper bounds for Mq(n, 1, 1)

In this subsection, we make Theorem 6.2 explicit in the case of a single indel and a
single substitution. Let t = s = 1, then we find an expression for the minimum in the
statement of Theorem 6.2. For t = 1, we have either t′ = 1 and t′′ = 0, or t′ = 0 and
t′′ = 1. To this end, recall the following results from Lemmas 3.2 & 3.4,

|V1,0,1(x)| = Ln,q
1,0,1(r(x)) :=

{
(n− 1)(q − 1) + 1 if r(x) = 1,

r(x) ((n− 2)(q − 1)− 1) + q + 2 if r(x) ≥ 2,
(6.4)

|V0,1,1(x)| ≥ Ln,2
0,1,1(r(x)) := −1

2
r(x)2 + (n+

1

2
)r(x) +

1

2
(n2 + n+ 2). (6.5)

Beware that the first result holds for q-ary words, whereas the second result holds for
binary words only. In Section 3.3 we established that both Ln,q

1,0,1 and Ln,2
0,1,1 are increasing

on {1, ..., n} as a function of r. Therefore, it follows that

min
x∈Bq(n), r(x)>r

|V1,0,1(x)| = min
r′∈{r+1,...,n}

Ln,q
1,0,1(r

′) = Ln,q
1,0,1(r + 1),

min
x∈B2(n), r(x)>r

|V0,1,1(x)| ≥ min
r′∈{r+1,...,n}

Ln,2
0,1,1(r

′) = Ln,2
0,1,1(r + 1).

This allows us to apply Theorem 6.2 and derive the following family of upper bounds
which holds for each 0 ≤ r ≤ n− 1,

Mq(n, 1, 1) ≤
qn−1

Ln,q
1,0,1(r + 1)

+ q
r∑

i=1

(
n− 1

i− 1

)
(q − 1)i−1, (6.6)

M2(n, 1, 1) ≤
2n+1

Ln,2
0,1,1(r + 1)

+ 2
r∑

i=1

(
n− 1

i− 1

)
. (6.7)

Here, the first bound uses t′ = 1 and t′′ = 0, while the second bound uses t′ = 0 and
t′′ = 1. Next, we consider a brief example in which we evaluate these bounds for a
specific set of parameters.

Example 6.4. Let n = 10, q = 2, t = 1 and s = 1. For instance, for r = 3 we obtain

M2(10, 1, 1) ≤
29

Ln,2
1,0,1(4)

+ 2
3∑

i=1

(
9

i− 1

)
=

512

4 · 7 + 4
+ 2 · (1 + 9 + 36) = 108,

M2(10, 1, 1) ≤
211

Ln,2
0,1,1(4)

+ 2
3∑

i=1

(
9

i− 1

)
=

2048

−8 + 42 + 56
+ 2 · (1 + 9 + 36) = 114.75.

Hence, for these specific parameters the upper bound based on the single deletion and
single substitution set, V1,0,1(x), outperforms the bound that is based on the single
insertion and single substitution set, V0,1,1(x). Notice that both bounds improve upon
the Singleton bound from Theorem 6.1 which yields M2(10, 1, 1) ≤ 210−1−2·1 = 128.

A detailed comparison of these sphere-packing upper bounds and other upper bounds
on Mq(n, 1, 1) can be found in Section 6.6.
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6.4 Sphere-packing bounds using multiple clusters

This section aims to improve the bounds from the previous section. Firstly, we make
two observations about Theorem 6.2 that will enable us to accomplish this improvement.
Then, we present a second family of sphere-packing bounds and show that it performs
at least as well as Theorem 6.2. Analogous to the previous section, this result is first
stated in an implicit way for general t and s, and then it is made explicit for t = s = 1.

6.4.1 Improving the implicit sphere-packing bounds

Consider the following to observations about the proof of Theorem 6.2.

Remark 6.5. Firstly, from Chapter 2 we know that the size of the set Vt′,t′′,s(x) depends
strongly on r(x) for many sets of parameters t′, t′′ and s. For this reason, in the proof
of Theorem 6.2 the set Bq(n) was partitioned into two clusters A− and A+ containing
the words with ‘few’ and ‘many’ runs, respectively. The number of codewords in A+

was bounded using a sphere-packing argument, whereas the number of codewords in A−

was trivially bounded by |A−|. Here, we propose to partition Bq(n) into more than two
clusters. Moreover, we do not prescribe for which cluster a sphere-packing argument or
a trivial bound is used. Instead, for each cluster the best of both bounds is used.

Secondly, we observe that the sphere-packing argument can be strengthened. In the
proof of Theorem 6.2 the quantity |C ∩ A+| was bounded as follows. We used that the
size of the union of the sets Vt′,t′′,s(c) for c ∈ C ∩ A+ is bounded by∣∣∣∣∣ ⋃

c∈C∩A+

Vt′,t′′,s(c)

∣∣∣∣∣ ≤ |Bq(n− t′ + t′′)| = qn−t′+t′′ .

Note that in doing so, we ignore that c ∈ A+, i.e., that r(c) > r for some 1 ≤ r ≤ n.
Using Lemma 2.6 we also know that r(y) ≥ r(c) − 2(t′ + s) for all y ∈ Vt′,t′′,s(c).
Together these observations imply that r(y) > r−2(t′+s) for all y ∈ Vt′,t′′,s(c) whenever
c ∈ C ∩ A+. It follows that∣∣∣∣∣ ⋃

c∈C∩A+

Vt′,t′′,s(c)

∣∣∣∣∣ ≤ |{x ∈ Bq(n− t′ + t′′) : r(x) > r − 2(t′ + s)}|,

which is clearly an improvement if and only if r − 2(t′ + s) > 0.

Based on the aforementioned two observations, we present the following theorem. The
idea is to partition Bq(n) into k clusters denoted by Aj for 1 ≤ j ≤ k. Each cluster
will contain the words x ∈ Bq(n) for which r(x) falls within a certain range. Loosely
speaking, A1 contains the words in Bq(n) with very few runs, A2 with slightly more runs,
and Ak contains the words in Bq(n) with (almost) n runs. As far as the author is aware,
the following result has not been stated before in literature.
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Theorem 6.3. Let n ≥ 1, q ≥ 2, 0 ≤ t ≤ n, 0 ≤ s ≤ n and 1 ≤ k ≤ n be integers.
For each sequence of integers 0 = r0 < r1 < · · · < rk = n, and for each pair of integers
0 ≤ t′, t′′ ≤ n such that t′ + t′′ = t, the following gives an upper bound on Mq(n, t, s),

Mq(n, t, s) ≤
k∑

j=1

min


∑bj

r=aj
q
(
n−t′+t′′−1

r−1

)
(q − 1)r−1

min
x∈Aj

|Vt′,t′′,s(x)|
,

rj∑
r=rj−1+1

q

(
n− 1

r − 1

)
(q − 1)r−1


where for 1 ≤ j ≤ k, aj := max{1, rj−1+1−2(t′+s)}, bj := min{n−t′+t′′, rj+2(t′′+s)}
and Aj := {x ∈ Bq(n) : rj−1 + 1 ≤ r(x) ≤ rj}.

Proof. Let C ⊆ Bq(n) be a t-indel s-substitution correcting code of maximum size. The
idea of this proof is to partition Bq(n) into k clusters based on the number of runs of
the words in Bq(n). These clusters are given by Aj for 1 ≤ j ≤ k. Since C is maximal
and these clusters form a partition of Bq(n) it follows that Mq(n, t, s) =

∑k
j=1 |C ∩ Aj|.

Then, we bound |C ∩Aj| from above in two different ways to arrive at the desired result.
Before doing so, we show that the clusters Aj indeed form a partition of Bq(n). Con-

sider the partition of the set {1, ..., n} given by the subsets {r0+1, ..., r1}, {r1+1, ..., r2},
. . . , {rk−1 + 1, ..., rk}. This is a partition because each element {1, ..., n} in contained in
precisely one of these subsets of the form {rj−1 + 1, ..., rj}, since the sequence 0 = r0 <
r1 < · · · < rk = n is strictly increasing. This partition of {1, ..., n} into k sets implies
that the clusters Aj form a partition of Bq(n) as well. Next, let 1 ≤ j ≤ k and consider
only the cluster Aj.

As a first upper bound on |C ∩ Aj|, we use the trivial bound,

|C ∩ Aj| ≤ |Aj| =
rj∑

r=rj−1+1

q

(
n− 1

r − 1

)
(q − 1)r−1.

This follows directly from the definition of Aj and Lemma 2.7 which counts the number
of words with rj−1 + 1 ≤ r ≤ rj runs.

For the second upper bound on |C ∩ Aj|, Let c ∈ C ∩ Aj and consider a word
y ∈ Vt′,t′′,s(c). Then we claim that aj ≤ r(y) ≤ bj with aj and bj as given in the
statement of this theorem. In order to show this claim note that c has length n and thus
y has length n− t′ + t′′. It follows that 1 ≤ r(y) ≤ n− t′ + t′′. Moreover, note that by
Lemma 2.6 it holds that r(c)− 2(t′ + s) ≤ r(y) ≤ r(c) + 2(t′′ + s), since y ∈ Vt′,t′′,s(c).
Together with rj−1 + 1 ≤ r(c) ≤ rj which follows from the definition of Aj, we find that
rj−1 + 1 − 2(t′ + s) ≤ r(y) ≤ rj + 2(t′′ + s). Hence, we have proven the claim and we
continue with a sphere-packing argument.

Namely, note that the sets Vt′,t′′,s(c) with c ∈ C ∩ Aj are disjoint. This follows from
Lemma 2.4, because C is a t-indel s-substitution correcting code. For this reason, the
combined size of all these spheres satisfies

∑
c∈C∩Aj

|Vt′,t′′,s(c)| =

∣∣∣∣∣∣
⋃

c∈C∩Aj

Vt′,t′′,s(c)

∣∣∣∣∣∣ ≤ |{y ∈ Bq(n− t′ + t′′), aj ≤ r(y) ≤ bj}| ,
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where we used the aforementioned claim to upper bound the size of the union. On the
other hand, it also holds that∑

c∈C∩Aj

|Vt′,t′′,s(c)| ≥ |C ∩ Aj| · min
c∈C∩Aj

|Vt′,t′′,s(c)| ≥ |C ∩ Aj| · min
x∈Aj

|Vt′,t′′,s(x)|,

where we used that C ∩Aj ⊆ Aj in the last inequality. By combining the last two steps,
it follows that

|C ∩ Aj| ≤
|{y ∈ Bq(n− t′ + t′′), aj ≤ r(y) ≤ bj}|

min
x∈Aj

|Vt′,t′′,s(x)|
=

∑bj
r=aj

q
(
n−t′+t′′−1

r−1

)
(q − 1)r−1

min
x∈Aj

|Vt′,t′′,s(x)|
.

The numerator in this last expression is evaluated using Lemma 2.7. All in all, the two
upper bounds on |C ∩ Aj| for 1 ≤ j ≤ k give the desired result

Mq(n, t, s) =
k∑

j=1

|C ∩ Aj|

≤
k∑

j=1

min


∑bj

r=aj
q
(
n−t′+t′′−1

r−1

)
(q − 1)r−1

min
x∈Aj

|Vt′,t′′,s(x)|
,

rj∑
r=rj−1+1

q

(
n− 1

r − 1

)
(q − 1)r−1

 .

The last line concludes the proof.

In order to evaluate the upper bounds from the previous theorem, we need an expression
or lower bound for minx∈Aj

|Vt′,t′′,s(x)|. Given that no general expression for |Vt′,t′′,s(x)|
is known to us, evaluating this family of bounds is complicated. However, this problem is
not more difficult than in the previous section. The comments from the previous section
about computing this minimum apply here as well.

Theorem 6.3 offers a family of bounds with even more ‘freedom’ compared to Theorem
6.2. Indeed, for each sequence 0 = r0 < r1 < · · · < rk = n of arbitrary length 1 ≤ k ≤ n,
and for each pair of 0 ≤ t′, t′′ ≤ n such that t′ + t′′ = t we obtain a different bound. In
order to get the smallest upper bound, this family of bounds should be optimized over
all these sets of parameters. It is a priori unclear which set(s) of parameters provide(s)
the best upper bound. Nevertheless, even if we consider only three clusters, significant
improvements can be made compared to Theorem 6.2. This is illustrated in the following
example.

Example 6.6. In Example 6.3 we established that M3(20, 3, 2) ≤ 31223 using Theorem
6.2. This result was obtained after optimization over the parameters which means that
it is the best achievable upper bound using Theorem 6.2. Here, we show that it can be
improved using Theorem 6.3 with only three clusters.

To this end, we consider three clusters, i.e., we set k = 3. We set r0 = 0, r1 = 2,
r2 = 5 and r3 = 20. Moreover, we set t′ = 2 and t′′ = 1 so that t = t′ + t′′ = 3. We note
that these values chosen because they yield an improvement over the previous results.
There is nothing special about this choice. We state that other sets of parameters give
improvements as well, and yield possibly even better results.
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In order to evaluate Theorem 6.3 we compute using the script in Appendix B that

min
x∈A1

|V2,1,2(x)| = min
x∈B3(20): 1≤r(x)≤2

|V2,1,2(x)| = 8475,

min
x∈A2

|V2,1,2(x)| = min
x∈B3(20): 3≤r(x)≤5

|V2,1,2(x)| = 21979,

min
x∈A3

|V2,1,2(x)| = min
x∈B3(20): 6≤r(x)≤20

|V2,1,2(x)| = 73374.

Furthermore, we compute a1 = a2 = a3 = 1 and b1 = 8, b2 = 11 and b3 = 19. Using
these values it is possible to evaluate the upper bound in Theorem 6.3 as follows,

M3(20, 3, 2) ≤
3∑

j=1

min


∑bj

r=aj
3
(
20−2+1−1

r−1

)
(3− 1)r−1

min
x∈Aj

|V2,1,2(x)|
,

rj∑
r=rj−1+1

3

(
20− 1

r − 1

)
(3− 1)r−1


= min{

3
∑8

r=1

(
18
r−1

)
2r−1

8475
, 3

2∑
r=1

(
19

r − 1

)
2r−1}

+min{
3
∑11

r=1

(
18
r−1

)
2r−1

21979
, 3

5∑
r=3

(
19

r − 1

)
2r−1}

+min{
3
∑19

r=1

(
18
r−1

)
2r−1

73374
, 3

20∑
r=6

(
19

r − 1

)
2r−1}

≈ min{1974, 117}+min{11806, 211356}+min{15804,∼ 320}
= 27727.

In the step with the approximation we rounded down the fractions. This is allowed, since
each term forms an upper bound on the cardinality of the set |C ∩Aj| (in the context of
the proof of Theorem 6.3). The cardinality of this set is clearly integer-valued.

All in all, we conclude that M3(20, 3, 2) ≤ 27727. This forms an improvement on the
best achievable results using Theorem 6.2, see Example 6.3. Furthermore, the Singleton
bound from Theorem 6.1 gives M3(20, 3, 2) ≤ 320−3−2·2 = 313 ≈ 1.59 · 106 which is
significantly weaker as well. Note that we could possibly obtain an even better bound
by choosing other parameters for t′, t′′, k and r1 < r2 < · · · < rk−1.

The previous example shows that there are instances in which Theorem 6.3 gives a strict
improvement over Theorem 6.2. By the way in which both theorems are constructed, it
is not surprising that Theorem 6.3 implies Theorem 6.2. In order to show this, we take
k = 2 clusters and the strictly increasing sequence 0 = r0 < r1 < r2 = n. Hence, this
results in a summation of two terms in Theorem 6.3. By choosing the second term in
the minimum for j = 1 and the first term for j = 2, we get

Mq(n, t, s) ≤ q

r1∑
i=r0+1

(
n− 1

i− 1

)
(q − 1)i−1 +

∑b2
r=a2

q
(
n−t′+t′′−1

r−1

)
(q − 1)r−1

minx∈A2(n) |Vt′,t′′,s(x)|

≤ q

r1∑
i=1

(
n− 1

i− 1

)
(q − 1)i−1 +

qn−t′+t′′

minx∈Bq(n)
r(x)>r1

|Vt′,t′′,s(x)|
,
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where the first inequality follows from the application of Theorem 6.3. The second
inequality uses that A2(n) = {x ∈ Bq(n) : r(x) > r1}, and the observation that∑b2

r=a2
q
(
n−t′+t′′−1

r−1

)
(q − 1)r−1 counts the number of words with length n − t′ + t′′ and

a2 ≤ r ≤ b2 runs. Clearly, this quantity is at most qn−t′+t′′ , i.e., the total number of
words with length n− t′ + t′′. This proves that Theorem 6.3 implies Theorem 6.2.

6.4.2 Explicit sphere-packing upper bounds for Mq(n, 1, 1)

In this subsection, the previous family of upper bounds is made explicit for t = s = 1.
In order to make Theorem 6.3 explicit, we use the existing formulas for |V1,0,1(x)| and
|V0,1,1(x)| again. Recall the expressions Ln,q

1,0,1(r(x)) and Ln,q
1,0,1(r(x)) from (6.4) & (6.5)

for the cardinalities of V1,0,1(x) and V0,1,1(x), respectively. Given that these formulas are
increasing on {1, ..., n} as a function of r = r(x), it follows that

min
x∈Aj

|V1,0,1(x)| = min
r′∈{rj−1+1,...,rj}

Ln,q
1,0,1(r

′) = Ln,q
1,0,1(rj−1 + 1),

min
x∈Aj

|V0,1,1(x)| ≥ min
r′∈{rj−1+1,...,rj}

Ln,2
0,1,1(r

′) = Ln,2
0,1,1(rj−1 + 1).

Then, we can apply Theorem 6.3. For each sequence of integers 0 = r0 < r1 < ... < rk =
n we obtain the following two bounds,

Mq(n, 1, 1) ≤
k∑

j=1

min


∑bj

r=aj
q
(
n−2
r−1

)
(q − 1)r−1

Ln,q
1,0,1(rj−1 + 1)

,

rj∑
r=rj−1+1

q

(
n− 1

r − 1

)
(q − 1)r−1

 , (6.8)

M2(n, 1, 1) ≤
k∑

j=1

min


∑bj

r=aj
2
(

n
r−1

)
Ln,2
0,1,1(rj−1 + 1)

,

rj∑
r=rj−1+1

2

(
n− 1

r − 1

) . (6.9)

where the first bound uses t′ = 1 and t′′ = 0, while the second bound uses t′ = 0 and
t′′ = 1. Note that both bounds consist only of known quantities. Namely, by specifying
a value for 1 ≤ k ≤ n and a sequence of integers 0 = r0 < r1 < ... < rk = n, the
values for aj and bj can be determined using aj := max{1, rj−1 + 1 − 2(t′ + s)} and
bj := min{n− t′ + t′′, rj + 2(t′′ + s)}.

In Section 6.6, these two families of upper bounds will be compared against other
upper bounds in this chapter.

6.5 Hypergraph and matching upper bound

In this section, we derive another upper bound on t-indel s-substitution correcting codes.
Similar to the previous sections, we first derive an implicit result for general t and s.
Thereafter, we make this result explicit for t = s = 1 using the known formulas for the
cardinalities of V1,0,1(x) and V0,1,1(x).

The strategy to obtain these bounds has been detailed in Section 5.3 for t-indel
correcting codes, and uses matchings in hypergraphs. These ideas are based on the work
by Kulkarni and Kiyavash [8]. Recently, Smagloy et al. [11] used the same strategy to
derive upper bounds on Mq(n, 1, 1) and M2(n, 1, s), see Section 6.1. Here, we aim to
generalize the results from Section 5.3 and improve the existing bound on Mq(n, 1, 1).
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6.5.1 Implicit hypergraph and matching upper bound on Mq(n, t, s)

The hypergraph and matching strategy from Section 5.3 consists of three steps. We
briefly repeat these steps below and explain how this strategy can be adapted to t-indel
s-substitution correcting codes.

1. An upper bound on the maximum size of matching in a hypergraph is found using
an integer linear programming approach. More precisely, an upper bound on the
matching number ν(H) of a general hypergraph H was found in Lemma 5.6. This
first step does not need to be adapted, since it does not involve error correcting
codes.

2. The maximum size of a matching in a hypergraph was related to the maximum size
of a t-indel correcting code in Bq(n). Then, the bound from the first step was used
to obtain an implicit upper bound on Mq(n, t, 0) in Lemma 5.7. Analogously, we re-
late a maximum size matching to a maximum size t-indel s-substitution correcting
code. In order to apply the result from the first step and derive an implicit upper
bound for Mq(n, t, s), we will need to alter the argument slightly and introduce
some additional requirements. This second step will be covered in the remainder
of this subsection.

3. The implicit upper bounds on Mq(n, t, 0) and Mq(n, t, s) are made explicit using
known results about |Dt(x)| and |Vt′,t′′,s(x)|, respectively. This third step will be
addressed in the next subsection.

Before stating the main result of this section, we make an observation about the second
step. This observation will show that we cannot simply repeat the proof of Lemma 5.7
to derive an upper bound on Mq(n, t, s). We explain why a generalization to t-indel
s-substitution correcting codes makes the proof more difficult, and we argue how this
difficulty can be solved.

Remark 6.7. The upper bound on Mq(n, t, 0) from Lemma 5.7 was found by applying
Lemma 5.6. A vector w = (w(y))y∈Bq(n−t) was constructed that satisfies the two condi-
tions from this lemma: 1) w ≥ 0 and 2)

∑
y∈Dt(x)

w(y) ≥ 1 for all x ∈ Bq(n). The vector
w with w(y) = 1

|Vt,0,0(y)| =
1

|Dt(y)| and y ∈ Bq(n− t) was shown to satisfy both conditions.
A crucial step in proving that it satisfies the second condition is the following property,
which was proven in [8, Lem. 4.1]. Namely, it holds that |Vt,0,0(y)| ≤ |Vt,0,0(x)|, whenever
y ∈ Vt,0,0(x). This property implies the second condition, i.e., for any x ∈ Bq(n),∑

y∈Vt,0,0(x)

1

|Vt,0,0(y)|
≥

∑
y∈Vt,0,0(x)

1

|Vt,0,0(x)|
= 1.

In order to derive an upper bound for t-indel s-substitution correcting codes we may
hope to use the same reasoning. In other words, we define a vector w and aim to show
that it satisfies the two conditions of Lemma 5.6. As we will show in the next proof, in
the setting of t-indel s-substitution correcting codes these two conditions are given by
1) w ≥ 0 and 2)

∑
y∈Vt,0,s(x)

w(y) ≥ 1 for all x ∈ Bq(n).
In line with the case of solely deletions, we might define the vector w with w(y) =
1

|Vt,0,s(y)| and y ∈ Bq(n− t). The first condition can easily be proven, so the main effort
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lies in showing the second condition. Again, the property |Vt,0,s(x)| ≤ |Vt,0,s(y)| for
all x ∈ Vt,0,s(y) would be sufficient to prove this second condition. Unfortunately, this
property does not hold in general. For instance, let q = 4, x1 = 010, x2 = 000 and
y = 0000, then surely x1,x2 ∈ V1,0,1(y). Furthermore, it can be easily verified that

V1,0,1(y) = {000, 001, 010, 100, 002, 020, 200, 003, 030, 300},
V1,0,1(x1) = {00, 01, 10, 11, 02, 20, 03, 30, 12, 21, 13, 31},
V1,0,1(x2) = {00, 01, 10, 02, 20, 03, 30}.

It follows that 12 = |V1,0,1(x1)| > |V1,0,1(y)| = 10, while 7 = |V1,0,1(x2)| < |V1,0,1(y)| =
10. Consequently, the statement |Vt,0,s(x)| ≤ |Vt,0,s(y)| for all x ∈ Vt,0,s(y) is not true in
general. This shows that we cannot simply replace w(x) = 1

|Vt,0,0(x)| by w(x) = 1
|Vt,0,s(x)|

and expect to derive an upper bound on Mq(n, t, s) in a similar way as was done for the
upper bound on Mq(n, t, 0).

The previous remark shows that we need to revise the strategy for the second step. In
this thesis, we show that this can be done as follows. Although there exist examples of
x and y such that |Vt,0,s(x)| < |Vt,0,s(y)| for x ∈ Vt,0,s(y), it is possible to show that,
loosely speaking, it cannot happen that |Vt,0,s(x)| ≪ |Vt,0,s(y)|. By exploiting this idea,
we manage to construct a different vector w which does satisfy both conditions from
Lemma 5.6. This leads to the upper bound that we present in the following theorem.
This theorem provides an upper bound on Mq(n, t, s) in terms of a lower bound for
|Vt′,t′′,s(x)|. To the best of our knowledge, the following result was not yet stated before
in literature for general t ≥ 0 and s ≥ 0.

Theorem 6.4. Let n ≥ 1, q ≥ 2, 0 ≤ t ≤ n and 0 ≤ s ≤ n be integers. For each
pair of integers t′, t′′ ≥ 0 such that t + t′′ = t, and for each non-decreasing function
L : {1, ..., n} → R≥1 that satisfies L(r(x)) ≤ |Vt′,t′′,s(x)| for all x ∈ Bq(n), the following
gives an upper bound on Mq(n, t, s),

Mq(n, t, s) ≤
n−t′+t′′∑

r=1

q
(
n−t′+t′′−1

r−1

)
(q − 1)r−1

L(c(r))
,

where c(r) = max{1, r − 2(t′′ + s)}.

Proof. The reasoning of this proof will be similar to that of Lemma 5.7. Namely, the
problem of bounding the maximum size of a t-indel s-substitution correcting code will be
translated to the equivalent problem of bounding the size of a maximum sized matching in
a hypergraph. Subsequently, a vector w∗ is constructed that satisfies the two conditions
of Lemma 5.6. The conclusion of Lemma 5.6 leads to an upper bound of Mq(n, t, s).
Throughout the remainder of this proof x will denote a word of length n and y of length
n− t′ + t′′.

Define the following hypergraph H := (Bq(n− t′+ t′′), {Vt′,t′′,s(x) : x ∈ Bq(n)}). This
hypergraph is well-defined because the words in Vt′,t′′,s(x) have length n− t′ + t′′. First,
we show that Mq(n, t, s) = ν(H). To this end, let C be a t-indel s-substitution correcting
code. By Lemma 2.4 this is equivalent to stating that each pair of hyperedges in the set
M := {Vt′,t′′,s(c) : c ∈ C} is disjoint. In turn, this is the same as M being a matching
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of H. Therefore, it follows that the code C and matching M have equal size. Hence, a
maximum size t-indel s-substitution correcting code induces a matching of the same size
and vice versa. In short, this means that Mq(n, t, s) = ν(H).

Next, we apply Lemma 5.6. This means that we construct a vector w = (w(y))y∈Bq(n−t′+t′′)

which satisfies the conditions: 1) w ≥ 0 and 2)
∑

y∈Vt′,t′′,s(x)
w(y) ≥ 1 for all x ∈ Bq(n).

To this end, define the vector w∗ as follows

w∗(y) =
1

L(c(r(y)))
=

{
1

L(r(y)−2(t′′+s))
if r(y) > 2(t′′ + s),

1
L(1)

if r(y) ≤ 2(t′′ + s),

for all y ∈ Bq(n−t′+t′′) and c(r) = max{1, r−2(t′′+s)}. We show that w∗ is well-defined
and that w∗ satisfies the two conditions.

The vector w∗ is well-defined if c(r(y)) ∈ {1, ..., n} for each y ∈ B(n−t′+t′′), because
in that case c(r(y)) is an element of the domain of L. Let y ∈ B(n − t′ + t′′), then it
holds that c(r(y)) is integer-valued. Furthermore, we have c(r(y)) ≥ 1 and

c(r(y)) = max{1, r(y)− 2(t′′ + s)} ≤ max{1, n− t′ + t′′ − 2(t′′ + s)} ≤ n.

Moreover, the L is strictly positive function, so division by zero does not occur. Hence,
we conclude that w∗ is well-defined.

The first condition w∗ ≥ 0 is satisfied, because L is a strictly positive function. For
the second condition, let x ∈ Bq(n) and y ∈ Vt′,t′′,s(x). Recall Lemma 2.6 which relates
r(x) and r(y). This lemma states that r(y)− 2(t′′ + s) ≤ r(x), which gives

c(r(y)) = max{1, r(y)− 2(t′′ + s)} ≤ r(x).

This implies that L(c(r(y))) ≤ L(r(x)), since L is a non-decreasing function by definition.
All in all, we obtain the second condition for w∗,∑

y∈Vt′,t′′,s(x)

w∗(y) =
∑

y∈Vt′,t′′,s(x)

1

L(c(r(y)))
≥

∑
y∈Vt′,t′′,s(x)

1

L(r(x))

(∗)
=
|Vt′,t′′,s(x)|
L(r(x))

(∗∗)
≥ 1,

where we used in (∗) that the summands do not depend on y, and in (∗∗) that L(r(x))
bounds |Vt′,t′′,s(x)| from below. We conclude that w∗ satisfies the two aforementioned
conditions. Therefore, we can apply Lemma 5.6. This lemma states ν(H) ≤ 1⊤w∗. By
combining the previous results from this proof the desired upper bound is obtained,

Mq(n, t, s) = ν(H)
≤ 1⊤w∗

=
∑

y∈Bq(n−t′+t′)

w∗(y)

=
∑

y∈Bq(n−t′+t′)

1

L(c(r(y)))

=
n−t′+t′′∑

r=1

∑
y∈Bq(n−t′+t′)

r(y)=r

1

L(c(r))

=
n−t′+t′′∑

r=1

q
(
n−t′+t′′−1

r−1

)
(q − 1)r−1

L(c(r))
.
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In the last equality we used Lemma 2.7 which counts the number of words in Bq(n−t′+t′)
with a given number of runs. The last chain of (in)equalities concludes the proof.

Next, we make two remarks about this theorem.

1. In its current form Theorem 6.4 is implicit because it depends on a non-decreasing
lower bound L for |Vt′,t′′,s(x)| with x ∈ Bq(n). Observe that such a non-decreasing
lower bound is given in Lemma 3.5 and can thus be used to make this theorem
explicit. Since this lower bound for general t and s was shown to be weak for small
n, we do not continue with this general bound here. Instead, we focus on the case
t = s = 1 where stronger lower bounds are known. This will be done in more detail
in Subsection 6.5.2.

2. The requirement that L is a non-decreasing lower bound might seem restrictive,
but this is not necessarily the case. Observe that the lower bounds for |Vt′,t′′,s(x)|
from Chapter 3 all satisfy this property. Indeed, it holds for the lower bounds
on |Vt,0,s(x)| and |V0,1,1(x)| of Lemmas 3.5 & 3.3, as well as the expression for
|V1,0,1(x)| in Lemma 3.2.

6.5.2 Explicit hypergraph and matching upper bounds on Mq(n, 1, 1)

Theorem 6.4 can be made explicit for t = s = 1, because we have a known expression
for |V1,0,1(x)| in terms of r(x) and a lower bound for |V0,1,1(x)| in terms of r(x) as well.
Namely, using Lemmas 3.2 & 3.4, we obtain

|V1,0,1(x)| = Ln,q
1,0,1(r(x)) :=

{
(n− 1)(q − 1) + 1 if r(x) = 1,

r(x) ((n− 2)(q − 1)− 1) + q + 2 if r(x) ≥ 2,
(6.10)

|V0,1,1(x)| ≥ Ln,2
0,1,1(r(x)) := −1

2
r(x)2 + (n+

1

2
)r(x) +

1

2
(n2 + n+ 2). (6.11)

Here, (6.10) holds for x ∈ Bq(n), whereas (6.11) holds only for x ∈ B2(n). In Section 3.3
it was established that both Ln,q

1,0,1 and Ln,2
0,1,1 are non-decreasing as a function of r = r(x).

Therefore, the conditions of Theorem 6.4 are satisfied.
Using t′ = 1, t′′ = 0 and Ln,q

1,0,1, we obtain for n ≥ 4 and q ≥ 2,

Mq(n, 1, 1) ≤
n−1∑
r=1

q
(
n−2
r−1

)
(q − 1)r−1

Ln,q
1,0,1(max{1, r − 2})

=
3∑

r=1

q
(
n−2
r−1

)
(q − 1)r−1

Ln,q
1,0,1(1)

+
n−1∑
r=4

q
(
n−2
r−1

)
(q − 1)r−1

Ln,q
1,0,1(r − 2)

=
q + q(q − 1)(n− 2) + 1

2
q(n− 2)(n− 1)(q − 1)2

(n− 1)(q − 1) + 1

+
n−1∑
r=4

q
(
n−2
r−1

)
(q − 1)r−1

(r − 2) ((n− 2)(q − 1)− 1) + q + 2
. (6.12)

Note that this bound cannot be improved by choosing a different lower bound on
|V1,0,1(x)|, because Ln,q

1,0,1 provides the exact expression for |V1,0,1(x)|. Similarly, using
t′ = 0, t′′ = 1 and Ln,2

0,1,1 we get the following bound for n ≥ 4 and q = 2,
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M2(n, 1, 1) ≤
n+1∑
r=1

2
(

n
r−1

)
Ln,2
0,1,1(max{1, r − 4})

=
2 + 2n+ n(n+ 1) + 1

3
n(n− 1)(n− 2)

1
2
n2 + n+ 2

+

n+1∑
r=5

2
(

n
r−1

)
−1

2
(r − 4)2 + (n+ 1

2
)(r − 4) + 1

2
(n2 + n+ 2)

=
2(n3 + 11n+ 6)

3(n2 + 2n+ 4)
+

n−3∑
r=1

4
(

n
r+3

)
−r2 + (2n+ 1)r + n2 + n+ 2

. (6.13)

This bound can also not be improved by choosing a different lower bound on |V0,1,1(x)|.
This follows from the proof of Lemma 3.3 in which we showed that Ln,2

0,1,1(r) is tight for
all 1 ≤ r ≤ n. We remark that (6.12) & (6.13) do not give neat expressions, but both
bounds are explicit. Therefore, they can be easily evaluated for small n and q.

In the next example, we show that (6.12) gives a significant improvement over the existing
bound from (6.1) for a particular set of parameters.

Example 6.8. In Example 6.1 we found that M3(10, 1, 1) ≤ 858 according to the existing
bound (6.1). Using the bound (6.12) we obtain

M3(10, 1, 1) ≤
3 + 48 + 432

19
+

9∑
r=4

3
(

8
r−1

)
· 2r−1

17(r − 2) + 5
≈ 25.42 + 294.82 = 320.24

Therefore, we conclude that M3(10, 1, 1) ≤ 320. Indeed, our result is significantly better
than the existing bound M3(10, 1, 1) ≤ 858. This could be expected, because (6.1) was
derived in [11] using the same technique as (6.12). However, we state that for (6.1)
several terms were bounded to arrive at a neater formula, at the cost of a weaker result.

6.6 Non-asymptotic comparison of upper bounds on
Mq(n, 1, 1)

In this chapter we reviewed and derived several upper bounds on Mq(n, t, s). Next, we
restrict our attention to single-indel single-substitution correcting codes and compare
these bounds non-asymptotically.

To be precise, we compare nine different bounds. First of all, the two existing bounds
(6.1) and (6.2) from Section 6.1 are considered. Moreover, we take the the Singleton
bound from Section 6.2 into account. For the remaining six bounds, we distinguish
between the bounds (6.6), (6.8) and (6.12) that were derived using the cardinality of the
set V1,0,1(x) and (6.7), (6.9) and (6.13) that used (a lower bound on) V0,1,1(x). In other
words, we distinguish between a single deletion and a single substitution versus a single
insertion and a single substitution. Recall that these bounds have been derived using
the sphere-packing approach with two clusters, sphere-packing with k clusters, and the
hypergraph and matching approach, respectively. In Figure 6.1, these upper bounds are
compared for q = 2. Next, we list several remarks and observations about this figure.
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Chapter 6. Upper bounds for t-indel s-substitution correcting codes

1. Figure 6.1 compares the bounds in terms of the relative redundancy. This means
that the upper bounds of this chapter induce lower bounds on 1− 1

n
log2(M2(n, 1, 1)).

The feasible region for 1 − 1
n
log2(M2(n, 1, 1)) based on these bounds is indicated

in grey. As stated before, the differences on a logarithmic scale seems smaller than
on a linear scale.

2. Notice that the best upper bound on M2(n, 1, 1) is not given by a single bound.
For instance, the bound (6.9) performs best when n = 6, while (6.12) performs
best for n = 25. Recall that (6.9) was derived using the set V0,1,1(x), while (6.9)
was derived using V1,0,1(x). The fact that the bounds from multiple approaches
yield good results for different parameters, indicates that it has been worth the
effort to consider multiple strategies for upper bounds on Mq(n, t, s).

3. We observe that the bounds (6.9) and (6.12) outperform the existing bounds (6.1)
and (6.2), as well as the Singleton bound (6.3) for 6 ≤ n ≤ 25. This shows that
we constructed multiple bounds that improve upon existing results in literature,
at least for this specific sets of parameters.

4. It is striking that (6.9) with the k cluster approach does not seem to improve
much on the 2 cluster approach from (6.7) for 8 ≤ n ≤ 22. For 6 ≤ n ≤ 7
and 23 ≤ n ≤ 25 improvements can be observed, although they are minor. For
instance, we found that M2(23, 1, 1) ≤ 46243 with (6.9) and M2(23, 1, 1) ≤ 46726
with (6.7). Note that these results use (lower bounds on) the cardinality of the
single insertion and single substitution set V0,1,1(x). On the other hand, we observe
that the k cluster approach of (6.8) strongly outperforms the 2 cluster approach
of (6.6) for 11 ≤ n ≤ 25. These results were obtained using the single deletion
and single substitution set V1,0,1(x). A potential explanation for the differences
between the results with either V1,0,1(x) or V0,1,1(x) is given below.

Notice that the clustering approach was originally introduced in Chapter 5 for
deletions only, in order to improve the sphere-packing argument in Lemma 5.5.
For insertions only, it was unnecessary to consider multiple clusters. With this in
mind, it is not surprising that introducing more clusters is beneficial when using
V1,0,1(x), and to a lesser extent when using V0,1,1(x).

Figure 6.1: Comparison of nine upper bounds for M2(n, 1, 1) based on |V1,0,1(x)| (left)
and |V0,1,1(x)| (right). The first three bounds are not based on either of these sets, so
they are equal in both figures. The bounds (6.6) and (6.7) have been optimized in terms
of 0 ≤ r ≤ n − 1. The bounds (6.8) and (6.9) have been optimized over all sequences
0 = r0 < r1 < · · · < rk = n with k ≤ 5.
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6.7 Non-asymptotic comparison of lower and upper
bounds on M2(n, 1, 1)

In this thesis, we constructed multiple lower and upper bounds on Mq(n, t, s). Here, we
briefly compare the best lower and upper bounds on M2(n, 1, 1) for small n.

On the lower bound side, we consider Lemma 4.7 based on the Caro-Wei theorem.
This implicit bound was shown to perform at least as well as all other lower bounds
from Chapter 4. On the upper bound side, we consider the sphere-packing bound with
k-clusters from (6.9) and the hypergraph and matching bound from (6.12). In the pre-
vious section, we established that these two bounds on M2(n, 1, 1) perform well in com-
parison to the other upper bounds. In Figure 6.2, these three bounds on M2(n, 1, 1) are
considered for 4 ≤ n ≤ 18. We make several observations about this figure.

1. First of all, the lower bound from Lemma 4.7 and upper bound (6.9) agree only for
n = 4. Therefore, it holds in this case that 1− 1

4
log2(M2(4, 1, 1)) = 0.75, which is

equivalent to stating that M2(4, 1, 1) = 4. In Subsection 1.6.1, we showed that the
repetition code C4,2 is a single-indel single-substitution correcting code that attains
this size. For 5 ≤ n ≤ 18, there is a strict different between the lower bound and
the (best) upper bound. In these cases, the exact value of M2(n, 1, 1) is not known
and thus we can only rely on bounds.

2. Given the logarithmic scale in Figure 6.2 the differences between the best lower
and upper bounds are significant for n ≥ 5. For instance, we find that

0.426 ≤ 1− 1

18
log2(M2(18, 1, 1)) ≤ 0.739.

This corresponds to the bounds 26 ≤M2(18, 1, 1) ≤ 1328. Despite, this major gap,
we have still shown improvements upon bounds in literature. However, this gap
also suggests there is still room for improving the lower and/or upper bounds. We
note that this is likely the case for the lower bound from Lemma 4.7. This lower
bound was based on the Gilbert-Varshamov bound for Mq(n, 0, s) and Levenshtein’s
bound for Mq(n, t, 0). However, we have seen in Section 4.1 that these two bounds
are far from optimal in some instances (cf. Examples 4.1 & 4.2). Hence, it is
plausible that Lemma 4.7 is also non-optimal for some sets of parameters.

Figure 6.2: Comparison of three lower and upper bounds on M2(n, 1, 1), in terms of the
relative redundancy 1− 1

n
logq(M2(n, 1, 1)). The feasible region for 1− 1

n
logq(M2(n, 1, 1))

is indicated in grey.
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6.8 Asymptotic implications

At last, we consider several asymptotic implications of the upper bounds on Mq(n, t, s)
from this chapter. Firstly, we show that the asymptotic redundancy of an optimal t-indel
s-substitution correcting code is at least logarithmic in n. Secondly, we consider briefly
the asymptotic behavior of Theorem 6.1 when t and s grow linearly with n.

In particular, for fixed q, t and s and n →∞, we show that a t-indel s-substitution
correcting code of maximal size has an asymptotic redundancy of at least (t+s) logq(n)+
o(logq(n)). This result is obtained by combining the upper bound on Mq(n, t, s) from
Theorem 6.2 with the lower bound on the cardinality of Vt,0,s(x) from Lemma 3.5.

Theorem 6.5. Let q ≥ 2 be an integer. For non-negative integers t and s such that
t+ s ≥ 1, the following holds

lim inf
n→∞

n− logq(Mq(n, t, s))

(t+ s) logq(n)
≥ 1.

The proof of this result is rather lengthy and not insightful for the remainder of this
section. Hence, we have relegated the proof to Appendix A.8. As a direct consequence
of the previous theorem we find the following asymptotic result.

Corollary 6.6. A maximal size t-indel s-substitution correcting code has an asymptotic
redundancy of at least (t+ s) logq(n) + o(logq(n)).

Let us put this result into perspective. Recall that we have already shown that a maximal
size t-indel s-substitution correcting code has an asymptotic redundancy of at most
2(t+ s) logq(n) + o(logq(n)) in Corollary 4.11. In other words, we have thus established
that the asymptotic redundancy of a maximal size t-indel s-substitution correcting code
falls between (t+ s) logq(n) and 2(t+ s) logq(n)+ o(logq(n)). Intuitively, this means that
the number of redundant symbols needed to correct a fixed number of t indels and s
substitutions grows logarithmically in n.

Our result extends a result from Levenshtein [7] from binary to q-ary codes. Namely,
Levenshtein showed that a binary t-indel s-substitution correcting code of maximal size
has an asymptotic redundancy between (t+ s) log2(n) and 2(t+ s) log2(n) + o(log2(n)).
The results by Levenshtein are purely asymptotic, which means that they have been
derived from asymptotic bounds on M2(n, t, s). In contrast, Corollaries 4.11 & 6.6 are a
consequence of non-asymptotic bounds on Mq(n, t, s).

Next, we consider briefly the asymptotic setting where t = τn and s = σn for τ, σ ∈ [0, 1],
and n tends to infinity. In this setting, we define the (inferior) asymptotic relative
redundancy function

R−
q (τ, σ) := lim inf

n→∞

(
1− 1

n
logq(Mq(n, ⌊τn⌋, ⌊σn⌋))

)
(6.14)

The reason that this function is defined using a limit inferior instead of a limit is to
ensure that (6.14) is well-defined. From (4.19) and (6.14) it is immediate that R−

q (τ, σ) ≤
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R+
q (τ, σ). The Singleton bound on Mq(n, t, s) from Theorem 6.1 gives,

R−
q (τ, σ) ≥ lim inf

n→∞

(
1− 1

n
logq(q

n−⌊τn⌋−2⌊σn⌋)

)
= lim inf

n→∞

(
1− n− ⌊τn⌋ − 2⌊σn⌋

n

)
= τ + 2σ, (6.15)

where we used that ⌊τn⌋
n
→ τ and ⌊σn⌋

n
→ σ for n→∞.

Example 6.9. Let τ = 1
25

and σ = 1
50

, then it follows from the Singleton bound that
R−

2 (
1
25
, 1
50
) ≥ 1

25
+2 · 1

50
= 0.08. Intuitively, this means that asymptotically at least 8% of

the symbols have to be redundant when correcting up to three errors (one of each type)
per 50 symbols.

For comparison, recall from Example 4.10 that R+
2

(
1
25
, 1
50

)
≤ 0.7645. Hence, we find

that 0.08 ≤ R−
2 (

1
25
, 1
50
) ≤ R−

2 (
1
25
, 1
50
) ≤ 0.7645, which shows that there is quite a large

gap between the asymptotic lower bounds. This is not surprising, since it is known in
literature that the Singleton bound gives rather weak results in this asymptotic setting
when τ = 0 [6, Sec. 4.5].

It would be interesting to investigate what can be inferred about R−
q (τ, σ) based on the

other upper bounds on Mq(n, t, s) from this chapter. However, we state that for these
bounds it is rather complicated to evaluate the limit inferior from (6.14). For this reason,
we have only been able to derive the bound from (6.15).

Based on discussions in literature about the bounds in Chapter 5, it seems plausible
that improvements upon (6.15) can be found. Namely, in [6, Sec. 4.5] it was found
that the sphere-packing Hamming bound improves upon the singleton bound for s-
substitution correcting codes in this asymptotic regime. Moreover, in [8, 9, 38] it was
shown that the sphere-packing upper bounds as well as the matching in hypergraph
upper bounds on Mq(n, t, 0) both outperform the Singleton bound for t-indel correcting
codes, in this asymptotic regime.
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7
Conclusions and discussions

In this thesis, we aimed to answer how existing bounds on the maximum size of t-indel
correcting codes and s-substitution correcting codes can be generalized to construct
bounds on the maximum size of t-indel s-substitution correcting codes. In our research
we treated lower bounds and upper bounds separately, because their derivations were
based on different concepts. The main results and contributions with respect to the
research question are discussed below. Moreover, we identify three directions for further
research.

On the lower bound side, we conclude the following about the research question.

1. It was established that each (t + 2s)-indel correcting code is also a t-indel s-
substitution correcting code in Lemma 2.5. Therefore, any existing lower bound
on Mq(n, t + 2s, 0) also forms a lower bound on Mq(n, t, s) in a trivial way. Note
that such an implication does not hold for upper bounds.

2. In Section 4.2 it was found that the Gilbert-Varshamov bound for s-substitution
correcting codes and a lower bound for t-indel correcting codes by Levenshtein can
be generalized to a lower bound on Mq(n, t, s). Namely, it was recognized that both
bounds can be proven using a similar approach which enables the generalization.
By translating the problem of finding a large code in Bq(n) to the finding a large
clique in a graph, existing bounds on the maximal size of cliques could be used to
formulate bounds on the maximum size of a code. As a result, we established an
implicit lower bound on Mq(n, t, s) in Lemma 4.3 and made this bound explicit in
Theorem 4.4 at the cost of obtaining a weaker bound.

3. In Section 4.3, we identified an improvement for the previous approach by using
a different lower bound on the maximal size of a clique. This led to a second
implicit lower bound on Mq(n, t, s) in Lemma 4.7, which was also made explicit
in Theorem 4.9. The second implicit bound was shown to improve upon the first
implicit bound. In a non-asymptotic comparison it was found that none of the two
explicit bound outperforms the other explicit bounds for general parameters n, q,
t and s. Both explicit bounds improved upon the Levenshtein’s lower bound on
Mq(n, t+ 2s) in most considered instances.
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On the upper bound side, we identified three types of bounds on Mq(n, t, 0) and Mq(n, 0, s)
that can generalized to construct bounds on Mq(n, t, s).

1. Arguably the most straightforward generalization was found by combining the
two existing Singleton upper bounds for Mq(n, t, 0) and Mq(n, 0, s) into an upper
bound for Mq(n, t, s). This Singleton bound on Mq(n, t, s) has the advantage of
being explicit and easy-to-compute for all parameters n, q, t and s. However, in
a non-asymptotic comparison for single-indel single-substitution correcting codes
this bound was shown to be weaker than most other upper bounds.

2. A second generalization was found with the sphere-packing approach in Section
6.3. In literature, this approach has been used extensively to derive upper bounds
on Mq(n, t, 0) and Mq(n, 0, s). We constructed an implicit family of sphere-packing
upper bounds for Mq(n, t, s) in Theorem 6.2. This generalization led to implicit
bounds, since the sets Vt′,t′′,s(x) are not of equal size for all x ∈ Bq(n) and because
no expression for the cardinality of Vt′,t′′,s(x) is known in general, to the best of
our knowledge. On the other hand, the cardinalities of V1,0,1(x) and V0,1,1(x) are
known for all x ∈ Bq(n). This enabled us to make Theorem 6.2 explicit and
derive two families of explicit upper bounds on Mq(n, 1, 1). Furthermore, two
improvements for Theorem 6.2 were identified in Section 6.4. This led to a second
family of implicit sphere-packing upper bounds on Mq(n, t, s), and explicit bounds
on Mq(n, 1, 1). These explicit bounds outperformed existing bounds for several sets
of parameters.

3. We considered an approach based on hypergraphs and matchings that was used in
literature to derive an upper bound on Mq(n, t, 0) in section 5.3. Using an existing
upper bound on the maximum size of a matching in a hypergraph an upper bound
for Mq(n, t, 0) was constructed. We have shown how to generalize this approach to
the setting of t-indel s-substitution correcting codes using additional requirements.
As a result, we derived an implicit upper bound on Mq(n, t, s) in Theorem 6.4 in
terms of the cardinality of Vt′,t′′,s(x). The expressions for |V1,0,1(x)| and |V0,1,1(x)|
were again used to obtain explicit bounds on Mq(n, 1, 1). These bounds provided
improvements upon existing bounds in literature.

Furthermore, we established an asymptotic implication from the bounds derived in this
thesis. Namely, the asymptotic redundancy of a maximal size t-indel s-substitution
correcting code falls between (t+ s) logq(n) and 2(t+ s) logq(n) + o(logq(n)).

In short, we conclude that the Gilbert-Varshamov type lower bounds, the Singleton
upper bounds, sphere-packing upper bounds and upper bound using the hypergraph
and matching approach can all be generalized to the setting of t-indel s-substitution
correcting codes. For all these approaches we have shown how to construct bounds on
Mq(n, t, s). However, we find that deriving general and explicit bounds is often compli-
cated due to the limited knowledge on the cardinality of the set Vt′,t′′,s(x).
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Chapter 7. Conclusions and discussions

Next, three directions for further research are considered.

1. In this thesis, we discussed reviewed existing lower and upper bounds on Mq(n, t, 0)
and Mq(n, 0, s) in detail. Nonetheless, within literature there are numerous other
lower and upper bounds that have not been investigated in this thesis. For in-
stance, we refer to [58–66] for bounds on Mq(n, 0, s) and to [9, 48, 67] for bounds
on Mq(n, t, 0). We recognize that these bounds can potentially be generalized to
the setting of t-indel s-substitution correcting codes as well.

2. Furthermore, we observed that the cardinality of the set Vt′,t′′,s(x) plays an impor-
tant role in deriving both lower and upper bounds on Mq(n, t, s). As discussed in
Chapter 3 determining the cardinality of this set for general parameters is a diffi-
cult task. The implicit bounds on Mq(n, t, s) derived in this thesis and future work
on these bounds would benefit from more general expressions or tight bounds on
the cardinality of Vt′,t′′,s(x). Therefore, deriving such expressions or bounds would
be a challenging and useful problem.

3. A third direction for future research would be to construct t-indel s-substitution
correcting codes that can be used in DNA data storage or racetrack memory sys-
tems. Apart from being able to correct combinations of deletions, insertions and
substitutions with low redundancy, these codes have more requirements. For in-
stance, efficient encoding and decoding algorithms are needed for practical use.
Moreover, the codewords should satisfy additional constraints in order to guaran-
tee reliable storage. Designing a system that encompasses all these requirements
is challenging.
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A
Proofs of several results

A.1 Proof of Lemma 2.6

Lemma 2.6 states the following. Let n ≥ 1, q ≥ 2, t′ ≥ 0, t′′ ≥ 0 and s ≥ 0 be integers
such that n− t′ + t′′ ≥ 1. Let x ∈ Bq(n) and y ∈ Vt′,t′′,s(x), then the following holds,

r(x)− 2(t′ + s) ≤ r(y) ≤ r(x) + 2(t′′ + s).

Proof. Consider an arbitrary word x ∈ Bq(n) with r = r(x) runs, then we argue how a
single deletion, insertion or substitution in x can affect the number of runs of x. Let lj
denote the length of the j-th run in x.

After a single deletion in the i-th run of x, we claim that the number of runs in x
decreases by at most two, but does not increase. This claim can be shown by considering
four cases. First, in case li > 1, then the number of runs is unaffected because the i-th
run is shortened by one, and no runs are deleted or created. In case li = 1 and the i-th
run is the first or last run in x, then removing this run doe not affect the other runs and
reduces the number of runs by one. In case, li = 1 and the (i− 1)-th and (i+ 1)-th run
contain the same symbol values, then the number of runs decreases by two. This follows
because (i− 1)-th and (i+ 1)-th join to form a single run after the i-th run is removed
by the deletion. Lastly, in case li = 1, and the (i − 1)-th and (i + 1)-th run contains
different symbols only the i-th run is removed and the number of runs decreased by one.
In each of the four cases, the claim holds which proves the claim.

As a result of a single insertion into x, we claim that the number of runs in x does not
decrease and increases by at most two. We distinguish three cases. In case the insertion is
carried out before the first symbol or after the last symbol of x, then either an additional
unit run is formed, or the inserted symbol joins its neighbouring run. In case, the symbol
is inserted in the middle of a run, then the number of runs in x is unaffected if the inserted
symbol value equals the value of the symbols in that run. Otherwise, the number of runs
increases by two. Lastly, in case the insertion is carried out in between two runs, then
either the inserted symbol joins one (and not both) neighbouring run(s), or it forms a
unit run. In all cases, the number of runs in x does not decrease and increases by at
most two, proving the claim.

For a single substitution we claim that the number of runs in x can both be increased
and decreased by at most two. This follows by considering three cases. First, suppose
that a substitution is carried out in a unit run, then the number of runs can decrease
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A.2. Proof of Lemma 3.1

by at most two, but not increase. Namely, after the substitution it can either remain
a unit run in which case the number of runs in unaffected, or it joins with one or two
neighbouring runs in which case the number of runs decreases by one or two, respectively.
Secondly, assume the substitution is performed in the first or last element of a run of
length at least of two, then either a unit run is formed in the position of the substitution
or the symbol is changed such that it matches the symbols in the neighbouring run.
Hence, the number of runs increases by one or does not change. Lastly, suppose that the
substitution is carried out in a run of length at least three and neither in the first nor
last element of this run. In this case we create always a unit run at the position of the
substitution and two runs on either side of it. Therefore, the number of runs increases
by precisely two. Combining the results from these three cases yields the claim.

By repeatedly applying single edits, the previous reasoning shows that after t′ dele-
tions, t′′ insertions and s substitutions the number of runs in x decreases by at most
2(t′ + s) and increases by at most 2(t′′ + s). This proves the desired result.

A.2 Proof of Lemma 3.1

Lemma 3.1 states the following. For integers n ≥ 1, q ≥ 2 and t ≥ 0 the cardinality of
the set It(x) is given by

|It(x)| =
t∑

i=0

(
n+ t

i

)
(q − 1)i,

for each x ∈ Bq(n).

Proof. The idea of the proof is to first show that |It(x)| depends only on n, q and t.
Consequently, |It(x)| is equal for each x ∈ Bq(n). As a result, it suffices to prove that
the formula holds for one x in particular. For this proof, recall the notation (a)n ∈ Bq(n)
which denotes the word that only consists of the symbol a ∈ Bq repeated n times.

We prove the first statement by induction on n. For n = 1, let x = (k) ∈ Bq(1),
where k ∈ Bq is a symbol. Notice that y ∈ Bq(1 + t) can be reached from x by precisely
t insertions if and only if y contains at least one symbol that is equal to k. The latter
observation is in turn equivalent to stating that y ∈ St((k)1+t). Therefore, it holds that
|It(x)| = |St((k)1+t)| =

∑t
i=0

(
1+t
i

)
(q − 1)i, which shows the statement for n = 1.

For the induction hypothesis, we assume that there exists some n for which |It(x)|
depends on n, q and t only. Let y ∈ Bq(n + 1), then we partition It(y) into the classes
Cm for 1 ≤ m ≤ t + 1, where Cm contains as all the words z ∈ It(y) such that zm = y1
and zi ̸= y1 for i < m. Intuitively, z belongs to the class Cm if m is the leftmost position
in z where y1 could end up. The following equivalence holds: z is an element of Cm if and
only if the sequence (zm+1, . . . , zn+1+t) can be obtained from the sequence (y2, . . . yn+1)
by t −m insertions. This follows because y1 is placed at position m in z, so all yj for
2 ≤ j ≤ n+1 should be placed in z at positions to the right of m. Hence, the cardinality
of Cm is equal to the cardinality of It−m((y2, . . . , yn+1)), which does only depend on n, q
and t by the induction hypothesis. Since the classes Cm form a partition of It(y), the
sum of their cardinalities equals |It(y)|. Therefore, we conclude that |It(y)| depends
only on n, q and t as well. By the principle of induction, this proves the first statement
of this proof.
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Appendix A. Proofs of several results

In the remainder of this proof we will show that the formula for the cardinality of
|It(x)| holds for x = (0)n. Notice that a word y ∈ Bq(n + t) can be obtained from (0)n

by precisely t insertions if and only if y ∈ St((0)n+t). Indeed, if a word y ∈ Bq(n + t)
can be obtained from (0)n by precisely t insertions, then y contains at most t non-zero
symbols. Hence, it can also be obtained from the all-zero word of length n + t by t
substitutions, i.e., y ∈ St((0)n+t). Conversely, a word z ∈ St((0)n+t) contains at most t
non-zero symbols due to the at most t substitutions and consequently can be obtained
from (0)n by inserting these non-zero (and possibly additional zero) symbols. Therefore,
the cardinalities of the sets It((0)n) and St((0)n+t) agree.

By combining all previous observations and Equation (3.1) it can be concluded that

|It(x)| = |It((0)n)| = |St((0)n+t)| =
t∑

i=0

(
n+ t

i

)
(q − 1)i,

for each x ∈ Bq(n), which finalizes the proof.

A.3 Proof of Lemma 3.2

Lemma 3.2 states the following. Let n ≥ 1 and q ≥ 2 be integers and x ∈ Bq(n). Then,
the following holds,

|V1,0,1(x)| = Ln,q
1,0,1(r(x)) :=

{
(n− 1)(q − 1) + 1 if r(x) = 1,

r(x) ((n− 2)(q − 1)− 1) + q + 2 if r(x) ≥ 2.

Proof. Let r = r(x) be the number of runs in x. By Lemma 2.1, each element in the set
V1,0,1(x) can be obtained by deleting a single symbol followed by substituting a symbol.
Therefore it holds that V1,0,1(x) = ∪y∈D1(x)S1(y). Clearly, it does not matter which
symbol is deleted from a particular run of x, because always the same word is obtained.
Hence, D1(x) = {x1, ...,xr} where xi ∈ Bq(n) for 1 ≤ i ≤ r denotes the word that
is obtained by deleting the last symbol from the i-th run in x. Next, we distinguish
between the cases r = 1 and r ≥ 2.

First, suppose that r = 1, which gives D1(x) = {x1} and in turn

V1,0,1(x) =
⋃

y∈D1(x)

S1(y) = S1(x1).

The word x1 has length n− 1 after one deletion from x. It follows from (3.1) that

|V1,0,1(x)| = |S1(x1)| =
1∑

i=1

(
n− 1

i

)
(q − 1)i = 1 + (n− 1)(q − 1).

Second, suppose that r ≥ 2. In what follows, we apply the inclusion-exclusion prin-
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A.3. Proof of Lemma 3.2

ciple. That means,

|V1,0,1(x)| =

∣∣∣∣∣∣
⋃

x∗∈{x1,...,xr}

S1(x∗)

∣∣∣∣∣∣
=

∑
i∈{1,...,r}

|S1(xi)| −
∑

i,j∈{1,...,r}
i ̸=j

|S1(xi) ∩ S1(xj)|

+
∑

i,j,k∈{1,...,r}
i ̸=j, i̸=k, j ̸=k

|S1(xi) ∩ S1(xj) ∩ S1(xk)| ± · · · . (A.1)

This alternating sum of positive and negative terms continues with the intersections over
4, 5, ..., r sets S1(xj). Hence, in order to evaluate the expressions in (A.1), we aim to
compute the size of the intersection ∣∣∣∣∣⋂

k∈K

S(xk)

∣∣∣∣∣ , (A.2)

for any non-empty set K ⊆ {1, ..., r}. In order to accomplish this, we first prove the
claim that d(xi,xj) = |i− j|, where d denotes the Hamming distance function. Without
loss of generality, we can assume that i < j. Let lk ∈ {1, ..., n} denote the position of
the last symbol from the k-th run in x. The claim follows from the observation that the
words xi and xj differ only in the positions lk for i ≤ k < j. A direct consequence of
this claim is the following useful result. For a pair of integers i, j ∈ {1, 2, ..., r} such that
|i− j| ≥ 3 it holds that d(xi,xj) ≥ 3 and thus S1(xi) ∩ S1(xj) = ∅.

This claim allows us to evaluate (A.2) and to simplify the expressions in (A.1). Note
that for K ⊆ {1, ..., r} with |K| ≥ 4 it necessarily holds that there exist such i, j ∈ K
with |i− j| ≥ 3. In other words, we conclude that (A.2) is zero for all sets K such that
|K| ≥ 4. For sets K ⊆ {1, ..., r} with |K| ≤ 3 the summations in (A.2) can be simplified
as follows ∑

i,j∈{1,...,r}
i ̸=j

|S1(xi) ∩ S1(xj)| =
∑

i∈{1,...,r−1}

|S1(xi) ∩ S1(xi+1)|

+
∑

i∈{1,...,r−2}

|S1(xi) ∩ S1(xi+2)|,

∑
i,j,k∈{1,...,r}
i ̸=j, i̸=k, j ̸=k

|S1(xi) ∩ S1(xj) ∩ S1(xk)| =
∑

i∈{1,...,r−2}

|S1(xi) ∩ S1(xi+1) ∩ S1(xi+2)|.

In order to evaluate these expressions, observe the following. For i ∈ {1, ..., r − 1} it
holds that d(xi,xi+1) = |i − (i − 1)| = 1, and thus xi and xi+1 differ in one position.
It follows that |S1(xi) ∩ S1(xi+1)| = q. Similarly, for i ∈ {1, ..., r − 2} it holds that
d(xi,xi+1) = |i − (i − 2)| = 2. Then it follows that |S1(xi) ∩ S1(xi+2)| = 2. Moreover,
for i ∈ {1, ..., r − 3} it holds that |S1(xi) ∩ S1(xi+1) ∩ S1(xi+2)| = 1. Lastly, recall from
(3.1) that |S1(xi)| =

∑1
i=0

(
n−1
i

)
(q − 1)i = 1 + (n− 1)(q − 1) for all i ∈ {1, ..., r}.
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Now, we are ready to prove the main result:

|V1,0,1(x)| =
r∑

i=1

|S1(xi)|

−
∑

i∈{1,...,r−1}

|S1(xi) ∩ S1(xi+1)|

−
∑

i∈{1,...,r−2}

|S1(xi) ∩ S1(xi+2)|

+
∑

i∈{1,...,r−2}

|S1(xi) ∩ S1(xi+1) ∩ S1(xi+2)|

= r(x) · ((n− 1)(q − 1) + 1)

− (r(x)− 1) · q
− (r(x)− 2) · 2
+ (r(x)− 2) · 1

= r(x)((n− 1)(q − 1) + 1)− r(x)(q + 1) + q + 2

= r(x) ((n− 2)(q − 1)− 1) + q + 2.

The result now follows from combining the two cases r(x) = 1 and r(x) ≥ 2.

A.4 Proof of Theorem 4.5

Theorem 4.5 states the following. Let G = (V,E) be a simple graph, then G contains a
clique of size ∑

v∈V

1

|V | − deg(v)
.

Proof. The idea of the proof is to first translate the statement of this theorem to an
equivalent statement about independent sets. Then we are able to apply the original
argument by Caro [49] using induction on |V |.

An independent set of G = (V,E) is a subset of the vertices of G so that no pair
of these vertices is joined by an edge. Let G′ = (V ′, E ′) be the complement graph of
G, which means the vertex set V ′ = V is unchanged and E ′ = V × V \ E. In other
words, the edges in G′ are non-edges in G and vice versa. It follows that an independent
set in G forms a clique in G′ of equal size, and vice versa. Note that for any vertex
v ∈ V it holds that degG(v) + degG′(v) + 1 = |V |. The statement of this theorem is
thus equivalent to the following statement. Let G = (V,E) be a simple graph, then G
contains an independent set of size∑

v∈V

1

|V | − degG′(v)
=
∑
v∈V

1

|V | − (|V | − degG(v)− 1)
=
∑
v∈V

1

degG(v) + 1
. (A.3)

Below, we focus only on the statement about independent sets. In order to show that
G = (V,E) contains an independent set of size

∑
v∈V

1
degG(v)+1

we perform induction on
|V |. Let n = |V | for ease of notation. For n = 1, the graph G contains a single vertex
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which forms an independent set of size one. This single vertex must have degree zero
since there are no other vertices and thus (A.3) also gives one. Hence, for n = 1 the
statement holds.

Suppose that there exists some integer n so that all graphs with n or fewer vertices
contain an independent of size (A.3). Let G = (VG, EG) be a graph with |VG| = n + 1
vertices. Let v∗ ∈ VG be a vertex of minimal degree. Let N [v∗] ⊆ VG denote the set
of vertices that are incident to v∗, and v∗ itself. Therefore, it holds that |N(v∗)| =
degG(v

∗) + 1. Let H = (VH , EH) = G − N [v∗] denote the graph that is obtained from
G by deleting the vertices in N [v∗] and deleting the edges that are incident to vertices
in N [v∗]. Let α(G) and α(H) denote the sizes of a largest independent set in G and
H, respectively. Then it holds that α(G) ≥ 1 + α(H). This follows because a maximal
independent set in H of size α(H) can be turned into an independent set in G of size
α(H) + 1 by including the vertex v∗ into this independent set. This is possible since all
vertices incident to v∗ have been removed in H.

By the induction hypothesis, there exists an independent set in H of size
∑

v∈VH

1
degH(v)+1

.

Therefore, it holds that

α(G) ≥ 1 + α(H)

Ind. hyp.
≥ 1 +

∑
v∈VH

1

degH(v) + 1

≥ 1 +
∑

v∈VG\N [v∗]

1

degH(v) + 1

†
≥ 1 +

∑
v∈VG\N [v∗]

1

degG(v) + 1

=
∑

v∈N [v∗]

1

|N [v∗]|
+

∑
v∈VG\N [v∗]

1

degG(v) + 1

=
∑

v∈N [v∗]

1

degG(v∗) + 1
+

∑
v∈VG\N [v∗]

1

degG(v) + 1

††
≥

∑
v∈N [v∗]

1

degG(v) + 1
+

∑
v∈VG\N [v∗]

1

degG(v) + 1

=
∑
v∈VG

1

degG(v) + 1
.

In (†) we used that degH(v) ≤ degG(v) for all v ∈ VG \ N [v∗], because edges are only
removed when turning G into H. We used in (††) that v∗ is of minimal degree. The
last chain of (in)equalities shows that G has an independent set of the desired size.
Therefore, the statement about independent sets holds for all simple graphs by the
induction principle. As a result, this proves the statement of this theorem.
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A.5 Proof of Lemma 4.6

Lemma 4.6 states the following. Let G = (V,E) be a simple graph, then it holds that

|V |2

|V |2 − 2|E|
≤
∑
v∈V

1

|V | − deg(v)
. (A.4)

Consequently, the Caro-Wei theorem implies Turán’s theorem of (4.13).

Proof. For ease of notation, let n = |V | and m = |E|. First, notice that the average
degree of all nodes is given by

1

n

∑
v∈V

deg(v) =
2m

n
,

because each edge has two incident vertices.
Next, consider the function fn : [0, n) → R given by fn(x) =

1
n−x

. Note that fn is
convex on [0, n). Moreover, note that 0 ≤ deg(v) ≤ n − 1 for all v ∈ V and also that
0 ≤ 1

n

∑
v∈V deg(v) ≤ n− 1. Therefore, it follows that

1

n

∑
v∈V

1

n− deg(v)
=

1

n

∑
v∈V

fn (deg(v))

≥ fn

(
1

n

∑
v∈V

deg(v)

)

= fn

(
2m

n

)
=

1

n− 2m
n

=
n

n2 − 2m
,

where we used the convexity of fn on [0, n). This shows that Inequality (A.4) holds. Let
k be the largest integer so that the condition (4.13) in Turán’s theorem is satisfied. In
other words, k is given by

k =

⌈
|V |2

|V |2 − 2|E|

⌉
=

⌈
n2

n2 − 2m

⌉
.

Given that the size of a clique is integer-valued, the Caro-Wei theorem shows the exis-
tence of a clique of size ⌈∑

v∈V

1

n− deg(v)

⌉
.

Using (A.4) it follows that⌈∑
v∈V

1

n− deg(v)

⌉
=

⌈
n · 1

n

∑
v∈V

1

n− deg(v)

⌉
≥
⌈

n2

n2 − 2m

⌉
= k.

This shows that Turán’s theorem is implied by the Caro-Wei theorem.
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A.6 Proof of Theorem 4.10

Theorem 4.10 states the following. Let q ≥ 2 be an integer. For non-negative integers s
and t such that s+ t ≥ 1, the following holds

lim sup
n→∞

n− logq(Mq(n, t, s))

(2t+ 2s) logq(n)
≤ 1.

Proof. Let s, t ≥ 0 be fixed integers for which s+ t ≥ 1 and let n ≥ 1 be an integer such
that n ≥ max{s, t} and 0 ≤ max{ t

n
, 2s
n−t
} ≤ 1− 1

q
. Clearly, these conditions are satisfied

when n is sufficiently large. Using Theorem 4.4 and the upper bound from Lemma 3.6
the redundancy of an optimal size t-indel s-substitution correcting code can be upper
bounded by

n−logq(Mq(n, t, s))≤ n− (n+ t) + 2 logq

(
t∑

i=0

(
n

i

)
(q − 1)i

)
+ logq

(
2s∑
i=0

(
n− t

i

)
(q − 1)i

)

≤ −t+ 2nHq

(
t

n

)
+ (n− t)Hq

(
2s

n− t

)
= −t+ 2t logq(q − 1)− 2t logq(

t

n
)− 2n(1− t

n
) logq(1−

t

n
) +

2s logq(q − 1)− 2s logq(
2s

n− t
)− (n− t)(1− 2s

n− t
) logq(1−

2s

n− t
)

= −t+ 2t logq(q − 1)− 2t logq(t) + 2t logq(n)− 2(n− t) logq(
n− t

n
) +

2s logq(q − 1)− 2s logq(2s) + 2s logq(n− t)− (n− t− 2s) logq(
n− t− 2s

n− t
)

= 2t logq(n)− 2(n− t) logq(
n− t

n
) +

2s logq(n− t)− (n− t− 2s) logq(
n− t− 2s

n− t
)− F (q, t, s),

where F (q, t, s) is some function depending on variables q, t and s only. Let C1, C2 be
fixed constants, then the following holds

lim
n→∞

(n− C1 − C2) logq(
n− C1 − C2

n− C2

) = lim
n′→∞

(n′ − C1) logq(
n′ − C1

n′ )

= lim
n′→∞

n′

ln(q)
ln(1− C1

n′ )− lim
n→∞

C1

ln(q)
ln(1− C1

n′ )

= lim
n′→∞

n′

ln(q)

(
−C1

n′ −O

((
C1

n′

)2
))
− 0

=
−C1

ln(q)
,

where we applied the change of variables n′ = n − C2. Furthermore, we notice that
separating the limit into two limits in the second equality is allowed, because all limits
exist and are finite. The upper bound on the redundancy combined with the previous
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limit enable us to derive the bound on the main limit of this theorem, i.e.,

lim sup
n→∞

n− logq(Mq(n, t, s))

(2t+ 2s) logq(n)
≤ lim

n→∞

2t logq(n) + 2s logq(n− t)

(2t+ 2s) logq(n)
−

lim
n→∞

2(n− t) logq(
n−t
n
) + (n− t− 2s) logq(

n−t−2s
n−t

)

(2t+ 2s) logq(n)
−

lim
n→∞

F (q, t, s)

(2t+ 2s) logq(n)

= lim
n→∞

2t logq(n) + 2s logq(n)− 2s logq(n) + 2s logq(n− t)

(2t+ 2s) logq(n)

= lim
n→∞

(2t+ 2s) logq(n) + 2s logq(
n−t
n
)

(2t+ 2s) logq(n)
= 1,

where we applied basic rules for limits, used that all limits on the right-hand side exist,
and used that the two indented limits on the right-hand side tend to zero for sufficiently
large n, since their numerators go to some finite constant independent of n.

A.7 Proof of Lemma 5.6

Lemma 5.6 states the following. Let H = (V, E) be a hypergraph. Let w∗ = (w∗(x))x∈V
be a real-valued vector that satisfies the following two conditions,

1. w∗(x) ≥ 0 for all x ∈ V ,

2.
∑

x∈E w∗(x) ≥ 1 for all E ∈ E .

Then, it holds that ν(H) ≤ 1⊤w∗ =
∑

x∈V w∗(x). Here, 1 denotes the all-one column-
vector of the appropriate length.

Proof. The idea of the proof is to write ν(H) in terms of the optimal value of an integer
linear program. Then, a feasible point in the dual of a linear programming relaxation of
this integer linear program is constructed. The objective value of this dual feasible point
gives an upper bound on the optimal value of the primal program.

Let A denote a |V | × |E| adjacency matrix of H. The problem of finding a maximum
size matching in H can be formulated in terms of the following integer linear program [8,
Lem. 2.3]:

ν(H) = max{1⊤z|Az ≤ 1, z ∈ {0, 1}|E|}. (A.5)

In order to show this equality, let M := {E1, ..., Ej} ⊆ E be a matching of maximum
size, i.e., |M| = j = ν(H). Let 1M ∈ {0, 1}|E| be the indicator vector for which the l-th
element equals one if the hyperedge corresponding to the l-th column of A is an element
of M, and equals zero otherwise. This implies that the indicator vector 1M is feasible
for the program on the right. Indeed,M is a matching and thus each vertex is contained
in at most one hyperedge. This gives that A1M ≤ 1, while we have 1M ∈ {0, 1}|E| by
the definition of the indicator vector. Hence, it follows that

ν(H) = |M| = 1⊤
1M ≤ max{1⊤z|Az ≤ 1, z ∈ {0, 1}|E|}.
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Conversely, let z′ be a feasible vector for the program on the right of (A.5) that attains
the maximum, and let K be the set of indices where z′ equals 1. Consider the columns
of A of which the indices belong to K. These columns correspond to hyperedges in E
which we collect in the set M′. Then, the conditions Az′ ≤ 1 and z′ ∈ {0, 1}|E| jointly
imply that each vertex can be contained in at most one of the hyperedges inM′. Hence,
M′ is a matching, and it has a size |M′| = |K| = 1⊤z′. Since z′ is maximal, we find

max{1⊤z|Az ≤ 1, z ∈ {0, 1}|E|} = 1⊤z′ = |K| = |M′| ≤ ν(H).

Hence, the equality in (A.5) holds.
By relaxing the constraint z ∈ {0, 1}|E| to z ≥ 0 in (A.5) the following linear pro-

gramming relaxation is obtained

ν∗(H) = max{1⊤z|Az ≤ 1, z ≥ 0, z ∈ R|E|}. (A.6)

Since this is a maximization program, it follows that ν(H) ≤ ν∗(H). The dual of (A.6)
is given by,

ν∗
d(H) = min{1⊤w|A⊤w ≥ 1,w ≥ 0,w ∈ R|V |}, (A.7)

and by the strong duality property of linear programs it holds that ν∗(H) = ν∗
d(H) [68,

Cor. 7.1g].
Let w = (w(x))x∈V be a vector, then we will show that w is feasible for (A.7) if and

only if w satisfies the two conditions in the statement of this lemma. Clearly, w ≥ 0
is equivalent to the first condition. The second condition is equivalent to 1

⊤
Ew ≥ 1 for

each E ∈ E , where 1E = (1E(x))x∈V denotes the indicator vector that equals one when
a vertex x belongs to hyperedge E and zero otherwise. We notice that the rows of A are
precisely the indicator vectors 1E for E ∈ E . Therefore, it holds that A⊤w ≥ 1 if and
only if

∑
x∈E w(x) ≥ 1 for all E ∈ E .

Recall that w∗ is a real-valued vector that satisfies the two conditions from this
lemma. Using the previous observations it is also feasible for (A.7), and we obtain the
following chain of (in)equalities

ν(H) ≤ ν∗(H) = ν∗
d(H) ≤ 1⊤w∗ =

∑
x∈V

w∗(x),

where we used the fact that the objective value of a feasible point for a minimization
problem upper bounds the optimal value of that problem. This concludes the proof.

A.8 Proof of Theorem 6.5

Theorem 6.5 states the following. Let q ≥ 2 be an integer. For non-negative integers t
and s such that t+ s ≥ 1, it holds that

lim inf
n→∞

n− logq(Mq(n, t, s))

(t+ s) logq(n)
≥ 1.
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Proof. Let t, s ≥ 0 be fixed integers such that t + s ≥ 1. Let n ≫ 1 be an integer.
Moreover, let ρ ∈ (0, 1 − 1

q
) be a fixed real number and set r = ⌊ρn⌋. In this case,

Theorem 6.2 yields,

Mq(n, t, s) ≤
qn−t

min x∈Bq(n)
r(x)>⌊ρn⌋

|Vt,0,s(x)|
+ q

⌊ρn⌋∑
i=1

(
n− 1

i− 1

)
(q − 1)i−1.

The idea of the proof is to make the first term explicit using an appropriate lower
bound for the minimum. Then, we show that the first term dominates the second term
asymptotically and leads to the desired result.

For the first term, we make the denominator explicit using the lower bound on
|Vt,0,s(x)| from Lemma 3.5. This bound is increasing in r and thus we find,

min
x∈Bq(n)
r(x)>r

|Vt,0,s(x)| ≥
s∑

i=0

(
⌊ r
2
⌋
i

)
(q−1)i·

t∑
j=0

(
⌈ r
2
⌉ − t

j

)
≥

s∑
i=0

(
⌊ρn

2
⌋

i

)
(q−1)i·

t∑
j=0

(
⌊ρn

2
⌋ − t

j

)
.

In the asymptotic regime where n→∞, with fixed k ∈ Z≥1 and ρ′ ∈ (0, 1), it holds that(⌊ρ′n⌋
k

)
= O(nk). Hence, there exist a constant C > 0 (with respect to n, but possibly

dependent on q, s, t and ρ) and an n′ ∈ Z≥0 such that
s∑

i=0

(
⌊ρn

2
⌋

i

)
(q − 1)i ·

t∑
j=0

(
⌊ρn

2
⌋ − t

j

)
≥ C · ns · nt,

for all n ≥ n′. Next, we bound the second term from above in terms of the q-ary entropy
function Hq. Note that r

n
≤ ρ < 1− 1

q
, and thus we can apply Lemma 3.6 and as a result

we obtain,

q

⌊ρn⌋∑
i=1

(
n− 1

i− 1

)
(q − 1)i−1 < q

⌊ρn⌋−1∑
i=0

(
n

i

)
(q − 1)i ≤ q · qnHq(

⌊ρn⌋
n

) ≤ q1+nHq(ρ).

Here we used that
(
n−1
i

)
<
(
n
i

)
and that Hq is an increasing function. All in all, for

sufficiently large n it holds that

Mq(n, t, s) ≤
1

Cqt
· qn

nt+s
+ q1+nHq(ρ).

Observe that the first term dominates the second term, i.e., q1+nHq(ρ) = o( qn

nt+s ). This
holds because ρ < 1 − 1

q
and thus Hq(ρ) < 1. Therefore, we conclude that there exists

some C ′ > 0 such that for sufficiently large n it holds that

Mq(n, t, s) ≤ C ′ · qn

nt+s
.

Now, we are able to prove the desired result,

lim inf
n→∞

n− logq(Mq(n, t, s))

(t+ s) logq(n)
≥ lim

n→∞

n− logq(C
′ qn

nt+s )

(t+ s) logq(n)

= lim
n→∞

− logq(C
′) + (t+ s) logq(n)

(t+ s) logq(n)

= 1,

where we used that C ′ is a constant with respect to n. This concludes the proof.
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### Creat ing the s e t V_{ t ’ , t ’ ’ , s }( x ) f o r x in B_q(n ) . x i s a s t r i n g .
import math

def i n s e r t (x , k , i ) :
# in s e r t symbol k on po s i t i o n i i n t o x where 0 <= i <= n
return x [ 0 :max(0 , i ) ] + str ( k ) + x [ i : len ( x ) ]

def s ub s t i t u t e (x , k , i ) :
# su b s t i t u t e symbol k on po s i t i o n i i n t o x where 1 <= i <= n
return x [ 0 :max(0 , i −1)] + str ( k ) + x [ i : len ( x ) ]

def de l e t e (x , i ) :
# de l e t e p o s i t i o n i from x
return x [ 0 :max(0 , i −1)] + x [ i : len ( x ) ]

def i n s e r t i on_s e t (x , q ) :
# re turns the s e t o f words t ha t can be reached
# from x by 1 i n s e r t i o n
n = len ( x )
symbols = range (0 , q )
x_ins = [ ]
for i in range (0 , n+1):

for k in symbols :
y = i n s e r t (x , k , i )
x_ins . append (y )

return set ( x_ins )

def sub s t i t u t i on_se t (x , q ) :
# re turns the s e t o f words t ha t can be reached
# from x by at most 1 s u b s t i t u t i o n
n = len ( x )
symbols = range (0 , q )
x_sub = [ ]
for i in range (1 , n+1):

for k in symbols :
y = sub s t i t u t e (x , k , i )
x_sub . append (y )

return set (x_sub)
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def de l e t i on_se t ( x ) :
# re turns the s e t o f words t ha t can be reached from x by 1 d e l e t i o n
n = len ( x )
x_del = [ ]
for i in range (1 , n+1):

y = de l e t e (x , i )
x_del . append (y )

return set ( x_del )

def V(x , q , td , t i , s s ) :
# re turns the s e t o f words t ha t can be reached from x by e x a c t l y
# td d e l e t i on s , t i i n s e r t i o n s and at most s s s u b s t i t u t i o n s .
# The ‘ s e t ’ f unc t i on ensures t ha t no words are counted doub le .
V_list = [ x ]
while td > 0 :

y_ l i s t = [ ]
for x in V_list :

y_ l i s t += l i s t ( de l e t i on_se t ( x ) )
V_list = l i s t ( set ( y_ l i s t ) )
td −= 1

while s s > 0 :
y_ l i s t = [ ]
for x in V_list :

y_ l i s t += l i s t ( sub s t i t u t i on_se t (x , q ) )
V_list = l i s t ( set ( y_ l i s t ) )
s s −= 1

while t i > 0 :
y_ l i s t = [ ]
for x in V_list :

y_ l i s t += l i s t ( i n s e r t i on_s e t (x , q ) )
V_list = l i s t ( set ( y_ l i s t ) )
t i −= 1

return V_list
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