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Abstract

In the fight against money laundering, demand for data-driven Anti-Money Laundering (AML) solutions is
growing. Particularly anomaly detection algorithms have proven effective in the detection of suspicious
customer behaviour, as well as observing patterns otherwise hidden in customer transaction data. In this
thesis, the Isolation Forest anomaly detection algorithm is studied in combination with the model-specific
local explanation method, Multiple Indicator Local Depth-based Isolation Forest Feature Importance
(MI-Local-DIFFI). To expand Isolation Forest to mixed-attribute data sets, the incorporation of nominal
features is explored in more detail. This analysis resulted in the introduction of Isolation Forest with
Categorical Sampling (i ForestC S ), a methodology that directly incorporates nominal attributes into an
isolation tree without the need of encoding it onto a numerical scale. This method is tested against different
encoding strategies and Isolation Forest Conditional Anomaly Detection (i ForestC AD ) using different
synthetic data sets. The method shows improved performance to the utilization of encoding strategies for
different parameters of the underlying synthetic data. Furthermore, this thesis explores the potential of
ternary Isolation Forest, in which the branching strategy of an isolation tree is expanded to produce three
child nodes. It is demonstrated using synthetic data, that particularly the performance of MI-Local-DIFFI
reduces when applied to a ternary Isolation Forest. Finally, the research considers a practical use-case.
Using customer transaction data from Triodos Bank, the locally explainable Isolation Forest is applied to
mixed-attribute customer transaction data. This has provided useful insight and resulted in the detection of
suspicious customer behaviour and the introduction of new rules into business practices. Although the
most interesting customer behaviour did not directly emanate from the nominal attributes, the method of
incorporating nominal features resulted in differences when considering the anomalies with the highest
anomaly scores.
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1
Introduction

By estimation of the Dutch Banking Association, 16 billion euro is annually laundered through Dutch
financial institutes [1]. This money primarily finds its origins in drug trafficking and financial fraude, but
emanates from human trafficking, child pornography or extortion as well. To protect the integrity, stability,
and reputation of the Dutch financial systems, institutions collaborate with the government to combat
money laundering. This collaboration aims at making the Netherlands an unattractive destination for
money launderers.

Over the last few years, banks are leading the way in cementing their position as the gatekeeper of the
integrity of the Dutch financial system. Heavy investments are being made to improve the bank’s Customer
Due Diligence (CDD) and transaction monitoring practices. With the increase in the quantity of financial
and transaction data, the demand for data-driven Anti-Money Laundering (AML) solutions is growing.
Whereas banks primarily use rule-based systems and domain-expert validation to detect suspicious activity,
this thesis will further investigate the potential of utilizing data-driven anomaly detection to detect potential
money laundering.

This thesis will focus on anomaly detection using Isolation Forest [2]. Isolation Forest has rapidly gained
popularity after its implementation in Python’s Scikit-learn and H2O libraries and is applied in numerous
domains. The methodology is particularly popular for its robust performance, low computational
complexity, and general simplicity of the underlying algorithm. With little parameters to optimize, it is
simple to implement. Furthermore, Isolation Forest lends itself to different local explanation methodologies,
which is particularly useful in the context of anomaly detection in customer transaction data. Using a local
adaptation to Depth-based Isolation Forest Feature Importance (DIFFI) [3], named Multiple Indicator Local
DIFFI (MI-Local-DIFFI) [4], the question as to why a particular customer is an anomaly is addressed.

The first goal of this thesis is to investigate the performance of Isolation Forest applied to mixed-attribute
data. Initially, Isolation Forest is constructed to incorporate continuously valued attributes. However, real
data sets contain mixtures of attribute typologies. A nominal attribute is therefore unable to be considered
in the algorithm without undergoing an encoding procedure that translates categories to a numerical scale.
This thesis proposes a new method, Isolation Forest with Categorical Sampling (i ForestC S ), that directly
incorporates categorical data without the need of encoding. This method is evaluated against commonly
used encoding strategies utilized in the AML domain.

Furthermore, this thesis will evaluate the performance of a Ternary Isolation Forest. It is argued that the
utilisation of ternary isolation trees can improve the detection of anomalies for particular data sets [4]. This
thesis tries to substantiate this finding and extend the analysis to incorporate local explanation
performance, as well as the incorporation of nominal attributes.

The thesis relies on different data sets to answer the research questions. A number of synthetically generated
data sets are used to determine the performance of various Isolation Forest implementations. Through the
use of synthetic data, experiments can be controlled and there is prior knowledge of true-outlying features

1



2 1. Introduction

and observations. Additionally, data from Triodos Bank is used to evaluate the potential of using data-driven
anomaly detection as a tool to combat money laundering.

1.1. Research Objectives
Now that the thesis has been introduced, it is important to state the research objectives. The research
objectives of this thesis are stated below:

RO1: How should mixed-attribute data be incorporated into locally explained Isolation Forest?

RO2: Does a ternary tree structure improve an Isolation Forest’s ability to detect anomalies and provide local
explanations?

Furthermore, the thesis provides more detailed insight into the Isolation Forest method in general. Different
parameters that are introduced in the original Isolation Forest paper are evaluated, and this insight is
valuable as well. From an additional practical perspective, data-driven anomaly detection to combat money
laundering is further elaborated and experimented with.

1.2. Thesis Structure
In this section, the structure of the thesis is introduced:

In Chapter 2, an overview of the necessary background literature and related work is introduced. First, the
chapter discusses money laundering and the current Anti-Money Laundering measures in place at financial
institution. Then, a brief overview of existing anomaly detection methods are provided. This provides the
background as to why this thesis focuses on Isolation Forest, which is explained in more technical details.
After discussing the Isolation Forest algorithm, background into (local) explanation methods is provided.
Finally, this chapter ends by providing insight into the incorporation of nominal features into anomaly
detection algorithms that utilise continuously valued attributes only, such as Isolation Forest.

Chapter 3 discusses the methodology utilised throughout this thesis in more detail. First, a new adaptation
to Isolation Forest is introduced that directly incorporates nominal features without requiring prior
encoding. Second, an additional adaptation to Isolation Forest is introduced, namely a ternary Isolation
Forest. This section will focus on the argumentation behind using ternary isolation trees, as well as derive
theoretical expressions for a ternary tree’s average path length. Next, the MI-Local-DIFFI method is
explained in more detail, and changes to particular indicators are proposed. Finally, the chapter finishes
with a description of evaluation metrics used when experimenting on data with available ground-truth data.

Experiments using synthetic data sets are discussed in Chapter 4. These experiments are conducted to gain
a more thorough understanding of the Isolation Forest adaptation’s performances. First, using independent
data features, the performance of i ForestC S is compared to encoding strategies. Furthermore, the runtime of
different implementations is addressed. Second, using conditionally dependent attributes, an analysis is
performed into the use of nominal features for the detection of anomalies. Then, the ternary isolation forest
is examined in more detail with respect to detection and explainability performance. Finally, the chapter
revisits some of the parameters proposed in the original Isolation Forest paper [2] and provides insight into
the performance sensitivity to these parameters.

In Chapter 5, the methodologies discussed in this thesis are applied to real customer transaction data. This
chapter addresses the procedure of constructing relevant transaction features and the validation of
anomalies without access to ground-truth information using domain expertise. Next, the submitted results
to alert handlers are reviewed and the major findings are presented. Finally, a comparison is made between
different Isolation Forest implementations and the results of the top anomalies detected to the bank’s
rule-based system.

The last chapter, Chapter 6, provides a conclusion of the results derived from this thesis. Furthermore, the
chapter issues recommendations into promising further research directions.



2
Background & Related Work

In this section, an overview of the relevant background information and related work is provided. The
chapter starts by providing a background into AML regulations and measures within banks in Section 2.1.
With this background, the practical application of this thesis is immediately introduced.

Next, Section 2.2 will provide a background into different existing anomaly detection methods. This sets the
tone for the Isolation Forest method, which is introduced in Section 2.3 and is the anomaly detection
method of choice throughout this thesis. Since the Isolation Forest method forms the base of the thesis
research, the method is discussed in detail.

A reason for using Isolation Forest as the anomaly detection method of choice throughout this thesis, is the
possibility of applying local explanation methods to explain the algorithm’s results. In Section 2.4, existing
explanation methods are discussed, both model specific and model agnostic.

Finally, this chapter is concluded with an overview of the incorporation of mixed attribute data into Isolation
Forest. Subsection 2.5.2 discusses common techniques of encoding nominal attributes, complications of
categorical data in different anomaly detection methods, and existing approaches that incorporate nominal
features directly into an Isolation Forest.

2.1. Anti-Money Laundering
The United Nations Office on Drugs and Crime estimates that the annual money laundered globally
accounts for 2 − 5% of the global GDP [5]. In order to combat these criminal transactions, governments
establish AML regimes aimed at providing legal and regulatory tools necessary to combat the problem [6].
Financial institutions in the Netherlands are required to monitor and report unusual and suspicious
behaviour, with the monitoring often done using a rule-based system with fixed historically derived
thresholds. Although this interpretable system catches the most suspicious transactions, criminals can
outwit fixed thresholds. This section will elaborate further on the Dutch AML regulations and practices.

Anti-Money Laundering and Counter Terrorism Financing Act
As a consequence of the international battle against money laundering, the Wet ter voorkoming van
Witwassen en Financiering van Terrorisme (WWFT) (translated: Anti-Money Laundering and Counter
Terrorism Financing Act) was implemented in the Netherlands in July 2008 [7]. The WWFT is an outcome of
a merger between the laws addressing identification at service and reporting unusual transactions. The
origins of the law can be traced to guidelines and recommendations for combatting money laundering set
by the Financial Action Task Force on money laundering (FATF) [8]. It was deemed of utmost importance to
protect the channels that can be exploited for money laundering from criminal abuse. By allowing cash
flows from criminal misdemeanour to enter the financial system, perpetrators are able to enjoy their illegally
obtained wealth and undermine the social fabric further.

The goal of the WWFT is to target and prevent money laundering and terrorist financing. Institutes that are

3
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covered by the WWFT are expected to uphold these goals in order to guarantee and protect the integrity,
stability, and reputation of the Dutch financial institution. To achieve this goal, relevant institutions must
uphold four core responsibilities [9]:

1. Perform thorough surveillance of clients through risk profiles.

2. Report unusual transactions to the Financial Intelligence Unit Netherlands (FIU).

3. Offer periodic training to personnel in recognizing unusual transactions and performing complete
client surveillance and due diligence.

4. Adequately capture the results of risk profile ratings when requested by supervising entities.

2.1.1. Anti-Money Laundering Measures within Banks
Several Dutch banks have struggled with their role as gatekeeper of the stability, integrity and reputation of
the Dutch financial system. Whereas numerous banks have received fines addressing their negligence, ING
and ABN AMRO have recently been fined under the allegations of culpable money laundering. The
conclusions from these criminal investigations by the Netherlands Public Prosecution Service into ING [9]
and ABN AMRO [10] have shaken the Dutch financial sector and ignited the prioritisation of AML
regulations.

By estimation of the Dutch Association of Banks [1], 16 billion euro is laundered in the Netherlands. When
discussing the criminal exploitation of the financial systems, only estimations can be used. The laundered
money finds its origin primarily in drug trafficking, but can also be derived from human trafficking, child
pornography and extortion. This makes the Netherlands the worlds 8th most popular money laundering
destination, in which the banking institutions are deemed the number one money laundering risk. Banks
must adhere to the responsibilities and goals of the WWFT. Thus, heavy investments are being made to
rebuild and improve the functionality of the bank’s customer due diligence and transaction monitoring.

Client behaviour and transactions are currently being monitored using rule-based systems. These
rule-based systems monitor whether activity surpasses sets of thresholds. When this occurs, a client
generates alerts, which are in turn checked by domain experts to determine the need of escalation to
external organisations. The thresholds in this rule-based system are derived from historical activity and are
often static with respect to the underlying data attributes. Using such rule-based systems allows for expert
knowledge to drive decision making processes, while maintaining interpretability in the alert generation.
However, there are some short-comings to such a rule-based decision system. First, a client that is
constantly just below a given threshold will never be detected. Constant re-evaluation of the threshold
boundaries is necessary with respect to the false positive and false negative (although difficult to confirm)
alerts. Second, there exists no measure of suspicious activity between different attributes unless specified by
a rule. Alerts and suspicious behaviour will go unnoticed unless specified in the rule-board, and suspicious
customers from a completely data-driven standpoint might therefore be missed.

In this thesis, the investigation into the potential of anomaly detection techniques to improve the existing
AML system of Triodos Bank is continued. It is of interest to explore the customer behaviour that is detected
using data-induced anomaly detection and to what extent it is i ) indeed suspicious with respect to money
laundering, and i i ) different to the findings of the rule-based customer monitoring. With the application of
anomaly detection methods to combat money laundering, it is important to stress the ambiguity with
respect to future regulations and practical applications. Therefore, the regulations proposed by the Dutch
central bank are reviewed below, and will be considered specifically when applying anomaly detection to
real-life customer transaction data.

2.1.2. Principles for Responsible AI in AML
The central bank of the Netherlands, De Nederlandsche Bank (DNB), acknowledges the increasing
application and potential of Artificial Intelligence (AI) within the financial sector. To stimulate discussion
concerning this topic, DNB presented its preliminary views on possible principles in a discussion paper in
2019 [11]. The paper provides a background in AI and its applications to the current and future Dutch
financial sector. Furthermore, it presents general principles, derived from work of other regulatory bodies,
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that address responsible application of AI in the financial sector and instigate the dialogue of future
regulations.

The principles presented by DNB function as a framework to assist firms in assessing the responsibility of
their AI applications. These principles are abbreviated as SAFEST, and are divided into six key aspects,
namely:

• Soundness: This is the primary concern of DNB. Applications in the financial sector should be both
reliable and accurate. Furthermore, the behaviour of AI application is predictable and that they
operate according to rules and regulations. A financial firm that applies any form of AI should be able
to demonstrate that all measures are taken in order to ensure the business processes can continue
effectively.

• Accountability: AI applications are complex and may cause deviating functionality and results that
may damage a firms business practices or relevant stakeholders. The DNB requires firms to
demonstrate awareness and understanding of their responsibilities with respect to AI applications.
Furthermore, a firm must show that there is operational accountability within the organization, such
that third party reliance shall not be used to limit accountability.

• Fairness: In order for society to trust the financial sector, AI applications may not disadvantage certain
groups of customers. A financial organization should be able to demonstrate the appropriateness of
their AI applications with respect to their defined concept of fairness.

• Ethics: It is important that the outcomes of AI applications do not violate the ethical standards held
by the financial organization. There should be a guarantee that stakeholders can trust that no harm
or mistreatment results from an organization’s use of AI applications. Policies should reflect this moral
obligation and must include criteria that assist decision making based on these applications.

• Skills: As decision making will start to rely on AI applications, it is necessary to ensure that an
acceptable level of expertise is maintained by various functions throughout the organization, namely
(senior) management, risk management, and compliance. It must be understood what the strengths
and weaknesses of AI systems are, and how to prevent improper usage resulting in accidents.

• Transparency: When making use of AI applications, a financial organization should be able to explain
its role within its business processes and appropriately describe how they work. This allows for proper
risk management and auditing, but also allows for the application’s supervision required to ensure
stable and expected operations.

2.2. Anomaly Detection Methods
An anomaly is a data point that deviates from the remaining data. In many applications, it is attempted to
determine an underlying model that governs the mechanisms and behaviour of a set of data. Any data point
that behaves unusually with respect to this generated model can provide information about the atypical
characteristics of the data. Recognizing these abnormalities is useful in multiple applications throughout a
broad spectrum of varying domains. Examples of applications where anomaly detection is readily used
include the financial, medical, quality control, web log, intrusion detection, and social media applications
[12].

The majority of anomaly detection algorithms create some model that tries to capture the behaviour and
mechanisms of the normal data. The choice of data model is therefore crucial to the overall results, yet the
best choice of model often tends to be data specific. Using an incorrect or over-fitted/oversimplified model
will likely provide poor results. To determine an anomaly, an anomaly detection algorithm outputs either an
anomaly score or a binary label indicator [12]. This binary indicator emphasizes whether a data point is
classified as an anomaly, which is frequently done through analysing the statistical distribution of the
anomaly scores and setting a threshold.

This section will emphasize different types of anomaly detection models, although the remaining parts of
this thesis will focus on the Isolation Forest [2, 13] method. The evaluation as to why this method is chosen,
as well as a detailed description of the method, can be found in Section 2.3.
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2.2.1. Existing Methods
An overview is presented of some of the existing anomaly detection methods. This section will not elaborate
on the Isolation Forest method, as an entire section is dedicated to this methodology at a later stage.

Probabilistic and Statistical Models
When using probabilistic and statistical models for anomaly detection, model parameters θ are inferred to
estimate the probability density function of the underlying data set X . Anomalies are identified as the
observations with the smallest likelihood P(X |θ) [14]. A common example of such methods is through
probabilistic mixture modeling for which the parameters are estimated and optimized using the
Expectation-Maximization (EM) algorithm.

An advantage to most probabilistic and statistical models is that they can readily be applied to mixed
attribute data, but only when every mixture component has a generative model available [12]. For
mixed-data, the product of attribute-specific likelihoods may be used to determine an anomaly measure.
Considering the models use probabilities, data normalization is not necessary under the generative
assumptions in order to determine the overall likelihood.

The major drawback to the typical probabilistic and statistical model is that the model attempts to fit the
data to a certain distribution. However, there is no certainty regarding the correct underlying distribution of
the data beforehand. Trying to fit the data to an incorrect distribution thus results in insufficient inference
and improper conclusions regarding the data’s probability density functions. Furthermore, when the total
number of parameters increases in the probabilistic model, the risk of over-fitting increases as well [12]. In
this case, the anomalies may affect the inference of the model parameters and inevitably the overall
estimation of the data distribution.

Linear Models
The primary assumption for linear models applicable to anomaly detection is that data can be embedded
onto a lower-dimensional space [12]. Any observation in the data that does not fit the embedded structure,
can be classified as an anomaly. A method that finds its origin as early as 1901, and is still widely used for
dimensionality reduction, is Principle Component Analysis (PCA). One-Class Support Vector Machines
(SVM) [15] also form a competitive anomaly detection method [14]. Finally, neural networks and particularly
Autoencoders can be utilized for anomaly detection.

In general, there are some limitations to linear modelling. First, the interpretability of the aforementioned
models is relatively low. When embedding the data into a lower dimensional space, the physical significance
of a particular dimension gets lost. This is because the sub-space dimensions are constructed from linear
combinations of the original features. Thus, explaining why a specific observation is classified as an
anomaly in this situation becomes impractical. Second, with large dimensionality in the data set, the
computational complexity may become expensive. With a dimensionality of d , the covariance matrix
becomes of size d ×d [12], in the case of PCA, for example. With neural networks, the training stage remains
computationally complex, even after recent algorithmic advancements.

Proximity-based Models
Within proximity-based models, an anomaly is defined as an observation for which the proximity is sparsely
populated [12]. The advantage of proximity-based methods lies within the intuitive interpretation of the
anomaly results. The notion that anomalies lie within low-density regions, have larger separation distances
compared to their neighbours, or do not belong to a data cluster, is comprehensible and can be easily
visualized. There are three subtly varying approaches to defining the proximity of a data point:

• Cluster-based: Assigning the data to a predetermined number of clusters allows for the quantification
of an anomaly score. This can be done through consideration of cluster membership, distance from
other clusters, and the size of the closest clusters [12]. Furthermore, clustering imposes a clear and
intuitive relationship between data points; if a data point is not a member of a cluster, it can be
perceived as an anomaly. Examples of clustering algorithms include: K-Means [16], Density-based
spatial clustering of applications with noise (DBSCAN) [17] and Hierarchical clustering [18].
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• Distance-based: Proximity is determined through evaluating distances between data points.
Algorithms tend to define anomaly scores based on nearest neighbour distances. The most significant
difference between clustering and distance-based algorithms is the detail of granularity in the
analysis. When anomaly scores are desired for every data point, complexity of distance-based
algorithms is proportional to O

(
N 2

)
. Popular examples of distance-based methods are: k-Nearest

Neighbours (kNN) and ORCA [19].

• Density-based: Density-based methods consider specific regions and use the number of points in
these regions to determine the local density. Anomalies are then determined as data points situated in
regions with lower local densities. Although extremely similar to clustering and distance-based
evaluation, density-methods partition the data space whereas clustering partitions the data points
[12]. The most popular density-based method in the field of anomaly detection is Local Anomaly
Factor (LOF) [20]. Other methods include Local Correlation Integral (LOCI) [21], Histogram-Based
Anomaly Score (HBOS) [22], and Robust Kernel Density Estimation (RKDE) [23].

Most proximity-based methods define anomalies with some perceived notion of distance at varying levels of
granularity. In order to find the anomalies and distinguish these from normal data or noise, balancing global
and local analysis is necessary. With a purely global analysis, certain anomalies may be missed due to the
sensitivity to varying densities of data clusters. Yet, with a complete local analysis, small clustered anomalies
may remain undetected as the local proximity becomes too great. Furthermore, in a highly dimensional data
set, the quality of the anomalies deteriorates. As the dimensions increase, the contrast of distances becomes
less evident and the stability of proximity-based methods deteriorates under certain distance measures [24]
[25].

2.3. Isolation Forest
Isolation Forest [2, 13] is a model-based approach to anomaly detection that computes an anomaly score
using a construction of so-called isolation trees. Rather than profiling normal points, Isolation Forest uses
the concept of isolation to specifically isolate anomalies. The original paper shows through empirical
evaluation that Isolation Forest performs favourably over numerous anomaly detection algorithms in terms
of Area Under the Receiver Operating Characteristic (ROC) Curve (AUC) and processing time [2].
Furthermore, a survey of state-of-the-art anomaly detection methods was conducted [14]. Acknowledging
average precision, algorithm robustness, memory usage, and computation time of fourteen different
anomaly detection algorithms, using both synthetic and real-world data, Isolation Forest performed
excellently. Specifically when dealing with large quantities of data, Isolation Forest should be the method of
choice due to its scalability, limited memory requirements and efficient computation complexity.

This thesis continues with Isolation Forest due to the model specific explanation methods available and the
interest in expanding research into the MI-Local DIFFI method [4], which will be explained further in
Section 3.3. Furthermore, there is a potential performance improvement when using ternary isolation trees
[4], which will be further explored in this thesis. More details on ternary trees will be provided in Section 3.2.
This section will dive into the original Isolation Forest methodology.

2.3.1. Isolation and Isolation Trees
Liu et al. proposed the Isolation Forest algorithm [2, 13] based on the concept of isolation, defining isolation
as: “separating an instance from the rest of instances" [2]. Typically, an anomaly is characterised as being
sparse and different, becoming receptive to isolation when compared to normal instances. If a data-induced
random tree were to be considered, Liu et al. observed that shorter paths were produced for anomalies
through a random partitioning for two reasons. First, due to an unbalanced anomaly class in the data, the
number of partitions needed to isolate a given anomaly is considerably shorter. This results in a shorter path
in the random tree structure. Second, separation of data points with distinguishable feature-values is a likely
occurrence in early partitioning. Thus, if a forest of random trees generates specific instances with
considerably shorter path lengths, these points are more likely to be anomalies.

Definition 2.3.1. An isolation tree t is a proper binary tree, meaning every internal node has exactly two
children. Let v be a node of an isolation tree that is either an external-node, or an internal-node with one test.
A test in node v consists of a feature value Qi and a split value p such that the test Qi < p divides the data
points into the left or right child nodes.
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Let X = {x1, . . . ,xn} be an n×d data set with n number of instances and d dimensions. To construct an isolation
tree, a sample of ψ instances X ′ ⊂ X is used. X ′ is then recursively divided by conducting the test Qi < p,
where Qi ∈ Q1, . . . ,Qd represents the feature selected with equal probability from the set of features and p is
uniformly chosen from the range of Qi . This is done until either the tree reaches a predefined height limit,
only one instance remains in a node

(|X ′| = 1
)
, or all data points in a node have the same values. By assuming

distinctness of all instances, a fully grown isolation tree will have ψ number of external nodes and ψ− 1
number of internal nodes. Thus, the total number of nodes is bounded by 2ψ−1. This results in a bounded
memory requirements that grows linearly with ψ. A visualisation of the isolation tree’s workings with respect
to a normal and abnormal observation are shown in Figure 2.2.

Figure 2.1: Visualisation of the Isolation Forest algorithm isolating an normal observation (left figure), and an abnormal observation
(right figure). The figure is adopted from [2].

Definition 2.3.2. The path length h(x) of an observation x is measured by the number of edges that x traverses
from the root node to its respective leaf node.

The path length is used to indicate how susceptible an observation x is of being isolated in an isolation tree.
Here, a short path length demonstrates high susceptibility to isolation, whereas a high path length
demonstrates low susceptibility to isolation. This is best illustrated in Figure 2.2, where the path of both an
anomaly and inlier are visualized for an individual isolation tree (Figure 2.2(a)) [26] and the construction of
an Isolation Forest is visualised. (Figure 2.2(b)).
By using path lengths, isolation trees can be used to rank observations according to their degree of
anomalous behaviour and are used to construct an anomaly scores. Now, the Isolation Forest algorithm will
be described in more detail. Emphasis is placed on the training stage of the algorithm in Subsection 2.3.2
and the formulation of the anomaly score in Subsection 2.3.3.

2.3.2. Training Stage
An isolation tree is constructed through the partitioning of a random sub-sample of the data X ′ ⊂ X . This
partitioning is continued until either the height limit is reached, or all instances are isolated or of similar
value. Algorithm 1 describes the ensembling of isolation trees to construct an Isolation Forest, while
Algorithm 2 describes the steps required to construct a single isolation tree.
The computational complexity of the training stage of Isolation Forest is O

(
Tψlog2ψ

)
, where T represents the

number of trees, and ψ represents the sub-sampling size. It is important to address some specific parameters
of the Isolation Forest algorithm, namely the sub-sampling size ψ and the height limit l .

Sub-sampling size
The sub-sampling size ψ controls the training size of the algorithm. A sample of the overall data is taken
randomly and used to construct an isolation tree. Empirically, the value of ψ is found to result in accurate
anomaly detection across different data sets when set to 256.

Isolation Forest constructs a model using multiple sub-samples of the data, which reduces the effects of
swamping and masking. Swamping refers to the occurrence of normal instances being labelled as



2.3. Isolation Forest 9

Figure 2.2: Visualisation of the behaviour of an anomaly (red) and of a normal observation (blue). Figure a) represents the behaviour in
an individual isolation tree, where it is evident that the anomaly’s path length is significantly shorter than that of the normal observation.
The ensemble of different isolation trees leads to an Isolation Forest, as depicted in Figure b). When an observation consistently has short
path lengths, it is likely to be an anomaly.

Algorithm 1 I sol ati onFor est (X ,T,ψ)

1: Inputs: X - input data, T - number of trees, ψ - sub-sampling size
2: Output: A set of T Isolation Trees
3: Initialize For est
4: Set height limit l = cei l i ng (log2ψ)
5: for i = 1 to T do
6: X ′ = sample(X ,ψ)
7: For est = For est ∪ I sol ati onTr ee(X ′,0, l )
8: end for
9: return Forest

anomalies, of which the occurrence increases as the data size and the number of normal instances increases.
Masking refers to the inability to detect anomalies due to the existence of too many anomalies in the data.
This occurs when anomalies are clustered together, causing many anomaly detection methodologies to
break down. By sub-sampling the data, Liu et al. argue that the effects of swamping and masking are
significantly reduced. This is the result of reducing the data size for training isolation trees, causing normal
instances to impact the isolation of anomalies to a lesser extent.

Making use of Figure 2.3, the authors of the paper set out to emphasize the effects of masking and
swamping. Figure 2.3(a) shows 4096 instances artificially generated, with two distinct, dense anomaly
clusters situated on the edges of a single, large cluster of normal instances. The normal instances situated
close to the anomaly clusters cause a swamping effect. Furthermore, the dense anomaly clusters cause a
masking effect. Through sub-sampling, displayed in Figure 2.3(b), the anomaly clusters become more
distinct. Sub-sampling the data causes both the swamping and masking effects to diminish through
clearance of the normal points close to the anomaly clusters and reducing the size of the anomaly clusters,
respectively. As a result, anomalies and anomaly clusters become easier to isolate through the sub-sampling
in an isolation tree.

However, subsampling can also hinder the process of identifying an anomaly [4]. Imagine an extremely
imbalanced data set, where the anomalies comprise a significantly small percentage of the total data. With
subsampling, the sub-population used for training the isolation trees will frequently contain purely normal
instances. This will negatively impact the ability of the Isolation Forest method to isolate particular
anomalies. Thus, it is argued that isolation trees be trained without subsampling when the overall data is
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Algorithm 2 I sol ati onTr ee(X ′,e, l )

1: Inputs: X ′ - input data, e - current tree height, l - height limit
2: Output: An Isolation Tree
3: if e ≥ l or |X | ≤ 1 then
4: return exNode{Si ze = |X ′|}
5: else
6: Let Q be a list of attributes in X ′
7: Randomly select an attribute Qi ∈Q
8: Randomly select a split point p ∈ (

mi n (Qi ) ,max (Qi )
)

9: Xl = f i l ter (X ′,Qi < p)
10: Xr = f i l ter (X ′,Qi ≥ p)
11: return i nNode{Le f t = I sol ati onTr ee(Xl ,e +1, l ),
12: Ri g ht = I sol ati onTr ee(Xr ,e +1, l ),
13: Spl i t At tr i bute =Qi ,
14: Spl i tV al ue = p}

significantly large and imbalanced. This will impact the runtime complexity notably, yet is considered viable
when performance is valued over runtime, like in the case of money laundering detection. In
Subsection 4.2.4, the effect of the sub-sampling size on the performance of Isolation Forest is evaluated.

(a) (b)

Figure 2.3: Artificially generated data set to demonstrate the possible effects of swamping and masking, and how sub-sampling reduces
these effects. Figure (a) shows the original data with 4096 instances, while Figure (b) shows a sub-sample of the data of 128 instances.
Red triangles denote anomalies and blue circles denote normal instances [2].

Height limit
Using the argumentation that an anomaly is more susceptible to isolation and will therefore result in a
shorter average path length, a height limit is introduced. With this height limit, complexity is reduced
significantly as the trees are not grown to completion. This limit is a function of the sub-sampling size ψ,
and is set as: l = cei l i ng

(
log2ψ

)
. The ceiling is argued to be approximately equal to the average height of an

isolation tree given ψ observations, c(ψ), which is derived below. This is however not the case and will be
discussed and evaluated further in Subsection 4.5.1.

The initial derivation of the expected path length of an isolation tree containing n observations exploits the
similarity in the structure of isolation trees and binary search trees. Using the analysis into binary search
trees, and explicitly the calculations into the average path length of an unsuccessful search, determines the
average path of an isolation tree, c(n), to be:

c(n) = 2H(n −1)− 2(n −1)

n
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where H(·) represents the harmonic number [2]. However, it is observed that this derivation does not
consider that an isolation tree is a proper binary tree [4], thus having either 0 or 2 child nodes. When this is
accounted for, the average path of an isolation tree becomes slightly different as stated in Theorem 2.3.1.

Theorem 2.3.1. The average path length of a fully grown isolation tree t with n observations can be represented
by:

c(n) =


0 if n = 1,

1 if n = 2,

2H(n)−2 if n > 2.

(2.1)

where H(n) represents the nth harmonic number.

Proof. First, in the case of n = 1, the isolation tree is already fully grown at its root node, and no additional
paths are necessary for isolation. Therefore, c(1) = 0.

Let E(n) denote the external path length of an isolation tree t with n observations, which represents the sum
of the path lengths from the root node to every individual external node in the isolation tree. The average
external path length will be used to determine the average path length c(n), by dividing with the total
number of external nodes.

Let tn(l ) be an arbitrary isolation tree with a root node who’s left child contains l ∈ {
1,2, ...,n − 1

}
external

nodes and who’s right child contains n − l external nodes. The average external path length Et (n) can then
be computed using the sum of average external path lengths of the root’s left and right child nodes, Et (l ) and
Et (n − l ) respectively, plus n. This last term accounts for the fact that Et (l ) and Et (n − l ) are a level deeper in
the isolation tree with respect to the root node.

Considering there are assumed to be n −1 unique allocations in the left and right child nodes, all with equal
probabilities, the expectation is taken over all external path lengths of trees l ∈ {

1,2, ...,n −1
}
. For n > 1:

Et (n) = 1

n −1

n−1∑
l=1

(
Et (l )+Et (n − l )+n

)
= 1

n −1

n−1∑
l=1

(
Et (l )+Et (n − l )

)+n

= 2

n −1

n−1∑
l=1

Et (l )+n. (2.2)

The result from Equation 2.2 can be used to show that Et (n) = 2, and therefore that c(2) = 1. Continuing, for
n > 1:

(n −1)Et (n) = 2
n−1∑
l=1

Et (l )+ (n −1)n (2.3)

and n > 2 :

(n −2)Et (n −1) = 2
n−2∑
l=1

Et (l )+ (n −1)(n −2). (2.4)

Through subtracting Equation 2.4 from Equation 2.3 the two equations above, for n > 2:

(n −1)Et (n)− (n −2)Et (n −1) = 2
n−1∑
l=1

Et (l )+ (n −1)n −2
n−2∑
l=1

Et (l )− (n −1)(n −2)

= 2
n−1∑
l=1

Et (l )+ (n −1)n −2
(n−1∑

l=1
Et (l )−Et (n −1)

)
− (n −1)(n −2)

= 2Et (n −1)+2(n −1).
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This yields an expression for the average external path length:

Et (n) = n

n −1
Et (n −1)+2. (2.5)

To derive the desired outcome, Equation 2.5 is simplified to a non-recursive form. This can be achieved by
examining the following sequence:

Et (n)

n
= 1

n −1
Et (n −1)+ 2

n
, for n > 2,

Et (n −1)

n −1
= 1

n −2
Et (n −2)+ 2

n −1
, for n > 3,

...

Et (n −k)

n −k
= 1

n −k −1
Et (n −k −1)+ 2

n −k
for n > k +2,

...

Et (3)

3
= 1

2
Et (2)+ 2

3
.

Finally, this sequence of equations can be used to obtain:

Et (n)

n
= 1

2
Et (2)+2

n∑
i=3

1

i

= 2H(n)−2,

where H(n) represents the nth harmonic number. The corresponding asymptotic expansion of the harmonic
number is: H(n) ∼ ln(n)+γ+ 1

2n − 1
12n2 + . . ., where γ ' 0.57722 represents the Euler–Mascheroni constant.

Therefore, the following is obtained:

c(n) = Et (n)

n
=


0 if n = 1,

1 if n = 2,

2H(n)−2 if n > 2.

which is the desired result.

This final expression for the average path length of a fully grown isolation tree can be also expressed in terms
of the asymptotic expansion of the harmonic number:

c(n) = Et (n)

n
≈


0 if n = 1,

1 if n = 2,

2
(
ln(n)+γ−1

)
if n > 2.

(2.6)

2.3.3. Evaluation Stage
After having trained an isolation tree, an anomaly score s is derived. This is done using the average path
length E

[
h(x)

]
of every observation x over all trees. By observing how x traverses along the isolation tree, the

path length from the root node until x is terminated at an external node. When this is the case, there are two
possibilities in calculating the path length h(x):

1. Observation x is isolated in the external node. The path length is then determined through the count
of the number of edges e from the root node to the external node.

2. The external node is terminated before x is fully isolated, meaning the external node has Si ze > 1. This
can occur when the height limit is reached, or all observations are of similar value in the feature space.
The path length is then determined as e+c(Si ze), where the second term accounts for the average path
length of the unbuilt sub-tree.
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The complexity of this evaluation stage is O
(
nT log2ψ

)
, resulting in the total complexity of Isolation Forest to

equal O
(
T log2ψ(n +ψ)

)
. Using the expected path length E

[
h(x)

]
of the observations, an isolation score s is

defined as:

s(x,n) = 2
−E(h(x))

c(n) (2.7)

In Equation 2.7, c(n) is used to normalize the expected path lengths of an observation. Notice that s maps all
scores to the domain of (0,1], and scores can be interpreted as follows:

• When E
[
h(x)

]→ 0, then s → 1. Therefore, if an observation returns a score close to 1, there is evidence
that this observation is an anomaly.

• When E
[
h(x)

] → n − 1, then s → 0. Therefore, if an observation returns a score close to 0, there is
evidence that this observation can be regarded as a normal observation.

• When E
[
h(x)

]→ c(n), then s → 0.5. Therefore, if all observations have a score of s ≈ 0.5, the data has no
distinct anomalies.

Even though the distribution of anomaly scores varies according to the underlying data sets, the anomaly
scores can be used to determine which observations show anomalous behaviour. In this thesis, Isolation
Forest will be extended to incorporate mixed-attribute data and ternary splitting strategies, which will be
discussed in Chapter 3.

2.4. Explanation Methods
The anomaly detection methods discussed in Subsection 2.2.1 are all commonly used to detect anomalies by
calculating an anomaly score or a binary label indicator. From these anomaly scores or binary label
indicators, it is not immediately clear how the model’s conclusions are achieved. For most anomaly
detection models, it is difficult to obtain a description as to why a particular data point is classified as an
anomaly.

In an AML use case, and particularly detecting suspicious customers, it is of utmost importance to be able to
explain on both a global and local level what data attributes contribute to the overall results. Through a
global feature evaluation, the attributes that are generally most important are identified. By this
identification, one can validate the input data and gain information on the data subspace where anomalies
are located. In the practical use-case of this thesis, global feature evaluation can be used to determine
whether newly added data attributes, which deviate from the attributes accounted in the rule board, are
deemed important in generally identifying anomalies. Furthermore, it allows analysis on the isolating
capabilities of nominal attributes.

More important, however, is the local explanation of the detected anomalies. From a practical standpoint,
any anomaly that is detected in the Triodos Bank customer monitoring data, will be communicated to
domain experts to validate the money laundering suspicion. In this communication, providing additional
information into the customer behaviour allows for a more detailed and controlled evaluation. Furthermore,
in line with the regulations discussed by the DNB (SAFEST), the process of identifying suspicious customers
must be transparent. Through local explanation, transparency is introduced where there was none initially.

2.4.1. Existing Explanation Methods
The anomaly detection method that will be used throughout this paper is an adaptation to Isolation Forest.
Whereas an individual isolation tree is intrinsically comprehensible, an ensemble of them diminishes the
overall explainability. A methodology is thus needed that provides insight into local behaviour after
constructing the forest. Adaptions of an explanation method that was specifically designed for Isolation
Forest, DIFFI, and one explanation method that is model agnostic, TreeSHAP, are briefly discussed.

(Local) DIFFI
In order to examine feature importance for Isolation Forest, the DIFFI [3] was introduced. This global
explanation method has been adapted to local variants (discussed later) and does not require alterations to
the original Isolation Forest methodology. The method defines features as “important" when the split test in
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these features allows for the isolation of anomalies while relegating inliers to leaf nodes deeper in the tree
[27]. Furthermore, a feature splitting test is important when imbalanced for anomalies, yet balanced when
only inliers remain in the node. The DIFFI method has a high computational complexity of O (T ·n · v),
where T represents the total number of isolation trees, n the total number of observations, and v the total
number of vertices.

The DIFFI method can be summarized as follows:

1. Using the results from the Isolation Forest, partition the data set D into the predicted inliers DI and the
predicted anomalies DO .

2. Determine for every node in every isolation tree the induced imbalance coefficient. This coefficient
reflects the node’s ability to isolate samples.

3. Register how often feature f appears in the path of every anomaly, and determine the cumulative
importance of feature f , using information on the depth of the leaf nodes of specific samples. Do this
for all features and also with respect to the inliers.

4. Determine the feature importance of a specific feature by normalizing the ratio of the cumulative
importance of the feature for anomalies with respect to the cumulative importance of the feature for
anomalies.

The authors of the DIFFI method extended their work on Isolation Forest specific explanation models, only
this time focusing on obtaining a local explanation. This resulted in the Local-DIFFI method [27]. The
method is derived from DIFFI, where the differences are mainly due to the inability to calculate certain
values when focusing on the local explanation of a single observation. Namely, the induced balance
coefficient can no longer be computed, as well as any normalizing quantities for specific to inliers.

MI-Local DIFFI
The Multiple Indicator Local-DIFFI (MI-Local-DIFFI) method [4] is an adaptation of the DIFFI method that
provides local explanations. The method stems from the assumption that information contained in the
nodes and the splitting structure of the isolation trees can be manipulated to determine a measure of feature
importance.

In an isolation tree, an observation transcends down a particular path. The path an observation follows, is
dictated by the features that are chosen in the tree and the observation’s feature value with respect to the
node’s splitting criteria. In the MI-Local-DIFFI method, the path of an anomaly is observed, and indicator
scores are assigned according to the following characteristics:

1. Path length indicator: Assigns a feature importance weight by considering the anomaly’s path length
in every isolation tree.

2. Split proportion indicator: Assigns a feature importance weight by observing the proportion of
observations that are assigned to the same branch as the traced anomaly, for a particular feature split.

3. Split interval length indicator: Assigns a feature importance weight by considering the proportion of
the sub-interval length that contains the anomaly to the overall feature range in a specific node.

The MI-Local DIFFI method will be explained further in Section 3.3, in which the indicators will be discussed
in more detail and alterations to incorporate mixed-attribute data are discussed. MI-Local DIFFI showed
excellent results for both runtime and performance compared to the TreeSHAP explanation method when
conducting experiments with synthetic data [4].

TreeSHAP
The TreeSHAP method [28] is a model agnostic explanation method that makes use of Shapley values.
Shapley values find its origins in coalitional game theory, and can be extended to the predictions of machine
learning models. The TreeSHAP method is a continuation of the SHAP (SHapley Additive exPlanation)
values proposed in [29]. For a more detailed derivation of the SHAP values, the reader is referred to the
original paper.
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In TreeSHAP, an algorithm for tree ensembles is derived that reduces the SHAP values’ computational
complexity from O (T L2M ) to O (T LD2), where T is the number of trees, L represents the maximum number
of leaves in a tree, M is the number of features, and D denotes the tree’s maximum depth [28]. Thus, instead
of the computational complexity being exponential with respect to the number of features, the TreeSHAP
method has a computational complexity that is quadratic in a tree’s maximum depth. Furthermore, the
method is implemented efficiently in the shap python library.

In this thesis, TreeSHAP is not used extensively in experiments or analysis. This is primarily due to the
incompatibility of the proposed i ForestC S method (introduced in Section 3.1) and the ternary Isolation
Forest (introduced in Section 3.2 to the python libraries. In Section 6.3, a recommendation is made to
address this issue.

2.5. Anomaly Detection and Categorical Data
Initially, the Isolation Forest algorithm is constructed to include continuously valued attributes only. In the
original paper, all experiments were conducted only after nominal and binary valued attributes had been
removed [2]. However, real data sets consistently contain a mixture of variable types; some variables assume
quantitative values whereas other variables might be qualitative or categorical [30]. In a large variety of
applications and domains mixed attribute data is evaluated. It is therefore valuable to consider different
methodologies that address the incorporation of categorical data in an anomaly detection setting.

There are typically two types of categorical data, namely nominal and ordinal. Nominal data refers to data
that is labeled without containing quantitative significance. These are the attributes this thesis is most
interested in, as there is no underlying ordering to the categories. Examples include, but are certainly not
limited to, color, nationality, or internet provider. Ordinal data, on the other hand, has a natural ordering to
the variables, but the distance between orderings is not defined. Examples include the EU energy labels and
eco-design of electrical appliances (A+++ through G), the Likert scheme, or education level. The natural
ordering of ordinal data typically improves the identification of anomalies when compared to nominal data
[31].

2.5.1. Encoding of Nominal Features
Many anomaly detection methods require the model’s input and output variables to be numeric. Thus,
nominal features are often encoded to a numerical or integer scale before evaluating an anomaly detection
model. Here some of the most common nominal data encoding strategies that are used in practice and
literature are discussed.

Before discussing common encoding approaches, it is useful to appropriately formalize definitions and
notation. This is done using the relational database formulation from [32]. A relation scheme R is defined as
a finite set of feature names

{
Q1,Q2, ...,Qd

}
, otherwise known as feature names. For each attribute name Q j ,

the set D j refers to the domain of Q j . A data table is a relation r on the scheme R: it is a mapping{
ti : R → ⋃d

j=1 D j , i = 1, ...,n, j = 1, ...,d
}
, where for every sample

{
t i ∈ r, t i (Q j ) ∈ D j

}
. If dealing with a

numerical attribute, then D j ⊆ R. Otherwise, when an attribute is nominal and thus represented by strings,
then D j ⊆ S, where S represents the set of finite-length strings. Finally, the cardinality of a variable is
denoted by k j = card

(
D j

)
[33].

When models require vector data, nominal attributes must undergo feature mappings that replace the
categorical elements t i (Q j ) by feature vectors of dimension p j :

xi
j ∈Rp j , p j ≥ 1.

Thus, by defining a categorical element before encoding xi
j = t i

(
Q j

) ∈R1, the feature matrix X after encoding

can be represented as :
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x1
1 . . . x1

d
...

. . .
...

xn
1 . . . xn

d

 ∈Rn×p , p =
d∑

j=1
p j .

The transformed feature matrix X therefore has p dimensions, rather than the original d feature dimensions,
where the size p is dependent on the encoding strategy. With this formalization, common and practical
encoding strategies will be discussed, using a single nominal feature Q for simplification, omitting column
indices j .

Label Encoding
One of the most popular and simple methods is label encoding. In label encoding, the labels of a given feature
are encoded with integer values. For example, imagine a feature that indicates colour, having unique labels
such as Red , Y el low , and Bl ue. With label encoding, integer values are assigned to the unique instances in
the feature. Thus, Red is assigned a value of 1, Y el l ow as 2, and finally Bl ue as 3. To formalize, let Q be a
nominal feature with cardinality k ≥ 2 such that the D = {

dl ,1 < l ≤ k
}

and:

xi =
[

d i = l
]
∈R.

The i th feature is therefore assigned the value l , where l ∈ [1,k] and no increase in dimensionality results
from label encoding. The obvious issue with label encoding is that a relation is introduced in labels where
no relation or order is actually present. With ordinal features, this encoding is much more logical, and often
referred to as ordinal encoding.

One-Hot Encoding
In one-hot encoding, a given nominal feature is transformed into a matrix of k columns, where k represents
the cardinality of the feature. Every column represents a binary variable for each unique feature value. To
formalize, let Q once again be a nominal feature with k ≥ 2 such that the D = {

dl ,1 < l ≤ k
}

and t i (Q) = d i .
One-hot encoding then assigns an indicator vector over {dl }, such that:

xi =
[
1{d1}(d i ), 1{d2}(d i ), ..., 1{dk }(d i )

]
∈Rk .

One-hot encoding is a popular encoding strategy with numerous variations proposed, and is intended to be
used for mutually exclusive categories [34]. When applying one-hot encoding to training data, testing data
that includes more than one new label will all be assigned a zero vector. This potentially creates overlap
between encoded category labels, impacting performance. Furthermore, through one-hot encoding,
nominal features with a high cardinality will result in a significant increase in the feature matrix’
dimensionality. This increases the computational costs of performing anomaly detection on the
transformed data. This particular problem can be handled by performing an additional dimensionality
reduction pre-processing step, which comes at the cost of loss of information [33].

Frequency Encoding
With frequency encoding, the nominal feature is transformed to a vector who’s entries correspond to the
normalized frequency of the original feature value. To formalize, let Q once again be a nominal feature with
k ≥ 2 such that the D = {

dl ,1 < l ≤ k
}

and t i (Q) = d i . The normalized frequency of a particular feature value

dl is represented as Freq(dl ) =
∑n

i=1 1{dl }
(
d i )

n . Then, the nominal feature can be represented as:

xi =
[

d i = Freq(dl )
]
∈R.

Similarly to label encoding, frequency encoding does not increase the dimensionality of the original data
set. However, one must be aware that the similarity of feature attributes is decided by the frequency of the
training data. This can create inconsistencies in the frequency similarities when considering the testing data.
Furthermore, frequency encoding cannot distinguish between categories with similar frequencies. When
this is the case, categories in a feature will be assigned the same value, and will be treated identically in the
encoded feature space.
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2.5.2. Anomaly Detection for Nominal Data
Although the analysis of anomaly detection methods for quantitative and numerical data is plentiful,
analysis of anomaly detection methods using nominal data is not as common. As mentioned earlier,
however, nominal data is used and essential in numerous domains. Applications include, but are certainly
not limited to: insurance fraud [35, 36], advertisement fraud [37], and geoinformatics [38].

In contrast to numerical data, determining a degree of similarity between values of an disordered nominal
feature is difficult. This complicates the generalization of anomaly detection algorithms to the
mixed-attribute or purely categorical domain and creates the following problems [12]:

• With statistical algorithms, the underlying mechanics to the data are determined. However, with
nominal data, all statistical information can only be obtained through evaluation of the frequencies of
the unique categories. Therefore, no notion of averages, for example, can be computed.

• Linear models are dependent on the continuous data attributes. Without this continuity, linear models
cannot be directly applied without alterations to the general algorithms.

• Common measures of similarity or proximity do not hold for nominal data. Therefore, for proximity-
based methods, all measures must be redefined to draw sensible conclusions from these methods.

2.5.3. Isolation Forest and Nominal Data
In accordance to the first research objects, the incorporation of mixed-attribute data into the Isolation
Forest is investigated. The research is centralized around Isolation Forest due to its scalability, competitive
performance, and the potential of obtaining local explanations of anomalies. As the original Isolation Forest
paper mentions, Isolation Forest only incorporates numerical attributes into the algorithm. Although many
papers recommend to some extent the incorporation of nominal attributes, limited research is conducted
into the performance of specifically Isolation Forest when applied to mixed-attribute data. The following
methodologies are known Isolation Forest adaptations that incorporate nominal features beyond the typical
label encoding [39], one-hot encoding [40], frequency encoding [41], or omit nominal features altogether [2].

Isolation Forest Conditional Anomaly Detection
i ForestC AD [36] is an extension to the classical Isolation Forest. Isolation Forest is designed as a global
anomaly detector, using the concept of isolation applied on the entire data set to produce anomaly scores.
By performing conditional anomaly detection (CAD) on well-defined data partitions, i ForestC AD aims to
identify “hidden" anomalies whilst incorporating both nominal and numerical attributes.

The algorithm uses the following steps as its high-level methodology, which are illustrated in Figure 2.4:

1. Selection: Driven by expert knowledge, nominal and numerical attributes are selected from the total
data set.

2. Partitioning: Determine the possible combinations that the values of the nominal attributes can take
on and divide the data according to the combinations. This is done by computing the Cartesian product
of all nominal attributes selected during the Selection phase. Effectively, this results in the number of
unique combinations to equal the product of the cardinality of every nominal attribute.

3. Conditional anomaly detection: Compute anomaly scores of observations contained in the data
partition through Isolation Forest.

4. Classifier training: Train a binary classifier after using the anomaly scores to replace the selected
attributes.

i ForestC AD aims to use expert knowledge to integrate information contained by meaningful nominal
attributes. By partitioning the data according to the combinations of instances in these nominal attributes,
anomaly detection can be performed conditional on instances that share these characteristics. Thus, rather
than identifying global anomalies, anomalies are detected within given partitions. This allows to detect
anomalies that are typically concealed when considering the global data structure. To domain experts, these
“hidden" anomalies can potentially be more interesting than global anomalies.
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Figure 2.4: The operating principles of the i ForestC AD approach [36].

Furthermore, by performing anomaly detection conditioned on a data partition, performance becomes
increasingly interpretable. Information from numerous attributes is summarized into a single anomaly
score, which is then used as an input variable in the classifier training. This in turn causes a reduction in
dimensionality, from the original d dimensions to d ′ + 1 for classification, where d ′ represents all
dimensions that are not incorporated in the Conditional Anomaly Detection phase.

The pitfall in the i ForestC AD approach lies in the computation of the Cartesian product. When the
cardinality of the nominal attributes increases, the number of data partitions increases with it. Therefore,
selection of various nominal attributes quickly becomes limited, considering the induced sparsity in the
data partitions increases when the Cartesian product becomes large. The author of i ForestC AD thus suggests
attribute selection driven by expert knowledge, and limits the conditional anomaly detection phase to only
three features in experiments.

Isolation Forest with Random Sampling of a Single Attribute Value
A straightforward extension to Isolation Forest is proposed in order to incorporate mixed-attribute data [42].
After randomly selecting an attribute, a test is performed on the attribute to determine the typology of the
data. If it is a numerical attribute, the Isolation Forest continues with the typical splitting test and branching
assignment. If the attribute is nominal, however, the procedure is altered. The algorithm then selects a single,
unique value from the attribute, and assigns all instances that share this attribute value to the left branch.
All instances that have a different value, are assigned to the right branch. In this paper, this method will
be referred to as Isolation Forest with Single Sampling (i ForestSS ), for which the algorithms is described in
Algorithm 3.
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Algorithm 3 I sol ati onTr ee(X ′,e, l )

1: Inputs: X ′ - input data, e - current tree height, l - height limit
2: Output: An Isolation Tree
3: if e ≥ l or |X | ≤ 1 then
4: return exNode{Si ze = |X ′|}
5: else
6: Let Q be a list of attributes in X ′
7: Randomly select an attribute Qi ∈Q
8: if Qi is nominal then
9: Randomly select a value q ∈ dom(Qi )

10: Xl = f i l ter (X ′,Qi = q)
11: Xr = f i l ter (X ′,Qi 6= q)
12: else
13: Randomly select a split point p ∈ (

mi n (Qi ) ,max (Qi )
)

14: Xl = f i l ter (X ′,Qi < p)
15: Xr = f i l ter (X ′,Qi ≥ p)
16: end if
17: return i nNode{Le f t = I sol ati onTr ee(Xl ,e +1, l ),
18: Ri g ht = I sol ati onTr ee(Xr ,e +1, l ),
19: Spl i t At tr i bute =Qi ,
20: Spl i tV al ue = p}





3
Methodology

In this chapter, the algorithms that have been introduced or adapted throughout this thesis are described in
more detail. Note that the original Isolation Forest algorithm and methodology has been discussed in detail
in Chapter 2 and will function as the cornerstone of the methods discussed in this chapter.

This chapter is divided into several sections. In order to address the first research objective, RO1, an
approach to incorporate nominal attributes directly into an Isolation Forest is discussed in Section 3.1. This
method depends on the sampling of categories in an nominal attribute, and allows nominal attributes to be
incorporated into the Isolation Forest without using an encoding strategy. Additionally, a short proof of
concept of the algorithm is demonstrated.

To address the second research objective, RO2, Section 3.2 will discuss the ternary Isolation Forest in more
detail. The section dives into the motivation behind a ternary isolation tree and properly defines it. Then,
using a similar strategy for binary isolation trees, the average path length derivations of the ternary isolation
tree are revisited.

In Section 3.3, the MI-Local-DIFFI methodology is discussed in more detail. This local explanation method
specific to Isolation Forest will be used throughout the remainder of this thesis. The indicators that
composed the MI-Local-DIFFI method are evaluated with respect to i ForestC S and the ternary Isolation
Forest.

Finally, in Section 3.4, the evaluation metrics used throughout the thesis experiments are discussed.

3.1. Isolation Forest for Mixed Attribute Data
As discussed in Subsection 2.5.3, Isolation Forest cannot incorporate categorical data directly without
encoding it to a numerical scale. In order to investigate and unlock the potential of categorical attributes in
Isolation Forest, this thesis investigates the existing methods of categorical data incorporation. In the
process, an additional method is proposed that directly incorporates categorical data without the need of
prior encoding. Subsection 3.1.1 will elaborate on this method, which will be referred to as Isolation Forest
with Categorical Sampling (i ForestC S ). Then, a short proof of concept is provided in Subsection 3.1.2, where
the results of a label encoded Isolation Forest are compared to that of i ForestC S .

3.1.1. i ForestC S
The rationale behind i ForestC S stems from the desire to incorporate nominal data without encoding it
beforehand, or inducing sparsity in data partitions through large Cartesian products, as in i ForestC AD [36].
In line with the essence of the Isolation Forest, the random, data-induced splits are maintained when
considering a nominal attribute. Through testing for the typology of the feature in a given node, the splitting
strategies will vary for nominal and numerical attributes. Furthermore, it avoids translation to a numerical
scale, and thus the potential of assigning order where none exists, overlapping values, and increases in data
dimensionality.

21
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Consider a node vi j of isolation tree ti and let feature Qi j be the feature for which a split test is performed in
the node. This split test is dictated by the typology of the feature Qi j . If feature Qi j is a numerical attribute,
the isolation tree continues in the usual manner as described in Section 2.3. If feature Qi j is nominal,
however, consider all unique values in the domain of Qi j and let the cardinality of Qi j be denoted by k j .

First, randomly select an integer c ∈[1, b k j

2 c], where symmetry of an isolation tree allows us only to consider

the interval up to
k j

2 . Next, select without replacement and with equal probabilities over all unique values, a
subset Q containing c unique values from the domain of Qi j . Now, the following splitting test is performed.
All observations for which Qi j ∈ Q are assigned to the left child node, and the remaining observations for
which Qi j ∉Q holds are assigned to the right branch.

To visualize this process, Figure 3.1 illustrates the different steps described when considering a nominal
feature:

Figure 3.1: The procedure of splitting a nominal feature using i ForestC S . The steps are described in more detail in the text.

Using Figure 3.1 as an assisting visualization, the steps of the categorical sampling strategy are described
step-by-step:

1. Imagine a particular node vi j . In this node, a feature Qi j is selected. In this case, the feature is
categorized, with unique alphabetized categories.

2. Considering all observations in the node, the unique categories of the feature are appended. In this
case, the feature has a cardinality of k j = 3.

3. Randomly select an integer c ∈[1, b k j

2 c]. In this case, c = 1. From the unique categories, randomly select
c = 1 value, where the selection is performed without replacement and with equal probabilities. For
illustrative purposes, this is visualized by aligning the unique categories in a shuffled way, and selecting
the first category. This selection now represents subset Q, which is category B in this case.

4. All observations for which Qi j ∈Q, are assigned to the left branch. All other observations are assigned
to the right branch. After this split, the Isolation Forest algorithm continues its process.

Through this splitting strategy, nominal data is incorporated into an isolation tree without prior encoding. It
shares similarities with i ForestSS [42], where a single attribute value is sampled every time a splitting test is
performed on a nominal feature. Selecting a single category at a time, however, may reduce the probability
of considering all categories under large cardinality and dimensionality. It is therefore interesting to
consider whether selecting a set of attributes can improve the performance of Isolation Forest on
mixed-attribute data. Experiments where i ForestC S is evaluated against different nominal encoding
strategies and other mixed-attribute adaptations of Isolation Forest, will be conducted in Chapter 4.

The algorithm for i ForestC S is shown in Algorithm 4. As it is constructed in a similar fashion to Isolation
Forest, the algorithm’s complexity is similar. Notice, however, that the branching strategy changes when
selecting a nominal feature. In Subsection 4.2.4, a runtime analysis is conducted to determine the sensitivity
of the i ForestC S to the percentage nominal features in the data and the respective cardinality.
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Algorithm 4 Isolation Tree with Categorical Sampling

1: Inputs: X ′ - input data, e - current tree height, l - height limit
2: Output: An Isolation Tree
3: if e ≥ l or |X ′| ≤ 1 then
4: return exNode{Si ze = |X ′|}
5: else
6: Let Q be a list of attributes in X ′
7: Randomly select an attribute Qi ∈Q
8: if Qi is nominal then

9: Randomly select an integer c ∈[1, b k j

2 c], where k j represents the cardinality of attribute Qi

10: Randomly select a set of c attributes Q ∈ domain(Qi )
11: Xl = f i l ter (X ′,Qi ∈Q)
12: Xr = f i l ter (X ′,Qi ∉Q)
13: else
14: Randomly select a split point p ∈ (

mi n (Qi ) ,max (Qi )
)

15: Xl = f i l ter (X ′,Qi < p)
16: Xr = f i l ter (X ′,Qi ≥ p)
17: end if
18: return i nNode{Le f t = I sol ati onTr ee(Xl ,e +1, l ),
19: Ri g ht = I sol ati onTr ee(Xr ,e +1, l ),
20: Spl i t At tr i bute =Qi ,
21: Spl i tV al ue = p}

3.1.2. Proof of Concept
In this section, a short proof of concept is discussed to demonstrate the bias induced by label encoding and
the improved results of i ForestC S . It is argued that an Isolation Forest where all nominal attributes are
encoded using label encoding is conceptually inadequate [36]. When a nominal attribute is encoded, the
isolation tree stochastically samples over the interval induced by the integer valued encodings, ignoring that
there should not be a relation between nominal attributes. This yields the consequence that observations
assigned the lowest or highest mapped values will receive larger anomaly scores, purely because of the
location in the mapped domain. This is illustrated in Figure 3.2, where anomaly scores are computed for two
simple nominal attributes. The nominal attributes both have a cardinality k = 5 and every combination has
an equal frequency.

Figure 3.2: Two nominal attributes, each with 5 unique values, mapped to the numerical domain using label encoding. The contours
demonstrate that the anomaly scores computed by Isolation Forest with label encoding increase towards the boundaries, whereas no
ordering was originally present [36].
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As shown in Figure 3.2, encoding of the nominal attributes with integer values introduces an order that is not
necessarily there. This underlying order results in conceptually inadequate scoring of the observations. When
using i ForestC S , no additional order is induced, and the resulting anomaly scores are more consistent. These
are shown in Figure 3.3, where the anomaly scores are portrayed for the same two nominal attributes. Notice
that no contour mapping is shown, as this is not possible in the discrete domain of a nominal attribute. The
overall scores when using i ForestC S are more consistent than the scores obtained through Isolation Forest
with label encoding. Furthermore, the anomaly scores do not portray a bias towards observations lying on
the boundary of the mapped domain. In fact, the anomaly scores for all observations are extremely similar
with i ForestC S , whereas they deviated significantly when using Isolation Forest with label encoding.

Figure 3.3: Two nominal attributes, each with 5 unique values. Using i ForestC S , anomaly scores are computed for all data sample. When
compared to Figure 3.2, it is shown that the anomaly scores are i ) consistent for all observations and i i ) no bias towards boundary
observations are introduced in the anomaly scores.

3.2. Ternary Isolation Forest
An adaptation to the classical Isolation Forest was proposed and analysed in the literature [4]. Rather than
using binary trees, it was argued that the utilisation of ternary isolation trees can improve the detection of
particular anomalies. This hypothesis was indeed confirmed using synthetic data constructed to test a
density-based anomaly detection algorithm, namely High Contract Subspaces (HiCS) [43]. In this section,
the methodology of a ternary Isolation Forest will be explained in more detail.

3.2.1. Ternary Isolation Tree
Before diving into the specifics, it is important to address the rationale behind the utilisation of ternary
isolation trees. Let a boundary anomaly denote an anomaly situated in the extremes of an explicit feature
distribution and let an interior anomaly be an anomaly that is not a boundary anomaly, as visualised in
Figure 3.4. Through the Isolation Forest’s random splitting of subspaces using binary isolation trees, a bias is
induced towards boundary anomalies. Take for example the feature distributions of Figure 3.4. In the case of
a boundary anomaly, using a binary splitting strategy can potentially isolate the anomaly with one test.
However, for an interior anomaly, the best possible outcome is that the anomaly is detected after two
splitting tests in Feature 1. Therefore, the probability of isolating a boundary anomaly is higher with a binary
isolation tree than isolating an interior anomaly. Furthermore, when the dimensionality of the data
increases, the probability of selecting a specific feature reduces proportionally. In this situation, it is likely
that a particular feature occurs only once in a unique path. The probability of successfully isolating an
interior anomaly therefore diminishes, unless the splitting structure of the tree is altered. To adjust for this
situation, an Isolation Forest using ternary isolation trees is introduced.
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Figure 3.4: Visualisation of an interior and boundary anomaly with respect to feature 1. The anomaly is represented by the red
observation.

In order to construct a Ternary Isolation Forest, the underlying isolation trees have to be redefined. These
definitions are from [4]. The definition of a semi-proper ternary tree is used to introduce the ternary isolation
tree:

Definition 3.2.1. A semi-proper ternary tree t is a tree in which every node has 0, 2 or 3 children. When a node
has 2 children, it is always the middle child that is missing

Using this definition, a ternary isolation tree can be defined:

Definition 3.2.2. A ternary isolation tree t is a semi-proper ternary tree. Let v be a node of a ternary isolation
tree that is either an external node, or an internal-node with a test. A test in node v consists of a feature value Qi

and two split values p1, p2, where p1 < p2. The tests Qi < p1, p1 ≤Qi < p2, Qi ≥ p2 determine the assignment
of a datapoint to the left, middle, or right node, respectively.

A ternary isolation tree is a semi-proper ternary tree to account for the fact that observations do not
necessarily have to fall within the feature range between p1 and p2. Thus, the middle child node can be
empty. Yet, there will always be observations in the left and right child nodes, namely the minimum and
maximum values in the feature range. In Figure 3.5, an example of a semi-proper ternary tree is visualized.

The construction of a ternary isolation tree is described in Algorithm 5 and the construction of the ternary
Isolation Forest is described in Algorithm 6. The overall procedure of a ternary Isolation Forest is similar to
that of a binary isolation tree, with a slight variation in the branching strategy. However, the height limit l is
different for the two implementations and will impact the overall runtime as well. To determine the overall
effect on runtime, Subsection 4.2.4 will evaluate the runtime of the different algorithms.

Figure 3.5: A semi-proper ternary tree. The * indicates a semi-proper splitting, with no observations being assigned to the middle child
node.
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Algorithm 5 I sol ati onTr ee_Ter nar y(X ′,e, l )

1: Inputs: X ′ - input data, e - current tree height, l - height limit
2: Output: An Isolation Tree
3: if e ≥ l or |X | ≤ 1 then
4: return exNode{Si ze = |X ′|}
5: else
6: Let Q be a list of attributes in X ′
7: Randomly select an attribute Qi ∈Q
8: Randomly select two split points p1 and p2 uniformly between the max and mi n values of attribute

Qi in the data X ′
9: Xl = f i l ter (X ′,Qi < p1)

10: Xl = f i l ter (X ′, p1 ≤Qi < p2)
11: Xr = f i l ter (X ′,Qi ≥ p2)
12: return i nNode{Le f t = I sol ati onTr ee(Xl ,e +1, l ),
13: Mi ddle = I sol ati onTr ee(Xm ,e +1, l ),
14: Ri g ht = I sol ati onTr ee(Xr ,e +1, l ),
15: Spl i t At tr i bute =Qi ,
16: Spl i tV al ue = (p1, p2)}

Algorithm 6 I sol ati onFor est_Ter nar y(X ,T,ψ)

1: Inputs: X - input data, T - number of trees, ψ - sub-sampling size
2: Output: A set of T ternary Isolation Trees
3: Initialize For est
4: Set height limit l = cei l i ng (l og3ψ)
5: for i = 1 to T do
6: X ′ = sample(X ,ψ)
7: For est = For est ∪ I sol ati onTr ee(X ′,0, l )
8: end for
9: return Forest =0

3.2.2. Average Path Length Ternary Isolation Tree
The calculation of an anomaly score for Ternary Isolation Forest is of similar fashion to that of the original
Isolation Forest. Using the average path lengths of every observation, scores can be calculated to introduce a
measure of susceptibility to isolation. However, it is important to note that the theoretical average path
length given n observations is different for binary and ternary trees. This function c(n) is namely used to
adjust for prematurely pruned branches and as a normalising factor in the anomaly score, as discussed in
Subsection 2.3.2.

In the original introduction of the Ternary Isolation Forest, an expression for the average path length of a
ternary isolation tree, ct (n), was derived using a similar procedure as the average path lengths of the binary
Isolation Forest. These derivation of the ternary theoretical average path lengths are revisited [4], and some
mistakes are corrected. Results are then compared to an empirical evaluation of the average path lengths of
a fully grown (ternary) Isolation Forest.

Similar to Subsection 2.3.2, the external path length of an isolation tree t is defined as the sum of the path
lengths from the root node to every individual external node in the isolation tree.

Theorem 3.2.1. The average external path length, Et (n) of a ternary isolation tree t grown to completion with
n observations, is given by:

Et (n) =
{

0 if n = 1,
2

n(n−1)

[∑n−1
l=1 (3(n − l )−1)Et (l )

]+n if n > 1.
(3.1)

Proof. First, assume the case n = 1. When dealing with a single observation, the observation is already
isolated in the root node. Therefore, the average external path length is zero, Et (n).



3.2. Ternary Isolation Forest 27

Let tn(l ) be an arbitrary ternary isolation tree with a root node who’s left child contains l ∈ {
1,2, ...,n − 1

}
external nodes, who’s middle child contains m ∈ {

0,1, ...,n − l − 1
}

and who’s right child contains n − l −m
external nodes. The average external path length Et (n) can then be computed using the sum of average
external path lengths of the root’s left, middle, and right child nodes, Et (l ), Et (m), and Et (n − l − m),
respectively, plus n. This last term accounts for the fact that Et (l ), Et (m), and Et (n − l −m) are a level deeper
in the isolation tree with respect to the root node.

The number of unique allocations in the left, middle, and right child nodes, is represented by the expression:

n−1∑
l=1

n−l−1∑
m=0

1 =
n−1∑
l=1

(n − l ) = n(n −1)

2
.

To determine the average external path length, the expectation over all subtree allocations is taken, assuming
equal probability for every unique allocation. For n > 1, the following is derived:

Et (n) = 2

n(n −1)

n−1∑
l=1

n−l−1∑
m=0

Et (l )+Et (m)+Et (n − l −m)+n

= 2

n(n −1)

[
n−1∑
l=1

n−l−1∑
m=0

Et (l )+Et (m)+Et (n − l −m)

]
+n

= 2

n(n −1)

[
n−1∑
l=1

(
(n − l )Et (l )+

n−l−1∑
m=0

Et (m)+Et (n − l −m)

)]
+n

= 2

n(n −1)

[
n−1∑
l=1

(
(n − l )Et (l )+

n−l∑
m=0

(Et (m)+Et (n − l −m))−Et (n − l )−Et (0)

)]
+n

= 2

n(n −1)

[
n−1∑
l=1

(
(n − l )Et (l )−Et (n − l )+2

n−l∑
m=0

Et (m)

)]
+n

= 2

n(n −1)

[
n−1∑
l=1

(
(n − l )Et (l )−Et (l )+2

n−l∑
m=0

Et (m)

)]
+n

= 2

n(n −1)

[
n−1∑
l=1

(
(n − l )Et (l )−Et (l )+2

n−l∑
m=0

Et (m)

)]
+n

= 2

n(n −1)

[
n−1∑
l=1

(n − l −1)Et (l )+2
n−1∑
l=1

n−l∑
m=0

Et (m)

]
+n

= 2

n(n −1)

[
n−1∑
l=1

(n − l −1)Et (l )+2
n−1∑
l=1

n−l∑
i=1

Et (l )

]
+n

= 2

n(n −1)

[
n−1∑
l=1

(n − l −1)Et (l )+2
n−1∑
l=1

(n − l )Et (l )

]
+n,

which yields the desired result:

Et (n) = 2

n(n −1)

[
n−1∑
l=1

(3(n − l )−1)Et (l )

]
+n .

This equation can be simplified to depend only on three preceding terms, rather than the computation of all
preceding path lengths. This decreases computation time significantly. Here, the term A(n) = n(n−1)Et (n)−
(n −1)(n −2)Et (n −1) is used [4], and for n > 2 this can be expanded to:
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A(n) = n(n −1)Et (n)− (n −1)(n −2)E(n −1)

= 2
n−1∑
l=1

(3(n − l )−1)Et (l )+n2(n −1)−2
n−2∑
l=1

(3(n −1− l )−1)Et (l )− (n −1)2(n −2)

= 2

[
n−2∑
l=1

(3(n − l )−1)Et (l )+2Et (n −1)

]
−

n−2∑
l=1

(3(n −1− l )−1)Et (l )+ (3n −2)(n −1)

= 4Et (n −1)+6
n−2∑
l=1

Et (l )+ (3n −2)(n −1).

Therefore, for n > 4, the following two expressions hold:

A(n)− A(n −2) = n(n −1)Et (n)− (n −1)(n −2)Et (n −1)

− (n −2)(n −3)Et (n −2)+ (n −3)(n −4)Et (n −3), (3.2)

and

A(n)− A(n −2) = 4Et (n −1)+6
n−2∑
l=1

Et (l )+ (3n −2)(n −1)−4Et (n −3)−6
n−4∑
l=1

Et (l )− (3n −8)(n −3)

= 4Et (n −1)+6
n−2∑
l=1

Et (l )+ (3n −2)(n −1)−4Et (n −3)

−6

(
n−2∑
l=1

Et (l )−Et (n −3)−Et (n −2)

)
− (3n −8)(n −3)

= 4Et (n −1)+6Et (n −2)+2Et (n −3)+ (3n −2)(n −1)− (3n −8)(n −3). (3.3)

By equating Equation 3.2 and Equation 3.3, for all n > 4 the following expression can be derived:

Et (n) =C1(n) ·Et (n −1)+C2(n) ·Et (n −2)+C3(n) ·Et (n −3)+C4(n), (3.4)

where the coefficients Ci (n) for i = 1,2,3,4 are calculated as follows:

C1(n) = 4+ (n −1)(n −2)

n(n −1)
,

C2(n) = 6+ (n −2)(n −3)

n(n +1)
,

C3(n) = (2− (n −3)(n −4)

n(n +1)
,

C4(n) = (3n −2)(n −1)− (3n −8)(n −3)

n(n +1)
.

Using the expression of the average external path length in Equation 3.4, the average depth of the leaves can
be calculated, considering ct (n) = Et (n)

n . To validate this expression, an experiment is conducted where both
binary and ternary forests are grown to completion. This is done using a data set of varying sizes, sampled
from a uniform distribution. By training an Isolation Forest on these data sets, without any maximum depth
parameter, the average path lengths of all observations and trees can be calculated. This validation is shown
in Figure 3.6.
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Figure 3.6: A comparison between the theoretically derived average path lengths of both binary and ternary trees, and the empirical
average path lengths of complete binary and ternary Isolation Forest. The analysis was performed through the use of a uniformly
sampled data set of varying number of observations, taking the average of the path lengths from all 50 trees in the forests. The shaded
region around the experimental average represents the interval with respect to the standard deviation of the average path length.
The dashed blue and red lines represent the empirically computed average path lengths for the binary and ternary Isolation Forest,
respectively. Since the theoretically computed average path lengths coincide so closely, these dashed lines are difficult to observe. Note,
they lie centrally within the shaded regions.

In Figure 3.6, it is observed that there is a large deviation between the theoretically derived ternary path
lengths. When using the original theoretically derived average path length of a ternary isolation tree, some
problems come to light. First, the average path length ct (n) is used as a normalization constant for the
anomaly score computation, as shown in Equation 2.7. If ct (n) is consistently larger than the true average
path length, the anomaly scores become inflated. Although the ordering of anomalies will remain
consistent, the classification of anomalies based on an anomaly score threshold loses significance. Second,
imagine a node at the height limit of a ternary tree. To compute the average path length of all observations in
this node, the path length is added to the average path length of the unbuilt sub-tree, ct (Si ze). Therefore,
any observation that reaches the height limit in an Isolation Tree will be assigned an incorrectly large path
length, which in turn impacts the anomaly scores and the local explanations.

Also, Figure 3.6 demonstrates that the newly derived ternary average path length coincides with the
empirical average. Furthermore, it demonstrates that the average path length of a ternary isolation tree is
indeed lower than that of a binary isolation tree. This is in line with intuition, as a ternary tree divides the
data into more branches containing fewer points. A path length of a ternary tree is thus shorter, as fewer
nodes are required to isolate an observation.

With increased dimensionality, the extra branch allows for the welcome additional fragmentation of a
feature. If the probability of selecting a particular feature shrinks due to increased dimensionality, it is
favourable to have more detailed splitting strategies in every node. However, the question arises whether the
lower average path length impacts the selection of a particular feature subspace of the data. If an anomaly
lies in a given subspace of features, will it not be less probable to select this combination of features with a
shorter average path length? This question is addressed further in Section 4.4.
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3.3. MI-Local-DIFFI
The MI-Local-DIFFI method [4] is an adaptation of the DIFFI method [3]. Rather than the original global
explanations provided by the DIFFI method, the purpose of the MI-Local DIFFI method is to provide local
explanations. Thus, if a particular observation is classified as an anomaly, the MI-Local-DIFFI method
provides insight into the most important features responsible for isolation. To achieve this goal, the
assumption is made that information contained in the nodes and the splitting structure of the isolation trees
can be manipulated to determine a measure of feature importance.

In Section 3.3, it was explained that the feature importance scores are assigned resulting from the following
indicators:

1. Path length indicator: Assigns a feature importance weight by considering the anomaly’s path length
in every isolation tree.

2. Split proportion indicator: Assigns a feature importance weight by observing the proportion of
observations that are assigned to the same branch as the traced anomaly, for a particular feature split.

3. Split interval length indicator: Assigns a feature importance weight by considering the proportion of
the sub-interval length that contains the anomaly to the overall feature range in a specific node.

Now, these indicators will be explored in more detail, explaining the computation of weights that constitute
the feature importance measure.

Path Length Indicator
Let PL (o, ti ) represent the path length of the external node of an anomaly o in a specific isolation tree ti .
Then, the weight corresponding to the path length is defined as:

wPL (o, ti ) := max

{
0.1, min

[
1, 1− PL (o, ti )−PLlower

PLupper −PLlower

]}
, (3.5)

where PLlower and PLupper are defined as lower and upper path lengths and are defined as:

PLlower = 1,

PLupper =
⌈

2(logψ+γ−1)
⌉

.

Notice that the upper path length is defined as the average path length of a binary isolation tree, derived in
Subsection 2.3.2. This is done since anomalies are more susceptible to isolation, thus having shorter path
lengths than average. Equation 3.5 assigns a feature importance weight corresponding to the path length
of the path an anomaly occurs in. Features occurring in a longer path are deemed less important and are
therefore assigned a lower weight. However, it is not desirable to have a path length weight assigned to zero,
as it penalizes a feature that occurs at the end of a path unreasonably harsh. Therefore, the lowest path length
weight possible is set to 0.1 instead.

Split Proportion Indicator
In order to define the split proportion weight, some additional notation is clarified. First, let vi j represent a
node in the isolation tree ti and let Qi j be the feature for which a split test is performed in node vi j . Let qi j

represent the number of observations in vi j , and let qo
i j denote the observations in the child node containing

anomaly o of node vi j . Then, let the vector −→w SP (o, i ) = (
wSP

1 (o, i ), . . . wSP
PL (o, i )

)
, where PL represents PL(o, i )

defined above. Then:

wSP
j (o, i ) :=

0 if qi j = 2,

1− qo
i j −1

qi j −2 if qi j > 2.
(3.6)

A feature that induces an extreme imbalance in the sizes of its child nodes, provides evidence of stronger
isolating capabilities. In other words, when the child node of vi j contains a significantly smaller data sample
than the data size in vi j originally, the split in feature Qi j was a success with respect to anomaly o. Therefore,
a high split proportion weight is assigned when qo

i j << q i j . Furthermore, there is a probability that a feature
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occurs more often in an anomaly path. When this is the case, only the highest wSP is used for the overall
feature importance computation. This is done to reward splits that induce imbalance and not penalise poor
feature splits.

Split Interval Length Indicator
The final indicator of the MI-Local-DIFFI method is the split interval length indicator. This indicator
incorporates information using the value of the split test, and its position with respect to the feature interval.
It is assumed that a feature split is more imbalanced when a split value is chosen towards the extremes of a
split interval. When this occurs, it becomes more likely to isolate a particular observation without it
demonstrating clear anomalous behaviour in the feature, as demonstrated in the left figure of Figure 3.7.
The split interval length indicator wants to penalise features for which the split value is close to the interval
boundary, and reward features that isolate when split values are more centrally located. The feature in the
right figure of Figure 3.7, will thus receive a higher split interval weight.

Figure 3.7: Two feature distributions, where the red observation is isolated through performing a split test at the dashed, black line in
Feature 1. In the left figure, the split value is chosen close to the maximum value of the feature interval, which causes the red observation
to become isolated. On the other hand, the right image isolates the red observation through a more centered split value. The split interval
length indicator tries to account information regarding the choice of split value, and will assign a large weight to the feature in the right
figure.

To quantify this, some notation has to be defined and clarified. Every node v in an isolation tree has a split
feature Q, a split value p, and a data sample X ′. The feature interval of a specific node is represented by
the interval [a,b], where a = min(X ′) and b = max(X ′). The anomaly split interval of node v with respect
to anomaly o is defined as either the interval [a, p] or [p,b] depending on whether the anomaly o descends
down the left or right branch, respectively. Using this information, the split interval of a node vi j in the path
of anomaly o in tree ti is defined as:

si
(
o, vi j

)
:=

∣∣anomaly split interval of vi j w.r.t o
∣∣∣∣feature interval of vi j

∣∣ (3.7)

The split interval weight is then defined as the vector −→w SI (o, i ) = (
wSI

1 (o, i ), . . . wSI
PL(o, i )

)
, where PL represents

PL(o, i ) defined above, where

wSI
j (o, i ) = 1.5− 1

si
(
o, vi j

)+1
(3.8)

Algorithm MI-Local-DIFFI
Combining the defined indicator in the sections above, the MI-Local-DIFFI algorithm [4] is stated as in
Algorithm 7:

3.3.1. Changes to MI-Local-DIFFI
In this thesis, MI-Local-DIFFI is used extensively to calculate the feature importance and explain anomalies
at a local level. When the methodology was proposed in [4], it was compared to both TreeSHAP [28] and
Alter-One-Feature, which is adapted from a method that examines individual columns contributions to
classification errors [44]. It was determined that the MI-Local-DIFFI showed excellent performance with
respect to runtime and overall performance when compared to the other two methods. It was shown that
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Algorithm 7 MI-Local-DIFFI

1: Inputs: o - anomaly, I F = {t1, . . . , tT } - Isolation Trees, PL(o, i ) - Path length of o in Isolation Tree i
2: Output: F I - Feature Importance
3: Let G1, . . . ,GnF be the unique features to create the Isolation Forest.

4: Initialize: F I =−→
0 , with length equal to number of features nF .

5: Initialize: occurrence(F ) =−→
0 , with length equal to number of features nF .

6: for ti in I F do
7: Let

−→
Q i =

[
Qi ,1, . . . ,Qi ,m

]
represent the features in every node in Path(o, i )

8: Calculate wPL(o, i ) using Equation 3.5 .
9: Calculate −→w SP (o, i ) using Equation 3.6 .

10: Calculate −→w SI (o, i ) using Equation 3.8 .
11: for k in 1 to nF do
12: if Feature Gk occurs in

−→
F i then

13: Let jk be the location of the best split feature Gk in Path(o, i ).
14: occurrence(k) = occurrence(k)+1
15: σ(k) = wPL(o, i )+wSP

jk
(o, i )+wSI

jk
(o, i )

16: F I (k) = F I (k)+σ(k)
17: end if
18: end for
19: end for
20: F I = F I

occur r ence
21: return F I

AOF and MI-Local-DIFFI agree more extensively with ground-truth outlying aspects of the synthetic data
[43] than TreeSHAP. On the other hand, MI-Local DIFFI is generally faster than TreeSHAP, which in turn is
much faster than AOF.

This thesis will focus on the incorporation of categorical data, as well as further analysing performance of
ternary Isolation Forest. In order to incorporate the MI-Local-DIFFI method, some changes have to be
introduced. These are divided into three specific sections, namely Minor Changes, Changes for Ternary
Isolation Forest, and Changes to Incorporate Categorical Data.

3.3.2. Minor Changes to MI-Local DIFFI
There is a minor change that is proposed for the split proportion indicator of the MI-Local-DIFFI. It is
believed that the split proportion weight defined in Equation 3.6 is slightly biased towards features that
isolate an anomaly further down the Path(o, i ), when fewer instances are in the nodes. To illustrate this,
take the following examples, using the notation defined when defining the split proportion indicator:

• Imagine a node vi j that contains 100 observations, qi j = 100, and that the anomaly o is isolated after a
split in vi j , qo

i j = 1. Then using Equation 3.6, the split proportion weight is calculated to be wSP
j (o, i ) =

1.

• Imagine a node vi j that contains 3 observations, qi j = 3, and that the anomaly o is isolated after a split
in vi j , qo

i j = 1. Then using Equation 3.6, the split proportion weight is also calculated to be wSP
j (o, i ) = 1.

Equation 3.6 always assigns the maximum weight of 1 the moment a feature is used to isolate an instance.
This means, however, that the split proportion weight of both examples are identical, even though example
1) clearly illustrates a better splitting feature than example 2). To adjust for this bias, simply consider the
proportion of qo

i j to qi j as shown in Equation 3.9.

wSP
j (o, i ) :=

0 if qi j = 2

1− qo
i j

qi j
if qi j > 2

(3.9)

Changes to MI-Local-DIFFI for Ternary Isolation Forest
To adapt MI-Local-DIFFI for Isolation Forest, the following changes are implemented:
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• Path Length Indicator:
For the path length indicator, only a slight alteration is necessary. Currently the upper path length is set
to:

PLupper =
⌈

2(logψ+γ−1)
⌉

which represents the theoretically derived average path length of a binary isolation tree. Continuing the
utilization of this specific upper path length for ternary Isolation Forest still coincides with the purpose
of the path length weight. However, for proper form and following the intuition that an anomaly occurs
in shorter path lengths, the theoretically derived average path length for ternary Isolation Forest should
be used.

• Split Proportion Indicator:
A ternary isolation tree is a semi-proper ternary tree to account for the fact that observations do not
have to fall between the splitting values p1 and p2, where p1 < p2 as explained in Subsection 3.2.1.
That this is a possibility, is not considered for the split proportion indicator applied to binary trees. It
is however important to define the weight such that it reflects this semi-proper property of a ternary
isolation tree. Equation 3.9 is adapted to reflect a ternary isolation tree:

wSP
j (o, i ) :=


0 if qi j = 2

0 if qo
i j = 0

1− qo
i j

qi j
if qi j > 2

(3.10)

• Split Interval Length Indicator: For the split interval length indicator, the split interval that coincides
with the middle child node must be taken into account. Therefore, let the feature interval be once
again defined as the interval [a, b], where a = min(X ′) and b = max(X ′). Let p1 and p2 represent the
split values in the feature Q in a specific node v . Then the anomaly split interval of node v with respect
to anomaly o is defined as the interval [a, p1] for the left child, [p1, p2] for the middle child, and [p2, b]
for the right child. This information can be used to compute the split interval of a node vi j in the path
of anomaly o in tree ti with Equation 3.7. Then the split interval weight is computed using Equation 3.8.

Incorporating Categorical Data in MI-Local-DIFFI
This thesis focuses on mixed-attribute data sets and how nominal attributes should be incorporated when
considering Isolation Forest and local explanation methods. When considering the MI-Local-DIFFI local
explanation method tailored to Isolation Forest, it is interesting to see to what extent this framework can be
maintained when different data typologies are incorporated.

First, consider the first two indicators of the MI-Local-DIFFI method, namely the path length indicator and
the split proportion indicator. Both of these indicators address characteristics of the isolation tree that do
not focus on the underlying feature data typology or distribution. Irregardless of the feature’s data typology,
a feature importance weight can be assigned by considering the path length of a particular anomaly in every
isolation tree or the proportion of observations in a child node. These first two indicator are therefore
applicable to nominal features and can be used to determine local explanations of mixed-attribute data.

The third indicator of the MI-Local-DIFFI method, the split interval length indicator, is dependent on the
underlying feature distribution. Definitions of the anomaly split interval and the feature interval are all
dependent on a notion of distance. The calculation of such a distance metric is not as straightforward when
considering nominal attributes. With no clear underlying similarity or distance measures of categories in an
attribute, the calculation of a split interval length indicator becomes counter-intuitive. Therefore, the third
indicator in not employed when considering mixed-attribute data.

In Appendix C, some thought has been dedicated to the incorporation of a hybrid split interval length
indicator. This indicator uses the cardinality of a nominal feature to determine a split interval weight for a
nominal feature. Section 6.3 proposes to conduct further research into this indicator, as the effectiveness of
the hybrid split interval length indicator has not been concluded in this thesis.
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3.4. Evaluation Metrics
In the typical setting of transaction monitoring, there is no prior information available about suspicious
transactions. Inherently it is thus an unsupervised problem, for which no ground-truth labels or outlying
aspects are necessarily predefined. The question that naturally arises, is how the performance of anomaly
detection problems can be quantitatively evaluated. A large proportion of literature uses either case studies
or synthetically generated data to intuitively and qualitatively evaluate underlying anomalies in an
unsupervised setting [12] when ground-truth labels are unavailable.

Fortunately, situations exist for which there is ground-truth data available. This thesis will make use of
synthetic data sets that contain ground-truth labels of (non-trivial) anomalies. With this data available,
multiple evaluation metrics are addressed that measure both the performance of the algorithms’ detected
anomalies as well as the effects of categorical encoding on the detection performance and explanation
methods.

In this section, the measures used to quantify the performance of the different algorithms are described. The
section is divided into several sub-sections. First, the overall performance in detecting anomalies of an
anomaly detection algorithm is defined. Then a measure to quantify the performance of a local explanation
method will be presented. Finally, a brief description is presented of the statistical significance test used to
determine whether certain results presented in Chapter 4 demonstrate significant differences.

3.4.1. Evaluating Anomaly Detection Performance
The Isolation Forest algorithm outputs an anomaly score, which in turn may be used to determine a
decision threshold between a normal instance and an anomaly. Optimizing this boundary is dependent on
the weight that is placed on misclassification of either normal or outlying instances. Restricting this
threshold to limit the number of declared anomalies, causes the algorithm to miss too many actual
anomalies. The opposite, however, might just be as undesirable; resulting in an algorithm that classifies
many normal points as anomalies. To conceptualize this necessary trade-off and define performance
metrics, the confusion matrix is introduced.

The confusion matrix is a table layout that visualizes the performance of an algorithm’s predicted class as
opposed to the actual class of an instance or observation. Suppose an algorithm predicts whether a point is
an anomaly or a normal observation. An algorithm can predict something correctly if it predicts an anomaly
that is indeed a true anomaly (True Positive) or when a predicted normal observation is indeed a true
normal observation (True Negative). On the other hand, an algorithm can make incorrect predictions as
well. This occurs when an algorithm predicts a true anomaly as a normal instance (False Negative), or vice
versa, when the algorithm predicts a normal observation as an anomaly (False Positive). By combining the
possible combinations of true and predicted anomalies and normal observations, the confusion matrix is
obtained as shown in Figure 3.8

Figure 3.8: Confusion matrix comparing the predicted algorithm results to the true classes.
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Using the terminology from the confusion matrix in Figure 3.8, further metrics can be defined that are
important for the performance evaluation metrics [12]. Consider a threshold t of the set on anomaly scores.
Then, the predicted anomaly set is indicated by S(t ). With a change in the value of the threshold t , this
predicted anomaly set varies in size. Let G represent the ground-truth set of the overall data. For a given
threshold value t , the precision is defined as the predicted anomalies that are indeed anomalies in the
ground-truth set against the total size of predicted anomalies.

Pr eci si on(t ) = |S(t )∩G|
|S(t )| = T P

T P +F P
.

The precision value is not strictly monotonic, as the predicted anomaly set size |S(t )| and the correctly
predicted anomalies |S(t ) ∩ G| behave differently to changes in t . The recall is in turn defined as the
predicted anomalies that are indeed anomalies in the ground-truth set against the total size of the
ground-truth set.

Recal l (t ) = |S(t )∩G|
|G| = T P

T P +F N
.

The Precision and Recall as functions of t can be used to generate a curve. This curve is referred to as the
Precision-Recall curve (PR) and will be used for evaluation purposes extensively. Note that this curve is not
necessarily monotonic. Furthermore, the use of a Receiver Operation Characteristics Curve (ROC) is used,
which is related to the PR-curve but slightly more intuitive. For this curve, the True-Positive Rate (TPR) and
the False-Positive Rate are plotted against each other. The definition of the TPR is identical to that of the
Recall, while the FPR is defined as the proportion falsely classified anomalies to the actual inliers. Thus, with
proper notation, for all data D and the ground truth positives G :

T PR(t ) = Recal l (t ),

F PR(t ) = |S(t )∩G|
|D −G| = F P

F P +T N
.

Using these two curves, the performance of algorithms can be evaluated. For example, if a PR or ROC curve
of a particular algorithm strictly dominates that of another algorithm, it can be concluded that the first
algorithm is superior in terms of performance. However, when a curve is not strictly dominated, such
straightforward conclusion can not be drawn. This situation indicates that the algorithms behave differently
for varying thresholds and thus performance varies according to the anomaly score threshold. In practice,
the area under the ROC curve (AUC) and the area under the PR curve (AUPRC) are used as a representation
of overall effectiveness [12]. These measures will be used throughout this thesis, although it is acknowledged
that AUC results are overly optimistic when dealing with unbalanced classes.

3.4.2. Evaluating Explanation Performance
For the evaluation of the local explanations, the feature importance scores and its respective ranking are
used [4]. When considering a data set where the anomaly containing subspace is known, a binary indicator
vector τ ∈ {0,1}d can be constructed to indicate the features containing anomalies. Using this vector, and the
feature importance ranking of the explanation method F I , the AUC and AUPRC can be computed in order to
evaluate the performance of an explanation method. For every anomaly o in the data set, AUC(τ(o),F I (o))
and AUPRC(τ(o),F I (o)) are computed, after which the performance for the entire anomaly set is taken as:

AUCF I = 1

no

no∑
o=1

AUC (τ(o),F I (o)), (3.11)

AU PRCF I = 1

no

no∑
o=1

AU PRC (τ(o),F I (o)), (3.12)

where no represents the number of anomalies in the data set X . Using these measures, the results of the
performance of MI-Local-DIFFI method will be quantified throughout the experiments in 4.
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3.4.3. Testing Statistical Significance
With several experiments in Chapter 4, it is not immediately clear if differences in performance measures are
statistically significant. To address this, the unpaired samples Student’s t-test is used [45]. Under the null
hypothesis that there is no significant difference in the population means, the t-statistic is calculated and
used to determine whether the null hypothesis can be rejected. In order for this statistical test to hold, the
following assumptions must be met:

• The data that forms the basis of the test should be sampled independently.

• The two populations that are compared should be homoscedastic. This means that the populations
tested have similar variances, which will be tested in this thesis using the Levene’s test.

• The population data should be approximately normally distributed. This is tested throughout this
thesis with the Shapiro-Wilk test [46].

Note that violations of the last two assumptions are not as severe. The sampling distribution remains robust
with an increased sample size and with similar population sizes. This is constantly ensured throughout the
experiments conducted in this thesis.



4
Synthetic Experiments

Before utilising the newly proposed i ForestC S in the context of detecting anomalies in the real-life
transaction data of Triodos Bank, experiments are conducted to explore the algorithm’s performance. The
methodology is compared to numerous encoding strategies used in practice, as well as the i ForestC AD

method proposed in the literature [36]. In order to conduct these experiments, synthetic data sets are used
and manipulated extensively. Using both independently sampled observations and conditionally sampled
observations, the methods are evaluated on detection performance, sensitivity to data characteristics,
explanation performance, and complexity.

Furthermore, in this section an analysis is conducted on the behaviour of ternary Isolation Forest. Through
earlier research, the performance of a ternary Isolation Forest showed promising improvements to the
capability to detect anomalies when compared to the standard binary Isolation Forest [4]. These
experiments are revisited considering the newly calculated average path lengths, but also after reconsidering
the height limit of an isolation tree. Moreover, the performance of a ternary Isolation Forest has never been
evaluated with respect to the performance of local explanations.

This chapter is divided into specific sections. First, Section 4.1 will briefly elaborate on synthetic data and
the benefits reaped from its analysis. Second, Section 4.2 will discuss the sensitivity and runtime analysis of
i ForestC S using synthetic data with independent features. Third, Section 4.3 visualizes the benefits of
incorporating nominal attributes to the detection of anomalies in a synthetic data set with
nominal-numerical dependencies. This data set is then further utilized to test the MI-Local-DIFFI indicators
as applied to mixed-attribute data. Fourth, Section 4.4 focuses on the ternary Isolation Forest, and evaluates
both the anomaly detection performance as well as the performance of the MI-Local-DIFFI feature
importance scores. Finally, in Section 4.5, the parameters defined in the original Isolation Forest paper are
taken into consideration. The section addresses some inconsistencies in the standard implemented
parameters.

4.1. Synthetic Data
This thesis depends on synthetic data to analyse and evaluate the different Isolation Forest
implementations. Throughout this chapter, three distinct synthetic data sets approaches are defined and
generated. In order to fully understand the purpose of utilising synthetic data, emphasis is first placed on
the benefits of using synthetic data.

First, generating data allows for the complete control over the characteristics of the data. There is no
limitation to the number of observations, underlying distributions, and number of attributes used to
construct the data. Furthermore, for specifically nominal features, the total number of nominal attributes
and an attribute’s cardinality can be altered. This allows for experiments to range from intuitive and visually
comprehensible, to complex and overly detailed. Moreover, changing the characteristics of the data allows
further analysis into the performance and runtime sensitivity. Gaining an understanding of the impact data
set characteristics have on the overall algorithm performance will prove beneficial in determining the
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effectiveness of an adaptation.

Finally, with knowledge of the underlying distribution used to generate the data, it is possible to express an
anomaly in terms of a probability measure. Specifically, the joint probability density functions can be
utilized to address whether an observation is an anomaly. Namely, the observations with the lowest joint
probability density values can be defined as the data set’s anomalies. Furthermore, the marginal probability
density functions can be utilised in order to gain an indication of which attributes contributed most to the
anomaly’s behaviour.

Anomalies can also be defined using other measures of outlierness, such as the distance or density-based
proximity measures. However, in this thesis a probability measure is used to define anomalies since the
underlying distributions from which the data is sampled are defined beforehand. Therefore, the major
drawback that typically accompanies probabilistic anomaly detection methods of attempting to fit the data
to a distribution, is countered. Furthermore, the probability measure can be readily applied to
mixed-attribute data.

4.2. Experiments with Independent Features
In this section, data sampled from independent features are used in order to address the sensitivity of
different Isolation Forest approaches to characteristics of the synthetic data. First, Subsection 4.2.1 will
elaborate on the purpose of the experiments and address the key findings the section hopes to clarify. Next,
Subsection 4.2.2 will address the synthetically generated data that is utilised to achieve the results. Finally,
Subsection 4.2.3 and Subsection 4.2.4 will discuss the results of the anomaly detection performance
sensitivity and the runtime complexity of the different algorithms, respectively.

4.2.1. Purpose of Experiments
The entire intuition behind introducing the i ForestC S approach to handle mixed-attribute data with
Isolation Forest is to circumvent the necessity of using categorical data encoding. It is argued that with the
encoding of nominal attributes either a non-existing order is introduced through translation to a numerical
scale, or information is lost in general. Through random sampling the categories in a nominal attribute, the
essence of the Isolation Forest approach is respected, namely using data-induced random trees to
determine the degree of isolation of a particular observation.

In this section, the purpose is two-fold. First, the experiments are conducted to gain an understanding of the
performance sensitivity to various parameters to the synthetic data. By changing parameters of the data,
insight into the most popular encoding strategies in practice are gained and compared to the behaviour of
our i ForestC S approach. Next, the generation of synthetic data allows us to address the runtime sensitivity of
i ForestC S to parameters of the data.

4.2.2. Synthetic Data with Independent Features
The first data set that is used throughout this chapter, independently samples observations from different
distributions depending on the feature type. This data set is primarily used to address the sensitivity of the
mixed-attribute Isolation Forest adaptations in terms of performance and runtime. It contains a mixture of
numerical and nominal features, in which particularly parameters of the categorical feature distribution are
altered.

All numerical observations are independently sampled from standard normal distributions. The tails of the
Gaussian probability distributions allows for anomalies to be situated at extremes of the distribution,
assisting the Isolation Forest method considering its bias towards distribution extremes. The nominal
features are sampled using a Multinomial-Dirichlet distribution. The Multinomial-Dirichlet distribution is
explained in slightly more detail in Appendix A. The Multinomial distribution allows for the sampling of
categorical attributes, while the Dirichlet prior automates the selection parameters of the Multinomial
distribution.
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4.2.3. Results of Performance Sensitivity
In order to gain perspective into the effect different parameters have on the detection of anomalies, a
sensitivity analysis is conducted. In this analysis, different parameters that particularly influence the
nominal attributes of the mixed-attribute data set are altered. Using the distinct combinations of these
parameters allows for the generation of multiple synthetic data sets that can be utilised.

In this sensitivity analysis, the Isolation Forest variant proposed in this thesis, i ForestC S , is compared to the
three most common encoding strategies discussed in Subsection 2.5.1. These are label encoding, frequency
encoding, and one-hot encoding, which are explained in more detail in Subsection 2.5.1. For i ForestC S , both
a binary and a ternary implementation are evaluated.

The first distinct parameter that is changed is the percentage of nominal attributes present in the overall
data set. This parameter directly impacts the total number of features that are nominal and thus sampled
from the Dirichlet-Multinomial distribution. Figure 4.1 visualises the AUC and AUPRC results of the
different Isolation Forest implementations. The number of observations (n = 10000), the cardinality of a
nominal attribute (k = 50), and the total number of features (d = 50) are all kept constant. It is chosen to use
these constant parameters, as these reflect the customer transaction data most accurately.

Figure 4.1: Sensitivity analysis of AUC and AUPRC when altering the percentage of nominal features. As can be seen, increasing the
percentage of nominal features present in the data set has a deteriorating effect on the overall AUC and AUPRC results. However,
the i ForestC S results deteriorate to a lesser extent than those of the encoding strategies. Particularly the performance of one-hot
encoding becomes substantially worse in comparison with an increase in the percentage of nominal features in the data. The following
characteristics of the data set are kept constant: the number of observations (n = 10000), the cardinality of a nominal attribute (k = 50),
and the total number of features (d = 50). All results represent the average of 20 runs with error bars representing the standard deviation.

From Figure 4.1 it is evident that the results of the encoding strategies deteriorate more as the number of
nominal features increases. This is as expected, considering the encoding of nominal attributes to a
continuous spectrum introduces information that is not necessarily present. One-hot encoding in particular
completely deteriorates with the increase of nominal attributes.

The second parameter that is altered is the total number of features of the data set. Figure 4.2 visualises the
AUC and AUPRC results of the different Isolation Forest implementations with changes in the total number
of features. The number of observations (n = 10000), the cardinality of a nominal attribute (k = 50), and the
percentage of nominal attributes (10%) are all kept constant.
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Figure 4.2: Sensitivity analysis of AUC and AUPRC when altering the total number of features of the data set. As the number of feature
increases, the performance of Isolation Forest worsens in general. The following characteristics of the data set are kept constant: the
number of observations (n = 10000), the cardinality of a nominal attribute (k = 50), and the percentage of nominal attributes (10%). All
results represent the average of 20 runs with error bars representing the standard deviation.

From Figure 4.2 a consistent deterioration of results is visible across all implementations. As the
dimensionality increases, the ability of an Isolation Forest to detect anomalies decreases. The overall
patterns in the performance of the implementations remains constant, however. It is clear, that the
i ForestC S implementations consistently yields better results than when the nominal attributes are encoded.
Overall, the worst results stem from one-hot encoding, whereas the performance the of the label encoding
tends to yield better results than the frequency encoding.

In the Isolation Forest procedure, at every node a feature is chosen at random. When the dimensionality
increases, it is intuitive that the probability to select a particular feature along an observation’s path
decreases. For an anomaly that is only detectable in this feature, or more generally in a sub-space of
particular features, the increase in dimensionality yields a lower probability of detection. To formalize this,
consider the feature set Q = {Q1,Q2, . . . ,Qd } from which we sample with replacement. Let Ai denote the
event that feature Qi is included in the path length of a particular anomaly. Let p represent the anomaly path
of this anomaly. Then the probability that a given feature i is not sampled throughout the path length is:

P(Ac
i ) =

(
d −1

d

)p

,

and therefore the probability that feature i is sampled during the anomaly’s path length is:

P(Ai ) = 1−
(

d −1

d

)p

.

Whenever one-hot encoding is used, the original feature is expanded to a matrix of size k, where k represents
the cardinality of the nominal feature. Therefore, the total dimensionality after one-hot encoding increases
up to:

d → d +
dc∑

a=1
(ka −1),

where dc represents the number of nominal features in the data and ka the cardinality of the ath categorical
feature. This increase in dimensionality thus decreases the probability of an anomaly’s path containing a
particular feature i . This is the essence as to why the results of the one-hot encoding are considerably worse
than that of the other methodologies.

Finally, the last parameter to the synthetic data that is altered, is that of the cardinality of the nominal
attributes. It is interesting to acknowledge that the unique categories in a nominal attribute may impact the
performance of particularly the encoding strategies. Nevertheless, it is expected that the increase in
cardinality will also impact the performance of i ForestC S . The sampling over the unique categories will
become increasingly less meaningful when the probability to fully isolate a distinct category decreases. The



4.2. Experiments with Independent Features 41

following characteristics of the data set are kept constant: the number of observations (n = 10000), the total
number of features (d = 50), and the percentage of nominal attributes (10%).

Figure 4.3: The following characteristics of the data set are kept constant: the number of observations (n = 10000), the total number of
features (d = 50), and the percentage of nominal attributes (10%). All results represent the average of 20 runs with error bars representing
the standard deviation.

In Figure 4.3, it is once again clear that one-hot encoding deteriorates due to the increase in dimensionality.
Furthermore, what is observed throughout the different experiments, is that with an increase in cardinality
the frequency encoding strategy performs worse than the label encoding. As Figure 4.1 and Figure 4.2
assume a constant cardinality of k = 50, this is also reflected in these figures. With lower cardinality this
significant difference between frequency and label encoding is not present.

From the experiments conducted in this section, the sensitivity of the different Isolation Forest
implementations have been tested. A clear trend is emphasized that i ForestC S outperforms the encoding
strategies throughout this sensitivity experiment. The parameter settings that most resemble the real-life
customer transaction data used in Chapter 5 are: 50 features, a cardinality of 50, and 10% nominal
attributes. This is the right-most experiment in Figure 4.3, for example. With these parameters, there was no
statistically significant difference between the binary and the ternary i ForestC S implementations (p-value
AUC = 0.159, p-value AUPRC = 0.536). Between the label encoding and the binary i ForestC S , however, the
difference between the means is statistically significant (p-value AUC = 1.41e-10, p-value AUPRC = 8.37e-12).

Thus, it is concluded that with data sampled from independent features, the i ForestC S method provides
improved anomaly detection results when compared to several encoding strategies. When considering the
data characteristics of the customer transaction monitoring use-case, the binary and ternary i ForestC S

method did not demonstrate significant differences in the AUC and AUPRC results.

4.2.4. Runtime Evaluation
In this section, the runtime of different Isolation Forest adaptations for mixed-attribute data are compared.
The experiments that are conducted will evaluate the execution time of an algorithm up until the calculation
of the anomaly scores. First, the scikit-learn implementation of Isolation Forest after the nominal attributes
have been encoded to a numerical representation is considered. Second, the implementation of i ForestC S is
evaluated. This is done for both the binary and ternary implementations. Finally, the i ForestC AD

methodology is evaluated. Here, evaluation is performed up until the conditional anomaly detection stage,
under the assumption that all nominal attributes contribute to the detection of anomalies. Therefore, the
partitioning is performed over all values of the nominal attributes in the data set. The scikit-learn
implementation is then utilised to determine the anomaly scores specific to a particular data partition.

To measure the runtime of these different adaptations of Isolation Forest, different data sets are generated to
evaluate the runtime sensitivity to particular characteristics of the data. The characteristics that will be
altered are:

1. Total number of features: Three different values for the number of features are examined: {10, 20, 50}.
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2. Percentage of nominal features: Considering the low percentage of nominal features in real-life data
sets, three different percentages are evaluated: {0, 10, 20}. The case in which no nominal attributes are
present in the data functions as a benchmark comparison between the scikit-learn implementation of
Isolation Forest, and our own. Isolation Forest was built from scratch in this thesis to accommodate
experiments regarding the incorporation of nominal attributes and the extension of binary isolation
trees to ternary. The total number of nominal attributes is thus dependent on the total number of
features and the percentage nominal features.

3. Cardinality of a nominal attribute: As a nominal attribute can take on distinct values, it is interesting
to evaluate the effect on the algorithms’ execution time when varying a feature’s cardinality. The values
considered are: {2, 5, 10}.

Furthermore, the experiments are run keeping the following parameters of an isolation tree constant. In every
experiment T = 100 isolation trees compose a forest, and the sub-sampling size is taken to be ψ= n, where n
represents the overall number of observations. The results of the runtime experiments are shown in Table 4.1.

Nominal Features = 0% Nominal Features = 10% Nominal Features = 20%

Number of features Implementation
Cardinality Cardinality

2 5 10 2 5 10

10

Encoding + sklearn 0.72 0.77 0.70 0.72 0.72 0.74 0.73

i ForestC S 13.09 9.95 16.43 19.64 6.77 17.01 23.37

i ForestC S Ternary 17.24 14.18 20.59 22.52 11.87 20.23 26.95

i ForestC AD NA 0.9 1.12 1.81 1.51 6.02 18.04

20

Encoding + sklearn 0.84 0.83 0.86 0.87 0.87 0.87 0.9

i ForestC S 12.70 14.06 20.44 22.76 12.12 23.46 28.37

i ForestC S Ternary 15.83 18.24 23.62 25.82 16.21 26.74 31.70

i ForestC AD NA 1.60 6.00 18.33 6.17 156.47 NA

50

Encoding + sklearn 1.32 1.36 1.36 1.35 1.42 1.40 1.39

i ForestC S 13.30 28.67 33.96 34.89 26.40 35.69 38.99

i ForestC S Ternary 16.46 28.00 33.03 33.54 26.05 35.57 39.74

i ForestC AD NA 19.06 933.22 NA 573.45 NA NA

Table 4.1: The execution time in seconds of four different adaptations to Isolation Forest, when considering a data set of 10000
observations. The average of 5 runs is considered, with the exception for that of i ForestC AD where only 1 run is performed. Furthermore,
the execution of i ForestC AD is aborted when the Cartesian product of the nominal attributes becomes larger than the number of
observations or when there are no nominal features present in the data. Without nominal features, i ForestC AD reduces down to the
scikit-learn implementation of Isolation Forest. These two situations are indicated with NA.

The first thing that should be clarified, is that purposefully some experiments are not conducted using the
i ForestC AD implementation. Whenever there are no nominal features in the data (Nominal Features = 0%),
the i ForestC AD implementation reduces down to a scikit-learn implementation of Isolation Forest.
Furthermore, experiments are not conducted whenever the Cartesian product of the nominal features is
greater than or equal to the total number of observations. Thus, whenever these two situations occur, the
runtime is indicated with “NA".

What becomes immediately clear from Table 4.1, is the difference between the efficiency of the scikit-learn
implementation and the implementation of Isolation Forest in this thesis. Whenever there are no nominal
attributes in the data, the implementation of scikit-learn is between 10 − 20 times faster than the binary
implementation in this thesis. Optimisation of the runtime of this thesis’s implementation of Isolation
Forest, however, was beyond the scope of this thesis. Thus, although some iterations were conducted to
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improve overall runtime, the efficiency was not the main focus of the research, making it insufficient to
compare the algorithms is an absolute sense. Furthermore, it is important to note that the average height of
the tree in scikit-learn is set as log2(n), as proposed in the original paper [2]. It is argued, however, that the
average height of the tree is set to that of the average path length of a proper binary tree. Considering an
isolation tree is a proper binary tree, the average path length of an observation will be equal to
2
(
ln(n)+γ−1

)
, as derived in Subsection 2.3.2. This entails that the Isolation Forest implementation in this

thesis is grown deeper than the scikit-learn implementation, thus requiring an extended runtime. The
impact on the overall performance of an Isolation Forest with the newly proposed height limits is discussed
in Subsection 4.5.1.

The shaded rows in Table 4.1 represent the runtimes for i ForestC S , which will be discussed in more detail.
When considering the situation for which there are no nominal features present in the data, there is no
significant difference in runtime with an increase in dimensionality. This is expected, as the complexity of
the Isolation Forest is independent of the dimensionality. When introducing nominal features, however, the
dimensionality increase results in an increased runtime. This gives the indication that the implementation
of i ForestC S is dependent on the number of features. Naturally, it is assumed that this must result from the
increased number of nominal features. However, when considering the percentage of nominal features in
the data with constant dimensionality, the runtime increase is not as significant. This indicates that the
implementation of i ForestC S can be improved, particularly in the nominal branching strategy. It appears
that within this nominal branching strategy the dimensionality of the data is impacting the complexity,
whereas this in not the case when considering no nominal attributes.

Furthermore, it is observed that an increase in the cardinality of a nominal feature results in an increase in
runtime. As the nominal splitting strategy has to sort through more unique categories, the nominal
branching strategy requires a longer runtime.

When comparing the binary and ternary variations of i ForestC S , it is clear that the implementations
demonstrate comparable sensitivity to the characteristics of the data set. When no nominal features are
present in the data, the runtime of the algorithm is independent of the total number of features in the data
set. The ternary implementation always requires slightly more time to execute, which results from the
additional splitting test performed at every node in the isolation tree. This increase in computation is
balanced by the fact that the average path length of a ternary tree is shorter than that of a binary isolation
tree (see Subsection 3.2.2), resulting in an earlier termination of a ternary isolation tree. After introducing
nominal attributes, the runtime of the algorithm increases.

Finally, for the i ForestC AD it is evident that as the Cartesian product of the nominal attributes increases, the
runtime explodes. This is not difficult to imagine, after considering that Isolation Forest is performed over
every data partition resulting from the Cartesian product. Therefore, with an increase in both the percentage
of nominal features and cardinality, the runtime complexity of i ForestC AD increases as well. This
observation was already indicated in the paper proposing i ForestC AD [36], yet with limited nominal
attributes and low corresponding cardinality, the results of the methodology are promising.

4.3. Experiments with Conditional Features
In this section, the analysis in Section 4.2 is extended to consider data with dependencies between particular
features. In particular, this section contains an intuitive data set in which population height and weight data
is conditioned on the feature containing country information. This section is structured in a similar fashion
to the experiments section with synthetic data with independent features. First, the purpose of these
experiments are addressed in Subsection 4.3.1. Next, the synthetically generated data set is explained and
visualised in Subsection 4.3.2. Subsection 4.3.3 then visualizes the improvement in anomaly ranking with
the incorporation of nominal attributes.

4.3.1. Purpose of Experiments
In this section, the analysis is extended to incorporate a data set in which there are dependent features. This
is primarily done to create an intuitive data set which is visually comprehensible, as well as useful when
determining the performance of local explanation methods in a mixed-attribute setting. The benefits of
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incorporating categorical data is visualised using a simple version of the synthetic data set.

4.3.2. Synthetic Data with Dependent Features
This subsection will consider data sets containing intuitive, dependent attributes to illustrate the proposed
approach in Section 3.1 and compare it to the encodings of categorical data. In order to achieve this goal,
similar analysis is performed as in [36] using information regarding height and weight. Where originally the
height and weight of men and women in the US was used to showcase the performance of the i ForestC AD

approach, the analysis will now be extended to incorporate more countries. Nevertheless, the bivariate
distribution parameters are inferred from the large population survey conducted in [47], aimed at modelling
the relationship between height and weight of men and women in the United States. The bivariate
distribution parameters are utilised in combination with more up-to-date country statistics obtained from
Worlddata.info [48].

Using the bivariate distributions and the up-to-date country statistics, a data set is constructed containing
three attributes, namely country (nominal), height in centimeters (numerical), and weight in kilograms
(numerical). In this section, the experiments that are demonstrated consider only these three attributes
under the assumption that they all contribute to the detection of anomalies. Furthermore, for illustrative
purposes, the experiment is initially conducted using only three unique countries, namely the United States,
the Netherlands, and Vanuatu. Table 4.2 summarises the information regarding the average height and
weight of the male population in these specific countries.

Country Height (cm) Weight (kg)

United States 177 90.6

The Netherlands 184 87.9

Vanuatu 168 72.6

Table 4.2: The average height (in centimeters) and weight (in kilograms) of the male population of different countries. This information
is obtained from [48].

The information contained in Table 4.2 is used to construct the bivariate normal distributions
(Definition 4.3.1) used for experimentation purposes.

Definition 4.3.1. Two random variables X and Y have a bivariate normal distribution with parameters µX ,
σ2

X , µY , σ2
Y , and correlation coefficient ρX Y , if their joint probability density function is given by:

fX Y (x, y) = 1

2πσXσY
√

1−ρ2
·e

− 1
2(1−ρ2)

[(
x−µx
σX

)2+
(

x−µx
σX

)2−2ρ
(x−µX )(y−µY )

σX σY

]
, (4.1)

where µX , µY ∈R, σX , σY > 0 and ρX Y ∈ (−1,1).

Let Xi ∼ N (µXi ,σX ) and Yi ∼ N (µYi ,σY ) represent two jointly normal random variables with correlation
ρ(X ,Y ) = ρ, where X and Y represent the height and weight of males in a given country. The parameters
ρ,σX ,σY are inferred from the large population survey conducted in [47], after undergoing conversions to SI
units. For a visual illustration, 300 observations are sampled from the bivariate normal distribution
conditioned on three countries, where µXi and µYi are found in Table 4.2. The frequency of the observations
sampled from the United States, the Netherlands, and Vanuatu is constant. The resulting data, alongside
identifying the 5% of observations with the lowest joint probability density as anomalies, are visualised in
Figure 4.4.
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Figure 4.4: Random sampling from a bivariate normal distribution for three different countries to obtain a test set of the height and
weight of the male population for three different countries. The data set contains n = 300 observations, such that there are 100
observations sampled from to the distribution corresponding to every country. The large left plot depicts the combined result, whereas
the three right figures illustrate the distribution per country. The colours corresponding to the individual countries are stated in the
legend. The 5% of observations with the lowest joint probability density are considered anomalies and are depicted with an additional
thick, red edge.

As illustrated in Figure 4.4, there is overlap in the three bivariate normal distributions. If there was no
distinction between the different countries, certain observations which are defined as anomalies become
hidden. Take, for example, observation 214. When purely considering the bivariate distribution with the
parameters corresponding to those of Vanuatu, observation 214 is more susceptible to isolation as shown in
the bottom right plot of Figure 4.4. However, when visualising the data entirely, observation 214 becomes
concealed by overlapping data of other countries. In this particular data set, four clear hidden anomalies can
be identified, namely observations 12, 118, 146, and 214.

Now that the data set with dependent features have been introduced, the following section will describe the
effect of incorporating nominal attributes into the anomaly detection algorithms.

4.3.3. Incorporating Nominal Attributes
When an Isolation Forest is trained after discarding the categorical attributes, it becomes evident that the
hidden anomalies in Figure 4.4 become undetectable. Specifically, the observations in the extreme regions
of the entire data set are most susceptible to isolation. This is illustrated in Figure 4.5, in which the contour
maps of the Isolation Forest’s anomaly scores are visualised when discarding nominal attributes.
Figure 4.5 demonstrates the loss of information that results from discarding nominal attributes altogether.
Although the global anomalies remain detected, the hidden anomalies are concealed without incorporating
country information. When considering the contour mappings, it is evident that only the observations
located at the extremes of the overall distribution receive high isolation scores. Observation 214, which is
emphasized in Figure 4.4 as an anomaly with respect to the data’s joint probability distributions, remains
hidden and receives a low anomaly score. This holds for all anomalies that are concealed by overlapping
bivariate normal distributions.

To improve the performance of Isolation Forest in detecting anomalies, information contained in nominal
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Figure 4.5: The contour maps of the resulting anomaly scores of an Isolation Forest trained on the same data as Figure 4.4, without
incorporating the categorised country data. The contour map over all four plots are identical, yet the three smaller plots only consider a
sample of the data specific to a country. The observations with a thick, red boundary and an annotation, which represents the index of
the observation in the data set, represent the 5% of observations with the largest anomaly scores. It is thus important to note that these
indicate the top anomalies identified by the Isolation Forest, and not the anomalies of the overall data set.

attributes is included. This is done using different approaches. First, the i ForestC S methodology from
Section 3.1 is implemented. The results from this implementation are also visualised in Figure 4.6. From this
figure, it is evident that incorporating nominal attributes allows for the identification of the hidden
anomalies in the data set. Observations with index 12, 118, 146, and 214 are all identified and thus readily
isolated.
Furthermore, the i ForestC AD [36] method is implemented up until the classified training stage. Through
selection of the nominal attribute and the numerical attributes, a partitioning of the data is performed
through computation of the nominal feature’s Cartesian product. For every data partition, Isolation Forest is
used to determine conditional anomaly scores. These scores are then combined and used to identify the top
anomalies.

Finally, the data is encoded through the use of label encoding, as defined in Subsection 2.5.1. Through the
utilization of Python’s Scikit-Learn package, label encoding practically entails countries being assigned an
integer value according to an alphabetical ordering. For this demonstration, only label encoding is utilized
as a comparison encoding strategy. Due to the similar frequencies of the sampled country data, the
performance of frequency encoding drops significantly as all countries will be encoded to the same value.
Table 4.3 depicts the anomaly rankings of all probabilistic anomalies resulting from the Isolation Forest
implementations.
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Figure 4.6: When incorporating the categorised country data and utilising i ForestC S as explained in Algorithm 4, the top 5% of anomalies
are identified and illustrated as the observations with the thick, red boundaries. Notice the hidden anomalies (12, 118, 146, and 214)
being isolated through the utilization of the country data. Finally, note that this is the visualization of one particular Isolation Forest,
whereas later results reflect multiple Isolation Forest runs.

Implementation

i Forest i ForestLE i ForestC S i ForestC AD

i Country Binary Ternary Hidden Anomalies

244 VA (8) (17) (17) (19) (23)

292 VA (13) (23) (24) (24) (29)

139 NL (1) (1) (1) (1) (1)

135 NL (14) (11) (15) (14) (13)

223 VA (6) (8) (6) (6) (12)

167 NL (3) (3) (3) (3) (6)

12 US (55) (10) (7) (8) (5) Yes

293 VA (2) (2) (2) (2) (3)

10 US (16) (5) (5) (5) (4)

21 US (4) (4) (4) (4) (2)

72 US (21) (21) (16) (20) (16)

118 NL (49) (9) (12) (10) (10) Yes

99 US (25) (30) (25) (26) (26)

146 NL (103) (7) (11) (9) (8) Yes

214 VA (214) (13) (20) (12) (7) Yes

Table 4.3: The ranks of the anomaly scores assigned to the observations with the lowest joint probability densities after conducting
anomaly detection through numerous Isolation Forest adaptations. The implementation in which no nominal attributes are considered,
i Forest, is compared to four methods in which nominal data is considered. These are Isolation Forest with label encoding, i ForestLE ,
both binary and ternary implementations of Isolation Forest with Categorical Sampling i ForestC S , and i ForestC AD [36]. Observe how
the inclusion of the nominal attribute strongly improves the detection of the hidden anomalies.
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As seen in Table 4.3, the ability to detect hidden anomalies strongly improves through the utilization of the
nominal attribute involving country data. Whereas omitting the country data results in the failure to identify
these anomalies completely, the other methodologies consistently detect the particular anomalies. Only the
binary implementation of i ForestC S would fail to detect observation 214 after considering the results after
20 runs. It is, however, still a significant improvement when compared to omitting the data altogether.

It is important to critically evaluate this experiment and the results that can be drawn from the rankings. The
number of countries incorporated into the countries attribute is limited, with only three unique categories
to sample from. However, even with this simple data set, the intuition behind sampling a nominal attribute
rather than encoding it to a numerical scale can be justified. As mentioned before, when utilizing the
pre-processing procedure of encoding the country data using label encoding, the countries are sorted in
alphabetical order. When this ordering is altered, it becomes apparent how dependent label encoding is to
the underlying order in the encoded numerical space.

Implementation

i Country i ForestLE1 i ForestLE2 i ForestLE3

12 US (10) (6) (6)

118 NL (9) (19) (12)

146 NL (7) (21) (10)

214 VA (13) (11) (24)

Table 4.4: When purely considering the hidden anomalies, it is evident that the rank ordering of Isolation Forest is sensitive to the order
introduced by the Label Encoder. For i ForestLE1 , the introduced ordering is as follows: The Netherlands, United States, Vanuatu. For
i ForestLE2 , the introduced ordering is as follows: Vanuatu, The Netherlands, United States. For i ForestLE3 , the introduced ordering is as
follows: The United States, Vanuatu, the Netherlands. Notice the differences in the anomaly detection results. When considering the top
5% of anomalies, which corresponds to the top 15 anomaly scores, the bolded observations would not be considered an anomaly. These
bolded observations all tend to belong to observations from a country that are centrally located in the encoding ordering, demonstrating
a bias towards the extreme values of an encoding.

Lastly, it is important to note that the i ForestC AD demonstrates great results with such data sets. This
results from the limited number of countries incorporated into the nominal attribute, the presence of only
one nominal attribute in the data, and that all partitions resulting from the Cartesian product contain plenty
of observations. When applying Isolation Forest to real-life customer transaction data in Chapter 5, these
conditions cannot be ensured. Furthermore, recalling Table 4.1, it is argued that with increased cardinality
and nominal attributes the complexity of i ForestC AD cannot be justified in a practical application.
Therefore, it is argued that i ForestC S can result in the improved detection of anomalies when more nominal
attributes with high cardinality are incorporated into the data, as is the case in Chapter 5.

4.4. Experiments with a Ternary Isolation Forest
This section will elaborate on MI-Local-DIFFI when applied to a ternary Isolation Forest. Contrary to the
remainder of the thesis, this is done with purely numerical data. It is opted to first analyse the results of MI-
Local DIFFI when applied to numerical data, as there has not been an evaluation involving the results of a
local explanation method applied to ternary Isolation Forest up to date.

4.4.1. HiCS data sets
To examine the results of a ternary Isolation Forest when subjected to local explainability, a similar approach
is considered as in [4]. It is important to access data that allows for meaningful experiments with particularly
local explanations in mind, and therefore the synthetic data proposed in the HiCS paper is used [49]. HiCS is
a pre-processing step to anomaly detection algorithms, in which high contrast subspaces are searched that
have a conditional dependence among the subspace dimensions. To validate this approach, the authors
produce synthetic data sets containing anomalies in particular subspaces. Due to ground-truth knowledge
of the features spanning the subspaces containing anomalies, this data set can be used to examine the
performance of local explanation methods.
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Within the data sets that are constructed for HiCS, 2− 5 dimensional subspaces are randomly selected. In
these subspaces, high-density clusters are generated in which several observations are altered to become
anomalies. These anomalies are non-trivial, as they deviate from the high-density clusters but remain
undetected in a lower-dimensional representation of the subspace. Originally, there were 21 data sets in
total, all containing 1000 observations but varying in feature size. However, after the experiments conducted
in [4], it was determined that Isolation Forest subjected to data set number {1,2,3,5,6} yielded AUC results of
0.75 or greater. Only these data sets were considered for the evaluation of the explanation performance,
which is done now as well.

4.4.2. Ternary Isolation Forest Evaluation
Now that the data is explained, and the explanation performance metric is defined, the ternary Isolation
Forest can be evaluated. Ternary Isolation Forest lacks efficient implementation in Python libraries, so in
order to conduct these experiments the ternary Isolation Forest is implemented from scratch. This allows for
the storage of all required node characteristics needed to construct a ternary variant of MI-Local-DIFFI.
Furthermore, the indicators are slightly altered as stated in Subsection 3.3.1 to incorporate for ternary
isolation trees. When utilising a binary and ternary isolation tree for the data sets, the performance
comparison of MI-Local-DIFFI is visualised in Figure 4.7:

Figure 4.7: The results of the AUCF I and AUPRCF I when using a binary and ternary Isolation Forest implementation. The experiments
are conducted over five different synthetic data sets, all containing n = 1000 observations. data sets number 1−3 contain 10 features,
while data sets 5 and 6 contain 20 features. The results reflect the average AUCF I and AUPRCF I of 50 Isolation Forests and MI-Local-
DIFFI runs, with the error bars indicating the standard deviations of the results.

From Figure 4.7 it is evident that the ternary Isolation Forest produces consistently worse explanations in
terms of both AUCF I and AUPRCF I when compared to that of a binary isolation tree. From Appendix B, it
is furthermore observed that the difference between the binary and ternary implementations are significant.
Since the MI-Local-DIFFI explanation is model specific, the feature importance vectors are dependent on
the overall predictions of the Isolation Forest. This may vary to the ground truth data of the HiCS data sets,
depending on the accuracy of the overall model. In order to determine whether the model accuracy is worse
for the ternary Isolation Forest, Figure 4.8 shows the computation of the AUC and AUPRC for the relevant
HiCS data sets.
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Figure 4.8: The computation of the AUC and AUPRC when using a binary and ternary Isolation Forest implementation. The experiments
are conducted over five different synthetic data sets, all containing n = 1000 observations. data sets number 1−3 contain 10 features,
while data sets 5 and 6 contain 20 features. The results reflect the average AUC and AUPRC of 50 runs, whereas the error bars reflect the
standard deviations of the computations.

It is apparent from Figure 4.8 that it is not necessarily the case that the binary implementation of Isolation
Forest outperforms the ternary implementation. In fact, Appendix B indicates that there is no statistically
significant difference between all AUPRC results and the AUC results of the first data set. Thus, the accuracy
of the overall model does not necessarily have to be the reason that the ternary isolation tree produces
consistently worse local explanations.

When deep-diving into the MI-Local-DIFFI algorithm, it is evident that the feature importance score is
constructed from various weight indicators. These weight indicators address the path length of the
anomaly’s path, the split proportion in a particular node, and the split interval length in a particular node.
Considering the high-density clusters of the HiCS span several features, the anomalies are only detected
when certain combinations of features are selected. Thus, to detect an anomaly with Isolation Forest, all
these features must be selected in the path of an isolation tree. When the dimensionality of a data set
increases, however, the probability for a specific feature to occur in the path length of an anomaly reduces.
When an anomaly is contained in a specific subspace of the data, the probability of selecting this
combination in an unique path becomes even smaller.

Corresponding to the argumentation of the original Isolation Forest paper [2], a height limit is introduced to
an isolation tree. Considering an anomaly is an observation prone to isolation, their corresponding path
lengths are substantially shorter than that of a normal observation. This height limit marks the average path
length, which is a function of the number of input samples. However, with this height limit in place, the
probability of selecting the specific features necessary to isolate an anomaly reduces. With a ternary
Isolation Forest, every node contains an extra split test and the observations are assigned to an additional
child node. Subsequently, the additional fracturing of the data ensures that a ternary tree grows on average
less deep than a binary tree. This was already established with the calculations performed in
Subsection 3.2.2 of the average path length of a ternary isolation tree. With this significantly lower height
limit, the probability of a ternary isolation tree to select a particular combination of features is substantially
lower than for a binary isolation tree.

To quantify this, consider Theorem 4.4.1:

Theorem 4.4.1. Let X be a data set with n observations and d features, such that X ∈ Rn×d . The probability

that l specific features q1, . . . , ql ∈ {1, . . . ,d} all occur in a path of length p, P
(⋂l

j=1 Ai j

)
, can be expressed as [4]:
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For an anomaly that is only detected through the combination of three features, for example, the probability
that these specific features all occur in the path length p of anomaly o can be computed using Theorem 4.4.1.
Thus, when considering the example in which a data set has d = 10 features and n = 1000 observations, and
using the theoretically computed average path lengths for both the binary and ternary variants of Isolation
Forest, the following probabilities are computed:

Binary: P

(
3⋂

j=1
Ai j

)
= 0.3913

Ternary: P

(
3⋂

j=1
Ai j

)
= 0.1704

This demonstrates that the probability of successfully selecting a specific subspace of the data in the path
of an anomaly changes as the isolation tree structure is altered. With an increase in the splits in a particular
node, and the corresponding decrease in average path lengths of the isolation tree, the probability of selecting
a specific subspace of the data decreases.

Split Interval Indicator with n-ary Isolation Trees
A second reason of the possible deterioration of explanation results of the MI-Local-DIFFI when expanding
the binary isolation tree to a ternary isolation tree, is due to the split interval indicator of the
MI-Local-DIFFI. As the number of splitting criteria in a node increases, the defined split interval length will
reduce in comparison to the overall feature interval length. As this split interval length reduces in size, less
information is contained in the location of the split.

To generalize this, the expected split interval length of a binary and ternary isolation tree is expressed. Let
X1, X 2, . . . , Xn be a random sample of size n from a continuous distribution with a cumulative distribution
function F and a probability distribution function f . Utilising order statistics notation, define X(1) and X(n)

as the minimum and maximum random variable from the sample X1, X2, . . . , Xn , respectively. To compute
the probability density function fX(1) (x), start with the computation of the cumulative density function
FX(1) (x):

FX(1) (x) =P(X1 ≤ x) = 1−P(X1 > x)

= 1−P(X1 > x, . . . , Xn > x)

= 1−P(X1 > x)P(X2 > x) . . .P(Xn > x)

= 1− (
P(X1 > x)

)n

= 1− (
1−F (x)

)n

This result can be used to determine the probability density function of the minimum through differentiating
FX(1) (x):

fX(1) (x) = n
(
1−F (x)

)n−1 f (x).

Likewise, the probability density function of the maximum can be computed to be:

fX(n) (x) = n
(
F (x)

)n−1 f (x).

This analysis can be extended to express all order statistics. Now, let’s apply this result to the situation at
hand. For an n-ary isolation tree, the (n −1) splitting values are sampled from the uniform distribution over
the feature interval [a,b]. For simplicity, let X1, X2, . . . , Xn−1 ∼Uni f (0,1) represent the (n −1) splitting values
chosen within the node. Then:

fX(1) (x) = (n −1)
(
1−x

)n−2I(0,1)(x),

which corresponds to the probability density function of a Beta distribution with the parameters α = 1 and
β= n −1. Thus,

X(1) ∼ Bet a(1,n −1),
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and

E[X(1)] = 1

n
.

With similar calculations it can be concluded that X(n) ∼ Bet a(n −1,1), and thus the expected value of X(n)

can be expressed as:

E[X(n)] = n −1

n
.

Finally, using that if a random variable Z ∼Uni f (0,1), then a + (b −a)Z ∼Uni f (a,b), the results above can
be generalized to a particular feature range [a,b]:

E[X(1)] = a + (b −a)

(
1

n

)
= 1

n

(
b + (n −1)a

)
E[X(n)] = a + (b −a)

(
n −1

n

)
= 1

n

(
(n −1)b +a

)
By symmetry, it is interesting to notice that the expected interval between order statistics is equal to that of
E[X(1)]− a or b −E[X(n)]. Thus, the expected split interval of a n-ary isolation tree is a factor 1

n of the total
feature interval. With increasing n, this feature interval reduces and the feature importance indicator of the
MI-Local-DIFFI method provides less information.

To evaluate this, the HiCS data sets are used to compute the local explanation performance when purely
considering the split interval indicator. The results are depicted in Figure 4.9.

Figure 4.9: Performance of MI-Local-DIFFI for a binary and ternary Isolation Forest. Only the split interval indicator is considered in the
local explanations, so the path length and split proportion indicators are omitted. The results reflect the average AUCF I and AUPRCF I
of 50 Isolation Forests and MI-Local-DIFFI runs, with the error bars indicating the standard deviations of the results.

Indeed, Figure 4.9 demonstrates that the ternary Isolation Forest does not identify the anomaly containing
subspaces of the data as accurately and precisely as the binary Isolation Forest while only using the split
interval indicator of MI-Local-DIFFI. Consistently, the average AUC and AUPRC results of 50 runs for the
ternary Isolation Forest is lower than that of the binary implementation. In fact, Appendix B indicates that
the difference is statistically significant. The standard deviation of these runs, however, are significantly
larger than when comparing the full MI-Local-DIFFI method in Figure 4.7. This results from the fact that the
anomalies are easily detectable in the features spanning the high density clusters. Therefore, since only the
split interval indicator is considered, the feature importance scores are highly dependent on the
stochasticity of the particular isolation tree and where the splits are made with respect to the feature
interval.

It is therefore concluded that the ternary implementation of an Isolation Forest hinders the accuracy of
detecting particular outlying subspaces when compared to the binary implementation. This is due to two
reasons in particular;
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1. The average path length of the ternary isolation tree is shorter than that of a binary isolation tree. This
ensures that the algorithm’s maximum height is set at a lower threshold, which reduces the probability
of successfully selecting the attributes of the subspace containing an anomaly. In Subsection 4.5.1, the
impact of the height limit parameter is examined in more details.

2. The split interval indicator of MI-Local-DIFFI loses significance, as the expected anomaly split interval
reduces with an increasing n-ary isolation tree. In Section 6.3, the recommendation is taken into
account to further explore new indicator possibilities that address this issue.

4.5. Isolation Forest Parameter Evaluation
Throughout this thesis, there have been multiple moments of critical evaluation of the underlying Isolation
Forest algorithm as proposed in [2] and implemented in sci ki t − lear n. Particularly with the underlying
parameters expressed and utilized, it was found that some further evaluation is necessary. In
Subsection 4.5.1, the maximum height limit of the Isolation Forest is investigated, and how the overall
allowable depth of the Isolation Forest contributes to results. This is done by evaluating both the
performance results when detecting anomalies and the performance of identifying the correct subspaces
containing particular anomalies.

Next, Subsection 4.5.2 investigates the performance of an isolation tree with varying sub-sampling sizes ψ.
This is also done by evaluating both the performance results when detecting anomalies and the
performance of identifying the correct subspaces containing particular anomalies.

4.5.1. Isolation Forest Depth
In Subsection 2.3.2, the derivations of the expected path lengths of an isolation tree are elaborated on. In the
original paper, using analysis of binary search trees and the average path length of an unsuccessful search,
the average path of an isolation tree, c(n), was computed to:

c(n) = 2H(n −1)− 2(n −1)

n
,

where H(n) represents the nth harmonic number, for which the corresponding asymptotic expansion is:
H(n) ∼ ln(n)+γ+ 1

2n − 1
12n2 + . . ., where γ ' 0.57722. Furthermore, a height limit to the isolation tree, l , is

introduced as:
l = cei l i ng (log2ψ).

This height limit is introduced as it approximates the average tree height according to [50] and significantly
reduces the complexity by preventing an isolation tree from growing until completion. However, when
considering a proper binary tree, let N denote the maximum number of nodes in a binary tree, and h the
height of the tree. Then:

N =
h∑

k=0
2k ,

= 2h+1 −1.

Through rearranging and solving for the minimum height, the following expression is determined for the
minimum height:

h = cei l i ng
(
log2(N +1)−1

)
,

where the height is rounded up to ensure an integer valued tree-height. Therefore, the expression that is
introduced as a height limit in the original Isolation Forest paper, in fact approximates the minimum tree
height given the total number of nodes in a binary tree.

In this thesis, the expected path length of an isolation tree is taken to be equal to the height limit of an
isolation tree. Under the intuition that an anomaly is easier to isolate, and will therefore have a shorter than
average path length in an isolation tree, taking the average path length seems appropriate. Therefore, the
ceiling of the average path length, as derived in Subsection 2.3.2 and slightly different to the original c(n) in
[2], is taken as the height limit l :

l = cei l i ng (c(n)) = cei l i ng (2H(n)−2)
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To evaluate the newly proposed height limits, and consider the overall sensitivity of results with a varying
height limit, a HiCS data set is used. By varying the height limit and then running the anomaly detection
and local explanation procedures, the sensitivity of the height limit is illustrated. First, the performance of
the Isolation Forest is depicted in Figure 4.10 for both a binary (left column) and a ternary (right column)
implementation:

(a) Binary AUC (b) Ternary AUC

(c) Binary AUPRC (d) Ternary AUPRC

(e) Binary Runtime (f) Ternary Runtime

Figure 4.10: Performance of binary and ternary Isolation Forest with variation in the algorithm’s height limit parameter, averaged over
20 runs. The shaded region around the average result represent the standard deviation of the runs. Figure (a), (c), and (e) represent the
results of the AUC, AUPRC, and runtime of a binary implementation, respectively. Figure (b), (d), and (f) represent the results of the AUC,
AUPRC, and runtime of a ternary Isolation Forest implementation, respectively. The red vertical dotted lines represents the height limit
in line with the original Isolation Forest paper [2], whereas the black line represents the theoretically computed average path length.
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From Figure 4.10, it is evident that both the AUC and AUPRC increase significantly with increasing height
limits up until a certain stagnation point. This stagnation for a binary tree occurs at a height limit of
approximately 17, based on the stagnation of plot (e), whereas for a ternary tree this stagnation occurs at a
height limit of approximately 12. When comparing the originally proposed height limit, marked by the
vertical red line, to the theoretically computed average path length, it is evident that there is a slight
improvement in terms of AUC and AUPRC. Allowing the isolation trees to grow to a larger extent therefore
improves the results of the performance of both the binary and ternary Isolation Forest implementations.
However, it should be noted that this comes at an increased runtime cost, as the training and evaluation
stage of the Isolation Forest have a complexity of O (Tψlog(ψ)) and O (nT log(ψ)), respectively [2]. However,
in the context of this thesis and detecting suspicious customers in the Triodos Bank client-base, it is argued
that the performance of the algorithm is valued above the runtime. Finally, it is observed that the AUC and
AUPRC results of a ternary isolation tree are better than that of the binary implementation for this particular
data set.

Next, the results of the local explanation performance is addressed. Knowing the anomaly containing
subspace of the data, the AUCF I and the AU PRCF I can be computed with a varying isolation tree height
limit. This is demonstrated in Figure 4.11

(a) Binary AUCF I (b) Ternary AUCF I

(c) Binary AUORCF I (d) Ternary AU PRCF I

Figure 4.11: Performance of MI-Local-DIFFI applied to binary and ternary Isolation Forest with varying height limits. The results are
average over 50 runs, with the shaded region representing the standard deviation. Figure (a) and (c) represent the AUCF I and AU PRCF I
of a binary Isolation Forest, respectively. Figure (b) and (d) represent the AUCF I and AU PRCF I of a ternary Isolation Forest, respectively.
The vertical dashed lines represent the original height limit (red) and the theoretically computed average path length (black).

In Figure 4.11, it is shown that there is a steep increase in performance for the lower height limits, until the
increasing performance stagnates. This is comparable to the behaviour demonstrated in Figure 4.11.
Although the performance when using the theoretically computed path length as a height limit is slightly
better than the originally proposed limit, the difference is not as distinct when compared to the AUC and
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AUPRC results. What is interesting, is that both the results for AUCF I and AU PRCF I are better for the binary
implementation when compared to the ternary implementation. This again strengthens the findings of
Section 4.4.

4.5.2. Isolation Forest Sub-sampling Size
In Subsection 2.3.2 the sub-sampling of the isolation tree is addressed. The construction of the Isolation
Forest model is originally proposed using multiple sub-samples of the data. This sub-sampling reduces the
effect of swamping and masking, in accordance to [2]. However, there are two reasons to critically reconsider
this sub-sampling size parameter, ψ.

1. In the typical anomaly detection setting, the data set consists of extremely imbalanced classes. There is
a large sample of normal instances, and only a minuscule percentage of the data that can be classified
as an anomaly. Through sub-sampling, the sub-population used in the training of an isolation tree will
frequently contain purely normal instances. This negatively impacts the ability of an isolation tree to
isolate particular anomalies.

2. The height limit of an isolation tree is dependent on the sub-sampling size ψ. This means that with a
smaller sub-sampling size, the isolation tree is pruned significantly earlier than the average computed
path length given the number of input observations. The size of ψ, as shown in Subsection 4.5.1, can
therefore significantly impact the performance of both the identification of anomalies and the feature
importance results depending on the sub-sampling size.

To emphasize the downside to constructing an isolation tree using a sub-sample of the entire population,
consider the performance of the AUC and AUPRC using a particular HiCS data set with a dimensionality of
d = 10. The performance is evaluated while varying the sub-sample sizeψ, fromψ= 50 up untilψ= n = 1000.
From Figure 4.12 it is evident, within the context the HiCS data set, that for a binary Isolation Forest the results
improve significantly as the sub-sampling size approachesψ= n. This is clearly reflected in both the AUC and
AUPRC results.

(a) AUC (b) AUPRC

Figure 4.12: The performance of a binary Isolation Forest with underlying changes to the sub-sampling size parameter. Figure (a)
represents the AUC results with increasing sub-sampling size ψ, while Figure (b) represents the AUPRC results with increasing sub-
sampling size ψ.

The pattern of increased anomaly detection performance with increasing sub-sampling size ψ is also
reflected in the performance of the feature importance scores. When using MI-Local-DIFFI to identify the
most important features for isolating particular observations, the AUCF I and AU PRCF I improve with an
increase in the sub-sampling size as well, as shown in Figure 4.13.
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(a) AUC (b) AUPRC

Figure 4.13: The performance of MI-Local-DIFFI applied to a binary Isolation Forest with underlying changes to the sub-sampling size
parameter. Figure (a) represents the AUCF I results with increasing sub-sampling size ψ, while Figure (b) represents the AU PRCF I
results with increasing sub-sampling size ψ.

Although Figure 4.12 and Figure 4.13 both demonstrate increased performance with an increase in the
sub-sampling size ψ, be aware that this is not necessarily the case for all data sets. To counter the results of
masking and swamping, an argument is made to consider a sample of the data for training purposes.
However, in the context of money laundering detection and customer due diligence, it is argued that
particularly the effect of masking reduces. With highly unbalanced classes and the resulting lack of large
anomaly clusters, taking a sub-sample of the data for isolation tree training purposes is therefore assumed to
negatively impact the effectiveness of the Isolation Forest model. Thus, in this thesis ψ= n observations are
used to construct every isolation tree.

4.6. Chapter Summary:
In this section, a summary of Chapter 4 is provided. As the chapter contains many experiments, the key
findings have been summarized for additional clarity.

The i ForestC S methodology proposed in this thesis demonstrates improved anomaly detection performance
in the sensitivity analysis of Subsection 4.2.3 when compared to Isolation Forest with encoded nominal
attributes. Furthermore, the pitfalls of encoding strategies and i ForestC AD emphasized in Section 4.3
contribute to the argumentation of using i ForestC S when working with real-life customer transaction data in
Chapter 5. Note that the circumstances of performing anomaly detection over monthly transaction data is
not time-sensitive. Thus, runtime complexity concerns are not weighed as heavily as performance results.

The analysis into the ternary Isolation Forest yielded interesting results. Originally, the hypothesis was held
that a ternary Isolation Forest results in improved anomaly detection performance. However, using the
newly computed average ternary path lengths from Subsection 3.2.2 as height limits, a ternary Isolation
Forest does not outperform the binary Isolation Forest significantly on the HiCS data sets. In fact, when
expanding the MI-Local-DIFFI methodology to ternary Isolation Forest, it was determined that the
explanation performance deteriorates with the increased branching strategy. This results from the reduced
probability of selecting (and hence detecting) feature subspaces containing anomalies. Therefore, in
Chapter 5 a binary i ForestC S is used to detect suspicious customer behaviour from real-life customer
transaction data.

Finally, the Isolation Forest height limit and sub-sampling size as proposed by the original Isolation Forest
paper [2], have been evaluated. It was determined that a height limit is considered that is not in line with the
original intuition of the methodology. Instead, this thesis uses the following parameters:

• Height limit: l = cei l i ng
(
2H(n)−2

)
• Sub-sampling size: ψ= n





5
Applications and Results

Now that the methodology has been introduced and tested in the previous chapters, this chapter will focus
on the applications of locally explainable anomaly detection. Through a fruitful collaboration with Triodos
Bank, this thesis reaps the benefits from having the opportunity to experiment using real-world customer
transaction data. This chapter will elaborate on the bank’s data and procedures used to identify unusual
customer behaviour, as well as present the results from the anomaly detection implementations.

Industry experts have been involved and provided useful guidance and expertise throughout this thesis.
Particularly when utilizing sensitive, real-life customer transaction data, the experience and expertise in
identifying money laundering modus operandi and suspicious customer behaviour has assisted in not only
the construction of the anomaly detection data sets, but also the validation of results.

The chapter first discusses the impact of anomaly detection and the construction of the overall customer
transaction data sets in Section 5.1. Following the construction of relevant data features, the results of the
Isolation Forest methodologies are discussed in Section 5.2. This section will elaborate on the validation of
detected anomalous customers, as well as provide a comparison between different implementations of
Isolation Forest with mixed-attribute data.

5.1. Customer Transaction Data
Throughout this thesis, Isolation Forest models have been applied to data from the bank. Since banks
possess the strong ambition to investigate the potential of AI applications in their current business practices,
investigation into the success of using anomaly detection algorithms to detect fraudulent and suspicious
customer behaviour is encouraged. Furthermore, this collaboration ensures that domain experts are
involved throughout the entire process-chain; from assisting in the selection of features relevant for money
laundering, up until the validation of the classified suspicious customers.

In this section, the process of constructing a relevant data set is discussed. First, the purpose and value of
utilizing data-driven anomaly detection in business practices is reviewed in Subsection 5.1.1. Then,
Subsection 5.1.2 will elaborate on the actual data and the corresponding features deemed relevant for the
detection of money laundering. Finally, Subsection 5.1.3 discusses the process of classifying the detected
anomalies using the expertise of alert handlers.

5.1.1. Value of Anomaly Detection
Banks strive to incorporate AI solutions in their current business practices. Particularly within the Customer
Activity Monitoring (CAM) and CDD departments, the potential of including data-driven anomaly detection
is investigated. Throughout the duration of this thesis research, there has been extensive collaboration into
the application and value anomaly detection solutions can provide to the bank.

Before addressing the potential value that can be extracted from data-driven anomaly detection, it is
important to stress that outcomes of the model are always revisited by domain-experts. First and foremost,
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the rule-based systems are optimized with money laundering and other financial fraudulent behaviour in
mind. The incorporation of the anomaly detection models, with the associated local explanation
methodologies, act as tools to improve the rule-based system and identify unseen customer behaviour.
Finally, all results derived from the models used in this thesis are subjected to review by domain specialists.
CDD specialists and alert handlers at the bank have both reviewed and validated the results before deciding
on further actions.

Throughout the CDD process, there are numerous angles in which the application of anomaly detection can
be proposed. The primary use-cases are expressed below. Note that not all of these applications have been
addressed throughout this thesis, but are addressed to illustrate other potential use-cases. To some extent,
these use-cases can be viewed as recommendations for further practical applications.

1. Identifying suspicious customer behaviour not detected through the rule-based system:
Currently the rule-based system is responsible for generating alerts for suspicious customer activity.
With a newly proposed methodology, one can generate a set of anomalies that potentially includes
customers that were not detected through the current rules in place. Although there is a large overlap
of the two sets of generated alerts, another perspective into identifying suspicious customer behaviour
allows for more customers to be critically evaluated and therefore an increase in the potential
identification of money laundering or financial fraud.

2. Validation of transaction monitoring and introducing new rules:
When performing due diligence, there are well-known scenarios in money laundering. These are
accounted for in a bank’s rule-based system and customer behaviour is monitored according to a
certain standard and combination of these scenarios. Through the use of data-driven anomaly
detection, new features can be explored and incorporated into the input data sets. The resulting
customer behaviour that is identified as anomalous can be locally examined to provide a validation of
the existing transaction monitoring and whether these new features contribute to the detection. If the
customer behaviour is then indeed suspicious and not yet known to the bank, an argument is made
that additional rules can be constructed.

3. Ranking of the rule-based alerts:
The rule-based system consists of various rules. These rules are all based on features and scenarios
known to address risk. However, a large majority of these rules are static and an alert is generated once
a threshold is met. Yet, there is no initial distinction between two customers that trigger an identical
alert. With a coupling of anomaly scores to the rule-based generated alerts, an order can be introduced
that may function as a prioritisation tool for alert handlers evaluating particular alerts or customers.

4. Peer group evaluation:
Anomaly detection can be used on a wide variety of data. In this thesis, there is already a distinction
made between private and business customers. There are however many peer group definitions that
can prove insightful from an anomaly detection’s effectiveness perspective. The more behaviour an
underlying peer group is expected to share, the more distinct anomalies become. Furthermore, there is
the consideration of the optimal size of these said peer groups.

In this thesis, focus is placed on the first two applications. The data set and its corresponding features are
constructed with the most common money laundering scenarios in mind. However, some additional
features are incorporated to evaluate whether new suspicious customer behaviour can be found. In line with
the first research objective of this thesis, some of these new features are nominal. It is explored how the
introduction of these additional nominal features affect the outcomes of the Isolation Forest model.

Furthermore, using domain-expert validation, customers that were detected through the Isolation Forest
model and not through the rule-based system are evaluated for suspicious behaviour. When the use of
data-driven anomaly detection becomes more embedded into the business practices of the bank, additional
use-cases can be explored.

5.1.2. Feature Selection
The goal is to identify suspicious customer behaviour that is not detected through the usual channels as well
as identify new risks factors that will potentially improve the rule-based system. In order to do this, the
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models are tested with real-life transaction data. This section will elaborate on the most important money
laundering considerations and will give an idea of the features considered in the experimental data set.
When discussing the features in a general sense, there are numerous measurement types applied to different
scenarios. These are as follows:

• The total transaction volume over a specified time-period, either monthly or yearly.

• The total transaction frequency over a specified time-period, either monthly or yearly.

• Percentage of monthly transaction volume when compared to the yearly volume.

Note that when the total volume or frequency is stated, it indicates the summation of the transactions to
and from a customer. Below, short descriptions are provided of particularly interesting risk factors that are
considered for the customer transaction data sets throughout this thesis. The risk factors form the basis of
particular rules and features, which will not be stated specifically.

International Transactions (with High Risk Areas and Fiscal Paradises)
It is important to consider all international transactions of a customer, as international transactions often
are the cornerstone of layering illegal funding. With increasing international transactions, the origins of
funds are easily concealed. Therefore, the international transactions of customers are monitored to
determine suspicious or unexpected behaviour.

Particular countries have been identified by the Financial Action Taskforce (FATF) and the European
Commission to show deficiencies in combating either money laundering or terrorist financing [51]. Both the
FATF and the European Commission have an up-to-date list of countries on their website. Furthermore, the
European Commission also maintains a list of countries that do not sufficiently combat tax evasion, fraud,
or avoidance [51]. The consideration of these fiscal paradise countries is also considered throughout the
customer due diligence processes and in the data set for anomaly detection purposes.

Cash and Money Transferring Services
There are three steps that are typically found in the money laundering process. The first, is the placement of
illegitimate funds into the legitimate financial system. As illegitimate businesses often produce large
amounts of cash, this step usually involves the placement of cash into the financial system. Therefore,
financial institutions must remain aware of their customers cash transaction behaviour.

Money Transferring Services (MTS) refer to financial services involving the acceptance of cash, cheques, or
other monetary instruments and the resulting payment to a beneficiary through a transfer or a clearing
network [52]. MTS are attractive, lower cost options to send funds quickly to another individual when
compared to wire transfers or more conventional banking services. These services are coupled with money
laundering and terrorist financing risks and can therefore provide insight into suspicious customer
behaviour.

Cryptocurrency
Cryptocurrencies are increasingly gaining popularity as a means of collecting, storing and cleaning of
criminal proceedings. Particularly in cross-border money laundering, cryptocurrencies have become
attractive to criminals, for a variety of reasons [53]:

• Lack of regulations: Financial institutions are heavily regulated and invest significantly in resources to
detect fraud and protect the integrity of their financial products. Regulation of cryptocurrencies,
however, are in comparison limited or negligible, allowing offenders to abuse cryptocurrencies for
criminal purposes. Furthermore, there is no clear universal strategy to proactively counter misuse of a
cryptocurrency platform.

• Anonymity or pseudonymity: Many wallet providers and crypto-exchanges offer transaction services
with limited regulations. Particularly, limited KYC regulations are pertained in the crypto space,
allowing for criminals to enjoy relative anonymity.

• Criminal payment option: Cryptocurrencies are already a common form of payment for criminal
proceedings.
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• Ease of layering illegal funds: Before integrating illegitimate funds into the economy, the origins of the
funds can be concealed through a series of transactions. Using cryptocurrency channels, the ease of
structuring these transactions makes it easier to conceal the trail.

Therefore, considering the rising trend of money laundering through cryptocurrency channels, transaction
information regarding cryptocurrencies is incorporated into the data set.

Counter-Accounts
To understand the customer’s transaction behaviour, it is essential to provide insight into the customer’s
relationships with other accounts. These other accounts to which a customer receives or transfers money
from, are indicated with counter-accounts. The volumes, frequency, uniqueness, and geographical location
of a customer’s counter-accounts are all taken into consideration during the construction of the data sets.

Other
There are a couple of other scenarios that can indicate money laundering, terrorist financing, or other
suspicious behaviour. In the data set, these features are also considered. These are:

• Transactions that are large in volume.

• Most common country where funds are transferred to and from (not the Netherlands). Here countries
or regions can be categorized, for example.

• Business types. Additionally SBI codes can be interpreted as categorized data.

5.1.3. Validating Anomalies
With the features of the data set constructed, it is important to elaborate on the validation procedures of the
model’s detected anomalies. With real transaction data, there is no preconceived notion of the customers
that can be classified as anomalies. Therefore, measuring detection performance of the Isolation Forest
models is not as straightforward as with synthetic data sets. Instead, domain expertise is used to give an
indication of the detected anomalies’ effectiveness. Furthermore, generated anomalies have been
introduced into the bank’s official alert handling channels and have been evaluated by alert handlers. This
feedback allowed for iterations to the features, as well as immediate validation of the model’s outcomes.

When transaction behaviour is evaluated with the help of domain expertise, the customer behaviour is
classified based on the relevance to detecting suspicious behaviour and observing interesting behaviour.
This is done in the following section.

Alert Assessment
After a customer is classified as an anomaly, the respective customer is subjected to a rigorous evaluation
process to determine follow-up procedures. The results from the models utilised throughout this thesis have
been submitted to evaluation of both AML domain experts and alert handlers. The classifications are as
follows:

1. Not worthwhile:
All behaviour of a customer can be understood as not suspicious or explained.

2. Worthwhile but no additional action required:
From the evaluation, certain components of customer behaviour are interesting, but do not indicate
concerning suspicious behaviour with respect to money laundering or terrorist financing.

3. Action required:
When customer behaviour is indicated as such, an additional follow-up procedure is required after the
alert handler evaluation. This is, in the most suspicious cases, escalated and reported to third parties.
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5.2. Results
This section will elaborate on the results of the Isolation Forest methodology to detect anomalies in the
customer transaction data. Numerous different approaches have been used to compare the consistency of
the detected anomalies and address the impact of mixed-attribute data from a practical context.

It is important to note that all alerts handled through the official channels are generated using a binary
variant of i ForestC S . This is done using the argumentation from Chapter 4. From experiments in Section 4.2,
it is observed that the performance of detecting anomalies with 10% nominal attributes and 50 features is
better when utilising i ForestC S than encoding the attributes. These parameters to the data correspond most
with the customer transaction data to which Isolation Forest is applied. Additionally, the pitfalls of encoding
strategies are considered in the application of i ForestC S .

The binary i ForestC S is used over the ternary variant due to insight from Section 4.4. The improved
explanation results of the binary implementation are preferred when trying to identify unknown suspicious
behaviour.

The parameters of the Isolation Forest are aligned with the analysis of Section 4.5. Summarized, the
parameters to the Isolation Forest experiments are as followed:

• Number of isolation trees:
In the experiments, T = 100 is used. Although the performance slightly increases with an increase in
the number of trees, the number of trees is taken in line with the original Isolation Forest paper.

• Height limit of a isolation tree:
Using the insight into the depth of the isolation tree in Section 4.5, the depth of the isolation trees is
set to the theoretically derived average path length of an isolation tree. For a binary isolation tree, the
derivation is found in Subsection 2.3.2, while the ternary isolation tree is derived in Subsection 3.2.2.

• Sub-sampling size
From the analysis on the performance effects of the isolation tree sub-sampling size in Section 4.5, the
sub-sampling size ψ is set to the total number of observations. Hence, ψ= n.

• Number of Isolation Forest runs
For all experiments and generated results, a total of 20 runs are performed. The results of these 20 runs
are averaged to yield the ranking of the final anomalies.

There are numerous filtering steps performed over the customer transaction data. First, the customer-base
is divided into business and private customers. As the behaviour of these two groups are distinct, and extra
features are incorporated to business customers, the two groups are separated. Second, all customers with
low monthly transaction volumes are omitted from the data sets. A threshold is introduced since anomalies
with minimal transaction volumes are not subjected to further investigation from a money laundering
perspective. Third, only active customers are considered. Fourth, only customers that have an account older
than 3 months are considered. Otherwise, not enough information can be obtained to gain an
understanding of the customer’s typical behaviour. Finally, an upper transaction volume is introduced for
business customers. Through evaluation of the results and the corresponding explanations, it was found
that only “large" companies were isolated. However, particularly large companies are already placed under
more frequent due diligence, resulting in a large overlap between anomalies and rule-based alerts.

When all relevant information is combined and filtered, the final data sets consists of approximately 25,000
and 100,000 business and private customers, respectively. The private customer data set has a
dimensionality of 48, while the business customer data set incorporates extra information regarding
business types, resulting in the consideration of 50 features. For the private customer data set, 2 features are
nominal, whereas the business customer data set includes 4 nominal features.

This section is further divided into different sub-sections. First, the results of the alert handler validation are
discussed in Subsection 5.2.1. Then, a comparison is made between the anomaly consistency of different
Isolation Forest implementations and between anomaly detection results and alerts generated through the
rule-based system in Subsection 5.2.2.
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5.2.1. Domain Experts Validation
Spanning several months, a variety of data sets have been used for anomaly detection. In this section, the
validation of the model’s alerts by alert handlers is addressed using two months of data in particular. As
there are no clear truth labels to the customers, the domain expertise of the alert handlers and AML experts
is used to evaluate the outcomes of the anomaly detection model.

First, the approach of deciding which anomalies undergo validation is explained. As an Isolation Forest
model omits an array of isolation scores that varies for every run due to the stochasticity of the forest’s
construction, deciding on the ordering of anomalies can be done using several subtly different methods. In
this thesis, the average scores over all 20 runs are taken for all customers, after which the highest average
isolation scores are considered anomalies. One might also consider introducing a threshold of the anomaly
scores, yet in this thesis the constant size of the output anomaly array is preferred.

Then, these customer alerts are all compared to the set of existing rule-based alerts. The main purpose of
using data-driven anomaly detection alongside a rule-based alert system is to identify suspicious
transaction behaviour that was not originally detected through the rule-based system. Receiving validation
over an overlapping set of customers will therefore reduce the insight of the Isolation Forest’s detected
anomalies and hinder the detection of new suspicious behaviour. Furthermore, the most important features
needed to isolate “new" suspicious behaviour are analysed to address the identification of new risk factors.

Due to business and time constraints resulting from the constant rule-based alert-flow, approximately 20
customers resulting from the Isolation Forest model can additionally be submitted for review and validation
per month. After validating earlier experiments with AML experts, anomalies in the private customer
subspace were deemed most interesting. Therefore, a total of 14 business customers and 26 private
customers have been submitted for extensive validation. The alert assessment assigned by the alert handler
have been summarized in Table 5.1:

Business Customers Private Customers

1. Not worthwhile 8 8

2. Worthwhile but no additional action required 5 3

3. Action required 1 15

Table 5.1: The alert assessment of 14 business and 26 private customers as assigned by an alert handler. These alerts are generated using
two distinct months of Triodos Bank transaction data

From Table 5.1, it is seen that the use of anomaly detection methods contributes to the detection of
suspicious customer behaviour. Of the customers validated by alert handlers, 40% gained a classification of
‘Not worthwhile’. This indicates that the behaviour of particular customers can be justified after the alert
handler’s evaluation. From a data-induced perspective, customers may show unique patterns in their
behaviour, however unique behaviour is not necessarily indicative of criminal intent.

The majority of customers submitted for validation, were determined to be ‘worthwhile but no additional
action required’ or ‘action required’. This indicates that interesting information is obtained regarding
customer behaviour and that additional follow-up procedures are initiated when a customer requires
additional action. Through the application of the Isolation Forest model with mixed-attribute data, there are
some observations that are detected and can be emphasized.

• Extrapolation of certain features created false-positive anomalies. These were revisited and corrected
to some extent. This emphasizes again that Isolation Forest is data-driven, so inconsistencies in the
data (generation) are brought to light.

• Customers are using accounts interchangeably for business and private purposes.

• There are inconsistencies between customer behaviour and the account information the bank
possesses.
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The bank is using particular insight provided by the Isolation Forest method to revisit some existing rules, as
well as incorporate additional rules into their rule-based system. The most prominent behaviour and findings
observed through validating the outcome of Isolation Forest with local explanations did not emanate directly
from the incorporation of nominal features. Anomalies were more readily isolated in other subspaces of the
data, and nominal features were rarely included in the top-three most important features. On the other hand,
the incorporation of nominal attributes did impact the ordering and classification of particular customers as
anomalies. In the following section, this will be emphasized further.

5.2.2. Comparison Different Isolation Forest Implementations
In this section, a comparison is made between different Isolation Forest implementations. These
comparisons are conducted to provide insight into the contribution of nominal attributes, as well as the
sensitivity to the underlying methodology of incorporating these attributes into an Isolation Forest.

To perform these comparisons, the transaction data of only one month is considered. With this data,
multiple different implementations have been run to generate sets of outlying customers. Only the first 200
customers are considered in this comparison, as in practice it is only the top anomalies that will generate
alerts and will be evaluated by alert handlers.

Consistency Comparison
First, the consistency of the top anomalies are compared. To make this comparison, consider the
intersection of the lists of customer IDs ranked according to the anomaly scores. By taking increments of
length 5, Figure 5.1 is constructed. This figure considers a particular partition of the ranked anomalies, and
determines the intersection of the top x anomalies of different implementations. The figures show the
comparison of the binary i ForestC S to numerous different implementations, for both the business
customers and private customers.
First, notice that the utilization of binary i ForestC S indeed causes the intersection of the top anomalies to
deviate when compared to omitting the nominal features altogether. With an intersection that is slightly less
than 70% for the top 200 anomalies, there is an indication that the nominal features contribute to the
isolation of customers.

When considering Figure 5.1, it is apparent that there is a relatively consistent overlap between the binary
implementation of i ForestC S and the ternary i ForestC S and Scikit-learn Isolation Forest with frequency and
label encoded data. For both the business and private customers, the binary and ternary implementations
of i ForestC S share approximately 75% of its detected anomalies when considering the top 200 anomalies.
When the data is encoded, however, the intersection of the anomalous customers tends to deviate. For the
business customers, considering the top 200 customers, there is approximately a 70% overlap between the
binary i ForestC S and the Scikit-learn implementation with frequency and label encoded data. When
comparing the results for the private customers, however, the intersection increases to above the 80%. The
data sets for private customers contain less nominal features than the business customers. This
demonstrates the impact encoding of categorized data to a numerical scale has on the the resulting
anomalies.

Unsurprisingly, the one-hot encoded data shares the least similarity when comparing the top identified
anomalies. The resulting increase in dimensionality impacts the Isolation Forest’s ability to detect anomalies
as it impacts the probability of selecting a particular subset of features. Additionally, many sparse, binary
indicators are introduced with the one-hot encoding of the data. Using the frequency encoding strategy, the
pitfall of the encoding strategy also becomes clear when examining the nominal attributes. In the most
extreme scenario, a particular nominal feature reduces in cardinality to approximately 33% of its original
cardinality. This is the result in overlapping frequencies, that are all assigned a similar value after encoding.
This particularly occurs with relatively unique categories in a nominal feature, resulting in loss of
information.

Furthermore, the nominal features are examined more closely for the top 200 anomalies. When considering
the top-3 local explanations for every particular anomaly, it was observed that anomalies are more readily
isolated in subspaces of the data not dependent on nominal attributes. However, when observing the
consistency amongst the top 200 anomalies of different methodologies, it is shown that with increasing



66 5. Applications and Results

Figure 5.1: Comparison between the i ForestC S binary implementation and multiple other Isolation Forest implementations. The
comparison is made against the ternary implementation of i ForestC S and three different encoding strategies, namely label encoding,
frequency encoding, and one-hot encoding. Finally, Isolation Forest is also performed on the data set without nominal features.
The plot visualizes the intersection of the top x outlying customers detected compared to anomalies detected with the i ForestC S
binary implementation. So, for example, when considering the top 100 anomalies, the overlap between the binary and ternary
i ForestC S implementation is approximately 0.79, meaning 79 identical customers are detected within the first 100 anomalies. The figure
demonstrates the anomaly intersection trend across the 200 customers receiving the highest anomaly scores. The intersection values
are computed at intervals of length 5. Figure (a) depicts the business customers, while Figure (b) depicts the private customers.

number of nominal attributes, the intersection between different anomaly sets reduces. This gives an
indication that the nominal features indeed impact the identification of particular customer behaviour. In
Figure 5.2 and Figure 5.3, the histograms of the feature importance rankings of the nominal features for the
business and private customers is addressed, respectively. From these histograms, insight into the
importance of these nominal features can be derived.
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Figure 5.2: The histogram portraying the feature importance rankings of all 4 nominal attributes in the business customers data subset.
Considering the top 200 anomalies, the feature importance of all data features (50 total) can be computed locally and ranked. The
histograms demonstrate that the nominal features consistently obtain relatively high feature importance rankings, but are not often
contained in the absolute top features that cause isolation. The feature importance rankings are determined using MI-Local-DIFFI on
the binary i ForestC S implementation.

Figure 5.3: The histogram portraying the feature importance rankings of the 2 nominal attributes in the private customers data subset.
Considering the top 200 anomalies, the feature importance of all data features (48 total) can be computed locally and ranked. The
histograms demonstrate that the nominal features consistently obtain relatively high feature importance rankings, but are not contained
in the absolute top features that cause isolation. The feature importance rankings are determined using MI-Local-DIFFI on the binary
i ForestC S implementation.

As observed in Figure 5.2 and Figure 5.3, the distribution of the feature importance rankings indicate that
the nominal attributes indeed contribute to the isolation of customers with Isolation Forest. There are,
however, limited instances in which the nominal features belong to the most important features to isolate a
customer. Particularly for the private customers, the nominal features considered never belong to the top-5
important features. This indicates that any anomaly admitted to the alert handler from this set of 200 private
customers would never include information regarding a nominal attribute.

When constructing the results of Table 5.2, all ‘Action required’ customers identified in the analysis month
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did not contain nominal attributes in the top feature importance rankings. Since no nominal attributes were
important in identifying these customers, the different implementations of Isolation Forest would have
isolated these particular customers as well. Only the one-hot encoding and Ternary i ForestC S

implementations failed to identify one of these customers within the first 200 anomalies. All other
implementations identified the customers that required additional action. This emphasizes that regardless
of the encoding of the nominal attributes, anomalies contained in subspaces of other features are still
consistently identified.

Comparison to the Rule-Based System
Since banks continuously utilize a rule-based system, a comparison can be made between the anomalies
detected and the scores assigned to previously alerted customers. Table 5.2 compares the top 200 anomalies
to the alerts that the bank had generated. The ‘Other’ alert assessment indicates the alerts that yielded no
additional actions, as well as the alerts that are still being processed. The ‘Action required’ alert assessment is
in line with Subsection 5.1.3. Furthermore, the table depicts the number of anomalous customers that have
not received an alert through the rule-based system, indicated with ‘No Alerts’.

Alert Assessment Business Customers Private Customers

Binary i ForestC S

Other 60.5% 57%

Action required 8% 17%

No Alerts 31.5% 26%

Ternary i ForestC S

Other 63.5% 55%

Action required 7% 19.5%

No Alerts 29.5% 25.5%

Frequency Encoding

Other 70% 56%

Action required 5% 19%

No Alerts 25% 25%

Label Encoding

Other 69% 57%

Action required 5% 18.5%

No Alerts 26% 24.5%

One-Hot Encoding

Other 66% 44.5%

Action required 7% 13%

No Alerts 27% 42.5%

No Nominal Attributes

Other 69.5% 57%

Action required 4.5% 18%

No Alerts 26% 25%

Table 5.2: Comparison between different Isolation Forest implementations and the rule-based system generated alerts. The ‘Other’ alert
assessment indicates the alerts that require additional action, as well as the the alerts that are still being processed. The ‘Action required’
alert assessment is in line with Subsection 5.1.3. Furthermore, the table depicts the number of anomalous customers that have not
received an alert through the rule-based system, indicated with ‘No Alerts’. It is important to note that customers that have not generated
alerts are the most interesting from a practical perspective, as a goal of using data-driven anomaly detection is to gain additional insight
into customer behaviour unnoticed beforehand. The percentages indicate how many customers of the top 200 anomalies have received
the respective alert assessment.

From Table 5.2, it is observed that a large percentage of the top anomalies are indeed false positives. This is
as expected. When considering the skewed class distributions, there is only a small fraction of the overall
customer population that is actually suspicious or guilty of laundering money or financing terrorism. On the
other hand, however, when comparing the results to the alerts of the rule-based system, all methods would
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have returned a significant portion of customers requiring additional action. This is an excellent
confirmation of the potential of anomaly detection in detecting suspicious customer behaviour in the
context of AML.

The customers that had not generated any alerts through the rule-based system, but are amongst the top
200 detected anomalies, are labeled as “No Alerts” in Table 5.2. As can be seen, a significant percentage of
the top anomalies had not generated prior alerts. These are interesting customers, as potentially new insight
can be gained regarding behaviour not reflected through the rule-based system. Additionally, using the
alerts from Table 5.1 as argumentation, there is value and information contained in this customer subset.
However, between the different implementations, the similarity between the “No Alerts” customers were
was small. This does indicate that the nominal attributes contribute to isolation, even when the most
suspicious behaviour did not emanate directly from these features.

5.3. Chapter Summary
In this section, a summary is provided of the chapter. This lists the key take-aways and findings of this chapter.

1. Over the course of this thesis, a total of 16 customers have been directly classified as customers that
require additional action. This entails that an additional follow-up procedure is required after the alert
handler has validated the customer alerts.

2. New suspicious behaviour has been identified through the inclusion of new features into the data. This
will result in the improvement and generation of new rules.

3. The most suspicious behaviour did not emanate from nominal attributes. On average, these attributes
demonstrated some indication of assisting in the isolation of customer behaviour. However, through
the local feature importance explanations, nominal attributes were rarely identified as the top
important features.





6
Conclusion & Recommendations

This chapter will draw conclusions from all experiments conducted throughout this thesis and provide
recommendations for future research. In Section 6.1 the research objectives stated in Chapter 1 are revisited
and answered. Then, Section 6.2 will briefly state the contributions of this thesis. Finally, Section 6.3 will
discuss potential future research topics.

6.1. Conclusion
In this section, the research objectives stated in Chapter 1 will be answered and argued using results derived
from this thesis.

RO1: How should mixed-attribute data be incorporated into locally explained Isolation Forest?

First, it is important to state that nominal features provide additional insight into the detection of anomalies.
As demonstrated in Section 4.3, without the consideration of nominal features, certain anomalies will never
be detected.

When working with mixed-attribute data, typically all nominal attributes are encoded to a numerical scale.
Although in numerous practical applications this is proven to be sufficient, translating a non-ordered
categorical variable to a numerical scale intuitively raises questions. To name some examples, encoding
strategies can result in the ordering of unordered categories, the assigning of similar encoded values when
categories appear with similar frequency, and the increase in the data set’s overall dimensionality.

In this thesis, a new methodology is proposed, i ForestC S , that directly samples amongst the categories of a
nominal feature when selected in a given node of the isolation tree. This method does not require additional
encoding of nominal features and demonstrates improved performance when evaluating it to other
encoding strategies using independently sampled, mixed-attribute synthetic data. Furthermore, the
downsides that can accompany an encoding strategy are not relevant when directly sampling from the
categories in a nominal feature.

i ForestC S is also used with real-life, mixed-attribute customer transaction data. Although the nominal
attributes in the data only rarely belonged to the top-3 most important features for isolating a customer, the
inclusion of only a couple of nominal features can cause differences in the top anomalies detected.

Thus, to conclude, preference is placed on using i ForestC S to detect anomalies in mixed-attribute data.

RO2: Does a ternary tree structure improve an Isolation Forest’s ability to detect anomalies and provide local
explanations?

Throughout this thesis, the ternary Isolation Forest has been explored in more detail. Through an analysis
performed in earlier research, the original hypothesis stated that performance can be improved using a
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ternary isolation tree structure over a binary structure.

To justify this hypothesis, derivations of average path lengths of ternary isolation trees were revisited. As
there are no built-in Python libraries to construct a ternary Isolation Forest, the Isolation Forest algorithm is
constructed and altered to incorporate the ternary branching strategies. Using this implementation, the
ternary Isolation Forest could be extended to incorporate mixed-attribute data. Furthermore,
MI-Local-DIFFI is adapted to dissect the ternary isolation tree nodes for feature importance information as
well.

There are numerous findings derived from Chapter 4 over ternary Isolation Forest. First, the probability of
selecting a certain subspace in a data set reduces when using ternary isolation trees. This is the direct result
of the smaller (theoretical) average path lengths for a ternary isolation tree. As a binary tree experiences
relatively less fragmentation in every node, the path length of an anomaly will be longer and contains more
information about anomaly containing sub-spaces. This negatively impacts the ability to detect anomalies
contained in more complex subsets of the data, which was reflected when considering experiments with the
HiCS data sets. Furthermore, the split interval indicator of MI-Local-DIFFI carries less information when
increasing from a binary to a ternary splitting strategy.

When applying Isolation Forest to mixed-attribute customer transaction data, the binary implementation of
i ForestC S was chosen for submitting anomalies to alert handlers. This was done since improved explanation
results are preferred when attempting to identify unknown suspicious behaviour.

Thus, a ternary tree structure can for certain data sets provide improved results regarding the ability to
detect anomalies. However, the decrease in probability of selecting a particular subspace with a ternary
isolation tree impacts the local explanation capabilities. In the practical setting of this thesis, the reduced
explanation performance outweighed the other considerations. Thus, the original hypothesis that ternary
Isolation Forest yields improved results, is not confirmed.

6.2. Contributions
The contributions made throughout this thesis are as follows:

1. A new approach to incorporating nominal features within Isolation Forest is introduced, namely
i ForestC S . This approach respects the essence of the Isolation Forest; the random, data-induced splits
are maintained in a nominal attribute by randomly selecting categories. This method generates
improved results when compared to common encoding strategies.

2. A more detailed analysis of the comparison between results of a binary and ternary Isolation Forest is
performed. Additionally, the MI-Local-DIFFI method is extended to incorporate ternary isolation trees,
allowing for an evaluation of the local explanation performance.

3. An evaluation on real customer transaction data involving nominal attributes has been conducted.
Using data-driven anomaly detection, new suspicious customers and additional risk factors have been
identified.

4. Parameters originally proposed for the Isolation Forest algorithm have been evaluated, resulting in the
proposal of new height limits and sub-sampling sizes when using Isolation Forest.

6.3. Recommendations
In this section, recommendations for future research are discussed. Every paragraph below indicates a new
recommendation:

Throughout this thesis, comparisons have been drawn to various encoding strategies. These encoding
strategies share certain similarities; the categorical encoding is performed independent from other
attributes in the data and they are used within the context of anomaly detection with Isolation Forest. This is
done to accommodate for the fact that the nominal attributes in the customer transaction data share
dependencies to numerous other features. A particular form of encoding that has not been experimented
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with, is the encoding based on a target feature. One can encode a nominal feature on the basis of the mean,
variance, or higher moment of a target feature, for example. There are a couple of side-notes to consider
with this approach. The first, is determining the relevant feature that acts as a target feature. In customer
transaction data, a nominal attribute can impact the expected international, cash, or transaction volume
behaviour of a customer, for example. The question that therefore arises is one of choosing the correct target
feature.

A common local explanation method that is readily available in Python libraries, is Tree SHAP. In this thesis,
the newly proposed i ForestC S has not been constructed to accommodate analysis with Tree SHAP. This
holds true for the ternary Isolation Forest as well. To improve further research into these Isolation Forest
implementations, the algorithm’s should be constructed to resemble the Sci ki t − lear n implementation of
Isolation Forest more.

In Section 4.4 it was concluded that the split interval indicator of MI-Local-DIFFI loses significance with an
increasing n-ary isolation tree. This occurs due to the decreasing expected anomaly split interval when the
branching strategy of an isolation tree is expanded. For further research, it is interesting to modify the split
interval indicator to account for an increasing n-ary isolation tree and observe whether the local explanation
performance improves.

Furthermore, the split interval indicator of MI-Local-DIFFI depends on the underlying feature distribution
and a notion of distance. With a nominal attribute, this indicator does not translate. It is therefore
interesting to explore whether the indicator can be adapted to incorporate nominal features directly, or if
other information of isolation trees can be exploited to improve MI-Local-DIFFI. In Appendix C, an initial
idea is proposed that has been explored briefly throughout this thesis. It is recommended to continue
research in this direction to derive more robust conclusions.

From a practical point-of-view, it is interesting to consider anomaly detection applied to particular
peer-group definitions. When considering the real-life customer transaction data, using peer-group
definitions to identify smaller subsets of the data can improve the detection and explanation of anomalies.
The more behaviour a peer group is expected to share, the more distinct anomalies within these peer-groups
become. Therefore, the process of defining peer-group definitions is from a practical perspective an
interesting future endeavor.
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A
Multinomial-Dirichlet Distribution

Often when handling nominal features, the Binomial or Multinomial distribution are natural modelling
considerations, depending on the number of categories the data is divided into [54]. Both distributions
allow for the modeling of n draws from a feature data set, often with the presumption that category
frequencies are known. When generating categorical data, category frequencies can be established
beforehand. However, the parameters of the Binomial or Multinomial distributions can also be generated
from the Beta or Dirichlet distributions respectively, considering these are its conjugate priors.

The Dirichlet-Multinomial modelling of nominal features is parametric, and can be classified as an
empirical Bayesian model [54]. To further elaborate on the distribution, some definitions are introduced for
formality:

Definition A.0.1. The n-dimensional closed simplex is defined as

Tn(c) =
{

(x1, . . . , xn)T : xi > 0,1 ≤ i ≤ n,
n∑

i=1
xi = c

}
,

where c is a positive number. We define Tn =Tn(1).

Using this notation for the n-dimensional closed simplex, the Dirichlet distribution can be defined.

Definition A.0.2. Let x = (x1, . . . , xn)T ∈Tn be a random vector. x is said to have a Dirichlet distribution if its
probability density distribution is as follows:

f (x) = Γ (α0)∏n
i=1Γ (αi )

n∏
i=1

xαi−1
i ,

where αn = (α1, . . . ,αn)T is a positive parameter vector, α0 = ∑n
i=1αi , and Γ(c) = ∫ ∞

0 t c−1e−t d t is the Gamma
function. We denote the Dirichlet distribution as Di r (αn) [55].

It can be observed that when n = 2, the probability density function of the Dirichlet distribution corresponds
to that of the Beta distribution with α1 and α2 as parameters. It is indeed a multivariate generalization of the
Beta distribution, often being referred to as such. Figure A.1 visualizes the probability simplex, and how the
parameter vector αn impacts the distribution over the simplex.
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80 A. Multinomial-Dirichlet Distribution

Figure A.1: The probability density functions of a Dirichlet distribution with three random variables, for different α3 vectors. In
general, the density function is a n-1 dimensional simplex that exists in the n-dimensional space. The α3 parameter vector controls
the probability congestion over the simplex, with every vertex representing a random variable. Code taken from https://github.
com/yusueliu/medium/blob/master/scripts/plot_dirichlet.py.

From Figure A.1 there are some noteworthy observations. First, when every parameter αi is equal to one
another, the distribution over the n-dimensional closed simplex is symmetrically distributed.

Second, the magnitude of the parameters αi impact the probability density shape. When 0 < αi < 1, the
probability density congests at the edges of the simplex. Increasing the value of αi such that αi = 1, causes
the density to become uniformly distributed over the simplex. Finally, when αi > 1, the probability density
accumulates in the centre of the simplex.

https://github.com/yusueliu/medium/blob/master/scripts/plot_dirichlet.py
https://github.com/yusueliu/medium/blob/master/scripts/plot_dirichlet.py


B
Statistical Significance

B.1. Figure 4.7

Assumptions

Homoscedasticity Normality

Data set Binary Ternary Student’s t-test

1 0.717 0.295 0.420 7.26e-10

2 6.34e-2 0.184 0.473 7.61e-18

3 0.124 0.772 0.111 4.35e-24

4 0.212 0.984 0.253 5.72e-14

5 0.423 0.670 6.72e-2 1.69e-20

Table B.1: The Student’s t-test and the verification of its assumptions applied on the AUC outcomes of Figure 4.7. All reported values
indicate the p-values.

Assumptions

Homoscedasticity Normality

Data set Binary Ternary Student’s t-test

1 0.954 0.270 0.842 7.74e-10

2 1.78e-2 4.40e-2 0.895 4.72e-14

3 4.73e-4 0.769 2.68e-2 2.44e-18

4 0.236 0.176 0.905 1.47e-15

5 8.79e-2 0.937 0.556 2.07e-17

Table B.2: The Student’s t-test and the verification of its assumptions applied on the AUPRC outcomes of Figure 4.7. All reported values
indicate the p-values.
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B.2. Figure 4.8

Assumptions

Homoscedasticity Normality

Data set Binary Ternary Student’s t-test

1 0.326 3.13e-2 4.29e-2 0.611

2 0.666 0.198 0.460 2.14e-4

3 0.114 0.631 0.545 1.13e-5

4 0.912 0.837 0.402 1.5e-6

5 0.334 3.40e-2 0.817 6.1e-9

Table B.3: The Student’s t-test and the verification of its assumptions applied on the AUC outcomes of Figure 4.8. All reported values
indicate the p-values.

Assumptions

Homoscedasticity Normality

Data set Binary Ternary Student’s t-test

1 2.94e-3 0.337 0.610 0.294

2 0.552 0.532 0.766 0.956

3 6.57e-2 0.889 0.136 0.649

4 4.31e-2 0.824 0.148 0.115

5 5.08e-2 0.858 0.499 5.46e-2

Table B.4: The Student’s t-test and the verification of its assumptions applied on the AUPRC outcomes of Figure 4.8. All reported values
indicate the p-values.

B.3. Figure 4.9

Assumptions

Homoscedasticity Normality

Data set Binary Ternary Student’s t-test

1 0.178 0.541 0.183 1.55e-9

2 0.789 1.68e-2 0.281 2.19e-9

3 0.205 0.868 0.909 1.77e-8

4 0.574 0.555 0.109 5.51e-8

5 0.472 0.753 0.169 1.47e-11

Table B.5: The Student’s t-test and the verification of its assumptions applied on the AUC outcomes of Figure 4.9. All reported values
indicate the p-values.
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Assumptions

Homoscedasticity Normality

Data set Binary Ternary Student’s t-test

1 0.489 0.283 0.645 5.78e-10

2 0.974 6.94e-2 0.662 7.08e-11

3 0.635 0.641 0.829 2.43e-9

4 0.334 0.697 1.72e-2 2.60e-12

5 0.811 0.506 0.688 4.94e-18

Table B.6: The Student’s t-test and the verification of its assumptions applied on the AUPRC outcomes of Figure 4.9. All reported values
indicate the p-values.

B.4. Figure C.1

Assumptions

Homoscedasticity Normality

Data set Binary Ternary Student’s t-test

1 0.588 0.960 0.968 0.607

2 0.801 0.747 0.952 0.571

3 0.185 0.243 0.827 3.65e-2

4 0.224 0.309 0.118 7.10e-2

5 0.944 0.450 0.629 0.538

Table B.7: The Student’s t-test and the verification of its assumptions applied on the AUC outcomes of Figure C.1. All reported values
indicate the p-values.

Assumptions

Homoscedasticity Normality

Data set Binary Ternary Student’s t-test

1 0.402 0.413 0.880 0.946

2 0.817 0.841 0.256 0.497

3 0.449 0.984 0.748 0.113

4 0.149 0.488 0.679 7.96e-2

5 0.409 3.91e-2 0.882 0.435

Table B.8: The Student’s t-test and the verification of its assumptions applied on the AUPRC outcomes of Figure C.1. All reported values
indicate the p-values.





C
MI-Local-DIFFI Split Interval Length

Indicator for Mixed-Attribute data

C.1. Split Interval Length Indicator
Recall from Section 3.3 that the split interval of a node vi j in the path of anomaly o in tree ti is defined as:

si
(
o, vi j

)
:=

∣∣Anomaly split interval of vi j w.r.t o
∣∣∣∣feature interval of vi j

∣∣
The split interval weight is then defined as the vector −→w SI (o, i ) = (

wSI
1 (o, i ), . . . wSI

PL(o, i )
)
, where PL represents

PL(o, i ) defined above, where

wSI
j (o, i ) = 1.5− 1

si
(
o, vi j

)+1

This split interval weight is dependent on the underlying feature distribution. Definitions of the anomaly
split interval and the feature interval are all dependent on a notion of distance. The calculation of such a
distance metric is not as straightforward when considering nominal attributes. However, only taking this
weight into consideration for the numerical attributes, would induce a bias in the feature importance scores.
Without considering the third weight only for nominal attributes, the numerical attributes are penalized
more severely. Thus, in this thesis, it was first opted to discard the split interval weight when considering
i ForestC S entirely.

However, when testing the different indicators of MI-Local-DIFFI, it was determined that the split interval
weight improved the explanation results of purely numerical data [4]. To strive for this improvement in
results, a hybrid adaptation is proposed. By introducing an additional weight when considering the random
sampling in a nominal attribute, the split interval weight can potentially be used again in the
MI-Local-DIFFI approach applied to i ForestC S .

When considering nominal feature, it can be interesting to evaluate the cardinality of the nominal feature.
Especially using a random sampling approach to construct the left and right child nodes, the number of
categories that are sampled can provide skewed splits. For example, if one selects a single category for the
left branch and assigns all remaining categories to the right branch, it is likely that the observations in the
left branch are isolated more readily as a result. This will be reflected in the first two indicators of
MI-Local-DIFFI already, so similarly to the original split interval weight a penalty is introduced to indicate
the “luckiness" of the split in this particular nominal node.

Hence, it is proposed that for the nominal split interval of a node vi j in the path of anomaly o in tree ti is
defined as:

sinom
(
o, vi j

)
:= c

k j
,
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where c ∈ [1,b k j

2 c] represents the number of categories sampled from the nominal feature selected in node
vi j , and k j represents the total cardinality of the nominal feature selected in node vi j .

C.2. Experiment with Synthetic Data
In this section, the data set presented in Subsection 4.3.2 is used to address the MI-Local-DIFFI method
applied to mixed-attribute data. With the underlying assumption that the three attributes containing
information regarding Height, Weight and Country all contribute to the detection of anomalies, these
features are classified as the feature subspace containing anomalies. The data set is expanded with 10
additional features, all containing noise sampled independently from a Uniform distribution on the interval
[0,1]. This is done to justify the anomalies located in the Height/Weight/Country subspace using the
probabilistic anomaly measure. Furthermore, the size of the overall data set is increased from n = 300 to
n = 1000, in line with the data sets used in Subsection 4.4.1. Finally, the cardinality of the nominal attribute
is increased by incorporating country data from Germany and Indonesia. A Dirichlet prior is again used to
automate the parameters of the Multinomial distribution.

This experiment specifically addresses the newly proposed split interval length indicator of MI-Local-DIFFI
for nominal attributes, described in Section C.1. In the original proposal of MI-Local-DIFFI, a split interval
length indicator was found to improve the explanation results compared to only utilising the path length
and split proportion indicator. This split interval length indicator is not compatible with a nominal attribute.
Thus, an adaptation is proposed that considers the cardinality of a nominal attribute instead, ensuring that
the split interval indicator can be incorporated into MI-Local-DIFFI when using i ForestC S . The indicator
therefore becomes a hybrid weight that adapts to the feature’s attribute typology. In Figure C.1,
MI-Local-DIFFI is applied to different data sets, with and without the hybrid split indicator weight:

Figure C.1: The results of MI-Local-DIFFI applied to 5 different data sets with height and weight data conditioned on the nominal country
feature. First, MI-Local-DIFFI is applied using only the Path Length (PL) and Split Proportion (SP) indicators. Then, the hybrid variant
of the Split Interval Length Indicator (SI), is taken into consideration. Per data set, 50 runs have been conducted.

From Figure C.1, it is apparent that with these data sets there is no consistent statistically significant
difference between MI-Local-DIFFI with and without the hybrid split indicator weight. This is also
confirmed in Appendix B, where only the AUCF I results of data set number 3 are found to have significant
different means.

However, the intuition behind incorporating an indicator that penalizes overly fortunate splits is understood
and valued. Therefore, it is believed that data sets can be constructed to improve the testing of this indicator.
The assumption stated earlier that the height, weight and country all contribute to the detection of
anomalies is true, yet does not incorporate the fact that anomalies can also be determined through the
weight and height features only as well. Thus, this analysis can be improved by using data sets that
incorporate nominal attributes and have clear anomaly containing sub-spaces of the data similar to the
HiCS data sets. Hence, further research on this indicator is suggested.
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