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Summary   

This thesis research deals with the out-of-plane assessment of unreinforced masonry walls vertically spanning between 
the floors of a structural system. Their stability is analyzed in the context of the induced earthquakes that have been 
striking the area of Groningen in recent times as a result of gas extractions.  

Present codes evaluate the structural capacity of a wall element either by comparing its physical strength to the applied 
load, following a so called force-based approach, or by making use of a combination of kinematic and limit analysis, 
generally referred as displacement-based methodologies. Displacement-based approaches such as the ones followed by 
the New Zealand standard (NZS) and the Italian code (NTC) seem to be more coherent with the out-of-plane failure 
mechanism considered as an instability problem. However, these codes are based on earthquakes whose nature is 
tectonic, and the used design spectra are not consistent with the induced nature of the Dutch events. Therefore, this 
thesis aims to verify whether the adoption of displacement-based methodologies from foreign countries is appropriate 
for the Groningen scenario and, in that case, if it is possible to derive more accurate results by making use of a numerical 
2D modeling approach.  

The methodology developed to answer the research questions consisted in mainly two parts. At first, attention was given 
to the modeling of a rocking wall only. Its inherent nonlinear behavior was analyzed by addressing its physical and 
geometrical properties and a variety of boundary conditions. Three alternative 2D wall models were developed and 
employed for carrying out several quasi-static and nonlinear transient analyses with the aim of choosing the most 
appropriate wall model for its implementation in an expanded building discretization. These models were validated 
against the results of experimental researches and analytical formulas found in relevant literature. Through a sensitivity 
analysis on material model parameters, it was found that a discretization of the rocking wall consisting of numerically 
integrated curved beam elements with 11 integration points over the thickness and nonlinear material model lumped in 
the areas where cracking is expected to occur is a valid finite elements representation for a rocking wall. In that case, a 
smeared approach with the Total Strain Fixed crack constitutive model was used to model conveniently the crack 
propagation in the cracked sections.  

In the second stage of the research, the wall model was introduced inside a building system, which was represented by a 
frame model with linear elastic properties. In the model, only the nonlinearity of a single wall was considered at a time. 
This model was employed on different levels of the frame building and its resistance to the out-of-plane failure was 
investigated by exciting the primary structure with incremental base motions. The records used to perform these 
nonlinear analyses were derived in accordance to prescription of the NPR9998:2015, and the resulting output was 
elaborated to construct graphs showing the resistance of walls to the out-of-plane failure as a function of their location 
in the frame. The URM walls pertaining to top floors showed a tendency to tolerate smaller values of PGA than those 
on lower levels, even though this increase of vulnerability was not proportional to the solicitation, which seemed to raise 
linearly along the structure. In order to investigate this aspect, linear transient analyses were run on the frame model with 
the previous batch of records. The output of these analyses was processed with a Fast Fourier Transform procedure and 
the elastic response spectra at floor level were obtained.  

By looking at the obtained response spectra it became clear that the interaction between the response of the primary and 
the secondary system determines the magnitude of the inertia forces acting on the walls. It was observed that the period 
of vibration of a rocking wall is a function of its deformation, and that the “period elongation” caused by its mid-height 
displacement may determine an abrupt reduction of the instabilizing forces acting on it, preventing it from failing.  

Once the effects of height amplifications and systems-interaction on the URM walls within a building were unveiled, 
their resistance to out-of-plane excitations that resulted from numerical analyses was compared to the results 
extrapolated from the foreign normative. The comparison showed that for walls on lower floors the maximum PGA 
tolerable by the numerical model stands in between the values derived from the codes, whereas for wall on higher levels 
the maximum accelerations at the base of the buildings is similar for the numerical and the analytical models. Also, the 
maximum PGA’s found in the New Zealand normative seem to be conservative, especially for lower-level walls. In 
conclusion, although the models developed do not allow to increase the accuracy of the analytical formulae found in 
international standards, they can be employed to verify the appropriateness of their use in the Groningen scenario.
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1    Introduction 

The ongoing gas exploitation pursued by the Dutch government in the region of Groningen has made necessary to 
investigate the seismic vulnerability of local buildings. If on the one hand all the structures today are erected according to 
recent prescriptions that enforce seismic design (Eurocode 6 and 8, National annexes, NPR 9998), on the other hand the 
largest part of the historical building stock in The Netherlands comprises structures where unreinforced masonry is part 
of the main load bearing structure.  

Intuitively enough, plain masonry is not the best construction material to choose when it comes to the design of 
earthquake-resistant structures. Its composition and mechanical response lack important features that are crucial in the 
seismic situation such as tensile strength and ductility. For these reasons the mechanical behavior of unreinforced 
masonry better suits scenarios where a structure 
is subjected to static stresses rather than those of 
a dynamic nature.  

In confirmation to this, in recent years the 
structural response to seismic events of the 
existing buildings in the area of Groningen 
appeared to be inadequate, and extended 
researches have been carried out with the aim of 
improving the assessment procedures with 
special regards to reliability and accurateness of 
the outcome. In order to do that, it is of 
fundamental importance to accurately identify 
the underlying characteristics of the Groningen 
scenario, such as the induced nature of its 
earthquakes and the rather slender wall systems 
with low lateral stiffness.  

Together with other consultancy engineering companies and Academic Institutions in the Netherlands, Bam A&E was 
commissioned by Nederlandse Aardolie Maatschappij (NAM) to assess the state of art of several existing structures in 
the area interested by the seismic phenomena, yet providing possible strengthening measures for their retrofitting. 
Although compelling, the current assessment procedures for masonry elements presented in foreign codes appear to be 
conservative and too specific for the characteristics of foreign situations. As a result, applying foreign normative on the 
Dutch buildings result in economically inconvenient solutions which can be realistically mitigated by carrying out further 
investigations on this matter.  

1.1 Masonry as a construction material 

Masonry is a composite material used to erect structures in every part of the world since very ancient times. To its 
simplest configuration, it consists of units that are brought together and bound with mortar. The systematic use of 
masonry and its corresponding developments coincide with the advent of the large urban civilizations and, in the period 
where mainly wood was adopted for construction purposes, marked the transition to an era of more durable and solid 
structures. The technology as we know it today is the outcome of the progresses made over thousands of years and to 
this day a large portion of the buildings in world cities are made from masonry.  

Notable characteristics of masonry are the affordability and accessibility of its constitutive materials that together with its 
exceptional fire resistance make this construction material particularly attractive for residential use. Besides that, masonry 
is strong in compression but acts poorly in tension, showing brittle failure when subject to stretching or bending. Thus, 
construction of gravity structures (high compressive strength under vertical loads, high mass provided by the material 
itself) where arch action would be predominant is also popularly attained by means of unreinforced masonry. Although 
aspects such as the large variability in the mechanical characteristics of bricks and mortar may justify some of the 

Figure 1 -  A measure for collapse prevention in Loppersum. 
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complications that are encountered when using masonry, authors agree that the major feature determining the general 
behavior of this material is the relation between its constituents. Their interaction in fact increases in complexity with 
increased deformation, making the overall material behavior highly nonlinear and difficult to model. Nowadays, the 
ongoing applications of masonry for the erection of slender structures particularly prone to instability phenomena and 
for the restoration of buildings of historical value require an even more in-depth knowledge on the way this material 
respond to a range of loading conditions.   

1.2 Context of the present study, object of investigation and motivation 

Given the limitations in structural performance of the masonry, one could wonder why in the Netherlands this material 
is generally found as the major building component even for structures located in a seismic region. The origin of this 
problem can be found in the loading typologies which were taken into consideration at the time of construction of the 
existing building stock around Groningen. Back in times the possible exposure of these buildings to seismic events was 
not accounted for as the area had hardly ever been subjected to this sort of phenomena. In fact, it is only in the late ‘50s 
of last century that the biggest natural gas field of Europe was found in the northern part of The Netherlands. Soon 
after that discovery, in 1963, activities related to the exploitation of the gas started. In 1991, seismic activity in the area of 
Groningen was observed for the very first time. Since then, several earthquakes have struck the area, suggesting some 
kind of correlation between the activity of gas extraction and the manifestation of seismic events. Nowadays, this 
phenomenon is known as induced seismic activity and it is studied as a specific branch of the earthquake engineering.  

According to researchers who collected and analyzed the data in the last decades, the intensity and frequency of seismic 
events in the Groningen area have so far exhibited an increasing trend. Recent registrations showed that intensities of 3.6 
on the Richter scale were already reached in 2013 (KNMI, 2013). 

Under this scenario it is of crucial importance to evaluate the capacity and stability of existing masonry structures in 
order to mitigate the detrimental effects caused by repetitive seismic actions on the buildings. These are not only related 
to the structural damages, but also to the  diminishing sense of safety the inhabitants have shown in the region affected 
by these phenomena. In particular, the area of Groningen contains well over 150000 populated buildings of which about 
90% of them consists to a great extent of unreinforced masonry. The goal set by the government is restoring trust and 
confidence for the people living in that area and, by consequence of that, improving their quality of life. Revealing 

Figure 2 – Contour plot of reference PGA in g with a 
repeat period of 475 years (KNMI, 2016) 

Figure 3 – Occurrence of earthquakes in the Netherlands in 
recent years (TNO, 2013). 
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Alternatively, the main feature of the macro-modelling 
approach is neglecting the distinction between units 
and mortar. In other words, the mechanical 
properties of these two components are smeared 
out in a homogeneous continuum. In this way, the 
masonry material is regarded as anisotropic or, to 
the full macro-modelling potential, as orthotropic. 
The concept behind this approach is relating the 
average stresses of masonry to its average strains. 
Using average parameters is justified by the periodic 
arrangement of the units and mortar that allows a 
partial homogenization of this composite material.  
The macro-model approach is reflected by the 
anisotropic continuum model (Lorenco & et al, 1998). 

When addressing the functionality and applicability of models, the meso-modelling approach also deserve to be mentioned. 
Meso-modelling constitutes an intermediate between the previous two approaches. In fact, it considers a compound of a 
set of bricks and mortar joints as a base element for the modeling. These elements are connected between them by 
planes of cracking. Such modeling strategy is used in the “rigid elements method” (Casolo, 2000) and “equivalent frame 
method”, where the latter is the basis of the 3Muri software.  

In his studies, (Lorenco, 2008) proposed a methodology for linking micro and macro modelling by means of 
homogenization techniques. Comparable studies in numerical representation of masonry (Gambarotta & Lagomarsino, 1997) 
led to additional micro and macro models particularly suitable for seismic analysis. These are the basis of the 3Muri 
software.  

To conclude, the differences between these modelling strategies mainly lie on their field of applicability. The micro 
modelling approach is able to describe in detail the material behavior. Although all different failure mechanisms of 
masonry can be considered, the computational weight and the related storage requirements limit its applicability for 
practical use. On the contrary, the macro modelling approach is much more practice-oriented and can be applied on 
large structural systems for more global structural analyses. The meso-modeling is particularly adapt for implementing 
masonry behavior in software for structural analysis.  

2.6 Implementation of seismic assessment 
An earthquake event produces seismic waves that generate stresses at the foundation of structures. These waves may be 
seen as a signal of varying amplitude and frequency which may be recorded by a seismograph. It is possible to apply the 
recorded signal on a structural mathematical model in order to assess what is the effect that the earthquake has on 
similar buildings.  

In engineering applications, however, real records specific for a location of interest may not be available or appear to be 
of impractical use in the context of an approximated calculation. Therefore, a number of different approaches are 
available so as to simulate the action of quakes on a building and assess their stability. The main distinctions lie on the 
method used to account for the structure (single degree of freedom system, detailed three-dimensional model...) and the 
way to specify the seismic hazard. The way the seismic load is applied also defines the structural analyses that can be run 
on the model, the degree of complexity being dependent on the structural aspects taken into account in the modeling 
phase of the structure. A variety of the solution strategies that are currently adopted can be found in (Pantazopoulou, 
2013).  

With regards to masonry structures, their seismic performance may be evaluated through different analysis techniques. 
These may be categorizes as Quasi-static analysis methods and Dynamic analysis methods. Both typologies are used for 
local and global seismic assessment of masonry constructions. However, the (NPR9998) clearly states (section 4.3.3.2.1) 
that methods based on the application of a lateral load may be used for those buildings whose response is not 
significantly affected by vibration modes other than the fundamental one.   

Figure 24 - The composite interface model for                   
micro-modeling (Lourenco & Rots, 1997). 
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2.6.1 Quasi-static analysis methods 
In quasi-static analysis methods, the dynamic effects are entirely neglected. Since the inertia forces are not taken into 
account, calculations are simpler and results are easy to interpret. For this reason, they are primary tools in engineering 
practice. They are divided in strength and equilibrium methods. 

In the non-linear static analysis, also called pushover, the seismic action is simplified as an increasing distributed 
acceleration over the height of the building. The effect on the structure is evaluated in its displaced configurations. It is a 
very popular analysis because it gives insight into the lateral resistance of the entire structural system. The outcome of 
this analysis is a graph showing the relation between the force acting on the structure, the base shear, and the 
displacement of a particular point, called target point. The structure is verified when the displacement capacity of the 
structure represented by this graph is larger than the displacement demand given by the seismic excitation. When 
calculating the capacity curve, the input force distribution along the height of the building may be uniform or varying 
along the height by following defined shapes. Even though different configurations of the lateral load lead to different 
results, with a pushover analysis it is not always possible to obtain the amplification effects of the response that would be 
disclosed by a dynamic analysis. In their studies, (Lourenco e. a., 2011) also noticed that adaptive pushover techniques 
do not provide improvements in terms of load displacement diagrams or identification of failure mechanisms. 

Equilibrium methods consist in verifying the balance of the forces acting on the structure and therefore  they are also 
called stability methods. In this way the static analysis of the masonry structure is reduced to a stability problem only. 
The seismic action, represented by a horizontal constant force, may be described by a design spectrum. The global 
seismic assessment is carried out through a linear kinematic approach with the use of the principle of virtual work, and 
appears to be an efficient tool. With this type of analysis it is crucial to select the meaningful collapse mechanisms in 
order to obtain reliable results.  

When the right collapse mechanisms are difficult to select due to the structure’s complexity or inability to take a detailed 
inspection of the building, more sophisticated methods becomes necessary. (Vinci, 2016) identifies the dissipative nature 
of buildings made of masonry and discourages the use of linear analysis methods as they underestimate the deformation 

 

Figure 25 - Pushover analysis 
representation and resulting 
base shear force 
development as a function of 
the target point 
displacement. 

                

Figure 26  – Representation of a 
nonlinear kinematic analysis 
(NLKA) of a rocking mechanism 
through the use of virtual work 
principle. On the right, the 
decreasing of the horizontal force 
multiplier as the mechanism 
develops. 
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As a last step of the procedure, the ultimate deformation capacity of the walls is compared to the displacement demands 
that are computed with formulas accounting for the filtering effects: 
 

݀௨∗  ܵሺ ଵܶሻ ∙ Ψሺܼሻ ∙ ߛ ∙
ቀ ௦ܶ

ଵܶ
ቁ
ଶ

ඨቀ1 െ ௦ܶ

ଵܶ
ቁ
ଶ

 0.02 ௦ܶ

ଵܶ

 

 
Where ܵሺ ଵܶሻ is the elastic spectral displacement response of the building in its first vibration mode, ௦ܶ the vibration 
period of the wall as derived above, and ߛ and Ψ are modal correcting factors that are function of the wall position in 
height. The vibration period of a masonry building lower than 40 meters is derived in the italian normative by an 
approximated equation in which  ܥଵ ൌ 0.05:  

ଵܶ ൌ ଵܥ ∙  ଷ/ସܪ

2.8.3 NPR (v.2015) approach  
This approach is really straight-forward as it consists in consulting the table 9.2 of section 9.5 of (NPR9998). The 
masonry wall is first categorized as endwall, partition wall or cavity wall depending on its boundary conditions. 
Successively, the maximum value of the peak ground acceleration that the wall is able to resist for lateral actions is found 
by selecting the right wall geometrical properties on the table and the magnitude of the compressive action on top of it.  

 

 
 
Table 4 - Maximum acceleration values resisted by unreinforced masonry walls according to 
NPR – Partition walls. 
 
Figure 33 - Idealization of the wall as a lumped mass system in NPR9998. 

For different values than those present in the table, interpolation is necessary. It is possible to see the underlying 
procedure through which this table is derived in the document Dossier 8550 – Metselwerkwanden belast uit het vlak (2015). 
From it, it becomes clear that the NPR approach has an “hybrid” nature, as it is essentially based on strength checks that 
are only partly supported by displacement capacity considerations.  

In short, the masonry wall is discretized as a lumped mass model and thus divided in four deformable sections. A 
moment-curvature relation is derived from the cross sectional properties and as a function of the normal force expressed 
through the utilization factor. After this two pushover analyses are analytically carried out for both an even and a modal 
distribution of the point loads applied on the lumped masses. It is noted here that geometric nonlinearities are not 
accounted for in this step. Then, the force-displacement diagrams are transformed into those of an equivalent SDOF 
mass-spring system with bilinear behavior. By making use of the procedure described in another section of the NPR, the 
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vibration period T and the behavior factor q can be computed and it appears that there is no significant distinction 
between the results of the modal and even distribution of nodal forces.  

At this point a modified design spectrum for ductile systems is applied to calculate the dynamic amplification factor of 
the wall. The latter is used for deriving the equivalent static forces acting on the wall as a function of the peak ground 
acceleration and proportionally to the displacement configuration of the lumped masses for a representative load.  

Finally, the lateral strength of the masonry wall is verified according to EN 1996-1-1. The second order effects as well as 
the initial eccentricities should be accurately taken into account in this final check.  

In the document explaining the procedure it is suggested that only one of the three wall typologies may  be verified 
directly with displacement based approaches: the load bearing partition walls. These walls in fact seem to have good 
lateral capacity when it comes to force-based calculations. On the other hand, for the other two typologies of walls, 
strength capacity checks are as important as the displacement verifications when assessing their ultimate seismic 
performance for lateral loads (out-of-plane behavior).  

2.8.4 Remarks on the above methods  
In the previous paragraph three methodologies currently used in design codes were described. Their analogies and 
differences are briefly presented here. 

Clearly, the main difference lies between the NPR approach and the other two, as it is essentially based on strength 
considerations and neglects to address the stability of the rocking walls. In fact, only the pushover analyses are 
displacement-based calculations. Since the development of the out of plane mechanism is not analyzed, the ability of the 
wall to accommodate large inelastic displacements is not accounted for. Consequently, the displacement reserve capacity 
characterizing the spanning wall between supports cannot be captured by the NPR method, and may result in rather 
conservative estimations when assessing seismic performance of a masonry wall. Moreover: 

‐ The masonry wall is not considered as a kinematic chain of rigid bodies and the compressive strength of 
masonry is an input of the procedure; 

‐ The wall is discretized as a stick-lumped mass model;  

‐ The second order effects on the wall subjected to both compression and flexure are considered; 

‐ Initial drift of the wall cannot be taken into account; 

‐ The filtering effect is not accounted for. 

The New Zealand and Italian procedures are entirely built upon the idea that it is not the physical strength of the wall to 
govern its seismic performance. On the contrary, the capacity of the wall to act out of plane can be conveniently seen as 
a stability problem and thus addressed through limit analyses applied on kinematic models. The analogies between the 
two methods are many, and the underlying hypothesis and set of assumptions are the same:  

‐ The wall is assumed to form three hinges and thus split in two rigid bodies; 

‐ The strategy adopted relies on assessing a SDOF substitute-structure showing equivalent displacements; 

‐ Filtering effects are clearly accounted for by means of correcting coefficients and factors; 

‐ The verification of the wall consists in comparing the displacement capacity with the displacement demand of 
the wall. 

Nonetheless, between these two foreign codes there are differences as well: 

‐ The safety factors applied are different, as the Italian code performs checks for the “significant damage” limit 
state, whereas the New Zealander checks use “near collapse” limit state. This has an impact on the factors used  
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to compute the secant stiffness and the ultimate displacement permitted in the two codes (40% vs 60%). Refer 
to section 2.8.2. 

‐ Obviously, the two codes use elastic response spectra relevant to their country; 

‐ When calculating the average stiffness of the rocking walls system, NTC also accounts for unacceptable wall 
configurations with regards to the global stability of the structure; 

‐ The NTC code to accurately perform the transition from MDOF to the equivalent SDOF by calculating the 
participating mass and carrying out all the analytical steps provided. In the code from New Zealand these 
detailed steps may be disregarded in favor of consulting more (approximated) practical formulas and charts. 
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3    Action plan 

The literature study raised awareness on the complexity of the out-of-plane behavior of masonry walls due to the 
inherent nonlinearity of both the material involved as well as the rocking mechanism itself. Also, it stressed the extension 
of this issue, a problem being perceived in every part of the world with special attention on those countries struck by the 
occurrence of seismic phenomena. Hence, examples were shown of foreign normative where the seismic demands 
assessment for masonry walls was addressed by making use of displacement considerations and culminated in the 
derivation of practical formulas specific for those countries.  

The advantages delivered by these methodologies are clearly related to their ease of applicability and the efficient use in 
engineering practice, which make their utilization rather compelling for a diverse range of circumstances. Nonetheless, it 
was also noted that the procedures at matter are strictly related to site-specific conditions and their inappropriate use 
may result in large inconsistencies with regards to the structural behavior of the masonry walls. Since an inaccurate 
solution to a structural problem leads to potential safety issues or financial disadvantages, the possibility of adapting 
those methodologies to the Groningen situation is a query worth investigating.  

In this chapter the research questions brought up after having familiarized with the topic are presented. Then, the 
strategy which will be adopted in the development of the project is illustrated. 

3.1 Research questions 
The scope of this thesis is to optimize the assessment procedure for the out-of-plane seismic demand of unreinforced 
masonry walls through the adaptation and possibly the extension of existing methods to the specific case of Groningen. 
This intent will be pursued by answering the following sub-questions: 

‐ How can the out-of-plane rocking mechanism of a one-way bending wall be conveniently described through a 
1D/2D finite elements model? 
That is: what could be a simple FE idealization of a wall able to capture the nonlinear nature of the rocking 
mechanism, where the stability is mainly governed by displacement considerations?  
 

‐ What are the structural material aspects that should be included in the model and how to implement them 
numerically?  
That is: how to extend the FE model of the rocking wall to account also for the features defining the highly 
physical nonlinear behavior of masonry? What impact do these have on the overall seismic resistance of the 
wall? 

‐ Can the additional lateral resistance given by the in-plane action of returning walls or external steel frames 
(strengthening measure) be effectively modelled in the 2D discretization for the out-of-plane behavior study? 

‐ How to capture the interaction between the wall and the surrounding structural system in a 2D fashion? 
That is: how can the role played by the wall location in height be addressed in an efficient way? Is there an 
interaction between local vibration period and global modes of the structure? Is it possible to describe the way 
the energy is dissipated in the building subjected to an earthquake with that model ? 
 

‐ Is it possible to reproduce the results presented in foreign displacement-based methodologies through the 
numerical FE approach applied on simple 1D/2D models? 
That is: Codes such as NTC assess the compliance of existing masonry wall to safety requirements by making 
use of formulas which are derived through a combination of NLKA and limit analyses. Correcting coefficients 
are applied to account for the amplification effects. By reproducing relevant site-specific conditions, it is crucial 
to check whether and to what extent the models developed can give results which are comparable to those 
methodologies.  
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‐ Is it possible to adapt the foreign approaches to the scenario of Groningen and to derive a set of coefficients to 
be used as correcting factors in analytical formulas for the out-of-plane assessment of masonry walls?  
That latter questions can also be recognized as the main one for this research. In other words: 
“Is it possible to create an adaptation of foreign methodologies for the out-of-plane assessment of a URM wall 
to the Groningen scenario, by making use of a simple 2D frame model?” 
 

‐ Will the accuracy of the out-of-plane seismic assessment for existing masonry walls be increased after this 
research? 

3.2 Strategy 
The methodology to be adopted in the development of this master thesis can be idealized as an initiation-conclusion 
process with recursive characters composing the main part. This is evidenced in the flowchart provided below.  

As a starting point, the literature study provides the essential knowledge for the topic at matter. This is necessary to 
targeting those aspects which deserve more investigations and evidences the difficulties related to the out-of-plane 
behavior of masonry wall in general. Now that the research questions are defined and sufficient information is collected, 
the first phase terminates with a reflection on what approach to follow. It is thus decided to tackle the out-of-plane 
behavior of masonry walls as a 2D problem, neglecting the direct role of the in-plane action and related failure modes.  

The analysis phase will thus be followed by an iterative procedure, core of the research. This will consist of developing 
the right tools to answer the project questions in a structured way, by first reproducing results of proven validity and 
then shifting to structural aspects where interpretation of results played a major role. Two macro-areas of modeling will 
be delineated, the first one addressing the idealization of the rocking mechanism of a single unreinforced masonry wall 
only, and the second one consisting in extending the model by implementing the wall in a surrounding structural system 
with multi-floors. In both phases some features of the objects, the single wall or the frame structure, will be included 
stepwise to improve control on modeling. Hence, the models will be “upgraded” or abandoned when necessary and after 
each validation attempt until that point in which a 2D model able to effectively describe the structural behavior of the 
rocking masonry walls is obtained. The modeling goal is set as to generate a model able to reproduce the seismic 
performance of unreinforced masonry walls in a structural system with regards to their out-of-plane behavior 
independently of their site-specific conditions.   

Figure 34 - Flowchart of the project development 
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Once that goal is achieved, the features specific of the seismicity in Groningen can be implemented in the models and 
may allow to verify whether correcting coefficients for the displacement demands of the walls are derivable and if they 
are related to those of the foreign normative.  

Since an attempt is made to reproduce a particular scenario with regards to the nature of the excitation as well as the 
structural response of an element in a building, it is important to make a remark. It should be stressed in fact that the 
modeling approach used for both the structural system and the unreinforced masonry wall is strongly simplified as it 
only takes into account 1D or 2D beam elements. In a similar fashion, also the external excitation during transient 
analyses will be modeled as single-component only horizontal motion. Consequently, the intention of “reproducing” a 
specific structural behavior taking into account all these assumptions is quite far-fetched, as it will mainly be limited to 
the following aspects: 

 

‐ Investigating the URM wall response assuming the surrounding system to act in two extreme ways (fig.38):  
A) As a shear wall, with flexure behavior and a concave profile of deflections over the height of the building; 
B) As a moment resisting frame, with a shear behavior and a convex profile of deflection; 

Where it can be stated that a realistic response of a masonry structure to lateral loads is usually somewhat in 
between these two circumstances, which are closely correlated to the stiffness of the inter-story diaphragms.  

‐ Dimensioning the unreinforced masonry walls over their thickness with the geometrical proportions commonly 
adopted in the building stock of Groningen; 
 

‐ Resorting to an artificial signal for the base motion of the frame models that is agreement with the NPR9998 
prescriptions and thus compatible from an energy point of view with the induced seismicity in Groningen.  

 

The over-mentioned 1D/2D approximations are made intentionally due to time constraints. Certainly, they result in  
research constraints that will be addressed in more detail in the conclusive part of this report.  

Speaking of how to derive of the amplification coefficients for the rocking motion of unreinforced masonry walls within 
a frame model, the methodology that will be adopted to carry out this investigation is now briefly presented. First, the 
lateral capacity of a wall within a single story building and for a set of boundary conditions will be assessed by scaling the 
peak ground acceleration (PGA) of a given artificial signal resembling the induced seismicity in Groningen. This will be 
addressed as the “reference case”. Then, the same wall will be introduced in a variety of frame models where the 
following parameters are adjusted each time: 

 - For a frame that acts according to A) or B) as explained above, the number of floors is ranged between 1 and 7; 

- Within these groups of buildings, the rocking wall model (nonlinear system) is located each time on different floors; 

- Keeping the wall position fixed, the magnitude of load on top of it (overburden) is changed; 

 
Figure 35 - Variations on model configuration and structural parameters. 
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3.2.1 Validation of wall model  
Before expanding the single wall model and analyze the dynamic behavior of this unreinforced masonry element inside a 
frame structure it is essential to prove its validity with regards to the geometrical as well as physical nonlinear properties. 
To this purpose the model is subjected to a pushover analysis in order to check its theoretical displacement capacity 
during rocking. Also, by making use of the same analysis it will also be possible to address the nonlinear nature of the 
masonry material and to elaborate on the cyclic nature of the damage undergone by the wall when such circumstances 
repeats in time. The experimental results derived by Doherty (2000) will at this first stage of the research be adopted as a 
benchmark to compare the reliability of the FE model. This will imply developing the model with similar boundary 
conditions and dimensions found in the reference research at least for the first wall models. At the same, time tables and 
analytical methods extrapolated from national and foreign codes will be employed for the same scope.  

Although at the beginning Doherty is cited again, when dealing with transient analyses a validation methodology based 
mainly upon interpretation of numerical results will be chosen. For the rocking masonry wall in dynamic analyses the 
balance of vertical and horizontal forces acting on the model will be monitored. Then, for the input of material 
parameters a sensitivity study will be performed and thus the general framework of the models creation and 
development can be summarized as a trial and error approach. This is especially true for the modeling phase of the 
structural system surrounding the wall element due to the fact that there will be no specific case study to be used as a 
reference. How the masses involved in the extended model affect the  wall response will also be investigated.  

In particular, attention will be given to two aspects which are typical for the rocking mechanisms of walls constraint on 
the bottom and the top edge:  

‐ The position of the points of rotation of the wall members and the correlated shifting of bounding vertical 
forces along the thickness of its cross sections during transient analyses; 

‐ The progression of the bending moment curve over the height of a rocking wall, from the hinges creation at 
the level of the cracks to the achievement of instability displacement.  

         

 

 

 

 

Figures 39 – On the left: overview of the loading scheme for the unreinforced 
masonry wall: pushover (red) and transient (green) analyses. On the right: 
shifting of the point of rotation for the wall top section. 
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4    Generation the FE models 

Over the last decades, the seismic performance of unreinforced masonry walls has been evaluated with finite elements 
software which allowed to accurately predict their structural behavior and explore in detail specific dynamic phenomena. 
Theoretically, the idea behind finite elements methods is stimulating the trend from reactive and predictive problem-
solving approaches to a preventive way of confronting with structural problems, especially in the design phase. With 
regards to the seismic activity in the province of Groningen, the magnitude of the seismic events is expected to increase 
in the next few years. Therefore, numerical approaches can help predicting the behavior of already damaged buildings 
and to effectively cope with the large amount of those that will be soon exposed to this kind of events.  

The starting point of a good structural assessment is idealizing a building as a set of structural elements for which some 
simplifying assumptions are made. Subsequently, the structural elements are discretized as an assembly of connected nodes 
with assigned materials and geometrical properties. The load idealization and the calculation phase finalize the assessment 
procedure. This chapter present the models developed for estimating the out-of-plane demand of unreinforced masonry 
walls subjected to transient loading. For each model a description of the geometries, material properties, and finite 
elements used is provided. The software adopted is DIANA FEA version 10.1, which is considered appropriate for 
investigating the out-of-plane action of walls as it accounts for both the physical and the geometrical nonlinear nature of 
the rocking phenomenon. 

 

Figure 40 - Steps to be taken in the assessment of structural elements. 

The goal of the modeling phase is to come up with a model able to describe the mechanism of a rocking wall with focus 
on its post-peak behavior and thus addressing its displacement reserve capacity up to instability achievement and failure. 
A wall can be discretized using finite elements of different kind, depending on the degree of approximation used and the 
level of detail chosen. For all of the models developed in this master thesis research, macro-modeling approach is 
followed. Also, it is assumed that the walls experience one-way bending only, and that it is thus possible to model them 
as thin strips. Since the behavior of the walls in their in-plane direction is not directly modelled, a full 2D description in 
the xy plane is deemed appropriate for the investigation at matter. The elements used are then all introduced in a xy 
plane and their cross section dimension are specified as a geometrical property.  

The models in this chapter can be broadly divided in three groups:  

 

1) The rocking-wall model based on a rigid-bodies definition, for which the physical resistance of the masonry 
material is only partly considered; 
 

2) The alternative rocking-wall models, where the material models adopted are more realistic because it is taken 
into consideration the cracking and crushing behavior of the masonry material; 
 

3) The frame models where the rocking mechanism of the walls is analyzed within a structural system.  

 

In all cases the local zones close to where the cracking is expected to occur are made inhomogeneous, meaning that the 
nonlinear nature of the masonry material is all lumped or distributed in those confined areas. The models built for the 
research are depicted in the next page. Results interpretation, remarks and comments on the consequences of dealing 
with these models are presented in a separate chapter. The units adopted are those of the International System of Units 
(SI). 
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Unreinforced masonry wall models 

Lumped cracking beams model 

Alternative models 

Smeared cracking plane 
strain model 

Smeared cracking 
beams model 

   

Unreinforced masonry wall within structural system models 

 

Figure 41 – Representation of the models developed and analyzed in the present research. With regards to the frame 
models, reference is made to the parameters that will be addressed as part of the sensitivity. Starting from the left: initial 
drift of the floor on top of the wall acting out-of-plane; variation of the number of floors; different values of overburden. 
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4.1 Lumped cracking beams model 
The modeling phase is initialized by creating a simple 
structural system capable of capturing the displacement 
reserve capacity of a rocking wall. In practice, the goal is 
to reproduce the behavior explained in section 2.7 and 
2.8 of this master thesis, and to gain knowledge on the 
factors governing the out of plane response of 
unreinforced masonry walls. At this stage a comparative 
analysis of the numerical behavior of the model against 
experimental findings is crucial for determining its 
reliability. In particular, the work of Doherty will often 
be called as the benchmark for the validation of this 
first model which, indeed, is shaped to mimic the 
experimental setup of his experiments. For more details, 
reference is made to the already cited document “An 
investigation of the weak links in the seismic load path 
of unreinforced masonry buildings”, Doherty (2000). 
The model is greatly affected by the simplifying 
assumptions of the wall elements acting as rigid bodies 
and experiencing discrete cracking phenomena that are 
all lumped in a limited number of cross sections. In the chapter dedicated to the response of the models it will be shown 
that although it is not the case in quasi-static analyses, these assumptions are not appropriate for studying the dynamic 
out-of-plane behavior of unreinforced masonry walls.  

4.1.1 Geometry and FE types  
The rocking mechanism of the wall involves the formation of cracks acting as hinges and around which the wall 
elements rotate. Since it can be demonstrated that these cracks will form at the top, bottom and mid-height of the wall, it 
is decided to make use of class III vertical beam elements to represent each of the two rocking portions. Then, 
additional beam elements of the same length as the wall thickness are added in the horizontal direction in 
correspondence of the expected hinge formations to simulate the rigid cross sections of the wall. The three variables 
representing the beams nodal degrees of freedom are all expressed through quadratic polynomials, and the integration 
scheme along the beams centerline is left to the default 2-point Gauss. On top of the wall model, a discrete vertical 
spring element is applied to control the compression force acting on the wall during rocking.  

To account for the cracks, a discrete cracking modeling approach is adopted with no-tension line interface elements 
placed in between the rigid cross sections. The three interface elements are based on quadratic interpolation and their 
integration scheme is left to the default 3-points Newton-Cotes. A disadvantage of this modeling procedure is that the 
horizontal elements introduced so far cannot be visualized in Diana when the model is in the undisturbed configuration 
due to overlapping. For this reason, the implementation of these elements together with the interface has to be carried 
out in the .dat file, connecting manually the nodes. The upper-side nodes of the top line interface are tied together in the 

      

Figure 42 - FE representation of the lumped cracking beams 
model. 

 
 

 

Figure 43 - CL9BE, 2D element, 3 
nodes. Diana Manual 10.1, Element 

library. 

Figure 44 - CL12I, 2D element, 3+3 
nodes. Diana Manual 10.1, Element 

library. 

Figure 45 - SP2TR, 1D translation 
element, 2 nodes. Diana Manual 

10.1, Element library. 
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horizontal direction to simulate a rigid steel plate around which half of the wall can rotate. The following table shows the 
geometrical properties of the finite elements introduced for the URM wall modeling. 

Table 5 - Geometry specifications for the lumped cracking beams model. 

The model is meshed so that there is one beam element for each of the vertical and horizontal members. This is the 
minimum number of elements required for carrying out the analyses. However, it can be demonstrated that for the rigid 
horizontal cross sections increasing the number of elements does not affect the model behavior.  

4.1.2 Material properties 
For this model five material definitions are required. The elements pertaining to 
the wall are all supplied with linear elastic material, where the one which is assigned 
to the rigid cross sections is given an elastic modulus that is three orders of 
magnitude larger than in the case of the vertical wall elements. For the translational 
spring a material presenting the stiffness in one direction only should be specified. 
Then, two material models are implemented for describing the wall behavior at the 
level of the cracks: no-tension and tension-resistant interfaces. The physical 
interpretation that justifies the use of two different crack materials is related to the 
possibility of analyzing the wall behavior in initial configurations ranging from a 
fully pre-cracked stage to a un-cracked stage. In the latter case the wall generally 
presents more lateral capacity as the hinges around which the wall members will 
rotate should first be formed and thus require some amount of energy cracks to 
develop.  

All elements are assumed to have fully elastic behavior in compression. No crushing of masonry material is accounted 
for. For the tension-resistant interface, a linear tension softening model is selected together with secant 
unloading/reloading model and a zero shear traction criterion. In a similar way, the shear stiffness in the case of the no-
tension interface reduces to zero as soon as the crack opens. The table hereunder presents the material models 
specifications.  

 
Mass 

[kg/m3] 
E          

[N/m2] 
Poisson    

[-] 
ft    

[N/mm2] 
Gf 

[N/m] 

Kn         

[N/m3] 
Ks 

[N/m3] 

Rigid CS 1800 1.16 · 1013 0.1 - - - - 

Linear masonry 1800 1.16 · 1010 0.1 - - - - 

No-tension int. - - - - - 1010 1012 

Tensile resist. int. - - - 0.45 35 1010 1012 

Spring - - - - - 9.60·105·m2 - 

Table 6 - Material specifications for smeared cracking beams model. 

The intention is to use this model for quasi-static analyses as well as transient analyses. To do that, Rayleigh damping 
coefficients need to be derived through an eigenvalue analysis and applied to the material models.  Two modes are 
usually selected to numerically compute these coefficients: the first shape of vibration of the system and that for which 
90% of the mass of the system is activated in the direction of interest. By including the Rayleigh coefficients the energy 

 CL9BE CL12I SP2TR 

Width [m] 
Vertical elements Horizontal elements 

[-] [-] 
0.11 0.001 

Thickness [m] 0.95 0.95 0.95 [-] 

Length [m] 0.75 0.11 0.11 0.10 

 

Figure 46 - Linear tension 
softening model. Diana 10.1 

Manual, Material library 
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that would be accumulated by the system due to spurious modes is damped down, a practice that corresponds to 
applying an external fictitious damping to the system. However, it should be underlined that the eigenvalue analysis is a 
linear procedure. Consequently, the Rayleigh coefficients calculated in this way for the system do not account for 
nonlinear phenomena such as cracks opening and, therefore, may lead to inaccurate results. For the case of highly 
nonlinear problem the damping should better be assessed through experimental researches. In line with instructions 
found in literature (Doherty, 2000), a damping ratio of 2% is applied for computing the Rayleigh damping coefficients 
for this model. The coefficients are presented below.  

Rayleigh coefficients for a damping ratio of 2% 

ܽ ൌ ܾ ݏ/1	8.8804 ൌ 0.82124  10ିହ	ݏ 

 Table 7 - Rayleigh damping coefficients for the lumped cracking beams model. 

4.1.3 Boundary condition, tyings and loads 
The wall strip is constrained horizontally and vertically at the bottom side, whereas the top end is kept free to displace in 
the vertical direction. Free vertical motion is ensured by providing the upper-side nodes of the top line interface, which 
are tied in the vertical direction and simulate a rigid steel plate on top of the wall, with a mid-horizontal-support. At the 
bottom, the lower nodes of the interface element are those to which the supports are assigned. At the same time, the 
wall rocking members need to be able to rotate around the edges of the rigid cross sections while keeping their shape 
straight. In order to that rotational tying are applied to the nodes of each horizontal beam. The top spring is connected 
to the steel plate and fixed on the other extremity. An additional horizontal support is introduced at the mid-wall level so 
as to apply the prescribed displacements for the displacement control analysis.   

 A pushover analysis will be run on the model with a displacement control procedure. This is the only possible way to 
capture the decrease of the wall lateral resistance as the instability displacement is achieved. A set of load-cases is 
required to perform the analysis. First, the self-weight is applied followed by the application of the force on the wall 
resulting from the compression of the top spring. The initial compression load deriving from the spring action is taken 
equal to the one used in Doherty experimental research. At this point the prescribed displacement at mid-height can be 
introduced in steps. For comparative analysis, also the load-case of a constant vertical top force applied on the middle 
node of the steel plate is implemented in the model. Details of the model loadings for the quasi-static analysis are 
provided below. 

 Point of application Magnitude Direction Frequency

Self-weight - - - - 

Prescribed displacement Wall mid-height 0.11 m x - 

Prescribed displacement Spring top 0.017 m -y - 

Concentrated force Wall top 1-17 kN -y - 

Base acceleration Horizontal supports Increasing harmonic x 0.5 – 2.5 – 15 Hz 

Base acceleration Horizontal supports Accelerometer x Variable 

Table 9 – Definition of the loads applied on the lumped cracking beams model. 

 ux uy φz 

Lower nodes bott. int.   - 

Central node steel plate   

Node at wall mid-height   

Spring on top    

 

Table 8 - Constraints configuration for the lumped cracking 
beams model. 

 Figure 47 - Rotational tying in rigid cross sections. 
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Figure 49 - Signals used for the lumped cracking beams model: Nahanni earthquake record. 

4.1.4 Analysis control 
The pushover analysis is carried out by controlling the prescribed displacement at the mid-height cross section of the 
unreinforced masonry wall. The geometrical nonlinear effects should be activated to account for the large deformations 
experienced by the system while it rocks. In the table provided below it is shown the step-size to be used as well as the 
convergence norm to be adopted for this type of analysis. Depending on the way the top load is applied, the overburden 
on the wall may be constant or induced by the spring (see two possible cases 2A and 2B in the table).  

Application order Loadcase Load/Time steps Iterative method Convergence norm Tolerance

Quasi-static analysis – Displacement control 

1 Self-weight 1 Newton-Raphson Pre-defined  - 

2A Spring compr. 1 Newton-Raphson Pre-defined - 

2B Top force 1 Newton-Raphson Pre-defined - 

3 Prescribed displ.  

1.00000e-05(95) 
1.00000e-06(100) 
1.000000e-5(1000) 
1.000000e-3(99) 

Newton-Raphson
Force, 

Displacement 
0.001 

Transient analysis – Base acceleration 

1 Self-weight 1 Newton-Raphson Pre-defined - 

2 Spring compr. 1 Newton-Raphson Pre-defined - 

3 Base motion 0.00200000(4000) Newton-Raphson Energy 0.0001 

Table 10 - Loads application procedure and settings for the numerical analysis of the lumped cracking beams model. 

The arrangements for the transient analyses are left to the default settings apart from the time integration scheme which 
is set to the Euler Backward methodology. This integration method guarantees more stable solutions compared to the 
Newmark procedure even if the beta factor is set to 0.25 and the gamma factor to 0.5, values for which the method is 
implicit and unconditionally stable.  
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Alternative models  

Dealing with the numerical models shows how limiting are those based on the rigid beams definition. Although the latter 
give good results with respect to quasi-static analyses for a variety of boundary conditions, it is not possible to achieve 
similar accuracy for dynamic analyses. Occurrence of numerical instability makes the investigation of the wall behavior 
difficult to control and hinders further development of the model. The difficulties encountered seem to be caused by the 
detrimental presence of concurrent features in the models definition rather than a single one. Among the others, the 
alleged incompatibility between the finite elements of the mesh and the modeling of the wall through its thickness by 
means of infinitely rigid beam elements may well be the main causes of its unreliability. A more detailed description of all 
the problems encountered with lumped cracking beams model is provided in the relevant section.   

At this point, having gained sufficient insight on the out-of-plane action of the wall element and on the pre-requisites of 
its numerical representation, a new set of models can be developed. In this section not only an attempt to create a more 
stable model from a numerical point of view is made, but also to implement the masonry material behavior, for instance 
by taking into account its compressive strength and crushing energy to model the material damage in time. More than in 
the lumped cracking beams model, extra attention is given to the single wall modeling with respect to its final utilization, 
which is its implementation in a frame structure for transient analyses. Consequently, the overall modeling procedure 
adopted for this model is essentially purpose–driven.  

Two approaches are presented in the following sections: modeling the masonry wall by means of plane strain elements 
along its vertical cross section from the side of the thickness, and again by making use of curved beams elements but this 
time only along the vertical axis of symmetry of the wall. The main advantages of both procedures is allowing for a more 
homogenous utilization of the elements type used and avoiding resorting to infinitely rigid elements to simulate the wall 
cross sections at cracks level. Nonetheless, the smeared cracking beams model almost immediately proved to be capable 
of a better performance compared to the smeared cracking plane strain model. Consequently, although these wall 
models were developed in parallel, the implementation in the frame structure only took place for the most efficient one, 
namely the smeared cracking beams model. 

4.2 Smeared cracking plane strain model 
Due to the fact that the wall length in the spanning 
direction is ten times as large as its thickness, it is 
possible to assume that the strains field has a zero 
component in the z direction. The choice of using plain 
strain elements allows to analyze with increased level of 
detail the nonlinear phenomena which take place during 
crack formation, and to overcome the alleged 
incompatibility between the default membrane 
configuration of the line interfaces and the beam 
elements adopted in the “lumped cracking beams 
model”. In particular, the degradation of the material 
may now be accounted for. The same size as the 
previous model is used to schematized the wall. 

The “smeared cracking plane strain model” is 
developed in parallel to the “smeared cracking beams” 
one: its main function is to assess the minimum number 
of integration points required along the thickness of the 
wall and to implement as number of layers for the next 
model. This is done by comparing the behavior of this model during quasi-static loading with the results obtained with 
the lumped cracking beam one. Once this aspect is determined, the smeared cracking plane strain model is left apart to 
give space to the smeared cracking model which employs a smaller number of nodes, resulting in less computing time, 
and which also guarantees easier connecting solutions for its implementation into a frame system. Thus, as this wall 

      
Figure 50 - FE representation of the smeared cracking plane 

strain model. 
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4.3 Smeared cracking beams model 
As in the case of the plane strain one, the smeared 
cracking beams model accounts for the material 
behavior of the wall and thus for its physical 
nonlinearity besides the geometrical one. 
Nevertheless, using beams elements has immediate 
beneficial effects on the computational costs of 
numerical analyses since the number of nodes and 
integration points is drastically smaller than in the 
plane strain elements model meshed in a similar 
way. Moreover, using specific beam elements such 
as class III beams permit to increase the number of 
integration points in the direction of interest and 
decrease their number in others if necessary.  

The model developed consists of beam elements 
with different material models applied depending on 
their position along the wall. Those areas of the wall 
where out-of-plane action is expected to originate 
cracks are modeled by assigning non-linear 
properties to the beams, whereas the remaining parts are approximated to deform linearly-elastic. Thus, during the 
development of the crack patterns as well as the occurring of the rocking mechanism the focus is given to larger areas 
compared to the lumped cracking beams model because the increase of curvature is smeared out along the height of the 
wall and the stress is distributed more effectively. Last but not least, this model is the easiest to implement in the frame 
building. 

4.3.1 Geometry and FE types 
The wall is discretized using two dimensional beams only, representing its vertical axis of symmetry. These elements 
have a rectangular cross section shape. The spatial dimensions of the wall are assigned to the beam elements as a 
property together with the material definition, the element typology and the data for additional input. Since no reference 
is made to any specific wall, dimensions that are commonly found in practice are chosen for the current model. For a 
partition wall, this may correspond to a wall height of 3 meters and a thickness of 20 centimeters. Another model with 
similar dimension to the previous ones is also developed for the sake of comparison and validation of results.                 
Refer to the given table for the geometry of the beam elements employed.  

                Element 
Size   CL9BE CL9BE SP2TR 

Width [m] 
Partition wall Similar previous models 

[-] 
0.20 0.11 

Thickness [m] 1 0.95 [-] 

Length [m] 
Nonlinear element Linear element [-] 

0.0375 0.375 0.10 

Table 15 - Geometry specifications for the smeared cracking beams models. 

For this model it is decided to use class III beam elements as they allow for second order interpolation polynomials for 
two translational degrees of freedom and a rotational one. Also, it is possible to adjust the preferred integration scheme 
over their cross-section and along their axis, which is a convenient feature when addressing physical nonlinearities such 
as crushing and cracking of a material. These elements are based on Mindlin-Reissner theory and thus they take into 
account shear deformations. They can be curved thanks to the presence of three nodes along the beam axis, and they act 
in a 2D environment.  

Figure 54 - FE representation of the smeared cracking            
plane strain model. 
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The elements are integrated with the default 2-point Gauss scheme along the beam axis, whereas a 11-point Simpson 
scheme is used for  integration along their cross section. The latter is able to account for the shifting of the point of 
rotation of the wall to the extreme fiber in compression when the rocking mechanism occurs. This is set through a 
DATA input. The wall is split in areas with and without linear behavior. This is 
accomplished by referring to how concentrated loads spread within a structural 
element. For the case at matter this happens when the rocking wall is pushed close 
to its instability displacement and there is a compressive force applied to the 
extreme fiber of its cross sections acting as point of rotations. Thus, the wall can be 
conveniently given nonlinear features in those areas where the stress flaw presents 
high nonlinearities and the influence of the concentrated load is larger. In EC6-1-1 it 
is stated that for unreinforced masonry brickwork a dispersion angle of 60 can be 
adopted. Given a thickness of 12 cm, it is then reasonable to assign nonlinear 
properties to the wall up to a distance of around 20 cm from the (main) cracks. 
Same reasoning will be adopted also for the coming models. Illustrations are 
provided for the sake of clarity.  

A spring is applied on top of the model to simulate the action of the overburden on 
top of the wall during the quasi-static analysis. This is performed in a similar fashion 
to the previous models (Section 4.1.3 and 4.1.4). Characteristics and element type of 
the spring are presented above.  

4.3.2 Material properties 
There are three material models applied to the wall. The masonry is treated as a linear elastic material in areas of the wall 
that are not considered to experience large nonlinear behavior. On the other hand, nonlinear masonry is assigned to 
relevant sections in order to investigate cracks propagation and material degradation as the out-of-plane action develops. 
To this purpose, a total strain based crack model with fixed cracking propagation and Rots bandwidth is used. With 
regards to the behavior in tension and in compression, the constitutive models described by a linear tension softening 
curve and a parabolic compression curve are chosen. For the compression law, no reduction due to lateral loading nor 
stress confinement are accounted. The parameters input are specified in the table provided below.  

 
Mass 

[kg/m3] 
Young’s modulus 

[N/m2] 
Stiffness 
[N/m] 

Poisson 
[-] 

ft 
[N/mm2]

Gf 

[N/m] 
fc 

[N/mm2] 
Gc 

[N/m] 

Nonlinear 
masonry 

1800 5 · 109 - 0.1 0.45 35 4.41 5000 

Linear 
masonry 

1800 5 · 109 - 0.1 - - - - 

Spring  - - 9.60· 105 - - - - - 

Rayleigh coefficients for a damping ratio of 2%  

ܽ ൌ ܾ ݏ/1	8.8804 ൌ 0.82124  10ିହ	ݏ 

Table 17 - Material specifications for smeared cracking beams model. 

       

Integration scheme and number of integration points arranged in the model 

Along the beam axis ξ Gauss 2 

Along the beam cross section η Simpson 11 

Figure 55 - Simpson integration 
scheme along wall thickness. 
DIANA 10.1 - User's manual 

Table 16 - Integration schemes for the beam elements 

 

Figure 56 – Load dispersion in 
URM according to EC6-1-1. 



         

Displacement-based verification of unreinforced masonry walls acting out-of-plane within a structural system            45 

 

With regards to the utilization of the model in a transient analysis, fictitious damping is applied again through Rayleigh 
damping coefficients derived through an eigenvalue analysis.  

4.3.3 Boundary conditions and loads 
The wall is clamped at both ends, with the top margin of the wall left free to move in the vertical direction. The resisting 
bending capacity of the cross section will be exceeded in those areas where cracking is expected to occur. When the 
cracks are sufficiently developed those areas will provide rotational capacity and thus act as hinges in the overall rocking 
mechanism. Again, a mid-height horizontal support is added to the wall so as to perform a displacement control analysis 
for the pushover calculation.  

2D configuration ux uy φz 
Wall bottom edge   

Wall top edge   

Wall mid-height   

Spring top   

Table 18 - Constraints configuration for the smeared cracking beams model. 

Similarly to the previous models for the rocking wall, different loadcases are defined for the investigation of the out-of-
plane behavior of the unreinforced masonry wall subjected to quasi-static and transient excitations. The prescribed 
displacement at mid-height of the wall varies with the dimensions of the wall analyzed, as it calibrated in order to capture 
the achievement of the instability displacement for which the destabilizing forces threaten the stability of the system. As 
it was already discussed (see Table 2), the instability displacement also depends on the constraints configuration of the 
wall. The compression force given by the overburden is implemented by means of a spring forced to compression or by 
a static point load. Remarks to all these aspects will be provided when necessary.  

Table 19 – Definition of the loads applied on the wall model.  

4.3.4 Analysis control 
The performance of the wall is evaluated by means of a quasi-static analysis on Diana. To this purpose, the application 
of the loads on the model takes place in steps that are refined, when necessary, to provide numerical stability of the 
system. As it can be seen from the table hereunder, first the self-weight of the wall is applied, followed by the 
overburden force and the prescribed displacement at mid-height.  

Application order Loadcase Load steps Iterative method Convergence norm Tolerance

1 Self-weight 1 Newton-Raphson Pre-defined - 

2 Overburden 1 Newton-Raphson Pre-defined - 

3 Prescrb. Displ. 
1.00000e-05(95) 
1.00000e-06(100) 

0.000100000(1000)
Newton-Raphson

Displacement 0.01 

Force 0.01 

Table 20 - Loads application procedure and settings of the numerical analysis on the smeared cracking beams model. 

The methodology used to solve the system of equations describing the wall is again the Parallel Direct-Sparse with a 
tolerance of 10.e-08. The iterative procedure is left to the pre-defined settings with maximum 10 iterations for each load 
increment. The convergence criteria specified are also reported in the table above; however, the calculation is aborted by 

 Point of application Magnitude Direction 

Self-weight - - - 

Prescribed displacement Wall mid-height 0.11 – 0.20 m x 

Prescribed displacement Spring top 0.017 m -y 

Concentrated force Wall top 1 – 5 kN -y 
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Diana only when the solution diverges. As it was also the case in the lumped cracking beams model, the occurring and 
further development of the crack patterns may sometimes lead to sudden loss of convergence which is, however, 
recovered within few steps of the analysis. Hence, Diana is instructed to continue the analysis even if convergence is not 
reached provided that the latter is reached again in a following stage. It is underlined that the settings for the analyses 
here presented were chosen after comparison with other procedures as well. Details are presented in the section 
dedicated to the response of the models. 

4.4 Frame building models  
This research aims to evaluate in a quantitative way the out-of-plane performance of unreinforced masonry walls within 
a structural system and possibly to derive correcting coefficients for their use in analytical and practical approaches. 
Aiming at this, it is definitely necessary to develop a 2D model of a building in order to investigate a variety of realistic 
boundary conditions with respect to overburden of its walls and their degrees of constraint. Furthermore, the frame 
modeling is crucial for simulating the interaction between the local behavior of the walls and that one describing the 
building as a whole, with special attention to their dynamic response. The frame models should then be considered as a 
tool for this type of research.  

The starting point of the modeling procedure for the structural system coincided with choosing, among those previously 
developed, the most appropriate wall model for its implementation in the building discretization. The role played by the 
following aspects was considered: 

‐ Inherent numerical stability; 
‐ Accurateness in describing the rocking behavior of the wall out-of-plane mechanism; 
‐ Number of DOFs introduced in the model and related analyses computational cost; 
‐ Ease of implementation in the frame model. 

These requirements are all to be found in the “smeared cracking beams” model, which is thus introduced in a set of 
structural elements required for describing the building.  

In parallel, several models were developed to account for single and multi-floor buildings. The lateral stability of the 
models is provided by systems that are modeled as either shear walls or moment resisting frames, being the real behavior 
of a residential building usually in between these two idealizations. The physical interpretation of the stability systems 
may be the representation of the elements acting in-plane in the structural system. The features of these models are 
briefly presented in paragraph 4.3.2. 

4.4.1 Step-by-step development of an adequate model 
Before explaining the modeling procedure adopted for the frame models this section wants to highlight the crucial steps 
that were undertaken in the development of the 2D model itself. In short, running transient analyses on it made it 
possible to understand several inconsistencies with regards to the structural behavior and to modifying the model 
accordingly.  

First, a “basic frame model” was created, consisting of floors and walls 
elements only with the nonlinear URM wall systems on each floor. The lack 
of lateral rigidity determines drift values that are too large even for small 
accelerations. Thus, new models were elaborated with the introduction of 
stability elements to provide adequate inter-story drift limits and, also, 
realistic values of vibration period for the structural frames. The physical 
interpretation of the stability system may be addressed as the rigid in-plane 
action of the URM walls that are orthogonal to the 2D plane shown. Again, 
the nonlinear wall systems were included on each of the frame floors.  

Due to the rise of large normal forces on the walls, induced by the structural system defined as an assemblage of beams 
and column continuously connected (also known as “frame effects”), hinge elements were implemented in the model.   

  

Figure 57 - First frame model. 



         

Displacement-based verification of unreinforced masonry walls acting out-of-plane within a structural system            47 

 

More specifically, hinges were applied at the connection between floors and stability systems. The floors were defined as 
continuous elements spanning over the nonlinear URM walls. This corresponds to model 3 depicted in the figure below.  

 

However, it was realized that in order to have all the walls analyzed comparable it was necessary to have the same 
boundary conditions (constraints, loads) for all of them. Since a ground-floor wall has always to withstand larger top 
loads compared to one on an upper level, different kind of “stair frame” models were developed, also taking into 
account the amount of DOFS involved to decrease the time of computations.  

Figure 59 - Stair frame models. 
 

Eventually, it became clear that as soon as one of the URM walls achieved its instable configuration due to the external 
excitation, the whole analysis would diverge and thus stop completely preventing the assessment of the behavior of the 
other elements in a later moment. A frame model made of dummy floor elements with no mass was finally chosen to 
meet this necessity. This model will be employed to verify the performance of one nonlinear system at a time on each 
floor. The major part of the mass pertaining to the frame structure will be thus lumped in the stability system and 
applied above the walls as a concentrated load.  

Depending on the type of analysis that one wants to run, it will be possible to vary the magnitude of the force on top of 
the wall, the initial drift of the floor above it, the ground motion intensity at the base and the location of the system 
representing the URM rocking wall within the structural frame. 

 

 

 

 

 

 

 

                

Figure 58 - Second and third models. 

                   
 

   
Figure 60 - Final model with dummy floor elements. 
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4.4.2 Geometry and FE types 
Given the wall numerical definition as described in Section 4.2, additional beam elements of the same typology are 
adopted for discretizing the building system as a frame. Geometrical properties are assigned to these objects to 
reproduce the size of the structural elements which represent the floors and the stability system. Besides their 
dimensions, the way these elements are connected to each other may also be attributed at geometry level. Finite elements 
software offer a variety of possible ways for defining hinged connections. In the model at matter, hinges are 
implemented in the model by introducing extra elements, namely 2D point interfaces between the end of the masonry 
walls and the floors, or by keeping the same number of elements and characterizing the ends of relevant objects as 
hinged. Both the methodologies were used in the current research, and their pros and cons are presented in this section 
as the differences mainly deal with their definition procedure rather than the impact they have in the structural response.  

Each floor of the frame measures 3 meters in height and the columns span for 4 meters. In the following tables the 
properties of the additional elements composing the frame model is presented. With regards to the characteristics of the 
masonry walls, reference is made to the “smeared cracking beam” model.  

Object Floor Hinged-floor edge Shear wall Wall-floor connection

FE element CL9BE CL9BE CL9BE N4IF 

Width [m] 0.15  0.15  2.00 [-] 

Thickness [m] 1.00 1.00 0.25 [-] 

Length [m] 2.00 2.00 Same as wall elem. 0.00 

Surface [m2] [-] [-] [-] 0.20 

Hinge [-] PHIZ1 [-] [-] 

Table 21 - Geometry specifications for the frame models. 

As it can be observed from the table above, the hinged connections between the stability system and the beams 
representing the floor slabs are defined without the input of extra finite elements. In fact in Diana it is possible to give 
the beam elements not only their cross sectional dimension but also to activate hinges at their ends. However, the limit 
of defining hinges in this way is that the properties of the connection are given not to the whole geometrical shape but 

to all the beam elements composing its mesh. This being said, it is 
necessary to split up the floor in two parts when using this type of 
hinge definition, one part meshed with a single beam element and 
hinged to the stability system, and the other part with user-defined 
mesh refinement and continuous beam elements. The alternative way 
of defining hinges is by introducing nodal interface elements. In this 
way the model allows for more freedom in meshing the floor objects 
but at the expense of additional degrees of freedom and input needed 
such as interface material properties and geometrical characterization. 

Since the focus of the research is on the highly nonlinear rocking mechanisms of the masonry walls, the extra elements 
included in this model should be intentionally given a coarse mesh. For the same reason the integration schemes adopted 
for this elements are left to their predefined schemes.  

4.4.3 Material properties 
The material definition for the unreinforced masonry wall elements is already addressed in the relevant section of the 
smeared cracking beams model (see 4.2.2.2). The final material parameters chosen for the frame model follow a 
sensitivity analysis performed in section 5.3 of this document. Also, the Young Modulus is now set to 5 GPa (values 
adopted for the lumped cracking beams model were taken from experimental settings of Doherty). For defining the 
frame model additional material models need to be introduced. The floors are assumed to be made of concrete, with an 
elastic modulus that is six times larger than the unreinforced masonry one and with a massless density. When the hinged 
stability system-to-floor connections are applied through nodal interface elements, the values of their normal and shear 
stiffness are required.  

   

N4IF, 2D element, 1+1 nodes. 
Diana Manual 10.1, Element library. 
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The Rayleigh damping coefficients for the models at matter depends on their structural configuration (number of floors) 
and structural performance (such as structural ductility, not addressed in this research)  and are calculated through an 
eigenvalue analysis. As an example, the Rayleigh damping coefficients for a six-story building with shear walls as a 
stability system are presented in the table below.  

 Mass    
[kg/m3] 

Young’s modulus 
[N/m2] 

Normal stiffness 
[N/m3] 

Shear stiffness 
[N/m3] 

Poisson    
[-] 

Floors 2200 3.00 · 1010 [-] [-] 0.1 

Point interface [-] [-] 1.00 · 1013 1.00 · 1013  

Rayleigh coefficients for a frame model and a damping ratio of 4% 

ܽ ൌ ܾ ݏ/1	0.87835 ൌ 0.24634  10ିଷ	ݏ 

Table 22 - Material specifications for the frame model. 

A remark is necessary on the cracking model applied to the masonry elements of the frame. Analyses of results on the 
smeared cracking beams model in the sensitivity analysis demonstrated that a fixed cracking approach better estimates 
the amount of energy involved in the rocking mechanism of a wall acting out-of-plane. Therefore, the fixed cracking 
model is chosen in place of the rotating one. For details on this aspect, reference is made to the next chapter of this 
master thesis.  

4.4.4 Boundary conditions and loads 
The frame is clamped to the ground. The walls within the structural system are, as it was mentioned before (section 
4.3.1), continuously connected to the floors unless stated differently. 

2D configuration ux uy φz 
Shear wall   

Ground-floor walls   

Table 23 - Constraints configuration for the smeared cracking beams model. 

Hinges may be applied to the wall-floor connections either for forcing the cracks to occur at the wall mid-height or to 
prevent the structural system from experiencing frame effects. The first instance may be used to mimic the case of a 
building system in which the walls are already pre-cracked at the ends, a circumstance that may be present in existing 
buildings due to settlements or already partially damaged. The frame effects mentioned deal with the occurring of 
tension and compression forces through the frame system which provide the balance of forces but also prevents the 
rocking mechanism of the masonry walls to be captured in the right way during the analysis. As a final choice for the 
analyses made on the frame model, the hinges will be only applied to the floors-stability system connections.  

With regards to the loads applied, again increasing harmonic base accelerations were used to test the model overall and 
local behavior as well as to calibrate the lateral stiffness of the stability system adopted. The increasing harmonic motions 
used were similar to those used for previous models. Note that this (intermediate) investigation is not reported in this 
document. Once it was demonstrated that the frame model is able to capture the out-of-plane action of masonry walls in 
dynamic analyses, a series of realistic signals compatible to those pertinent to Groningen are implemented. The 
procedure followed to derive these signals is briefly described hereafter.  

Table 24 - Definition of the loads applied on the frame models. 

 Point of application Type of motion Direction 

Self-weight - - - 

Base acceleration Horizontal supports (Increasing) Harmonic x 

Base acceleration Horizontal supports Accelerometer x 
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First, seven spectrally matched NPR bedrock time history records were taken, which were then scaled to two design 
spectra obtained as described in NPR9998 (2015) clause 3.2.2.2.1 and Annex F. These two design spectra, based on a 
reference ground acceleration of 0.2g and 0.3g respectively, were constructed by making use of other relevant factors 
which are provided in the following table. These records were passed through a specific software which determined the 
new batch of records at ground level taking into account the soil profile derived from three CPT tests carried out in the 
Loppersum area. For each record the components in either x and y direction were base corrected and then taken for the 
2D frame model. The peak ground acceleration at ground level for these records ranges from 0.15g to 0.20g. The next 
two captions show the elastic design spectra of the scaled signals.  

ag,ref kag(CC2) γM factor(n° records) PGA(bedrock) 

0.2/0.3 1.5 1.5 1.4 (7 records) 0.42/0.63 

Table 25 - Factors used to derive the ground motions for the frame model. 

     

Figure 61 – Spectra of the signals adopted for the Non Linear Time History Analysis of the frame model. x-direction 
components. agref = 0.2 (on the left) and 0.3 (on the right). 

These signals will allow to study the structural response of the elements for a range of exciting frequencies and are 
representative from an energy point of view of the ground motions acting in the area of Loppersum (reference 
acceleration 0.3g) and Groningen (0.2g).  

4.4.5 Analysis control 
The frame model undergoes non-linear dynamic analyses which are performed by applying the self-weight of the 
structure first and then imposing accelerations to its supports. The time step adopted for these analyses is presented in 
the following table.  

Application order Loadcase Load/Time steps Iterative method Convergence norm Tolerance

1 Self-weight 1 Newton-Raphson Displacement, Force - 

2 Base motion 0.001 (8000) Newton-Raphson Energy 0.0001 

Table 26 - Loads application procedure and settings of the numerical analysis on the frame models. 

The numerical methodology used to solve the system of equations for the dynamic problem at matter is left to the 
default Diana settings. The time integration scheme used is the Euler Backward. Energy convergence criteria with a 
maximum of 20 iterations is employed. When the analysis does not converge, two aspects are examined. First, one 
should make sure that convergence of the result is recovered in few time steps. Secondly, lack of convergence in the 
analysis results are acceptable only if these are reasonably limited (<<1). If both these requirements are met, the solver is 
allowed to proceed with the analysis.  

In order to efficiently process the analyses results and given the high number of time steps, Diana is instructed to 
logging results every 5 steps. Moreover, user-defined output is specified to obtain curvatures, crack pattern development 
and crack widths along the beam elements composing the walls.   
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5    Structural response of  the Models 

5.1 Lumped cracking beams model 
The first part of the modeling phase was entirely dedicated to reproducing the structural behavior of a rocking wall in 
quasi-static conditions. Here, the numerical definition of the element does not account for the masonry material 
properties yet as it is solely intended to check the capabilities of Diana to capture the geometrical nonlinear nature of the 
out-of-plane mechanism. The wall, modeled by means of rigid beam elements, reacts to the horizontal imposed 
deformation by exhibiting a lateral resistance which is a function of the displacement at mid-height. Depending on the 
tensile resisting properties of the wall and the nature of the overburden on top of it, the trend of the resisting lateral load 
with the displacement is different. The following diagrams illustrate these circumstances and reflect the analytical and 
experimental findings addressed in the literature study and in Doherty experiments. Details on the loading conditions of 
the model and other relevant aspects are to be found in Chapter 4 if not specified explicitly in this section.  

 

Figure 62 – Pushover analysis on the lumped cracking beams model: tensile resisting and no tension crack elements. No 
spring. 

A number of pushover analyses output are presented. If the interface used to describe the cracks are defined as tensile 
resisting elements, the graph shows an initial peak which is due to the initial elastic strength of the wall. The area 
identified by the descending branch accounts for the crack energy being dissipated during cracks opening. After this 
stage,  the horizontal force that the wall is able to withstand drops abruptly and the stability of the system is ensured only 
by the balance of the forces acting on it. This is depicted 
in the figure above. The next captions present the result 
of the same analysis performed on a wall upon which 
the overburden is applied by means of a spring element. 
Clearly, the curve depicts a negative stiffness of the 
system which is no longer represented by a straight line. 
Again, this is in agreement to the theory. Also, the 
model was employed to make a rough verification on 
the impact of the crack energy in the material model. 
Although this aspect will be addressed later on in more 
detail, in the section concerning sensitivity analyses on 
the material parameters, a zoomed-in caption on the first 
pushover steps is illustrated on the right. The numerical 
representation of the wall behaves as expected: the more 
tensile resistance is supplied to the system, the more 
energy is required to make it start rocking. 
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It is possible to compare the outcome of the pushover analysis depicted in Figure 64 with the experimental results of 
Doherty for a similar wall sample with a spring on top of it. Reference is made to Appendix A of this report. 

 

Figure 64 - Pushover analysis on the lumped cracking beams model: different types of tensile resisting crack elements. 
Spring on top. 

The lumped cracking beams model is also used to assess how the magnitude of the overburden, its point of application 
and the wall constraints affect the system stability or, in other words, its displacement capacity. The caption below 
demonstrates that a large load acting on top of the wall has a beneficial effect and increases its lateral resistance. It 
should be stressed, however, that the material model being used in this numerical representation of the wall is not able to 
account for the compression strength of the masonry. Hence, it can be stated that the larger the top load the more the 
wall is stable provided that the masonry compression strength is not exceed. If that happened, masonry would 
experience crushing. This phenomenon will be investigated later on by means of a more detailed wall model.  

 

Figure 65 – Pushover analysis on the lumped cracking beams model: different top loads. 

Although it is evident that increasing the overburden on a wall makes it more resistant to lateral deformation, another 
important aspect of it, namely its displacement capacity, remains unchanged. In fact, codes suggest that it is the way the 
wall ends are constraint to really play a role on this matter. A number of different constraint configurations was obtained 
by varying the position of the supports on the top and bottom rigid cross sections of the wall. The resulting pushover 
curves show that not only the displacement capacity of the walls varies, but the initial lateral resistance does too. The 
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increase of both these quantities is proportional to what in the New Zealand Code is called “seismic coefficient”, the 
maximum horizontal multiplier (acceleration) for which the wall stability is guaranteed. The results obtained with the 
numerical lumped cracking beams model very well match the analytical formulas from Table 2 (See also Appendix B).  

 

Figure 66 – Results of analytical formulas and numerical calculations on lumped cracking beams model, 17 kN 
overburden. Cm is the so called “seismic coefficient”, which is reported on the legend of the figure.  

The results describing the quasi-static behavior of the rocking wall system confirm that its inherent nonlinear nature may 
be explained in a great measure through stability considerations. Before resorting to an additional source of nonlinearity 
such as the physical resistance of the materials involved, the lumped cracking beams model is employed in some 
transient excitations. As explained in the modeling chapter, the energy consumption of the system will be entirely 
relegated to a fictitious damping defined at materials level.  

First, an attempt is made to reproduce the experimental findings of Doherty on a real record, the Nahanni earthquake. 
The response of the numerical model to this excitation is found to be similar to the Doherty  results (see Appendix A). 
Despite the differences in the number of peaks, the amplitude of the rocking oscillations is of the same order of 
magnitude and they do also occur at the same range of exciting frequencies. This is particularly true for the case where 
the wall is already pre-cracked at the mid-height cross section.  

 

Figure 67 – Mid-height wall displacement resulting from the rocking motion caused by a Nahanni record base excitation. 
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Now a set of increasing harmonic base motions is applied on the supports of the wall system to analyze the rocking 
mechanism activation in relation to the magnitude of the top load and the forcing frequency. The signals adopted have 
three different forcing frequency: 15 Hz, 2.5 Hz and 0.5 Hz. For all walls, the pre-cracked situation is investigated. The 
case of zero force acting on top of a pre-cracked wall is shown below.  

 

 

 

Figure 68 - Increasing harmonic excitations on the lumped cracking beams model. Absolute displacements at the base and 
mid-height. 

The captions show the absolute displacements computed at the level of the base and the mid-height of the masonry wall. 
In order to elaborate on them the mid-height deformation of the wall relative to its supports is computed and 
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represented in the next pictures. It is possible to see that the signals with high frequency do not affect the stability of the 
wall for the whole duration of the excitation, which was set to 8 seconds. On the other hand, the opposite happens for 
the signal with a frequency of 0.5 Hz, for which the output curve stops much earlier than in the other examples. Indeed, 
soon after one second the wall loses its stability configuration due to the action of inertia forces. However, it is 
remarkable that the numerical solution diverges not when the theoretical instability displacement is reached at mid-
height level, but in a later stage. Hence, Diana appears to be able to find a convergent solution even though the wall is 
failing. The lack of warning from the software on this matter will also be of concern for the upcoming analyses.  

 

 

 

Figure 69 – Absolute mid-height relative displacement of the wall subjected to increasing harmonic excitations. The 
instability displacement is 0.084 m, which is less than the wall thickness due to the particular boundary conditions used.  
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The investigation on the effect of the top load continues by applying relatively small loads on the wall, namely 1 kN, 2 
kN and 4 kN. Some representative results are plotted in the following captions representing the oscillations at mid-
height of the wall relative to the base support. More results for different boundary conditions can be found in Appendix 
C of this report. Only the signals with forcing frequencies of 2.5 and 0.5 Hz are studied. Intuitively enough, the 
occurrence of rocking motion is delayed as the overburden load increases. As noted in section 2.3, the top load acts as a 
pre-compression force on the wall which prevents it from cracking.  

 

 

 

Figures 70 - Increasing harmonic excitation on 1,5 m tall wall. Overburden 4 kN, forcing frequency 2.5 Hertz. 

The delayed occurrence of rocking compared to the case with no top load applied is visible in the last graph of the 
figures above. For a forcing frequency of 2.5 Hz the inertia force acting on the wall is far from affecting the stability of 
the wall even for accelerations in the order of 0.7g. On the contrary, a much smaller acceleration of around 0.25g is 
sufficient to cause instability of the system when the forcing frequency is 0.5 Hz, as presented in the following captions. 
An important remark should be made here. Earlier in this section it was noted that Diana is not able to warn the user 
when an instable configuration of the system is reached, and a numerical solution of the dynamic problem might be 
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found for several steps before the actual divergence occurs. This aspect may be seen as a real limitation to the study of 
the OOP behavior of walls since a transient analysis would potentially continue for an undetermined number of steps 
regardless of the wall integrity.  

 

 

 

Figure 71 – Increasing harmonic excitation on 1,5 m tall wall. Overburden 1 kN, forcing frequency 0.5 Hertz. 

As a consequence of that, the role played by the post-processing of the analyses results is of a crucial importance. If 
from one side it is true that convergence of results may be found for instable configurations of the wall, the 
development of total horizontal and vertical reaction forces at the supports may be of help to spot sudden variations of 
forces which occur at the moment the wall loses its stability. In the case at matter this is particularly true for the variation 
of the horizontal reaction forces. In the graphs illustrated so far the X marks in red represent the theoretical static 
instability displacement of the wall for the given boundary conditions whereas those with a different color identify the 
actual numerical divergence of the analysis performed through Diana.  
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5.2 Smeared cracking plane strain model 
The numerical definition of the masonry wall by means of plain strain elements was undergone in parallel to the 
generation of the smeared cracking beams model. Thanks to the ease of implementation in the future frame model the 
smeared cracking beams wall was made object of several sensitivity investigations while the application of the model at 
matter was limited to finding the appropriate amount of integration points necessary along the thickness of the wall. The 
figure below shows a quasi-static analysis performed on the smeared cracking plane strain model with a variable number 
of integration points ranging from 3 and 11 corresponding to the minimum and maximum amount which is possible to 
use for a single CL9BE finite element. There are two areas that requires attention: the initial resistance of the wall to the 
lateral load applied and the maximum mid-height displacement that can be achieved by the wall. It appears from the 
diagram that for a number of three integration points only the lateral resistance of the wall is considerably overestimated 
(around 30% more) and, therefore, this amount of points should not be used. When the integration points entered in the 
model are increased to five or seven, the resistance to lateral loads goes back to acceptable values but the maximum mid-
height displacement exceeds the theoretical stability configuration. As a matter of fact, a wall displacing more than its 
thickness (0.11 meters for the case analyzed) is not realistic. Hence, using nine or eleven integration points seem to be 
the only two options available. Although they do slightly differ with regards to their impact on the displacement capacity, 
both solutions are possible. However, sources in relevant literature recommend the use of eleven integration points as a 
minimum number along the thickness of a wall for which the rocking motion is investigated. For this reason, the 
maximum amount of integration points will be applied to the CL9BE elements for the next models of this research.  

 

Figure 74 –Variation on the number of integration points used along the thickness of the wall. 

It is noted that only the results obtained for a constant load on top are illustrated, the case of a top load applied through 
a spring leading to the same conclusion. Also, the parameters related to the tensile resistance of the masonry are related 
to considerations addressed in section 5.3.2. More in detail, in that section it will be justified the decision to assign a 
tensile resistance of 0,15 MPa and a cracking energy of 7 Nm to the unreinforced masonry material.  

5.3 Smeared cracking beams model 
This section may be considered as an introduction to the last wall model developed. Before the modification in size, the 
model of 1,5 meters in height was used to estimate the impact given by hinged connections at the wall ends, the mesh 
objectivity and an the tension softening model adopted for the cracks development. Moreover, it was verified whether 
the application of a spring on top of the wall for applying the overburden would act as expected.  

Impact of the spring element on top 

Given the one-dimensionality of the model, it was questioned whether the possibility of applying a spring on top of the 
wall would lead to tension forces in its displayed configurations. In order to check that, the vertical displacement of the 
node at the top of the wall was tracked as the rocking mechanism developed. At some point of the deformation the top 
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parts each, there would be 5 x 4 + 2 = 22 elements in total. After the wall peak lateral resistance is overcome, its capacity 
to withstand horizontal loads lightly increases for the coarse meshed wall, showing a small bulge before decreasing to 
zero with the same trend as in more refined cases. Also, the wall elastic resistance to lateral deformation is a bit 
underestimated. Using more refined mesh leads to more accurate results. Thus, it is chosen to make use of 22 elements.  

 

Figure 77 – Variation on the number of finite elements used: mesh objectivity on the smeared cracking beams model. Note 
that for this analysis a tensile strength of 0.15 MPa and a crack energy of 7 Nm was used. Their use is justified later on. 

Tension softening/brittle behavior 

Diana offers various tension softening models for the tensile resistance of the materials. Three alternatives were analyzed 
for the smeared cracking beams model: linear and Hordijk curves and brittle behavior.  Comparison was also made to 
the output obtained in case of rigid bodies approximation. Reasonably enough, the initial elastic resistance to lateral 
deformation of the wall presents a peak if a tension softening model is supplied to the model. Resorting to a Hordijk 
softening type seems to have a beneficial effect on the maximum mid-height displacement that the wall is able to reach  
in spite of a small decrease in the initial peak resistance of the system, which is believed to be underestimated. Decision 
is made to apply from now on the linear tension softening model to the material as the results are similar to the other 
cases. In terms of computational costs and numerical stability however,  the latter model  guarantees a better 
performance for the future transient analyses.  

 

Figure 78 - Different tensile resisting models for crack development, 1.5 m wall, 17 kN. 

Hysteresis 

An attempt is made to capture the hysteretic behavior for the finite elements representation of the unreinforced masonry 
wall developed in this section. This means that the system response to the lateral horizontal action should be affected by 
the level of material damage in cyclic analyses. Thus, this section deals with an increasing pushover analysis on both sides 
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where the masonry is expected to degrade due to crushing of its extreme fibers. As a result, the thickness of the wall at 
mid-height decreases and this phenomenon should be visible in the F-Δ curve. The analysis output is plotted hereunder. 

 
Figure 79 - Hysteretic behavior of the unreinforced masonry material on the wall subjected to the Nahanni excitation. 

The force displacement curve obtained is derived mainly through considerations on the equilibrium of forces 
characterizing a stability problem. This explains why the graph obtained presents a behavior that can be generally 
classified as nonlinear elastic, meaning that the curve shape remains always the same. However, the hysteretic behavior for 
the OOP behavior is reflected, for the case at matter, by the slight translation in the bottom-left direction of the curve 
after every cycle. Note that only the first cycle on both sides present a peak due to the initial cracking tensile resistance 
of the masonry. A caption representing the initial pushover steps of one cycle is available in Appendix D.  

5.3.1 Sensitivity study on material parameters 
This section presents the results of all the analyses performed on the latest unreinforced masonry wall model, 3 meters 
tall. These will serve as a mean for validating the model as well as for justifying its later use in the expanded frame 
schematization. Several material parameters were investigated to study their impact in the nonlinear behavior of the wall. 
This sensitivity study will lead to the choice for the most appropriate set of parameters to discretize the structural system 
with respect to its numerical efficiency and accurateness.  

It is decided to use the smeared cracking beams model for the NLTH analysis of the frame structure. For this reason the 
wall model needs to be scaled to a realistic size since the previous dimensions were adopted to reproduce the 
experimental settings of the Doherty research for comparative reasons. Scaling the model to 3 meters high and 200 
millimeters thickness wall evidenced an unexpected behavior of the model. 

 

Figure 80 - Force-Displacement diagram for the 3m high URM wall. Smeared cracking beams model. 5 kN overburden. 
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It can be noted in fact that even though all material properties and boundary conditions are kept constant with respect 
to the 1,5 m tall wall, the model scaled to a height of 3 meters presented much larger deformation capacity when 
subjected to a pushover analysis. While rocking, the stability of the wall system is ensured by the equilibrium of forces 
and corresponding moments: as the mechanisms develops towards the instability displacement, the lateral capacity is 
expected to decrease to zero. Initially, this was not the case for the scaled smeared cracking beams model, as it can be 
seen from the graph above. It can be stated that this behavior may not be a problem in view of a dynamic analysis due to 
the fact that the remaining lateral capacity of the wall at the theoretical point of instability is around 15% of the initial 
one. The inertia forces acting on the wall at such level of deformation would likely cause it to fail anyway.  However, an 
attempt is done to correct this aspect and improve the model reliability. Hence, a number of quasi-static analyses was 
carried out to identify the parameters responsible for this particular behavior. It is underlined here that the theoretical 
instability displacement, for the given boundary conditions of this model (clamped ends) is equal to the thickness of the 
wall itself.  

Variation of the shear retention factor  

At first, there are suspects of a shear locking phenomenon occurring in the model. It appeared that the shear retention 
factor in the definition of the nonlinear masonry material, which was up to now considered with its default value on 
Diana, has indeed quite a significant impact on this matter. By increasing its value from 0.01 to 0.1 the trend of the 
lateral resistance is even more inconsistent to the real behavior as not only it does not reach zero, but it increases as it get 
closer to the instability displacement. On the other hand, decreasing the shear retention factor by a factor 10-2  results in 
a lower resistance curve which still does not goes to zero. The same behavior is observed also for much smaller values of 
the shear retention factor. Using a damaged-based model to describe this factor also proved not to be of any help.  

 

Figure 81 - Variation of the shear retention factor for the smeared cracking beams model. 5 kN overburden. 

It is noted that the red, green and blue curves follow the same trend until around 0.06 m so that the graphs are 
essentially overlap until then. It may be concluded that, although the shear retention factor has a relevant impact in the 
final part of the force-displacement curve, it is not able to fully correct the infinite stability of the system which 
manifests for very small lateral forces applied on the wall.  

Applied overburden 

Varying the applied vertical force on top of the wall showed that this problem may be related to the energy required by 
the crack to develops in the masonry. In other words, for a larger magnitude of applied overburden the masonry 
experiences crushing and the hinges generated at the level of the cracks shift towards the inner side of the cross section. 
The damaged cross section has a smaller thickness compared to the undamaged one, and the instability displacement is 
reached earlier. Indeed, for large top loads, the wall system succeeds in achieving the instable configuration. This is 
illustrated in the figure below.  
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Figure 82 - Response of the smeared cracking beams model for different magnitude of top loads. 3m wall. 

The system which experience less “pre-compression” on top requires more energy from the lateral load to enable the 
rocking mechanism of the wall members. The trend described by the tail of the diagram still is unrealistic. Further 
investigations are necessary to correct the model parameters and reach the zero lateral resistance of the wall system. Still, 
it is noted that the model acts as expected with regards to the total energy required to display the system horizontally: the 
larger the top load (which originates a stabilizing moment at first), the larger the energy needed. This is represented by 
the larger area beneath the curves.   

Cracks orientation 

An additional step made for this investigation was related to how the cracking model adopted influences the behavior of 
the wall system. There are three options available on Diana for the total strain cracking model. Their difference lies in 
the orientation of the developing crack, which could be fixed, rotating or a combination of the two. It is interesting to 
plot the behavior of the wall system for the two extreme cases for deformations beyond the theoretical instability of the 
wall. This may help to have a broader understanding of the impact of parameters variations in the model.  

 

Figure 83 - Different models for the total strain cracking approach, 3m tall wall, 5 kN overburden. Note: the peaks overlap. 

When the lateral resistance of the system reaches zero, the wall should be considered to have failed due to its instable 
configuration. From the illustration above, it is clear that the wall still presents a much larger deformative capacity than 
0.2 meters for both approaches. However, it is evident that the latter case requires a large amount of additional energy to 
alter the orientation of the cracks, while the fixed cracking presents a more regular trend until the point it necessitates a 
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rather large quantity of energy to overcome what appears to be an obstacle to the cracks widening. It may be assumed 
that the cracks developing at the bottom, top and mid-height of the wall propagates along a single plane only and, as a 
consequence, that they have fixed orientation. Alternatively, it is also possible that this unexpected behavior is caused by 
numerical problems in Diana. This justifies the choice of relying on this cracking model, but leaves unsolved the 
problem of the wall displacement capacity. The positive impact of the fixed crack orientation in the model is also 
confirmed by the results obtained for the 1.5 m tall wall model. 

 

Figure 84 – Effect of rotating crack model on the 1.5 m tall wall, 17 kN overburden. Note: green and orange peaks overlap. 

Crushing and cracking of masonry 

In this section the impact on the FE model for the crack and crushing parameters of the nonlinear masonry material is 
evaluated. The reference values used are presented in the table hereunder together with the range of parameters adopted. 
This means that while a parameter is being varied, all the rest are assigned to the value given in the table unless otherwise 
stated. Due to the fact that the following document has a speculative background and as it is not accompanied by 
experimental findings, many of the model parameters related to the strength of the masonry were deducted by literature.  
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0.001 
Fixed,     
Rots 

Range ft Range Gf Range fc Range Gc 

0.15 Mpa – 0.45 Mpa 25 N/m – 40 N/m 2.50 Mpa – 8.50 Mpa 2000 N/m – 10000 N/m

Table 27 - Sensitivity study on strength parameters. Reference values and range of investigation. 

The variation of the material parameters is mainly based on the studies of Lourenco as reported in his PhD thesis 
(Lourenco, 1996), but also on those commonly used in the research programs conducted by EUCENTRE and TU Delft 
(2015) in the last few years which are also focused on the masonry type distinctive of Groningen (URM walls made of 
calcium silicate bricks). Unless specified differently, a top load of 5kN is applied in the next analyses. The table above 
also reports the range of investigation used for the sensitivity analysis concerning the compression and tension strength 
of masonry, two aspects that will be dealt with in the following paragraph.  

The energy released during the formation of a crack may be quantitatively identified as the area delimited by the tension 
softening curve adopted to describe the nonlinear response of the masonry in tension. Since the rocking mechanism of 
the wall implies the creation and widening of cracks through the whole thickness of the wall section, it is interesting to 
check to what extent the cracking energy chosen for this model determines its resistance. Although in previous sections 
it was chosen to make use of the fixed orientation cracking, the influence of the cracking energy is evaluated on the 
rotating model as well.  
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Figure 85 - Sensitivity study: variation of cracking energy on the model of 3 meters – fixed crack model. 

Figures 85 and 86 show the lateral horizontal force that the wall is able to withstand as a function of its displacement at 
mid-height. The variation of the cracking energy parameter has an impact in the first and last part of the diagram. 
However, only the portion related to a positive value of the lateral force is meaningful for the pushover analysis. 
Zooming in to the initial steps, it is clear that modifying the cracking energy has a relatively small impact on the peak 
lateral capacity of the URM wall, whereas it does not affect at all its behavior around the instability displacement.  

 

Figure 86 - Sensitivity study: variation of cracking energy on the model of 3 meters – zoom-in of figure 82. 

In a similar way the rotating crack model does not lead to much different results. Zooming in on the first portion of the 
diagram, which correspond to the formation of the hinges on top and bottom of the wall, produces the same graph of 
figure 86. However, in a later stage, the higher cracking energy corresponds to a slightly larger lateral capacity. This is 
visible in the second caption of figures 88. As expected, also in this last case the parameter at matter did not greatly 
affected the behavior of the curve in its descending branch.  

Next page also presents the resulting trends of the force-displacement diagrams in case of crushing energy variation. It is 
clear that for the given top load the wall behavior is not affected at all by the variation of this parameter in the range 
2000 N/m to 10000 N/m. The latter stands also for the stage of cracks formation, in the beginning of the rocking 
mechanism. However, it might be the case that the overburden acting on top of the wall is not sufficiently large to cause 
enough crushing of the material and to capture the impact of a larger crushing energy. Figure 90 shows the same study 
using a larger top load of 15 kN. The larger overburden induces crushing over the thickness of the wall, thus slightly 
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decreasing its displacement capacity from around 220 mm to 190 mm. This findings are in accordance with the results 
represented in figure 85. With regards to the crushing energy, applying a larger top load points out the role played by this 
parameter: the curve in the force-displacement diagram exhibits a little more lateral capacity for a higher value of Gc.  

 

 Figures 87 - Sensitivity study: variation of cracking energy on the model of 3 meters – rotating crack model. 

     

Figures 88 - Sensitivity study: variation of cracking energy on the model of 3 meters – zoom-in of figure 84. 
 

 

Figure 89 – Modification of the energy related to crushing of masonry material has no effect on the 3 meters tall model. 
Note that all the curves overlap. 
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Figure 90 – Modification of the energy related to crushing of masonry material on the 3 meters tall model, 15 kN.                      
The peak value of light-blue, red and green curves is the equivalent. 

It is concluded that the rocking mechanism is mainly governed by cracking phenomena rather than the occurring of 
crushing. In the last investigations the strength parameters of the masonry were set as fixed parameters. Next sections 
justifies their values.  

Variation in tensile and compressive strength of masonry 

In the beginning of this section, which is entirely dedicated to the sensitivity studies on the wall model, it was noted that 
the URM wall may presents a much larger displacement capacity than expected when re-sized to 3 meters. Although 
relying on different boundary conditions such as larger top loads to allow crushing may mitigate this situation, it is 
important to identify the parameters responsible of this behavior. Here it is demonstrated that adjusting the strength 
parameters of the masonry, namely the compression and tensile strength, has a strong impact on the way the force-
displacement curve develops.  

The next two captions present the lateral resistance of the unreinforced masonry wall for a range of compression 
strengths assigned to the material and for two possible overburdens: 5 and 15 kilonewtons. 

 

Figure 91 - Sensitivity study: variation of compression strength of masonry material, 3 meters tall model, 5 kN. 
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Figure 92 - Sensitivity study: variation of compression strength of masonry material, 3 meters tall model, 15 kN. 

Again, it appears that varying the compression resistance of the material properties does not lead to significant changes 
in the model response unless the top load is incremented as well. In the case of 5 kN overburden, there seems to be a 
threshold value for the compression strength beyond which this parameter does not affect at all the response of the 
model. Indeed, in Figure 91 the curves related to a compressive resistance of 3.50, 4.50 and 8,50 MPa correspond, while 
for 2.5 MPa only the lateral resistance of the wall experiences a steeper decrease and, probably, more crushing. As it was 
done for the crushing energy analyses, the top load is increased. For a 15 kN top load and varying compression strength 
the curves exhibits slightly different trends compared to the 5 kN case. Note that the case of 12.5 MPa and 8.50 MPa 
coincide. With regards to lateral resistance, the wall with 15 kN overburden shows only 2 kN larger initial peak to form 
the hinges on the wall compared to the other case, while the overall energy required for a complete rocking cycle is of 
course much bigger. A much bigger influence on the peak resistance of the wall is displayed by the tensile strength of 
masonry: the top load acts as a pre-compression force that prevents the material from cracking. See graph below. 

 

Figure 93 - Sensitivity study: variation of tensile strength on the smeared cracking beams model of 3 meters. 

For a given cracking energy, modifying the tensile resistance of the wall generates not only different initial peaks but also 
distinct tails of the curve. Hence, with reference to the issue evidenced beforehand regarding the infinite displacement 
capacity of the wall of 3 meters (beginning of section 5.3.1), adjusting the tensile resistance of the wall seems to be the 
suitable solution.  
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It may be concluded that when dealing with the strength in compression of the masonry wall and for evaluating the 
effect given by varying either the crushing energy or the compression resistance of the material itself, it is 
recommendable to apply a larger top load on the wall. However, it is the tensile strength of the masonry to have the 
biggest influence on the model resistance to horizontal loads. Also, the slope of the curve around the instability 
displacement of the wall model is greatly influenced by the value of the tensile strength of the unreinforced masonry.  

5.3.2 Extras and conclusions 
Before moving to the dynamic response of the frame model, additional results of some investigations made on the 
smeared cracking beams model of the wall are presented here. These analyses were conceived during the development of 
the single wall models as well as in the process of implementing it in a structural frame system. They highlight the 
importance of using an appropriate load step size when dealing with highly nonlinear phenomena such as cracking and 
geometrical nonlinear effects, the reasons behind the decision of modeling the vertical top load on the wall by means of 
a translational spring (reference is made to the experiments carried out by Doherty) and they also verify whether the 
finite elements adopted  in the modeling procedure are capable of capturing the shifting of the position of the hinges 
along the thickness of the wall while it rocks.   

Load steps size  

In numerical analyses the occurrence of cracking may easily lead to unstable solutions that are reflected by sudden 
divergence of the procedure or unreliable results. The following illustration shows that at the stage of incipient cracking 
of the masonry wall, the vertical reaction force located at the bottom end of it experiences some fluctuations. For this 
specific size of the wall the self-weight produces a vertical reaction force equal to 10.6 kN, to which an additional 5 kN 
should be added as a result of the applied vertical load. Regardless of how the cracks pattern develops, the total vertical 
reaction force is expected to stay constant as the wall displays. The diagrams provided below demonstrates that in 
numerical analyses this is not the case since there are usually small variations in calculating the forces due to the 
numerical approach. However, for the sake of the accurateness it is important that such fluctuations are limited. 
Therefore it is of crucial importance to choose an appropriate step size when applying the external load. The case 
represented below refer to a pushover analysis carried out with a displacement control procedure.  

 
Figure 94 - Check on the impact of load step size in development of vertical reaction forces. 3 m tall wall model. 

In a similar fashion and for the same reasons explained above, in transient analyses the time step is chosen in such a way 
that divergence of the solution is avoided and that the inertial forces are accounted for by relying on small time intervals 
(unless stated differently, 0.002 seconds).  

Increase of the wall overburden  

While developing the frame model a number of unexpected problems related to the assumptions made for the wall 
arose. Also, some aspects of the system required adjustments as the response of the model showed occurrence of 
unrealistically large dynamic forces in the vertical direction during transient analyses. In order to make the results of the 
analyses suitable for processing, it became essential to understand how and why these vertical forces developed. For this 
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schematization, where the floors are continuously connected to the whole system. Applying a constant vertical force on 
top of the wall in the following investigations is a choice dictated by the necessity to simplify the structural problem: if 
the floor beam on top of the wall is given a mass, the vertical motion induced on the floor by the rocking mechanism 
beneath it accelerates the floor and increases its impact on the wall. If not controlled in numerical analyses, this situation 
may become rather unrealistic, with the wall failing due to achievement of its physical resistance instead of its unstable 
configuration.  

Although it is possible to introduce some damping in the model to counteract the effect of the vertical impact of the 
floor on the wall, it is decided to make use of dummy floor elements for the structural frame model. In this way the 
inertia load given by the mass  of the floors is not taken into consideration and the equivalent floor weight is applied on 
top of the wall as a vertical point load of constant magnitude throughout the whole analysis. This would allow to carry 
out, if necessary, a sensitivity analyses based on different magnitudes of the top load, without the need to monitor its 
oscillations in magnitude. As an example, the figure below shows the amplification of the top force acting on a wall 
within a frame model due to the impact of the floor above it if the latter is given a mass. The wall is located higher than 
the ground floor and the case refers to an harmonic base excitation where the vertical motion of the floor is undamped. 
The peaks in the variation of the top load identifies the moments in which the top floor impacts on the wall. The values 
of the force are so high that they do not have a physical meaning anymore. 

 

Figure 97 – Top normal force on a URM wall in a frame model: transient analysis on harmonic excitation. 

Shifting of the top load above the wall: eccentricity check  

When rocking occurs the upper point of rotation of the wall is located at the connection with the floor. There, following 
the direction the system displays, a hinge is formed and shifts along the cross section of the wall as the mechanism 
develops. At incipient failure, the top load is applied on the extreme fiber of the cross section and the eccentricity is 
maximum. The T model was used to check whether the one-dimensional definition of the nonlinear system is able to 
capture this behavior in both quasi-static and transient analyses. According to the wall size, the maximum eccentricity 
possible should correspond to half of the wall thickness, which is 100 mm. The investigation conducted by means of 
pushover numerical analyses and displacement control procedure is shown below. There are two points drawing 
attention. First, it appears that the eccentricity is larger than half the cross sectional dimension for very small values of 
displacement. Secondly, that there is a sudden drop of eccentricity around 120 mm of wall deformation.  

 

Figure 98 - Eccentricity of top vertical force applied on top of the URM wall during a pushover analysis: Gf = 35 N/m. 
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Figure 99 - Eccentricity of top vertical force applied on top of the URM wall during a pushover analysis: Gf = 5 N/m. 

The first situation can be explained by the nonlinear behavior of the masonry material. In the chapter dedicated to the 
modeling procedures it is shown that the material has a stress-strain relationship with a parabolic shape in compression 
and a linear tension softening based on crack energy. While cracking, the hinge shifts to the extreme fiber until, 
theoretically, only compression stresses are concentrated in one point. The value of the moment divided by the resulting 
point force gives its eccentricity respect to the center of the cross section. However, due to the tensile strength assigned 
to the material, an additional moment is originated which makes the eccentricity larger than expected. Until the tensile 
strain resistance of the all the extreme fibers is reached, resulting in a consumption of crack energy by the application of 
the external force, this phenomenon occurs. A representation of this circumstance is provided in the picture hereunder. 

 

Figure 100 - Additional moment component acting on the cross section due to tensile strength of the material. 

As this behavior is caused by the way the material definition, it is reasonable to check what is the effect of modifying the 
material parameters related to the tensile strength. The next illustrations represent the eccentricity values that were found 
for different values of cracking energy Gf and tensile strength ft. Only the first stage of deformation is represented. The 
case with zero crack energy and 0.25 MPa corresponds to the eventuality of brittle cracking. 

Figure 101 - Eccentricity of top load on the URM wall. Variation of cracking energy Gf with tensile strength of 0.25 MPa.
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Figure 102 - Eccentricity of top load on the URM wall. Variation of cracking energy Gf and tensile strength of masonry. 

The figures above show that when the nonlinear material is given a tensile resistance there is always an additional 
component of the moment which resists cracking. The more energy is required to reach the ultimate strain in tension 
of the masonry, the more developed is the curve describing the eccentricity as a function of the mid-height 
displacement of the rocking wall. The bottom-right caption shows the limit case of the no-tension material. As 
expected, the resulting graph presents a smooth trend towards the value of 100 mm.  

When running transient analyses a similar behavior should be obtained. Indeed, the results obtained for an URM wall 
within a frame structure subjected to an harmonic base excitation is represented in the next picture. The masonry is 
modeled with a 0.45 MPa tensile resistance and 35 N/m cracking energy (linear tension softening). The initial 
eccentricity is due to the different end constraints of the upper floor that is supported by the wall (hinged-clamped). 
Before the actual rocking motion of the wall starts, the system requires a certain amount of energy to overcome the 
tensile resistance of the masonry and fully open the cracks where the hinges form. Also when the rotation point on top 
of the wall shifts to the opposite edge there is still some cracking energy left. Then, when the material is no longer able 
to respond in tension, the eccentricity is finally bounded between the values ±100 mm.  

 

Figure 103 – Eccentricity of the top load acting on a wall during a transient analysis which induces the rocking motion. 

Going back to the representation of figures 98 and 99, the sudden kink around a mid-height displacement of 120 mm 
may be caused by the crushing of the masonry which decreases the wall thickness and, therefore, the maximum moment 
acting on top of the wall.  

Hence, it is concluded that the model developed for the present research is able to capture distinctive aspects of the 
rocking mechanisms and that it is thus possible to make use of it for describing an URM wall inside a frame structure.  
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seismic response of wall elements within a building system. In a similar fashion, the outcome of the linear transient 
analyses was post-processed to construct the trends of the amplification in acceleration demands as a function of the 
height, which is related to the derivation of the height-effects coefficients. The two contributions of parts and height-effects 
are related to the so called filtering effect of the building on the ground motion (See section 2.7.3). 

Rayleigh damping parameters of clamped-clamped elastic beam  - 2% damping – 3 meters wall.  

Height [m] Vibration period [s] Mass coefficient [1/s] Stiffness coefficient [s] 

3 0.027 8.8804 0.82124·10E-4 

Vibration period of rocking mechanism according to NZSEE and NTC2008 – 3 meters wall  

NTC2008 NZSEE  Mass coefficient [1/s] Stiffness coefficient [s] 

0.274 sec 0.540 sec 8.8804 (approx.: l.e. beam) 0.82124·10E-4 (approx.: l.e. beam) 

Table 29 – Damping coefficients for the clamped-clamped elastic beam in the horizontal direction assuming 2% damping.  

The computations to derive the vibration periods of Table 29 are available for consultation in the Appendix F. The next 
sections present the results obtained in this investigation. The records used are labelled as A, B, C and D and they were 
all derived from a reference acceleration at bedrock level of 0.63g. The full step-by-step procedure is illustrated for the 
signal A, whereas the results obtained with other signals are accounted for by referring to their post-processed output.  

5.4.1 Max values of PGA and FSR profiles 
The strategy followed to derive the set of FRS profiles for the frame models was addressed in the previous section. The 
step-by-step procedure is now shown for one of the signals, while for all the others the outcome is summarized in tables 
and graphs in order not to interrupt the flow of the text. The reader can refer to the Appendix G the results of the IDA 
analysis on Record D. It is noted that the output is presented up to 9 seconds even though the excitation lasts for 10 
seconds. This has nothing to do with the response of the model and it is only related to the designing of the pages 
layout. No significant deformation of the walls was recorded in that time window in the present investigation.  

Record A 

The caption below illustrates the signal labelled as A. It corresponds to the base excitation adopted for all the frame 
models and it has a peak acceleration of 0.176 m/s2. Starting from the reference case of a wall at the ground-floor level, 
the output of the incremental dynamic analysis is shown next.  

 

Figure 105 - Representation of the signal A used as an acceleration base motion excitation for the frame models. 
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Each scaled signal corresponds to a maximum ground acceleration. The increments used in the IDA are visible on the 
right of each graph, and the value rounded in red represent the peak ground acceleration of the scaled record A for 
which the wall at a specific location loses its stability due to the out-of-plane deformation. A remark is here necessary. In 
the section dealing with the response of the smeared cracking beams model it was underlined that DIANA appears not 
always to be able to warn the user when the unstable configuration of the rocking walls is reached (Section 5.1). For this 
reason the graphs plotted above present two thick lines which represent the theoretical deformation limits for the wall 
system, and the OOP failure of walls  is considered to be achieved whenever the mid-height displacement of walls 
touches those lines or numerical divergence occurs. Therefore, post-processing the analyses output graphically is a 
crucial aspect in the assessment procedure for the OOP resistance of walls for the numerical models, especially when no 
numerical divergence takes place. With respect to the failure of walls, two important aspects are neglected: 

1) It is assumed that the instability displacement at mid-height is the one corresponding to the undamaged 
masonry cross section. However, it was seen before that the instability displacement is a function of the 
material deterioration (for instance due to crushing. See section 5.3, “hinged ends” and section 5.3.1, “crushing 
and cracking of masonry” and “applied overburden”). Therefore, the approach used may be considered un-
conservative to this respect.  
 

2) The sudden change in direction of the inertial forces due to the base motion may be able to push back the wall 
to a stable configuration even if it has already displayed beyond its instability displacement. In the illustrations 
shown above the occurrence of such a circumstance is detected few times. This behavior is of course possible 
in reality but, given the strong approximations made throughout the development of the model, it was decided 
to consider the wall as collapsed as long as the mid-height displacement curves touched the thick bounding 
lines.  

Also, given the level of approximation adopted so far for the development of the numerical model of the wall and frame 
systems, it is deemed reasonable to use increments of the signals in the order of not less than 0.25 times the original 
record.  

The pictures on the next pages present tables with an overview of maximum scaling factors and the resulting “Failure 
scaling ratio (FSR)” profiles associated to the rocking mechanism for all the walls analyzed and collected from the 
graphical elaboration of the output in previous pages. The quantity “Failure Scaling Ratio” is expressed by the following 
formula, as anticipated in Chapter 3: 
 

_௩ሻ	;	ሺ_௦௧௬ܴܵܨ ൌ 	
;ݕ݁ݎݐݏ_ெሺ݊ܣܩܲ ሻ݈݁ݒ݈݁_݅

ሻݕ݁ݎݐݏ_ெሺ1ܣܩܲ
 

 

The equation calculates the ratio between the PGA of a signal increasingly scaled until the out-of-plane failure of the 
wall system takes place, that is PGAmax, and that one corresponding to the same circumstance occurring in the case of a 
single-storey frame building (that is the reference case commonly considered in the international standards). The 
evolution of the value of the FSR parameter is shown in the following figures. For each of the signals the scaling 
procedure up to the OOP failure of walls is applied to frame models ranging from one to five storeys. As an example, 
the results represented  in Table 31 are considered. If the global (primary) system is a 4-storey frame, the following 
applies: 

- The external excitation (in this case record B, PGA = 0.1799 m/s2) needs to be 1.41 times larger than in the 
case of a single storey-frame building to cause the OOP failure of the wall system at ground-floor level.  
However, the wall system in a single-storey frame model fails OOP and under the given signal only if the latter 
is scaled at least 3 times larger than the original one (see Table 31). Therefore, the original record B needs to be 
amplified 1.41 x 3 = 4.22 times in order to determine OOP failure of the (secondary) wall system at ground 
level.  

It is clear that the higher the wall location, the smaller is the maximum PGA they can withstand before failing out-of-
their-plane. Although this conclusion matches the findings of several researches of the theory, it is noted that the 
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overburden on top of the wall is kept constant regardless of the wall location within the building in the IDA. Hence, this 
behavior cannot be explained by the smaller top load acting on higher walls and must be related to the amplification of 
acceleration demands on higher floors due to filtering effects. The filtering effects are associated to the interaction of 
vibration modes of the structural systems involved (primary – the frame building – and secondary – the wall with 
nonlinear material properties) and to the amplifications caused by height effects. Focus on these two aspects will be 
given in the upcoming sections. The presentation of the FSR profiles is followed by a comparative study where the 
results on the tables are plotted, overlapped and examined in order to better elaborate on them and draw conclusions.  

Record A 
 

 

Table 30 – Failure scaling ratio for the frame models. Record A. 

N° floors

4 2.95 0.57

N° floors
Max scaling     
up to failure

1 5.17 1.00

N° floors
Max scaling     
up to failure

Failure scaling ratio

Failure scaling ratio

2 5.23 1.01

3 4.83 0.93

N° floors
Max scaling     
up to failure

1 5.51 1.07

1 6.25 1.21
2 5.57 1.08

Failure scaling ratio

2 4.03 0.78
3 2.73 0.53

Max scaling     
up to failure

Failure scaling ratio

1 5.06 0.98

5 0.38

3 3.24 0.63
4 0.38

1.99
1.99

2 4.72 0.91

Record A - PGA: 0.175984 m/s2 - Duration: 10 sec
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Record B 
 

 

Table 31 – Failure scaling ratio for the frame models. Record B. 

 

 

2 3.50 1.17

Record B - PGA: 0.179895 m/s2 - Duration: 10 sec

N° floors
Max scaling     
up to failure

Failure scaling ratio

1 5.00 1.67

5 0.57

3 2.50 0.83
4 0.57

1.72
1.72

Max scaling     
up to failure

Failure scaling ratio

1 4.22 1.41

Failure scaling ratio

2 3.50 1.17
3 2.72 0.91

1 3.72 1.24
2 3.22 1.07

1 3.50 1.17
2 2.78 0.93

3 2.72 0.91

N° floors
Max scaling     
up to failure

1 3.00 1.00

N° floors
Max scaling     
up to failure

Failure scaling ratio

Failure scaling ratio

N° floors

4 2.72 0.91

N° floors
Max scaling     
up to failure
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Record C 
 

 

Table 32 – Failure scaling ratio for the frame models. Record C. 

 

 

3 4.40 0.91

N° floors
Max scaling     
up to failure

4 2.97 0.62

N° floors
Max scaling     
up to failure

Failure scaling ratio

1.02

1 4.81 1.00

N° floors
Max scaling     
up to failure

Failure scaling ratio

1 5.32 1.11
2 4.91

Failure scaling ratio

2 5.32 1.11
3 4.09 0.85

1 5.73 1.19
2 5.11 1.06

1.64
2.15

Max scaling     
up to failure

Failure scaling ratio

1 6.14 1.28

5 0.34

N° floors

3 3.17 0.66
4 0.45

2 5.22 1.09

Record C - PGA: 0.19553 m/s2 - Duration: 10 sec
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Record D 
 

 

Table 33 – Failure scaling ratio for the frame models. Record D. 

 

2 3.71 1.15

Record D - PGA: 0.188608 m/s2 - Duration: 10 sec

N° floors
Max scaling     
up to failure

Failure scaling ratio

1 5.25 1.62

5 0.62

3 2.49 0.77
4 0.62

2.01
2.01

Failure scaling ratio
1 4.51 1.39

Failure scaling ratio

2 3.50 1.08
3 2.70 0.84

N° floors
Max scaling     
up to failure

4.51 1.39
2 3.50 1.08

Max scaling     

1 3.71 1.15
2 3.23 1.00

N° floors

4 2.70 0.84

N° floors
Max scaling     
up to failure

1 3.23 1.00
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Record D 
 

 

Table 34 – Failure scaling ratio for the frame models. Record D. Moment resisting frame stability.  

 

2 3.50 1.08

Record D - PGA: 0.188608 m/s2 - Duration: 10 sec

N° floors
Max scaling     
up to failure

Failure scaling ratio

1 4.72 1.46

5 0.69

3 2.23 0.69
4 0.46

2.23
1.48

Max scaling     
up to failure

Failure scaling ratio

1 4.51 1.39

Failure scaling ratio

2 3.02 0.93
3 2.23 0.69

1 3.71 1.15
2 3.23 1.00

1 3.50 1.08
2 3.02 0.93

3 3.02 0.93

N° floors
Max scaling     
up to failure

1 3.23 1.00

N° floors
Max scaling     
up to failure

Failure scaling ratio

Failure scaling ratio

N° floors

4 2.76 0.85

N° floors
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5.4.3 Height effects 
The observations made on the FSR-graphs suggest that the dynamic response of the walls acting of out-of-plane 
deserves more investigations, especially when it comes to get a better understanding on the larger PGA that can be 
resisted by top walls with respect to those beneath them. In general, the main load acting on the wall systems is 
associated to the inertia forces that originate from the imposed accelerations acting  at the ends of the walls in 
correspondence of their connections with the floor. In order to evaluate the impact of these accelerations on the wall 
systems acting out-of-plane, it is first necessary to analyze how they develop in the frame models and to assess the 
maximum values they reach at each of the floor levels under the excitation of a base motion. Therefore the records A, B, 
C and D are employed to run a set of linear transient analyses on the frame models. The resulting amplification profiles 
are illustrated in Figure 130 for frames of 1 to 4 storeys. In the y-axis is the amplification of the accelerations as a 
function of the height, which is represented by the ratio between the maximum accelerations calculated at floor level 
during the transient analysis and the PGA of the base excitation. That is: 
 

ሻݎ݈݂_ሺ݊݊݅ݐ݂݈ܽܿ݅݅݉ܣ ൌ 	
	ݎ݈݂_݊ܿܿܣ
ܣܩܲ

 

 

Attention is now given to the case of a 5-storey frame model. The maximum absolute values of the accelerations at 
floors level, for each of the four signals, is illustrated in Figure 130. The response of the frame model to the external 
excitations shows a tendency of the building to amplify the ground input almost linearly over the height. This might be 
due to the fact that the response of the 5-storey frame is mainly governed by its first modal shape of vibration. 

 

Figure 130 – Amplifications of the acceleration demands at floor level. Frame models, four exciting base signals. 

0.98
0.99

1
1.01
1.02
1.03
1.04
1.05
1.06
1.07
1.08
1.09
1.1

0 1 2 3 4 5

A
m

p
lif

ic
at

io
n

 [
-]

Height [m]

Acceleration demands 1-storey frame

RECORD A

RECORD B

RECORD C

RECORD D

0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

0 1 2 3 4 5 6 7

A
m

pl
if

ic
at

io
n 

[-
]

Height [-]

Acceleration demands 2-storey frame

RECORD A

RECORD B

RECORD C

RECORD D

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10

A
m

pl
if

ic
at

io
n 

[-
]

Height [-]

Acceleration demands 3-storey frame

RECORD A

RECORD B

RECORD C

RECORD D

0

1

2

3

4

5

0 2 4 6 8 10 12

A
m

p
lif

ic
at

io
n

 [
-]

Height [-]

Acceleration demands 4-storey frame

RECORD A

RECORD B

RECORD C

RECORD D



 

Displaceme

 

Figure 13

The amplif
effects. The
- wall syste
of the fram
URM wall
contributio
Figure 131 

Figure 132

ent-based verifi

1 – Amplificatio

fications in acce
ese are not suff
ms in the NLT

me, but actually,
s acting out-o

on given by the 
is compared to

2 – Amplificatio

ication of unrei

on profile of acc

elerations dema
ficient for expla

THA. In fact, no
, the curves des
f-plane in the 
interaction of 

o the curve foun

on profile of acc

inforced mason

celeration dema

ands caused by 
aining the resis
ot only there is
scribe a clear in
frame models

the primary an
nd in the New 

eleration deman
in the New

nry walls acting 

ands for a 5-stor

the response o
tance to the ou

s no evidence o
ncreasing trend
s needs to be 

nd secondary sy
Zealand norma

nds for a 5-store
w Zealand norm

out-of-plane w

rey frame subjec

of the primary s
ut-of-plane failu
of floor accelera
d up to the top 

analyzed by t
ystem. Before d
ative (NZS1170

ey frame: comp
mative.  

within a structur

cted to four diff

structure can b
ure demonstrate
ations being red
of it. Thus, th

taking into ac
doing so, the am
0.5; Section C8.

parison with ma

ral system       

ferent base mot

be classified as h
ed by the - seco
duced over the 
e performance 
count also the

mplification pro
.2).  

aximum values f

    95 

 

tions.  

height-
ondary 
height 
of the 

e extra 
ofile of 

 

found 

 



 

Displaceme

 

Clearly, the
in the code
shape of v
influenced 
explanation
building m
acceleration
and deliver
respect to 
investigatio

 

5.4.4 Par
The dynam
magnitude 
understand
derived thr
Fourier Tra
the rocking
represents 
provided in
 

By looking
profile with

ent-based verifi

e acceleration d
es. This fact ca
vibration. It mi
the response o

n of such an oc
model. It is likel

n demands at f
red more energ

the accelerati
on. 

rt effects 
mic response of 

of the inertia
ding of this inte
rough the acce
ansform. In the
g mechanism c
the URM wall 

n the Appendix

Figure 134 – 

g at the Figures
h a peak spectr

ication of unrei

demands found 
an be explained
ight be possib

of the system on
ccurrence may b
ly that prevent
floor level. Acc
gy to the secon
on demands a

the primary an
a forces that 
eraction, elastic
elerations outpu
e elastic respon
calculated in ac
in the undama

x F of this repor

Elastic floor re

s 134 it is poss
ral acceleration

inforced mason

in the numeric
d by the behav
ble that if the 
n higher floors.
be related to th
ting the frame
counting for th
ndary shapes o
at floor levels

nd secondary sy
develops on t

c floor respons
ut found in th

nse spectra belo
ccordance to N
aged condition 
rt.  

esponse spectru

sible to notice 
n of around 1g.

nry walls acting 

cal representatio
vior of the prim
frame model w
. This however 
e linear-elastic m
model from yi

he ductility of t
of vibration res

(see Figure 1

 

stems and the w
the wall system
e spectra for th

he previous line
ow are also indi
New Zealand C

– linear elastic 

m at ground-flo

that the elastic
 That is almos

out-of-plane w

on of the build
mary system wh
was taller, othe
is not relevant
material proper

yielding results 
the primary sys
sulting in a dif
133). This asp

 

 

Figure 
amplifica
floor lev
were use
model.

way they intera
ms on higher
he 5-storey fram
ear analyses an
icated the vibra

Code and the el
c analysis). The 

oor level for the 

c spectrum at g
st five times th

within a structur

ding are larger t
hich is governe
er modes of v
t to the 5-storey
rties that were 
in “un-control

stem would hav
fferent respons
pect, however, 

133 – Sup
ation in accele

vel if nonlinear 
ed for the prim

act with each ot
r floor levels. 
me model are 
nd an algorithm
ational period o
lastic double-cl
calculations fo

frame building

ground-floor le
he PGA of the 

ral system       

than those pres
ed by the first 
vibration would
y frame, for wh
assigned to the
lled” amplificat
ve probably ac
se of the mode

is not part o

pposed trend
eration deman

material prop
mary system o

ther largely affe
Aiming to a 
computed. The
m based on th
of the frame bu
lamped beam 

or their derivati

g model. 

evel presents a 
four records u

    96 

scribed 
modal 

d have 
hich an 
e frame 
tion in 
tivated 
el with 
of this 

d of 
ds at 
erties 

of the 

ects the 
better 

ese are 
he Fast 
uilding, 
(which 
ion are 

 

stocky 
used to 

 

renato.granata
Highlight

renato.granata
Highlight



 

Displaceme

 

excite the m
larger accel
correspond
 

ent-based verifi

model. Indeed, 
leration than th
ds to a very flex

Figure 135 –

Figure 136 –

Figure 137 –

ication of unrei

when the seco
he one acting at
xible secondary 

– Elastic floor re

– Elastic floor r

– Elastic floor re

inforced mason

ondary system h
t the base of th
system for whi

esponse spectru

response spectru

esponse spectru

nry walls acting 

has a  vibration
he primary syste
ich the accelera

um at second-flo
 

um at third-floo
 

um at fourth-flo

out-of-plane w

n period smalle
em. On the oth
ation demands d

oor level for the 

or level for the f

oor level for the 

within a structur

er than 1,5 seco
her hand, larger
drastically redu

frame building

frame building m

frame building 

ral system       

onds, it experie
r periods of vib

uces down to ze

g model. 

model. 

model. 

    97 

ences a 
bration 
ero.  

 

 

 

 

renato.granata
Highlight



 

Displaceme

 

The amplif
137-138 in 
larger ampl
the primary
are distant 
the primary
discern the
wall would
section 2.8
than 40 me
and H bein
 

 
 

This value 
the 5-store
response o
periods for
behavior o
height disp
of that, wi
compared t
the inertial 
values of m
floor accele
can be expe

 

ܶ

 

ent-based verifi

Figure 138 

fication in accel
fact, the bell-s

lifications arou
y system to the
from the groun
y system until i
e input spectrum
d be subjected 
.2 an simplified
eters. Accordin
ng the height of

is very close to
ey frame was co
of the walls gro
r which the wal
f rocking walls 

placement in a r
th a large vibr
to those presen
forces acting o

mid-height disp
erations. Using 
ected between 

 ൌ ඨߨ2
݀௦∗

∗௦ߙ
ൌ

ication of unrei

– Elastic floor r

leration deman
shaped curves 

und a specific p
e base excitation
nd level. In oth
it eventually go
m at ground le
to acceleration
d formula was 
g to the Italian

f the building: 

ଵܶ ൌ

 the results obt
omputed as 0.3
ow more and m
ll is affected be
due to the fact

rocking wall co
ation period. T

nt at ground-flo
on them reduc

placement of th
the Italian app
0.3 and 0.55 se

ߨ2
ඪ

߂
∗

ߙ
∗ ቌ1 െ

ߙ
∗ ൌ ൬1 

inforced mason

response spectr

nds are even mo
become progre

period of vibrat
n has an increa
her words, the 
overns the beh
vel. According 

ns of 5g if its p
presented for c

n code, the follo

ଵܥ ∙ ଷ/ସܪ ൌ 0.

tained through 
396 seconds (T
more severe w
comes smaller.
t that their peri
rresponds to a 

Therefore the w
oor level but on
ce abruptly. As 
he rocking wall 
roach (see also 
conds (see pictu

ௗ௧,௦௧

ௗ௧,௦߂
∗

ݐ
2


ܲ
ܹ
൰
ݐ4
݄
݃ ൌ ൬

nry walls acting 

rum at fifth-floo

ore severe for r
essively more s
tion: the period
asing influence o
characteristics 
avior of the to
to Figure 138,

period of vibrat
computing the 
owing formula 

.05 ∙ 15ଷ/ସ ൌ 0

an eigenvalue a
Table 28). Altho
with the height,

This fact is of
iod of oscillatio
system with a 

walls located o
nly for specific d

an example, it
on the fifth fl
Appendix F) a
ure hereunder) 

௧ ቍ

݊݅ݏ												

൬1 
15000
5297,4

൰

out-of-plane w

or level for the fr

response spectr
slender and pre
d of the buildin
on the respons
of the ground 

op floors. At th
, the secondary
tion is close to
period of osci
should be used

ݏ݀݊ܿ݁ݏ	0.381

analysis in Dian
ough the effec
, it should be n
f great importan
on is a function
relatively low l

on top levels ex
displayed config
t is possible to 
loor correspond
and assuming th
 it follows that:

∗௦ߙ								݁ܿ݊ ൌ ߙ

4 ∙ 0,2
3

∙ 9,81 ൌ

within a structur

rame building m

ra of top floors
esent a tendenc
ng. This means
se of the wall sy
motion are gra

hat point, it is n
y system repres
o the one of th
illation of a ma
d with the facto

 ݏ

na, where the pe
cts of resonanc
noted that the
nce on the stud
n of their defor
lateral stiffness 
xperience much
gurations of th
derive in an ap

ding to a large 
hat “resonance”
: 

ߙ
∗ ቆ1 െ

ௗ߂
∗

ௗ߂
∗

ൌ 10	 

ral system       

model. 

s. In figures 13
cy to concentra
 that the respo
ystems the mor
adually filtered 
no longer poss
sented by the r
he frame buildi
asonry building
or C set equal t

eriod of oscillat
e phenomena 

e range of vibr
dy of the out-of
rmation. A larg
and, by conseq

h larger acceler
e walls beyond 
pproximated w
magnification 

” of the wall res

௧,௦௧

௧,௫
ቇ 

    98 

 

35-136-
ate the 

onse of 
re they 
out by 

sible to 
rocking 
ing. In 

g lower 
to 0.05 

tion of 
on the 
ational 
f-plane 

ge mid-
quence 
rations 
 which 

way the 
of the 

sponse 

 



 

Displaceme

 

 

ܶ ൌ

 

The spectra
its value. H

 

 

All the con
where the i
 

Figure 139 

The examp
inertial forc
elastic tran
clamped-cl
linear-elasti
secondary 
floors. Alth
experience 
imposed ac
periods for
possibly, le

Thus, a cor
elongation”
analyses, pl
only lookin
height. Als
response sp
problem. I

ent-based verifi

ൌ ඨߨ2
߂

10൫1 െ

al displacement
Hence: 

nfigurations of 
inertia forces ac

– Range of peri

ple above demo
ces) that vary a

nsient analysis b
amped beam, 
ic circumstance
system is of cr

hough the amp
these accelerat

ccelerations app
r which the sec
ading to more u

rrect estimation
” associated wi
lotted in Figure
ng at the trend 
o, it should be 
pectra at floor 
n fact, allowing

ication of unrei

ௗ௧,௦߂
∗

10 ∙ ௗ߂
∗

t ߂ௗ௧,௦
∗

ܶ ൌ

ܶ ൌ

f the wall with 
cting on the wa

iods analyzed to
rocki

onstrates that a
as a function o
because the wa
which is close 

es. Nonetheless
rucial importan

plification in acc
tions only for a
plied to it drast
condary system 
unfavorable eff

n of the resistan
ith the deform
es 121-122-123-
of acceleration
underlined tha
level would pr
g the primary 

inforced mason

௧

௧,௦௧൯
										

௧ should be 

ൌ 										ݏ0.3 →

										ݏ0.55 →

a mid-height d
all are amplified

o estimate the m
ing and based o

a wall during t
of its mid-heigh
alls do not crac

to zero. Thus
s, the response 
nce for underst
celeration dema
a “very short p
tically decrease.
experiences am

fects.  

nce to the out-
mation of the s
-124, present a 

n amplifications
at the response 
robably lead to 
structure to yie

nry walls acting 

						→ 												 ߂	

transformed to

							 ௗ௧߂

→ 							 ௗ߂

displacement w
d greatly, see pic

max amplificatio
on its deformed 

the rocking mo
ht displacemen
ck and their p
s, no amplifica
spectra showed
tanding the ma
ands may be re
period of time”
. On the contra
mplifications is 

-of-plane failure
system. This as
FSR curve tha

s at floor level 
spectra compu
a more accura

eld would supp

out-of-plane w

ௗ௧,௦߂
∗

o its real value w

௧ ൌ 0.018	݉		

௧ ൌ 0.043	݉	

within the two 
cture below.  

on of inertia for
configurations.

otion is subject
nt. This aspect 
eriod of oscilla

ation of acceler
d that the role p
agnitude of for
eally large in th
”: soon after a 
ary, for walls lo
larger (the floo

e of a URM w
spect may expl
at is not steadily
obtained for th
uted in this Ch
ate estimation o
press much of 

within a structur

௧ ൌ
ܶ
ଶ

10 ∙ ܶ
ଶ 

which in this ca

 

	 

values above 

rces acting on th
. 

ted to accelera
cannot be stud

ation would sta
rations (resona
played by the vi
rces acting on 

hat situation, th
wall passes the
ocated on lowe
or response sp

wall should not 
lain why the r
y decreasing as 
he frame mode
hapter are elasti
of the inertial f
f the response 

ral system       

ଶ

 3,94
														

ase amount to d

corresponds to

he wall system d

ations (and asso
died through a
ay equal to tha

ance) would oc
ibration period
walls located o

he wall systems 
e resonance pea
er levels, the ra
ectrum is wide

disregard the “
results of the N
one would exp

el as a function 
c. Deriving non

forces involved 
at first mode p

    99 

 

double 

o cases 

 

during 

ociated 
a linear 
at of a 
ccur in 
d of the 
on top 
would 
ak, the 

ange of 
r) and, 

“period 
NLTH 
pect by 
of the 

nlinear 
in the 

period, 

 



         

Displacement-based verification of unreinforced masonry walls acting out-of-plane within a structural system            100 

 

accentuating the response at higher modes with proliferation of short-period accelerations spikes of a smaller size than 
the one found in the case of elastic response spectra on top floors.  

Before drawing the final conclusions on the outcome of the previous NLTHA (Section 5.4.1) an additional check is 
made. The derived elastic response spectra of figures 134-135-136-137-138 can also be employed, theoretically, to derive 
the  amplifications of acceleration demands at floor level, since the spectral values in correspondence of a vibrational 
period close to zero (secondary system infinitely rigid, i.e. it “follows” the response of the primary structure) should 
indeed represent the floor accelerations in each of the spectra. To verify this, the accelerations for T=0 are extracted and 
elaborated:  
 

 

Figure 140 – Amplification of acceleration demands as a function of the height on the frame and obtained through the 
elastic response spectra at floor level.  

The amplification profiles plotted for the 4 signals in Figure 140 show a similar trend to the one depicted in Figure 131. 
The accelerations increase over the height following the first modal shape of vibration for the frame building as 
expected. These results are comparable to those presented in the previous section, although not perfectly matching.  

 

 

Floor level A B C D A B C D 
5 0.61 0.72 0.82 0.69 3.48 4.00 4.21 3.68
4 0.47 0.53 0.61 0.51 2.66 2.94 3.14 2.71
3 0.33 0.37 0.42 0.35 1.89 2.05 2.16 1.88
2 0.23 0.25 0.27 0.24 1.32 1.40 1.38 1.28
1 0.18 0.19 0.22 0.21 1.05 1.05 1.14 1.10

PGA signals:

Floor acceleration [g] Amplification PGA

HAND CHECK HEIGHT AMPLIFICATIONS FROM ELASTIC FLOOR SPECTRA

A ‐ 0.1759g B ‐ 0.1798 g C ‐ 1953g D ‐ 1886g 
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With regards to the Italian normative, the following applies: 
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ݐ4
݄௪

൬1 
ܲ
ܹ
൰ ൌ 1.04								ሺ݁݁ݏ	ݏ݈ܽ	ݔ݅݀݊݁ܣ	ܧሻ 

 

ଵܶ ൌ ଵܥ ∙ ଷ/ସܪ ൌ 0.05 ∙ 15ଷ/ସ ൌ  ݏ݀݊ܿ݁ݏ	0.381
 

 
For such a vibration period of the building the value of elastic response is 3 times larger than the PGA at ground-level 
(see Figure 141). Then: 
 
 

ߛ ൌ
3ܰ

2ܰ  1
						ݏݎ݈݂	݂	ݎܾ݁݉ݑ݊	ܰ	݄ݐ݅ݓ					 → ߛ						 ൌ 	1.36		 

 

In case of a URM wall located on the 5th floor of a frame building: 

 

ሺ13.5ሻߖ ൌ 0.9 

 

All of this results in the following: 

 

ெ௫ܣܩܲ ൌ
0.104

0.9 ∙ 1.36 ∙ 3
ൌ 0.28݃ 

 

The results obtained from the two codes and for a 5-storey building are plotted in the graph on the next page together 
with the curves depicted in Figure 141 (on the right). 
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6    Conclusions and Recommendations 

This document starts with a general introduction to the topic of masonry walls acting out-of-plane, the challenges related 
to the assessment of their stability in the event of an earthquake and a list of associated research questions to guide this 
investigation. The following chapter now focuses on the results obtained as outcomes of this research. By tracking back 
the findings of the previous sections, an answer will be given to each of the questions arose after the literature study. 
Eventually, it will be possible to elaborate on the major research question:  
 

“Is it possible to create an adaptation of foreign methodologies for the out-of-plane assessment of a URM wall to the 
Groningen scenario, by making use of a simple 2D frame model?” 

 

6.1 Summary of results 
The lumped cracking beams model demonstrated that it is possible to construct a discretized representation of the 
unreinforced masonry wall capable of capturing the geometrical nonlinearity that is specific of the rocking mechanism. 
The stiffness of the rocking system indeed decreased as the mechanism developed. This behavior was verified for both 
quasi-static and transient loading as well as for a variety of forcing frequencies and top loads applied on the wall. 
However, simulating the rigid bodies assumption in a finite elements model produced detrimental effects on the stability 
of the numerical analyses, particularly when the model was employed in dynamic investigations. For this reason two 
alternative models were developed.  

The smeared cracking plane strain model seemed to be a valid choice for the discretization of the rocking wall. Its 
resistance to the lateral horizontal loading followed the same trend as in the lumped cracking beams model and it also 
enabled to implement the physical resisting properties of the masonry material. Nonetheless, in view of the model 
upgrades it was decided to abandon it due to its complex definition and the associated large computation time required 
for transient analyses. Still, the plane strain wall model was employed to determine the minimum number of integration 
points that are necessary over the wall thickness in order to avoid overestimating its displacement capacity at mid-height.  

The second research question regarding which structural material aspects should be included in the model for the 
numerical investigation was better addressed by the other alternative wall discretization, the smeared-cracking beams 
model. By making use of it, the contribution of the physical nonlinearity of the material to the overall rocking behavior 
was accounted for. The model proved to be able to respond differently depending on the degree of constraint of its ends 
and the magnitude of the overburden. This last aspect had a considerable impact in the manifestation of crushing 
phenomena. Speaking of the ability of the model to give evidence of its material degradation in time, sequential pushover 
analyses indicated a hysteretic behavior of masonry in the out-of-plane deformation of URM walls which followed a 
nonlinear elastic law. A sensitivity analysis on the material parameters of the model revealed that it is not 
recommendable to apply a rotating crack model to the masonry, when in fact a fixed crack orientation seemed to better 
describe the energy needed to display the wall to its unstable configuration. Also, what came to light in the sensitivity 
analysis is the central role played by the tensile strength of the masonry, which appeared to be the most influencing 
property of the model as it determines both the initial lateral resistance of the URM wall as well as its deformation 
capacity in the estimation of its stability.  

Thanks to its ease of operation, the smeared-cracking-beams wall model was chosen for extending the model to include 
its surrounding structure as well. The frame models were the objects of investigation in the last part of the chapter 
related to the FE models response. They were developed in a step-by-step procedure, to provide them of sufficient 
lateral stiffness. Two different stability systems were examined, namely shear walls and moment resisting frames, to 
evaluate their impact on the dynamic performance of the wall acting out-of-plane inside building. It was noticed that 
these stabilizing elements could also be interpreting the additional contribution to the lateral stiffness of the frames 
which is provided by the in-plane action of the return walls and/or perpendicular walls. Since the rocking mechanism of 
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a wall presents no specific resonant frequencies, its dynamic response needs to be analyzed by means of artificial records 
so that the system would be excited by a range of frequencies rather than a single one only. Therefore, the set of frame 
models was subjected to NLTH analyses on four different records selected among those derived from a spectrum in 
agreement to NPR provisions. The base excitations were used to run several incremental dynamic analyses (IDA) where 
they were increasingly amplified until the out-of-plane failure of a wall object of investigation would occur. A 
disadvantage that arose from adopting these frame models in dynamic analyses was that Diana seems not able to warn 
the user when an element is failing out-of-plane (not always the numerical divergence occurs, the analysis might proceed 
until its full completion). For this reason it came into view the crucial importance of post-processing the results and 
defining limit values for the mid-height rocking displacement of walls beyond which the walls were considered as failed. 
The output of all the IDA provided a means for developing the Failure Scaling Ratio (FSR) curves for the unreinforced 
masonry walls of the frame structures as they responded to the seismic excitations both within and beyond their elastic 
range. According to the results obtained, the maximum PGA that the walls were able to resist without failing out-of-
their plane decreases the more they are located on higher floors. What is more, it was found that none of the original 
records employed seemed to be sufficiently strong to cause the direct out-of-plane failure of the walls in the frame 
models unless scaled appropriately. The main finding of the IDA however was that many of the walls located on top 
floors of the frame models exhibited the tendency to be less prone to out-of-plane failure than expected. This was 
reflected by the associated FSR curves which would not be steadily decreasing up to the top levels.  

With the aim of achieving a better understanding on the rocking behavior of URM walls, some linear transient analyses 
were run on the frame models in order to investigate the impact of the height and parts effects in the dynamic response 
of the wall systems, the so called filtering effects. Since the inertia forces acting on a wall systems during a dynamic 
analyses are strictly dependent on the accelerations induced on the wall, analyzing how the acceleration demands 
develops in the frame building, or secondary system, and are subsequently transferred to the wall elements, or secondary 
systems, is of main importance. The amplification profile of the acceleration at floor level in the frame evidenced a trend 
resembling its first shape of vibration for all the records used. This would correspond to acceleration demands at floor 
level that are (almost) linearly increasing with the height. The output of the linear transient analyses was then employed 
to derive elastic response spectra at floor level through a Fast Fourier Transform procedure. According to the spectral 
curves, the amplification of accelerations induced on the wall systems increases for higher floors. However, the 
progressively slenderer shape of the resonance peaks over the height of the frame building results in a smaller range of 
exciting frequencies for which the secondary system experiences such amplifications. As the rocking mechanism of 
URM walls on top floors develops due to floor accelerations, the lateral stiffness of the walls decreases and by 
consequence of that their vibration period may elongate so much that the inertia forces acting on them almost vanish. 
This strong contribution given by the interaction between the primary and secondary systems explain the trend found in 
the FSR curves where the walls on higher top floors proved to be able to cope with maximum PGA that are similar in 
magnitude to those found for lower-level walls.  

Finally, the out-of-plane performance of the URM walls resulting from the numerical analyses on the 5-storey buildings 
is compared to the that resulting from the New Zealand and Italian normative. The comparison showed that for walls 
on lower floors the maximum PGA tolerable by the numerical model stands in between the values derived from the 
foreign codes, whereas for wall on higher levels the maximum accelerations at the base of the buildings is similar for the 
numerical and the analytical models. Also, it was underlined how the values according to the NZS procedure are 
generally conservative, especially for lower-level walls.  

6.2 Conclusions 
This conclusive passage addresses the final and major research questions by taking into consideration all the findings 
brought into the light in the development of this investigation which were briefly reported in the summary at the 
beginning of this chapter.  

At this point in fact, there are sufficient elements to get back to whether it is possible to replicate the results of foreign 
methodologies by elaborating the results of this research and by deriving demands amplification coefficients to account 
for the height and the parts effects on walls acting out-of-plane. It appeared that the FE models developed are able to 
capture the inherent nonlinearity of the unreinforced walls when experiencing the rocking motion. They not only allow 
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to evaluate the impact of several inelastic material properties (physical nonlinearity) and boundary conditions on the 
lateral stability of the walls, but are also capable of accounting for the strong geometrical nonlinearities involved in the 
rocking mechanism. Implementing the wall model, considered as a local or secondary system, into the frame building, 
representative of the primary system, made it possible to investigate how the two systems interact with each other and 
the way the primary structure filters out the accelerations from the ground-motion up to the higher floor levels. The 
derivation of elastic response spectra at floor level clarified the role played by the vibration period of a rocking wall 
when compared to that of the primary structure. Therefore, the simple 2D-models constructed in this research 
demonstrated to be effective tools for a numerical investigation on the above topics. In addition to this, the out-of-plane 
performance of the walls in the 2D models proved to be comparable to that one would obtain by referring to the  
analytical formulas derived from the foreign normative.  

Speaking of the possibility of deriving amplification coefficients for the assessment of the demands on the URM walls in 
the Groningen scenario, in a similar way to those adopted in the foreign normative to account for height and parts 
effects, the answer is positive. However, the graphs that one would obtain by making the envelope of the output curves 
are conservative. This was quite evident in the case of the amplifications due to the height effects: the comparison 
between the numerical results and the amplifications according to the New Zealand normative clearly showed larger 
accelerations in the model. With regards to the parts-effects, some remarks should be made. First, the response spectra 
derived for the FE model are elastic. This means that the bell-shaped curves are likely to have a much higher peak than 
in the case of an structural element able to take excursions in the inelastic range. Also, the derivation of parts factors in 
the New Zealand normative was deduced through experimental findings in support of a large-scaled research 
programme which made it possible to “cap” the maximum amplifications to a certain level. This is not the case for the 
current research, which is purely numerical. Finally, the response spectra are highly dependent on the level of damping 
used, and for the presented research the value of damping in both the primary and secondary system was assumed rather 
than set as a result of a specific investigation. Hence, although it was theoretically possible to draw the parts and height 
coefficients functions, these would have been much conservative respect to the ones currently used in the codes.  

This research demonstrated that the application of procedures based on a combination of spectral and kinematic limit 
analyses is appropriate for the assessment of the out-of-plane behavior of or URM walls. Overall, the methodology 
followed generated results which meet the expected behavior of the models, although the accuracy in results for the 
Groningen scenario did not seem to be increased. In view of a more extensive research on this topic, for instance by 
making use of detailed fully-nonlinear 3D models and inelastic design spectra from NPR, there is reason to believe that 
more accurate results can be obtained in order to optimize the assessment of URM walls acting out-of-plane. 

6.3 Limitations of this research 
The present research showed how complex it is to address the assessment of the stability of rocking walls subjected to 
seismic motions. Even more so, some of the challenges which result from attempting to describe in a numerical way this 
deeply nonlinear problem became apparent. Several times it was underlined how limiting and unfavorable it is to 
underestimate the role of the system surrounding the wall model by making strong simplifying assumptions in the 
modeling stage. A selection of restrictions associated to this research that is worth mentioning is presented below. 

‐ The out-of-plane failure was addressed as a stability problem of one-way vertically spanning walls. In reality, the 
failure of walls out-of-plane is a complex 3D phenomenon.  
 

‐ Assuming the rocking mechanism as a phenomenon that could be analyzed in a 2D environment automatically 
excludes the possibility of better addressing the filtering effects of the primary structure on the wall. In this way 
many dissipative mechanisms of the structure under a dynamic load are neglected.  
 

‐ Target spectra used for the selection of records was the design spectra based on the NPR provisions but only a 
really small number of signals was employed in the numerical analyses. With regards to this aspect, it is evident 
that a research aiming to drawing conclusions from processing a large amount of data in a statistical way would 
have required many more tests. For the same reason, a widened suite of building models to encompass the full 
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range of structures likely to be encountered in practice should have been used. Hence, it could be said that one 
of the main limitations of this research is its lack of robustness.  
 

‐ The energy dissipation in all the NLTH analyses performed was implemented by introducing a fictitious 
damping through the Rayleigh coefficients. The values used were 2% for the rocking wall system and 4% for 
the frame structure. The latter was averaged over the sources of the literature study which are based on 
researches from many different countries. In the same way, when applying the Fourier Transform methodology 
for the derivation of the floor response spectra a value was set for the damping of the system. It is noted that 
the models response and the parts effects generated are highly dependent on the assumed value of damping. 
Therefore, an in-depth investigation on the most appropriate levels of damping to employed should have been 
first carried out.  
 

‐ The in-plane action of the wall elements perpendicular to the direction that was investigated for the models of 
this research was not quantified in detail. Consequently, the outcome of the investigations made should be 
taken into account this aspect as well.  
 

‐ The approach used did not permit a “redistribution” of damage in the frame models and did not account for 
the interaction between simultaneous rocking wall systems. As a matter of fact, the incremental dynamic 
analysis were performed on models in which only one rocking mechanism was analyzed at each time.  
 

‐ In the NLTH analyses the wall systems were considered failed either due to numerical divergence, or because 
the mid-height displacement of the rocking wall reached a limit value equal to its thickness. It should be noted 
that the latter circumstance is un-conservative, because when the rocking mechanism develops the masonry is 
subjected to deterioration and the usable thickness for the equilibrium of forces reduces.  
 

‐ Modeling the primary system with linear elastic properties did not allow it to yield and respond inelastically to 
the external excitation. As a consequence of that, the acceleration demands at floor level were found to be 
rather large on top levels of the primary system.   
 

 

6.4 Recommendations for future studies 
This research demonstrated that a complex topic like the out-of-plane action of masonry walls must be addressed by 
means of a detailed modeling phase in which all the structural aspects pertaining to its nonlinear behavior should be 
taken into account. 

Since this investigation wanted to capture the interactions in behavior occurring between the entire building and parts of 
it, with special focus to their dynamic response, it could be interesting to embark in a similar study performed on a full 
3D model of a masonry structure. Despite the much longer computation times in NLTHA, such discretization would 
allow a steep decrease in the number of assumptions made, especially with regards to the contribution given by in-plane 
action of walls and stability system to the lateral stiffness of the model. The out-of-plane deformation is a three 
dimensional phenomenon which generally occurs in walls spanning in two directions. These walls have a larger lateral 
degree of constraint which makes them less likely to fail when subjected to inertia loads. A 3D model would be able to 
better estimate the impact of different boundary conditions such as the flexibility of diaphragms above the walls and the 
effect of concurring excitations in both the x and y direction.  

Creating a model which is able to account for the way the energy is dissipated in the building and how the damage is 
distributed among the assemblage of structural elements would also make a big difference in the outcome of the 
analyses, assuring more realistic estimations of filtering effects in the building. For doing so the adoption of a FE 
software package able to perform sequential analysis in which elements are removed when they fail may be useful.  

Finally, it is stressed the added value that cross-validation of numerical results with experimental findings would have 
brought to the research, in particular for deciding on the appropriate level of damping to use in the model and the 
degree of ductility of the building to consider.     
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In a similar way, calculations are carried out on the next page for the other three set of boundary conditions on the wall. 
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										ݏ݅	݁ݑ݈ܽݒ	ݏ݄݅ܶ
2695 െ 2541

2541
∙ 100 ൌ 	. %									݈ܽݎ݁݃ݎ	݄݊ܽݐ	݊݅	݈ܽܿ݅ݎ݁݉ݑ݊	ݏݐ݈ݑݏ݁ݎ	ሺ݄݃ܽݎ	ݓ݈ܾ݁ሻ. 

 

The results suggest that the correct value of active mass to take into account is a slightly less than half the total: 47%. 

 

 

Figures 147 – Numerical results on the lumped cracking beams model subjected to a pushover analysis and with different 
constraints on the edges of the wall, 17 kN overburden.  
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Appendix C 

More outcomes of the transient analyses carried out on the lumped cracking beams model, increasing 
harmonic signals.   

 

 

 

Figures 148 - Increasing harmonic excitation on 1,5 m tall wall. Overburden 1 kN, forcing frequency 2.5 Hertz. 

 

Figure 149 - Increasing harmonic excitation on 1,5 m tall wall. Overburden 2 kN, forcing frequency 2.5 Hertz. 
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Figures 150 - Increasing harmonic excitation on 1,5 m tall wall. Overburden 2 kN, forcing frequency 2.5 Hertz. 

 

 

Figure 151 - Increasing harmonic excitation on 1,5 m tall wall. Overburden 2 kN, forcing frequency 0.5 Hertz. 

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0 1 2 3 4 5 6 7 8

A
m

p
lit

u
d

e 
[m

]

Time [s]

Relative midheight displacement 2kN overburden

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0 1 2 3 4 5 6 7 8

re
la

ti
ve

 a
m

p
lit

u
d

e 
of

 
os

ci
la

lt
io

n
s 

at
 m

id
h

ei
gh

t 
[m

]

Time [s]

Achievement of  instability displacement with respect to zero overburden

No overburden
Instability displacement
2 kN overburden

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0 0.2 0.4 0.6 0.8 1 1.2

A
m

p
lit

u
d

e 
[m

]

Time [s]

Wall displacements 2kN overburden

Base displacement
midheight displacement

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.2 0.4 0.6 0.8 1 1.2

A
m

p
lit

u
d

e 
[m

]

Time [s]

Relative midheight displacement 2kN overburden

Relative midheight displacement

Instability displacement for this BC



         

Displacement-based verification of unreinforced masonry walls acting out-of-plane within a structural system            118 

 

 

 

 

Figure 152 - Increasing harmonic excitation on 1,5 m tall wall. Overburden 2 kN, forcing frequency 0.5 Hertz. 

 

Figures 153 - Increasing harmonic excitation on 1,5 m tall wall. Overburden 4 kN, forcing frequency 0.5 Hertz. 
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Figures 154 - Increasing harmonic excitation on 1,5 m tall wall. Overburden 4 kN, forcing frequency 0.5 Hertz. 

 

Figures 155 - Increasing harmonic excitation on 1,5 m tall wall. Overburden 4 kN, forcing frequency 0.5 Hertz. 
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Appendix D 

Zoom-in on the first steps of the Figure 79 in section 5.3.1 of this report.  

 

Figure 156 - Hysteretic behavior of the unreinforced masonry material on the wall subjected to the Nahanni excitation. 
Zoom-in on first steps of Figure 79.  
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of buildings in earthquakes” – Section 10 Revision Seismic Assessment of Unreinforced Masonry Buildings (Included in 
the bibliography). Thus: 

 

ܦ ൌ ሺߛ ܶ/2ߨሻଶܥሺ ܶሻܴ݃											݄ݐ݅ݓ									ߛ ൌ 	
ሺ ܹݕ  ௧ܹݕ௧ሻ݄

݃ܬ2
ൌ 1.13 

 

The Rp factor is the part risk coefficients and it tabulated in section 8.1.2 of NZS1170.5-2004. A value of Rp =1 
corresponding to parts representing a hazard to life within a structure is chosen. Speaking of the maximum mid-height 
displacement allowed, the NPR specifies that the behavior factor q (generally intended for ULS/LS limit state) can be 
increased by 1.33 when considering the near-collapse limit state, i.e. to increase the degree of damage allowed. Therefore 
the 0.6 factor can be increased to 0.8.  

 

∆௫ൌ 0.8 ൈ ∆௦ൌ ௦ൌ∆							݁ܿ݊݅ݏ							݉	0.150 	
ܾ  ݄௪
2ܽ

							ܽ݊݀						ܽ ൌ 60892
ܰ݉
݉

							ܽ݊݀						ܾ ൌ 7692
ܰ݉
݉
					 

 

According to the New Zealand code and by making use of the correcting coefficient employed to amplify the rocking 
demands of walls, the performance of the wall analyzed would be: 

 

ܤܰ% ሺܵேோሻ ൌ 100 ൈ
∆௫
ܦ

ൌ 	100 ൈ
0.150
0.168

ൌ 89% 

 

The New Zealander normative explains that an element scoring less than 67% should be considered subjected to the 
seismic risk and that it is earthquake-prone, i.e. it requires strengthening, when scores below 34%. According to the 
NZSEE regulations the wall analyzed does not need strengthening measures. It is concluded that the NZ guidelines 
confirm the URM walls in the frame models not to be prone to OOP failure. However, it should be noted that for the 
Dutch regulations the case of a structural element for which the demands exceed the capacity (ratio shown above < 
100% ) cannot be considered safe and requires to take action.  
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Appendix F 

Derivation of vibrational periods presented in section 5.4. 

1 Period of the rocking mechanism according to the New Zealand Code: 

In the following equations, taken from section 10.8.5.2 of Assessment and Improvement of the Structural Performance of Buildings 
in Earthquakes”, Section 10 Revision (2015), the quantity J stands for the rotational inertia of the masses associated with Wb, 
Wt and P. The factor a derived from virtual work expressions, see Appendix 10B of the over-mentioned document. The 
calculations refer to a wall with an height of 3 meters, a thickness of 0.2 meters and an applied overburden of 15kN.  
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ܬ ൌ 	103	
ଶ݉݃ܭ

݉
 103	

ଶ݉݃ܭ

݉
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݉
ଶݏ
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ܶ ൌ 	4.07ඨ
ܬ
ܽ
ൌ . 	࢙ࢊࢉࢋ࢙ 

 

2 Period of oscillation of an elastic fixed-fixed beam:  

When the nonlinearities of the wall model are not accounted for, the wall can be seen as an elastic beam clamped on 
both sides and its vibration period can be derived from the general structural mechanics theory.  

 

Figure 158 - Bending vibrations of a beam: natural frequencies and normal modes.                                                                  
TU Delft, Structural Dynamics course, CIE4140 (2015). 
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3 Period of rocking mechanism according to the Italian normative:  

The simply supported wall with applied overburden and no tilt. For the boundary conditions, which reflect the same 
circumstance as for the calculations according to the New Zealand code above, a picture is also provided. The Italian 
code requires to solve the nonlinear kinematic problem defined by two rigid bodies rocking around three hinges. The 
instability of the wall in its OOP deformation is investigated by means of the virtual work theory. The virtual 
displacement are calculated with respect to the instant centre of rotation of the wall rigid blocks.  
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௫,ߜܹߙ  ௫,௧ߜܹߙ  ௬,ߜܹߙ  ௬,௧ߜܹߙ െ ௬,ߜܲ ൌ 0 

 

The factor ߙ is the horizontal multiplication factor which is used to represent the action of the earthquake on the wall. 
In the New Zealand code this factor is called the seismic coefficient, and it is comparable to an acceleration. The virtual 
displacement are:  
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߮ݐ
2
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௬,௧ߜ				 ൌ ௧ݔ߮ߜ ൌ ߮ߜ	 ൬
ݐ3
2
െ
3݄߮
4
൰ 

 

௬,ߜ ൌ ݔ߮ߜ ൌ ݐሺ2߮ߜ	 െ ݄߮ሻ 

 

By plugging in the virtual displacements in the formula and    
re-arranging it one would obtain: 
 

ሺ߮ሻߙ ൌ
ݐ2 െ ݄߮ 

ܲ
ܹ ሺ2ݐ െ ݄߮ሻ

݄
2  ݐ߮

 

       

Figure 159 - Sketch used for calculating the virtual 
displacements of a rocking wall. 
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The maximum (static) lateral load that the wall is able to withstand in the out-of-plane direction  is represented by the 
multiplier derived for ߮ ൌ 0, corresponding to the case of activation of the rocking mechanism. Therefore: 

 

ሺ0ሻߙ ൌ ߙ ൌ ൬1 
ܲ
ܹ
൰
ݐ4
݄

 

 

The ultimate rotation can be obtained, in a similar way, by setting the multiplication factor equal to zero. Once the 
rotation at incipient instability of the wall is known, the associated mid-height displacement ݀,	can be computed: 

 

߮ሺߙ ൌ 0ሻ ൌ
ݐ2
݄
																݀ ൌ

݄
2
∙ ߮ఈୀ ൌ  ݐ

 

Since the magnitude of the external forces acting on the wall is assumed to be constant, it is possible to adopt a linear 
relation between the displacement of the control point (mid-height of the wall) and the multiplier alpha. Then: 

 

ߙ ൌ ߙ ൬1 െ
݀
݀
൰																 

 

This Italian code asks to modify the relation above by referring to an equivalent single-degree-of-freedom system and, 
thus, to spectral values of accelerations and displacements. The procedure implies calculating the participating mass ܯ∗ 
and the confidence factor FC. The participating mass in this case is assumed to be the total mass of the wall (note: rigid 
bodies assumption), whereas the confidence factor is set to 1 in line with the clause 4.6.1 of  NPR9998. So: 

 

ߙ
∗ ൌ

2ܹߙ
ܥܨ∗ܯ
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ܲ
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൰
ݐ4
݄
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∗ ൌ
ݐ
2
				 

 

The acceleration-displacement relation is plotted       
in the caption on the right: 

 

The maximum deformation allowed in the Italian code corresponds to 40% of the ultimate deformation capacity defined 
by ݀

∗ . This is explained in more detail in section 2.8.2 of the Literature study in this report. The eigen period of the 
rocking mechanism according to the NTC2008 is determined by resorting to an average secant stiffness for the lateral 
capacity of the wall which is taken from the curve above for a spectral displacement of 0.4 times the maximum 
deformation allowed. Therefore the following applies: 
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