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A B S T R A C T

To tackle the potential grid overloading issue induced by excessive Electric Vehicles (EV) charging demand,
a Low Voltage (LV) grid congestion management algorithm with three centralised EV charging management
schemes is proposed in this study. The developed algorithm integrates grid information and aims at tackling the
foreseen congestion issues by operating on the EV charging processes. This is done through linear programming
(LP) or iterative calculations. While the first charging scheme aims at managing the congestion by only affecting
the elements with the greatest influence on the congestion, the other two aim at ensuring impartiality towards
all users and the overall energy transfer to the EVs, respectively. The simulated results are compared in terms of
performance criteria such as grid impact, user satisfaction and fulfilment of charging energy demand. Overall,
this study shows that the first scheme brings the best results from a grid perspective. On the other hand, the
last scheme leads to competitive results from a grid point of view and the best overall results from a user
perspective.
1. Introduction

The global constant growth in the number of Electric Vehicles (EV)
has led to the necessity of finding solutions to the technical issues that
are expected to arise. One of these issues is the formation of overloads
in the electrical grid due to the simultaneous charge of many EVs [1,2].
To study this phenomenon and to alleviate grid congestion problems,
a centralised EV charging control algorithm is proposed in this study.
Within this algorithm, one of three different Charging Management
Schemes (CMS) can be integrated. These schemes define the logic for
selecting charging stations where the charging power is adjusted and
have been developed focusing on three different objectives. The first
one aims at relieving the congestion by reducing the least total amount
of power, the second one aims at distributing the power fairly among
all charging stations, while the third option aims at optimising the
success of the EV charging processes. These three CMSs are carried out
via Linear Programming (LP) or iterative calculations. The algorithm
is tested on two sub-urban Low Voltage (LV) distribution grid models
with real grid data. In each grid, four different scenarios are simulated.
In the first scenario, no CMS is applied. This is a reference case to assess
the effects of uncontrolled EV charging. In the remaining scenarios,
the algorithm is implemented by integrating one of the CMSs for each
scenario. The results of these simulations are studied and compared in
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terms of performance criteria, such as grid impact, user satisfaction and
fulfilment of charging energy demand.

The methods to tackle grid congestion are generally categorised in
literature into two major groups: Distribution Network Reconfiguration
(DNR) [3,4] and Demand Response (DR) programs. Among DR, Direct
Load Control (DLC) [5,6], economic mechanisms [7], or the combina-
tion of both [8] are commonly applied. The economic mechanism-based
DR has a time scale from monthly, day-ahead to intra-day, while DLC
aims at a very short term in the unit of minutes [9]. Moreover, DLC is
more direct and accurate than the economic mechanism [10], making
DLC a better candidate for the last-minute congestion management. To
achieve the ideal congestion mitigation outcome, grid features often
need to be incorporated in both the economic and the DLC approaches.
For this reason, Distribution System Operators (DSO) usually play a key
role in the process of grid congestion alleviation.

To avoid overburdening the aggregator’s computational power,
economic-based DR mechanisms increasingly incorporate new solu-
tions. These solutions often integrate grid congestion information di-
rectly into the electricity market mechanism. Among these are Dynamic
Tariff (DT), Dynamic Power Tariff (DPT) and Distribution Locational
Marginal Price (DLMP). DLMP can be determined at each node by
solving a DC optimal power flow (DCOPF) problem. This process often
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employs the Power Transfer Distribution Factor (PTDF) concept to
establish the relationship between node injection power and line power
flow [11,12]. The DCOPF solution can also be used to calculate the DT.
In [8] the DT is calculated by the DSO for market-based congestion
management. Through DT the energy tariff is synchronised with the
load demand magnitude. Finally, DPT is the power tariff with which
the peak demand power of the customer is charged. In [7] DPT is
used as a congestion signal and an OPF is executed at the DSO side
to check the network limitations in which the PTDF is calculated.
Nevertheless, the results obtained in [7,8,12,13] suggest that none of
the congestion-adapted market methods solely can guarantee a stable
ongestion alleviation outcome. This is due to the stochasticity from the
pot market price, the load demand and the behaviour of aggregators.

In order to efficiently access the local market or to calculate the
congestion-coupled electricity tariff, the DSO needs to predict the spot
market price as well as possess the whole knowledge of the load
demand of the coming period [8,12,13]. On the other hand, for the
transactive congestion mitigation algorithm, the more functionalities it
incorporates (e.g., accounting for transformer overloading and voltage
drop), the greater the number of iterations required for convergence.
This will result in longer computational times to achieve price equilib-
rium [14]. To stabilise and improve the performance, the market mech-
anism method is usually combined with another market method [8],
a grid reconfiguration [11,13] or another load response method to re-
uest extra flexibility through the DSO intervention [13,15]. However,

cross-mechanism interactions, if not thoroughly examined in terms of
financial charging schemes, grid flexibility assets, and weighing the
temporal and locational factors of each mechanism, may pose risks
to economic efficiency. They may also hinder the grid congestion
alleviation. For instance, overlapping in grid congestion consideration
across both mechanisms might lead to double charging or reward-
ing. Meanwhile, misalignment in temporal design could obstruct the
effective simultaneous operation of both mechanisms. [16].

DLC methods could be a potential solution to the congestion issues.
In [17] a decentralised Additive Increase and Multiplicative Decrease
AIMD) based EV charging method is proposed. In this the EV charg-
ng currents are controlled locally by referring to the local voltage

fluctuations. The results showed that the AIMD-based method main-
ained the grid operation within the allowed constraints. A similar
bservation was made in [18], where the adaptive AIMD (A-AIMD)

algorithm developed has excellent performance regarding transformer
oading, charging fairness and user satisfaction. The centralised convex

optimisation – whose objective is to maximise the EV charging power
within the grid limits – outperforms the A-AIMD algorithm slightly.
However, it is computationally heavy due to the grid power flow in
its optimisation procedure. Therefore, a centralised grid congestion
mitigation approach is more favourable regarding effectiveness and
omputational power saving. In this a central entity (e.g. DSO) oversees
he grid operational condition and another entity like EV aggregator
xecutes the DLC command. In the multi-objective congestion manage-
ent algorithm developed in [19], the DSO is in charge of relieving any

rid congestion through an interactive approach with the aggregators.
uring the interactive operation, the DSO uses PTDF to update the grid
ongestion level dependent Pareto weight, then the aggregator uses this
eight to solve the multi-objective function. The PTDF can also be used
s a very efficient way to identify the most congested branches, as well
s to recognise through which buses the power injection has the highest
mpact on the congestion [20,21].

However, DLC could disturb the EV charging process substantially
f grid congestion mitigation is the primary goal. Hence, EV user

satisfaction is another key objective to consider while alleviating grid
congestion through charging management. The expected EV connecting
time and the requested departure State of Charge (SOC) are usually
used to determine the charging urgency and hence the management
of the charging processes [22,23]. How different priority criteria vary
2 
the fairness in EV smart charging are extensively discussed in [24–
26]. Paper [26] compares the power and time-coordinated charging
methods in combination with three priority factors: SOC, slack time,
and allotted time/energy. The results indicate that the combination of
multiple priority criteria would achieve higher flexibility as well as
fairness with different EV types. The fairness of EV smart charging
is extended to the vehicle to grid (V2G) in research [24]. In this
study, three EV management criteria are considered: the SOC level, the
contribution to the V2G and the local load level. It is concluded that
the contribution-based charging priority method can flatten the peak
load while also shortening the EV charging time.

Following the above review and discussion, DLC appears to be a
good candidate for accurate real-time grid congestion management,
while PTDF is a great tool for identifying overloaded branches and
their level of congestion. Rather than using PTDF to calculate the
Available Transfer Capacity (ATC) or select suitable branches for DR,
as most studies do, this paper uses PTDF differently. It leverages PTDF
to determine how to adjust excessive EV charging demand to bring
overloaded elements back to their normal operational range, while
allowing for part of the load not to be met to ensure the grid is
not congested. Besides, the above-reviewed EV-charging management
research often concentrates on one main objective, which is to minimise
EV user dissatisfaction or to improve the use of the grid. Conversely,
this paper developed a PTDF-involved DLC congestion management
algorithm combining with three EV CMSs focusing on efficacy, fairness
and priority, respectively. Therefore, the main contributions of this
paper can be summarised as follows:

• Developed a high-efficacy, centralised grid congestion recognition
and mitigation algorithm with DLC mechanism involving PTDF.
This algorithm allows to efficiently select the most appropriate
EV charging processes to adjust, while also considering the degree
to which they contribute to the congestion issues. The algorithm
is combined with different EV Charging Management Schemes to
demonstrate its efficacy. The proposed control method facilitates
EV charging management but also allows for curtailment of EV
load (if necessary) to ensure grid congestion is prevented.

• Three Charging Management Schemes have been developed, each
with a distinct primary objective: congestion alleviation efficiency
(aimed at reducing the least total amount of power), EV user
fairness, and optimising the success of EV charging processes.
Their performances have been compared, also in relation to an
uncontrolled scenario where no congestion management scheme
is included.

• Compared to earlier works, case studies were accomplished thro-
ugh grid simulation with two real grid models, as well as real
measurement-based EV charging data. Simulation results were
analysed from both DSO and user perspectives, including: branch
overloading, voltage dip, EV charging demand satisfaction.

• The overcompensation phenomenon, which appears as an impli-
cation of the algorithm itself, is also extensively discussed.

The paper is organised as follows: methodology in Section 2; grid
modelling and input data explanation, as well as scenario description
are in Section 3; simulation results and analyses are presented in
Section 4; while conclusion and recommendations are in Section 5.

2. Methodology

The proposed centralised algorithm shown in Fig. 1 adjusts the
charging power at Electric Vehicle Supply Equipment (EVSE) to mit-
igate the grid congestion considering three possible schemes. These
schemes are described in subsequent subsections: (i) PTDF-based Charg-
ing management Scheme (PCS) (ii) Egalitarian Charging management
Scheme (ECS) (iii) Priority-based Charging management Scheme (PrCS).
In the proposed algorithm architecture, the DSO detects whether grid
congestions are bound to happen as a result of EV charging requests and
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Fig. 1. Flowchart of the deployed algorithm.
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sends the signal to the aggregators. This signal, in practice, represents
a request for reduction or shift in charging power at specific points
in time. This does not necessarily mean that EV charging processes
re prematurely ended but are often only delayed within the EVs’
arking duration. The aggregators and, in turn, the EV users would be
ompensated for their charging adjustments through agreements such
s flexibility contracts.

The PTDF matrix is built by activating all EVSEs one at a time
and registering the effects on all the other elements of the grid to
indicate the variation in real power that occurs on all lines [27].
This is necessary to determine all EVSEs whose charging processes
have an influence on the overloaded grid elements. It should be noted
that only the nodes where an EVSE is connected have been included
in the construction of the PTDF matrix. A fixed PTDF is considered
consistent throughout the simulation, based on the assumption that the
grid condition is stable and the node voltages can be maintained within
expected boundaries [28]. Once the grid-specific PTDF matrix is built,
he charging control algorithm is ready to be launched.

2.1. Phase 1: Grid congestion detection

The algorithm evaluates whether the current grid status, in conjunc-
ion with the EV charging requests, leads to congestion issues at a fixed

time step in the scale of minutes. In a real operational environment, this
could be done by checking the smart meter readings, communicating
with the EV aggregators in combination with the background system
simulation or distribution system estimation run by the DSO [29].

All the EVs’ default charging requests at any given moment is set as
uncontrolled, which is to charge at rated power, immediately after the
EV is plugged in. In this study, congestion detection is realised through
load flow analyses.

2.2. Phase 2: Congestion diagnosis and target EVSE detection

The main characteristics of the overloading issue are identified.
hese correspond to the problematic grid components such as the
harging stations involved, along with their location and the magnitude
f the issue. This phase consists of two main mechanisms that are
iscussed in the following subsections.

2.2.1. Calculation of excess power through congested elements
For M overloaded grid elements – 𝑒1, 𝑒2,… , 𝑒m,… , 𝑒M – the excess

power 𝑃em of each overloaded element is estimated. The calculations
shown here refer to the case of a congested line 𝑒m, but the same logic
applies in case the element is a transformer. The line loading percentage

is given by (1).

𝜆 =
|𝐼line|

𝐼r
⋅ 100 (1)

where, 𝐼line is the current registered at the line, while 𝐼𝑟 is the rated
current of the line. In case of a transformer, the same equation is
3 
used at the low voltage and at the high voltage side, and the highest
value is considered. The apparent phase power 𝑆𝑝 – at any phase p
– corresponding to the active (𝑃p) and reactive (𝑄p) powers is given
by (2).

𝑆p = 𝑈p ⋅ 𝐼p ∗ = 𝑃p + 𝑗 𝑄p (2)

Where, the phase voltage 𝑈𝑝 and the current 𝐼𝑝 are written in terms of
their complex representation in (3) and (4), respectively.

𝑈p = 𝑈base(𝑢p,real + 𝑗 𝑢p,imm) (3)

𝐼p ∗ = 𝐼base(𝑖p,real − 𝑗 𝑖p,imm) = 𝐼p(𝑐 𝑜𝑠𝜙𝑖 − 𝑗 𝑠𝑖𝑛𝜙𝑖) (4)

Here 𝑈base (in V) and 𝐼base (in A) are the base voltage and current,
respectively, while the term 𝐼p (in A) refers to the magnitude of the
urrent. The term 𝜙𝑖 refers to the current angle. The terms 𝑢𝑝 and 𝑖𝑝 are
xpressed in p.u. . Combining Eq. (3) and (4) with (2) and considering

only the real part, 𝑃p can be written as shown in (5).

𝑃𝑝 = 𝑈𝑏𝑎𝑠𝑒(𝑢𝑝,𝑟𝑒𝑎𝑙𝑐 𝑜𝑠𝜙𝑖 + 𝑢𝑝,𝑖𝑚𝑚𝑠𝑖𝑛𝜙𝑖)𝐼𝑝 = 𝐾𝑙 𝑜𝑎𝑑𝐼𝑝 (5)

𝑃p can be rewritten in terms of 𝜆 in (6).

𝑃𝑝 =
𝜆
100

𝐾𝑙 𝑜𝑎𝑑𝐼𝑟 (6)

For the maximum permitted power 𝑃 ′
p, the difference 𝛥𝑃 = 𝑃p − 𝑃 ′

p
should be reduced to resolve the overloading issue in phase p. Consid-
ring balanced operation, the three-phase excess power is calculated as
e𝑚 = 3 ⋅ 𝛥𝑃 for each overloaded element 𝑒m.

2.2.2. Detection of downstream charging stations
The second part of the process consists in collecting data regarding

N EVSEs potentially available to have their charging power managed
labelled as 𝑠1, 𝑠2,… , 𝑠n,… , 𝑠N) and their influence on the congested

elements of the network. This influence is described by matrix �̃�M,N
of size 𝑀 × 𝑁 . The indices 𝑎m,n of matrix �̃�M,N are directly derived
from the PTDF matrix, and they indicate the percentage of power asked
by charger 𝑠n that flows through element 𝑒m. The index 𝑎𝑚,𝑛 in the

atrix �̃�𝑀 ,𝑁 corresponds to the absolute value of the element at the
ntersection between charger 𝑠𝑛 and the element 𝑒𝑚 in the PTDF matrix.
his case applies only if all the following conditions apply.

1. The flow of power caused by the EV is in the same power
direction as the overloads.

2. Charging processes with an impact greater than a threshold of
5% on the congested element will be requested to have their
charging power adjusted. Further details regarding the thresh-
old selection and the influence of this number are provided in
Section 4.4.

3. There is an EV connected currently asking for power at charging
station 𝑠𝑛.

If any of the three options do not apply, the index 𝑎𝑚,𝑛 will be set
to zero.
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2.3. Phase 3: EV charging scheme execution

The EV charging management scheme is activated, and from an
ncontrolled charging start point, it determines which charging process
o adjust at which EVSE to relieve the overloaded elements. Only one
ut of the three CMSs (PCS, ECS, PrCS) is used in this phase. It is
mportant to note that this study does not account for variations in
harging efficiency that may arise when the charging process deviates
rom the rated power.

2.3.1. PTDF-based charging management scheme (PCS)
The PCS optimally distributes the power to be reduced from relevant

charging processes considering a grid point of view only. In fact, the
only parameter included in the analysis to discern among the charging
oints is their influence on the overloaded elements. This information is
ontained in matrix �̃�𝑀 ,𝑁 . Therefore, this scheme aims at reducing the
inimum total amount of power possible, by operating on the chargers

hat contribute the most to the overload. This is made by means of a
P algorithm with an objective to maximise the power provided to the
harging stations, as in Eq. (7).

𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒
𝑁
∑

𝑛=0
𝑃 𝑛𝑒𝑤
𝑠𝑛

(7)

The variables of the optimisation analysis are 𝑃 𝑛𝑒𝑤
𝑠1

, 𝑃 𝑛𝑒𝑤
𝑠2

,… , 𝑃 𝑛𝑒𝑤
𝑠𝑁

,
hat are the charging power at EVSEs 𝑠1, 𝑠2,… , 𝑠𝑁 , respectively, after
he optimisation algorithm is applied. For these variables the following
onditions apply:

𝑃 𝑛𝑒𝑤
𝑠1

, 𝑃 𝑛𝑒𝑤
𝑠2

,… , 𝑃 𝑛𝑒𝑤
𝑠𝑁

≥ 0 (8)

𝑃 𝑛𝑒𝑤
𝑠𝑛

≤ 𝑃 𝑜𝑟𝑖
𝑠𝑛

(9)

Where 𝑃 𝑜𝑟𝑖
𝑠𝑛

represents the original power request at EVSE 𝑠𝑛 before the
charging scheme is executed.

The constraints are built so that all congestion issues are solved
once the optimisation analysis is carried out. These constraints can be
xpressed in matrix notation as in Eq. (10). In this, the vector �̄�𝑠(11)
ontains the difference – at all EVSEs – between the original charging
alue and the new value after the optimisation (i.e. the optimisation
ariables). This is in practice the power to be reduced at each EV.
n the other side of the inequality, �̄�𝑒(11) is a vector indicating the

power that has to be reduced from the total power flowing through
each congested element.

�̃�𝑀 ,𝑁 ⋅ �̄�𝑠 ≥ �̄�𝑒 (10)

where

�̄�𝑠 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑃 𝑜𝑟𝑖
𝑠1

− 𝑃 𝑛𝑒𝑤
𝑠1

𝑃 𝑜𝑟𝑖
𝑠2

− 𝑃 𝑛𝑒𝑤
𝑠2

⋮
𝑃 𝑜𝑟𝑖
𝑠𝑁

− 𝑃 𝑛𝑒𝑤
𝑠𝑁

⎫

⎪

⎪

⎬

⎪

⎪

⎭

�̄�𝑒 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑃𝑒1
𝑃𝑒2
⋮

𝑃𝑒𝑀

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(11)

2.3.2. Egalitarian charging management scheme (ECS)
The ECS guarantees a fair absolute division of the burden among the

chargers, disregarding any other aspect related with their influence on
he congested elements or their need of power. The goal of the man-
gement scheme is to maximise the fairness of the reserve activation
rocess, with a mechanism comparable to the one illustrated in [30]. As
roved in that study, this charging management scheme also maximises
ocial welfare and the Nash product of all EV users utilities.

In this case, the only variable is indicated as x (𝑥 ≥ 0) and it can
e described as the maximum charging power allowed at all EVSEs

involved in the optimisation process. The objective is to maximise the
ariable x. The constraints are the same indicated in (10), but the vector
 t

4 
�̄�𝑠 of the variables is described in (12):

�̄�𝑠 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑃 𝑜𝑟𝑖
𝑠0

− 𝑚𝑖𝑛{𝑃 𝑜𝑟𝑖
𝑠0

, 𝑥}
𝑃 𝑜𝑟𝑖
𝑠1

− 𝑚𝑖𝑛{𝑃 𝑜𝑟𝑖
𝑠1

, 𝑥}
⋮

𝑃 𝑜𝑟𝑖
𝑠𝑁

− 𝑚𝑖𝑛{𝑃 𝑜𝑟𝑖
𝑠𝑁

, 𝑥}

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(12)

It should be noted that this optimisation analysis could be executed
ultiple times during the same time-step. This is done in order to

void unnecessary power adjustments. In fact, if at the first iteration
ll the variables 𝑃 𝑛𝑒𝑤

𝑠𝑛
were set to the value x, all the overloading

roblems would indeed be solved. However, more power could have
een reduced at the EVSEs than what was strictly necessary to solve

the congestion.
To better explain this, it is important to consider that each con-

straint of the optimisation analysis represents a problem registered in
the grid, namely an overloaded element. However, these problems are
strongly interconnected. The same EV charging process(es) could be
the common cause of multiple overloaded elements. Therefore, once
he cause of an overloaded element has been addressed (through the
eduction of power at one or multiple charging processes), other over-

loading issues could have been solved without the need of additional
harging power reduction.

In practice, this is done by means of the concept of Slack value
[31,32]. This represents the difference between the right and the

eft side of an inequality constraint, when the variable assumes a
etermined value. In other words, it is the value that returns an equality
hen added to the inequality constraint.

Once the optimisation analysis is solved, the introduction of the
Slack value 𝜎 allows to rewrite (10) in the form of an equality, as
�̃�𝑀 ,𝑁 ⋅ �̄�𝑠 = �̄�𝑒 + �̄�𝑒. In combination with (12), these equalities can be

ritten as in (13). Each line of this set of equations is indicated as 𝐶𝑒.
𝑎1,1 ⋅ (𝑃 𝑜𝑟𝑖

𝑠1
− 𝑚𝑖𝑛{𝑃 𝑜𝑟𝑖

𝑠1
, 𝑥}) +⋯

+ 𝑎1,𝑁 ⋅ (𝑃 𝑜𝑟𝑖
𝑠𝑁

− 𝑚𝑖𝑛{𝑃 𝑜𝑟𝑖
𝑠𝑁

, 𝑥}) = 𝑃𝑒1 + 𝜎𝑒1
𝑎2,1 ⋅ (𝑃 𝑜𝑟𝑖

𝑠1
− 𝑚𝑖𝑛{𝑃 𝑜𝑟𝑖

𝑠1
, 𝑥}) +⋯

+ 𝑎2,𝑁 ⋅ (𝑃 𝑜𝑟𝑖
𝑠𝑁

− 𝑚𝑖𝑛{𝑃 𝑜𝑟𝑖
𝑠𝑁

, 𝑥}) = 𝑃𝑒2 + 𝜎𝑒2
⋮

𝑀 ,1 ⋅ (𝑃 𝑜𝑟𝑖
𝑠1

− 𝑚𝑖𝑛{𝑃 𝑜𝑟𝑖
𝑠1

, 𝑥}) +⋯

+ 𝑎𝑀 ,𝑁 ⋅ (𝑃 𝑜𝑟𝑖
𝑠𝑁

− 𝑚𝑖𝑛{𝑃 𝑜𝑟𝑖
𝑠𝑁

, 𝑥}) = 𝑃𝑒𝑀 + 𝜎𝑒𝑀

(13)

At each iteration, after the optimisation analysis is solved, the
inding constraint 𝐶𝑏 is taken. The binding constraint is in practice

the one with Slack value equal to zero. The charging power of all
EVSEs contained in this constraint is set to 𝑚𝑖𝑛{𝑃 𝑜𝑟𝑖

𝑠𝑛
, 𝑥}. This means that

he overloading associated with constraint 𝐶𝑏 is solved. Afterwards,
t is checked whether also the other overloads, namely the remaining
onstraints, are solved. If so, the algorithm stops. Otherwise, it proceeds

with the next iteration, where the previously binding constraint 𝐶𝑏 is
not considered anymore. The Pseudocode of the ECS scheme is listed
in Algo. 1.

2.3.3. Priority-based charging management scheme (PrCS)
One of the key points of this method is the definition of a priority

parameter, so to translate the urgency of power request of a charging
session into a number. This number can be compared with the ones
of the other charging stations and, when necessary, charging power at
EVSEs will be adjusted accordingly. In particular, a priority factor can
be defined for the charging session of the currently connected EV at
charger 𝑠𝑛 as

𝑓𝑛 =
𝛥𝑡𝑚𝑖𝑛,𝑛
𝛥𝑡𝑛

(14)

where 𝛥𝑡𝑛 is calculated as the difference 𝑇𝑑 ,𝑛 − 𝑡, with 𝑡 representing
he time of calculation and 𝑇 the expected departure time of the
𝑑 ,𝑛
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Algorithm 1 Egalitarian Charging management Scheme (ECS)
1: done = False
2: while not done:
3: run optimisation and get x
4: if all Slack values are different than zero:
5: done = True
6: else:
7: get constraint 𝐶𝑏 with Slack value equal to zero
8: set power at all chargers s present in 𝐶𝑏

at 𝑚𝑖𝑛{𝑃 𝑜𝑟𝑖
𝑠𝑛

, 𝑥}
9: remove constraint 𝐶𝑏
10: if power is set at all chargers in all constraints
11: done = True

vehicle connected. The term 𝛥𝑡𝑚𝑖𝑛,𝑛 refers instead to the minimum time
necessary to complete the charging process and it is calculated as

𝛥𝑡𝑚𝑖𝑛,𝑛 =
𝑑𝑐 ℎ,𝑛
𝑃𝑟,𝑛

(15)

Where 𝑑𝑐 ℎ,𝑛 is the remaining charging energy asked by the vehicle and
𝑟,𝑛 is the rated charging power of the EV.

Similarly to one parameter in the work of Kumar et al. [26], the
priority of charging is translated into 𝑓𝑛 by comparing the minimum
time necessary to complete the charging process with the actual time
available. However, differently from [26], in this study no distinction
is introduced between equivalent and minimum number of time steps
equired, and only the minimum time required at rated charging power
s used. This priority factor 𝑓𝑛 gives an indication of how urgent is

the need of power at the studied element: the closer it gets to 1,
he more urgent it needs power to charge its EV. In case 𝑓𝑛 > 1,

it will not be possible anymore to fully accomplish the original user
harging demand. This parameter is used to decide which EVSE should
e managed first to have their power reduced, in order to cause the
east dissatisfaction possible. To do so, the EVSEs with a low 𝑓𝑛 should
ave their charging power reduced first and the ones with a 𝑓𝑛 close to
 should not be reduced at all.
𝑓𝑑 𝑖𝑐 𝑡 is defined as the dictionary that associates all EVs involved in

the charging management process with their priority factors organised
in increasing order. This can be obtained once all the output data from
hase 2 is collected. The description of this scheme can be found in

Algo. 2.
Algorithm 2 Priority-based Charging management (PrCS)

1: 𝑜𝑣𝑒𝑟𝑙 𝑜𝑎𝑑 𝑠 = list of all overloaded elements
2: for 𝑠𝑛 in 𝑓𝑑 𝑖𝑐 𝑡:
3: 𝑠𝑢𝑏_𝑜𝑣𝑒𝑟𝑙 𝑜𝑎𝑑 𝑠 = sub-list of elements from

overloads where corresponding value of 𝑠𝑛
in PTDF matrix is > 5%

4: if 𝑠𝑢𝑏_𝑜𝑣𝑒𝑟𝑙 𝑜𝑎𝑑 𝑠 not empty:
5: 𝑃 𝑛𝑒𝑤

𝑠𝑛
= 0

6: create empty dictionary 𝑆 𝑂 𝐿𝑑 𝑖𝑐 𝑡
7: for elem in 𝑠𝑢𝑏_𝑜𝑣𝑒𝑟𝑙 𝑜𝑎𝑑 𝑠:
8: 𝑆 𝑂 𝐿𝑑 𝑖𝑐 𝑡[𝑒𝑙 𝑒𝑚] = True if elem not

overloaded anymore, checked via
Eq. in (10)

9: if all elem in 𝑆 𝑂 𝐿𝑑 𝑖𝑐 𝑡 are True:
10: maximise 𝑃 𝑛𝑒𝑤

𝑠𝑛
such that all elem

in 𝑆 𝑂 𝐿𝑑 𝑖𝑐 𝑡 are still True
11: for elem in 𝑠𝑢𝑏_𝑜𝑣𝑒𝑟𝑙 𝑜𝑎𝑑 𝑠:
12: if 𝑆 𝑂 𝐿𝑑 𝑖𝑐 𝑡[𝑒𝑙 𝑒𝑚] = True:
13: remove elem from overloads
14: if overloads empty:
15: break
5 
3. Modelling of elements and scenarios

3.1. Grid features

The congestion management algorithm has been coded in Python
nd tested via simulations on PowerFactory. The simulations have been
un on two different LV grids. These are real Dutch sub-urban distribu-
ion grids provided by the DSO Enexis. Their main characteristics can
e found in Table 1.

All charging stations and regular loads included in the models are
linked to nodes with a 3-phase connection. This simplification has been
ntroduced in the model to increase the convergence ratio of the sim-
lations, which otherwise resulted too complex to reach convergence
t many time-steps. This assumption is in line with the intention of the
uthors not to include phase unbalance issues in the study, being it a
istinct and extensive topic.

3.2. PV and load profiles

The baseload profile used for this study has been modelled on
the base of the load characteristics included in the grid models, in
combination with the Dutch normalised profiles [33]. These normalised
rofiles cover various connection types in different scales including
ousehold, business, agriculture and industrial usages. The load type

as well as their yearly energy demand are provided in the original grid
odels.

To model the PV profile a previous study has been used as a
ase [34]. For both sub-urban grids used in this study a 15% PV

penetration has been implemented, with a peak rated power of 2.5 kW
assumed for each installation [35,36].

3.3. EV data

The EV data concerns two main aspects in particular: the charging
behaviour of the EV users and the composition of the EV fleet, i.e. the
lectric vehicle models currently in circulation. Such a list of the most
ommon EV models currently in circulation has been implemented on
he base of the Dutch market data [37].

The EV charging behaviour includes all the key habits that can be
registered of a EV user, such as EV arrival and departure time, charging
energy request, and the frequency of the charging processes. This data
is derived from a previous study that analyses the data of a significant
number of charging sessions [38,39]. Based on the study, EV charg-
ng profiles are identified as home, semi-public and public charging
eatured sessions. In the case of a sub-urban grid, the percentage of
ome profile types represents 50% of the total sessions. The remaining
alf is equally divided between public and semi-public profiles. This
s further described in [1]. The EV charging stations are modelled in
owerFactory as LV loads with a three-phase AC connections and a
aximum of 32 A per phase.

The EV penetration is defined for each grid as the percentage of
lectric vehicles with respect to the total amount of vehicles registered.
ifferent EV penetrations can be simulated by increasing the amount
f EV charging sessions and, in turn, increasing the number of charging
tations.

The detailed description of the grid models, and how the simulation
ata were generated can be found in previous works [1,2].

3.4. Simulation setups and scenarios

The simulations have been run by means of load flow analyses
xecuted on intervals of 10 min. For each load flow the diagram in

Fig. 1 applies and provides an overview of the algorithm logic, as
xplained more in details in Section 2.

All the simulations to test the different CMSs have been run on
the previously described models. In particular, eight different scenarios
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Table 1
Summary of grids’ characteristics.

Grid No. households Energy demand
[MWh/y]

PV installed
[kWp]

Avg. line length
[m]

Longest feeder length
[m]

No. transformer

1 475 1394.1 180 7.3 566.0 1 × 400 kVA
2 266 800.8 100 8.1 546.6 1 × 400 kVA
Table 2
Simulation scenarios and main results.

CMS 𝛬max
trf [%] 𝛬max

ln [%] 𝛿max [%] 𝑅chr [%] 𝑅fail [%] 𝐸avg
fail [kWh] 𝑟chr [%] NNP

Grid 1: 50% EV penetration
1 OFF 146.03 160.42 / 100 0 0 0 1
2 PCS 99.99 99.99 13.79 92.27 10.97 10.68 69.58 0.9230
3 ECS 100.04 99.93 8.38 94.34 12.65 6.76 44.04 0.9449
4 PrCS 100.15 99.94 18.84 99.79 4.00 0.44 2.87 0.9986

Grid 2: 100% EV penetration
5 OFF 118.08 102.06 / 100 0 0 0 1
6 PCS 99.99 99.88 1.77 99.86 0.34 6.19 40.06 0.9983
7 ECS 100.00 95.01 1.74 99.93 0.80 1.35 8.74 0.9993
8 PrCS 100.00 99.56 2.54 99.99 0.11 0.02 0.13 1.0000
have been simulated, as detailed in Table 2. All the scenarios simulate
an entire week in Winter, as the PV generation is lower and the EV
impact on the grid was expected to be more significant.

The percentages of EV penetrations simulated in the two grids have
been selected with the objective to simulate a congested grid condition.
To this end, Grid 1 presented more severe loading conditions. In fact,
it has been sufficient to increase the EV percentage to 50% in order to
observe overloading phenomena up to 160% in the uncontrolled charg-
ing scenarios. On the other hand, for Grid 2 it has been necessary to
increase the EV penetration up to 100% in order to register significant
activations of the charging schemes. In this case, though, the maximum
loading percentages observed always stayed below 120%.

4. Simulations results

In this section the simulation results are presented and analysed
from three points of view: the grid congestion mitigation, the user sat-
isfaction and the overcompensation of grid overloading. The overview
of the overall performance of the three methods are listed in Table 2.

4.1. Grid congestion mitigation

The improvements to the grid performance brought by the three
CMSs can be observed forthrightly with two main parameters: the
maximum transformer loading (𝜆max

trf ) and the maximum line loading
(𝜆max

ln ). For each time step, the loading of all transformers and lines
are determined using Eq. (1) and then (𝜆max

trf ), (𝜆max
ln ) represent the

highest loading recorded across all transformers and all lines in the
grid, respectively. The maximum of these values registered during the
whole week of simulation are reported in Table 2 as 𝛬max

trf and 𝛬max
ln ,

respectively.
It can be seen from Table 2 that all three CMSs managed to keep the

loading percentages of both transformer and lines within the desired
value of 100%. The maximum positive deviation observed is of 0.15%
in the fourth scenario.

An overview of the results can also be observed in Fig. 2, which
reports the effects on the maximum loading percentages registered at
lines and at the transformer in grid 1. In particular, Fig. 2.B highlights
the presence of a ‘valley filling’ effect. In fact, the high loading values
registered in Scenario 1 – with peaks higher than 150% – are spread
throughout the whole evening in the other 3 scenarios. In these the
loading percentages are constantly below 100%. This can be also
observed in Fig. 4.A, where the daily peak of EV power – greater than
200 kW – is moved to a later moment in the night.
6 
Fig. 2. Scenarios 1–4: comparison of max loading percentage at (A) lines and (B)
transformer.

Fig. 3. Scenarios 1–4: comparison of voltage distribution at the three most distant
nodes from the transformer, with a connection to: (A) home charging station, (B) public
charging station, (C) semi-public charging station. Node (D) is the node with the lowest
average voltage registered during the simulation of the uncontrolled scenario (Scenario
1).
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The distribution of the node voltage of scenarios 1–4 are presented
in the form of box plot in Fig. 3. In this graph four representative nodes
re included.

From this graph it is possible to observe how the median value of
the voltage decreases with the implementation of all CMSs. All three
schemes kept the voltage less spread out, i.e. with lower inter-quartile
ranges. In particular, the average value of this range for the four points
considered is around 0.029 p.u. for the uncontrolled scenario, 0.026
p.u. for the ECS and around 0.022 p.u. for both PCS and PrCS. This can
be explained as the integration of the algorithm of Fig. 1 – with any of
he three CMSs – allows a better use of the available grid capacity. In

contrast, in the uncontrolled scenarios, very low voltages are registered
uring peak hours – which lead to lower whiskers below 0.9 p.u. –

while at all other moments very stable voltage conditions are present
in the network. On the other hand, no significant effects are registered
on the upper whiskers.

As expected, from a voltage point of view, the PCS is the solution
that performed the best of all three charging management schemes.
In fact, it led to the lowest inter-quartile range (together with PrCS).
Besides, the PCS also resulted in the lowest drop in the median value,

ith respect to the uncontrolled scenario. The average drop in the
edian value registered at the four points considered is approximately
.0011 p.u. for the PCS, against the drop of 0.0019 p.u. and 0.0014
.u. for the ECS and the PrCS, respectively.

The scheme that registered the worst voltage results is the ECS. Next
o registering the highest drop of the median value, it also shows the
orst results in terms of lower whisker. The average lower whisker

mprovement – of all four points with respect to Scenario 1 – is 0.0072
.u. for ECS, against 0.0135 p.u. for PCS and 0.0123 p.u. for PrCS.

4.2. User satisfaction

All three CMSs share the same fundamental mechanism, which is
to reduce the excessive simultaneous charging request and delay the
charging process as much as possible. By doing so the grid overloading
s limited. However, the delayed charging process can also lead in
ome cases to a lower departure SOC for some EVs, with respect to
he uncontrolled scenario. In fact, in the uncontrolled charging scenario

the EVs get the maximum requested amount of energy technically
btainable during the parking time, disregarding all grid congestion
ssues that might occur.

One important aspect to consider is that whenever a charging
rocess is adjusted to avoid grid congestion, the logic behind restricting
ne request instead of another will affect the satisfaction of EV owners.
his section focuses on addressing the concept of fairness, using user
atisfaction as a proxy quantitative parameter to fairness. It specifically
xamines one key question: to what extent has the charging of a limited
umber of EVs been restricted to ensure that all other requests are
ulfilled? Or in other words, how evenly has the burden of resolving the
ongestion issue been distributed across the various charging stations?

In this study, the number of ‘failed charging process’ (𝐽fail) is defined
as the absolute number of charging sessions performed by one of the
three CMSs whose departure SOC is lower than the same session in
he uncontrolled charging scenario. The charging energy received with
ncontrolled charging strategy is considered as the ideal requested
nergy and is taken as a reference. In the following text, the term
requested energy’ is used.

The percentage of failed charging process (𝑅fail) is used to evaluate
the user satisfaction and is reported for each scenario in Table 2. This
ercentage is calculated as the absolute number of failed charging
rocess (𝐽fail) divided by the total number of EV charging processes
imulated (𝐽tot)

𝑅fail =
𝐽fail
𝐽tot

(16)
7 
Another criteria employed for user satisfaction assessment is the
otal delivered charging energy ratio 𝑅chr. This is calculated as

𝑅chr =
𝐸obt
𝐸req

(17)

where 𝐸𝑟𝑒𝑞 refers to the sum of the requested energy of all EV charging
processes simulated, while 𝐸𝑜𝑏𝑡 refers to the sum of the energy that was
successfully provided during all charging processes. Therefore, it can be
onsidered as a general indication of how the three CMSs performed in

the simulated scenarios.
Looking at this last parameter from scenarios 2 to 4, the best results

are obtained, in order, by: the PrCS (99.79%), the ECS (94.34%) and
the PCS (92.27%). The same pattern is observed when considering
scenarios 6 to 8, with percentages of total energy delivered of 99.99%,
9.93% and 99.86% for the PrCS, ECS and PCS, respectively.

However, looking into the details of what happens in the individual
charging session, it is possible to make the following observations. The
ECS case (scenarios 3 and 7) shows a higher total EV energy delivered
(𝑅chr) than in the PCS case (scenarios 2 and 6). However, the former
has a 𝑅fail higher than the latter by 1.68% (comparing scenarios 2 and
3) and by 0.46% (comparing scenarios 6 and 7). In other words, the
ECS has led to a higher percentage of failed charging processes with
respect to the PCS.

This can be easily explained by looking at the last few columns
of the table. The average failed energy of each scenario (𝐸avg

req ) is
alculated as

𝐸avg
fail =

𝐸req − 𝐸obt

𝐽fail
(18)

In the table it can be observed that the average failed energy
s significantly higher in the PCS scenario with respect to the ECS
e.g. 10.68 kWh against 6.76 kWh for scenarios 2 and 3, respectively).

The conclusion is that the ECS leads to a higher number of failed
EV processes – which translates into a higher number of dissatisfied
sers – but with a lower dissatisfaction level for each user. This ob-
ervation does not come unexpected, as the main purpose of the ECS
s to distribute the burden of the charging power reduction as fairly
s possible to the EVs. On the other hand, the PCS only looks at
hich charging stations allow to solve the overloading issue reducing

he lowest amount of charging power possible. Therefore, the power
djustment burden is not shared fairly among charging stations and

there is a higher chance that a smaller amount of EVs (with respect
to the ECS) will see their charging process adjusted. The PrCS instead
hows overall the best results, with a charging process failed percentage
f 4.00% and an average failed energy of only 0.44 kWh for scenario
. Similar observations can be made for scenarios 6 to 8.

The second to last column of Table 2 offers a clearer perspective
on the average energy that has not been delivered during the failed
charging processes (𝑟chr). This is calculated by dividing the average
failed energy (𝐸avg

fail ) of each scenario by the average requested energy
of all charging processes that failed to be completed (𝐸avg

req, fail), as in

𝑟chr =
𝐸avg

fail

𝐸avg
req, fail

(19)

The PCS scenarios show the most critical results, where this percent-
ge reaches almost 70% in scenario 2 and slightly over 40% in scenario
.

A final parameter to assess the fairness of the different CMSs is the
ormalised Nashed Product (NNP) [30,40]. This parameter reflects the
alance between competing interests and is independent of the scale of
he individual utilities. This is used to assess the fairness of the energy
istribution among all the EVs during the different charging processes,

and is defined as

𝑁 𝑁 𝑃 = 𝐽tot

√

√

√

√

√

𝐽tot
∏ 𝑑obt, j

𝑑
(20)
𝑗=1 req, j
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where 𝑑req, j represents the energy requested by the EV at each charging
rocess j, while 𝑑req, j represents the total energy obtained by the EV
efore its departure. The value for each scenario is reported in Table 2.

These findings align with the observations from previous parameters.
From a user satisfaction standpoint, PrCS consistently delivers the best
overall results. In terms of fairness, ECS does show improvements
compared to PCS. However, its fairness performance remains inferior
to that of PrCS. This leads to the conclusion that prioritising fairness in
he short term (i.e., on a single time-step basis) does not result in the

fairest distribution of energy over the long term.

4.3. Overcompensation of grid overloading

The main reason behind the outstanding performance of the PrCS
is the fact that the charging stations with a more urgent need of
energy are never requested to reduce their charging power if not strictly
necessary. The urgency of the request is translated into a higher value
of 𝑓𝑛, as in Eq. (14). On the other hand, the charging stations with
lower 𝑓𝑛 value are kept waiting so to give priority to the more urgent
requests. Although following a different charging management scheme,
also in the case of PCS and ECS some EVs are kept waiting or have their
charging power adjusted when overload issues are registered.

A direct consequence of this approach is the formation of longer
waiting lines’, as it can be observed in Fig. 4.B. This can be observed
hrough the average daily peak of waiting EVs, which is defined as
he average of the daily maximum number of EVs simultaneously
equesting charging power, calculated over the simulated week. The
ncrease of this value with respect to Scenario 1 is 64.3%, 77.2% and
27.7% for Scenarios 2, 3 and 4, respectively. The same parameter
ncreases for Scenarios 6, 7 and 8 – with respect to Scenario 5 – by
.3%, 4.5% and 20.2%, respectively.

When considering the area below the curve of the number of active
EVs, the increase of Scenarios 2, 3 and 4, with respect to Scenario 1
is 68.6%, 77.4% and 143.1%, respectively. A similar pattern, although
less pronounced, is registered for Scenarios 6, 7 and 8, with respect to
Scenario 5, with percentages of 1.7%, 1.9% and 7.5%, respectively.

The formation of these waiting lines can be viewed positively, as
it helps maintain control over loading conditions by adjusting certain
EV charging processes. On the other hand, this increase in the number
of waiting EVs directly affects the performance of the CMSs. It can be
observed in Fig. 2.B that the transformer loading value during peak
hours of scenarios 2, 3 and 4 does not follow exactly the 100% line, but
ends instead to create a valley shape. This is due to the fact that 𝐾𝑙 𝑜𝑎𝑑
in Eq. (6)) is voltage dependent. The charging power to be reduced is

calculated under voltage conditions that improve (increase) once the
congestion issue in the network is actually solved. This improves in
turn the loading condition of lines and transformer. This effect is more
relevant when a significant amount of charging power is adjusted. This
is visible in Table 2, where the value 𝛿max is reported in Eq. (21).

𝛿max = 𝑚𝑎𝑥{100 − 𝑚𝑎𝑥{𝜆max
trf , 𝜆max

ln }}𝑤𝑒𝑒𝑘 (21)

This represents the maximum over-compensation phenomenon reg-
istered during the whole week of each simulation. Table 2 shows
that the over-compensation phenomena in the simulations of Grid 2
s significantly lower than in Grid 1.

Similarly, in both grids there is a higher over-compensation pres-
ence in the scenarios where higher waiting lines form. The consequence
is that, although all three strategies (PCS, ECS and PrCS) lead to the
occurrence of overcompensation phenomena, this phenomenon is more
resent in the PrCS case. This means in practice that PCS and ECS allow
o use the grid to a slightly fuller extent than PrCS (by following the
00% line more closely), although their overall performance appears
o be lower than PrCS (as shown in Table 2).

The reduction of this overcompensation phenomenon by means of
a correction factor resulted in inconsistent results depending on the
8 
Fig. 4. Comparison of (A) registered EV power and (B) number of EVs requesting
power to charge for scenarios 1–4.

magnitude and the exact location of the overloading issues. Therefore,
no correction factor has been included in the algorithm. Another way
o tackle the phenomenon is to integrate in the algorithm a correction

mechanism that considers the effect on the voltage of the charging
power adjustments. However, this is expected to add great complexity
o the algorithm, which in turn, leads to a longer computational time.

4.4. Choice and effect of the threshold value for downstream charging
stations

For this work, a threshold value of 5% was used for the detection
of downstream charging stations. The decision of the threshold value
should be regarded as a balance between a ‘regulatory’ choice and grid-
pecific considerations. For what concerns the regulatory aspect, the
hoice of a threshold value determines the contribution after which
n EV is considered responsible to a congestion issue. On the basis
f this, an EV will be taken into account when adjusting charging
rocesses. For what concerns the grid specific considerations, the choice
f a threshold value is severely dependent on the grid itself. Generally
peaking, the values of the PTDF matrix tend to be more uniform and
ess extreme in a highly meshed grid as the power flows redistribute
cross multiple lines. Hence, a lower a threshold value can be selected
or a highly meshed the grid. The value of 5% was found to be a good
alance between the regulatory choice (after which an EV is considered
esponsible for a congestion situation) and the grid-specific situation (a
alue that fits with the topology of both grids studied).

Regarding the sensitivity of the threshold value:

• In the case of PCS, no significant change in the results is observ-
able at the change of the threshold value. This is because the
algorithm selects only the chargers with the greatest influence
on the congested elements (i.e. with the highest PTDF values
associated).

• In the case of ECS and PrCS, the higher the threshold value, the
closer the performance of the algorithms to the PCS. Setting a
higher threshold value forces the algorithm to operate only on the
charging processes with the greatest influence on the congestion
issues (which is the main objective of PCS).

• In the case of ECS and PrCS, lowering the threshold distributes the
‘burden’ more equally to solve the congestion issue among more
EVs (even to those with very little influence on it). This makes the
congestion management less efficient (as more total power needs
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to be curtailed to solve the same congestion issue). However, the
user satisfaction is more equally distributed as well.

5. Conclusion and recommendations

Correctly managing the EV charging processes can be a key ele-
ment to prevent the occurrence of congestion issues in the grid, while
till delivering the required energy to the vehicles. In this study, a

PTDF-based congestion mitigation algorithm has been developed to
maintain the loading conditions of a congested grid within the desired
limits. This was used in combination with three charging management
schemes, which have all been tested and compared. The activation
of all three schemes was successful to solve overloading conditions
at both the transformer and the lines, with a negligible error. Their
integration also led to a better use of the available grid capacity, which
affected, in turn, the voltage distribution in the network. However,
the different objectives of the three management schemes resulted
in different outcomes for what concerns the user satisfaction. When
comparing the ECS with the PCS, the conclusion is that the former leads
to higher number of dissatisfied users with respect to the latter, but
with a lower dissatisfaction level for each user. This is in line with the
objective of the ECS algorithm to maximise fairness. On the other hand,
the PCS is the scheme that resulted in the highest average charging
energy that was failed to be delivered, both in absolute and relative
terms. Overall, the PrCS is the scheme that performed the best, with the
lowest percentages of failed charging processes and the greatest total
delivered charging energy ratio. From a fairness perspective, this leads
to the conclusion that PrCS also delivered the fairest distribution of
energy over the long term.

Finally, it was observed a significant growth in the volume of the EV
waiting lines’ with respect to the uncontrolled scenarios. This increase
as comparable for the PCS and ECS cases, while it was significantly
igher for the PrCS. The direct consequence of the longer waiting

lines is an increase in the overcompensation phenomena. Although this
aspect did not impede to reach the main objective of the algorithm
– i.e. to keep the loading percentages within the allowed limit –
their presence suggests that the available grid capacity has not been
exploited to the fullest. The reduction of this phenomenon will be the
starting base for the future work.

Another point of interest concerns the threshold value used to de-
termine which charging stations are considered during the congestion
management process. In this study, a value of 5% was used. This is
regarded as a good balance between the ‘regulatory’ choice, to select
which EVs are considered responsible for a congestion issue, and the
conditions of the specific grids selected in this study. In future studies
it would be interesting to run a sensitivity analysis to find the optimal
value and see how this varies by comparing different highly meshed
grids. Furthermore, this algorithm evaluates the charging requests of
he EVs at each time-step. In future work, a different mechanism could

be implemented where EVs follow the assigned optimal charging profile
ntil a new command is sent to further save computational power. This
ew signal could be sent when there is a relevant system status change.
inally, this algorithm aims at preventing the occurrence of congestion
ssues before they happen, but the same schemes could also be applied
s a remedial action to solve congestion issues that have already been
egistered in the grid. This aspect could also be evaluated in future
ork.

CRediT authorship contribution statement

Damiano Dreucci: Writing – original draft, Methodology, Formal
nalysis, Conceptualization. Yunhe Yu:Writing – original draft, Valida-
ion, Methodology. Gautham Ram Chandra Mouli:Writing – review &
diting, Supervision, Project administration. Aditya Shekhar: Writing
 review & editing, Validation. Pavol Bauer: Writing – review &
diting, Supervision, Resources.
9 
Declaration of competing interest

The authors declare the following financial interests/personal rela-
ionships which may be considered as potential competing interests:
unhe Yu reports financial support was provided by ERA-NET Cofund
lectric Mobility Europe (EMEurope). Yunhe Yu reports equipment,
rugs, or supplies was provided by Dutch DSO Enexis. If there are other
uthors, they declare that they have no known competing financial in-
erests or personal relationships that could have appeared to influence
he work reported in this paper.

Data availability

The authors do not have permission to share data.

References

[1] Yu Y, Shekhar A, Mouli GCR, Bauer P, Refa N, Bernards R. Impact of uncontrolled
charging with mass deployment of electric vehicles on low voltage distribution
networks. In: 2020 IEEE transportation electrification conference expo. ITEC,
2020, p. 766–72. http://dx.doi.org/10.1109/ITEC48692.2020.9161574.

[2] Yu Y, Reihs D, Wagh S, Shekhar A, Stahleder D, Mouli GRC, et al. Data-driven
study of low voltage distribution grid behaviour with increasing electric vehicle
penetration. IEEE Access 2022;1–18. http://dx.doi.org/10.1109/ACCESS.2021.
3140162.

[3] Zhang X, Liu Y, Gao H, Wang L, Liu J. A bi-level corrective line switching
model for urban power grid congestion mitigation. IEEE Trans Power Syst
2020;35(4):2959–70. http://dx.doi.org/10.1109/TPWRS.2019.2959586.

[4] Bouhouras AS, Christoforidis GC, Parisses C, Labridis DP. Reducing network
congestion in distribution networks with high dg penetration via network
reconfiguration. In: 11th international conference on the European energy market
(EEM14). 2014, p. 1–5. http://dx.doi.org/10.1109/EEM.2014.6861255.

[5] Shabshab SC, Lindahl PA, Nowocin JK, Donnal J, Blum D, Norford L, et
al. Demand smoothing in military microgrids through coordinated direct load
control. IEEE Trans Smart Grid 2020;11(3):1917–27. http://dx.doi.org/10.1109/
TSG.2019.2945278.

[6] Zhang L, Tang Y, Zhou T, Tang C, Liang H, Zhang J. Research on flexible
smart home appliance load participating in demand side response based on
power direct control technology. Energy Rep 2022;8:424–34. http://dx.doi.org/
10.1016/j.egyr.2022.01.219.

[7] Huang S, Wu Q, Shahidehpour M, liu Z. Dynamic power tariff for
congestion management in distribution networks. IEEE Trans Smart Grid
2019;10(2):2148–57. http://dx.doi.org/10.1109/TSG.2018.2790638.

[8] Fotouhi Ghazvini MA, Lipari G, Pau M, Ponci F, Monti A, Soares J, et
al. Congestion management in active distribution networks through demand
response implementation. Sustain Energy, Grids Networks 2019;17:100185. http:
//dx.doi.org/10.1016/j.segan.2018.100185.

[9] Dranka GG, Ferreira P. Review and assessment of the different categories
of demand response potentials. Energy 2019;179:280–94. http://dx.doi.org/10.
1016/j.energy.2019.05.009.

[10] Gong X, Castillo-Guerra E, Cardenas-Barrera JL, Cao B, Saleh SA, Chang L. Robust
hierarchical control mechanism for aggregated thermostatically controlled loads.
IEEE Trans Smart Grid 2021;12(1):453–67. http://dx.doi.org/10.1109/TSG.2020.
3009989.

[11] Zhao J, Wang Y, Song G, Li P, Wang C, Wu J. Congestion management
method of low-voltage active distribution networks based on distribution loca-
tional marginal price. IEEE Access 2019;7:32240–55. http://dx.doi.org/10.1109/
ACCESS.2019.2903210.

[12] Liu Z, Wu Q, Oren SS, Huang S, Li R, Cheng L. Distribution locational marginal
pricing for optimal electric vehicle charging through chance constrained mixed-
integer programming. IEEE Trans Smart Grid 2018;9(2):644–54. http://dx.doi.
org/10.1109/TSG.2016.2559579.

[13] Shen F, Huang S, Wu Q, Repo S, Xu Y, Østergaard J. Comprehensive congestion
management for distribution networks based on dynamic tariff, reconfiguration,
and re-profiling product. IEEE Trans Smart Grid 2019;10(5):4795–805. http:
//dx.doi.org/10.1109/TSG.2018.2868755.

[14] Hu J, Yang G, Bindner HW, Xue Y. Application of network-constrained trans-
active control to electric vehicle charging for secure grid operation. IEEE
Trans Sustain Energy 2017;8(2):505–15. http://dx.doi.org/10.1109/TSTE.2016.
2608840.

[15] Asrari A, Ansari M, Khazaei J, Fajri P. A market framework for decentralized
congestion management in smart distribution grids considering collaboration
among electric vehicle aggregators. IEEE Trans Smart Grid 2020;11(2):1147–58.
http://dx.doi.org/10.1109/TSG.2019.2932695.

http://dx.doi.org/10.1109/ITEC48692.2020.9161574
http://dx.doi.org/10.1109/ACCESS.2021.3140162
http://dx.doi.org/10.1109/ACCESS.2021.3140162
http://dx.doi.org/10.1109/ACCESS.2021.3140162
http://dx.doi.org/10.1109/TPWRS.2019.2959586
http://dx.doi.org/10.1109/EEM.2014.6861255
http://dx.doi.org/10.1109/TSG.2019.2945278
http://dx.doi.org/10.1109/TSG.2019.2945278
http://dx.doi.org/10.1109/TSG.2019.2945278
http://dx.doi.org/10.1016/j.egyr.2022.01.219
http://dx.doi.org/10.1016/j.egyr.2022.01.219
http://dx.doi.org/10.1016/j.egyr.2022.01.219
http://dx.doi.org/10.1109/TSG.2018.2790638
http://dx.doi.org/10.1016/j.segan.2018.100185
http://dx.doi.org/10.1016/j.segan.2018.100185
http://dx.doi.org/10.1016/j.segan.2018.100185
http://dx.doi.org/10.1016/j.energy.2019.05.009
http://dx.doi.org/10.1016/j.energy.2019.05.009
http://dx.doi.org/10.1016/j.energy.2019.05.009
http://dx.doi.org/10.1109/TSG.2020.3009989
http://dx.doi.org/10.1109/TSG.2020.3009989
http://dx.doi.org/10.1109/TSG.2020.3009989
http://dx.doi.org/10.1109/ACCESS.2019.2903210
http://dx.doi.org/10.1109/ACCESS.2019.2903210
http://dx.doi.org/10.1109/ACCESS.2019.2903210
http://dx.doi.org/10.1109/TSG.2016.2559579
http://dx.doi.org/10.1109/TSG.2016.2559579
http://dx.doi.org/10.1109/TSG.2016.2559579
http://dx.doi.org/10.1109/TSG.2018.2868755
http://dx.doi.org/10.1109/TSG.2018.2868755
http://dx.doi.org/10.1109/TSG.2018.2868755
http://dx.doi.org/10.1109/TSTE.2016.2608840
http://dx.doi.org/10.1109/TSTE.2016.2608840
http://dx.doi.org/10.1109/TSTE.2016.2608840
http://dx.doi.org/10.1109/TSG.2019.2932695


D. Dreucci et al. Applied Energy 384 (2025) 125417 
[16] Ormeño-Mejía E, Chaves-Ávila JP, Troncia M. Unlocking flexibility from third-
party resources: Decoding the interaction between mechanisms for acquiring
distribution system operator services. Curr Sustainable/ Renew Energy Rep
2024;11:45–67. http://dx.doi.org/10.1007/s40518-024-00236-7.

[17] Ucer E, Kisacikoglu MC, Yuksel M. Decentralized additive increase and multi-
plicative decrease-based electric vehicle charging. IEEE Syst J 2021;15(3):4272–
80. http://dx.doi.org/10.1109/JSYST.2020.3013189.

[18] Zishan AA, Haji MM, Ardakanian O. Adaptive congestion control for electric
vehicle charging in the smart grid. IEEE Trans Smart Grid 2021;12(3):2439–49.
http://dx.doi.org/10.1109/TSG.2021.3051032.

[19] Khan OGM, Youssef A, Salama M, El-Saadany E. Robust multi-objective conges-
tion management in distribution network. IEEE Trans Power Syst 2022;1–11.
http://dx.doi.org/10.1109/TPWRS.2022.3200838.

[20] Dehnavi E, Afsharnia S, Akmal AAS, Moeini-Aghtaie M. A novel congestion
management method through power system partitioning. Electr Power Syst Res
2022;213:108672. http://dx.doi.org/10.1016/j.epsr.2022.108672.

[21] Baczyńska A, Niewiadomski W. Power flow tracing for active congestion man-
agement in modern power systems. Energies 2020;13(18). http://dx.doi.org/10.
3390/en13184860.

[22] Prakash K, Ali M, Siddique M, Karmaker A, Macana C, Dong D, et al. Bi-level
planning and scheduling of electric vehicle charging stations for peak shaving
and congestion management in low voltage distribution networks. Comput Electr
Eng 2022;102:108235. http://dx.doi.org/10.1016/j.compeleceng.2022.108235.

[23] Liu L, Zhou K. Electric vehicle charging scheduling considering urgent demand
under different charging modes. Energy 2022;249:123714. http://dx.doi.org/10.
1016/j.energy.2022.123714.

[24] Xie S, Zhong W, Xie K, Yu R, Zhang Y. Fair energy scheduling for vehicle-
to-grid networks using adaptive dynamic programming. IEEE Trans Neural
Networks Learn Syst 2016;27(8):1697–707. http://dx.doi.org/10.1109/TNNLS.
2016.2526615.

[25] Zeballos M, Ferragut A, Paganini F. Proportional fairness for EV charging in
overload. IEEE Trans Smart Grid 2019;10(6):6792–801. http://dx.doi.org/10.
1109/TSG.2019.2911231.
10 
[26] Kumar KN, Sivaneasan B, So PL. Impact of priority criteria on electric vehicle
charge scheduling. IEEE Trans Transp Electrification 2015;1(3):200–10.

[27] Cheng X, Overbye T. PTDF-based power system equivalents. IEEE Trans Power
Syst 2005;20(4):1868–76. http://dx.doi.org/10.1109/TPWRS.2005.857013.

[28] Baldick R. Variation of distribution factors with loading. IEEE Trans Power Syst
2003;18(4):1316–23. http://dx.doi.org/10.1109/TPWRS.2003.818723.

[29] Ahmad F, Rasool A, Ozsoy E, Sekar R, Sabanovic A, Elitaş M. Distribution
system state estimation-a step towards smart grid. Renew Sustain Energy Rev
2018;81:2659–71. http://dx.doi.org/10.1016/j.rser.2017.06.071.

[30] Hekkelman B, la Poutré H. Fairness in smart grid congestion management. In:
2019 IEEE PES innovative smart grid technologies europe (ISGT-europe). 2019,
p. 1–5.

[31] Boyd S, Vandenberghe L. Convex optimization. Cambridge University Press;
2004, p. 131, URL https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf.

[32] Matoušek J, Gärtner B. Understanding and using linear programming. vol. 1,
Berlin: Springer; 2007, p. 42.

[33] verbruiksprofielen-Profielen 2018. De Vereniging Nederlandse En-
ergieDataUitwisseling (NEDU); 2021, (Accessed 20 April 2021).URL
https://www.nedu.nl.

[34] Mouli GC, Bauer P, Zeman M. System design for a solar powered electric vehicle
charging station for workplaces. Appl Energy 2016;168:434–43.

[35] Zonnestroom; vermogen bedrijven en woningen, regio(indeling 2018),2012–
2018. Centraal Bureau voor de Statistiek; 2021, (Accessed 20 April 2021). URL
https://opendata.cbs.nl.

[36] Factsheets Zon. Rijksdienst voor Ondernemend Nederland (RVO); 2021,
(Accessed 20 April 2021). URL https://www.rvo.nl.

[37] Statistics Electric Vehicles and Charging in The Netherlands up to and includ-
ing November 2018. Rijksdienst voor Ondernemend Nederland (RVO); 2021,
(Accessed 20 April 2021). URL https://www.rvo.nl.

[38] Elaad open data platform, 2018. Elaad; 2021, (Accessed 11 May 2021).
[39] Refa N, Nick H. Impact of smart charging on EVs charging behaviour assessed

from real charging events. Lyon, France: 32th International Electric Vehicle
Symposium; 2019.

[40] Nash J. The bargaining problem. vol. 18, (2):Wiley Online Library; 1950, p.
155–62,

http://dx.doi.org/10.1007/s40518-024-00236-7
http://dx.doi.org/10.1109/JSYST.2020.3013189
http://dx.doi.org/10.1109/TSG.2021.3051032
http://dx.doi.org/10.1109/TPWRS.2022.3200838
http://dx.doi.org/10.1016/j.epsr.2022.108672
http://dx.doi.org/10.3390/en13184860
http://dx.doi.org/10.3390/en13184860
http://dx.doi.org/10.3390/en13184860
http://dx.doi.org/10.1016/j.compeleceng.2022.108235
http://dx.doi.org/10.1016/j.energy.2022.123714
http://dx.doi.org/10.1016/j.energy.2022.123714
http://dx.doi.org/10.1016/j.energy.2022.123714
http://dx.doi.org/10.1109/TNNLS.2016.2526615
http://dx.doi.org/10.1109/TNNLS.2016.2526615
http://dx.doi.org/10.1109/TNNLS.2016.2526615
http://dx.doi.org/10.1109/TSG.2019.2911231
http://dx.doi.org/10.1109/TSG.2019.2911231
http://dx.doi.org/10.1109/TSG.2019.2911231
http://refhub.elsevier.com/S0306-2619(25)00147-3/sb26
http://refhub.elsevier.com/S0306-2619(25)00147-3/sb26
http://refhub.elsevier.com/S0306-2619(25)00147-3/sb26
http://dx.doi.org/10.1109/TPWRS.2005.857013
http://dx.doi.org/10.1109/TPWRS.2003.818723
http://dx.doi.org/10.1016/j.rser.2017.06.071
http://refhub.elsevier.com/S0306-2619(25)00147-3/sb30
http://refhub.elsevier.com/S0306-2619(25)00147-3/sb30
http://refhub.elsevier.com/S0306-2619(25)00147-3/sb30
http://refhub.elsevier.com/S0306-2619(25)00147-3/sb30
http://refhub.elsevier.com/S0306-2619(25)00147-3/sb30
https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
http://refhub.elsevier.com/S0306-2619(25)00147-3/sb32
http://refhub.elsevier.com/S0306-2619(25)00147-3/sb32
http://refhub.elsevier.com/S0306-2619(25)00147-3/sb32
https://www.nedu.nl
http://refhub.elsevier.com/S0306-2619(25)00147-3/sb34
http://refhub.elsevier.com/S0306-2619(25)00147-3/sb34
http://refhub.elsevier.com/S0306-2619(25)00147-3/sb34
https://opendata.cbs.nl
https://www.rvo.nl
https://www.rvo.nl
http://refhub.elsevier.com/S0306-2619(25)00147-3/sb38
http://refhub.elsevier.com/S0306-2619(25)00147-3/sb39
http://refhub.elsevier.com/S0306-2619(25)00147-3/sb39
http://refhub.elsevier.com/S0306-2619(25)00147-3/sb39
http://refhub.elsevier.com/S0306-2619(25)00147-3/sb39
http://refhub.elsevier.com/S0306-2619(25)00147-3/sb39
http://refhub.elsevier.com/S0306-2619(25)00147-3/sb40
http://refhub.elsevier.com/S0306-2619(25)00147-3/sb40
http://refhub.elsevier.com/S0306-2619(25)00147-3/sb40

	Centralised distribution grid congestion management through EV charging control considering fairness and priority
	Introduction
	Methodology
	Phase 1: Grid congestion detection
	Phase 2: Congestion diagnosis and target EVSE detection
	Calculation of excess power through congested elements
	Detection of downstream charging stations

	Phase 3: EV charging scheme execution
	PTDF-based Charging management Scheme (PCS)
	Egalitarian Charging management Scheme (ECS)
	Priority-based Charging management Scheme (PrCS)


	Modelling of elements and scenarios
	Grid features
	PV and load profiles
	EV data
	Simulation setups and scenarios

	Simulations Results
	Grid congestion mitigation
	User satisfaction
	Overcompensation of grid overloading
	Choice and Effect of the threshold value for downstream charging stations

	Conclusion and recommendations
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References


