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Abstract In this paper, a three-dimensional semi-idealized
model for tidal motion in a tidal estuary of arbitrary shape
and bathymetry is presented. This model aims at bridging
the gap between idealized and complex models. The ver-
tical profiles of the velocities are obtained analytically in
terms of the first-order and the second-order partial deriva-
tives of surface elevation, which itself follows from an
elliptic partial differential equation. The surface elevation
is computed numerically using the finite element method
and its partial derivatives are obtained using various meth-
ods. The newly developed semi-idealized model allows for
a systematic investigation of the influence of geometry and
bathymetry on the tidal motion which was not possible in
previously developed idealized models. The new model also
retains the flexibility and computational efficiency of previ-
ous idealized models, essential for sensitivity analysis. As
a first step, the accuracy of the semi-idealized model is
investigated. To this end, an extensive comparison is
made between the model results of the semi-idealized
model and two other idealized models: a width-averaged
model and a three-dimensional idealized model. Finally, the
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semi-idealized model is used to understand the influence
of local geometrical effects on the tidal motion in the Ems
estuary. The model shows that local convergence and mean-
dering effects can have a significant influence on the tidal
motion. Finally, the model is applied to the Ems estuary. The
model results agree well with observations and results from
a complex numerical model.
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1 Introduction

Estuaries are regions of large economical (navigation chan-
nels, sand and gas mining, recreation, etc.) and eco-
logical importance. Recently, various contributions (e.g.,
Chernetsky et al. 2010; de Jonge et al. 2012; Winterwerp
et al. 2013; Winterwerp and Wang 2013) have indicated that
tidal characteristics can change significantly due to anthro-
pogenic measures. These changes can endanger safety,
i.e., changes in the surface elevation may cause flood-
ing in the surrounding area, and transport (related to the
changes in the three-dimensional velocity field) or accu-
mulation of sediments and pollutants which leads to poor
quality of water. It is therefore essential to accurately
describe and understand the tidal water motion includ-
ing its response to natural changes and anthropogenic
disturbances.

Different types of process-based models can be
used to gain understanding of tidal motion (Murray
2003; de Vriend 1992, 1991). These models can be broadly
divided into two categories: complex simulation mod-
els and idealized models. A complex simulation model
aims at resolving all known physical processes, using
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state-of-the-art parameterizations of unresolved processes.
Concerning complex model simulations of the Ems estuary,
one can find the studies by Van de Kreeke and Robaczewska
(1993), Pein et al. (2014), and van Maren et al. (2015).
An idealized model on the other hand considers only those
physical processes which are dominant for the phenomenon
under investigation. Idealized models use simplified geo-
metric and bathymetric profiles. The schematizations of
idealized models allow for quick solution techniques, often
analytic, which makes these type of models suitable for
extensive parameter sensitivity analysis.

Idealized models, used to study the tidal motion in estuar-
ies, can be further divided into different categories. Averag-
ing the governing equations over the cross-section results in
one-dimensional models, see Lanzoni and Seminara (1998)
and Valle-levinson (2010) for an overview. Ianniello (1977)
and Chernetsky et al. (2010) developed width-averaged
(2DV) models to gain insight in the vertical flow structure
in the longitudinal direction. The geometry was assumed to
be exponentially converging, while the depth was assumed
constant in Ianniello (1977) and varying in the longitudinal
direction in Chernetsky et al. (2010). Assuming along-
estuary uniform conditions, Huijts et al. (2009) developed
an idealized model to study the water motion in an estu-
arine cross-section, allowing for an arbitrary bathymetry
in the lateral direction. To study the interaction of lateral
and longitudinal flows, Li and Valle-levinson (1999) used
a depth-averaged (2DH) model that allowed for an arbi-
trary bathymetric and geometric profile, but ignored Cori-
olis effects. Winant (2007) developed a three-dimensional
idealized model for tidal motion on a rotating (Coriolis
effects included) elongated (width is much smaller than
the length) rectangular domain with a parabolic bathymet-
ric profile in the lateral direction together with constant
physical parameters and constant density. Winant’s three-
dimensional idealized model is limited to an estuary with
elongated rectangular domain and constant physical param-
eters.

In light of the above, it is clear that currently there is no
idealized model that allows for a systematic investigation
of the influence of arbitrary geometry and bathymetry on
three-dimensional water motion. Therefore, the aim of this
paper is to develop a three-dimensional idealized model for
tidal water motion in an estuary with arbitrary geometry and
bathymetry. The physical parameters are allowed to vary
in the horizontal direction as well. The surface elevation is
obtained from a two-dimensional elliptic partial differential
equation, which is solved numerically using the finite ele-
ment method. The vertical profile of the three-dimensional
velocity can be explicitly calculated in terms of the first
and second-order partial derivatives of the surface elevation,
i.e., the three-dimensional velocity profile is analytic in the
vertical direction.

This model is a first step in bridging the gap between
idealized models and complex models: the model can still
be systematically analyzed to gain understanding of impor-
tant physical mechanisms, but allows for more complex
geometries and bathymetries.

Our three-dimensional semi-idealized model is first
tested by comparing its results with the results of the width-
averaged model of Chernetsky et al. (2010) and the three-
dimensional idealized model of Winant (2007). Extensive
error and convergence analyses are performed to evaluate
the finite element method and various methods to compute
its partial derivatives. Next, the model is applied to com-
plex geometry of the Ems estuary and the influence of local
geometrical effects on the tidal motion is investigated.

The structure of the paper is as follows. The governing
equations of the three-dimensional semi-idealized model
are described in Section 2. These equations are solved in
Section 3. The comparison of the three-dimensional semi-
idealized model with the width-averaged model is presented
in Section 4 and with the three-dimensional idealized model
in Section 5. Using this novel three-dimensional semi-
idealized model, the influence of local geometrical effects
on the tidal motion of the Ems estuary are investigated in
Section 6. Finally, conclusions are presented in Section 7.

2 Model formulation

We consider a tidal estuary of arbitrary shape and
bathymetry (Fig. 1), with x and y denoting the horizontal
coordinates and z the vertical coordinate pointing upwards.
The two-dimensional surface of the estuary is denoted by�.
Note that, since the shape of the estuary is arbitrary, x (y)
need not represent the along-channel (cross-channel) coor-
dinate. The bathymetric profile is denoted by h(x, y), with
the mean depth at the seaward side given by H .

The water motion is governed by the three-dimensional
shallow water equations, including the Coriolis effect. The
estuary is assumed to be partially-mixed or well-mixed.
Following Winant (2007), the equations are scaled and the
physical variables are asymptotically expanded in powers of
a small parameter ε = Ã/H , where Ã is the mean amplitude
of the semi-diurnal lunar (M2) tidal wave at the seaward
side. In leading order, i.e., atO(ε0), the dimensional system
of equations is given by

ux + vy + wz = 0, (1a)

ut − f v = −gηx + (Avuz)z, (1b)

vt + f u = −gηy + (Avvz)z, (1c)

where f = 2�∗ sin θ is the Coriolis parameter, �∗ =
7.292 × 10−5 rad s−1, the angular frequency of the Earth’s
rotation, θ latitude, g is the gravitational acceleration, and
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Fig. 1 Three-dimensional sketch of an estuary with arbitrary geomet-
ric and bathymetric profiles. The bathymetric profile is shown on a
grayscale. The seaward side (denoted by ∂D�) is shown in magenta
color ( ) and the river side (denoted by ∂R�) is shown in cyan
color ( ). The other boundaries (denoted by ∂N�) are assumed
to be closed walls. The surface of the estuary is discretized using lin-
ear triangles in order to compute the surface elevation with the finite
element method. The constrained nodes (nodes where the surface ele-
vation is known) are indicated by blue diamonds ( ) and unconstrained
nodes (nodes where the surface elevation has to be computed) by red
diamonds ( ). All the interior nodes are by default unconstrained. At
each node in the triangulization of the surface, the vertical profile of
the velocity field can be computed analytically using partial derivatives
of the surface elevation as shown by yellow dashed lines ( ).
The velocity at the surface is depicted by green arrows ( ) and, in
the rest of the water column, by yellow arrows ( )

Av (m2 s−1) is the eddy viscosity. At the seaward side
(denoted by ∂D�), the system is forced with a prescribed
M2 tide,

η = A(x, y) cosωt, ∀ (x, y) ∈ ∂D�, (2a)

where A(x, y) is the spatially varying elevation amplitude
along this boundary and ω = 2π/T is the tidal frequency of
the M2 tide with tidal period T = 12.42 h. Also “∀(x, y) ∈
∂D�” means for all points (x, y) on the seaward boundary
(∂D�). At the other boundaries, either a no-flux condition
(for boundaries denoted by ∂N�) or a river discharge (for
boundaries denoted by ∂R�) is prescribed. Assuming that
the river outflow gives a minor contribution (only occurring
at first order rather than zeroth order in ε), the normal com-
ponent of the volume transport is required to vanish at the
remaining boundaries,

⎛
⎝

0∫

−h

(u, v) dz

⎞
⎠ · n̂ = 0, ∀ (x, y) ∈ ∂N� ∪ ∂R�, (2b)

where n̂ is the local unit normal pointing outwards. As
dynamic boundary conditions, a no-stress condition at the

surface z = 0 and a partial slip condition at the bottom
z = −h are prescribed, i.e.,

Av(uz, vz) = (0, 0), at z = 0, (2c)

Av(uz, vz) = s(u, v), at z = −h, (2d)

where s (m s−1) is the stress parameter which follows from
the linearization of the quadratic friction law (for details,
see Schramkowski et al. (2002) and Zimmerman (1992)).
In the present model, the eddy viscosity Av and the stress
parameter s are assumed to be constant in the vertical direc-
tion and in time. As kinematic boundary conditions, the
linearized boundary condition is applied at z = 0, and the
impermeability of the bottom is imposed at z = −h, i.e.,

w = ηt , at z = 0, (2e)

w = −uhx − vhy, at z = −h. (2f)

3 Solution method

The system of Eq. 1, together with the boundary condi-
tions (2), constitute a closed set of equations that can be
solved for the surface elevation η and velocity components
(u, v, w). Usually, this problem is solved numerically by
spatial and temporal discretization. In the approach pre-
sented below, the tidal motion is solved in terms of tidal
constituents, i.e., without discretizing in time. Furthermore,
the vertical structure of the velocity components is obtained
analytically resulting in a two-dimensional elliptic partial
differential equation (Section 3.1) for the surface elevation
that, in general, has to be solved numerically (Section 3.2).

3.1 Analytical part of the solution method

Since the water motion is forced by an oscillating water
level (2a) and the system of equations is linear, solutions of
the system of equations are of the form

(η, u, v, w) = �{(N, U, V, W)eiωt }, (3)

where � stands for the real part of a complex variable,
and i = √−1 is the unit imaginary number. Further-
more, N(x, y), U(x, y, z), V (x, y, z), and W(x, y, z) are
the complex amplitudes of the surface elevation and the
three velocity components, respectively. Substituting (3)
into Eq. 1 gives

Ux + Vy + Wz = 0, (4a)

iωU − f V = −gNx + AvUzz, (4b)

iωV + f U = −gNy + AvVzz. (4c)
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To solve this coupled set of equations, we introduce rotating
flow variables R1 and R2 with

R1 = U + iV and R2 = U − iV , (5)

such that

U = R1 + R2

2
and V = R1 − R2

2i
. (6)

We add Eq. 4c multiplied by i to Eq. 4b and Eq. 4c multi-
plied by -i to Eq. 4b. These give differential equations for
the rotating flow variables:

Rj,zz − α2
jRj = g

Av
LjN, j = 1, 2, (7a)

with differential operators L1 = ∂x + i∂y , L2 = ∂x − i∂y , and

coefficients α1 =
√

i
ω+f
Av

, and α2 =
√

i
ω−f
Av

. Following the
same procedure for the boundary conditions, we get,

AvRj,z = 0, at z = 0, (7b)

AvRj,z = sRj , at z = −h, (7c)

Here, ∂x and ∂y are the first-order partial derivatives with
respect to x and y, respectively. For each j = 1, 2, Eq. 7a is
a linear, second-order ordinary differential equation in the
vertical coordinate z, which can be solved analytically in
terms of the unknown pressure gradients Nx and Ny . The
resulting rotating flow variables read

Rj = cαj
(z)LjN, j = 1, 2, (8)

with vertical structure cαj
given by

cαj
(z) = g

α2
jAv

[
s cosh(αj z)

αjAv sinh(αjh) + s cosh(αjh)
− 1

]
.

Note that through the (x, y) dependency of the depth h, the
stress parameter s and the eddy viscosity Av, the function
cαj

also depends on the horizontal coordinates x and y. Inte-
grating the continuity Eq. 4a from z = −h to z = 0, using
the kinematic boundary conditions Eqs. 2e and 2f, we find
that

∂x

0∫

−h

U dz + ∂y

0∫

−h

V dz + iωN = 0. (9)

To express the depth-integrated horizontal velocity in terms
of the surface elevation, define Cαj

(z) as

Cαj
(z) =

z∫

−h

cαj
(z′) dz′

= g

α3
jAv

[
s(sinh(αj z) + sinh(αjh))

αjAv sinh(αjh) + s cosh(αjh)
− αj (z + h)

]
.

Integrating (8) over the water column from z′ = −h to
z′ = z, results in

z∫

−h

Rj dz′ = Cαj
(z)LjN, j = 1, 2. (10)

Combining (6), (8), and (10), the depth-integrated horizon-
tal velocities can be expressed as

z∫

−h

U dz′ =
z∫

−h

R1 + R2

2
dz′

= Cα1(z) + Cα2(z)

2︸ ︷︷ ︸
C1(z)

Nx + i
Cα1(z) − Cα2(z)

2︸ ︷︷ ︸
C2(z)

Ny

= C1(z)Nx + C2(z)Ny, (11a)

and,
z∫

−h

V dz′ =
z∫

−h

R1−R2
2i dz′

=−i
Cα1(z) − Cα2(z)

2︸ ︷︷ ︸
C2(z)

Nx + Cα1(z) + Cα2(z)

2︸ ︷︷ ︸
C1(z)

Ny

= −C2(z)Nx + C1(z)Ny. (11b)

Substituting (11a) and (11b) in Eq. 9, results in an equation
for the surface elevation:

∇ · [D(0)∇N] + iωN = 0, (12a)

with ∇ = (∂x, ∂y)
T, where the superscript T denotes the

transpose operator, and

D(z) =
[

C1(z) C2(z)

−C2(z) C1(z)

]
. (12b)

The corresponding boundary conditions read

N = A, on ∂D�, (12c)

[D(0)∇N] · n̂ = 0, on ∂N� ∪ ∂R�. (12d)

Equation (12a) is a two-dimensional linear elliptic partial
differential equation with complex coefficient matrix D(0).
This matrix depends on the bathymetric profile h, the eddy
viscosity Av, the stress parameter s, and Coriolis parameter
f , all of which can be arbitrary functions of the horizon-
tal coordinates x and y. Therefore, an analytic solution
of Eq. 12 cannot be obtained in general, and a numeri-
cal approach will be pursued. In Section 3.2, the numerical
solution procedure will be discussed in detail.

Once the surface elevation N(x, y) is known, we have
to calculate its gradients Nx and Ny to obtain the verti-
cal profiles of the horizontal flow components. The vertical
velocity W is obtained by integrating the continuity equa-
tion (4a) from z′ = −h to z′ = z, together with the aid of
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Leibniz integral rule and the kinematic boundary conditions
((2e) and (2f)), resulting in

W = −∂x

z∫

−h

U(x, y, z′) dz′ − ∂y

z∫

−h

V (x, y, z′) dz′

= −∇ · [D(z)∇N], (13)

withD(z) given by Eq. 12b. This completes the derivation of
the three-dimensional flow profile expressed in terms of the
first-order partial derivatives (for horizontal velocities) and
the second-order partial derivatives (for vertical velocity) of
the surface elevation.

3.2 Numerical part of the solution method

In general, for an arbitrary domain, bathymetry and spatially
varying parameters, Eq. 12 cannot be solved analytically.
Therefore, a numerical approach, the finite element method
(Gockenbach 2006), is adopted. As a first step, Eq. 12 is
written in its weak form,

−
∫∫

�

[D(0)∇Ñ ] · ∇φ d� + iω

∫∫

�

Ñφ d�

=
∫∫

�

[D(0)∇ND] · ∇φ d�−iω

∫∫

�

NDφ d� ∀ φ ∈ �,

(14)

where N = Ñ + ND , ND = A on ∂D� and φ is a test
function belonging to the space of test functions �. Equa-
tion (14) implies that since ND is known, the problem of
finding N now reduces to finding Ñ . Details concerning the
derivation of the weak form can be found in Appendix B.

Next, the software package Triangle (Shewchuk
1996) is used to discretize the domain � using triangles
(Fig. 1). The discretized domain is denoted by �

h̃
, where h̃

is the mean step size (defined as the mean of the length of
all the edges in the discretization of the domain). The total
number of nodes equals n+m with the first n nodes located
in the interior or on the no-flux boundary (unconstrained
or free nodes, denoted by red diamonds in Fig. 1 together
with all the interior nodes) and the last m nodes located on
the seaward boundary (constrained nodes, denoted by blue
diamonds in Fig. 1). Next, the unknown complex surface
elevation amplitude Ñ is approximated by

Ñh̃
(x, y) =

n∑
l=1

Nlφl(x, y), (15)

where φl’s are so-called Lagrange basis functions that equal
one at node l and zero at all other nodes. The coefficients
Nl , l = 1, . . . , n are unknown complex amplitudes. In this
study, we will consider linear and quadratic polynomials as
basis functions.

Next, we substitute the finite element approximation of
Ñ

h̃
(15) in the weak form (14) and choose test functions φ

equal to basis functions φk , k = 1, . . . , n. This results in
a linear system of equations for the unknown Nl’s that can
be solved numerically (see Appendix B for a detailed expla-
nation). Once Ñ

h̃
is known, we can write down the finite

element approximation N
h̃
of N over the whole domain as,

N
h̃
(x, y) = Ñ

h̃
(x, y) + ND(x, y)

=
n∑

l=1

Nlφl(x, y) +
n+m∑

l=n+1

A(xl, yl)φl(x, y). (16)

Once we have computed the numerical solution N
h̃
, its

accuracy is assessed by performing error and convergence
analyses. Denoting the exact solution of Eq. 12a by N , the
error function E

h̃
is defined as

E
h̃

= N − N
h̃
.

The numerical solution N
h̃
converges to the exact solution

N if

||E
h̃
||2 → 0 as h̃ → 0,

where || · ||2 is the L2 norm defined in Appendix B. To make
our error measure independent of the size of the domain and
the range of the solution, we define the relative error as

r(h̃) = ||E
h̃
||2

||N ||2 . (17)

The order of convergence p is the rate at which the numer-
ical solution N

h̃
converges to the exact solution N , given

by

p = log(||E
h̃1

||
2
/||E

h̃2
||
2
)

log(h̃1/h̃2)
. (18)

In general, if polynomial basis functions of order q are
used, the numerical solution N

h̃
converges to the exact solu-

tion N with rate q + 1, provided numerical integrals are
computed accurately enough (Gockenbach 2006). For linear
(quadratic) basis functions, we thus expect second (third)
order convergence of the numerical solution.

To compute the three-dimensional flow components, the
first-order and the second-order partial derivatives of N

have to be computed. Since the surface elevation itself is
obtained numerically using the finite element method, its
partial derivatives have to be obtained numerically as well.
It is therefore essential to determine these derivatives as
accurately as possible to get accurate velocity fields.

The most straightforward way to compute the partial
derivatives is the direct derivative method (from now on
denoted by DD-method) in which the numerical approxima-
tion given by Eq. 16 is differentiated directly, i.e.,

∂a+bN
h̃

∂xa∂yb
=

n∑
l=1

Nl

∂a+bφl

∂xa∂yb
+

n+m∑
l=n+1

A(xl, yl)
∂a+bφl

∂xa∂yb
,
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where a and b are the order of differentiation in the x and
y directions, respectively. When linear basis functions are
used, it is only possible to calculate the first-order partial
derivatives. Hence, the vertical velocityW can not be recon-
structed. For this reason, we use quadratic basis functions.
The quadratic basis functions allow both the first-order and
the second-order partial derivatives to be computed at min-
imum computational cost. Hence, the three components of
the velocity can be computed.

A main drawback of the DD-method is that for each
order of differentiation, the order of convergence of the
resulting derivative decreases by one. For quadratic basis
functions, the numerical solution for N is expected to con-
verge with rate three. The first-order and the second-order
partial derivatives calculated using the DD-method are then
expected to converge with rates two and one, respectively.

In the literature, various methods (Carey 1982;
Zienkiewicz and Zhu 1992a, 1992b; Ilinca and Pelletier
2007) are proposed to recover partial derivatives more
accurately than with the DD-method. For the problem
under consideration, the method proposed by Carey (1982)
only resulted in superconverging (converging faster than
expected) partial derivatives on a structured grid. For
unstructured grids, the method failed to converge. The
method proposed by Ilinca and Pelletier (2007) did not
produce superconverging results even for a structured grid.

The method proposed by Zienkiewicz and Zhu (1992a)
(from now on denoted by ZZ-method) was shown to
produce superconverging results for the first-order partial
derivatives of a numerical solution calculated using linear
basis functions. Here, we will apply the ZZ-method twice to
compute the first-order and the second-order partial deriva-
tives of a numerical solution calculated using quadratic basis
functions. In the literature, no proof exists that using the
ZZ-method recursively gives accurate results.

Apart from the two approaches discussed above, the DD-
method and the ZZ-method, we combine these two meth-
ods to compute the second-order partial derivatives of the
numerical solution obtained using quadratic basis functions.
This new method works as follows. First, the DD-method is
used to calculate the first-order partial derivatives. The ZZ-
method is then used on these first-order partial derivatives
to obtain the second-order partial derivatives. By doing so,
the recursive use of the ZZ-method is avoided. We refer to
this method as the mixed-method.

In summary, the surface elevation in our model is com-
puted using either linear or quadratic basis functions. When
linear basis functions are used, it is only possible to compute
the first-order partial derivatives either by the DD-method
or the ZZ-method. For quadratic basis functions, it is pos-
sible to compute both the first-order and the second-order
partial derivatives. The first-order partial derivatives can
be computed either by the DD-method or the ZZ-method.

For the second-order partial derivatives, either of the DD-
method, the ZZ-method, or the mixed-method can be used.
The order of convergence of the surface elevation and its
partial derivatives calculated using various methods will be
assessed in Section 4.

4 Comparison with a width-averaged model

4.1 Introduction and geometry

Chernetsky et al. (2010) developed a width-averaged (2DV)
model for an exponentially converging estuary (Fig. 2). The
width is given by B(x) = B0e

−x
/
Lb , with 2B0 the width at

the entrance and Lb the e-folding length scale. The along-
channel coordinate x varies from x = 0 at the seaward side
to x = L at the landward side, withL being the length of the
estuary. The lateral boundaries are located at y = −B(x)

and y = B(x). If Lb → ∞, the exponentially converging
domain becomes a rectangular domain with a constant width
of 2B0.

The governing equations for the 2DV model are obtained
by averaging the three-dimensional continuity and momen-
tum equations (given by Eq. 1a) over the width, using the
appropriate boundary conditions. Similar to the approach in
Section 3.1, the vertical profile of the velocities is calculated
analytically. The velocities themselves are proportional to
the first and second order derivatives of the surface eleva-
tion.

If the bed profile h and physical parameters are allowed
to vary in the along-channel direction, the surface elevation
has to be obtained numerically (which is done using stan-
dard numerical techniques). For a uniform bed profile and

Fig. 2 Sketch of the idealized geometry used by Chernetsky et al.
(2010). The width B varies exponentially as B(x) = B0e

−x/Lb , where
2B0 the total width at the entrance and Lb the e-folding length (blue
solid line, ). If Lb → ∞, the exponential domain becomes a
rectangular domain (blue dashed line, ). The bed profile varies
parabolically in the transverse direction (maintaining a constant lateral
depths of H

y
o at y = ±B) and linearly in the longitudinal direction,

with a depth of H at the entrance (x = 0, y = 0) and Hx
o at the end

(x = L, y = 0)
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spatially uniform physical parameters, an analytical solution
of the 2DV model can be obtained.

To reproduce the results of a 2DVmodel by our 3D semi-
idealized model, the Coriolis parameter f in our model is
set to zero. In addition to that, the bathymetry and physi-
cal parameters are only allowed to vary in the along-channel
direction. The results of the 3D semi-idealized model are
averaged over the width for a fixed longitudinal coordinate
to allow for a comparison of the results obtained with the
2DV model. The one-dimensional width-averaged surface
elevation is calculated from the two-dimensional surface
elevation N(x, y) obtained from the 3D semi-idealized
model as

N̄(x) =
B(x)∫

−B(x)

N(x, y) dy, (19)

with N̄ the one-dimensional width-averaged surface
elevation.

4.2 Validation and convergence analysis

In this section, the results of the 2DV and 3D semi-idealized
models are compared. The convergence properties of the
numerical scheme are also investigated. A channel of uni-
form width (Lb → ∞ limit of exponentially converging
domain) of length L = 50 km and total width 2B = 1000 m,
together with a uniform bed profile of constant depth of
10 m, is considered. The eddy viscosity Av is set to
0.01 m2 s−1.

4.2.1 Surface elevation

In Fig. 3, the surface elevation is compared for different
values of the stress parameter s ranging from a no-slip
condition (s � 1), to a moderate value (s = 0.01 m s−1),

to a free-slip condition (s = 0 m s−1). The domain is dis-
cretized using right-angled triangles with 24 nodal points
in the along-channel direction and 20 nodal points in the
cross-channel direction. For all three values of the stress
parameter, the results obtained with the 3D semi-idealized
model for both the amplitude and the phase of the sur-
face elevation agree well with those obtained with the 2DV
model.

To investigate the convergence properties of the numeri-
cal solution, we systematically increase the number of nodes
using an unstructured grid, i.e., the triangles need not be
right-angled. Results are compared for s = 0.01 m s−1.
With both linear and quadratic basis functions, the relative
error defined in Eq. 17 decreases for an increasing num-
ber of nodes (Fig. 4). For approximately 104.2 nodes, using
quadratic basis functions, the relative error approaches com-
puter accuracy and decreases only slowly afterwards. Note
that for the same number of nodes, the relative error using
quadratic basis functions is at least 100 times smaller than
the relative error found with linear basis functions. The
order of convergence for linear basis functions converges to
2 (Fig. 4b, red line), and for quadratic basis functions, the
order of convergence converges to 3 (Fig. 4b, blue line). For
the number of nodes larger than 104.2, the order of conver-
gence for quadratic basis functions decreases due to the slow
decrease in the relative error related to computer accuracy.
To conclude, the numerical solution for the surface eleva-
tion converges with the expected order of convergence for
both linear and quadratic basis functions.

4.2.2 Flow field

In Fig. 5, the absolute values of the horizontal and verti-
cal velocities from the 2DV and 3D semi-idealized mod-
els are plotted. The domain is discretized using right-
angled triangles with 2000 nodes in the along-channel
direction and 40 nodes in the cross-channel direction.
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Quadratic basis functions together with the mixed-method
are used to calculate the surface elevation and its first-order
and second-order partial derivatives. Figure 5 shows that the
3D semi-idealized model is able to reproduce the ampli-
tudes of the horizontal and vertical velocities of the 2DV
model.

To assess the accuracy of these velocities, the conver-
gence properties of the first-order and the second-order
partial derivatives will be examined. As explained in Section
3.2, only the first-order partial derivatives of the surface ele-
vation can be obtained when linear basis functions are used.
With quadratic basis functions, both the first-order and the
second-order partial derivatives can be computed.

We first consider linear basis functions to compute the
surface elevation. Both the DD-method and the ZZ-method
are used to compute the first-order partial derivative of the
surface elevation in the along-channel direction.

Figure 6a shows that the relative error for the first-order
partial derivative of the surface elevation decreases with
increasing number of nodes for both the DD-method and the
ZZ-method. The relative error for the ZZ-method is approx-
imately ten times smaller than that of the DD-method. Con-
cerning the order of convergence, the ZZ-method converges
at a faster rate than the DD-method. Increasing the num-
ber of nodes shows that the order of convergence for both
methods approaches 1 (Fig. 6b). There is a loss of one order
of accuracy compared to the second-order convergence of
the surface elevation for linear basis functions. Clearly, the
ZZ-method is more accurate than the DD-method both in
terms of the relative error and the order of convergence of
the first-order partial derivatives of the surface elevation.

Considering the quadratic basis functions, the conver-
gence of both the first-order and the second-order partial
derivatives can be assessed. The ZZ-method and DD-
method are applied to compute the relative error for the
first-order partial derivatives of the surface elevation.

Figure 6a shows that the relative error for the DD-method
decreases with an increasing number of nodes. However,
when using the ZZ-method, the relative error decreases up
to approximately 104.2 nodes and then starts to increase.
Ignoring the last two entries of the ZZ-method, both meth-
ods converge with order 2 (Fig. 6b). Unlike linear basis
functions (Fig. 6), there is only a small gain in using the ZZ-
method over the DD-method for calculating the first-order
partial derivatives with quadratic basis functions.

As discussed in Section 3.2, the second-order partial
derivatives can be computed in three ways: (1) DD-method,
(2) ZZ-method, and (3) mixed-method. Figure 7c shows
that the relative error for the DD-method and the mixed-
method decrease monotonically with increasing number of
nodes. The relative error for the mixed-method is approx-
imately a factor 10 smaller than the relative error found
with the DD-method. Furthermore, the mixed-method con-
verges faster than the DD-method. Up to 104.2 nodes, i.e.,
as long as the relative error of the ZZ-method decreases,
the ZZ-method gives the most accurate results both in terms
of the relative error and the order of convergence. How-
ever, the relative error of the ZZ-method starts to increase
when further increasing the number of nodes, which makes
it unreliable for use. All three methods ultimately appear to
converge with order 1.

At this point, it is important to mention that for quadratic
basis functions, the unreliable behavior of the ZZ-method
for computing the first-order and the second-order par-
tial derivatives with sufficiently large number of nodes is
independent of the choice of the bed profile. Similar conver-
gence tests for the ZZ-method were carried out using non-
uniform bathymetric profiles with quadratic basis functions,
resulting in a similar behavior of the ZZ-method.

To conclude, when using the linear basis functions,
the ZZ-method is recommended to compute the first-
order partial derivatives. For quadratic basis functions, the
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DD-method for the first-order partial derivatives and the
mixed-method for the second-order partial derivatives are
recommended.

4.3 Parameter sensitivity

To investigate the influence of the geometry, the width at the
entrance B0 will be varied in Section 4.3.1, keeping the e-
folding length Lb constant. The influence of the variations
in the bathymetry will be studied in Section 4.3.2. To com-
pute the numerical solution of the 3D semi-idealized model,
the domain under consideration is discretized using an
unstructured triangular mesh with approximately 400,000
nodal points. Choosing such a fine mesh minimizes the
numerical error in the 3D semi-idealized model. The eddy
viscosity Av and stress parameter s are set to 0.01 m2 s−1

and 0.01 m s−1, respectively.

4.3.1 Influence of width at the entrance

To study the influence of the width at the entrance B0 on
the surface elevation in isolation, an exponential domain
of length L = 50 km and an e-folding length Lb = 10 km

together with a flat bed profile of 10-m depth is considered.
The width at the entrance B0 is varied and the width-
averaged surface elevations obtained with the 2DV and 3D
semi-idealized models are compared.

In Fig. 8a, the width-averaged surface elevation (given
by Eq. 19) is shown for different values of the width
B0 at the entrance. For B0 = 2.5 km, both the 2DV and
3D semi-idealized models produce similar results for the
amplitude of the surface elevation. It is important to note
that the one-dimensional surface elevation from the 2DV
model is independent of the width at the entrance (B0).
Because of this, the amplitude of the surface elevation for
any value of B0 will be the same for a 2DV model. As B0

increases, the width-averaged amplitude of the surface ele-
vation obtained with the 3D semi-idealized model starts to
deviate from the results obtained from the 2DV model. This
deviation increases with increasing value of B0. For a width
B0 = 40 km, a deviation of approximately 10 % is observed.

To understand the cause of this deviation, the amplitude
of the surface elevation obtained with the 3D semi-idealized
model is plotted in the horizontal space for different values
of B0. It is clear from Fig. 8b–d that the solution is radially
constant away from the entrance. At the entrance, a constant
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surface elevation has been prescribed, which as it breaches
the radial symmetry, results in the non-uniformity close to
the entrance.

4.3.2 Influence of varying bathymetry

A rectangular channel of length L = 50 km and width
2B0 = 1000 m is considered. A parabolic bed profile is
adopted,

h = H
y
o + (H − H

y
o )(1 − y2/B2), (20)

whereH
y
o is the constant depth at the lateral sides (y = ±B)

and H is the maximum depth which is attained at the center
line (y = 0) of the channel. To use the 2DV model, this
bathymetric profile is averaged over the width, resulting in

h̄ = 1

2B

B∫

−B

h dy = 1

3

[
H

y
o + 2H

]
. (21)

In Fig. 9, the water depth at the sides is varied from 1 to
10 m (which is a channel with uniform bed again), and the
difference between the amplitude of the width averaged sur-
face elevation obtained with the 2DV and 3D semi-idealized

models is shown. For H
y
o = 1 m, a difference of approxi-

mately 8 cm in amplitude of the surface elevation towards
the landward side is found. For each value of H

y
o , the dif-

ference in the amplitude increases along the channel. As
H

y
o increases, the difference in the amplitude decreases.

The positive value for the difference of amplitudes show
that the amplitude of the surface elevation from the 3D

Fig. 9 Difference in the amplitude of the surface elevation between
the 3D semi-idealized and 2DV models. The unit in the colorbar is m
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semi-idealized model is always larger than that of the 2DV
model.

5 Comparison with three-dimensional asymptotic
model

5.1 Introduction and geometry

Winant (2007) developed a three-dimensional idealized
model for an elongated rectangular basin of length L and
width 2B. The along-channel coordinate x varies from x =
0 at the seaward side to x = L at the landward side. The
cross-channel coordinate y varies from y = −B at the lower
boundary to y = B at the upper boundary. The term elon-
gated implies that the horizontal aspect ratio α = B/L has
to be small. A no-slip condition is imposed at the bottom
z = −h. This limit is found by taking s → ∞ in our 3D
semi-idealized model. The eddy viscosity Av is assumed to
be spatially uniform. The bed profile given by Eq. 20 is used
(see Fig. 2).

The surface elevation N follows from Eq. 12, but Winant
(2007) uses a different solution method. Assuming that α 

1, an asymptotic expansion of N in α is made;

N = N0 + αN1 + O(α2), (22)

and substituted in Eq. 12. This results in a system of equa-
tions for various orders of α, such that the leading order
(N0) and the first order (N1) solutions can be calculated
analytically. The surface elevation is approximated by

N ≈ N0 + αN1 = NWinant. (23)

It is important to realize that the solution NWinant given in
Eq. 23 is not an exact solution of system (12) as O(α2) and
higher order terms are ignored. Therefore, in this paper, we
refer to this model as the 3D asymptotic model.

5.2 Validation

In this section, the 3D asymptotic and 3D semi-idealized
model results for the surface elevation (Section 5.2.1) and
the velocity (Section 5.2.2) are compared. An elongated
rectangular basin of length L = 50 km and total width
2B = 200 m such that α (= 0.002) 
 1, is considered. The
default parameter values from Table 1 are used.

5.2.1 Surface elevation

First, the surface elevations for different values of the eddy
viscosities are compared,Av=10−3, 10−2, and 10−1 m2 s−1.
The rectangular basin is discretized using right-angled tri-
angles with 24 nodes in the along-channel direction and
20 nodes in the cross-channel direction. Figure 10 shows

Table 1 Default parameter values used for the comparison of the 3D
asymptotic model and 3D semi-idealized model. A no slip condition
(s → ∞) is imposed at the bottom

Parameter Value

L 50 km

B 100 m

H 10 m

H
y
o 2 m

f �∗/2
Av 10−3 m2 s−1

that the amplitudes of the width-averaged surface eleva-
tions obtained from the 3D asymptotic model and 3D
semi-idealized model appear to agree well.

Note that for the parameter settings considered here, the
Coriolis effects only influence the amplitude of the surface
elevation marginally. This is because the width of the chan-
nel 2B = 200 m is much smaller than the Rossby radius
of deformation R∗ = √

gH/f ≈ 71 km, which is the
length scale of the cross-channel variations for the surface
elevation.

5.2.2 Flow field

The rectangular domain is discretized using right-angled
triangles with 200 nodes each in both the along-channel
and cross-channel directions. This relatively large number
of nodes is used to avoid numerical inaccuracies in the
computation of the velocity components.

Quadratic basis functions together with the mixed-
method are used to compute the surface elevation and its
first-order and second-order partial derivatives. Three veloc-
ity components are compared in the cross-channel direction
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�∗/2 and different values of the eddy viscosity. The black solid line
depicts the 3D asymptotic model solution and black asterisk depict the
3D semi-idealized model solution
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at a distance x = 25 km from the entrance. It is evident
from Fig. 11 that our 3D semi-idealized model is able to
reproduce all three velocity profiles of the 3D asymptotic
model, even small details in the vertical velocity W have
been reproduced accurately. It is important to mention that
the comparison of the velocity field at other locations is as
good as at x = 25 km.

5.3 Parameter sensitivity

In Section 5.2, the results for the surface elevation and
three flow components from 3D asymptotic and 3D semi-
idealized models were compared for a rectangular channel
whose horizontal aspect ratio α was small (2.0 × 10−3).
In this section, α will be systematically increased and the
difference between the two models will be discussed.

From Eqs. 22 and 23, it follows that

|N − NWinant| = |O(α2)|.
Assuming that the solution of the 3D semi-idealized model
N

h̃
converges to the exact solution N , it follows that

|N
h̃

− NWinant| ≈ |O(α2)|, (24)

which implies that for a channel geometry with horizontal
aspect ratio α, an error of O(α2) is expected provided the
3D semi-idealized solution has been calculated with high
enough accuracy.

To verify Eq. 24, a rectangular channel of length
L = 50 km with different widths at the entrance is consid-
ered, B = [250, 500, 1000, 2000, 4000, 8000, 16000], all in
meters. For each value of B, the rectangular domain is dis-
cretized by refining a coarse grid with approximately 102

nodes to the finest grid with approximately 106 nodes. Lin-
ear basis functions are used to compute the finite element

approximation of the surface elevation. For each value of
B (hence α), the relative error of the surface elevation
between the 3D asymptotic and 3D semi-idealized models
is computed for different numbers of nodes.

Figure 12 shows the influence of α on the accuracy of the
3D asymptotic model. For each α, the relative error becomes
constant after a large enough number of nodes. This con-
stant relative error is proportional toO(α2), thus suggesting
that Eq. 24 is indeed correct. As α increases, the relative
error between the 3D semi-idealized and 3D asymptotic
models increases. For the largest number of nodal points
used in the experiments, the relative error for different val-
ues of α appear to be equispaced. More precisely, there is
approximately a difference of a factor 4 between the error
for each α, coinciding with the fact that the size of the
domain is doubled each time. This clearly demonstrates the
sensitivity of the 3D asymptotic model to the horizontal
aspect ratio.

6 Application to the Ems estuary

Our 3D semi-idealized model allows us to study the tidal
motion in an estuary with arbitrary shape and bathymetry.
As an example, we apply this model to the Ems estuary, sit-
uated on the border of the Netherlands and Germany (Fig.
13). In Section 6.1, the surface elevation of the M2 tide
obtained with the 3D semi-idealized model will be cali-
brated for the Ems estuary. The results for the amplitude
and the phase of the surface elevation are compared with
the results of a complex numerical model (Delft3D) setup
by van Maren et al. (2015). Next, the influence of the local
width convergence on the tidal motion will be investigated
in Section 6.2.

Fig. 11 Comparison of the
amplitude of three flow
components (in m s−1). The
velocities have been plotted in
the cross-section at a distance
25 km from the entrance. The
upper panel shows the velocities
from the 3D asymptotic model
and the lower panel from the 3D
semi-idealized model. Left,
central, and right panels show
the along-channel, cross-channel
and vertical velocities,
respectively
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Fig. 12 Relative error for the
surface elevation as a function of
the number of nodes for different
values of the horizontal aspect
ratio α plotted on log-log scale
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6.1 Calibration

The observational data for the water level in the Ems estuary
for the year 2005 are used from six locations in the estu-
ary, namely Emden, Pogum, Terborg, Leerort, Weener, and
Papenburg (shown in magenta color in Fig. 14). The objec-
tive is to find the parameter values for the 3D semi-idealized
model such that the model results fit the observations for
the water level at these locations best. To this end, the geo-
metric and bathymetric profiles of the year 2005 of the Ems
estuary is used in the 3D semi-idealized model (Fig. 14).
The Coriolis parameter f is assumed to be constant through-
out the estuary i.e., f = 1.166 × 10−4 rad s−1 (latitude =
53.32◦).

The physical parameters such as the eddy viscosity Av

and the stress parameter s are also assumed to be constant
in space. The 3D semi-idealized model is forced with a
semi-diurnal (M2) tide of constant amplitude at the seaward
side (North sea side, see Fig. 14). The domain is discretized
with approximately 200,000 nodes using an unstructured
grid. The amplitude and the phase of the surface elevation
obtained with the 3D semi-idealized model is then scaled
in such a way that they match the observations at Emden.

Next, the optimal values of Av and s are found such that
the mean squared error between the model results and the
observations is minimum, i.e.,

min
Av,s

{
1

2

∑
i

{
(No,i − Nm,i)

2 + 2No,iNm,i

[1 − cos(φo,i − φm,i)]
}}

,

where No,i and φo,i are the amplitude and the phase of the
surface elevation observed at location i, whereas Nm,i and
φm,i are the amplitude and the phase of the surface elevation
obtained with the 3D semi-idealized model. The optimal
values of Av and s are 0.0036 m2 s−1 and 0.0588 m s−1,
respectively.

van Maren et al. (2015) set up a Delft3D model to under-
stand the role of deepening of the channel on the sediment
concentration in the Ems estuary. The authors calibrated
their model using the same data as used in this paper.
Figure 15 shows the observations, results from the 3D semi-
idealized model and results from the Delft3D model of van
Maren. It is evident from Fig. 15 that the 3D semi-idealized

Fig. 13 Map of the Ems estuary
(from Chernetsky et al. (2010))
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Fig. 14 The geometry and bathymetry of the Ems estuary for the year
2005 (left panel). The data for the surface elevation of the M2 tide
is available at six locations (shown in the magenta color). The right
panel describes how the realistic domain is transformed into a symmet-
ric domain. Red asterisks show the boundary points of the transects.

The green dashed line passes through the mid points of these
transects shown by green squares . The width B of the each transect
is divided into −B/2 and B/2 with respect to the middle green line as
shown by blue lines

model is able to reproduce the amplitude and the phase of
the surface elevation at six different locations fairly well.
It is interesting to see that for the amplitude of the surface
elevation, the 3D semi-idealized model fits the observations
at least as accurately as the Delft3D model at all loca-
tions except Pogum. For the phase of the surface elevation,
both the 3D semi-idealized and the Delft3D models fit the
observations equally well.

6.2 Influence of local convergence

We focus on the upper part of the Ems estuary, start-
ing from Knock up to the weir at Herbrum. This part of
the estuary consists of a narrow, meandering channel with
decreasing width towards the landward side. In this section,
the effects of channel convergence and meandering are
investigated.
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Fig. 15 Amplitude (left panel) and phase (right panel) of the surface elevation from observations, 3D semi-idealized model and Delft3D model.
The observations are shown in black asterisks , results from 3D semi-idealized model in red squares and results from Delft3D model in blue
circles
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Fig. 16 Approximation of the geometry of the Ems estuary. See Fig.
14 (right panel) for meaning of various colors

To study the influence of the local convergence on the
water motion, the channel from Knock to Herbrum is trans-
formed into a symmetric domain bounded by y = −B(x)/2
at the lower boundary to y = B(x)/2 at the upper boundary.
For this, the widths B along many transects in the chan-
nel (red asterisks, Fig. 14, right panel) are mapped to a new
domain bounded by y = −B/2 to y = B/2 (blue lines,
Fig. 14, right panel), with the central line y = 0 passing
through the middle of the channel (green dashed line, Fig.
14, right panel). The resulting data set is shown in Fig. 16
(red asterisks). We call this domain the scattered domain. It
is important to note that the scattered domain is similar to
the realistic domain except that the meandering effects in
the scattered domain have been ignored.

First, this data set is fit with an exponential function given
by

B = B0 exp(−x/Lb),

where 2B0 is the total width at the entrance and Lb is the
e-folding length.

The optimal values of B0 and Lb fitting the data are
calculated using the least square method and are given as
B0 = 543.9 m, Lb = 24.5 km. The corresponding domain
is shown in Fig. 16. It is also possible to fit the data with
a polynomial function. From Fig. 16, it is evident that a
9th degree polynomial function fits the width data more
accurately than the exponential function.

The values of the eddy viscosity Av and the stress param-
eter s, found during the calibration process in the previous
section, are used. To understand the influence of geometri-
cal effects in isolation, a uniform bed profile is considered.
Water depth of 15 m is chosen such that the amplitude of
the surface elevation exhibits a similar trend as shown in
Fig. 15a. The system is forced with a semi-diurnal (M2)
tide with an amplitude of 1.42 m at Knock. The domain is
discretized using an unstructured grid with approximately
200,000 nodes. Linear basis functions together with the ZZ-
method are used to compute the surface elevation and the
horizontal velocities.

Figure 17a shows the amplitude of the surface elevation
along the middle line (shown in green color in Figs. 16 and
14) for different schematization of the domain. It is evi-
dent that with the exponential domain, the amplitude of the
surface elevation throughout the domain is underestimated.
Using the polynomial function of 9th degree to approximate
the width compares well in the first 30 km, further upstream,
the amplitude is slightly underestimated. The results with
the scattered domain shows the same behavior. This devia-
tion between the realistic and scattered domains is probably
due to the meandering effects. Similar behavior is observed
for the phase of the surface elevation.

Next, we look at the amplitude of the depth-averaged

horizontal velocity which is defined as
√

¯|U |2 + ¯|V |2,
where Ū and V̄ are the depth-averaged along-channel and
cross-channel velocities, respectively and | · | denotes the
absolute value. Figure 17b shows that the results for the
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Fig. 17 Left panel shows the amplitude of the surface elevation and right panel the depth-averaged horizontal velocity along the middle of the
channel for different types of channel domains
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Fig. 18 Absolute value of the
horizontal velocity along the
middle of the channel for
different types of channel
domains. The axes are same in
all the plots. The units in the
colorbars are m s−1

depth-averaged horizontal velocity with exponential domain
deviates significantly from the results with the realistic
domain. The domain constructed with a 9th degree poly-
nomial captures the overall behavior of the depth-averaged
horizontal velocity profile throughout the domain. It is inter-
esting to see the agreement between the results obtained
with the scattered domain and the realistic domain. The
scattered domain is able to accurately reproduce the depth-
averaged horizontal velocity at the entrance and the end of
the channel.

To understand the influence of different channel domains
on the vertical structure of the flow, the absolute value of
the horizontal velocity, which is defined as

√|U |2 + |V |2,
where U and V are the along-channel and cross-channel
velocities, respectively, is plotted along the middle of the
channel. Figure 18 shows that the scattered and polynomial
domains are able to reproduce the overall behavior of the
horizontal velocity of the realistic domain. It is interesting
to see that smoothing the scattered domain with a polyno-
mial function also smoothes the contour lines of the velocity
in the vertical direction, capturing the main features. The
exponential domain on the other hand clearly seems to miss
the information throughout the domain, especially at the
entrance. This is also observed in Fig. 17b.

7 Conclusions

A three-dimensional semi-idealized model for the tidal
motion in an estuary with arbitrary geometric and bathy-
metric profiles has been developed. This model is intended
to bridge the gap between idealized and complex simula-
tion models by retaining the advantages of the idealized
models (developed to obtain insight in physical mecha-
nisms, well suited to perform quick sensitivity analysis),
but removing one of its weak points (namely the require-
ment of idealized geometry and bathymetry). In this model,

the three-dimensional velocity field is expressed in terms
of the first- and second-order partial derivatives of the sur-
face elevation. The surface elevation itself follows from
a two-dimensional linear elliptic partial differential equa-
tion which is solved numerically using the finite element
method. Linear and quadratic polynomials are considered
as basis functions for the finite element approximation of
the surface elevation. Concerning the accuracy and con-
vergence properties of the newly developed model, we
found a second-order convergence with linear basis func-
tions and a third order convergence with quadratic basis
functions. With linear basis functions, ZZ-method proposed
by Zienkiewicz and Zhu (1992a) gives the most accurate
results for the first-order partial derivatives of the surface
elevation. With quadratic basis functions, direct differentia-
tion (DD-method) of the finite element approximation of the
surface elevation is recommended for the first-order partial
derivatives. For the second-order partial derivatives, a new
method known as the mixed-method, which is a combina-
tion of DD-method and ZZ-method, is shown to work the
best.

To investigate the influence of geometry and bathymetry
on the tidal characteristics, the results obtained with the
three-dimensional semi-idealized model are compared to
those obtained with a width-averaged model developed by
Chernetsky et al. (2010). For an exponentially converg-
ing estuary with a flat bed, the deviation for the surface
elevation between the width-averaged model and the three-
dimensional semi-idealized model increases with increasing
width at the entrance. For an estuary with constant width
and parabolic bed profile in the lateral direction, the width-
averaged model underestimates the amplitude of the surface
elevation for all values of the lateral water depths. The
comparison between the three-dimensional semi-idealized
model and the three-dimensional asymptotic model devel-
oped byWinant (2007) for an elongated rectangular channel
shows that the absolute difference in the surface elevation
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obtained with these two models increases for increasing hor-
izontal aspect ratio, and is proportional to the square of the
horizontal aspect ratio.

To assess the influence of a more complex geometry on
tidal propagation, the Ems estuary is considered. First, the
three-dimensional semi-idealized model is calibrated using
the observed geometry and bathymetry of the Ems estuary
for the year 2005. Concerning the amplitude and the phase
of the surface elevation of the M2 tide, a good agreement is
found between the observations, the model results of three-
dimensional semi-idealized model, and the model results of
a complex numerical model (Delft3D) setup by van Maren
et al. (2015). The model suggests that approximating the
geometry of the Ems estuary with an exponential function
gives unsatisfactory results for the surface elevation and the
horizontal velocity compared to the results with the realis-
tic geometric profile. When approximated with a function
that captures the local convergence effects (in this case, a
9th degree polynomial) of the Ems estuary, a good agree-
ment with the results obtained with realistic geometry was
found. It is therefore recommended to consider local geo-
metrical effects when using simplified geometry to model
tidal motion.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.

Appendix A: Scaling analysis

The water motion is described by the three-dimensional
shallow water equations. Using the Boussinesq approxima-
tion and hydrostatic balance, the system of equations can be
written as,

ux + vy + wz = 0, (25a)

ut + uux + vuy + wuz − f v = −gηx − g

ρo

(η − z)ρx

+(Ahux)x + (Ahuy)y + (Avuz)z, (25b)

vt + uvx + vvy + wvz + f u = −gηy − g

ρo

(η − z)ρy

+(Ahvx)x + (Ahvy)y + (Avvz)z. (25c)

It is assumed that the estuary is partially to well mixed
such that the density can be approximated as ρ :=
ρ(x, y, t). Ah is the coefficient of horizontal mixing. To

scale the equations, the following dimensionless variables
are introduced;

t∗ = ωt, f ∗ = f/ω, (x∗, y∗) = (x, y)/L,

(z∗, h∗)=(z, h)/H, u∗ =u/U, v∗ =v/V, w∗ =w/W,

η∗ = η/A, ρ∗
x = ρx/|ρx |, ρ∗

y = ρy/|ρy |,

where asterisk (∗) denotes the dimensionless variables and
ε=A/H 
 1, where A is the amplitude of the surface ele-
vation and H is the mean depth at the seaward side, L is
the typical length scale, U = V = εωL, and W = εωH

are the typical scales of tidal velocities. In the above scal-
ing, gradients of the density are scaled instead of the density
itself. This is because it is the variation in density that
drives density-driven currents. The primitive equations in
dimensionless form reduce to:

u∗
x∗ + v∗

y∗ + w∗
z∗ = 0,

u∗
t∗ + ε(u∗u∗

x∗ + v∗u∗
y∗ + w∗u∗

z∗) − f ∗v∗

= − gH

ω2L2
η∗

x∗ − gH |ρx |
ρoUω

(εη∗ − z∗)ρ∗
x

+ 1

ωL2

[
(Ahυ

∗
x∗)x∗ + (Ahu

∗
y∗)y∗

]
+ 1

ωH 2
(Avu

∗
z∗)z∗ ,

v∗
t∗ + ε(u∗v∗

x∗ + v∗v∗
y∗ + w∗v∗

z∗) + f ∗u∗

= − gH

ω2L2
η∗

y∗ − gH |ρy |
ρoV ω

(εη∗ − z∗)ρ∗
y

+ 1

ωL2

[
(Ahv

∗
x∗)x∗ + (Ahv

∗
y∗)y∗

]
+ 1

ωH 2
(Avυ

∗
z∗)z∗ .

We also assume that the horizontal mixing is much
smaller compared to the vertical mixing (Winant 2007),
i.e., AhH

2/AvL
2 
 1. With this assumption, x and y

momentum equations further reduce to,

u∗
t∗ + ε(u∗u∗

x∗ + v∗u∗
y∗ + w∗u∗

z∗) − f ∗v∗

= − gH

ω2L2
η∗

x∗ − gH |ρx |
ρoUω

(εη∗ − z∗)ρ∗
x

+ 1

ωH 2
(Avu

∗
z∗)z∗ ,

v∗
t∗ + ε(u∗v∗

x∗ + v∗v∗
y∗ + w∗v∗

z∗) + f ∗u∗

= − gH

ω2L2
η∗

y∗ − gH |ρy |
ρoV ω

(εη∗ − z∗)ρ∗
y

+ 1

ωH 2
(Avv

∗
z∗)z∗ .

Using typical scales for the density gradients in partially
to well mixed estuaries, we find that gH

ρ0Uω
∇ρ is of order ε.

http://creativecommons.org/licenses/by/4.0/
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Next, we expand the unknown variables. u∗, v∗, w∗, and η∗
in the small parameter ε,

u∗ = u∗
0 + ε1u∗

1 + O(ε2),

v∗ = v∗
0 + ε1v∗

1 + O(ε2),

w∗ = w∗
0 + ε1w∗

1 + O(ε2),

η∗ = η∗
0 + εη∗

1 + O(ε2).

Substituting the asymptotic expansions in the dimension-
less equations results in the following leading-order system
of equations,

u∗
0,x∗ + v∗

0,y∗ + w∗
0,z∗ = 0,

u∗
0,t∗ − f ∗v∗

0 = − gH

ω2L2
η∗
0,x∗ + 1

ωH 2
(Avu

∗
0,z∗)z∗ ,

v∗
0,t∗ + f ∗u∗

0 = − gH

ω2L2
η∗
0,y∗ + 1

ωH 2
(Avv

∗
0,z∗)z∗ .

In the dimensional form, the system reads

u0,x + v0,y + w0,z = 0,

u0,t − f v0 = −gη0,x + (Avu0,z)z,

v0,t + f u0 = −gη0,y + (Avv0,z)z.

For the sake of simplicity, we remove the subscript 0 from
the variables, i.e., (η0, u0, v0, w0) = (η, u, v, w). Similar
treatment can be given to the boundary conditions.

Appendix B: Weak formulation

To solve the system (12) to obtain the surface elevation, the
finite element method is adopted (Gockenbach 2006). As a
first step towards the finite element method, a weak form of
system (12) has to be derived. To this end, define L2(�) and
H 1(�) function spaces as

L2(�) = {φ such that ||φ||2 =
⎛
⎝

∫∫

�

|φ|2
⎞
⎠

1/2

< ∞},

H 1(�) = {φ ∈ L2(�) such that φx, φy ∈ L2(�)}.

Assume that there exists a function ND in H 1(�) such
that ND = A on ∂D�. Then, the function Ñ = N − ND

vanishes over ∂D� and N = Ñ + ND . Define a function
space � for test functions as

� = {φ ∈ H 1(�) such that φ = 0 on ∂D�}.

Multiplying Eq. (12a) by φ ∈ � and integrating over the
domain � gives,

∫∫
�

{∇ · [D(0)∇N ] + iωN} φ d� = 0,

⇒ ∫
∂D�

[D(0)∇N ] · n̂ φ︸︷︷︸
=0

d� + ∫
∂N �∪∂R�

[D(0)∇N ]·︸ ︷︷ ︸
=0

φ d�

− ∫∫
�

[D(0)∇N ] · ∇φ d� + iω
∫∫
�

Nφ d� = 0,

⇒ − ∫∫
�

[D(0)∇N ] · ∇φ d� + iω
∫∫
�

Nφ d� = 0,

⇒ − ∫∫
�

[D(0)∇(Ñ + ND)] · ∇φ d� + iω
∫∫
�

(Ñ + ND)φ d� = 0,

⇒ − ∫∫
�

[D(0)∇Ñ] · ∇φ d� + iω
∫∫
�

Ñφ d�

= ∫∫
�

[D(0)∇ND] · ∇φ d� − iω
∫∫
�

NDφ d�.

(27)

Equation 27 is the weak formulation of system (12). The
solution N = Ñ + ND obtained after solving the Eq. 27
is called the weak solution of system (12). This equation is
solved numerically.

Let Ñ
h̃
denote the finite element approximation of Ñ

defined on the discretized domain �h̃ (see main text) as

Ñ ≈ Ñ
h̃

=
n∑

l=1

Nlφl, (28)

where Nl
′s are unknown complex coefficients, φl

′s are so-
called Lagrange basis functions. Now, substituting Eq. 28 in
Eq. 27 and choosing φ = φk , k = 1, . . . , n gives

n∑
l=1

Nl

∫∫

�

[−D(0)∇φl] · ∇φk

︸ ︷︷ ︸
[S]k,l

+
n∑

l=1

Nl iω

∫∫

�

φl φk

︸ ︷︷ ︸
[M]k,l

=
∫∫

�

[D(0)∇ND] · ∇φk−iω

∫∫

�

ND φk

︸ ︷︷ ︸
[F]k

, ∀k=1, . . . , n.

which can be compactly written as

(S + M)N = F,

where S, M ∈ C
n×n are called the stiffness and mass

matrices, respectively. F ∈ C
n×1 is the forcing vector

and N = {N1, N2, . . . , Nn}T ∈ C
n×1 is the unknown vec-

tor consisting of complex surface elevation amplitudes at
unconstrained nodes. Once N is known, we can write the
numerical approximation of N over the whole domain as

N(x, y) ≈ N
h̃
(x, y) =

n∑
l=1

Nlφl(x, y)

+
n+m∑

l=n+1

A(xl, yl)φl(x, y).
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