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Abstract

While all bipartite pure entangled states are known to generate correlations violating a Bell inequality,
and are therefore nonlocal, the quantitative relation between pure state entanglement and nonlocality
is poorly understood. In fact, some Bell inequalities are maximally violated by non-maximally
entangled states and this phenomenon is also observed for other operational measures of nonlocality.
In this work, we study a recently proposed measure of nonlocality defined as the probability that a
pure state displays nonlocal correlations when subjected to random measurements. We first prove
that this measure satisfies some natural properties for an operational measure of nonlocality. Then, we
show that for pure states of two qubits the measure is monotonic with entanglement for all correlation
two-outcome Bell inequalities: for all these inequalities, the more the state is entangled, the larger the
probability to violate them when random measurements are performed. Finally, we extend our results
to the multipartite setting.

1. Introduction

Entanglement, one of the key features of quantum theory, is an intrinsic property of the states describing joint
quantum systems. Performing local measurements on the parts of entangled systems enables two distant parties
to generate correlations that are in contradiction with the assumption of local realism [1]. The resulting
measurement statistics is commonly referred to as nonlocal. The presence of nonlocality is usually witnessed
through the violation of a Bell inequality [ 1, 2], which, in turn, certifies the presence of entanglement in the
underlying quantum system without any further assumptions or modeling of the experimental setup. However,
understanding the exact relation between entanglement and nonlocality is not straightforward. It is unclear, for
example, whether ‘more’ entanglement leads to ‘more’ nonlocality and, related to this, what is a good quantifier
of nonlocality. In this work, we tackle this problem and analyze the connection between entanglement and
nonlocality under a recently developed measure of nonlocality given by the probability that random
measurements performed on a given state |1)) generate nonlocal statistics.

Over the years, explaining the relation between entanglement and nonlocality has been the focus of attention
for many works. Werner first revealed the subtlety of the problem by explicitly constructing a family of mixed
entangled states that cannot violate any Bell inequality when subjected to projective measurements [3]. Werner’s
result was later extended to general measurements in [4]. For pure states, the situation seemed to clarify since
Gisin recognized that all pure entangled systems of any dimension display nonlocality when applying
appropriate measurements to them [5]. All these results, initially derived for bipartite systems, were also
generalized to the multipartite case [6-9].

At the quantitative level, the relation between entanglement and nonlocality is not fully understood even for
bipartite pure states. Early work by Tsirelson demonstrated that the maximal quantum violation of the Clauser—
Horne—Shimony-Holt (CHSH) inequality [10], the simplest Bell inequality, can only be achieved when making
measurements on a two-qubit maximally entangled state [11]. It was then natural to expect maximal
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entanglement to be indispensable to retrieve the maximal quantum violation of Bell inequalities. However,
subsequent examples showed this intuition to be wrong: the maximal quantum violation of certain Bell
inequalities crucially requires partial entanglement [12], even when considering states of arbitrary Hilbert space
dimension [13, 14]. Furthermore, the phenomenon of obtaining more nonlocality from less entanglement for
pure states happened to occur not only for the amount of violation of a given Bell inequality. It was also observed
for other measures of nonlocality, such as the robustness of nonlocality to noise [12], losses [ 15], statistical
strength of Bell tests [16] and the simulation of quantum correlations with nonlocal resources [17]. This
apparent inequivalence of pure state entanglement and nonlocality was dubbed anomaly in [18] and this is the
terminology adopted here.

Even ifthere is no fundamental requirement for maximal entanglement and maximal nonlocality to be in
one-to-one correspondence, it is desirable to understand if these anomalies appear only as artefacts of the
measure that is used. In that sense, it would be interesting to come up with an operational measure of quantum
nonlocality that would be maximized by maximally entangled states. A step in this direction was madein [19],
where the authors gave numerical results suggesting that the anomaly originally observed in [12] with two-qutrit
states violating maximally the Collins—Gisin-Linden—Massar—Popescu (CGLMP) Bell inequality [20] disappears
when considering a novel measure of nonlocality. For a given (pure) quantum state |1)), the value of the measure
is the probability of violating a specific Bell inequality when random projective measurements are performed on
the state. A state |1);) is more nonlocal than a state |1),), in the sense of the measure studied in [19], if by making
random measurements on |1);) there is a higher chance of generating nonlocal correlations than on |1,). This is
the type of measure of nonlocality that we study here, which we name nonlocal volume. More specifically, the
authors of [ 19] numerically showed that the probability of violating the three-outcome CGLMP inequality with
random projective measurements is maximal among all pure two-qutrit states when using a maximally
entangled state. Thus, the new quantifier removes the original anomaly between entanglement and nonlocality
identified in [12] for the CGLMP inequality with three outputs. Note that the probability of finding nonlocal
correlations for qubit states was initially considered in [21].

While the above study offers a promising insight into a potential measure of nonlocality for which the
original anomaly disappears, several crucial aspects were not addressed there. The main limitation of this
measure is that a single Bell inequality is used to witness nonlocality in the correlations. But apart from the
simplest Bell-CHSH case, in any Bell scenario there are many inequivalent families of Bell inequalities. It is,
then, unclear why a single inequality should be tested and preferred over the rest. In the context of the
nonlocality measure, this limitation was lifted later when the authors of [22] extended the numerical search of
[19] without assuming any a priori fixed Bell inequality. Instead, they considered all the possible Bell inequalities
in a given Bell scenario. Note that this approach is equivalent to checking whether the given correlations are
nonlocal independently of a specific Bell inequality, which provides a much more operational result. They then
performed an intense numerical exploration of many different Bell setups, seeing that in all of them the largest
value of the nonlocal volume was obtained for the maximally entangled state.

All this numerical evidence suggests that the nonlocal volume, that is, the probability of generating nonlocal
correlations when performing random local measurements on a quantum state, is a good candidate for a
measure of nonlocality without anomalies. On the other hand, to our knowledge almost no analytical results are
known using this new measure. The only analytical results we are aware of concern the simplest scenario for
quantum nonlocality with its unique CHSH inequality [21, 22], where it is known that the nonlocal volume is a
monotone of entanglement: the more entangled the state, the bigger its probability to violate a CHSH inequality
with random measurements made on it. The nonlocal volume for the maximally entangled state of two qubits
only was computed analytically in [21] and was found to be 2(m — 3) ~ 28.32%. The reason why so little is
known so far about the nonlocal volume is that it is hard to deal with it in analytically as one typically needs to
solve complicated integrals.

In our work, we give the first analytical results connecting maximal entanglement and nonlocality in terms of
the nonlocal volume. We start by defining properly the measure and proving that it indeed has many of the
desirable properties as measure of nonlocality for quantum states. Specifically, we show that it is invariant under
local unitaries (LU) applied by each party on the state, that its value is strictly positive for all pure bipartite
entangled states and that its value tends to one in the limit of infinite measurement settings, as expected.

We then prove that no anomaly can occur for two-qubit states when considering scenarios based on
correlation inequalities (or XOR games [23, 24]) involving any number of projective two-outcome
measurements per site. More generally, we show that these particular inequalities are monotonic with the
amount of entanglement in two-qubit pure states: the more entanglement in the state, the larger its probability
of violating these Bell inequalities when random measurements are made on it. This implies, in particular, that
the maximally entangled state is always the most nonlocal according to this measure in these scenarios. We show
that our results extend to the multipartite scenario for the Greenberger—Horne—Zeilinger (GHZ) family of states
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cos(9)]0 ... 0) + sin (0)|1 ... 1). Finally, we demonstrate by providing explicit examples that our proof
technique cannot be extended to scenarios involving two-output Bell inequalities with marginal terms.

2. The nonlocal volume

In the standard bipartite Bell scenario [1, 2], two parties Alice (A) and Bob (B) share entangled systems and each
performs local measurements on its shares in separate laboratories. A (respectively B) performs one out of 111,
(mp) possible measurements on her (his) system, obtaining one out of 04 (0p) possible outcomes. The
measurement choices of Alice and Bob arelabeled by x = 1, ..., myand y = 1, ..., mpand the corresponding
outcomebya =1, ..., 00and b = 1, ..., og. The measurements each party performs are described by a set of
orthogonal projectors { M|, } and { N, } that sum up to the identity >-, M, = >_, Ny, = 1. The
corresponding Bell test is then fully described by the set of joint conditional probability distributions

p = {p(ab|xy)}, also called correlations or behavior. They are given by,

p(ablxy) = Tr(Majx ® Nyjyp). eY)

The set of all correlations of the form (1) forms the set Q of quantum correlations.

Within the set of quantum correlations, one can identify the set of local correlations £, which can be
generated when the parties have access to shared randomness only, or local hidden variables [2], admitting a
decomposition of the form:

pablxy) =" q,p,(alx)p, (bly), )
A

where 37, q, = 1, q, > 0. Correlations that do not admit such a decomposition are referred to as nonlocal and
are usually witnessed through the violation of a Bell inequality, that is a linear function of the probabilities
I(p) = Y abxy & P (ablxy), where g;’yb are real coefficients. The maximum of I over local correlations p € £ (2)

is thelocal bound and denoted by g, so the Bell inequality reads i) < 8joc- For some choice of coefficients
g;f’, there exist quantum correlations p € Q (1) violating the corresponding inequality I (p) > 8ioc- The
violation of a Bell inequality prevails today as the most explored measure of nonlocality and was found to have
many applications within the scope of quantum information science [2, 25-28].

Now, consider a quantum system shared by A and Bin a pure state of two qubits written in its Schmidt basis:

[1g) = cos(0)[00) + sin(6)]11) )

parameterized by the angle 6 € [0, g]. Gisin showed that one can find local measurements on any state of the
form (3) with # > 0 such that the generated correlations are nonlocal [5]. A natural question is then: which one
among all the states |1)y) is the most nonlocal, in the sense of giving the largest Bell inequality violation? The
question is troublesome as the answer typically depends on the scenario and on the Bell inequality considered.
The situation simplifies in the setup with two dichotomic-outcome measurements per side, where the violation
of the CHSH inequality alone is both necessary and sufficient to witness nonlocality. The state maximally
violating the CHSH inequality upon optimization over the measurements is the maximally entangled state | ¢")
@ = 7/41in(3)) [11]. In fact, in this case there even exists a monotonous relation between entanglement and
nonlocality [29]: the more entangled the state is, the more it violates the CHSH inequality.

Intuitively, one could expect a similar monotonous relation between entanglement and nonlocality to hold
for inequalities in broader scenarios, for Bell tests involving more measurement choices and/or outcomes, or
even in full generality. In [12], however, it was found that the CGLMP inequality [20] with oy = 05 = 3
L (]00) + ~|11) + |22)) with v ~ 0.79 achieves

outcomes and with a two-qutrit state of the form |¢7) =

2+
a higher violation than obtained with the two-qutrit maximally entangled state
lpT) = %(lOO) + |11) + |22)). Furthermore, this anomaly of obtaining more nonlocality from less

entanglement happened to occur for states of arbitrary dimension [30], and for other measures of nonlocality as
well [15-17]. Note that most of the previous results were not rigorous proofs of the existence of an anomaly, as
they mostly consisted of numerical searches. But subsequent works, such as [13, 14, 31], proved some of these
results analytically.

As mentioned, to fix the original anomaly detected in [12], the authors of [19] considered a measure of
nonlocality defined by the probability that the correlations generated from randomly chosen measurements
made on a given state |¢)) violate any Bell inequality by any extent. More formally, one defines the set of variables
) parameterizing all the measurements that two parties may perform. For instance, a two-outcome projective
measurement M, = M, (w), w;) can be parameterized by two angles w), w, in the Bloch sphere. For all the
measurement parameters in {2 one then needs to check whether the generated behavior from the state [¢) is
nonlocal. The parameters that do lead to measurements giving nonlocal correlations when made on [¢)) can be
arranged in the set V(|1))). We are interested in calculating the relative volume of the set V(|1))) with respect to
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the volume of the whole set (2. The reason for it is that it can be directly interpreted as the probability of

M. Note that the exact
vol(Q2)

value of this probability depends on the value of the volumes, which, in turn, is a function of the measure chosen
to sample the measurements. As discussed below, for projective measurements the sampling is naturally defined
by the Haar measure, which is the only measure invariant under unitary operations. Moreover, we remark that
some of our results are valid for any choice of measure.

Equivalently, the nonlocal volume can be obtained by considering the following quantity

obtaining nonlocal correlations with random measurements, i.e. Pyp (|¢))) =

P () = [ (), ), @

where we integrate over the measurement parameters {2 according to the Haar measure. The function f (1), )
is an indicator function that takes the value 1 whenever the generated behavior is nonlocal and 0 otherwise:

£, Q) = {1 if p(ablxy) is nonlocal .

0 otherwise.

Using this definition, the potential nonlocality of the generated behaviors

p(ablxy) = Tr(|y)) ()|Majx @ My),) (5) can be understood as witnessed by all possible Bell inequalities for a
given scenario. Note that this is equivalent to checking whether some given correlations admit a local
decomposition (2). In that sense, the violation of a Bell inequality should be understood as a witness of
nonlocality only, and not as a quantifier. Seen as witnesses, it is then important to consider the full set of
possible inequalities in a setup, as it would otherwise be possible for nonlocal correlations to go undetected
and lead to an underestimation of the nonlocal volume.

In general, explicitly evaluating the integral in (4) can be highly demanding. So far, analytical results exist
only in the simplest bipartite case and for the CHSH inequality [21, 22]. Nonetheless, the numerical results of
[19,22] strongly suggest that the above measure may be able to remove the anomaly between nonlocality and
entanglement. Indeed, extensive numerical computations show that the maximally entangled state is the one
achieving the highest probability of obtaining nonlocal correlations with random measurements in all the
explored cases.

3. Properties of the measure
The nonlocal volume (4) aims at measuring how nonlocal pure states are in order to compare them. As such, we
clearly want this measure to fulfill a basic set of conditions to consider it an operational measure of nonlocality.

In this section we list some of the desired properties and formally prove that the nonlocal volume satisfies them.

Property 1. The nonlocal volume (4) is invariant under LU applied on the state if one uses the Haar measure for
the integration:

Pa(Vi®@ Vo p Vi @ V) = Pa(p)V VA, Va, ©6)

where Vi, V; are LU transformations applied by the parties to their share of the state.

Proof.

Pa(M®@ Vap Vi @ V) = [dYf (VM@ Vip V| ® V], Q). @

Now, using the cyclicity of the trace operator:

Tr(i® Vs p Vi ® VM, @ Nij,) = Tr(pVi' M, Vi @ VIN[, Va). ®)

Finally, making the substitution @ — €’ such that Mﬁ; ® lef)/, = VITMSIX Vi® Vi Nbﬂz), V; and the fact
that, if using the Haar measure, d€2’ = dS2 (the elements of integration are invariant under LU) leads to the
desired result. O

Property 2. For all pure bipartite entangled states |t))ey, in a setup with at least two choices of two-outcome
measurements, the nonlocal volume (4) is strictly positive:

4
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PNL(|7>[J>ent) >0 (9)

and thus:
Pn(l9) =0 (10)
ifand only if the state [¢)) is separable.

Proof. To see this, first consider the space €2 of parameters parameterizing all the local measurements. For
example, a two-outcome projective measurement on a qubit state can be parameterized by two angles wy, w, in
the Bloch sphere. From [5], we know that for any pure entangled state |1)),; (of any dimension) there exist
certain values of the parameters such that the measurements performed on the state generate correlations that
are nonlocal in the simplest setup with x, y, a, b = 1, 2,1.e. V(|t))enr) = &. Westill need to show that the set of
parameters leading to nonlocal correlations V(|1))ene) is not of volume zero. Note that since the local correlations
form a closed set, for any fixed state the set of measurement parameters leading to local correlations (2) is also
closed. This implies that the (disjoint) sets of parameters leading to nonlocal correlations are open. In particular
there is always a ball around any nonlocal point in this space of parameters that contains parameters leading to
nonlocal correlations as well. For any fixed pure entangled state is then clear that starting from any nonlocal
quantum correlations one can slightly perturb all the parameters wand still generate nonlocal correlations. [

Property 3. For any pure bipartite entangled state |1/ ).y, the nonlocal volume (4) tends to unity when the
number of measurement choices tends to infinity:

my — 00
Pae([¥)ent) — 1. (11)
mp— 00

Proof. From property (2), we know that for the pure state |¢)),; and in the setup with x, y, a, b = 1, 2 the
nonlocal volume is strictly larger than zero Py (|t))ent) = € > 0. The probability that the generated correlations
{p(ablxy)} x,—1, arelocal for random measurements is then P, = 1 — Pyp = 1 — €. Now, with additional
measurement settings, say x = 3, 4and y = 3, 4, the correlations { p(ab|xy)} . ;—3 4 also has a probability

Pjoc = 1 — ¢ ofbeinglocal, independently of { p(ab|xy)},,—1,,. By repeating the argument and thus increasing
the number of measurements choices, the probability that all two-settings correlations { p(ablxy)} x y—2k— 1,2k
withk = 1, 2, ...arelocal is:

PE([P)en) = (1 — €. (12)

Remark that if any of these two-settings correlations are nonlocal, then clearly the full correlations are also
nonlocal. This implies that

k— o0
Pni(|$)ent) = 1 — Pllf)c(h/})em) =1—-(1-ef =0, (13)

which means that the lower bound on Py goesto 1 as k — oo. Moreover, we have that k — oo implies

my, mg — 00, which yields the desired result. O

Note that the numerical evidence suggesting property 3 of the nonlocal volume had been found in [22, 32].

Finally, let us comment on the generalization of properties 2 and 3 to bipartite mixed entangled states that
are nonlocal, i.e. mixed states for which one can find local measurements such that the generated correlations
violate a Bell inequality. Clearly, if the mentioned measurements can be found in a scenario involving finite
numbers of measurements settings 114, #1p, then one can obtain properties similar to 2 and 3 for a given mixed
nonlocal state p. In a scenario with at least m, and mp settings—instead of my, mp = 2 for a pure entangled
state, Py (p) > 0 since one can always slightly perturb the mentioned measurements and still generate nonlocal
correlations. This observation comes from the fact that the set of local correlations is also closed in that scenario.
Property 3 also holds for any mixed nonlocal state and only the proof needs to be adapted. One now considers k
disjoints sets consisting of 114, mp measurements each (instead of m,, mg = 2 for pure entangled states) and by
taking k large enough the probability that all the correlations { p (ab|xy) };ig',:: 3%8:: }gﬁgﬂ’;ﬁg:i fork=1,2,
... arelocal tends to zero, implying that the correlations of the full probability being nonlocal tends to one with
growing k.

4. The nonlocal volume using correlation Bell inequalities is a monotone of entanglement

Having proven some of the properties of the measure (4), we proceed to analyzing the nonlocal volume of
different entangled states. We are still unable to compute Pni(¥) explicitly from definition 4. Therefore, we
approach the problem alternatively and study whether there exist inclusion relations among the sets V(|¢)) of
measurements leading to nonlocal correlations when made on different states. Indeed, if the set of
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measurements V(|1);)) leading to nonlocal correlations on the state |¢1) is included in the set V(|1),)) for the state
[12), V(111)) C V(|1),)), then obviously Pxp (|1)) < Pni(|t02)). Crucially, we show that in many situations,
namely when witnessing nonlocality with correlation (see below (15)) inequalities only, the set of measurements
V(|1)g,)) leading to nonlocal correlations on a pure two-qubit entangled state |1, ) is included in the set V(|#)y,))
if|1)g,) is less entangled than [t)y,). We thus prove that the nonlocal volume of correlation Bell inequalities is a
monotone of entanglement in the case of qubit states and two-outcome projective measurements.

We work in Bell scenarios with two-outcome measurements and any number of measurement settings per
party. Labeling the measurements outcomes a, b = =1, the correlations in this scenario can be parameterized
as

p(ablxy) = iu + alAy) + b(B,) + ab(AB,)), (14)

where (Ay) = >°,_ ,,a p,(alx) are Alice’s local expectation value depending on her marginal distribution
py(alx) = X5, p(ablxy), and similarly for Bob’s (B,). The terms (A, B,) = >, ,_.,ab p(ablxy)areknown as
two-body correlators. In this scenario, correlation or full-correlator Bell inequalities (or even XOR games) for
two outcomes are those in which only these last terms appear and hence can be written as

1= 3¢ (4:B)) < goor (15)
xy

where g, _is thelocal bound (2).

For any correlation Bell inequality I*) and for local measurements M,|, and N}, ,, one can define the
associated Bell operator (acting at the level of the states):

By = ngyAx ® B, (16)
Xy

where we defined the observables A, = M, — M_y, B, = N;;|, — N_;},. Foragiven state p, the value of
the Bell inequality then reads

I%)(p) = Tr(pB;w). (17)

Next, we present our main result under the form of a theorem. Our result holds for any number of
2-outcome projective measurements performed by Alice and Bob.

Theorem 1. Consider any correlation Bell inequality T ) = Yy &y (A¢By) < g (15) with g, _being thelocal
bound. A and B measure the local observables { A, } and { B, } respectively, defining the associated Bell operator

Bl = >y gxyAx ® By (17). Consider two pure two-qubit states [pg,) and |1pg,) with 6,, 6, € [0, g] (3)and
0, > 0, such that |1y, ) violates the inequality, that is Tr(|¥g,) <\I/01|ﬁ 1) > g Then:
Tr([W,) (Ug,| Br)) > Tr(|¥p,) (Vg,| Bro). (18)

In words, ifa correlation Bell inequality I is violated by correlations generated when A and B measure the local
observables {A,} and { B, } respectively on a pure partially entangled two-qubit state [1)y,), then the same
inequality with the same measurements gives a strictly larger violation when acting on any other pure entangled
two-qubit state |1)y,) with more entanglement 6, > 6;.

Proof. Observe that |1)y) can always be written as

cos + sin 0 cosf — sin @
) = (2ELR0 4 20 ls) @ 1 1), (19

Denote by B;¢ the Bell operator associated to the inequality I) (16) for the given local measurements. Since the
inequality I+ contains only full-body correlators, it does not involve marginal terms and thus the
decomposition of the Bell operator B, in the Pauli basis does not contain terms proportionalto 1 ® 1,1 ® o;
and 0; ® 1, fori = x, y, z. Using this fact and expression (19), the Bell violation for state (19),

by = Tr(|1) (el |B1), reads

by = ; o ““2 b~ b) > g (20)

where b, = (¢F|B;)|¢*) denotes the expectation value of B¢ on the maximally entangled
state |pt) = Lz(|00> + [11)).
By hypothesis we have that when 6 = 6,

b@] = Tr(|¢61> <w91|1§1<">) > Sloct @1
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b+ b

The term can be understood (by linearity of the trace) as the expectation value of B;¢) on the separable

state

§<|oo> (00] + [11)(11]) (22)

and is thus necessarily smaller or equal to g, .. But since sin 26 is positive for 8 € [0, %], equation (20)

necessarily implies that b, > b_. Now, because of this property and the fact that sin 26 is monotonically
increasing for 6 € [0, g], the proof of the theorem follows. 0

Put differently, the theorem shows that when using correlation Bell inequalities & (15) only to witness
nonlocal correlations, the set of measurements V")(|¢py,)) generating nonlocal behaviors when performed on
[10g,) is included in the set of measurements V<“>(|wgz>) leading to nonlocal correlations when performed on any
state |1py,) with more entanglement 6, > ;. This, in particular, implies that no anomaly can ever occur in these
cases.

We now want to show that the inclusion relation V<">(|z/);;l>) c Vi |1)p,)) is strict. In the setup with two
measurement choice with two outcomes, the violation of the CHSH inequality

(AoBo) + (AoB1) + (Ai1By) — (AiBy) < 2 (23)

is both necessary and sufficient for witnessing nonlocality in the correlation. In that scenario one can check that
A and B measuring the following observables:

Ao =0y By:O = COS(é-) oy + Sin(é-)a-z

Ay=1=o0, By:l = COS(&)Ux - Sin(g)Uz (24)
with £ € [0, g] on a pure two-qubit state [1/y) (3) gives:

CHSH(8, &) = 2(sin(§) + sin(26)cos(§)) (25)

which for § = % andall £ > 0islarger than 2 (the local bound). Now, for another value of 6, the inequality is
violated if

sin(260) > 1= sin©
cos(§)

implying in_particular that for any _92 > f—i.e. sin(26,) > sin(26;)—one can find an angle £ such that
CHSH(0,, £) > 2but CHSH(#;, &) < 2.Inthe end, this allows us to conclude that the inclusion of sets is strict

(26)

VE(a,)) C VEUIbg,)). (27)
Consequently, and in the spirit of definition (4), it follows that:
P (1%0) < PR(%a)) < PGS, (28)

where PI<\IL> (|10g,)) is defined in the same fashion as in (4), but assuming that nonlocal correlations may only be
witnessed by correlation inequalities. Crucially, and in sound contrast with previous works [13, 19, 22], our
results are valid for any number of measurement settings, and—interestingly—as well as for any measurement
sampling in (4) (not only for the Haar measure). It is also worth noting that in many scenarios facet inequalities
—those delimiting the local set L—are correlation inequalities, meaning that our result applies to a very broad
class of inequalities [33] in any scenario [34-38].

Furthermore, our result enables us to draw conclusions beyond the fundamental study of the relation
between entanglement and nonlocality. In a situation where one wants to check whether given measurements
are useful to violate a correlation Bell inequality with two-qubit states, a necessary and sufficient condition is that
they generate nonlocal correlations when performed on the maximally entangled state. Indeed, if the
measurements do not generate nonlocality with the maximally entangled state, they will not generate nonlocality
with any other less entangled state. What is more, since the maximally entangled state is the one with the highest
probability to reveal nonlocality (up to any extend), it is the best choice to succeed in any Bell test using
correlation inequalities and two-qubit states with poor control over the measurement bases. This is of particular
interest for experimental setups where aligning reference frames is troublesome.

Before concluding, we would like to connect this result with previous works. Tsirelson showed that the
maximal violation of a two-outcome correlation Bell inequality is obtained for a maximally entangled state [39].
However, this state is not necessarily of two qubits. In fact, there are known examples of two-outcome
correlation Bell inequalities whose maximal violation requires systems of dimension larger than 2 [40]. When
discussing qubits, the maximal violation of correlation Bell inequalities is obtained by a maximally entangled
state, as the Bell operator is always diagonal in a given Bell basis. Recall, however, that this has a priorino
implications for the nonlocal volume, as maximal violation and nonlocal volume are unrelated quantities. For
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Figure 1. Probability of obtaining nonlocal correlations with uniformly random measurements as a function of the entanglement
parameter 6. For clarity of the image the range of § has been extended to % due to symmetry of the state [1)5). Measurement scenarios:
(+)—12,2,2,2], (©)—I2,3,2,2], ()—I3,4,2,2], (*)—I8,8,2,2].

example, the maximally entangled state does not give the maximal violation of the CGLMP inequality, but it
does maximize the nonlocal volume. Note, however, that our theorem goes beyond proving that the maximal
qubit violation is obtained by a Bell state: for fixed Schmidt bases, which do not necessarily coincide with those of
the maximally entangled state providing the maximal qubit violation, the largest violation is obtained by a
maximally entangled state.

5. Possible bipartite generalizations of the result

Our next objective is to discuss possible extensions of our result. In section 4 we made three important
assumptions: (i) the Bell inequality is a correlation inequality, i.e. without marginal terms (single-body
correlators), (ii) only two-qubit pure states were considered, and (iii) only extremal (thus projective)
measurements were considered.

As far asassumption (i) is concerned, a numerical search provided us with an analytical counterexample
consisting of measurements generating correlations violating a Bell inequality when performed on |1)) for
0 = ?—: but generating local correlations when performed on |¢") in the [3, 4, 2, 2] scenario. We verified that
the violated Bell inequality indeed contains marginal terms (A, ) and (B,) as expected. We refer the reader to
appendix A.1 for the exact construction. This counterexample closes the possibility to generalize our theorem
onto general Bell inequalities including single-body correlators. Therefore, the sets V(|1y)) and V(|¢,)) are not
contained one into another and we can not conclude on the relation between Py (|0g)) and Py (|¢")) based on
inclusion relations between these sets.

As itis impossible to prove an analog of our main theorem for general two-outcome Bell inequalities
including marginals, we numerically computed the value of the nonlocal volume (4) for arbitrary two-qubit
states and different Bell scenarios. In figure 1, we provide numerical evidence for a wide range of scenarios that
indicate that the probability of generating nonlocal correlations from random measurements is always the
largest when measuring the maximally entangled state. We conjecture that the relation Py (|t09)) < Pnp(|¢"))
(4) holds in general. Note that similar numerical results were obtained in [22].

In order to relax assumption (ii) one can study states in systems of arbitrary dimension C? x C?.Note that
in these systems, the ordering induced between entangled states is partial at the single-copy level, as there are
pairs of states that can not be deterministically transformed one into another in either way bylocal operations
and classical communication (LOCC) [41]. So, it is unclear which entanglement quantifier would be a good
candidate to be in correspondence with the nonlocal volume. The most natural candidate is the entanglement
entropy, but it is a quantity that becomes especially relevant in the many-copy regime [42]. Despite all these
issues, there is a clear notion of maximally entangled state. Thus, the most natural working conjecture is that this
state maximizes the nonlocal volume. Numerical searches already performed in ([22]) indicate that this may be

the case. More precisely, the authors considered states 5 1+ — (100) + ~|11) + |22)) with parameter y € [0, 1]
v

and found that the highest probability of obtaining nonlocality with randomly sampled measurements occurs
for v = 1.Itisalso interesting to consider weaker variants of this conjecture that may be easier to attack. For
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instance there is a notion of correlation function and correlation Bell inequality for scenarios involving
measurements of more than two outputs [20, 43]. Understanding whether theorem 1 generalizes to this partial
case deserves further investigation.

As for assumption (iii), extending our study to general measurements beyond projective is also interesting.
Note, however, that in this case, it is less clear what the natural way of sampling measurements should be.

6. Nonlocal volume in the multipartite scenario

So far our analysis has focused on bipartite settings. Extending the problem to the multipartite case is also
interesting and first numerical steps in this direction were presented in [21, 22]. Here we provide the first
analytical results. Note that in the multipartite case there is no notion of maximally entangled state [44]. So it is
not clear which state should be the natural candidate to maximize the nonlocal volume and it could even happen
that the optimal state varies with the number of parties. In the following however we show that in a restricted
multipartite scenario, it is possible to generalize our main result and conclude about the monotonicity of the
measure for specific families of states and correlation Bell inequalities.

In a multipartite scenario, # parties share an entangled system of many particles. Each party A;,i = 1, ..., n,
performs alocal measurement on its share of the system with measurement choicelabeled x; = 1, ..., m,, and
(dichotomic) outcome a; = 0, 1. As before, the measurements each party performs are described by a set of
orthogonal projectors { M ;:I)x;}’ which generate joint conditional probabilities p = {p(a; ... a,x ... x,)}.
Then, p (@|x) = play ... aglxg ... x,) = Tr(M;llll1 Q... ® M;"l)x p). As in the bipartite scenario, a Bell

X

X
trorenxi.., 8 P(@']%) and corresponds to

xl.“ng(l) R...Q M(”)

al...a,,xlu.x,,ga]ma" alx alx,
For two-outcome measurements only, we can define full-body correlators

inequality is a linear combination of the probabilities g Pp=X

a Bell operator acting at the level of the states By = 3°

Ay o A) = 3 (CDE"p(@F), 29)

ay...a,=0,1

and a correlation inequality (inequality with n-body correlators)

"= 3" g (Ay ... Ay). (30)

X1...Xp

As we mentioned, it is much harder in the multipartite setting to order (pure) states in terms of how
entangled they are. To avoid the problem, we focus on a natural generalization of the bipartite pure states |¢,) (3)

|Th) = cosB]0)®" + sin O|1)*", (31)

where 0 is the entanglement parameter whose value runs again from 0 to 7 /4. The maximally entangled state of
this family, with 6 = %, is the GHZ state GHZ") = |Vjj_-) as any other state in the family can be
deterministically reached from it by LOCC.

We now generalize theorem 1 to the multipartite setup for an even number of parties, correlation Bell
inequalities and pure states in the GHZ family (31).

Theorem 2. Consider a correlation Bell inequality 1" = Y (A e Ax) < g with g, being thelocal
bound. Assume that the number of parties n is even. Each party measures, locally, the observable ‘
{Ag) =MD — MY | 3, defining the associated Bell operator By = Y sonn 8y, Qb Ag). For any

u,:le,» a;:llxi
two pure multipartite qubit states |y ), [V ) with 6y, 0, € [0, %] (3)and 0, > 0,,if Tr(\5 ) (U5 |B1) > g
then:

Tr([U5) (U | Byon) > Tr(|¥f ) (U5 | Byo). (32)

In particular, the theorem implies that if the state [} ) violates the Bell inequality when given measurements are
being made on it, the state [¥§, ) does so too with the same measurements.

Proof. The proof of the above statement follows the structure of the proof of theorem 1. By assumption we have
that

by = Tr(|9g ) ( Zl|BI<n>) > o (33)
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As before, we can write, without loss of generality, that

n\ __ [ cosb+ sinb, cos 6y — sin 0
|\D91> = ( Ng 1+ NG Uz)

®1® ... ® 1|GHZ"). (34)
1% ... 92

n—1

Now, the Bell operator can be decomposed in the Pauli basis as
R 3
BI(”> = Zcil-»-irxail K ... ® Tin> (35)
i=1

where o;, denotes one of the Pauli operators o, 0y, o, of jth party. Note that the inequality (" is a correlation
inequality, therefore in the above decomposition (35) none of the operators o;, can be 1. Using this factand
expression (34), the left hand-side of (33) can be written as

by — by + b” . s1n201(b1 B > g (36)

2 2

where b} = (GHZ" B |GHZ") denotes the expectation value of B, on the maximally entangled GHZ state,
and similarly b" = (GHZ"|B;»|GHZ") for the GHZ state with a relative—sign. Note that this decomposition
holds ifand only if the number of parties n is even—as it can be verified that all the cross terms involving
1® 0, ®...® o, disappear only when nis even.
i .

n

- b + b
Similarly to the proof of theorem 1, observe that the term 2=~

from (36) is the expectation value of B on

aseparable state, %(lO ..0)(0...0] + [1...1)(1...1]), and therefore it is necessarily smaller or equal to g .. Since
byassumption by, > g, ., it follows that b} > b" since sin(26;) > Oforall 4, € [0, %]. 0

Interestingly, in the multipartite scenario the implications of theorem 2 become richer than those of
theorem 1 in the bipartite scenario. Specifically, in the multipartite scenario there exist other notions of
nonlocality, giving rise to a hierarchy of multipartite correlations as captured by notions such as k-producibility
or correlation depth [45, 46]. Observe, however, that in the proof of theorem 2 our derivation is independent of
the type of multipartite nonlocality that is witnessed by the violation of a given correlation Bell inequality. This

n

L . b b, . . . .
observation is possible due to the fact that the term — S—n(36)is the expectation value of the inequality on a

fully separable state %(IO ..0)(0...0] + |1...1)(1... 1]). Hence, this term alone can not violate any Bell
inequality as the generated correlations are (fully) local. Therefore, our theorem applies to any type of
generalized multipartite nonlocality. In particular, if some measurements lead to k-partite nonlocal correlations
violating a correlation Bell inequality when made on the state [V} ), they also generate k-partite nonlocal
correlations on any state [¥ ) with 6, > 6,.

Inlight of the above theorem, when using correlation n-partite inequalities to witness nonlocality, for even #,
the set of measurements leading to nonlocal behaviors when performed on [V}, ) is included in the set of
measurements leading to nonlocal correlations when made on |Wp ) if §, > 6,. In particular, the set of
measurements leading to nonlocal correlations on the maximally entangled state [GHZ") is the largest

Vi (195)) € Viu(IGHZ")), (37)

where V), denotes the set of measurements leading to nonlocal behaviors exhibited with correlation inequalities.
In the end, the nonlocal volume (4) is always maximized by the maximally entangled n-partite GHZ state (31)

Py (15)) < Py (IGHZ")). (38)

Note that these results are consistent with the numerical findings of [22]. Weleave open the problem of proving
theorem 2 for an odd number of parties.

7. Conclusions

The nonlocal volume is a measure of nonlocality with a clear operational meaning that seems to establish a one-
to-one correspondence between maximal entanglement and maximal quantum nonlocality. Based on the
existing results, it is tempting to conjecture that in bipartite systems the maximally entangled state maximizes
the nonlocal volume, which would solve the anomaly observed between entanglement and nonlocality when
using other measures. In our work, we provide the first analytical results in this direction. Solving the problem in
full generality appears challenging because the nonlocal volume is a rather hard function to deal with. Beyond
analytical results, it is also worth performing more numerical searches supporting the conjecture, by extending it
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to more complex scenarios involving more measurements, outputs, or non-projective measurements. The
multipartite case is quite unexplored and also contains intriguing questions.

Before concluding, we would like to briefly mention that no anomalies can be seen in the case of steering,
where one of the parties has control over the state received and over the measurements performed [47, 48]. In
this framework one can see that the set of measurements leading to steering on a partially entangled state is
always included in the set of measurements doing the same on the maximally entangled one. This observation
holds for any number of measurements, any type of measurements and any dimension d. In fact, the probability
to violate a steering inequality is always 1 for any pure entangled states, since the set of compatible measurements
has measure zero and therefore random measurements always produce a violation of a steering inequality when
performed on any pure entangled state [49].
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Appendix

A.1. Bell inequalities with single-body correlators: violation with measurements on a partially entangled
state only

Using linear programming, we obtained an example of particular local measurements that do notlead to
nonlocality when made on the maximally entangled state, but do so on a partially entangled one. We checked

Table Al. The violated Bell inequality in the

counterexample case organized in the Collins—Gisin

correlator table. Entanglement parameter 6 = ?—Z

(Ao) (A1) (A2)

(Bo) (AoBo) (A1 Bo) (A2 Bo)
(By) (AoBy) (A1By) (A:By)
(B2) (AoBy) (Ai1By) (A2B,)
(Bs) (AoBs) (A1Bs) (A2B3)
—0.25 0 0.25
—0.13 0.25 —0.25 —0.25
= —0.13 0.25 0.25 —0.25
—0.01 0 0 0
0 —0.25 0 0.25

Table A2. Bloch vectors corresponding to measurement settings for A and Bleading to the
counterexample. Entanglement parameter § = ?—;

Alice’s measurements Bob’s measurements
x=0 x=1 x=2 y=0 y=1 y=2 y=3
Oy 0.0213 0.3539 0.8786 0.8685 0.0095 —0.0025 0.6437
oy 0.9599 0.9320 —0.4772 0.2420 0.6762 0.6456 0.0175
o, —0.2795 —0.0780 0.0176 0.4326 0.7367 —0.7636 —0.7651
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Figure A1. Bloch vectors reproducing qubit counterexample measurement settings in the scenario m, = 3, mp = 4 for 6 = % Red
solid vectors correspond to A’s settings, blue dashed to B’s. On the right projections to xz-plane, xy-plane and yz-plane are presented.

that with our example, the inequality which is violated by the partially entangled state (3) with = i—z contains
single-body correlators, see table A1. Table A2 presents Bloch vectors corresponding to Alice’s and Bob’s
measurement settings, whereas figure A1 visualizes these vectors in the Bloch sphere.
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