
Indoor localisation based on
point clouds of the ceiling

 Christina Fratzeskou
 4934040

 Chirag Garg
 4817818

 Karin Staring
 4952510

 Mutian Deng
 4843312

 Celine Jansen
 4438205

Synthesis project - 2019

Indoor localisation based on point
clouds of the ceiling

Final Report

Synthesis Project

by

Christina Fratzeskou
4934040
Chirag Garg
4817818

Karin Staring
4952510
Mutian Deng
4843312

Celine Jansen
4438205

Supervisors

ir. E. Verbree
dr. ir. M. Meijers

Summary
Indoor localisation is a highly relevant topic. It can be used for many applications,
such as indoor navigation. Current indoor localisation approaches all have certain
downsides. In this report, the results of a completely new indoor localisation ap-
proach are described. The aim of this approach is to perform indoor localisation on
room level based on a fingerprint solution using point clouds of the ceilings. The
ceiling is used, because the ceiling does generally not change much and therefore
it is easier to keep an up-to-date database. This research considers both the use
of Dense Image Matching (DIM) input from pictures or videos made with a mobile
phone and Light Detection And Ranging (LiDAR) input.

A database with point clouds of the global indoor environment is used to extract
a signature in order to perform the fingerprinting approach. The signature will be
matched with a signature extracted from a point cloud submitted by the user (LiDAR
or DIM).

The full work flow of our indoor localisation implementation consists of the following
steps:

1. Pre-processing: in such a way that the fingerprinting procedure can be per-
formed more efficiently.

• Handling tilt: This step entails aligning the ceiling of the input point cloud
with the x,y-plane, just like the database, to compare z-values, which
are height values of the ceiling. The most promising way to do this is
by providing the local coordinates and orientation of the images/frames
from videos before the reconstruction of the point cloud.

• Voxel down sampling: In this step a voxel grid is used to down sample the
user DIM input. In the input that is used, manual cleaning is applied first.
This entails removing tilt and wall points. The resulting input was down
sampled using the centroid of the points within the voxel boundaries.
This generated a file with regularly distributed points.

• Noise removal: Because the noise points affect the quality of the match-
ing results, it is important to perform a noise removal step. In order to
obtain more clean point clouds, radius-based and statistical-based noise
removal are applied. During this process as much noise points are re-
moved as possible, while retaining relevant object points.

2. Fingerprinting: There are different ways in which we can extract a unique
signature from an input point cloud and a database point cloud:

iii

iv Summary

• Histogram matching: For the histogram matching, the different nor-
malised height values of the point cloud are represented in the differ-
ent bin intervals of a histogram. The different occurrence frequencies
of these height values are also normalised. The database and the input
histogram can be compared through different distance measures. An
advantage of this method is that it is a quick, simple (one-dimensional)
approach. A disadvantage is that the solution is not as accurate be-
cause relevant spatial relationships between points are disregarded. It
requires compatible input and database point clouds, meaning that pre-
processing is required.

• Feature matching: For this method, the geometric property of points is
used to find similarity between input and database point clouds. Here,
features are theoretical representation of local surfaces, mathematically
defined by a point and normals of its n neighbours. Corresponding fea-
tures are identified by using certain criteria such as normal orientation,
edge length of two points, distance between features in n dimension.
Transformation is done in a pairwise manner based on these key corre-
spondences and alignment is done in a iterative manner to perform final
matching. One advantage of this method is that it takes into considera-
tion the fitness of local surfaces of the ceiling with respect to geometry
and topology to detect correct location. A disadvantage is that it requires
refinement of parameters based on database or environment wherein lo-
calisation is to be performed. Also, the difference in realistic scale and
coordinate systems of input and database point clouds influences the
results, which can be resolved up to certain extent by rigid alignment.

After the fingerprinting, the quality of the results is assessed in a confusion matrix.
The quality of the results of the LiDAR input is higher than the DIM matching. In
general, the feature matching approach has the highest quality.

For future work, dead reckoning could be used to support indoor localisation ap-
proaches that use the ceiling. Besides this, incorporating dead reckoning with the
scanner trajectory and adjacency information between different rooms will be a
step forward to an indoor navigation solution.
Furthermore, an automated application of our approach would benefit from dealing
with classification of the point clouds in order to filter ceiling points. It is recom-
mended to look into different ways to combine the results of different matching
methods in such a way that they can support each other.

Preface
In this report, our results for the Synthesis project 2019 are shown. The Synthesis
project concludes the first year of the master’s programme of Geomatics for the
built environment at the Delft university of technology. The aim of the project is
to “synthesise” the knowledge we gained during our first study year. We feel we
fully managed to accomplish this. As an interdisciplinary team with lots of different
backgrounds, we learned a lot from each other. Our project was not set in stone.
The initial project that was appointed to us involved the Dutch Kadaster. After a
major change of plans, we got an entirely different project at CGI to perform indoor
localisation by using point clouds. This new project was not only challenging due
to its contents, but also because we had the freedom to fully define everything
we wanted to incorporate into our project. However, this freedom was not only a
challenge, we managed to turn it into an advantage. We managed to learn many
new things and we can now proudly present a unique end result.

We would like to thank our supervisors Edward Verbree and Martijn Meijers for their
advise and for being open to the different directions we wanted to discover. We
would also like to thank Robert Voûte and Bart Staats from CGI for this, and for
providing the laser scanning data and arranging for us to scan our own point cloud.
Also, a special thanks to Bart Staats for pushing us in the last week to think about
providing information before the point cloud reconstruction instead of correcting it
afterwards. Lastly we would like to thank Bert Meuleman from Moseg Technologies,
for assisting us with the scanning of our own point clouds.

Christina Fratzeskou
Chirag Garg
Karin Staring
Mutian Deng
Celine Jansen

Delft, June 2019

v

Contents
Summary iii

Preface v

Acronyms xi

1 Introduction 1
1.1 Research questions . 2
1.2 Reading guide . 3

2 Theoretical background 5
2.1 Sensors mobile phone . 5
2.2 Down sampling methods using a voxel grid 5
2.3 Noise Removal . 5
2.4 Histogram approach . 6
2.5 Feature Matching approach . 6

3 Project expectations 7
3.1 MoSCoW . 7

4 Conceptual model 9
4.1 Collecting user input. 9
4.2 Pre-processing . 9

4.2.1 Handling tilt . 10
4.2.2 Voxel down sampling . 10
4.2.3 Noise removal . 10

4.3 Fingerprinting. 10
4.3.1 Histogram matching . 10
4.3.2 Feature matching. 10
4.3.3 Combined matching . 11

4.4 Verification . 11

5 Project specifications 12
5.1 Data collection . 12

5.1.1 Collecting LiDAR point clouds 12
5.1.2 Collecting DIM point clouds 14

5.2 Experiments. 16
5.2.1 Initial LiDAR database . 16
5.2.2 New LiDAR database and user input 18

5.3 Pre-processing steps . 20
5.3.1 Required pre-processing DIM input 20
5.3.2 Required pre-processing LiDAR input 22

vii

viii Contents

5.4 Quality assessment through confusion matrix 23
5.5 Combining separate steps. 24
5.6 Software resources . 24

6 Methodology 25
6.1 Data collection . 25

6.1.1 From input videos to DIM point cloud 25
6.2 Point cloud pre-processing . 25

6.2.1 Manual pre-processing . 25
6.2.2 Automated pre-processing 26

6.3 Fingerprinting. 32
6.3.1 Histogram matching . 33
6.3.2 Feature matching. 39
6.3.3 Combined fingerprinting methods 44

6.4 Quality assessment through confusion matrix 45

7 Results 47
7.1 Results point cloud pre-processing 47

7.1.1 Results handling tilt . 47
7.1.2 Results Voxel down sampling and noise removal 48

7.2 Results histogram approach . 50
7.2.1 Initial LiDAR database and DIM input 50
7.2.2 Experimenting with subsets as LiDAR user input on ini-

tial LiDAR database . 53
7.2.3 New LiDAR database and LiDAR user input 57
7.2.4 New LiDAR database and DIM user input 57

7.3 Results feature matching . 58
7.4 Results combined . 62

7.4.1 Weights combined fingerprinting methods 63
7.5 Final results . 63

8 Discussion 66
8.1 Pre-processing . 66

8.1.1 Handling tilt . 66
8.1.2 Voxel down sampling . 67
8.1.3 Noise removal . 67

8.2 Histogram approach . 67
8.2.1 Initial LiDAR database. 67
8.2.2 Experimenting with subsets as LiDAR user input on ini-

tial LiDAR database . 69
8.2.3 New LiDAR database and user input 69
8.2.4 DIM User input . 73
8.2.5 Histogram matching pros and cons 75

8.3 Feature matching. 75
8.3.1 LiDAR database and user input 76
8.3.2 DIM user input . 78
8.3.3 Feature matching pros and cons 80

Contents ix

8.4 Combined results. 82
8.5 Confusion matrix . 82

9 Research questions 83
9.1 What is a room? . 83
9.2 What ceiling characteristics should be captured?. 84
9.3 What is a possible method to perform indoor localisation using

point clouds of the ceiling? . 86
9.4 What kind of pre-processing is required for these possible meth-

ods?. 86
9.5 Can point clouds from the ceiling be used for indoor localisa-

tion purposes on room level? . 87

10Conclusion and recommendations 89
10.1Conclusion . 89
10.2Recommendations . 90

11Reflection 92
11.1MoSCoW reflection . 92
11.2Suitability for use . 94
11.3Privacy . 96

References 98

A Appendix 102
A.1 Comparison between the different pre-processing methods . . . 102
A.2 Visual comparison between database and user histogram . . . 110
A.3 Visual comparison between database and user point cloud fea-

tures . 116
A.4 Matching results . 120
A.5 Confusion matrices . 126

A.5.1 Histogram approach . 126
A.5.2 Feature matching approach 128
A.5.3 Combined approach . 130

Acronyms
DIM Dense Image Matching . iii

LiDAR Light Detection And Ranging . iii

GNSS Global Navigation Satellite System . 1

SLAM Simultaneous Localisation and Mapping . 2

ICP Iterative Closest Point .6

FPFH Fast Point Feature Histograms . 6

MAT Medial Axis Transform. .8

IMU Inertial Measurement Unit . 13

API Application Programming Interface. .14

TN True Negative . 23

TP True Positive. .23

FN False Negative . 23

FP False Positive . 23

IQR InterQuartile Range. .34

CPD Coherent Point Drift . 39

RANSAC Random sample consensus . 6

RMSE Root Mean Square Error . 76

SONAR Sound Navigation Ranging . 95

xi

1
Introduction

Indoor localisation is a highly relevant topic, since it can be used not only for finding
the location of a user indoors, but also for indoor navigation. This can be useful
for a wide scale of applications, for example for improving the efficiency of emer-
gency management (e.g. rescue operations), providing guidance to people who
are visually impaired, maintenance, the reconstruction of indoor spaces and to help
civilians find their way in a public building (e.g. hospital, museum, airport, univer-
sity building).

Using point clouds for indoor localisation and navigation is a topic that has received
some attention over the past few years. With a mobile or static laser scanner, point
clouds can be obtained. After “voxelising” these point clouds, the corresponding
trajectory of a mobile laser scanner, can provide information for indoor navigation.
Using this information, it is possible to identify walk-able spaces. There are three
different kinds of walk-able spaces, namely staircases, slopes and horizontal sur-
faces [Staats, 2017]. These types of walking surfaces are important to make indoor
navigation possible and to provide the basis of an indoor navigation graph. Another
research aims to automatically obtain a navigation graph by detecting doors from a
point cloud and its trajectory, because doors are important elements in the indoor
environment. They connect spaces and play an important role in path finding in-
doors [Flikweert, 2019]. Navigation requires finding a path from the location of the
user to their desired destination by using the navigation graph. This could be done
by identifying and visualising the empty space directly from the interior of a point
cloud after being structured and to calculate the shortest path through the empty
space [Broersen et al., 2015].
Nonetheless, indoor navigation is impossible without having the location of the user
and providing feedback and instructions until the desired destination is reached.
There is research done that can be helpful for providing this information along
the way. The research focuses on a graph-based indoor localisation method that
uses mesh models resulting from Inertial Simultaneous Localisation and Mapping
(VI-SLAM) on a hand held device. However, this method is not sufficient for an
autonomous localisation process, because it requires an initial indoor location [Bot
et al., 2019]. This initial location estimate can only be acquired by asking user input
or maybe through support of a Global Navigation Satellite System (GNSS) position
from when the user has not yet entered the building. The research presented in
this report aims to provide an initial location to the user in an indoor space.

During the Positioning and Location Awareness course [Verbree, 2018], several
indoor localisation and positioning solutions were discussed. An overview of these

1

2 1. Introduction

methods and there disadvantages are described below.

• Wi-Fi fingerprinting is vulnerable to signal interference and therefore not al-
ways precise. It also requires an accurate, up-to-date radio-maps and a dense
network of Wi-Fi access points [Conesa et al., 2018], [Xia et al., 2017].

• Bluetooth low energy beacons require the installation of hardware and a dense
network of beacons. Besides this, signal fading is also a risk [Faragher and
Harle].

• Simultaneous Localisation and Mapping (SLAM) could be used to estimate the
position of a user and map the environment at the same time. This requires
a base map and an accurate estimation of the initial position as described
above. Localisation drift is a challenge as well [Bresson et al., 2017], [Mautz,
2012].

In general, a lot of methods are based on fingerprinting approaches which are
vulnerable to signal interference and require accurate and up-to-date radio-maps
[Huang et al., 2015]. In addition, too coarse location or positioning with a precision
of several metres might not be suitable enough for actual indoor applications such
as navigation. In this research, we aim to eliminate some of the disadvantages
of the prevailing methods. Therefore, this research is aimed at finding a suitable
indoor localisation solution that satisfies the following requirements:

1. The ability to provide an initial location to the user on room level.

2. A reference database that is as stable as possible to match the user input.

3. No, or just inexpensive, (hardware) infrastructure required.

4. The ability to provide an almost immediate response.

5. As limited signal interference as possible.

1.1. Research questions
In this research, we looked for a new approach in which we use point clouds to es-
timate the initial localisation of the user indoors. Instead of acquiring point clouds
from the full indoor environment, we shifted our attention to ceilings. The selection
of ceiling information as our main topic is considered to be an innovative approach,
since there is nothing similar mentioned in the existing literature. Using the ceil-
ing has several advantages. Ceilings do generally not change much. Changes in
furniture or occupation are of little to no influence for the ceiling, meaning that
maintaining an up-to-date reference database would take less effort for ceilings.

The use of user input in the form of pictures is interesting to consider, because
this would widen the possible user base of an application. A mobile phone has an
integrated camera sensor and is a commonly accessible device. User pictures could
be supplied to DIM software to generate point clouds that could be used to match

1.2. Reading guide 3

with the reference database. This approach would therefore not necessarily require
access to an infrastructure. In the case that user pictures do not work, it will also
be possible to consider other types of input.

We would like to perform localisation on room level, because this might be useful
for indoor navigation applications in a graph based structure where there rooms are
the separate nodes.

Based on this information, we formulated the main research question and a few
sub questions that will help answer our main research question:

Can point clouds from the ceiling be used for indoor localisation
purposes on room level?

In the build environment, room names or numbers can be considered as a feasible
reference for localisation purposes. However, a room does not always have a clear,
unambiguous definition. Therefore, the definition of a room with special attention
to the ceilings within the scope of our project has to be defined.

1. What is a room?

• How to distinguish hallways?

• How to distinguish the ceiling of a room?

2. What ceiling characteristics does the user need to capture?

• What part of the ceiling should be captured?

• What user instructions are necessary tomake sure that the right
parts are captured?

3. What is a possible method to perform indoor localisation using point
clouds of the ceiling?

4. What kind of pre-processing is required for these possible methods?

1.2. Reading guide
This report is structured in eleven chapters, of which this is chapter 1. A research
overview has been given and a problem statement is conducted from this. Based
on the problem statement, we defined our research questions. In chapter 2, a
theoretical background of related work and concepts will be given. Chapter 3 de-
fines the scope and goal of our project. It provides an overview of the things we
would like to achieve during this project. In chapter 4, the scientific workflow of
our indoor localisation solution is described. Chapter 5 will discuss the project-wise
decisions made during the process. The methodology in chapter 6 will outline the
followed steps along with the technical details. Following the methodology, the
results of our experiments will be included in chapter 7. The conducted results will

4 1. Introduction

be interpreted and assessed in chapter 8. After this, we will be able to answer
our research questions in chapter 9. In chapter 10, we will give a conclusion with
recommendations for further research. In the end, we will reflect on this project in
chapter 11.

2
Theoretical background

In this chapter entails the theoretical background of the methods used in this report.

2.1. Sensors mobile phone
A mobile device has different sensor types listed in figure 2.1. The gyroscope and
accelerometer are used systems to capture motion [Brezmes and Cotrina, 2009].

2.2. Down sampling methods using a voxel grid
Voxel down sampling is most often used for the reduction of the number of points
with the aim of generating a representative output that will improve the processing
of the point cloud as a whole.
It is based on a grid of volumetric pixels called voxels, which is superimposed over
the point cloud [Pirouz, 2016].
For the purpose of controlling the point distribution of the point cloud two methods
were considered. Both methods reduce points within a voxel to a single point. The
point can be either the geometrical centre of the voxel or the centroid of the point
distribution within a voxel. In this project the latter was used since it provides a
more accurate approximation of the point cloud’s distribution. The drawback of the
method is that it more computationally intensive in comparison to the geometrical
centre implementation [Rusu and Cousins, 2011].

2.3. Noise Removal
Point clouds are often contaminated by noise which would affect the further pro-
cess and analysis of point clouds. The aim of noise removal is to clean the point
clouds thus improving the accuracy of finger printing matching. The sphere can

Figure 2.1: Different sensor types of a mobile device [Lightvoet, 2017].

5

6 2. Theoretical background

be used to detect and remove the outliers, the method is to calculate the number
of points in a defined-radius sphere and removes points with few neighbours. In
addition, distance can be calculated to remove noise, points that are further away
from neighbours are detected as noise points.

2.4. Histogram approach
In the literature, three-dimensional histograms are used to describe point clouds.
These approaches are more similar to the feature matching approach described in
this report, using Fast Point Feature Histograms (FPFH). Some require computing
the normals for each point in the point cloud [Jones and Aoun, 2009]. Others
generate histograms based on the curvature and diffusion distances [Mahmoudi
and Sapiro, 2009]. In robotics, histograms containing for example sensor data from
lasers are also used for localisation purposes [Kwolek, 2004]. However, an approach
such as implemented in this research seems to be completely new. By capturing a
point cloud and storing the heights values in a one-dimensional histogram, a quick
and efficient signature is created. Using this signature in a fingerprinting solution
can be a solution for indoor localisation purposes. However, the simplicity of a
one-dimensional histogram also has its downsides. Large rooms with many similar
ceilings might not lead to the level of distinction between different histograms that
is needed within a successful fingerprinting approach.

2.5. Feature Matching approach
Point cloud registration, a process to align two point clouds by determining the
relative transformation between them, has been at the core of many localisation
applications [Eckart et al., 2018]. Some of the traditional algorithms such as It-
erative Closest Point Iterative Closest Point (ICP) become inaccurate and time con-
suming when there is noise and variation of point distribution in point cloud data.
New methods such as greedy initial alignment method, which improves accuracy
by providing robustness and improved selection of point features but gives high
processing time [Rusu et al., 2009]. In the proposed feature matching approach,
Random sample consensus (RANSAC) is used to perform pairwise registration. In this
method, the correspondences between two point clouds are detected by comparing
the features based on their geometric relations and transformation is done in a iter-
ative manner to perform final matching [Zhou et al., 2018]. This feature matching
based fingerprinting approach uses the geometric property of points to find similar-
ity between input and database point clouds. To create a signature, mathematical
features are formulated by first estimating the normals of the points based on their
neighbouring points and computing a 33-dimensional FPFH feature for each point
by using hybrid KD-tree on point clouds. Hence, each direct neighbour of a feature
is connected to nearby features. This provides the advantage that there is spa-
tial coherence between two point clouds and they are aligned in such a way that
the local surfaces fit together with respect to geometry and topology. However,
without knowledge of initial pose, scale and absence of colour values in points can
make it difficult to identify correct correspondences and perform transformation
thus leading to false results.

3
Project expectations

In this chapter, we provide an overview of the things we like to achieve during this
project. For this we also used the MoSCoW method [Mulder, 2017], as was listed
in our inception report.

Within our project, we aim to investigate the possibilities of indoor localisation by
using point clouds of the ceiling. For this, we consider a fingerprinting approach,
in which we compare the signature of a user input point cloud to the signature of
the database point cloud.
Because we would like our implementation to be a building block for a wide range of
further applications, our solution should be usable for the largest amount of people
possible. Not all everyday users will have the possibility to use a LiDAR scanner, but
nowadays almost everybody has a smart phone. For this reason we look into the
possibility to use input images or videos from smart phones for the user input DIM
point cloud generation.
However, to make matching in a fingerprinting approach possible, the input and the
database should be comparable. We realise that this might be difficult to achieve
with a point cloud generated through DIM. For this reason, we also consider user
input from a LiDAR scanner, which matches with a different type of use-case.

During this project, we consider the separate steps to get our specific indoor lo-
calisation approach to work. The final result entails the combined results of these
separate steps. There be no fully automated application for our approach. When
this project is finished, we are able to indicate whether or not, and under what
conditions, it will be feasible to perform indoor localisation using point clouds from
pictures of the ceiling.

3.1. MoSCoW
Must:

• See if pictures from the ceiling provided by users can be used for localisation
(are they differentiating enough). For this we will investigate in which way
(e.g. which subsection of the ceiling, pictures or videos etc.) the users should
provide their input to acquire a feasible result. We will also need to look at
the quality of the localisation.

• Extracting the (distinct) signature of a point cloud.

Should:

7

8 3. Project expectations

• Compare the performance of different software packages for DIM, such as
COLMAP, Pix4D, Archicad and VisualSFM, to see which software package pro-
vides the most suitable results for our approach.

• Accurate localisation based on room level by using additional information like
dead reckoning combined with topology information or the scanner trajectory.

• Implement a minimal user interface (prototype).

Could:

• Perform automatic classification of ceiling points from the point cloud. For
this we could for example use the Medial Axis Transform (MAT), or look at
intersections between a line perpendicular to scanner trajectory and fitted
planes planes to discover a possible ceiling height at which we can extract
points.

• Incorporating door, window and furniture classification from the point cloud
to improve the efficiency and accuracy of localisation.

• Incorporating machine learning; Include user measurements in a database to
make future localisation more accurate and more efficient (crowd sourcing).

• Create a web platform and application for taking input and sending data to a
server, process it and show the location of the user on a map.

• Look into different necessities for different user types (e.g. firefighters need
different things than students).

Would not:

• Incorporate Wi-Fi fingerprinting.

• Look at navigational graph between rooms for navigational purposes.

• Look at different buildings than the architecture building.

4
Conceptual model

The scientific work flow of the indoor localisation solution described in this report,
is described in this chapter.

All major steps needed to come to an indoor localisation solution as described in this
report, are shown in figure 4.1. In this figure, references are listed to the subsection
in which the methodology corresponding to the mentioned step is explained.

Figure 4.1: The main steps of a methodology to perform indoor localisation based on a database point
cloud, and a user input point cloud generated through DIM.

4.1. Collecting user input
User input point clouds can be captured in several ways. In this report, LiDAR and
DIM are considered. Within the LiDAR approach, the user directly captures a LiDAR
point cloud. For the DIM approach, the user will capture an input video. DIM is
applied on frames extracted from this video, resulting in a point cloud.

4.2. Pre-processing
To prepare both the database and the user input point cloud for the fingerprinting
solution, some pre-processing is required. For the LiDAR database point cloud, this
pre-processing involves room and ceiling point extraction. This process is described
in subsection 6.2.1. The point clouds of the ceilings of the separate rooms are each
stored as a separate database entry. Depending on the type of user input, more
pre-processing is required. The pre-processing of a LiDAR input point cloud involves

9

10 4. Conceptual model

the same steps as the database point cloud. For a point cloud that is created
through DIM, the following additional steps, of which the methodology is described
in subsection 6.2.2, need to be taken into consideration.

4.2.1. Handling tilt
The point clouds captured with DIM are captured in a local coordinate system which
can be subject to tilt. When an input point cloud is tilted, the input ceiling is not
parallel to the corresponding ceiling in the database. Among others, the tilt depends
on how the users hold their camera when capturing the video which is used as input
for the DIM process. This tilt can be handled beforehand by incorporating this angle
in the DIM process. Another option would be to remove the tilt afterwards. The
methodology for tilt handling, is described in subsection 6.2.2. This step uses the
output which contains the extracted ceiling points.

4.2.2. Voxel down sampling
The LiDAR database point cloud and the DIM user input point cloud are not necessarily
compatible. The make the point clouds more comparable in point density, and to
speed up the processing, voxel down sampling is applied. The methodology for this
process is described in subsection 6.2.2. This step is conducted uses the output file
from the tilt handling.

4.2.3. Noise removal
Relatively speaking, there will be less dynamic noise present when focusing on the
ceiling. However, the DIM process might introduce some noise. A methodology for
the noise removal process is discussed in subsection ??. This step uses the output
file from the voxel down sampling.

4.3. Fingerprinting
The work flow of a general fingerprinting approach is displayed in figure 4.2. In
fingerprinting, a distinguishable signature extracted from a database of locations,
is compared to a signature extracted from user input. The best matching signature
will indicate the location of the user. The methodology for the fingerprinting step is
described in section 6.3. The fingerprinting approach uses the output file containing
the pre-processed result.
Generating a signature of a point cloud can be done in several ways. The match-
ing step in the fingerprinting approach depends on the type of signature that is
extracted. Within this report, two types of signatures are taken into consideration;

4.3.1. Histogram matching
Within histogram matching, the normalised height values of the point clouds are
divided over the bins of a histogram. By doing this, a one-dimensional signature
is created. By comparing the minimal distance between bins of the database his-
tograms and the input histograms, the most likely location is selected. A method-
ology for this type of fingerprinting is described in subsection 6.3.1.

4.3.2. Feature matching
Within feature matching, the point cloud itself behaves as the signature. Based on
the smallest distance between the points in a database point cloud and the input

4.4. Verification 11

Figure 4.2: The general steps of a fingerprinting approach.

point cloud, the most likely location is selected. A methodology for this type of
fingerprinting is described in subsection 6.3.2.

4.3.3. Combined matching
To improve the quality of the results, it is possible to combine the results of differ-
ent fingerprinting approaches. For this, the methodology is described in subsec-
tion 6.3.3.

4.4. Verification
As a final step, the quality of the localisation solution are assessed. Quality mea-
sures can be used to provide the user feedback on how sure the localisation is.
Within the research described in this report, a verification step is implemented to
indicate the quality of the localisation approach. The methodology of this verifica-
tion process is described in section 6.4.

5
Project specifications

In this chapter, we will discuss the project-wise decisions made during the process
described in this report. In the first place, the ways in which we collected data
are described. After this, the different experiments we performed to test our lo-
calisation approach will be discussed. We will then describe the choices we made
regarding pre-processing, quality assessment and combining the separate steps
of our implementation. Finally, we will list the choices about resources, such as
different software packages and libraries, we made during the project.

5.1. Data collection
We collected data in two different ways, through LiDAR scanning and by capturing
videos. A DIM approach is applied on the captured videos to acquire a point cloud.

5.1.1. Collecting LiDAR point clouds
We captured our own LiDAR point clouds with the GeoSLAM ZAP REVO RT1. The
device is displayed in figure 5.1. The GeoSLAM ZAP REVO RT is a hand-held
device that uses a SLAM algorithm to connect newly captured points to the points
that are already captured.
The results can be visualised in real time. The main advantage of a hand-held
scanner, is that it is easier to deal with occlusion. The user can physically walk
around the subject of interest to do a few crossings. This ensures that the subject
of interest will be captured in the best way possible. The handling of the device
requires some practice. It is quite heavy and there are a few best practices that
should be honoured to gain the best results possible. When for example walking
through a door, you have to keep a gradual transition between features for the
SLAM algorithm to be able to match the new points to the points that are already
captured. For all changes in direction, it is important to keep focusing at a subject
with several features of interest so that the changes between different features are
gradual and the SLAM algorithm will still be able to match the points.
A challenge with using this LiDAR laser scanner for user input, is in the first place
the cost. Day to day users will not have the possibility to own such a costly device.
Furthermore, the device takes a while to prepare for scanning, and the optimisa-
tion also takes some time. This can be a disadvantage for our solution, in which
we would prefer the localisation to be quick. The point cloud data itself is directly
forwarded to a data-logger web-server, which is advantageous because this could
fit right within our work flow. The point cloud itself is captured quickly (walking
speed makes almost no difference in quality), but it is difficult to solely capture a

1https://geoslam.com/zeb-revo-rt/

12

https://geoslam.com/zeb-revo-rt/

5.1. Data collection 13

Figure 5.1: The GeoSLAM ZAP REVO RT (Moseg Technologies).

specific feature. The surrounding features will also be captured. For this reason,
some form of automatic classification is required to automatically filter the ceiling
points our application requires.

The scanner captures the points in a local coordinate system. This system cannot
be specified beforehand and is different between different measurements. The
scale and the orientation towards the x,y-plane remains the same. Theoretically, it
would be possible to transform the point clouds to the same coordinate reference
system by matching certain reference points.
The Inertial Measurement Unit (IMU) inside the scanner can be subject to drift when
you perform long continuous measurements. To be able to correct this drift as much
as possible, we finish each scan at the same location as we started. For every de-
tected error, there will be a weighed correction applied over the entire trajectory.
This correction ensures that the actual error decreases, but the overall measure-
ments will be less precise. Within the first optimisation step, the so called 9 %
point clouds will have a precision of two to three centimetres. This is more than
sufficient for our approach. After optimisation, in which enriching the point cloud
with RGB-values is an option, the 100 % point clouds will have a precision of eleven
millimetres. During our project we were not able to use the 100 % point clouds,
because we measured at the 13th of June and our deadline is at the 24th, meaning
that the processing took too long to be able to analyse the results and process
them in our report. For future implementations, using the 100 % point clouds in
our database could further improve the results.

14 5. Project specifications

5.1.2. Collecting DIM point clouds
To test whether or not it would be feasible to capture point clouds of the ceiling
based on a DIM approach, we conducted several small tests in our inception report.
Pix4D seemed to be the software package that provided the most suitable results
for our specific implementation. For this reason, we decided to stick to Pix4D for
further testing purposes. Note that the use of Pix4D in an automated application
that performs our full indoor localisation work flow, might be feasible through for
example an Application Programming Interface (API). It would also be possible to
use the Open3D library 2. This is an open-source Python library for 3D data. An-
other possibility would be to use the non open-source module photoscan from
Agisoft, which could also be part of a Python work flow. During our project we will
not look into implementing such solutions.

For further experiments with Pix4D, we tried to capture the ceiling with many dif-
ferent strategies, for example at different angles and while rotating. We also ex-
perimented with different amounts of overlap between images. For capturing the
videos, three mobile phones were used of which the specifications of the devices
are described in table 5.1.

Mobile device Quality indicator Frames per second
Sony Xperia Z3 compact 1920 x 1080 pixels 30 fps
Samsung J5 Prime 1980 x 1080 pixels (Full HD) 30 fps
Iphone 7 1980 x 1080 pixels (Full HD) 30 fps

Table 5.1: Quality specifications of the mobile devices used

After experimenting with different types of software and with different kind of user
input, we decided to capture user input videos for all ceilings in the database.

Figure 5.2: Point cloud extracted based on 159
video frames while filming for 28 seconds.
Room: Hallway Geolab in the Architecture
building. Software used: Pix4D with the

standard setting 3D Models.

Figure 5.3: Point cloud extracted based on 159
video frames while filming for 28 seconds.
Room: Hallway Geolab in the Architecture
building. Software used: Pix4D with the

standard setting 3D Maps.

2http://www.open3d.org/

http://www.open3d.org/

5.1. Data collection 15

The arbitrary way of capturing user input, as described in subsection 6.1.1, has not
been optimised yet.
Once the data was collected for different ceilings, we processed the videos in Pix4D
with the standard settings for 3D models. We decided on this standard setting, be-
cause this setting takes input of any set of images with high overlap. The standard
3D maps requires aerial images using a grid flight plan with high overlap, mostly
oriented towards the ground. The results generated with 3D models are not nec-
essarily better than the results generated with 3D maps. This can be seen in figure
5.2 and figure 5.3. The differences between those two settings are shown in table
5.2.

Main setting
Matching
image
pairs

Matching
window
size

Limit camera depth
automatically

3D models free flight /
terrestrial 9 x 9 pixels yes

3D maps aerial grid /
corridor 7 x 7 pixels no

Table 5.2: Description of the differences between the standard setting 3D models and the standard
setting 3D maps

An example of our experimenting process of the use of different amount of over-
lapping pictures, is shown in figures 5.4 and 5.5. For this extreme example, the
processing times did differ quite a lot. The processing time for figure 5.4 was close
to three hours, whilst the processing of figure 5.5 took about five minutes. The
three hour wait did provide better results, but the results from five minutes still
seem sufficient for our application. There is a trade-off between using too many
frames resulting in slow processing, which is unrealistic for a real-world application,
and using not enough frames to capture the details our application requires. For
future implementations more research is needed to improve this.
However, the amount of time the point cloud extraction takes in Pix4D, does not
solely depend on the amount of pictures used in the process. In general, rooms
with many repeating elements and rooms with smoother textures lead to slower
processing. In these situations, the algorithm has more difficulty in finding distinct,
corresponding points between images. The quality of the DIM point cloud also
depends on the amount of distinctive features present on the ceiling. This will be
dissimilar for different kinds of ceilings.
Note that the points clouds in figures 5.4 and 5.5 contain wall points. Especially in
hallways, capturing the walls is hard to prevent. Removing undesired wall points is
a possibility. It would also be possible to keep some wall points in both our database
and our user input for the cases where the user is more likely to capture wall points.
In section 9.1 and later in this chapter in section 5.3, we will discuss handling wall
points more elaborately.
Even though the point cloud in figure 5.4 is less noisy than in figure 5.5, it still
contains noise. This is the case for all the point clouds we extracted with DIM. In

16 5. Project specifications

Figure 5.4: Point cloud extracted based on 510
video frames while filming for 35 seconds.
Room: West hallway to the library in the

Architecture building. Software used: Pix4D.

Figure 5.5: Point cloud extracted based on 69
video frames while filming for 34 seconds.
Room: West hallway to the library in the

Architecture building. Software used: Pix4D.

subsection ?? we will discuss our methodology to deal with this noise.

5.2. Experiments
To test our localisation approach, we conducted several experiments. The first
experiment involved using an initial LiDAR point cloud database which we extracted
from data we received from CGI. After this, we captured our own LiDAR database
point cloud with the help of Moseg Technologies. Note that the point clouds of
the ceiling are captured in the Architecture building of the TU Delft. This specific
building has ceilings with many distinct features, which is not the case for every
building. The performance of our localisation method will be different for different
types of ceilings.

5.2.1. Initial LiDAR database
To be able to perform some tests before capturing our own point cloud, we extracted
some rooms from an existing point cloud database from CGI. These rooms are dis-
played in figure 5.6. The corresponding point clouds are shown in appendix A.2.
Note that the original point cloud contained all connected rooms. In our approach,
we disregard all adjacency information between rooms and the captured scanner
trajectory. Incorporating this additional information could improve future imple-
mentations of our localisation solution.

Experimenting with DIM user input
We tested this initial LiDAR database with 27 DIM user input point clouds extracted
from videos. The initial idea was to capture two for each room, however, room P
and the orange hall were occupied when we went to measure as a group. To have
at least one measurement, one team member went back to capture them later. For

5.2. Experiments 17

Figure 5.6: The rooms we originally extracted from the CGI database point cloud.

the east section of the hallway to the library, Pix4D could not find enough feature
points for one of the videos. This can be due to the fact that we filmed this case
in a narrow hallway in the width instead of the length. This probably involved too
much turning of the user, combined with the repeating features without enough
depth difference between the pictures.

Experimenting with subsets as LiDAR user input
The user point clouds generated with DIM might not be compatible in point density
and quality with the database point cloud acquired through LiDAR scanning. This
means they might not be suitable for comparison. However, it is not necessarily
the case that our application needs pictures to extract a user input point cloud. It
could for example also be possible that a certain type of user has access to a LiDAR
scanner. To be able to see whether or not our approach is suitable for different
types of input points clouds, we will also generate user input with a LiDAR scanner.
Before we had access to a real LiDAR scanner, we wanted to perform some testing.
Our test user input LiDAR point cloud should be as realistic as possible. In order
to acquire such realistic “test” LiDAR user point clouds, we took subsections from a
selection of our original database point clouds, re-oriented and re-scaled them and
applied thinning. The thinning is applied because the point cloud is likely collected
in a quick way, meaning that it will be less dense than the database point cloud.
A realistic input is likely to be orientated and scaled differently than the database,
since the user uses a different local reference system than the database.

18 5. Project specifications

Figure 5.7: Subsets extracted for testing the histogram approach. We selected the orange hall,
BG.WEST.370, the BG.WEST.Hallway, the hallway from the Geolab, Room P, Room B, the hallway from
room B, and BG.EAST.430.

The original point clouds and their resulting subsets are shown in figure 5.7. On
these subsets we implemented a heavy noise filter and spatial thinning in Cloud
Compare. It is important to note that despite the fact we used only eight sub-
sets from figure 5.7 as new user input, we performed out tests against the original
database contained all fifteen rooms as displayed in figure 5.6.

Note that, as has already been described in section 5.1, the idea of capturing a
subset of a room with a LiDAR scanner turned out to be less realistic than using the
full ceiling.

5.2.2. New LiDAR database and user input
The separate rooms we extracted from the database we captured ourselves to-
gether with Moseg, are shown in figure 5.8. The 10 matching database point clouds

5.2. Experiments 19

Figure 5.8: The rooms we extracted from the point cloud we captured ourselves with the help of Moseg
Technologies.

are shown in appendix A.4. We not only captured a point cloud database, but we
also experimented with capturing different LiDAR point clouds as a different type of
user input. A more elaborate explanation on this is provided below.

LiDAR Scanner database and DIM input
For this experiment, we captured videos of all the rooms that we selected from
the LiDAR scanner database. On these videos, we applied DIM by extracting frames
in Pix4D. Because we let Pix4D determine the camera parameters based on the
input we provided, the point clouds were not parallel to the x,y-plane. For this
reason, manual tilting was required. The point clouds from the Berlage halls and
the Geolab are captured at a later moment in time, so in terms of cleaning, more
is left to the automatic processing here. The other point clouds also have been
manually clipped to a bounding box. All DIM input point clouds an their matching
LiDAR database components are shown in appendix A.4.

LiDAR Scanner database and LiDAR input
When capturing user input with the LiDAR scanner, the scanning itself is quick. Be-
cause of this, it is not necessary, and even unlikely, for the user to only capture a
subset of a room. For this reason, for every user input a full room is tested against
the database during this experiment.
Because we started several of our measurements in room B, we have many user
input point clouds that did not focus on room B, but that did provide some results
for this room. The same is the case for the hallway to the Geolab and the hallway
to room B. For these rooms, we have some point clouds with less uniform density.
Added to this, we took measurements in a quick way from every room. In general,
these quick measurements did not show lots of differences in point density and
quality. Rooms that were also present in our original laser database we extracted
from the point cloud from CGI, are also used as additional LiDAR input. In the end,
this resulted in a total of 32 rooms for LiDAR user input. The LiDAR scanner input and
the matching database point clouds are shown in appendix A.4.

20 5. Project specifications

5.3. Pre-processing steps
It is required to automate the pre-processing of the user point cloud for a fully
functioning final application. However, note that we did not manage to completely
automate all the necessary steps.

One of the major manual pre-processing steps involves the removal of wall points.
It would theoretically be possible to automatically cut away wall points based on
the bounding box of the point cloud. However, it will be challenging to decide how
big the buffer for point removal should be. More refined automation of wall point
removal would require some form of classification. Currently, we lack the semantics
to perform such a classification.
However, for testing purposes, we still decided on removing the wall points, be-
cause the amount of walls captured in the user input varied strongly based on the
room characteristics. Smaller rooms such as hallways contained lots of wall parts,
but larger rooms sometimes contained no wall parts at all. Wall parts become a
significant part of the histogram, it would not be good for the matching to leave
them in in all cases. Furthermore, more points in the point cloud would elongate
the processing time, which is undesirable. For future applications, it would be nice
to look into which parts of the wall would be feasible to keep, because wall point
can provide a nice boundary description for the ceiling, and whether or not com-
plete removal of all wall points is possible and desirable.

Not all rooms we tested contain clearly separated wall points. The Berlage hall
2 for example contains very low hanging curtains. The curtain rails are part of
the unique ceiling signature of that room, so we did not want to disregard them.
However, incorporating all the points of the curtains would lead to unrealistic results,
because a potential user will never fully capture them when focusing on the ceiling.
As an in between solution, we decided to only keep the upper part of the curtains.
This is displayed in figure 5.9. When looking at a possible corresponding user
input, displayed in figure 5.10, you can see that this matches the way the user
would possibly capture the curtains. It would be challenging to automate keeping
only part of the curtains in the user input. However, it would be possible to estimate
how much of the wall and how much of features such as curtains, are likely to be
captured by the user, and match our database to this.

5.3.1. Required pre-processing DIM input
Manual pre-processing
As mentioned before, the point clouds acquired through DIM have different orien-
tation and scale than the ones from our database. Among others, this depends on
how the users hold their camera.
In our approach, we did not yet deal with tilt automatically. For this reason, we
manually removed tilt by orienting the point clouds in Cloud Compare. It would also
be possible to manually align the point cloud from user input to the one from the
database through rotation, scaling and translation. This can be done by selecting
four corresponding point pairs between the two point clouds.

5.3. Pre-processing steps 21

Figure 5.9: Example of keeping only the upper
part of the curtains of Berlage hall 2.

Figure 5.10: Example of how much of the
curtains of Berlage hall 2 could be incorporated

in the user input.

Figure 5.11: Noise in the DIM point cloud becomes visible after manually aligning them to the database
point cloud.

By manually aligning point clouds, some artefacts in the DIM point cloud becomes
evident. An example of this is displayed in figure 5.11, here we see that the same
lamp is generated multiple times. Such repeating elements in the ceiling can cause
problems for the DIM algorithm.
For the signature matching as described in subsection 6.3.2, a user point cloud will
be automatically aligned to all the database point clouds, and the best fit will be
kept.

Large chunks of noise are manually removed. An example of this is shown in
figure 5.12. Automatically remove large chunks of noise can be challenging. Noise
removal algorithms generally assume that noisy points are outliers [Ledoux et al.,
2018]. When setting the threshold for noise removal to be large enough to also
remove the large chunks of noise, important details of the point clouds are removed
as well.
If possible, parts of the user point cloud that turned out to be warped, most likely
due to lens distortions, are also manually removed.

22 5. Project specifications

Figure 5.12: Example of manual removal of large chunks of noise.

Figure 5.13: Example of the results of manual wall points removal. From left to right: a full point cloud
measurement, clipping rooms as separate subsets and then extracting the ceiling without wall points.

Automated pre-processing
The automated pre-processing that is applied on the DIM point clouds involves noise
removal and voxel down sampling to speed-up the fingerprinting process and to
acquire an input point cloud of more compatible point distribution when compared to
the database. An in-depth explanation of the methodology related to the automatic
pre-processing of the DIM input point clouds is provided in subsection 6.2.2.

5.3.2. Required pre-processing LiDAR input
For the LiDAR point clouds, only manual pre-processing is preformed. For the LiDAR
input there is no tilt present. Handling tilt is therefore not necessary. The point
clouds are already clean and regular, meaning that the remaining pre-processing
steps, voxel down sampling and noise removal, are not applied. For the database
point clouds, manual pre-processing does not introduce any problems. However,
for the user input, the pre-processing steps still require automation.
In general, the pre-processing of LiDAR process involves clipping subsets containing
separate rooms. From these subsets, we will extract the ceiling points. This is
shown in figure 5.13. We realise that by cutting up our original point cloud, we
are disregarding useful topology information between the different rooms. This
data can be useful for indoor navigation and also as a support for our indoor local-
isation approach when incorporating methods such as dead reckoning. For future
applications it would be good to take this additional information into consideration.
Something that has to be taken into consideration when capturing a laser database
user input, is that separate rooms that are not bounded by walls will be captured
connected to each other. For now we split them manually. In an actual application,
this splitting should be automated or not performed at all, because using the adja-
cency information between separate rooms combined with dead reckoning, could

5.4. Quality assessment through confusion matrix 23

lead to more efficient, more accurate localisation.

The LiDAR scanning results in more surrounding points. During our scanning process,
it seemed impossible to just capture the ceiling of a room without capturing anything
of the walls and floor. For both the LiDAR user input as the database, we had to
manually extract the ceiling. This can for example be be automated based on
classification of the point cloud.

5.4. Quality assessment through confusion matrix
The information in this section is based on the contents of the lectures of the course
Geo Datasets and Quality [Lemmens, 2019]. One of the things covered in this
course was the confusion matrix. This is a concept which can be used to assess
the performance of a classification method. Within our research, we will use such
a confusion matrix to assess the performance of our indoor location solution. An
example of a confusion matrix is given in figure 5.14. In this particular example,
350 samples for three rooms, called A, B and C, are tested. For the actual quality
assessment, the full database from the rooms as displayed in figure 5.8 is tested.
Something to note from this use of a confusion matrix is that the amount of samples
is limited (32 samples for 10 rooms in case of the LiDAR user input and 20 samples
for 10 rooms for the DIM input. This is less ideal, for a more solid quality indication,
more samples need to be tested.

As for our example from figure 5.14, room A was correctly classified 100 times (True
Positive (TP)). 50 Times room B was classified as room A (False Positive (FP)). This
means that for room B, 50 values are False Negative (FN). True Negative (TN) Means
that values that are not room A in reality, that are not classified as room A.

Figure 5.14: Example of a confusion matrix based on code from Scikit-learn [Pedregosa et al., 2011].

24 5. Project specifications

5.5. Combining separate steps
In a final application, all separate components of our methodology need to be
combined. For now, we did not yet manage to combine all our separate steps in a
complete application. This means that to get combined results, we manually used
the output files from one step, as input for the next and so on.
Furthermore, we only did some limited testing on how to combine different finger-
printing outputs due to time constraints. For future implementations this should be
investigated further.

5.6. Software resources
During our project, we use several software packages.

• Pix4D is used for creating a point cloud from user input videos.3

• Cloud Compare is used for manual point cloud editing and visualisation.4

• The Python programming language is used to write the code of this project.
Within Python, we used the following major libraries:

– NumPy5: To create histograms and to perform efficient calculations using
arrays.

– SciPy6: For the distance measures to compare two histograms.

– OpenCV7: To create and compare histograms.

– Open3D8: To perform noise removal and for the feature matching.

– PyCPD9: To perform rigid alignment.

– Sklearn10: To create confusion matrices and quality indicators for the
results.

3https://www.pix4d.com/
4https://www.danielgm.net/cc/
5https://www.numpy.org/
6https://www.scipy.org/
7https://opencv.org/
8http://www.open3d.org/
9https://github.com/siavashk/pycpd
10https://scikit-learn.org

https://www.pix4d.com/
https://www.danielgm.net/cc/
https://www.numpy.org/
https://www.scipy.org/
https://opencv.org/
http://www.open3d.org/
https://github.com/siavashk/pycpd
https://scikit-learn.org

6
Methodology

In this chapter, each section will be used to explain a specific part of our method-
ology, as displayed in figure 4.1.

6.1. Data collection
To be able to perform localisation using a fingerprinting approach, data is needed.
For the localisation approach described in this research, a LiDAR point cloud is col-
lected. The separate rooms of this point cloud are stored as a database. Both
LiDAR and DIM point clouds will be used as user input to match to this database in
a fingerprinting approach. Decisions made about the data collection process are
specified in section 5.1.

6.1.1. From input videos to DIM point cloud
DIM User input point clouds are extracted by implementing a DIM approach on over-
lapping frames extracted from an input video. These input videos of the ceiling
have a duration from fifteen seconds to less than two minutes without changing
the focal length. They are taken with a small angle. This was done by walking
in a straight line forward, turning around and walking the same way back. In this
way, the ceiling is captured from different angles. This could make it easier to re-
construct the ceiling from the video. With a walking speed of approximately two
seconds per metre, enough overlapping frames could be extracted from the video.

Once the data was collected for different ceilings, the videos are processed in Pix4D
with the standard settings for 3D models. Decisions made on the DIM process are
specified in section 5.1.2.

6.2. Point cloud pre-processing
The localisation approach described in this report requires ceiling point extraction of
the separate rooms. Further more, the user input point cloud generated from DIM is
of different quality and has different point density than the ones acquired through
LiDAR scanning. In this section, possibilities for pre-processing are discussed to
make the point clouds more compatible. This way, a more fair and more efficient
comparison can be made during the fingerprinting process.

In the sections that follow, manual and automated implemented processes will be
discussed in more detail.

6.2.1. Manual pre-processing
The LiDAR point clouds, both database and user input, are manually divided into
separate rooms. For both the LiDAR and the DIM point clouds, the ceilings points

25

26 6. Methodology

are manually extracted by slicing away the wall, and floor points. For the DIM point
clouds, additional manual pre-processing as described in section 5.3, is applied.
Within these steps, tilt was removed in order to align the ceiling of the input point
cloud to the ceiling of the database.

6.2.2. Automated pre-processing
This section is structured in three parts. Firstly, attempts to handle tilt in the DIM
input will be discussed, then down sampling and noise removal will be explained.

Handling tilt
The z-values of the user point cloud can be biased, because the ceiling may be
tilted and will therefore not be parallel to the x,y-plane. To compare unbiased z-
values of the user point cloud to the z-values of the database point cloud, both
ceilings must align with the x,y-plane. The suggested method described below is
not incorporated in the final workflow, instead the tilt is handled such as described
in section 5.3.

To compare the z-values without a bias, the 3D camera positions and orientations
should be provided to the DIM software in the beginning, instead of correcting the
tilt afterwards.
Correcting for the tilt afterwards causes some difficulties. One example is that the
ceiling point clouds do not always have a homogeneous distribution of points along
to ceiling. The point clouds can contain wall points and objects beneath the ceiling
like lamps, that ensure that the points in the point cloud are not homogeneous
distributed. This is problematic when fitting a plane through a 3D point cloud,
which uses the root mean square, or aligning the ceiling point cloud to a generated
x,y-plane. Both methods are unsuitable for removing the z-bias, because they
minimise the distances between the points and the generated plane. This makes
these methods dependent on a homogeneous point distribution.
Another example of correcting the tilt afterwards, are methods that generate or
select a plane that would fit the ceiling in the point cloud. These methods require
an indication on whether or not the selected or created plane is the ceiling. When
the ceiling is captured, the cameras are oriented towards the ceiling. Therefore,
it may be assumed that the z-orientation of the camera coordinate systems would
point towards the ceiling. This is however not always the case as can be seen in
picture 6.1 and 6.2. The reason behind the reconstruction is not fully explored,
but it can be concluded that the z-orientation is unsuitable to give an indication that
the right plane is created or selected.

To unravel if providing the 3D camera positions and orientations to the software, to
prevent tilt from happening, could work, a test setup was constructed. The results
are shown in the result section 7.1.1.

• Images: 10 images were taken every 10 centimetre along a table by laying a
phone upside down on the edge of the table. The image plane is thus parallel
to the ceiling.

6.2. Point cloud pre-processing 27

Figure 6.1: Point cloud extracted based on 138
video frames while filming for 26 seconds.
Room: Berlage 1 in the Architecture building.
Software used: Pix4D with the standard setting

3D Models.

Figure 6.2: Point cloud extracted based on 228
video frames while filming for 32 seconds.
Room: Berlage 2 in the Architecture building.
Software used: Pix4D with the standard setting

3D Models.

• local coordinates and orientation: The camera positions (x, y, z coordinates)
beginning at (0, 0, 0) and the orientations (𝜔: 160 degrees, 𝜙: 0 degrees,
𝜅: 90 degrees) will be provided before the reconstruction to Pix4D.

Voxel down sampling
Down sampling is performed using a voxel grid, where every voxel is represented
by the centroid of the points that are contained within its boundaries. For this, two
things are needed; A structure that will efficiently store the voxel information and
a voxel size.
Voxel information relates to the index of the voxel, which is derived using the dis-
tance of each point included in the point cloud from the point cloud’s minimum
values in the x, y and z direction. Then this distance is divided by the chosen voxel
size providing the index of the voxel [Pirouz, 2016]. This process is done for every
point in the point cloud and then stored in a Python dictionary. The downside of this
method is that empty space is not stored. The implementation pipeline is shown in
algorithm 6.1 and algorithm 6.2. However, for this implementation empty space is
not needed. The use of empty space is discussed in section 7, where the amount
of empty space within the bounding box of the ceiling point cloud is used for noise
removal.
The voxel size parameter was selected based on experimentation.To meet the goal
of average down sampling i.e. generation of a grid that approximates all ceiling
features as good as possible the voxel size permitted threshold can vary depending
on the database. In our case a threshold was set between 5-10 units(since scale is
unknown it is not possible to specify the metric system). The factors that directed
our final choice were scale, point density, time performance, level of detail and
the calculated error in the laser scanner point clouds. These factors are explained
further below:

28 6. Methodology

Algorithm 6.1: Creation of voxel grid
Input: A pre-processed user input point cloud generated from a mobile

phone camera in xyz form. The input is inserted in the code as an
array of shape (3,N) where N:number of points in the point cloud.

Output: A dictionary representing the voxel grid in the form: voxel_grid =
{”voxel_index”:centroid coordinates}.

1 bounding_box = min_x,min_y,min_z voxel_size
2 voxel_grid = {}
3 for point in point cloud do
4 voxel_x = (point_x - min_x) / voxel_size
5 voxel_y = (point_y - min_y) / voxel_size
6 voxel_z = (point_z - min_z) / voxel_size
7 voxel_idx = voxel_x, voxel_y, voxel_z

8 if voxel_idx in voxel_grid
9 centimetrevoxel_grid[voxel_idx].append(point)

10 else
11 centimetrevoxel_grid[voxel_idx] = [point]

Algorithm 6.2: Average down sampling
Input: A dictionary representing the voxel grid in the form: voxel_grid =

{”voxel_idx”:[points]}.
Output: A dictionary containing the centroid of the points’ distribution

within a voxel for all voxels in the form: voxel_grid =
{”voxel_idx”:[centroid]}.

1 voxel_avg = {}
2 for voxel_idx in voxel_grid do
3 centroid_x = avg_x(voxel_grid[voxel_idx])
4 centroid_y = avg_y(voxel_grid[voxel_idx])
5 centroid_z = avg_z(voxel_grid[voxel_idx])
6 centroid = centroid_x, centroid_y, centroid_z
7 voxel_avg[voxel_idx] = centroid

6.2. Point cloud pre-processing 29

• Scale: The difference in scale between the LiDAR database and the DIM database,
explain why it is not possible to choose the same voxel size for both databases,
even after approximating the point density.

• Point density: For the point clouds generated from DIM depending on the dif-
ferent features that formulate a ceiling and the user recording of the ceiling
information the density of the points within a point cloud varied. Considering
that all recordings were captured within a given time frame, as described in
section 6.1 and the most stable (no significant changes in camera parameters)
video frames were chosen for DIM, the different densities are more dependant
on the type and variability of the ceilings’ formations as well as the incorpo-
rated noise. The occurrence of these formations, the type of features that
comprise them and the amount of noise are what causes the different point
densities not only between the different point clouds but also within the same
point cloud. An example of the difference in point density within a point cloud
is shown in figures 6.4, 6.3 .

Figure 6.3: Ceiling features from Berlage hall 2.
Figure 6.4: Zoomed in lamp element from

Berlage hall 2.

Within this voxel down sampling method, the fluctuations in point density were
approximated using the centroid of the points distribution within a voxel and
an optimal voxel size. For this reason, we experimented with different voxel
sizes with the aim of finding an optimal value that would improve the time
performance of the matching methods and represent as accurately as possible
the initial point cloud after the implemented point reduction. Examples of
different voxel sizes for “BG.West.370” are shown in figures 6.5, 6.6, 6.7.

• Time performance: From experimentation processing time for the voxel aver-
aging method varied between 1 - 8 seconds and it depended on the number
of points of the input point cloud, the voxel size and the density of the points.
Specifically, the smaller the voxel size the more time was needed for the
down sampling to complete. However that was not the case for the num-
ber of points. In general, the more points of a point cloud the longer it was
needed but for some cases with difference in point number time performance

30 6. Methodology

Figure 6.5: Generated point
cloud for voxel size: 5

Figure 6.6: Generated point
cloud for voxel size: 7

Figure 6.7: Generated point
cloud for voxel size: 10

was disanalogous, which we attributed to the different point densities imply-
ing larger number of complex features or more noise included (See chart in
figure 6.8). In figures 6.9 and 6.10, it is shown how the difference in point
density due to noise (figure 6.9) can affect processing time.

Figure 6.8: Chart showing the relation between processing time for average down sampling and number
of points for input point clouds (DIM database used).

• Level of detail: The chosen voxel size needed to have a reference to the size of
details contained in the ceiling. For the point clouds from DIM, the metric sys-
tem was unknown so the voxel size was derived solely from experimentation.
However, for the laser scanner point cloud it was known that distances were
measured in metres and thus the selected voxel size would have to produce a
grid that represents accurately the chosen minimum level of detail. For this,
the lamps were used as reference and as minimum 0.1 i.e. 10 centimetre was
chosen.

• Calculated error from laser scanner: The used laser scanner point clouds in-

6.2. Point cloud pre-processing 31

Figure 6.9: Point cloud with more points,lower
density and more noise.

Figure 6.10: Point cloud with less points,higher
density and less noise.

clude 9 % of the total generated points and the incorporated error is measured
to be between 2 – 3 centimetre. Based on this, selecting a minimum 10 cen-
timetre voxel size is considered to be outside the error threshold limitation.

The chosen voxel sizes for the selected matching methods are:

1. LiDAR database and user input: 0.1, since points from the LiDAR database are
well distributed for all ceiling features.

2. User input from DIM: 10, since the time performance is higher and there is
features are adequately represented.

After constructing the grid, down sampling was performed by computing the cen-
troid of all points within the boundaries of the voxel. The results of the averaging
down sampling experiments for voxel size 10 are shown in appendix A.1.

Noise removal
It is necessary to remove the noisy points to improve the quality of the results. For
this project, the method used to remove the noise is a combination of a radius-based
method and a statistical-based method.

1. The radius-based outliers removal aims to remove the points that have few
neighbours which means less than a threshold in a given sphere. To apply
this, two parameters have to be defined, one is the minimum amount of points
that the sphere should contain and the another one is the radius of the sphere
that will be used for counting the neighbours.

(a) number of points: 10

(b) radius of sphere: 5

2. The statistical-based method removes points that are further away from their
neighbours compared to the average for the point cloud. This method also

32 6. Methodology

has two parameters, one is the number of points that are taken into account
to calculate the average distance for a given points. The other one is the
threshold level based on the standard deviation of average distance across
the point cloud. The lower this parameter the more aggressive the filter will
be.

(a) number of points: 20
(b) ratio threshold: 2.0

The noise removal process attempt to remove as much outliers as possible and at
the same time less important points like the points on the ceiling objects would be
omitted. Based on this objective of noise removal, the parameters for both methods
are selected from trials and error.

The aforementioned noise removal processing was implemented using the Open3D
library [Zhou et al., 2018].

Additionally, two more filters were implemented experimentally. One of the filters
included comparison with the amount of empty space, and thus required a voxel
grid that incorporates the parts of the ceiling that do not contain any points. For
this a Numpy 3D array was constructed. Note that this method of constructing a
grid can be computationally intensive and thus risky to include in the final workflow.
The constructed filters are described below:

1. Noise removal based on the amount of layer occupancy, indicated by the
percentage of non empty voxels in the total number of voxels included in a
layer. For this, the percentage of non empty voxels per voxel grid layer (a
layer includes all voxels with same height) was computed and compared to a
threshold. The threshold was defined as 0.3 of the total grid occupancy.

2. Noise removal based on the number of points per voxel. This filtering removes
all voxels that contain a number of points that rest below a given threshold.
This threshold is defined as the average number of points that a voxel contains
within a layer reduced by one standard deviation.The standard deviation refers
to the standard deviation of the number of points and is computed for the
distribution of the number of points for an incrementally.

In both cases, the threshold was a determined by experimentation. This filter-
ing down samples drastically the point clouds by keeping all important ceiling fea-
tures. However it does not take into account smaller details. This is shown in
Figures 6.12, 6.14. More analytical results of the additional filtering are shown in
appendix A.1.

6.3. Fingerprinting
To perform localisation, a database point cloud needs to be matched to a user input
point cloud. For this, a so-called fingerprinting approach is used. A general expla-

6.3. Fingerprinting 33

Figure 6.11: Original point cloud of room
BG.EAST.430 from user input database

Figure 6.12: Down sampled point cloud of room
BG.EAST.430, part of user input pointcloud.

Figure 6.13: Original point cloud of Berlage hall
2 from user input database.

Figure 6.14: Down sampled point cloud of
Berlage hall 2, part of user input pointcloud.

nation of fingerprinting is provided in section 4.3. Within this research, histogram
and feature matching are the two fingerprinting options considered.

6.3.1. Histogram matching
One possible way to perform signature matching, is by extracting histograms from
the different rooms in the database and the user point cloud. To create histograms
from the normalised height values (the z-coordinate), the height values of a single
point cloud should be compatible. In other words, a planar ceiling should be parallel
to the x,y-plane as described in subsection 6.2.2. Because of the use of normalised
height values, the histogram approach is scale invariant. Except from the z-value,
all other spatial characteristics of the points are omitted, resulting in a simple, one-
dimensional comparison between the different signatures. To make this comparison
more efficient, some pre-processing of both the input and the database point cloud
is required.

To test the histogram matching approach, manual pre-processing as described in
subsection 5.3 is applied. In theory, regularising the density of the point distribution
within the point cloud is not strictly necessary, because it is possible to normalise to
occurrence frequency listed of the histogram. However, to speed up to processing
and to be able to make the user input histogram and the laser database histogram

34 6. Methodology

Figure 6.15: Histogram comparison between database and user input seems to be successful.

more compatible, the voxel down sampling and noise removal as described in sec-
tion 6.2 are applied in the case of DIM user input files.

The main input parameter for histogram creation, is the amount of bins. If this
amount is too small, the different histograms might not be distinct enough, and loss
of detail occurs. If the amount of bins is too high, the processing will take too long
and noise, or less important values, will get too much weighing. The Freedman–
Diaconis rule as displayed in equation 6.3.1 and 6.3.2 [Freedman and Diaconis] is
used to determine a suitable amount of bins. A big advantage of this method is
that it is very robust and thus insensitive to outliers. It uses the InterQuartile Range
(IQR), which is a measure of statistical dispersion, listing the difference between the
bottom 25 % and the top 75 % of the data set.

ℎ = 2 ∗ 𝐼𝑄𝑅 ∗ 𝑛ዅ
Ꮃ
Ꮅ (6.3.1)

𝑛 𝑏𝑖𝑛𝑠 = 𝑚𝑎𝑥(𝑧) − 𝑚𝑖𝑛(𝑧)
ℎ(𝑟𝑜𝑢𝑛𝑑𝑒𝑑𝑢𝑝) (6.3.2)

The optimal number of bins depends on the number of data points, which is not
fair when comparing histograms created by different point clouds. A more uniform
point density between input and database point clouds could improve this. For
now, the number of bins is set based on the user input. Thanks to the voxel down
sampling described in section 6.2, the point density will become more uniform.

When attempting histogram generation, it was estimated whether or not the differ-
ent histograms in the database might be distinct enough. For this estimation, the
database histograms are visually compared against the user input histograms. For
some cases, the initial visual inspection of the histograms indicated that a match be-
tween the database histogram and the user histogram would be likely. An example
of such a case is displayed in figure 6.15.

6.3. Fingerprinting 35

Figure 6.16: Histogram comparison between database and user input seems to be less successful.

There are also a few cases that visually do not seem to match as good. An example
of this is displayed in figure 6.16. The full result of the initial comparison is provided
in appendix A.2.
The general pipeline of the histogram comparison can be described with the pseudo
code listed in algorithm 6.3.
A weighing is applied to be able to take the difference in occurrence value at a
certain height into account. Additionally, some experiments with taking not all bins
into account to filter for outliers are performed. Here it was considered to keep
the middle n bins and omit the outer ones. This was not successful because outer
bins are not necessarily outliers. One attempt would be to filter outliers based on
weighing and omit the bins with the lowest weights. However, this is less necessary
because the weighing factor as listed in algorithm 6.3 is already implemented.

As can be concluded from the results shown in section 7.2, the so-called NumPy
histogram approach is the most favourable option for the specific situations in which
the localisation solution described in this report is tested. In the next paragraph,
a more in depth explanation of this histogram comparison methodology will be
provided. Next to this NumPy approach, an OpenCV and a SciPy histogrammatching
approach are also tested.

NumPy approach
The NumPy histogram comparison method involves creating a histogram using the
NumPy library in Python. Here, the so-called Density parameter can be used
for normalisation purposes. If this parameter is set to default (“False”), the result
contains the number of samples in each bin. In other words, the result depends on
the density of the input and database point cloud. If these densities are different,
fair comparison might not be possible. For this reason, the Density parameter is
set to “True”. The result is the value of the probability density function at the bin,
normalised such, that the integral, so the area, over the range is one [Oliphant,

36 6. Methodology

Algorithm 6.3: Histogram localisation approach
Input: A pre-processed user input point cloud and a database containing

signatures for different (sub)rooms in the form of histograms. The
database is a dictionary in the form: db = {”room_name”:
room_histogram}.

Output: The most likely location of which the difference in signature
between the input and the database is the smallest.

1 hist_user = create_hist(user_input)
2 hist_user_freq = create_hist_freq(user_input)
3 signature = {}
4 for room in database: do
5 count_distance = 0
6 for bin in database[room] do
7 weighing = |hist_user_freq[room][bin] - hist_db_freq[room][bin]|
8 count_distance += weighing * distance(hist_user[room][bin],

hist_db[room][bin])
9 signature.update(room: distance)

10 location = min(signature)

2006]. An example is shown in figure 6.17.

Figure 6.17: Original histogram of the user point cloud of the Orange hall (left) and the normalised
alternative (right).

An alternative approach could be the z-score normalisation, which indicates how far
away a certain score is from the mean of a normal distribution. The shape of the
z-score distribution will be the same as the original distribution shape. For a normal
distribution, one can compute the probability of obtaining a certain z-score. The
equation that could be used for z-score computation, is shown in equation 6.3.3
[Lemmens, 2018]. However, within the data sets used for this research, the distri-
butions will not always be normal, so this approach might not be suitable here.

6.3. Fingerprinting 37

𝑧 − 𝑠𝑐𝑜𝑟𝑒 = 𝑥 − 𝜇
𝜎 (6.3.3)

For the way NumPy generates their histograms, just setting the Density param-
eter to “True” is not sufficient to make histograms comparable between different
scales. The user input point cloud is generated from pictures taken by different
people with different cameras, meaning the origin of the local coordinate system
in which the pictures are taken will be different if no additional information is pro-
vided during the DIM process. For this reason, the height values should also be
normalised. This is done by dividing all height values by the median of said height
values.

A common approach to compare histograms, is to look at the distance between
corresponding bins [Ma et al.]. There are more advanced ways possible, which can
be recommended for future research.

As can be seen in subsections 7.2.1, 7.2.2, 7.2.3 and 7.2.4, the Chi-squared
distance [Gagunashvili, 2009], displayed in equation 6.3.4, turns out to provide
the most favourable results. Two other popular methods, the Jaccard distance
[Zhang et al., 2017], displayed in equation 6.3.5, and the Euclidean distance,
displayed in equation 6.3.6 are also tested.

𝑑ፂ፡።ዅ፬፪፮ፚ፫፞፝ =
(ℎ𝑖𝑠𝑡ኻ − ℎ𝑖𝑠𝑡ኼ)ኼ
2 ∗ (ℎ𝑖𝑠𝑡ኻ + ℎ𝑖𝑠𝑡ኼ)

(6.3.4)

𝑑ፉፚፚ፫፝ = 1 −
|ℎ𝑖𝑠𝑡ኻ ∩ ℎ𝑖𝑠𝑡ኼ|
|ℎ𝑖𝑠𝑡ኻ ∪ ℎ𝑖𝑠𝑡ኼ|

(6.3.5)

𝑑ፄ፮፥።፝፞ፚ፧ = √(ℎ𝑖𝑠𝑡ኻ − ℎ𝑖𝑠𝑡ኼ)ኼ (6.3.6)

OpenCV approach
The OpenCV library in Python has four built-in histogram comparison measures.
In this approach, the general idea remained similar to the pseudo code listed in
algorithm 6.3, only the weighing is omitted.
As can be seen in subsections 7.2.1, 7.2.2, 7.2.3 and 7.2.4, the correlation
OpenCV histogram comparison metric, displayed in equation 6.3.7, provided the
best solution for the experiments conducted in this report. OpenCV has several
other histogram comparison metrics which are also tested; The Chi-squared dis-
tance, a different variant than the one displayed in equation 6.3.5 is displayed in
equation 6.3.8, the intersection, displayed in equation 6.3.9 and Bhattacharyya
distance displayed in equation 6.3.10 [Bradski, 2000].

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =
∑፧።ኻ(ℎ𝑖𝑠𝑡ኻ,። − ̄ℎ𝑖𝑠𝑡ኻ)(ℎ𝑖𝑠𝑡ኼ,። − ̄ℎ𝑖𝑠𝑡ኼ)

√∑፧።ኻ(ℎ𝑖𝑠𝑡ኻ,። − ̄ℎ𝑖𝑠𝑡ኻ)ኼ ∑
፧
።ኻ(ℎ𝑖𝑠𝑡ኼ,። − ̄ℎ𝑖𝑠𝑡ኼ)ኼ

(6.3.7)

38 6. Methodology

𝑑ፂ፡።ዅ፬፪፮ፚ፫፞፝ =
፧

∑
።ኻ

(ℎ𝑖𝑠𝑡ኻ,። − ℎ𝑖𝑠𝑡ኼ,።)ኼ
ℎ𝑖𝑠𝑡ኻ,።

(6.3.8)

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 =
፧

∑
።ኻ
𝑚𝑖𝑛(ℎ𝑖𝑠𝑡ኻ,። , ℎ𝑖𝑠𝑡ኼ,።) (6.3.9)

𝑑ፁ፡ፚ፭፭ፚ፡ፚ፫፲፲ፚ = √1 −
1

√ ̄ℎ𝑖𝑠𝑡ኻ ∗ ̄ℎ𝑖𝑠𝑡ኼ ∗ 𝑛ኼ

፧

∑
።ኻ
√ℎ𝑖𝑠𝑡ኻ,። ∗ ℎ𝑖𝑠𝑡ኼ,። (6.3.10)

SciPy approach
The SciPy approach uses a NumPy histogram and the SciPy library. SciPy has 23
different measures to calculate the distance between two histograms [Jones et al.,
2001]. It was challenging to find literature that assessed the suitability of all these
measures for specific use cases. To be able to see which ones performed best for
the data sets listed in appendix A.2, all methods that did not require additional,
adaptive input parameters are tested. In the end this resulted in 19 different dis-
tance measures for 27 user input cases. As can be seen in subsections 7.2.1, 7.2.2,
7.2.3 and 7.2.4, the Chebyshev distance measure, displayed in equation 6.3.11,
Canberra distance measure, displayed in equation 6.3.12, Braycurtis distance
measure, displayed in equation 6.3.13, Cityblock distance measure, computes
the Manhattan distance between points, Minkowski distance measure, displayed
in equation 6.3.14, and Euclidean distance measure, displayed in equation 6.3.6,
gave the most promising results. Because the results are the same for most cases,
the Braycurtis distance was randomly selected.

𝑑፡፞፲፬፡፞፯ = 𝑚𝑎𝑥|ℎ𝑖𝑠𝑡ኻ,። − ℎ𝑖𝑠𝑡ኼ,።| (6.3.11)

𝑑ፚ፧፞፫፫ፚ =
፧

∑
።ኻ

|ℎ𝑖𝑠𝑡ኻ,። − ℎ𝑖𝑠𝑡ኼ,።|
|ℎ𝑖𝑠𝑡ኻ,።| + |ℎ𝑖𝑠𝑡ኼ,።|

(6.3.12)

𝑑፫ፚ፲፮፫፭።፬ =
∑፧።ኻ |ℎ𝑖𝑠𝑡ኻ,። − ℎ𝑖𝑠𝑡ኼ,።|
∑፧።ኻ |ℎ𝑖𝑠𝑡ኻ,። + ℎ𝑖𝑠𝑡ኼ,።|

(6.3.13)

𝑑፦።፧፤፨፰፬፤። =
፧

∑
።ኻ
|ℎ𝑖𝑠𝑡ኻ,። − ℎ𝑖𝑠𝑡ኼ,።| (6.3.14)

The other distance measures seem to be less suited for the type of data and com-
parison conducted in this research. Some did just provide wrong results with-
out any clear pattern. The Cosine distance often produced room BG.EAST.430,
BG.WEST.370 and the lower part of the exhibition hall as a result. The Correlation

6.3. Fingerprinting 39

seemed to provide random results. This is interesting, because the correlation mea-
sure, as listed in equation 6.3.7 from the OpenCV approach performed well. After
looking into the documentation, the SciPy correlation measure turned out to be
constructed in a slightly different way. The Yule, Hamming (which is the same
as Matching), Dice, Kulsinski, Jaccard, Seuclidean, Rogerstanimoto,
Russellrao, Sokalmichener and Sokalsneath distance measures always pro-
vide the same results. Here the first room of the database is matched to be the
most likely room, the second database room the second most likely and so on. This
indicates that the SciPy implementation of these distance measures is not suited
for the specific data set used during the specific experiments conducted during this
research.

6.3.2. Feature matching
The feature matching based fingerprinting approach uses the geometric property
of points to find similarity between input and database point clouds. The two point
clouds have to be aligned in such a way that the local surfaces fit together with
respect to geometry and topology. Thus a feature is a theoretical representation
of local surfaces, mathematically defined by a point and normals of its n neigh-
bours. The correspondences between two point clouds are detected by comparing
the features or local surfaces based on certain criteria such as normal orientation,
edge length of two points, distance between corresponding pairs. Transformation
is done in a pairwise manner based on these key correspondences and alignment
is done in a iterative manner to perform final matching.

Open3D is an open source library that has been used extensively for performing
all major operations in this approach. The combination of C++ for back-end and
Python for front end, is very helpful in fast processing with smooth work flows.[Zhou
et al., 2018] This gives ease of coding and fast execution of data structures for
algorithms.

Rigid alignment of input point clouds
Firstly, the two point clouds which are in different coordinate systems are roughly
aligned to bring them into same space by iterative transformation based on min-
imising the distance between two point clouds. For this, PyCPD library was used
which uses a pure NumPy implementation of the Coherent Point Drift (CPD) algo-
rithm [Myronenko and Song, 2009]. The rigid transformation method is used to
find the transformation that best aligns the two point clouds. Since, correspon-
dence is not explicitly known, they are inferred through point proximity. In other
words, points that are spatially close to each other correspond to one another. The
solution to the rigid registration is known as the orthogonal Procrustes problem de-
picted in equation 6.3.15, where R and t are rotation and translation matrix, X and
Y are the two point clouds.[Khallaghi, 2017]
The process takes the source and target point clouds as input and provide a rough
transformation matrix based on number of iterations used to minimise the error.

𝑎𝑟𝑔𝑚𝑖𝑛ፑ,፭||𝑋 − 𝑅𝑌 − 𝑡||ኼ, 𝑠.𝑡 𝑅ፓ𝑅 = 𝐼 (6.3.15)

40 6. Methodology

Creating features using geometry property of points and their normal ori-
entation
To create a signature from a point cloud, mathematical features are formulated
using by first estimating normals of points based on neighbours and reorienting
normals if possible. Then compute a FPFH feature for each point by using hybrid
KD-tree on point clouds. The FPFH feature is a 33-dimensional vector that describes
the local geometric property of a point. A nearest neighbour query in the 33-
dimensional space can return points with similar local geometric structures. This
has been depicted in figure 6.18

Figure 6.18: (a) “The influence region diagram for a FPFH inter-connected to its direct k-neighbours(blue)
(b) Each query point (red) is connected only to its direct k-neighbours (enclosed by the grey circle). Each
direct neighbour is connected to its own neighbours and the resulted histograms are weighted together
with the histogram of the query point to form the FPFH. For example, the connections marked with two
will contribute to the FPFH twice” [Rusu et al., 2009]

Finding key corresponding feature pairs between input and database
RANSAC is used to refine the global registration. In each RANSAC iteration, n ran-
dom points are picked from the source point cloud. Their corresponding points in
the target point cloud are detected by querying the nearest neighbour in the 33-
dimensional FPFH feature space. A pruning step takes fast pruning algorithms to
quickly reject false matches early. Only matches that pass the pruning step are
used to compute a transformation, which is validated on the entire point cloud.
Open3D provides three types of thresholds that helps in optimising output[Zhou
et al., 2018]:

• distance_threshold: to check if the closeness is less than specified thresh-
old.

• edge_threshold: to check if the lengths of any two arbitrary edges indi-
vidually drawn from two point clouds are similar.

6.3. Fingerprinting 41

• normal_threshold to check if vertex normals of any correspondences are
aligned within radian value for the threshold.

Figure 6.19: “Multi-Scale Representation using a Hierarchy of Gaussian Mixtures: Top-row shows iden-
tical geometries (black lines) and associated points (blue circles), which are represented by different
levels of Gaussian models (green contour for 1)(a) (Top) Ideal Normals (red arrows) on the surfaces,
(b) Too coarse (only two Gaussians in Level 2): poor segmentation leads to incorrect normals, which
will degrade the accuracy when registering points to model, (c) Too fine (using finest level of Gaussian
models): over-segmentation leads to erroneous normals as sample noise overtakes real facet geome-
try (d) Adaptive multi-scale (Mixture of level 3 and level 4 models): point-to-model association can be
much more robust when fidelity adaptively changes according to data distribution so that facets can be
well-modelled given differing spatial frequencies and sampling densities.” [Eckart et al., 2018]

Align point clouds by pairwise registration based on key correspondences
Once the key correspondences are known, the point clouds are pairwise registered.
In each iteration takes n random samples from correspondonce pairs and a point-
to-point transformation is computed that aligns those samples to their counterparts
in a least-squares sense[Zhou et al., 2018]. Transformations are passed through
multiple validation steps mentioned in section 6.3.2 to maximise the overlap of
registered pairs. A core function in Open3D library for this purpose is ransac
registration based on feature matching, which has an important hy-
perparameter; RANSAC Convergence Criteria. It provides the maximum per-
mitted number of RANSAC iterations as well as the validation steps for selecting cor-
respondences. The larger these values are, the more better the result is, however
the time will increase for processing.[Zhou et al., 2018]

Improving alignment and refining parameters for optimum results
There are several optimising techniques available in Open3D library to improve
alignment of point clouds such as Point-to-plane, Iterative Closest Point (ICP). An-
other method is pose optimisation using fine-grained registration and then, multi-
way registration. This method takes advantage of colour values for pairwise local
refinement and then, performs rigid transformation. [Zhou et al., 2018] Both these

42 6. Methodology

refinement methods have been implemented but their results will not be considered
in final analysis keeping in mind the project scope.
The parameters used in the whole work flow influence the level of optimisation dur-
ing matching process. Formation of features of point clouds should performed such
that the spatial coherence of points is respected and there is correct representation
of point cloud and orientation of normal vectors with respect to real world. This
has been further depicted in figure 6.19. The values of RANSAC registration used
are initially inspired from [Choi et al., 2015] and then further testing was done to
reach the optimum values. The main processing parameters have been depicted in
figure 6.20 and algorithm for feature matching is described in algorithm 6.4.

Figure 6.20: Input Parameters fixed for algorithm of feature matching approach. Modular approach
enables working with different data sets and experiment with different methods

6.3. Fingerprinting 43

Algorithm 6.4: Feature Matching localisation
Input: A raw/pre-processed user input point cloud along with algorithm

parameters and directory of all (sub)rooms. The database is a
dictionary in the form: db = {”room_name”: room_pointcloud}.

Output: The most likely location of which the correspondences between the
input and the database are the largest based on fitness value and
rmse error.

1 signature = {}
2 for db_room in database: do

// if inputs have different coordinate systems, scale,
noise and outliers

3 statistical_outlier_removal(pcd,no_neighbors,std_ratio)
radius_outlier_removal(pcd,no_neighbors, radius)
do_rigid_alignment(input,room)

4 for user_pcd and db_room_pcd : do
5 pcd_down = voxel_down_sample(pcd, voxel_size)

// Estimate normals of both point clouds using
flann hybrid kdtree

6 estimate_normals(pcd_down,
KDTreeSearchParamHybrid(radius_normal,max_nn))
// Reorient normals with respect to camera
position if DIM PC

7 orient_normals_towards_camera_location(pcd_down,cam_pos)
// Compute FPFH feature using radius and max
nearest neighbors

8 pcd_fpfh = compute_fpfh_feature(pcd_down,
KDTreeSearchParamHybrid(radius_feature, max_nn_f))

// Find key corresponding FPFH features between 2
point clouds based on thresholds and perform
transformation using RANSACConvergenceCriteria

9 fitness, rmse = registration_ransac_based_on_feature_matching(
user_down, db_room_down, user_fpfh, db_room_fpfh,
TransformationEstimationPointToPoint(True), no_corresponding_pairs
[CorrespondenceCheckerBasedOnEdgeLength,Distance and Normal],
RANSACConvergenceCriteria)

10 signature.update(room: fitness,rmse)

11 Sort the signatures based on highest fitness value and least rmse
12 location = top1(signatures)

44 6. Methodology

6.3.3. Combined fingerprinting methods
On their own, possible methods to extract a signature from a point cloud might
not be accurate enough for indoor localisation. However, there is a possibility to
combine the outcome of multiple methods. By doing this, the separate methods
could support each other if necessary.
The general pipeline of of the method to combine two fingerprinting outputs can
be described with the pseudo code listed in algorithm 6.5.

Algorithm 6.5: Combine output of two different fingerprinting methods.
Input: Two CSV files. Each should contain a column with the name of the

actual file that was tested (for our own testing purposes) and the top
x order in which the fingerprinting approach classified the result.
Here x is the length of the database.

Output: CSV file containing the top n most likely locations based on the
combined fingerprints.

1 location1 = read_csv(”Fingerprint1.csv”, column=1)
2 location2 = read_csv(”Fingerprint2.csv”, column=1)
3 file1 = read_csv(”Fingerprint1.csv” , column=2) // (==file2)

4 length_database = 10
5 top_n = 5
// The list containing the different weights should have

the same length as the database.
6 weighing = [2ኻኺ, 2ዃ, 2ዂ, 2, 2ዀ, 2, 2ኾ, 2ኽ, 2ኼ, 2ኻ]
// For this pseudocode, it is assumed that only one

input file is tested. (In our code, it works for a
list of multiple input files, because this is useful
for testing purposes.):

7 combined = {}
8 w = 0
9 while w � length_database: do

10 for i in range(length(weighing)) do
11 if location1[i] == location2[w]:
12 combined.update(location1[i]: weighing[w] + weighing[i])

13 w += 1

14 location = sorted(combined, key=combined.get, reverse=True)[:top_n]

There are several ways to combine the weights of the different locations at which
a matching fingerprint occurs. The example in algorithm 6.5 adds up the weights.
As can be seen in the results described in subsection 7.4.1, this method performed
best during the testing.
It would also be possible to add the different weights, or to use a least squares
solution such as for example displayed in equation 6.3.16. For this example, the
location with the lowest “LS” value is the most likely. Different scaling between

6.4. Quality assessment through confusion matrix 45

the weights would also be a possibility. For future implementations this should be
investigated further.

𝐿𝑆 = (𝑖𝑛𝑑𝑒𝑥1 − 𝑖𝑛𝑑𝑒𝑥2)ኼ (6.3.16)

Another concept that could be implemented to combine two fingerprinting results,
involves taking the top n output of the feature matching and provided only these
possibilities as a database for the histogram approach. This way the histogram ap-
proach has less options to pick from and is more likely to be correct. However, this
method has one major disadvantage; The correct location should be guaranteed to
be within the top n results of the feature matching. If this is not the case, com-
bining the two methods in this way cannot lead to correct localisation. The same
goes for an implementation in which the top n results of the histogram approach
are provided as input to the feature matching approach.

The approach described in algorithm 6.5 will also be used to combine the results
of the three different histogram approaches. Here, first the OpenCV and the SciPy
approach are combined. After this, the resulting classification is combined with the
NumPy approach.

6.4. Quality assessment through confusion matrix
There are several measures possible to determine the quality of a localisation
method. One of the more common ways would be to calculate the accuracy of
the method by dividing the number of correctly classified rooms by the total num-
ber of rooms that are tested. In this section, the values from a confusion matrix
are used as a measure to indicate the quality of the fingerprinting approaches de-
scribed in this report. More background information about the confusion matrix is
provided in section 5.4.

Several quality indicators can be extracted from the confusion matrix. The accuracy
is shown in equation 7.2.1 and the 𝜅-coefficient, which is a measure eliminating the
random chance component for correct classification of the accuracy, is shown in
equation 7.2.2. Precision (equation 7.2.3), recall (equation 7.2.4) and the F1-Score
(equation 7.2.5) are also given.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (7.2.1)

𝜅 − 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 𝑁 ∗ ∑፤።ኻ 𝑛።። − ∑
፤
።ኻ 𝑛።ዄ𝑛ዄ።

𝑁ኼ − ∑፤።ኻ 𝑛።ዄ𝑛ዄ።
(7.2.2)

In equation 7.2.2, 𝑁 describes the total amount of classified values, 𝑛።። describes
the on-diagonal values of confusion matrix (TP). 𝑛።ዄ Describes the summed values
per row and 𝑛ዄ። describes the summed values per column.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃 (7.2.3)

46 6. Methodology

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁 (7.2.4)

Notice that one could “cheat” by using the recall method. If all values are marked
positive, then there will be no false negatives and the value for recall will be high
despite possible incorrect classifications.

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (7.2.5)

7
Results

In this chapter, the results of the separate steps of the work flow are displayed. In
the end the results from combining these steps are displayed.

7.1. Results point cloud pre-processing
In the sections below, the results of the following pre-processing steps will be
shown: handling tilt, voxel down sampling and removing noise.

7.1.1. Results handling tilt
The results of handling tilt will be described below. It can be seen that, by provid-
ing the local coordinates and orientation on forehand, the ceiling will be more in
line with the x, y-plane. This can be seen in figures 7.1 and 7.2. The left image,
where the local coordinates and orientation were provided on forehand to the DIM
software, is more in line with the x, y-plane than the right image.

Another difference is that the scale will become more representative to the “real”
world. The height of the Geolab is approximately four metre. This becomes visible
in the left image.

Figure 7.1: Point cloud extracted based on 10
images. Room: Geolab in the Architecture building.
Software used: Pix4D with the standard setting 3D
Models with provided local coordinates and

orientation

Figure 7.2: Point cloud extracted based on 10
images. Room: Geolab in the Architecture
building. Software used: Pix4D with the
standard setting 3D Maps without local

coordinates and orientation.

However, Pix4D as DIM software for performing the reconstruction may alter the
provided local coordinates and orientations as can be seen in picture 7.3. Omega
may be changed by the software to approximately zero instead of 180 degrees and
other parameters may be changed slightly. This change results in a reversed point
cloud of the ceiling.

47

48 7. Results

Figure 7.3: Screen shot from the
reconstruction of 10 images with
Pix4D as DIM software. The blue
image planes are the provided local
coordinates and orientations. The
green image planes are the ones
Pix4D used for the point cloud

reconstruction.

Figure 7.4: Point cloud extracted based on 10 images. Room:
BG EAST 370 in the Architecture building. Software used:
Pix4D with the standard setting 3D Maps with provided

local coordinates and orientation.

If the point cloud is not reversed, there may still be a tilt present along the y-axis
as can be seen in 7.4. This tilt may be due to a changed omega orientation by
Pix4D as DIM software. Omega is changed with approximately 10 degrees.

7.1.2. Results Voxel down sampling and noise removal
In this section, the two noise removal methodologies were discussed and compared
in terms of time performance (see figure 7.5 and figure 7.6) and impact on the input
point clouds (see figure 7.7,figure 7.8, figure 7.9, figure 7.10). The point clouds used
as input are part of the user database generated from DIM.

Figure 7.5: Chart showing the relation between
the processing time of the additionally suggested
noise filtering and number of points of original

input point clouds generated from DIM.

Figure 7.6: Chart showing the relation between
the processing time of the Open3D noise

filtering and number of points of original input
point clouds generated from DIM.

In terms of processing time the additionally suggested noise removal is more effi-
cient as shown in charts figure 7.5 and figure 7.6. On the other hand, as shown in
Figures figure 7.7,figure 7.8, figure 7.9, figure 7.10 Open3d noise filtering removes
less points but also preserves more ceiling features. As shown in the case depicted
in Figure figure 7.8 many random concentrations have been kept in the output point

7.1. Results point cloud pre-processing 49

Figure 7.7: Screen shot of the Open3D down
sampled point cloud displaying the hallway near

the entrance of Berlage hall from DIM.

Figure 7.8: Screen shot of the point cloud
displaying the hallway near the entrance of
Berlage hall from DIM.The point cloud is down
sampled using the additionally suggested noise

removal.

Figure 7.9: Screen shot of the Open3D down
sampled point cloud displaying the ceiling of

Room B from DIM.

Figure 7.10: Screen shot of the point cloud
displaying the ceiling of Room B from DIM.The

point cloud is down sampled using the
additionally suggested noise removal.

cloud that do not resemble any ceiling features. For this reason, for the suggested
input the use of the Open3d method was suggested. The use of this method would
ensure handling of noise, however in order to also tackle the problem of the vary-
ing point densities a combination was proposed with the voxel averaging method.A
visualisation of the outputs is included in appendix A.1.
Additionally, to see the effects of both noise removal and voxel down sampling the
NumPy histogram approach with the raw, but tilted input from Pix4D was used.
Specifically, the used inputs are:

• User DIM down sampled using Open3D noise removal methods.

• User DIM down sampled using additional suggested noise removal methods
(labelled as voxel noise removal).

• User DIM down sampled using voxel averaging.

• User DIM down sampled using voxel averaging and Open3D noise removal.

The voxel size used in all cases was 10.
The Numpy histogram approach was considered to be the best choice since it pro-
duced the most promising results. For the user inputs from point cloud 4, 5, 6, 8, 9

50 7. Results

and 10 there already was some manual clipping performed according to a bounding
box. The file with only the noise removal and only the voxel based noise removal
are also tested. Finally, the completely processed files are tested. The results are
shown shown in figure 7.11.
In this figure, a map of all tested rooms is shown along with the symbols represent-
ing each of the three types of filtering. The number contained in the symbols show
the position in which the actual position was matched correctly to the database,
i.e. the location of the user was found based on the histogram matching. From the
analysis of the results we used the total score for every method as indicator. The
total score per method is the sum of the positions that the correct match is found.
For the cases where no match is found, six is chosen as entry for the table. The
higher the score, the worse the quality of the results produced by the histogram
approach. This is shown in figure 7.13.
As can be observed from the table shown in Figure figure 7.13 the methods with the
highest scores, are the combined method (average down sampling and noise re-
moval) and average down sampling. Furthermore, as shown in Figure 7.12 from the
comparison between the two noise removal methodologies the one where Open3D
was applied (labelled “Noise removal”) produced lower quality results.
Overall, the additionally suggested noise removal seems to produce better results
than the Open3D noise removal and the combined outputs.

7.2. Results histogram approach
The results of the histogram matching are described for the three different imple-
mentations that are attempted; the Numpy approach, OpenCV approach and the
SciPy approach.

7.2.1. Initial LiDAR database and DIM input
In this subsection, the results of the experiments as subsection 5.2.1 are listed.
An overview of the input and the database for this experiment, is provided in ap-
pendix A.2.

NumPy approach
Within the most advantageous variation, the amount of correct classifications where
the correct database room is within the top three of the different distance measures
is displayed in table 7.1. The entrance to BG.WEST.370 and the hallway to room B
are classified correctly for user input two. For user input one, the west hallway to
the library and the entrance to BG.WEST.370 are classified correctly.

Method 1st 2nd 3rd Total
Euclidean 4 1 3 8
Chi-squared 4 2 2 8
Jaccard 2 1 1 4

Table 7.1: Correctly classified rooms from most promising NumPy histogram comparison measures, top
3 out of 27.

7.2. Results histogram approach 51

Figure 7.11: Testing different pre-processing steps on the NumPy histogram approach.

52 7. Results

Figure 7.12: Table depicting position of matched location per noise removal method

Figure 7.13: Table depicting position of matched location per method

7.2. Results histogram approach 53

OpenCV approach
For this histogram comparison approach, the amount of correct classifications where
the correct database room is within the top three of the different distance measures
is displayed in table 7.2.

Method 1st 2nd 3rd Total
Correlation 2 2 1 5
Chi-squared 2 0 1 3
Intersection 2 2 1 5
Bhattacharyya 0 3 3 6

Table 7.2: Correctly classified rooms from most promising OpenCV histogram comparison measures, top
3 out of 27.

SciPy approach
The amount of correct classifications where the correct database room is within the
top three of the different distance measures is displayed in table 7.3. BG.WEST.370
Entrance provided the most correct classifications for both user inputs. The hallway
to Room B was also correctly classified a lot.

Method 1st 2nd 3rd Total
Chebyshev 2 3 4 9
Canberra 4 3 1 8
Braycurtis 4 2 2 8
Cityblock 5 2 2 9
Minkowski 5 2 1 8
Euclidean 5 2 0 7

Table 7.3: Correctly classified rooms from most promising SciPy histogram comparison measures, top 3
out of 27.

7.2.2. Experimenting with subsets as LiDAR user input on ini-
tial LiDAR database

In this subsection, the results are shown for the experiment as described in sub-
section 5.2.1.

NumPy approach
The time the processing of this method takes is shown in table 7.4.
The results of the NumPy histogram comparison using a LiDAR subset as input are
shown on the map displayed in figure 7.14. For the orange hall, the hallway to
room B was deemed more likely. For BG.WEST.370 the Chi-squared distance
ranked BG.WEST.Hallway and the upper part of the exhibition hall to be more likely.
Room P was ranked correctly on the third try of applying the Euclidean distance
measure. The middle and east part of the hallway to the library seemed more likely.

54 7. Results

Amount of points Time [sec] Time [sec] Time [sec]
19564 0.13 0.12 0.12
3698 0.14 0.13 0.13
4703 0.14 0.12 0.13
10234 0.12 0.14 0.14
9105 0.16 0.13 0.15
8009 0.16 0.14 0.15
8642 0.22 0.19 0.15
6181 0.15 0.15 0.16

Table 7.4: Listing the time the histogram approach takes for different input point clouds using the NumPy
comparison. The timing is a sum for all three methods tested. The timing has been performed three
times to prevent outliers.

Figure 7.14: Results of the NumPy histogram comparison. For four out of the eight cases, both the
Chi-squared and Euclidean distance provided correct classification results within the first try.

For the hallway to room B, room B and the hallway to the Geolab are first wrongly
assigned.

OpenCV approach
The time the processing of this method takes is shown in table 7.5.
The results of the OpenCV histogram comparison are shown on the map displayed
in figure 7.15. The hallway of the Geolab was correctly classified in the third try
of the Intersection. The top Correlation and Intersection result are
both other hallways (BG.WEST.Hallway and the middle part of the hallway to the
library). Room P has been correctly classified in the third try using Correlation.
The BG.WEST.370 entrance, has been identified as the top one result for both the
Correlation and the Intersection. Room B has been correctly classified by
the Correlation within the first try, for the Intersection the second try was
necessary and the upper part of the exhibition hall was perceived as more similar.
For room B, the room was correctly classified within the second try of both the

7.2. Results histogram approach 55

Amount of points Time [sec] Time [sec] Time [sec]
19564 0.18 0.18 0.17
3698 0.18 0.18 0.17
4703 0.18 0.17 0.18
10234 0.17 0.17 0.17
9105 0.18 0.18 0.18
8009 0.17 0.18 0.18
8642 0.17 0.17 0.19
6181 0.18 0.18 0.17

Table 7.5: Listing the time the histogram approach takes for different input point clouds using the
OpenCV comparison. The timing is a sum for all four methods tested. The timing has been performed
three times to prevent outliers.

Figure 7.15: Results of the OpenCV histogram comparison. For four out of eight cases, the correct room
has been assigned by both the Intersection and the Correlation in the first try.

Correlation and the Intersection. The middle hallway of the library and
BG.WEST.370 are perceived as a closer match. For all other cases, four out of
the eight cases that are tried, the correct room has been assigned by both the
Intersection and the Correlation in the first try.

SciPy approach
The time the processing of this method takes is shown in table 7.6.
The results of the SciPy histogram comparison are shown on the map displayed in
figure 7.16. For BG.WEST.370, the Canberra measure deemed the upper part of
the exhibition hall to be more likely. For the rest, the correct room was the first
result for BG.WEST.370. Instead of the Orange hall as first choice, Room P and
01.WEST.Hallway library are selected. Instead of the hallway to the Geolab, room
B and BG.WEST.Hallway or room P are selected. Instead of room P, the middle,
east or west part of the hallway to the library was selected. Instead of the hallway
to room B, room B, Room P or BG.WEST.Hallway 6 was selected.

56 7. Results

Amount of points Time [sec] Time [sec] Time [sec]
19564 0.76 0.77 0.95
3698 0.71 0.81 0.78
4703 0.79 0.73 0.74
10234 0.78 0.72 0.72
9105 0.79 0.77 0.80
8009 0.76 0.70 0.72
8642 0.70 0.70 0.73
6181 0.72 0.88 0.72

Table 7.6: Listing the time the histogram approach takes for different input point clouds using the SciPy
comparison. The timing is a sum for all six methods tested. The timing has been performed three times
to prevent outliers.

Figure 7.16: Results of the SciPy histogram comparison. Four out of eight rooms are correctly classified
in the first try.

7.2. Results histogram approach 57

7.2.3. New LiDAR database and LiDAR user input
In this subsection, the results are listed for the experiment as described in subsec-
tion 5.2.2. For this experiment, no automatic voxel down sampling was added.

The results for the LiDAR user input and the new LiDAR database are displayed in
appendix A.4. For the NumPy method, the Chi-squared distance provided the
most correct results. For the OpenCV method the intersection provided the
most correct results and for SciPy several measures provided exactly the same
results, so it was randomly decided to pick the Braycurtis distance. The top 5
correct classifications are displayed in table 7.7. Using the approach as described in
subsection 6.3.3 the combined result of all histogram methods are also generated.

Method 1st 2nd 3rd 4th 5th Total
NumPy 17 4 7 1 1 30
OpenCV 12 6 2 4 1 25
SciPy 15 4 8 1 0 28
Combined 16 5 4 2 4 31

Table 7.7: Listing the top 5 results of the histogram approach for the LiDAR input. Out of 32 tests.

For the top 1 classified values, the confusion matrix of the NumPy approach is
displayed in figure A.4. For the OpenCV approach this is displayed in figure A.5, for
the SciPy approach in figure A.6 and for the combined approaches in figure A.7, all
in appendix A.5.1.
Some of the quality indicators resulting from these confusion matrices can be com-
pared through table 7.8.

Indicator NumPy OpenCV SciPy Combined
Accuracy 0.53 0.50 0.47 0.5
𝜅 - coefficient 0.47 0.43 0.41 0.45
Precision 0.60 0.42 0.52 0.61
Recall 0.57 0.47 0.54 0.58
F1-Score 0.55 0.40 0.41 0.56

Table 7.8: Table showing the different quality indicators (rounded of to two decimal numbers) resulting
from the confusion matrices as displayed in figures A.4, A.5, A.6 and A.7. The closer the quality
indicators are to one, the better.

7.2.4. New LiDAR database and DIM user input
In this subsection, the results are listed for the experiment as described in subsec-
tion 5.2.2. Automatic voxel down sampling combined with and noise removal was
conducted based on average values. For the NumPy method, the Chi-squared
distance gave the most high results, for the OpenCV method the intersection
and for SciPy again the Braycurtis distance was selected. The results of the top
5 amount of correct classification are displayed in table 7.9.

58 7. Results

Method 1st 2nd 3rd 4th 5th Total
NumPy 5 0 2 3 0 10
OpenCV 5 2 3 0 1 11
SciPy 2 4 4 0 1 11
Combined 3 3 0 0 3 9

Table 7.9: Listing the top 5 results of the histogram approach for the DIM input. Out of 20 tests.

For the top 1 classified values, the confusion matrix of the NumPy approach is
displayed in figure A.8. For the OpenCV approach this is displayed in figure A.9
and for the SciPy approach in figure A.10 and for the combined approaches in
figure A.11, all in appendix A.5.1.
Some of the quality indicators resulting from these confusion matrices can be com-
pared through table 7.10.

Indicator NumPy OpenCV SciPy Combined
Accuracy 0.25 0.15 0.1 0.15
𝜅 - coefficient 0.17 0.06 0 0.06
Precision 0.22 0.05 0.1 0.125
Recall 0.25 0.15 0.1 0.15
F1-Score 0.21 0.07 0.1 0.13

Table 7.10: Table showing the different quality indicators (rounded of to two decimal numbers) resulting
from the confusion matrices as displayed in figures A.8, A.9, A.10 and A.11. The closer the quality
indicators are to one, the better.

A more detailed overview of the results of the NumPy histogram approach with DIM
user input is shown in appendix A.4 and in figure 7.11.

7.3. Results feature matching
In this subsection, the results are listed for the experiment as described in sub-
section 5.2.2. The general results of the feature matching approach are shown in
appendix A.4.

LiDAR User input
The top 5 correct classifications for different voxel sizes are displayed in table 7.11.

Voxel size 1st 2nd 3rd 4th 5th Total
v0.2 30 1 0 0 0 31
v0.4 16 8 4 0 2 30
v1.5 6 6 3 3 9 27
v10 3 3 2 3 3 14

Table 7.11: Listing the top 5 results for different voxel sizes of the feature matching approach for the
LiDAR input. Out of 32 tests.

7.3. Results feature matching 59

The results of the feature matching approach for different voxel sizes are displayed
in figure 7.17.

Figure 7.17: Results of the feature matching approach on various LiDAR user inputs. If the top location
from signature comparison is the actual input location, then it indicates a 100 % match. If the location
does not match correctly, the value indicates the closeness of input to the actual location.

The timing of the feature matching approach for different voxel sizes are displayed
in figure 7.18.
For the top 1 classified values, the confusion matrix of the feature matching ap-
proach is displayed in appendix A.5.2. For a voxel size of 0.2 in figure A.12, for a
voxel size of 0.4 in figure A.13, for a voxel size of 1.5 in figure A.14 and for a voxel
size of 10 in figure A.15.
Some of the quality indicators resulting from this confusion matrix can be seen in
table 7.12.

Indicator v0.2 v0.4 v1.5 v10
Accuracy 0.94 0.50 0.19 0.09
𝜅 - coefficient 0.93 0.44 0.12 0.00
Precision 0.84 0.43 0.21 0.01
Recall 0.90 0.47 0.21 0.10
F1-Score 0.87 0.40 0.15 0.02

Table 7.12: Table showing the different quality indicators (rounded of to two decimal numbers) resulting
from the confusion matrices as displayed in figures A.12, A.13, A.14 and A.15. The closer the quality
indicators are to one, the better.

60 7. Results

Figure 7.18: Time taken by 32 LiDAR inputs for localisation from 10 rooms.

DIM User input
The top 5 correct classifications are displayed in table 7.13.

Voxel size 1st 2nd 3rd 4th 5th Total
v0.3 4 2 2 4 0 13
v0.4 2 3 1 4 2 10
v1.5 1 2 3 2 9 10
v10 1 0 2 3 3 9

Table 7.13: Listing the top 5 results of the feature matching approach for the DIM input. Out of 20 tests.

The results of the feature matching approach for different voxel sizes are displayed
in figure 7.19.
The timing of the feature matching approach for different voxel sizes are displayed
in figure 7.20.
For the top 1 classified values, the confusion matrix of the feature matching ap-
proach is displayed in appendix A.5.2. For a voxel size of 0.2 in figure A.16, for a
voxel size of 0.4 in figure A.17, for a voxel size of 1.5 in figure A.18 and for a voxel
size of 10 in figure A.19.
Some of the quality indicators resulting from this confusion matrix can be seen in
table 7.14.

7.3. Results feature matching 61

Figure 7.19: Results of the feature matching approach on various DIM user inputs. If the top location
from signature comparison is the actual input location, then it indicates a 100 % match. If the location
does not match correctly, the value indicates the closeness of input to the actual location.

Figure 7.20: Time taken by 20 DIM user inputs for localisation from 10 rooms

62 7. Results

Indicator v0.2 v0.4 v1.5 v10
Accuracy 0.20 0.10 0.05 0.05
𝜅 - coefficient 0.11 0.00 -0.05 -0.05
Precision 0.12 0.03 0.01 0.01
Recall 0.2 0.10 0.05 0.05
F1-Score 0.13 0.04 0.01 0.01

Table 7.14: Table showing the different quality indicators (rounded of to two decimal numbers) resulting
from the confusion matrices as displayed in figures A.16, A.17, A.18 and A.19. The closer the quality
indicators are to one, the better.

7.4. Results combined
In this subsection, the results are listed for the experiment as described in sub-
section 5.2.2. An overview of the combined results from the best performing his-
togram approach and the feature matching approach is shown in appendix A.4. The
Chi-squared distance measure of the NumPy approach turns out to be the most
thrust worthy histogram matching measure in both the case of LiDAR input and DIM
input. The feature matching approach turns out to be the most thrust worthy with
voxel size 0.2 for LiDAR input and 0.3 for DIM input. For this reason, the NumPy ap-
proach will be used for combined testing with feature matching approach. A more
detailed overview of the results of the combined approach is shown in appendix A.4.

LiDAR User input
For the top 1 classified values, the confusion matrix of the feature matching ap-
proach is displayed in figure A.20 in appendix A.5.3.
Some of the quality indicators resulting from this confusion matrix are shown in
table 7.15.

Indicator Combined approach
Accuracy 0.84
𝜅 - coefficient 0.82
Precision 0.85
Recall 0.81
F1-Score 0.81

Table 7.15: Table showing the different quality indicators (rounded of to two decimal numbers) resulting
from the confusion matrix as displayed in figure A.20. The closer the quality indicators are to one, the
better.

DIM User input
For the top 1 classified values, the confusion matrix of the feature matching ap-
proach is displayed in figure A.21 in appendix A.5.3.
Some of the quality indicators resulting from this confusion matrix are shown in
table 7.16.

7.5. Final results 63

Indicator Combined approach
Accuracy 0.2
𝜅 - coefficient 0.11
Precision 0.1
Recall 0.2
F1-Score 0.124

Table 7.16: Table showing the different quality indicators (rounded of to two decimal numbers) resulting
from the confusion matrix as displayed in figure A.21. The closer the quality indicators are to one, the
better.

7.4.1. Weights combined fingerprinting methods
In subsection 6.3.3 a methodology to combine the results from several fingerprint-
ing methods is described. For this, different types of weighing can be applied. The
weights could go from 10 to 0, and can be either multiplied or added. The weights
can also go for example from 210 to 20 or the indices can be compared in a least
squares solution.
Different solutions are tested on two histogram methods, the SciPy and the OpenCV
approach for the laser database input. The accuracy and the 𝜅-coefficient are
compared for all the measures to see which one is the most likely to provide good
results. These results are displayed in table 7.17.

Method Accuracy 𝜅-coefficient
Original file 1 0.5 0.47
Original file 2 0.43 0.41
[10-0], multiplied 0.25 0.15
[10-0], added 0.25 0.15
[210-20], multiplied 0.25 0.15
[210-20], added 0.40 0.34
Least squares 0.06 -0.06

Table 7.17: Comparing the quality of the different weight measures when comparing fingerprints. This
is based on the top 1 correct classified values. The closer the quality indicators are to one, the better.

7.5. Final results
In this section, the final quality indicators from the different fingerprinting meth-
ods attempted in this report are provided for comparison’s sake. The results listed
this subsection, are related to the experiment as described in subsection 5.2.2. An
overview of the combined results from the best performing histogram approach,
the feature matching approach and the combined approaches is also shown in ap-
pendix A.4.

64 7. Results

LiDAR User input
The accuracy indicators of the final results of the NumPy histogram approach, the
feature matching approach and both approaches combined for a LiDAR user input
are displayed in figure 7.21. The top 5 locations of the different inputs are displayed
in figure 7.22.

Figure 7.21: Quality of localisation results of 32 LiDAR user inputs tested by three different approaches

Figure 7.22: Top 5 localisation results of 32 LiDAR user inputs tested by three different approaches; The
NumPy histogram fingerprinting, the feature matching approach with voxel size 0.2 and a combination
of both of these approaches.

7.5. Final results 65

DIM User input
The accuracy indicators of the final results of the NumPy histogram approach, the
feature matching approach and both approaches combined for a DIM user input are
displayed in figure 7.23. The top 5 locations of the different inputs are displayed in
figure 7.24.

Figure 7.23: Quality of localisation results of 20 DIM user inputs tested by three different approaches.

Figure 7.24: Top 5 localisation results of 20 DIM user inputs tested by three different approaches. The
NumPy histogram fingerprinting, the feature matching approach with voxel size 0.3 and a combination
of both of these approaches.

8
Discussion

In this chapter we will discuss our results and the pros, cons and uncertainties of
the different steps in our research.

8.1. Pre-processing
In the section below, the following pre-processing results will be discussed: han-
dling tilt, voxel down sampling and noise removal. This will be done by giving
answers to the following questions. What are the pros and cons of these pre-
processing methods? What are the uncertainties of these pre-processing methods?
Can these pre-processing methods be used in practise?

8.1.1. Handling tilt
This subsection describes the challenges of the current theoretical setup. There
may still be tilt present after providing the local coordinates and orientation. Pix4D
as DIM software changes the provided orientation for the reconstruction. However,
we are not sure if this is the only cause of the tilt along the y-axis, because this
is not further investigated yet. The tilt may also be caused by other artefacts. To
eliminate other artefacts, the following test can be conducted. A rotation matrix
based on the differences between the provided 𝜔, 𝜙 and 𝜅 and the used 𝜔, 𝜙 and
𝜅 could be applied to remove the tilt.

Besides this, there is not yet a link made between the theoretical setup and sensors
available in mobile devices. This may be done by using sensors in a mobile phone
for instance, namely the three axis gyroscope and the three axis accelerometer.
However, the accuracy of these sensors and how they would be used is not yet
explored in this research.

If those uncertainties can be removed, our general approach will become more
realistic and will almost certainly work better. The z-bias must be removed to turn
the histogram approach into a real world application, but the following things will
become an additional advantage too.

• The generated point cloud may become less distorted and therefore more
accurate, which will improve the matching between the database and the
user input. This means that there will be less noise present.

• The scale will become closer to the scale of the database and will therefore
improve the feature matching approach. The point cloud of the user and the
point cloud of the database will become closer in space.

66

8.2. Histogram approach 67

• The scale may improve the voxel down sampling approach, because all point
clouds can be down sampled according to the same scale.

• Our methods are based on an unknown scale. Incorporating scale will make
other methods for ceiling point cloud possible.

8.1.2. Voxel down sampling
Even though the voxel down sampling method provides a regular grid, it is highly
dependant on the selected voxel size and thus requires experimentation in order
to generate a representative output. For this reason, an approach that takes into
account the local distribution of points is suggested. By this we mean, that neigh-
bourhoods with different point densities representing more complex features would
be taken into account and down sampled using a different voxel size. In order for
this to be done automatically an octree based down sampling method could be a
better match for our approach and improve the pre-processing methodology. How-
ever, because time performance is an important factor; a comparative investigation
of the two methods is suggested not only in terms of the output grid’s accuracy but
also in terms of processing performance.

8.1.3. Noise removal
The applied noise removal is the combination of the two methods both of which
have scientific basis. It also takes into consideration two possible appearances of
outlier points. Points with only few neighbours are seen as the outliers and the
points that are far from their neighbours are likely to be the noisy points.

However, it has drawbacks that the selection of parameters may not be the best,
because the parameters for both methods are defined by trials and errors. Although
during the experimentation the results that more noisy points are removed while
less object points are omitted are regarded as the better outputs. This experimen-
tation process may be subjective.

The uncertainty of the noise removal method is that the density of input point clouds
influences the parameter selection especially the radius-based method. Two inputs
are tested. One are the original point clouds from DIM and another one is those
after down sampling. During the experimentation, the choices of radius parameter
are different since the down sampling reduce the density of raw point clouds, the
radius for searching outliers are selected to be smaller. The effect of point clouds
density on the parameter choices may weaken the usability of this noise removal
into automation for all kinds of input point clouds.

8.2. Histogram approach
The results from the different experiments are discussed in the following subsec-
tions.

8.2.1. Initial LiDAR database
The first test we conducted used user input and database as described in subsec-
tion 5.2.1. The results from this experiment are listed in subsection 7.2.1.

68 8. Discussion

NumPy approach
The Jaccard distance turned out to be the least suitable for our specific scenario.

In general the histograms that are visually similar, also provide the best matching.
For example, for user input 1, the west part of the hallway to the library and the
entrance to BG.WEST.370 are classified correctly. The histograms for the entrance
to BG.WEST.370 are displayed in figure 8.1. On the first glance, they might not seem
similar, but when compared to histograms that did not lead to a correct match, such
as for example room BG.WEST.370 as displayed in figure 8.2, they are indeed more
alike.

Figure 8.1: NumPy histograms Entrance
BG.WEST.370 which match good.

Figure 8.2: NumPy histograms BG.WEST.370
which did not match.

OpenCV approach
The classification results behaved as expected, visually less comparable histograms
such as the example of BG.WEST.370 (figure 6.16), did not result in the correct
classification. The intersection and correlation lead to more top one results
than the other metrics. However, these results are still not accurate enough to be
usable in an actual application.

SciPy approach
The hallway to room B was correctly classified as when using the point cloud that
was created from less frames (185 from a video of 26 seconds compared to 256
from a video of 31 seconds). When looking at the visualised histograms as dis-
played in appendix A.2, these indeed seem to be alike. Room BG.EAST.430 was
correctly classified for user input one, here 264 frames from a video of 45 seconds
are used compared to 147 frames from a video of 24 seconds.

On the first glance, the results displayed in table 7.3 do not seem thrust worthy
enough for an actual indoor localisation application. The user input point cloud
generated from input pictures seems to be incompatible with the database point
clouds. However, for types of input more similar to the database, it could work.
Combined with another matching methods, the histogram approach could be a
valuable asset.

8.2. Histogram approach 69

8.2.2. Experimenting with subsets as LiDAR user input on ini-
tial LiDAR database

The results from the experiments conducted using subsets of the original LiDAR
database as new user input, are displayed in subsection 7.2.2.
Within our test setup, all three methods performed almost equally well in terms of
correct first try assignments. However, for the SciPy method, there are three cases
where the correct classification was not even in the top three. For both the Numpy
and the OpenCV approach, this never happened.

NumPy approach
The time the processing of this method takes is shown in table 7.4. The processing
is near real-time. It can be done on the fly in an indoor navigation approach whilst
a potential user is moving from one location to another.

The results of the NumPy histogram comparison are shown on the map displayed
in figure 7.14. The Jaccard distance did not provide any correct matches, this can
indicate that it is not a suitable measure for our specific data set.
In all cases of wrong assignment, the histograms are indeed not the most distinctive
and for some the ceiling of different locations is visually alike (as is the case when
for example mixing up two hallways).

OpenCV approach
The time the processing of this method takes is shown in table 7.5. Note that these
times are slightly longer than the ones from the NumPy approach, this was to be
expected because we incorporated an additional measure for comparison (four in-
stead of three).

The results of the OpenCV histogram comparison are shown on the map displayed
in figure 7.15. No rooms are classified correctly using the Bhattacharyya or
Chi-squared distance. From this, we can conclude that these distance measures
are not suited for comparison of our type of data set.

SciPy approach
The time the processing of this method takes is shown in table 7.6. This method
required a longer processing time, this is partly due to the fact six distance mea-
sures are tested, but in general the method seems to be the slowest.

The results of the SciPy histogram comparison are shown on the map displayed in
figure 7.16. For BG.WEST.370, the Canberra measure deemed the upper part of
the exhibition hall to be more likely, this is surprising, both have differently looking
ceilings. The rest of the results can all be explained.

8.2.3. New LiDAR database and user input
For the actual LiDAR user input as displayed in appendix A.4, the histogram approach
is tested for all three methods (NumPy, OpenCV and SciPy).

70 8. Discussion

Figure 8.3: BG.WEST.370 histogram approach classified wrong.

Some of the quality indicators resulting from these confusion matrices can be com-
pared through table 7.8. The closer the quality indicators are to one, the better.
From the indicators listed in table 7.8, we can concluded that on its own, the his-
togram approach does not have a high enough quality for thrust worthy localisation
on the first try. The NumPy approach seems to be lead to more thrust worthy re-
sults than the other two measures.

For the NumPy approach, Room BG.WEST.370, as is displayed in figure 8.3, turned
out to be classified wrong in several cases. For input 4a, Berlage hall 1 and the
hallway to the Geolab seemed more likely. For input 4b, the hallway to the Geolab,
the hallway to room B and the hallway to the Berlage halls are the top three results.
The matching histograms are displayed in figure 8.4. There seems to be a shift in
the height values of the histogram which is especially evident for input 4b, and
to some degree also for input 4a. Expect from these shifts, the histograms are
very similar. An explanation for the shift has not been found. We tried different
methods for normalisation and not normalising at all, which should work for the
LiDAR input which is of the same scale. The input files with shift are all from the
original database from CGI, the fact that they are captured with a different scanner
could be a cause. However, it is still unexpected that normalisation does not correct
any possible differences and that it is not happening for all cases in which we used
these point clouds.
The results from the hallway to room B and the hallway to the Geolab are displayed
in figure 8.5. The hallway to room B was classified correct in three from the five
cases. The mismatch for input 9c and 9e might be explained by the fact that both
input point clouds are not dense, and capture only part of the hallway. Similar
point clouds such as the hallway to the Berlage hall, are deemed more likely. For
the hallway to the Geolab input a, among others the Geolab (room 7), the hallway
to the Berlage hall (room 3) and the hallway to room B (room 9) seemed more likely.
For input c this was also the case. For input b, the hallway to room B seemed more
likely. As can be expected, similar rooms such as hallways, have similar histograms
that might not be distinct enough for localisation purposes, this can be seen in the
histograms displayed in figure 8.6. The histogram from input 10a is again shifted.
Input 10b is classified reasonably well and input 10c might no be a representative
subset.

8.2. Histogram approach 71

Figure 8.4: BG.WEST.370 histogram approach classified wrong, matching NumPy histograms.

Figure 8.5: Hallway to room B and hallway to the Geolab histogram approach classification results.

72 8. Discussion

Figure 8.6: Histograms from input 10a, 10b, 10c and databases 3, 7, 9 and 10.

8.2. Histogram approach 73

Figure 8.7: BG.EAST.430 NumPy histogram approach classified wrong.

Figure 8.8: Matching histogram BG.EAST.430 NumPy histogram approach classified wrong.

8.2.4. DIM User input
Combined with the resulting accuracy measures listed in table 7.10, the NumPy
approach turns out to be the most thrust worthy histogram matching measure in
case of laser database input.

An example of a wrong classification is Room BG.EAST.430, as shown in figure 8.7.
When looking into the matching histograms, as displayed in figure 8.8, and the way
the point clouds correspond, this can make sense. A possible explanation for this
specific case can be that too much details are lost during the pre-processing.
Another example of the results is displayed in figures 8.9 and the matching his-
tograms in figure 8.10. Here we see that input a has a wider distribution of points
along the normalised height. Input b, like the database, does not have this, and
thus matches the database histogram in a better way.

74 8. Discussion

Figure 8.9: Room B NumPy histogram approach classified wrong for input a and right for input b.

Figure 8.10: Matching histogram Room B NumPy histogram approach classified.

8.3. Feature matching 75

8.2.5. Histogram matching pros and cons
The one dimensional signature acquired in the form of a histogram has several ad-
vantages for the matching process. Among others, it is rotation and scale invariant.
Furthermore, the processing is quick. This means that it could be implemented for
on the fly localisation feedback in a navigation solution.
However, the histogram approach also has a few challenges. The method works
best with pre-processed point clouds without much noise and the amount of wall
points that is captured can be of big influence. Furthermore, the user point cloud
ceiling should be parallel to the database ceiling, which means tilt handling is re-
quired.

In general, it might be that the database histograms for different rooms are not
distinct, or not representative enough to be used as a unique signature in a fin-
gerprinting process. This might be the case for different types of buildings than
the Architecture building in which our tests are conducted. However, for some
kind of incremental approach of a navigation solution, the trajectory information
will be available and the histogram approach might become more accurate because
locations that are not within reach of the user can be excluded.

DIM Specific pros and cons
For the DIM the results are strongly influenced by the subset the user captures. If
a specific room contains many different elements in only a specific subsection of
the ceiling, and the user measures a subset of that specific room which does not
contain any of such elements, the different signatures might not match. This is
something that could theoretically be solved by subdividing the room in subsets,
and perform matching based on the subsets. However, the use of subsets intro-
duces new challenges. We cannot know for sure that the user will capture one of
the subsets we selected, the captured section might be a combination of differ-
ent subsection. Furthermore, more smaller histograms can lead to less distinction
between the separate signatures, which makes the matching process less effective.
Another important factor is the fact that both the database point cloud and the user
input point cloud should be compatible in order for the histograms to be equally
smooth. This is somewhat enforced through the pre-processing as described in
section 6.2.

LiDAR Specific pros and cons
For LiDAR user input and LiDAR database, both point clouds are already compatible.
However, with a LiDAR scanner it is difficult to only capture a specific section. This
means that not only the ceiling will be captured, which means ceiling extraction is
required. Furthermore it is also possible that the point cloud is not captured on
room level. This means that separate rooms need to be extracted to be able to
match to the database.

8.3. Feature matching
The results from the different experiments are discussed in the following subsec-
tions. Combined with the resulting accuracy measures, the voxel size 0.2 turns

76 8. Discussion

out to be the most thrust worthy feature matching measure in case of a LiDAR input
while it is 0.3 for DIM input . For this reason, these will be used for combined testing
with a histogram matching approach

8.3.1. LiDAR database and user input
For the actual LiDAR user input as displayed in appendix A.4, the feature matching
approach is tested for four voxel sizes (0.2,0.4, 1.5 and 10).

Some of the quality indicators resulting from these confusion matrices can be com-
pared through table 7.12. The closer the quality indicators are to one, the better.
From the indicators listed in table 7.12, we can concluded that on its own, the fea-
ture matching approach has a good reliability for localisation on the first try.

From the overall performance results mentioned in figure 8.11 for 32 inputs, it can
be seen that the algorithm produced 98% correct results with average fitness of
0.97 and Root Mean Square Error (RMSE) of 0.15. It is observed that as the voxel
size increases, the strike rate of algorithm decreases. However, the average fitness
is still good, the RMSE has increased indicating spatial incoherence. From figure 7.22
and 7.17,it can inferred that the voxel size 0.2 produced best results with correctly
locating all inputs except for Geolab. The user inputs of Room B, Hallway to Geolab
and Room B showed good results with 0.2 and 0.4 but fails when small user inputs
are compared with large hallways for voxel size 1.5. Berlage rooms were confused
in localisation by both voxel size 0.4 and 1.5. Overall, the algorithm provides good
top5 results as the voxel size increases, although the ability to provide top1 results
decreases.

Timing is also crucial in determining location. The figure 7.18 shows that the timing
of localisation increases as the voxel size increases. The v0.2 has time range of 30-
45 seconds for 10 rooms. If only 3-4 rooms are provided to the algorithm using
the information, then the timing might reduce to 5-10 sec depending on voxel size.
It can be conclude that the variability in point distribution and density also gives
variation in timing and outcome of localisation.

Ability to distinguish location in neighbourhood rooms in database
The feature matching approach showed promising results (within voxel size 0.1 to
0.5) to provide localisation solution for LiDAR user inputs. For example, as depicted
in figure 8.12, Berlage 1, Berlage 2 and Room B have many similar features but
the algorithm provided correct location. In both cases, Room B comes at second
position with fitness value 0.89 and 0.90 which indicates that the alignment is very
similar. Also, the increase in root mean square error of Room B gives indication that
the corresponding feature pairs are not spatially locking. It is able to differentiate
rooms based on the local refinement of surfaces of ceiling points.

Ability to identify hallways with different scale of user inputs
It was interesting to observe that the algorithm was able to provide correct location
for Hallways to Room B and Geolab. An example for localisation of inputs from

8.3. Feature matching 77

Figure 8.11: Performance overview of feature matching algorithm for LiDAR Inputs

Figure 8.12: Berlage rooms feature matching correctly classified.

78 8. Discussion

hallway to Room B has been depicted in figure 8.13. It was possible to provide
correct location but there is a close competition from Hallway to Geolab in fitness
values. The larger input a much smaller RMSE than the smaller input but a small
section of ceiling as user input was able to align with the full hallway and reject
other rooms.

Figure 8.13: Results from database 9.

8.3.2. DIM user input
For the actual DIM user input as displayed in figure 7.19, the feature matching ap-
proach is tested for four voxel sizes (0.3,0.4, 1.5 and 10).

Some of the quality indicators resulting from these confusion matrices can be com-
pared through table 7.14. The closer the quality indicators are to one, the better.
From the indicators listed in table 7.14, we can concluded that on its own, the fea-
ture matching approach does not have good reliability for localisation of DIM input
on the first try.

From the overall performance results mentioned in figure 8.14 for 20 inputs, it can
be seen that the algorithm produced correct results with average of 55%, with best

8.3. Feature matching 79

average fitness of 0.70 and RMSE of 0.55 for voxel size 0.3. It is observed that as
the voxel size decreases, the strike rate of algorithm decreases, and the average
fitness increases while the RMSE has increased. The figure 7.24 and 7.19 shows
that there is similarity in trend of localisation among all voxel sizes. The hallway to
Geolab and Room B and some user inputs of BG.WEST.370 entrance were the most
mismatched locations while BG.WEST.370 (Coffee Corner), Room B and Berlage hall
2 showed best results. Overall, the algorithm provides top5 results for 10 out of
20 rooms, as the voxel size increases, although, the ability to provide top1 results
decreased drastically.

The figure 7.20 shows that the timing of localisation remains in similar range of
30-50 seconds for 10 rooms in all voxel sizes. There is consistency of timing for
most rooms. The v0.3 has best time of 30 seconds for 10 rooms for 10 inputs. If
only three or four rooms are provided to the algorithm using the information, then
the timing might reduce to 5-10 seconds depending on voxel size.

Figure 8.14: Performance overview of feature matching algorithm for DIM Inputs

Rigid Alignment for DIM user input
To apply matching algorithm for DIM input, it was necessary to do an initial alignment
using rigid transformation described in 6.3.2. Because the DIM inputs are from
different devices, they have different coordinate systems and scale. Hence, initial
transformation is not known and thus difficult to perform matching for DIM input.
It takes a lot of time to perform this method depending on number of points but
it brings the two point clouds in same space for matching process as depicted in
figure 8.15. The pre-processed input shows good rigid alignment with respect to its
raw input 2. Raw input 1 has more features than 2 which helps in better alignment.
From testing, it was observed that all pre-processed inputs align the point clouds
in perfect manner while raw inputs shows lot of variation. Thus, an exploration is
required for testing histogram approach after rigid alignment.

80 8. Discussion

Figure 8.15: An example of rigid transformation of raw and pre-processed DIM Inputs

8.3.3. Feature matching pros and cons
The 33 dimensional signatures acquired in form of FPFH features provides an advan-
tage of using the local refinement of surfaces inside ceiling point cloud with respect
to geometry, and topology to detect correct location. This approach of aligning
the point clouds on the basis of normal orientation, edge threshold and distance
threshold rejects the insignificant features. This is helpful in reducing time of align-
ment and maintaining the complexity of point clouds even with high down sampling.

The feature matching approach sometimes generate random unreliable results for
the inputs with which it has provided correct location mostly, as depicted in fig-
ure 8.16. This can happen because of several reasons. Some can be controlled,
while others can not. The parameters set for a particular operation might generate
false results while random testing or unexpected interruption. Since, the alignment
of point cloud is based on picking random correspondence pairs transformation,
the number of iterations for pairwise registration might not be able to successfully
align the point clouds. The number of neighbours or search radius are not optimum
enough to handle the complexity of point clouds and define local surfaces.

DIM Specific pros and cons
If the user inputs are in different coordinate systems and initial transformation in
unknown as in case of DIM , it is not suitable for matching. The algorithm provides
an option of rigid alignment for roughly aligning the two point clouds before actual
matching. This makes it slightly invariant to scale, translation and rotation. How-
ever, there should be realistic scale balance between input and database, otherwise
the results will become unreliable. For example, directly matching a small area in-
put with a very large hall will be inconsistent, instead dividing the large hall in two
or three parts will increase the reliability of results. The rigid alignment also takes

8.3. Feature matching 81

a lot of time depending on the size of point clouds. Furthermore, DIM is not able to
provide accurate results for same parameters as depicted by 7.23 and 7.24. This
is also because the levels of local surface described in figure 6.18 changes with
inconsistency in point distribution and variation in number of points.

LiDAR Specific pros and cons
For the LiDAR input, the algorithm is also able to provide high accuracy and precision
with small voxel sizes as depicted in 7.21. It is able to identify hallways with even
small user inputs although this sensitivity decreases as the voxel size is increased.
The algorithm is also able to distinguish similar rooms up to certain extent if a small
voxel size is used for comparison. The timing of algorithm for one user input to
find match in 10 rooms is about 30-50 seconds. This can be reduced by storing
FPFH features in database instead of directly using the point cloud can reduce the
time. Also, if a continuous feed of LiDAR input is provided, the algorithm can perform
localisation in a faster way reducing the number of rooms to be compared using
trajectory information.

Figure 8.16: False sample results from database 6, 7 and 8.

82 8. Discussion

8.4. Combined results
Combining different fingerprinting output through weighing, requires more exper-
iments. The behaviour could be different for different files. Further more, the
performance of the combined approach is not yet perfect. For future work it would
be advisable to look into a more suitable method to combine the different mea-
sures. For now it seems that combining different methods with our approach, can
reduce the absolute quality of the results. The might be explained by the fact that
it in some way averages out the results, meaning that if one approach has a proper
classification, it is relatively easily brought down.

8.5. Confusion matrix
Something to note from our use of a confusion matrix, is that the amount of samples
is limited (32 samples for 10 rooms in case of the LiDAR user input and 20 samples
for 10 rooms for the DIM input). This is less ideal, for a more solid quality indication,
more samples need to be tested.

9
Research questions

In this chapter an overview of the answers to the research questions of this research
is provided. To answer the main research question, first our sub-questions will be
answered.

9.1. What is a room?
We try to perform localisation based on identifiable ceiling characteristics of each
room. For this reason, the occurrence of a ceiling is an important characteristic ev-
ery room should full fill. A room does not necessarily have to be enclosed between
walls, but a crisp boundary between the ceilings of different rooms is desirable for
our solution. This does not mean that the ceiling should be similar for a full room.
Based on separated ceiling characteristics within a room, it could be possible to
divide a room within subsets, and to perform localisation based on subset level.

How to distinguish hallways?
Because hallways are considered to be rooms, we will not make any distinctions be-
tween rooms and hallways. Because hallways can be long structures, it might not
be very informative to solely notify to the user that they are in a hallway. For this
reason, it could be advantageous to divide hallways in (sub)rooms. A drawback of
this approach is that this will only be possible if there is enough distinction between
the ceiling parts of such subsections.

How to distinguish the ceiling of a room?
The base structure of the ceiling often is a planar structure on the highest part of
the room. Because our approach relies on user pictures, only the visible part of this
structure will be considered to be part of the ceiling.

The walls, structures orthogonal to the ceiling, connected to both the ceiling and
ground base structure, are not considered to be part of the ceiling. On the other
hand, the upper wall points do indicate the ceiling boundary and are thus part of
the ceiling characteristics. Keeping some wall points would provide a better indi-
cation of what the ceiling is. A dilemma with keeping a selection of wall points is
deciding which wall points to keep. Depending on the size of the room, the user
input will not have many wall points or maybe even no wall points at all. For this
reason, keeping too many wall points in the database could lead to incorrect match-
ing. Furthermore, using more points would lead to slower processing. It would also
be possible to keep some wall points in both our database and our user input for
the cases where the user is more likely to capture wall points. This would require

83

84 9. Research questions

some indication as to in which situations wall points would be feasible to keep.
Furthermore, automatically filtering out wall points will require some classification,
currently we lack such semantics.

Generally speaking, all structures that are connected to the ceiling, but do not
reach the ground, are considered to be part of the ceiling. This means that rather
low hanging object are still considered part of the ceiling, because they strongly
contribute to the uniqueness of the signature of each room. A downside of incor-
porating features that are too low, is that it might not be possible for the user to
capture them together with the base ceiling with their camera pointing upwards.

9.2. What ceiling characteristics should be captured?
If a specific room has a very distinct section, you cannot provide pointers to users
to capture this specific section, because their location is unknown. Asking the user
to capture a ceiling part close to a certain wall or door would also require some form
of additional orientation, which is currently not incorporated in our application.

Wall points are difficult to handle and can lead to noise and unfair comparison. To
prevent wall points from being captured, the user can get an instruction to try to
capture just the ceiling by filming as much in the middle of the room, where no
walls are present, as possible.

What part of the ceiling should be captured?
For this approach to work, the part of the ceiling captured by the user should be a
good representation for (sub)rooms stored in the database. When using a database
which only contains the full ceiling of a room, it could happen that the user captures
a smaller subset which does not necessarily match the corresponding database el-
ement. A solution would be to divide the room in distinct subsets. However, this
would introduce new problems.

The subsets we create cannot be known to the user (e.g.“Only capture similar
parts of the ceiling.” is no ambiguous instruction). Because the user might have a
different idea of possible subsets than the person constructing the database. When
subsets are used, the user might capture overlapping subsets.
Furthermore, more subsets would lead to a more elaborate database with more
similar entries. Less distinctions between database elements means that it is more
likely that a wrong room is assigned during the matching process.
For this reason, it would be best to keep the full ceiling as much as possible and
only create subsets for very distinct boundaries. The user has to be aware that
capturing overlapping subsets causes problems.

Another challenge is when the user is walking the stairs. The camera position
extracted from the frames is no longer parallel to the ceiling. It should therefore be
further investigated if it possible to generate a point cloud when walking the stairs
and if it is possible to match this user input of the ceiling to the database.

9.2. What ceiling characteristics should be captured? 85

Figure 9.1: A possible instruction image to show how users should capture the ceiling point cloud.

What user instructions are necessary to make sure that the
right parts are captured?
Ease of use is very important if we want our application to be actually usable
[Courage and Baxter, 2005]. If our user needs to specify too many things be-
forehand (e.g.“How many windows does your room have?”), the application can
not be considered as an on-the-fly efficient localisation application.

In this research, two possible methods of user input are considered.

1. One in which the user provides a short video with 30 or 60 frames per second
of the ceiling from which a point cloud can be generated in a DIM approach.
An advantage of using a mobile phone is that the user knows which room and
which part of the ceiling is captured, because the user can immediately adapt
to the visualisation of the images/video on a screen. For a mobile phone,
a possible user instruction can be provided through the figure shown in fig-
ure 9.1. Here the user to captures the ceiling from different angles. Capturing
different angles between feature points on the ceiling is desirable for the DIM
process.

Starting from the initial position (0, 0, 0), the local coordinates and orienta-
tions have to be connected to the frames of the images/video and provided

86 9. Research questions

to the DIM software before the reconstruction. The reason for this, is that the
point cloud has be parallel to the x,y-plane to make the z-values from the
user input comparable with the database. It is however not explored if this
information can be provided from sensors in mobile phones. In addition to
this, it is therefore also unknown if this information can be provided under the
condition of all possible angles. A stable solution in which the angle is fixed,
can be achieved by providing users a stand for their mobile phone.

2. Another option is using an other device to capture point clouds. An example
could be a LiDAR scanner. Besides the costs of a LiDAR scanning device, giving
specific user input will be more difficult and will therefore require other pre-
processing methods to enable indoor localisation. This is not considered to
be very likely for “every day ” use cases.

9.3. What is a possible method to perform indoor
localisation using point clouds of the ceiling?

A possible method is one that, given the available resources and application goal,
can help identify the user’s initial location. Fingerprinting methods are used to
identifying a unique signature consisting of key ceiling features based on geometric
properties of points, and the pattern of height information of the points, for given
“user” and “database” inputs. After experimenting on various possibilities and iden-
tifying the limitations and obstacles in our inception report, the feature matching
and histogram matching approaches are considered the most feasible. The rea-
son for this is that these methods are scale invariant and might provide a unique
fingerprint on room level.

9.4. What kind of pre-processing is required for these
possible methods?

The goal of pre-processing in a fingerprinting approach is to facilitate and improve
the comparison between both a “user” and “database” point clouds. By this, we
mean to process the point clouds in such a way that orientation, scale, reference
system, noise and point density will not affect the outcome of the matching as much
as would be the case for raw data. Depending on the used matching method, not
all of the aforementioned factors are of equal importance.

For the histogram approach, the following aspects require pre-processing:

• Tilt influencing the z-values.

• Features such as wall points influence the fingerprint of the (sub)room and
therefore the matching.

• The database gathered with a LiDAR scanner has a different point density and
less noise than the DIM user input. To improve the quality of the user input,
noise removal and voxel down sampling can be used.

9.5. Can point clouds from the ceiling be used for indoor localisation
purposes on room level? 87

• The amount of bins used for matching in the histogram approach is based
on the amount of input points. If the density of the user input point cloud is
equal to the density of the database, the amount of bins will represent the
two point clouds better. Voxel down sampling can be used to achieve this.
Voxel down sampling can be optimised when the scale of the user input is
known.

For the feature matching approach, the following aspects require pre-processing:

• Variation in scale and coordinate systems of DIM inputs and database required
rigid alignment for matching.

• To improve the quality of the user input, noise removal and voxel down sam-
pling can be used.

• Input parameters for algorithm such as voxel size, thresholds for pruning and
iteration number have to be refined for a particular database and input.

• To ensure that there is realistic scale difference between user input and database,
initial transformation can be derived using device sensors.

9.5. Can point clouds from the ceiling be used for
indoor localisation purposes on room level?

To answer the main research question, we decided to implement a fingerprinting
approach. In this approach, we extract a unique signature from a user input point
cloud, generated from pictures through DIM, and from database point clouds. By
comparing both signatures, we can find the best match and in this way perform
localisation. For point clouds generated from user input images, there are a few
difficulties, namely the tilt and wall points are not yet automatically handled.

In this paragraph, we will describe the outcome of the fingerprinting approach and
the accuracy. The accuracy of different fingerprinting methods is indicated with
the 𝜅-coefficient. The 𝜅-coefficient with DIM input for the fingerprinting approach
is 0.17. With the chance component, the accuracy is 25 %. This accuracy is not
high enough to perform high thrust worthy localisation using input pictures. The
matching did improve using LiDAR input. The 𝜅-coefficient was 0.47. With the
chance component, the accuracy is 53 %, which is also relatively low. This might
be explained with the fact that in some cases, a shift in height values occurs as for
example displayed in figure 8.4, but why this happens is not clear.

The results of the feature matching approach are better for the LiDAR input, but not
for the DIM input. The 𝜅-coefficient for the DIM user input is 0.11. With the chance
component, the accuracy is 20 %. This is not that high. For the LiDAR user input,
the 𝜅-coefficient is 0.93. With the chance component, the accuracy is 94 %.

88 9. Research questions

This means that using point clouds from the ceiling for indoor localisation purposes
would be promising in a feature matching approach provided that the user could
capture LiDAR input and the ceilings are distinct as in the Architecture building. For a
DIM user input the results are less promising, this might have to do with the different
characteristics of the input point cloud and the database point cloud and the fact
that the captured subsections might not be representative for a full room.

10
Conclusion and

recommendations
This is a concluding chapter explaining the scientific and technical implications for
society of the research findings described in this report in considerable detail.
As discussed in chapter 8, our basic solution needs to be further adapted. Recom-
mendations will be given for this.

10.1. Conclusion
The aim of our project is to answer the following main research question:

Can point clouds from the ceiling be used for indoor localisation purposes on room
level?

To come to an answer for this question, a fingerprinting approach is. In such an
approach, an identifiable signature is extracted from a user input point cloud which
is generated from pictures through DIM and database point clouds. Indoor localisa-
tion is implemented by comparing both signatures and selecting the best match.

In the first step, the pre-processing of point clouds from DIM is performed. As shown
in the results, tilt removal, down sampling and noise removal of point clouds are
required for the further matching method. Handling tilt is conducted by providing
camera parameters before the reconstruction of DIM. The results show that the point
clouds after tilt removal is more in line with the x,y-plane. Other pre-processing
steps involve down sampling in a voxel grid and noise removal. In order to see
the effect of both down sampling and noise removal, inputs after different steps
of down sampling and noise removal are tested in the NumPy histogram approach,
the best results appear to be voxel noise down sampling.
An alternative for DIM could be to use the point clouds from LiDAR as user input. In
this way, some challenges introduced by the DIM user input can be solved.

The histogram approach is one of possible signature matching methods which has
three different implementations namely the NumPy approach, OpenCV approach
and the SciPy approach. The histograms are generated from the normalised height
and occurancy values. The DIM user input and laser user input are tested, the
NumPy approach with the Chi-squared distance measure turned out to be the
most thrust worthy histogram matching in both cases. This histogram matching
is a simple one-dimensional approach, it is relatively robust and to some degree

89

90 10. Conclusion and recommendations

insensitive to outliers. On its own, the histograms approach is not thrust worthy
enough to lead to indoor localisation.

Another possible way of fingerprinting matching is feature matching, which uses
the geometric property of points to get the similarity between input and database
point clouds. An advantage of this feature matching is that it takes into considera-
tion, the fitness of local surfaces of ceiling with respect to geometry and topology to
detect correct location. It can also align the point clouds roughly before the actual
matching if they are have different scale, rotation and translation as in the case of
DIM. Feature matching is performed by detecting the correspondences by querying
the nearest neighbour in the 33-dimensional FPFH feature space and fitting local
surfaces by performing transformation based on key correspondence pairs. For a
LiDAR input the feature matching provides trust worthy results for indoor localisation.

It is also possible to combine the outcome from different fingerprinting methods,
and therefore the separate methods can support each other if necessary.

10.2. Recommendations
The recommendations deducted from the research described in this report can be
divide into several categories :

Database point cloud
• Use of the more precise 100 % point cloud instead of 9 % as database might
make a minor difference. However, especially for the feature matching the
results with the LiDAR input are already of high quality.

• Investigate to what extent distinct ceilings are present in different buildings
than the Architecture building.

Handling tilt
• To handle tilt in all possible use cases, further testing of the theoretical setup
described in this report is required.

• Investigate how the theoretical setup can be linked to sensors available in
mobile devices.

• Investigating how incorporating the obtained scale and orientation will influ-
ence our, and future methods.

Dense image matching
• Investigate which DIM software could generate a usable point cloud when
providing the local coordinates and orientation, and under which conditions
this is possible.

• Test the limits of the DIM approach between needed overlap of input frames
and the processing speed point cloud.

10.2. Recommendations 91

• Investigate which area/subset of the ceiling must be captured for successful
indoor localisation.

• Test automation of this process within a complete application.

Wall points
• Investigating how much wall points (or curtains as shown in figure 5.10) are
likely to be captured in the user input and adapting the database to this.

• Deal with the classification of ceiling points and only keep the points classified
as ceiling. This way, ceiling point extraction can be automated. A possible
way to classify ceiling points makes use of the MAT.

Matching methods
• Look into more advanced ways of histogram comparison than simply using
the distance between bins. An example could be to consider the use of the
variable bin size distance described by Ma et al..

• Incorporate advanced techniques of point cloud structure simplification and
registration methods for optimum comparison in features provided in [Zhou
et al., 2018] and [Rusu et al., 2009].

• Investigate new methods of combining the outputs of different fingerprinting
approaches. Different weights and different solution than the ones described
in section 6.3.3 can be applied to improve the combined matching.

Incorporating supporting information
• Test how incorporating dead reckoning, trajectory information and topological
information could improve indoor navigation. The trajectory information from
for instance a mobile laser scanner could be used to built a navigational graph
with the (sub)rooms as different nodes. Using this navigational graph would
require an initial user location, but could be used after that for comparing the
user input with specific sections of the database.

• Test if a certain range provided by GNSS could be used for comparing the user
input with specific sections of the database.

11
Reflection

In this section we will reflect on the project described in this report. We will do this
based on the expectations as listed in chapter 3. In this chapter, we specified what
we wanted to achieve using the MoSCoW method (section 3.1), we will comment
on these MoSCoW statements as part of the reflection. We will also assess the
fitness for use of our approach for different types of users. Finally, we will assess
the privacy issues involved with indoor localisation methods such as ours.

During this project, we wanted to consider the separate steps of a specific indoor
localisation approach using point clouds of the ceiling. We managed to do this.
By combining the separate steps of our work flow, we are now able to indicate
under what conditions, it will be feasible to perform indoor localisation using point
clouds. This means we fulfilled the aim we set for this project. We expected some
challenges on the way, and these challenges indeed happened. Every step we took,
we discovered new things we had to figure out. Because of this, we did not manage
to achieve a fully automated application, this was in line with the expectations. We
feel like we handled the challenges on our way well, we performed quite elaborate
testing with many rooms and looked into the basics of a completely new indoor
localisation approach. Future research on indoor navigation and localisation can
benefit from our findings.

11.1. MoSCoW reflection
In our Inception report, we provided an overview of the things we would have liked
to achieve during this project by using the MoSCoW method [Mulder, 2017]. In this
section, we added some comments to the MoSCoW overview, to assess what we
have achieved.

Must:

• See if pictures from the ceiling provided by users can be used for localisa-
tion (are they differentiating enough). For this we will investigate in which
way (e.g. which subsection of the ceiling, pictures or videos etc.) the users
should provide their input to acquire a feasible result. We will also need to look
at the quality of the localisation. The accuracy of different fingerprint-
ing methods using DIM user input, is shown in figure 7.23. Within
the fingerprinting methods we attempted, this accuracy is not high
enough to perform high thrust worthy localisation using input pic-
tures. There are also experiments conducted using LiDAR input, the
results of these experiments are shown in figure 7.21. Depending on

92

11.1. MoSCoW reflection 93

the application and type of use, the results of the feature matching
fingerprinting approach can be of high enough quality for localisa-
tion.

• Extracting the (distinct) signature of a point cloud. We found several ways
in which the signature of a point cloud can be extracted. The signa-
ture could be a histogram of the height values of the points, or even
the points in itself.

Should:

• Compare the performance of different software packages for DIM, such as
COLMAP, Pix4D, Archicad and VisualSFM, to see which software package pro-
vides the most suitable results for our approach. As listed in our inception
report, we performed several tests with DIM. Pix4D provided good
results and was user friendly.

• Accurate localisation based on room level by using additional information like
dead reckoning combined with topology information or the scanner trajectory.
This is given as a recommendation for further research.

• Implement a minimal user interface (prototype). This could be done when
dead reckoning is incorporated and gives plausible results.

Could:

• Perform automatic classification of ceiling points from the point cloud. For
this we could for example use the MAT, or look at intersections between a
line perpendicular to scanner trajectory and fitted planes planes to discover
a possible ceiling height at which we can extract points. For automation
of wall point removal, this is given as a recommendation for further
research.

• Incorporating door, window and furniture classification from the point cloud to
improve the efficiency and accuracy of localisation. This is not considered
to be part of this research anymore.

• Incorporating machine learning; Include user measurements in a database to
make future localisation more accurate and more efficient (crowd sourcing).
This is not considered to be part of this research anymore.

• Create a web platform and application for taking input and sending data to a
server, process it and show the location of the user on a map. This could
be done in future research, provided that dead reckoning is incorpo-
rated and gives plausible results.

• Look into different necessities for different user types (e.g. firefighters need
different things than students). See section 11.2.

Would not:

94 11. Reflection

• Incorporate Wi-Fi fingerprinting.

• Look at navigational graph between rooms for navigational purposes.

• Look at different buildings than the architecture building.

11.2. Suitability for use
Our solution for indoor localisation is only relevant if it caters for the different needs
of possible use cases. For this reason, it is important to indicate whether or not our
implementation can lead to a realistically usable solution.
In general, ease of use, processing time and accuracy are all important factors that
determine if an application is usable. Most users prefer an application that is easy to
use. Users cannot be expected to be active part of the localisation, but some users
might be willing to share their own input data to enrich our database [Kaasinen,
2002]. However, whether or not an application is easy to use, has an acceptable
processing time or accuracy, strongly depends on the use case. In general users for
example like to use a fast application. However, for certain user groups, run time
can be of bigger influence than for the “general” user. Depending on the amount of
(sub)rooms in the database, the fingerprinting process can become slow and thus
unsuitable for applications which rely on fast run times.

To determine what possible user groups could need, we developed a few user
categories which could benefit from indoor localisation. Based on these user groups,
we will list a few requirements to indicate whether or not our approach needs to
be adapted to be suitable for that specific type of use. This is summarised in
figure 11.1.

• Civilians: They want to find their way inside a public building under everyday
conditions. Examples can be students looking for the room they have an
exam or lecture, or people having an appointment at a specific location in a
hospital. Time can be of influence, but in general slightly longer processing
times would be acceptable (e.g. matter of minutes). Accuracy is important,
because without a certain degree of accuracy, a user would not be tempted
to use an application implementing our solution. User equipment can also
be a problem, elderly people might not have a smart phone, and most users
will certainly not have a LiDAR scanner device available. However, this type of
user can be expected to have time and opportunity available to take out their
mobile phone, provide data and wait for a response. Especially when provided
clear instructions, the conditions will be suitable for our implementation.

• Staff: They need to find their way inside their work-space. New personnel of
big organisations might not know their way around the office straight away.
Until they do, indoor localisation can be a solution for them. Often, they have
the same requirements as the civilian, however, they might have a little less
time on their hands meaning that a quicker solution is preferred.

11.2. Suitability for use 95

• Emergency managers: They need to find their way inside a building under
potentially hazardous conditions. Examples can be firemen who needs to save
someone from a burning building, policemen who need to chase a suspect or
a paramedic needing to get to a patient. Time is a big factor, the faster
the application works, the better. Coding in C++ and implementing indexing
such as KD-trees and clustering of the point clouds can improve the speed
of an application implementing our solution [van Oosterom and Quak, 2018].
Accuracy is crucial, mistakes cannot be afforded. Next to the safety of others,
the main concern for emergency workers would be their own safety [Nilsson
et al., 2014]. If the application cannot guarantee this safety, it cannot be
used. The user will probably not have the possibility to physically hold a mobile
device to provide input. This might be solved by attaching the device to the
equipment of the user, such as the helmet of a firefighter. Furthermore, the
equipment to capture input can be a problem. Under hazardous conditions,
smart phone cameras might not work due to for example smoke development.
This might be solved by using a Sound Navigation Ranging (SONAR) based
input. Something that cannot be easily solved, is a situation in which the
changes in environment caused by the hazardous situation, might not match
our database point cloud anymore.

• Robots: In robotics indoor navigation, and thus localisation, is often required.
An example could be the SPENCER project, this is “a European Union-funded
research project that advances technologies for intelligent robots that operate
in human environments.” [Verbree, 2018], [Lilienthal and Arras, 2015] Here
robots are used to help people find their way on Schiphol Airport. A possible
implementation of our solution in this field, could be to use a underlying nav-
igational graph containing different locations as nodes. The robot performs
on the fly localisation to locate itself on the reference graph. The importance
of processing time and accuracy depend on the type of use for the robot.
Ease of use is less of an issue because the robot will consequently follow the
programmed instructions. A LiDAR scanner mounted on the robot can be used
to continuously capture the ceiling.

An application implement our approach requires a certain level of user capabilities
and user effort. The user needs to be equipped with a modern mobile device with a
camera and a network connection to link to the point cloud database and to connect
to a server in which processing can be performed. The quality of the user input will
determine the quality of the localisation result. If the user input is a long video,
with many overlapping frames which capture the ceiling from different angles at
high quality, the resulting point cloud will be of better quality. However, the high
amount of frames could also lead to slow processing. This means there will be a
trade-off between quality and speed, which is a drawback.

The implementation we came up with, can be considered to be a first building block
for more specific applications that would need indoor localisation. Indoor naviga-
tion for example, would require an indoor localisation solution to build upon.

96 11. Reflection

Figure 11.1: Assessing the importance of certain requirements of an indoor localisation method for
different types of use. For staff and civilians, only DIM input will be feasible, which means the accuracy
and processing time will be limited with our approach and might not suit their needs. For the emergency
manages, LiDAR or SONAR input can lead to suitable results. Use cases with a robotics user do not require
ease of use, but the desired accuracy and processing time depends on the use case of the robot.

For future research we would recommend to further look into the requirements of
different potential user groups. This can be done through for example interviews,
surveys and wants and needs analyses of the desired user groups. The results
from such a study can lead to more in-depth user profiles, personas and scenarios,
each with their own requirements [Courage and Baxter, 2005]. Based on these
requirements, it would be possible to adapt the basic approach we came up with
into a suitable solution for a specific user group.

11.3. Privacy
Indoor localisation incorporates the use of personal data according to the Euro-
pean data protection directive (95/46/EC) [European Commission, 1995]. For an
indoor localisation application, privacy concerns could mainly be raised in relation
to “tracking”. If an application for example requests access to the user’s location,
and it is possible to identify the user, it is possible to match the location request
with the user’s identity. Put in other words, the indoor location of a natural person
could lead to the identification of this person, and thus can be considered to be an
intrusion on the privacy of our user [van Loenen, 2019].
However, users might not be aware of their own privacy [Kaasinen, 2002], for an
application we need to take into account certain privacy measures. It is important to
notify our user that their location is privacy sensitive information, ensuring informed
consent. For an application using our methods, possible data that the users might
need to share could be:

• The specifications of their personal mobile device such as camera specifica-
tions.

11.3. Privacy 97

• Data derived from sensors and third party applications such as a compass
application, applications counting steps etc.

• The input for they provide to the localisation application.

Making the application privacy preserving, would mean we are at least required
to notify the users about all aspects of the application that could possibly endan-
ger their privacy Nijhawan et al. [2013]. This means we need to notify the user
regarding to:

• The types of data that are going to be used.

• The way these data are going to be processed.

• Which of these data are going to be shared with other applications and how.

• Provide the user with a privacy agreement that will incorporate the aforemen-
tioned information.

However, informing the user is the very least we can do. We also try to anonymise
the information during our processes as much as possible, so that it is no longer
possible to match the identity of our user to their location. This can for example be
done by identifying users under a number instead of a name, and by changing this
number randomly for every independent use.

References
Bot, F., Nourian, P., and Verbree, E. (2019). A graph-matching approach to indoor
localization using a mobile device and a reference bim. Int. Arch. Photogramm.
Remote Sens. Spatial Inf. Sci., XLII-2/W13:761–767. https://doi.org/10.
5194/isprs-archives-XLII-2-W13-761-2019.

Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s Journal of Software Tools,
120:122–125.

Bresson, G., Alsayed, Z., Yu, L., and Glaser, S. (2017). Simultaneous localization and
mapping: A survey of current trends in autonomous driving. IEEE Transactions
on Intelligent Vehicles, 2:3:194–220. ISSN-2379-8858.

Brezmes, T., G. J. and Cotrina, J. (2009). Activity recognition from accelerome-
ter data on a mobile phone. https://link-springer-com.tudelft.idm.
oclc.org/content/pdf/10.1007%2F978-3-642-02481-8.pdf.

Broersen, T., Fichtner, F., Heeres, E., De Liefde, I., Rodenberg, O., Meijers, B., Ver-
bree, E., Van der Spek, S., and Ten Napel, D. (2015). Project pointless: Identify-
ing, visualising and pathfinding through empty space in interior point clouds using
an octree approach. TU Delft: Student report. http://resolver.tudelft.
nl/uuid:c9e55f6a-c874-4aee-9ceb-6bbcf34d9dc7.

Choi, S., Zhou, Q., and Koltun, V. (2015). Robust reconstruction of indoor
scenes. IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
10.1109/CVPR.2015.7299195.

Conesa, J., Antoni, P.-N., Joaquín, T.-S., and Montoliu, R. (2018). Geographical
and fingerprinting data for positioning and navigation systems: challenges, ex-
periences, and technology roadmap. Academic Press, an imprint of Elsevier.
ISBN-9780128131909.

Courage, C. and Baxter, K. (2005). Understanding your users: A practical guide to
user requirements methods, tools, and techniques. ISBN-13-978-1558609358.

Eckart, B., Kim, K., and Kautz, J. (2018). Fast and accurate point cloud registration
using trees of gaussian mixtures. arXiv:1807.02587.

European Commission (1995). Directive 95/46/ec on the protection of individuals
with regard to the processing of personal data and on the free movement of such
data. Retrieved from: https://eur-lex.europa.eu/legal-content/
en/TXT/?uri=CELEX%3A31995L0046 at 24-06-2019.

98

https://doi.org/10.5194/isprs-archives-XLII-2-W13-761-2019
https://doi.org/10.5194/isprs-archives-XLII-2-W13-761-2019
https://link-springer-com.tudelft.idm.oclc.org/content/pdf/10.1007%2F978-3-642-02481-8.pdf
https://link-springer-com.tudelft.idm.oclc.org/content/pdf/10.1007%2F978-3-642-02481-8.pdf
http://resolver.tudelft.nl/uuid:c9e55f6a-c874-4aee-9ceb-6bbcf34d9dc7
http://resolver.tudelft.nl/uuid:c9e55f6a-c874-4aee-9ceb-6bbcf34d9dc7
https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX%3A31995L0046
https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX%3A31995L0046

References 99

Faragher, R. and Harle, R. Location fingerprinting with bluetooth low en-
ergy beacons. IEEE Journal on slected areas in communication, 33-11:135.
10.1109/JSAC.2015.2430281.

Flikweert, P. (2019). Automatic extraction of an indoorgml navigation graph from
an indoor point cloud. TU Delft: master thesis. http://resolver.tudelft.
nl/uuid:b11f5b57-5362-4b45-bed6-d5bc154d86aa.

Freedman, D. and Diaconis, P. On the histogram as a density estimator: L2 theory.
Zeitschrift f¼r Wahrscheinlichkeitstheorie und Verwandte Gebiete, 57:4:453–476.
https://doi.org/10.1007/BF01025868.

Gagunashvili, N. (2009). Chi-square tests for comparing weighted histograms.
Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, 614:2:287–296. https:
//doi.org/10.1016/j.nima.2009.12.037.

Huang, Y., Wang, H., Zhan, K., Junqiao, Z., Popo, G., and Feng, T. (2015). Image-
based localization for indoor environment using mobile phone. The International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sci-
ences, XL-4/W5:793–800. 10.5194/isprsarchives-XL-4-W5-211-2015.

Jones, B. and Aoun, M. (2009). Learning 3d point cloud histograms. CS229 Machine
Learning Project.

Jones, E., Oliphan, T., and Peterson, P. (2001). Scipy: Open source scientific tools
for python. http://www.scipy.org/.

Kaasinen, E. (2002). User needs for location-aware mobile services. Per-
sonal and Ubiquitous Computing, 7:1:70–79. https://doi.org/10.1007/
s00779-002-0214-7.

Khallaghi, S. (2017). Pycpd: Tutorial on the coherent point drift algorithm.
http://siavashk.github.io/2017/05/14/coherent-point-drift/,
Retrieved on: 21-06-2019.

Kwolek, B. (2004). Finding location using a particle filter and histogram matching.
ISBN-978-3-540-24844-6.

Ledoux, H., Peters, R., and Arroyo Ohori, K. (2018). Lecture notes on digital terrain
modelling (geo1015).

Lemmens, M. (2018). Lecture notes on sensing technologies (geo1003).

Lemmens, M. (2019). Lecture notes on data quality (geo1008).

Lightvoet, B. (2017). Crowdsensing as a tool for up-to-date road asset distress de-
tection. https://repository.tudelft.nl/islandora/object/uuid:
61924097-f0f7-4d5a-979c-fe991017a3ce?collection=education.

http://resolver.tudelft.nl/uuid:b11f5b57-5362-4b45-bed6-d5bc154d86aa
http://resolver.tudelft.nl/uuid:b11f5b57-5362-4b45-bed6-d5bc154d86aa
https://doi.org/10.1007/BF01025868
https://doi.org/10.1016/j.nima.2009.12.037
https://doi.org/10.1016/j.nima.2009.12.037
http://www.scipy.org/
https://doi.org/10.1007/s00779-002-0214-7
https://doi.org/10.1007/s00779-002-0214-7
http://siavashk.github.io/2017/05/14/coherent-point-drift/
https://repository.tudelft.nl/islandora/object/uuid:61924097-f0f7-4d5a-979c-fe991017a3ce?collection=education
https://repository.tudelft.nl/islandora/object/uuid:61924097-f0f7-4d5a-979c-fe991017a3ce?collection=education

100 References

Lilienthal, A. J. and Arras, K. (2015). About spencer. Retrieved from http://www.
spencer.eu/project.html at 21-06-2019.

Ma, Y., Gu, X., and Wang, Y. Histogram similarity measure using variable bin size
distance. Computer Vision and Image Understanding, 144:981 – 989. https:
//doi.org/10.1016/j.cviu.2010.03.006.

Mahmoudi, M. and Sapiro, G. (2009). Three-dimensional point cloud recognition via
distributions of geometric distances. https://doi.org/10.1016/j.gmod.
2008.10.002.

Mautz, R. (2012). Indoor positioning technologies. Schweizerische Geodätische
Kommission. ISBN-978-3-908440-31-4.

Mulder, P. (2017). Moscow method: for setting requirements by order of prior-
ity. Retrieved from https://www.toolshero.com/project-management/
moscow-method/ at 27-04-2019.

Myronenko, A. and Song, X. (2009). Point-set registration: Coherent point drift.
CoRR, abs/0905.2635. http://arxiv.org/abs/0905.2635.

Nijhawan, L., Janodia, M., Muddukrishna, B., Bhat, K., Bairy, K., Udupa, N., and
Musmade, P. (2013). Informed consent: Issues and challenges. 10.4103/2231-
4040.116779.

Nilsson, J., Rantakokko, J., Händel, P., Skog, I., M., O., and Hari, K. (2014). Ac-
curate indoor positioning of firefighters using dual foot-mounted inertial sensors
and inter-agent ranging. Position, Location and navigation Symposium (PLANS).
10.1109/PLANS.2014.6851424.

Oliphant, T. (2006). NumPy: A guide to NumPy. USA: Trelgol Publishing. http:
//www.numpy.org/.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blon-
del, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn:
Machine Learning in Python . Journal of Machine Learning Research, 12:2825–
2830.

Pirouz, N. e. a. (2016). Voxelization algorithms for geospatial applications: Com-
putational methods for voxelating spatial datasets of 3d city models containing
3d surface, curve and point data models. MethodsX, 3:69–86. (http://www.
sciencedirect.com/science/article/pii/S2215016116000029).

Rusu, R. B., Blodow, N., and Beetz, M. (2009). Fast point feature histograms (fpfh)
for 3d registration. IEEE International Conference on Robotics and Automation,
pages 3212–3217. 10.1109/ROBOT.2009.5152473.

Rusu, R. B. and Cousins, S. (2011). 3D is here: Point Cloud Library (PCL). In IEEE
International Conference on Robotics and Automation (ICRA), Shanghai, China.

http://www.spencer.eu/project.html
http://www.spencer.eu/project.html
https://doi.org/10.1016/j.cviu.2010.03.006
https://doi.org/10.1016/j.cviu.2010.03.006
https://doi.org/10.1016/j.gmod.2008.10.002
https://doi.org/10.1016/j.gmod.2008.10.002
https://www.toolshero.com/project-management/moscow-method/
https://www.toolshero.com/project-management/moscow-method/
http://arxiv.org/abs/0905.2635
http://www.numpy.org/
http://www.numpy.org/
(http://www.sciencedirect.com/science/article/pii/S2215016116000029)
(http://www.sciencedirect.com/science/article/pii/S2215016116000029)

References 101

Staats, B. (2017). Identification of walkable space in a voxel model,
derived from a point cloud and its corresponding trajectory. TU
Delft: master thesis. http://resolver.tudelft.nl/uuid:
6a827a88-ce09-43f1-adb9-da886448a1fc.

van Loenen, B. (2019). Lecture notes on geo-information organisation and legisla-
tion (geo1009).

van Oosterom, P. and Quak, W. (2018). Lecture notes on geo-database manage-
ment systems (geo1006).

Verbree, E. (2018). Lecture notes on positioning and location awareness (geo1003).

Xia, S., Liu, Y., Yuan, G., Zhu, M., andWang, Z. (2017). Indoor fingerprint positioning
based on wi-fi: An overview. ISPRS The International Journal Geo-Information,
6:135. 10.3390/ijgi6050135.

Zhang, S., Wu, X., and You, Z. (2017). Jaccard distance based weighted
sparse representation for coarse-to-fine plant species recognition. PloS one.
https://doi.org/10.1371/journal.pone.0178317.

Zhou, Q., Park, J., and Koltun, V. (2018). Open3d: A modern library for 3d data
processing. arXiv:1801.09847.

http://resolver.tudelft.nl/uuid:6a827a88-ce09-43f1-adb9-da886448a1fc
http://resolver.tudelft.nl/uuid:6a827a88-ce09-43f1-adb9-da886448a1fc

A
Appendix

A.1. Comparison between the different pre-processing
methods

In this part of the appendix examples from the comparison between the differ-
ent down sampling methods will be displayed as well as results of the combined
methodology used to process the input files for the matching of the point clouds.
The comparison for the methods was applied mainly on the user database that
was collected using a mobile phone. The comparison is shown in the images1 that
follow.

1All displayed images in pages 99 - 103 have axis z facing upwards

102

A.1. Comparison between the different pre-processing methods 103

Figure A.1: Table with processing times for applied methods.

104 A. Appendix

Figure A.2: Table with the number of points reduced after applying down sampling with the additional
noise filtering.

 : Raw database : Average down sampling : Average down sampled

point cloud after noise

removal

Database – Berlage Hall 1

User Input a

User Input b

Database – Berlage Hall 2

User Input a

User Input b

Database – Hallway Berlage

User Input a

User Input b

Database – BG.WEST.370

User Input a

User Input b

Database – BG.WEST.370(entrance)

User Input a

User Input b

Database – Room B

User Input a

User Input b

Database - Geolab

User Input a

 User Input b

Database – BG.EAST.430

User Input a

User Input b

Database – Hallway room B

 User Input a

 User Input b

Database – Hallway Geolab

User Input a

 User Input b

110 A. Appendix

A.2. Visual comparison between database and user
histogram

In this part of the appendix, a visual comparison between the database and user
input histograms and their corresponding point clouds is provided.
The images might be a little too small to read on a print version. We still choose
for this setup because we felt like it gave to most clear overview for comparison’s
sake. Regardless, it would be nice to maybe print this appendix on a larger scale
or use a digital version to zoom in. The height values are plotted on the x-axis, and
the occurrence values are plotted on the y-axis.

Database - Orange hall User input 1

Database - 02.WEST.Hallway

User input 1 User input 2

User input 1 User input 2

Database - 01.WEST.Hallway

User input 1 User input 2

Database - BG.WEST.370 Entrance

User input 2

Database - BG.WEST.370

User input 1 User input 2

Database - BG.WEST.Hallway

User input 1

User input User input

Database - Exhibition hall upper part

User input 1 User input 2

Database - Hallway Geolab

User inputDatabase - Room P

Database - Exhibition hall lower part

User input 1 User input 2

Database - Room B

User input 1 User input 2

Database - 00.Hallway Room B

User inputDatabase - 01.EAST.Hallway Library

User input 1 User input 2

Database - 01.MIDDLE.Hallway Library

User input 1 User input 2

Database - 01.WEST.Hallway Library

Database - BG.EAST.430

User input 1 User input 2

116 A. Appendix

A.3. Visual comparison between database and user
point cloud features

In this appendix, a visual comparison between the database and user input point
clouds along with top 3 locations is provided for some input cases of the feature
matching. The screen shots have been provided with the best view of alignment of
ceilings. In all figures, blue colour represents the database, while yellow represents
the user input cloud as depicted in figure A.3.

Figure A.3: Legend for localisation based on feature matching results

 Database 1 – Berlage 1 User input 1 a/b

Database 2 – Berlage 2

User
input
2 b/c

User input 2a

Database 3 – Berlage Hallway

Top 3
Locations

fitness rmse time(sec)

1 0.99 0.088 7.06

6 0.89 0.137 11.41

2 0.75 0.155 8.55

Top 3
Locations

fitness rmse time

2 1 0.08 3.36

6 0.90 0.27 3.36

3 0.26 0.31 2.11

User input 3 a/b

Database 4 – BG.WEST.370
 (Coffee Corner)

User input 4a/b/c

User input 5 b/c

 Database 5 – BG.WEST.370 Entrance

User input 5 a

 Database 6 – Room B

User input 6 a User input 6 e

Database 7 – Geolab Database 8 – BG.EAST.430

User input 7b User input 8a

 Database 9 – 00.Hallway Room B

User input 9 b User input 9 a

User input 9 c User input 9 d

Database 10 – Hallway to Geolab

User input 10 c

120 A. Appendix

A.4. Matching results
In this appendix, the top five results are visualised for the different matching meth-
ods.

Laser input:
 Histogram matching
 Feature matching
 Combined

Not in top 5
In top 55

Input 1a

Berlage hall 2

Hallway Berlage

BG.WEST.370

DB 2

Input 2b

Input 2a

Input 2c

DB 3 Input 3a Input 3b

DB 4 Input 4a Input 4b Input 4c

BG.WEST.370 (entrance)
DB 5

Input 5a Input 5b

Input 5c

Input 1b

1

2

1

1 1

1 1

3 1

1 1

1

DB (database) 1
Berlage hall 1

1

1

1

1 1

1 1

1 1 1

1

1

1

1

1

1

1 1

1 1

1 2 1

11

1

10

Room B

Geolab

BG.EAST.430

Hallway room B

DB 6 Input 6a Input 6b

Input 6c Input 6d Input 6e

Input 6f Input 6g

DB 7

Input 7b

DB 8 Input 8a Input 8b

DB 9 Input 9a Input 9b Input 9c Input 9d Input 9e

Hallway Geolab
Input 10a Input 10b Input 10c

52

1 2 3

1 3

2

1

3 1

1

DB 10

1 3 1 3

42

Input 7a

1 1

111

1 1

7

2

1 1

1 1 1 1 1

1 1 1

1 1

1 11

1 1

3

1

2 1

1 1 2 1 1

112

1

7

Berlage hall 1

Berlage hall 2

Hallway Berlage

DB 2

Input 1a (raw + bbox)

DB 3

DB (database) 1

Input 1b (raw + bbox)

DIM input:
 Histogram matching
 Feature matching

Not in top 5
In top 55 Input 1a

Input 1b

Input 2a (raw + bbox)

Input 2b (raw + bbox)

Input 2a
Input 2b

Input 3a (raw + bbox)

Input 3b (raw + bbox)

Input 3a

Input 3b

4 3

8 3

3 2
6 2

9 3

8 5

6

7

4
3

5

4

Room B

Geolab

DB 6

DB 7

DB 4

BG.WEST.370 (entrance)
DB 5

BG.WEST.370
Input 4a (raw + bbox)

Input 4b (raw + bbox)
Input 4a

Input 4b

Input 5a (raw + bbox)

Input 5b (raw + bbox)

Input 5a

Input 5b

Input 6a (raw + bbox)

Input 6b (raw + bbox)

Input 6a

Input 6b

Input 7a (raw)

Input 7b (raw)

Input 7a

Input 7b

4 1

5 3

6 4

8 4

1 1

1 7

1 1

3 1

5

7

4

2

1

1

1

1

BG.EAST.430

Hallway room B

DB 8

DB 9

Hallway Geolab
DB 10

Input 8a (raw+ bbox)

Input 8b (raw + bbox)

Input 8a

Input 8b

Input 9b
(raw+ bbox)

Input 9a
(raw + bbox) Input 9a Input 9b

Input 10a (raw+ bbox)

Input 10b (raw + bbox)

Input 10a

Input 10b

10 4

4

8 8 1 7

6 10

1 10

5

9

10

2

9

2

10

126 A. Appendix

A.5. Confusion matrices
In this appendix, the confusion matrices for the results are shown.

A.5.1. Histogram approach
LiDAR

Figure A.4: Confusion matrix top 1 correctly
classified locations for the NumPy approach

using a laser scanner user input.

Figure A.5: Confusion matrix top 1 correctly
classified locations for the OpenCV approach

using a laser scanner user input.

Figure A.6: Confusion matrix top 1 correctly
classified locations for the SciPy approach using

a laser scanner user input.

Figure A.7: Confusion matrix top 1 correctly
classified locations for the combined approaches

using a laser scanner user input.

A.5. Confusion matrices 127

DIM

Figure A.8: Confusion matrix top 1 correctly
classified locations for the NumPy approach

using pre-processed DIM user input.

Figure A.9: Confusion matrix top 1 correctly
classified locations for the OpenCV approach

using pre-processed DIM user input.

Figure A.10: Confusion matrix top 1 correctly
classified locations for the SciPy approach using

pre-processed DIM user input.

Figure A.11: Confusion matrix top 1 correctly
classified locations for the combined approaches

using pre-processed DIM user input.

128 A. Appendix

A.5.2. Feature matching approach
LiDAR

Figure A.12: Confusion matrix top 1 correctly
classified locations for the RANSAC approach with
voxel size 0.2 using a laser scanner user input.

Figure A.13: Confusion matrix top 1 correctly
classified locations for the RANSAC approach with
voxel size 0.4 using a laser scanner user input.

Figure A.14: Confusion matrix top 1 correctly
classified locations for the RANSAC approach with
voxel size 1.5 using a laser scanner user input.

Figure A.15: Confusion matrix top 1 correctly
classified locations for the RANSAC approach with
voxel size 10 using approach using a laser

scanner user input.

A.5. Confusion matrices 129

DIM

Figure A.16: Confusion matrix top 1 correctly
classified locations for the RANSAC approach with
voxel size 0.3 using pre-processed DIM user

input.

Figure A.17: Confusion matrix top 1 correctly
classified locations for the RANSAC approach

approach with voxel size 0.4 using
pre-processed DIM user input.

Figure A.18: Confusion matrix top 1 correctly
classified locations for the RANSAC approach with
voxel size 1.5 using pre-processed DIM user

input.

Figure A.19: Confusion matrix top 1 correctly
classified locations for the RANSAC approach with

voxel size 10 using approach using
pre-processed DIM user input.

130 A. Appendix

A.5.3. Combined approach

Figure A.20: Confusion matrix top 1 correctly
classified locations for the combined feature

matching and histogram approach using a laser
scanner user input.

Figure A.21: Confusion matrix top 1 correctly
classified locations for the combined feature
matching and histogram approach using DIM

scanner user input.

	Summary
	Preface
	Acronyms
	Introduction
	Research questions
	Reading guide

	Theoretical background
	Sensors mobile phone
	Down sampling methods using a voxel grid
	Noise Removal
	Histogram approach
	Feature Matching approach

	Project expectations
	MoSCoW

	Conceptual model
	Collecting user input
	Pre-processing
	Handling tilt
	Voxel down sampling
	Noise removal

	Fingerprinting
	Histogram matching
	Feature matching
	Combined matching

	Verification

	Project specifications
	Data collection
	Collecting LiDAR point clouds
	Collecting DIM point clouds

	Experiments
	Initial LiDAR database
	New LiDAR database and user input

	Pre-processing steps
	Required pre-processing DIM input
	Required pre-processing LiDAR input

	Quality assessment through confusion matrix
	Combining separate steps
	Software resources

	Methodology
	Data collection
	From input videos to DIM point cloud

	Point cloud pre-processing
	Manual pre-processing
	Automated pre-processing

	Fingerprinting
	Histogram matching
	Feature matching
	Combined fingerprinting methods

	Quality assessment through confusion matrix

	Results
	Results point cloud pre-processing
	Results handling tilt
	Results Voxel down sampling and noise removal

	Results histogram approach
	Initial LiDAR database and DIM input
	Experimenting with subsets as LiDAR user input on initial LiDAR database
	New LiDAR database and LiDAR user input
	New LiDAR database and DIM user input

	Results feature matching
	Results combined
	Weights combined fingerprinting methods

	Final results

	Discussion
	Pre-processing
	Handling tilt
	Voxel down sampling
	Noise removal

	Histogram approach
	Initial LiDAR database
	Experimenting with subsets as LiDAR user input on initial LiDAR database
	New LiDAR database and user input
	DIM User input
	Histogram matching pros and cons

	Feature matching
	LiDAR database and user input
	DIM user input
	Feature matching pros and cons

	Combined results
	Confusion matrix

	Research questions
	What is a room?
	What ceiling characteristics should be captured?
	What is a possible method to perform indoor localisation using point clouds of the ceiling?
	What kind of pre-processing is required for these possible methods?
	Can point clouds from the ceiling be used for indoor localisation purposes on room level?

	Conclusion and recommendations
	Conclusion
	Recommendations

	Reflection
	MoSCoW reflection
	Suitability for use
	Privacy

	titleReferences
	Appendix
	Comparison between the different pre-processing methods
	Visual comparison between database and user histogram
	Visual comparison between database and user point cloud features
	Matching results
	Confusion matrices
	Histogram approach
	Feature matching approach
	Combined approach

