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Abstract: Potato production systems present various phytosanitary problems. Among these, potato
early dying (PED) caused by Verticillium spp. is a disease that is difficult to detect in its early stages
and whose expression occurs in critical growing phases of the crop, such as tuber filling, generating a
high economic impact. The objective of this work was to use spectral data to classify potato plants and
identify the degree of severity of PED using spectral signatures and multispectral images captured on
potato plants under greenhouse and commercial production conditions. Methods such as principal
component analysis (PCA), random forest (RF), support vector machine (SVM), and artificial neural
network (ANN) algorithms were implemented. All algorithms performed well; however, the RF
was more accurate after iteration. The RF had a good capacity for indirect detection of PED, with an
average accuracy of 60.9%. The wavelengths related to the red and red edges, especially from 710 to
735 nm, proved to be highly informative. As a result of the congruence between field and greenhouse
data, the RECI, NDRE, VWI, and GRVI spectral indices were consistent with the discrimination of
symptoms and PED severity levels. Identified wavelengths can be applied in the design of optical
sensors that, together with the use of ML algorithms, can be implemented in the remote detection of
early death in potato crops.

Keywords: remote sensing tools; machine learning; spectral signatures; indirect disease detection

1. Introduction

After rice and wheat, potato (Solanum tuberosum L.) is the third most important food
crop worldwide [1]. About 1.4 billion people consume this tuber as a staple food and its
annual production exceeds 300 million tons [2]. However, the yield, quality, productivity,
and sustainability of this crop have been reduced by the presence of various alterations,
including the disease known as potato early dying (PED), caused by Verticillium spp. [3].
PED has been reported to cause yield losses of up to 50% [4,5]. The disease causes vascular
bundle plugging, wilting, chlorosis, necrosis of leaves, and finally the early death of
plants [4].

The health status of plants has been associated with measurable morphological, phys-
iological, biochemical, structural, or phenological characteristics, which are considered
indicators of the response of the plant to biotic or abiotic stress factors [6]. The monitoring
of these traits has been used to alert against this type of event [7]. In this regard, spectral
techniques, thermography, and fluorescence images are alternatives that have been used
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for the detection and indirect monitoring of the phytosanitary status of a crop [8,9]. This is
due to their ability to detect changes in plant characteristics in response to different types
of stress [10,11].

Usually, the detection of diseases in plants is carried out based on visual evaluations
that identify changes in the color of the leaves and the pattern and distribution of lesions
in the leaf, stem, and plant [12]. However, these evaluations can be influenced by the
observer’s knowledge, making them subjective [13]. In addition to this, when other alter-
ations are present, detection can be limited due to the lack of differentiation between the
symptoms associated with each alteration [14,15]. Meanwhile, molecular and biochemi-
cal techniques are quite sensitive and can accurately detect diseases in plants; however,
they are destructive methodologies that consume a considerable amount of time, require
trained personnel, and often have a high cost [10,16]. On the other hand, observation of
changes in spectral responses could allow for the rapid and indirect detection of in vivo
samples [11,17].

In the case of disease detection using spectral data, two data sources are commonly
used individually, spectral signatures and multispectral images [13,18]. Regarding the first,
detection methods have focused on the identification of bands that are more significant
and related to the evaluated disease [11,19]. On the other hand, from multispectral im-
ages, information is generated per pixel, which can in turn be transformed into indices
(vegetation, disease, and others), heat maps, and false color maps. Furthermore, it is also
possible to identify spectral areas associated with reflectances that can be related to the
presence and quantification of certain alterations [20]. Given the relative strengths and
weaknesses of the two types of spectral data sources, their joint use is not common in the
detection of plant diseases; however, it is evident that their joint use is advantageous, as
it provides greater recognition accuracy, less susceptibility to environmental factors [21],
and greater applicability under field conditions. However, a volume of high-dimensional
data is generated, which poses a challenge when performing analyses that allow for the
identification of informative wavelengths that are directly related to the health status of
plants [22].

A commonly used method in the analysis of spectral data to detect changes in plants is
vegetation indices (VIs) [23]. However, although positive relationships have been found be-
tween the evaluated phenomena and VIs, they have been shown to have low sensitivity and
specificity to identify problems in plants that present similar symptoms and changes [11].
For this reason, it has been decided to develop indices from spectral areas identified by
different methods, which are directly related to the evaluated alteration [22].

To identify spectral bands and informative indices, extraction and feature/band se-
lection methods are used for dimensional reduction and the elimination of spectral redun-
dancy [24]. An example of such methods is principal component analysis (PCA) [22]. In
recent years, the use of machine learning (ML) methods for the selection of bands and sub-
sequent prediction and classification of different alterations in crops has increased [22,24].
One of the advantages of these methods is that they allow the spectral significance of the
selected wavelengths to be preserved [22,24]. Various ML techniques have been used for
this purpose, due to the high recognition rate and accuracy of the results they produce,
their robustness, and their non-parametric perspective [22,25]. The most significant of
these include support vector machines (SVMs) [22,26], random forest (RF) [14,23,27], and
artificial neural networks (ANNs) [19].

However, the use of indirect detection tools for plant diseases has focused on
two alternatives, each independently used for controlled or field trials. The use of spectral
signatures obtained from fixed or mobile spectroradiometers has been geared towards
more controlled trials and those at the plant level. Meanwhile, under field conditions,
drone-mounted spectral cameras have been used, targeting plants or groups of plants, with
the aim of identifying differences based on vegetation indices. These situations have led to
the two evaluation methods being viewed as independent of each other, resulting in the
loss of valuable information and integration processes between the approaches that could
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allow for a better approximation to indirect detection using spectral response methods,
regardless of the equipment and conditions of the crops used.

Based on the above and considering the limited number of investigations that use
spectral data to analyze and indirectly detect PED [14,28,29], the objective of this work
was to use traditional methods such as PCA and ML to identify contrasting wavelengths
between healthy and symptomatic plants and to determine the severity levels of PED
from two sources of spectral data (hyperspectral and multispectral). On the basis of
the above, our objectives were (i) to compare the performance of different PCA and ML
methods in the classification of healthy and symptomatic potato plants and the severity
of PED; (ii) to identify wavelengths by their capacity to identify symptomatic plants
using different analysis methods; (iii) to develop disease spectral indices from informative
wavelengths; and (iv) to compare the classification results of different levels of PED from
spectral signature data and multispectral imaging.

2. Materials and Methods
2.1. Location of the Greenhouse and Field for Experiments

Data were obtained from potato plants grown under two contrasting conditions:
(i) semi-controlled conditions (greenhouse) and (ii) commercial production crops
(Figure A1). In the first case, Diacol Capiro cultivar seed tubers were seeded in 5 kg
soil pots in a greenhouse located at the Facultad de Ciencias Agrarias de la Universidad
Nacional de Colombia in Bogotá (4◦38′12.58′′ N, 74◦5′18.12′′ W). The soil was maintained
in field capacity by constant irrigation according to the requirements of the plants, and the
management was carried out according to the stage of development of the crop. During
the experiment, the average temperature was 15.1 ◦C and the relative humidity ranged
between 80 and 85%. Two isolates previously identified as belonging to the Verticillium
genus and pathogenic in potatoes were used for the inoculation of the potato plants. The
first isolate of the pathogen was a strain characterized as Verticillium albo-atrum, provided
by the Corporacion Colombiana de Investigacion Agropecuaria-Agrosavia in Mosquera.
The second was isolated from Diacol Capiro plants affected by PED from the municipality
of Funza, Cundinamarca. The pathogen isolation was carried out according to the protocol
of the plant health laboratory of the Facultad de Ciencias Agrarias de la Universidad
Nacional de Colombia in Bogotá. The data acquisition and management scheme and the
methodological processes are described in Figure 1.
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Figure 1. Workflow used to determine contrasting bands and spectral indices in potato ED detection.

Multiplication of the pathogen inoculum in the laboratory was carried out in sterile
cooked rice at 21 ◦C according to the laboratory’s own protocol. The conidia of each isolate
were collected in sterile distilled water eight days after incubation and a suspension of
1 × 107 conidia mL−1 was prepared [30]. Certified potato seed tubers sown in previously
autoclaved soil were used. Fifteen tubers were planted, one per pot, to ensure the presence
of plants with different levels of severity of the disease. Of the total number of plants
evaluated, six were inoculated by drench 49 days after sowing (das), and the remaining
six were inoculated at the time of sowing, placing the substrate (rice) with the pathogen
around the seed tuber. Three uninoculated plants were used as controls.

For the study under field conditions, plants of the same variety as above were eval-
uated in two commercial production lots located in the municipalities of Subachoque
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(4◦57′44.52′′ N, 74◦8′14.44′′ W) and Mosquera (4◦39′40.58′′ N, 74◦14′53.46′′ W) (Cundi-
namarca). The lots have average temperatures ranging between 12 and 15 ◦C and an
accumulated annual rainfall that varies between 600 and 1000 mm, with a bimodal rainfall
distribution. The relative humidity ranges between 80% and 85%. In addition, they are
located at altitudes ranging from 2550 to 2750 m above sea level. The source of inoculum
for field conditions corresponded to the natural presence of the pathogen in the soil of the
plots selected for the study, in which PED caused by Verticillium was reported in previous
crop cycles. Furthermore, in this case, the presence of the pathogen was confirmed follow-
ing the protocol of the plant health laboratory of the Facultad de Ciencias Agrarias de la
Universidad Nacional de Colombia in Bogotá.

2.2. Data Acquisition

In greenhouse and field locations, the severity of the disease was visually evaluated
using a descriptive scale proposed by Hunter et al. [31]. This consists of five levels, corre-
sponding to 0: no symptoms; 1: interveinal chlorosis in lower leaves; 2: moderate necrosis
and defoliation of lower leaves; 3: severe leaf necrosis and defoliation; and 4: severe defoli-
ation accompanied by pronounced atrophy, chlorosis, and necrosis of the remaining leaves
and dead plant (Figure 2A,B). Under greenhouse and field conditions, spectral evaluations
were conducted after 60 das, based on our previous work, where we found out that under
natural (field) and artificial (greenhouse) infection, PED symptoms appear around 70 days.
Subsequent evaluations were conducted every 8 days, since the disease may become severe
in short periods of time with rapid growth rates. Therefore, PED assessment required
evaluations at short intervals no longer than 7 days.

2.2.1. Greenhouse Controlled Conditions

Three samplings were carried out on all plants every 8 days, starting from 62 das.
Spectral signatures were captured in each plant using a FieldSpec 4 Standard-Res® fixed
spectroradiometer (Analytical Spectral Devices Inc., Boulder, CO, USA), with an evaluation
range between 350 and 2500 nm; 3 nm spectral resolution from 350 to 700 nm; 10 nm spectral
resolution between 1400 and 2100 nm; 1.4 nm sampling interval from 350 to 1050 nm; 2 nm
sampling interval from 1000 to 2500 nm; and an integration time of 34 ms.

In healthy and inoculated plants, reflectance measurements were made at 62, 70, and
77 das in the lateral leaflets of fully expanded leaves, numbering four [32] and seven
(Figure 2C,D), which corresponded to the upper third (UT) and middle (MT) of the plant.
At each evaluation time, five spectral signatures per leaflet were taken, each corresponding
to 24 averages for a total of 120. Data were obtained using a leaf clip in five parts of each
leaflet, with the upper part of the leaf facing the light source. After the capture of each
100 signatures, the equipment was calibrated with a 99% reflectance polytetrafluoroethy-
lene panel (Analytical Spectral Devices Inc., Boulder, CO, USA). It was ensured that the
evaluated experimental units presented different levels of disease severity to compare
the changes in the affected leaf area for each of the leaves selected for the capture of
spectral signatures.

2.2.2. Field Conditions

For the evaluation of the disease in the field, seven measurements throughout the
potato growing cycle were taken every 8 days between 60 das and 115 das. In each of
them, 30 sites were selected for sampling, evaluating 15 plants at each site, for a total
of 450 individuals. The type of sampling and the spatial distribution of the points to be
sampled were determined based on a systematic grid of 15 × 20 m, distributed in one
hectare of the lot without including the edges. To ensure the evaluation of the same plants
over time, each of the plants was georeferenced using a GPS Reach RS2® device (EMLID,
Budapest, Hungary) and marked with colored tape. In each of the batches, the incidence of
PED, determined as the number of diseased plants divided by the total number of plants,
was evaluated. Furthermore, the severity of PED was determined for each plant according
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to the scale of Hunter et al. [31] described above. From the values obtained, any number
greater than 0 was taken as a positive case for subsequent algorithm training.
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Figure 2. Development of PED symptoms in Var. Diacol Capiro with different degrees of severity.
(A) Plants inoculated with Verticillium spp. under greenhouse conditions. (B) Plants in a commercial
crop located in Subachoque-Cundinamarca. Comparison of the mean reflectance values of the spectral
signatures captured in Var. Diacol Capiro potato plants inoculated with Verticillium and early dying
symptoms under greenhouse conditions. Blue squares represent areas of the spectrum identified
as having high potential for visual differentiation. (C) Healthy and diseased plants. (D) Levels of
severity of the disease.
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In the two selected lots, multispectral data were captured at four moments every
8 days from 77 das, which included the flowering phase of the crop and the filling of the
tuber. The flights were made with a DJI Phantom 4 drone to which the Parrot Sequoia
(Parrot®, Paris, France) multispectral sensor was attached, with an integrated GPS and
reflectance panel. The images were captured at a height of 27 m, with an overlap greater
than 70%. Data were obtained in the green-G bands (550 nm center, 40 nm bandwidth);
red-R (660 nm center, 40 nm bandwidth); red edge-RE (735 nm center, 10 nm bandwidth);
and near-infrared-NIR (790 nm center, 40 nm bandwidth), with a pixel size of 2.8 cm.
To radiometrically correct the images, data were captured on a calibration panel at the
beginning and end of each flight. For post-processing of the data and the generation of
orthomosaics, Agisoft MetaShape 1.6.1 (Agisoft™) was used.

2.3. Data Analysis

Data analysis was carried out using the free software R (version 4.1.2). All models
produced were compared with each other in terms of their classification performance
according to the different data sources, the developmental stage of the PED symptoms
present in the potato plants based on the severity scale used, and the signatures and spectral
images captured.

The data analysis process was divided into three parts: (i) comparison of classifica-
tions in terms of the spectral signatures captured in different leaves of the plant, in order
to elucidate their ability to discern symptoms and identify the algorithm with the best
performance classification, which would be used in subsequent analyses; (ii) identification
of contrasting bands regarding the classification of healthy and diseased plants; and (iii) the
generation of spectral and disease indices for subsequent classification regarding their use
as predictor variables with the two captured data sources. For the first of these parts, the
RF, SVM (linear basis: SVMl; radial: SVMr), and ANN models were used. For the results of
the comparison of classification rates for the analyses in the second two parts, RF was used
because it showed less variability in the classification rates for the L4 data, which favored
the comparability of the comparison in subsequent processes.

In the first stage, with the aim of evaluating the behavior of different ML algorithms,
three approaches were used. The first of these was RF using ensemble learning [33], the
second was SVM using split hyperplanes [34], and the third was ANN using the traditional
neural network approach [35]. For evaluation, spectral data sets were used. These were
divided into training and test groups based on a 70:30 ratio, since this generates a data set
large enough to train the model and a test data set large enough to evaluate its performance,
allowing for the results to be generalized [36]. The algorithms were optimized with internal
fitting parameters (RF = mtry, SVM = cost and loss, ANN = size and decay). The caret
library (classification and regression training) was used for the training and prediction of
the generated models [37].

The performance of the models was evaluated at two moments. In the training
phase, a 10-fold cross-validation was used for each classification model. Subsequently, the
performance of each model in classifying the presence and severity classes was compared,
using the classification accuracy as a comparison metric of the models in the non-parametric
tests. Furthermore, the sensitivity and specificity metrics were compared in a confusion
matrix (calculated with the confusion matrix function of the R caret package [37]). In
addition to this, all models were tested in a pairwise comparison (metric: accuracy) using
t-tests with Bonferroni correction (confidence level α = 0.95) and the diff function in the R
caret package [37].

The generated files from the spectroradiometer were exported in .asd format, and the
version of the asdreader library (0.1–3) was used for their subsequent reading. Each file
was organized according to the plant number to assign the level of severity of the disease,
based on the evaluations of the symptoms carried out in each of the samplings.

The first phase of the analysis involves comparing the capacity of the generated models
to predict healthy and diseased plants, using the spectral bands as predictor variables. For



Agronomy 2024, 14, 1569 7 of 20

this process, a multistage analysis was used, using raw and pre-processed data. Three
databases were generated: (i) raw data (RD); (ii) data pre-processed using the Savitzky–
Golay filter [38], second derivative (SGD) with a bandwidth of thirteen units, a polynomial
of the third degree, and a derivative of the second degree, respectively; and (iii) data with a
Gap segment filter [39] and second derivative (GSD) with a bandwidth of thirteen units, a
gap interval of ten units, and a derivative of second degree. Data sets were processed with
the prospectr library [40].

Each data set was subjected to a principal component analysis (PCA) using the Fac-
torMineR library [41]. The generated components were used as predictor variables to
optimize the modeling process and the initial comparison of the classification rate. This
allowed for the determination of the algorithm and data set to be used for the selection
of the most important wavelengths, which were subsequently applied in the calculation
of spectral indices. Subsequently, models were generated to identify the most important
wavelengths and compare the classification rate of healthy and diseased plants with re-
spect to the leaf in which the measurements were made. The algorithm applied was RF
(according to the results of the previous stage), using the GSD set divided with respect
to the measured leaf, and using the optimization parameters and the comparison metrics
described previously.

Based on the identification of the bands with discriminant capacity obtained in the
previous phase, and to establish a contrast relationship between the data generated in
the spectral signatures under greenhouse conditions and multispectral images acquired
in the field, the mean of the reflectance values obtained in the spectral signatures using
the RD data set was calculated. The reason for this is that the reflectance values were not
modified in the capture intervals of the multispectral camera bands based on their specific
variation (bandwidth). Various combinations of values associated with the NIR, R, and RE
bands were generated to assess their predictive capacity with respect to the presence of ED
symptoms, selecting the index named the Verticillium Wilt Index (VWI) as in Equation (1)
(for more details review Table A1).

√
NIR − REDEDGE

(NIR − REDEDGE)2 (1)

The values of the pixels associated with each plant were extracted from the multi-
spectral images captured and the sampling points for each of the data points obtained
in the field phase. This generated a set of four bands and the values associated with the
evaluation of the symptoms of the disease. A total of 13 indices, presented in Table A1, were
calculated with the values of the bands from the multispectral camera and the mean values
of the spectral areas obtained from the spectral signatures. Subsequently, classification
models regarding incidence and severity were generated using the RF algorithm under the
parameterizations described above for both data sets. Finally, pairwise comparisons of the
different models developed from the two spectral sources used were generated following
the evaluation flow presented above.

3. Results
3.1. Symptoms under Greenhouse and Field Conditions Associated with PED

Under greenhouse conditions, potato plants inoculated with the two Verticillium
isolates developed early dying symptoms. The first symptoms, corresponding to a loss
of turgor and discoloration of the lower leaves, were observed between 60 and 65 das.
Subsequently, chlorosis, necrosis, and wilting of the leaves were observed; finally, the
wilted leaves remained attached to the stem (Figure 2A). Under commercial conditions on
the Mosquera and Subachoque plots, symptoms associated with PED were found around
70 das. The symptoms corresponded to interveinal chlorosis, necrosis, and wilting of the
leaves, which remained attached to the stems (Figure 2B). The symptoms observed in
the field matched those found in plants inoculated under greenhouse conditions and the
disease symptoms reported in potatoes [4,31].
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From the spectral signatures captured under greenhouse conditions, we identified
differences between the spectral behavior of plants with symptoms associated with PED
and control (healthy) plants. Differential behavior based on visual inspection of the spectral
signatures was observed in the spectrum regions located between 475 and 725, 1625 and
1770, and 2225 and 2320 nm (Figure 2C). In these regions, healthy plants had lower re-
flectance than diseased plants, and reflectance levels varied according to severity. However,
it is evident that the first level of the scale (lowest severity) tends to have a behavior like
that of plants reported as healthy (Figure 2D).

3.2. Analysis of Spectral Signatures Obtained in Plants Subjected to Artificial Infection in
a Greenhouse

Regarding the leaves of the plant in which the spectral signature was taken (Figure 3C),
we observed that in leaf four (Figure 3A) and seven (Figure 3B), similar spectral behavior
was present with respect to the different levels of severity of the disease. However, we
found a variation in the behavior of the signatures with severity level 3 in leaf seven, in
which the reflectance decreases relative to the other levels of the disease. Regarding the
moment of evaluation (Figure 3D), we observed an increase in reflectance in plants with
high severity (level 3) as the infection time progressed. We found that the differentiation
of the signatures of plants with initial levels of the disease (severity levels 1 and 2) in the
range of 500 to 750 nm becomes difficult at 77 das. In contrast, at wavelengths greater than
750 nm, there is a notable difference between the reflectance values of healthy plants and
those with some level of severity of the disease for the same evaluation moment.
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spectral signature is captured. (D) Spectral signatures at different stages of plant development by
severity level.
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From the PCA-based analysis applied to the different data sets obtained after prepro-
cessing, it was found that the best fit was achieved with the GSD set, since it best expresses
the contribution of the generated vectors. Meanwhile, the explanation of the variation in
dimensions was best when using the GSD set for leaf four, which achieved a value of 78.3%
in the first dimension (Figure 4A). However, the percentage explanation was similar for
all data sets evaluated using two dimensions. For leaf seven (Figure 4B), the use of data
from the RD set had the greatest capacity to explain the variance (87.2%), with the best
differentiation of the spectral responses in the lower third of the plants. In both cases, the
generated vectors show that the greatest ability to identify the presence of symptoms of ED
occurs in the range of 680 to 740 nm. Regarding the severity of the disease, a contribution
of some vectors located in the region of 2300 to 2450 nm is observed.
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Figure 4. Results of the PCA analysis applied to preprocessed data sets from the spectral signatures
of potato plants affected by PED. (A) Leaf four (L4:UT)–GSD (B) Leaf seven (L7:MT)–GSD.

The classification results using the three data sets show that, based on the mean
accuracy values of the data captured on leaf four (L4: UT), the highest classification rate
was obtained using the RF algorithm with the GSD set (60.9%). However, there are no
statistical differences between the classification rates of the models used (p-value = 0.8128).
On the contrary, for leaf seven (L7:MT), the mean values show that the highest classification
rate was achieved by applying the SVMl model with the RD set (72.2%). Furthermore,
regarding the statistical differences between the classifiers (p-value = 1.4727 × 10−10),
which could be separated into three groups, it should be noted that RF did not have
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statistical differences in terms of the classification rate presented by SVM/RD in any data
set. Since the RF was stable in both cases, it was selected as the algorithm to be used in
subsequent processes.

RF presents a similar behavior with respect to its classification rate using the GSD
sets obtained in the different leaves of the evaluated plant. For this reason, models were
generated using this algorithm, from which it was found that there are differences between
the classification rates of the models generated for the presence (Figure 5A) and severity
(Figure 5B) of the disease according to the leaf in which the spectral signatures were found.
The models present statistical differences, given that the p values are close to zero (p-value
presence = 1.535795 × 10−6; p-value severity = 0.002841602). For presence, we obtained
models with an average accuracy of 75.3% and 89.3% for leaves four and seven, respectively,
the data for leaf seven being more sensitive and specific. Regarding severity, the behavior
was similar, although the average accuracy decreased by 6% for leaf seven.
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3.3. Determination of Informative Bands to Discriminate between Healthy and Diseased Plants

Based on the results of the models generated for the RD set, we identified the spectral
bands that have a greater capacity to discriminate between healthy potato plants and those
affected by PED (Figure 6), and between the severity levels of the scale used. For the
data captured in leaf four, the region corresponding to the visible spectrum (380–780 nm)
contains the most important bands, especially the area corresponding to red (650 to 740 nm).
For the classification of the presence of PED, bands 712, 719, 722, 726, and 727 nm stand
out; while for severity, bands 710, 721, 723, 728, and 730 are of greater importance, which
is consistent with the results of the PCA analysis described above. By comparing the
important bands per leaf, we established that the most important spectral areas are common,
showing a higher discrimination capacity in the region from 710 to 735 nm between
signatures from healthy plants and those with some level of disease. Furthermore, bands
of great importance (Figure 6B) were identified in the ranges between 1200 and 1600 and
2300 and 2450 nm.
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(D) Severity of PED—leaf seven (MT).

The results of the models generated from the indices calculated with the spectral
signature data show classification rates of 74 and 64.8% for the presence and level of
severity of ED in potatoes, respectively. This indicates that they are similar with respect
to the analysis of principal components when RF is used. We identified some spectral
indices with greater differentiation capacity, among which RECI, NDRE, and GRVI are
notable. We found that the bands in the visible spectrum areas and the red edge were
the most informative for this disease, as shown in Figure 7. The proposed VWI had an
acceptable importance in the classification of presence (Figure 7A) and severity of the
disease (Figure 7B) showing its potential as an estimation tool when using other means of
data capture. The most informative indices with respect to spectral signature data showed
a high variation between healthy and diseased plants. GRVI values in plants with the
presence of symptoms of PED tend to have higher index values, while for RECI and NDRE,
diseased plants tend to have lower values (Figure 7C). Regarding the VWI generated, we
determined that the values associated with diseased plants tend to be lower than those of
the others.

3.4. Comparison of Spectral Signatures and Multispectral Camera Data Obtained in
Commercial Crops

The results show that the region corresponding to the visible spectrum (380–780 nm)
contains the most important bands found by the RF algorithm. Within these, the area
corresponding to red includes the bands with the highest discrimination capacity (710 to
740 nm) (Figure 8A). The comparison of the multispectral camera bands with the most
important bands in the spectral signatures is presented in Figure 8B. The data indicate that
18 of the informative bands found in the modeling of the spectral signatures that are in
the first quartile, in terms of their importance, coincide with the regions captured by the
multispectral camera, 4 corresponding to the green region, 7 to the red, and 7 to the red
edge (Figure 8C).

The results indicate that the models generated from the two data sources have quite
acceptable classification accuracy rates. This is represented by accuracy values greater
than 80% for the classification of the presence of disease symptoms. On the contrary,
for severity, the rates were 84% with data extracted from images and 56% for spectral
signatures (Figure 9). Despite this, the average sensitivity and specificity decreased by
approximately 30% for the classification of the presence and severity of MT compared
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to the indices calculated from the multispectral imaging data (Figure 9B). In the models
evaluated, significant differences (p-value = 0.00232086) were found between the accuracy
of the classifications made (Figure 9A). Regarding the classification of the different levels of
severity of the disease (Figure 9B), there were differences between the generated models
(p-value = 8.269619 × 10−10).
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Figure 7. Importance of classification variables using RF applied to the vegetation index data set cal-
culated from spectral signatures captured on leaf four (UT) of plant (A) Presence of PED. (B) Severity
of PED. (C) Behavior of important spectral indices in the presence of early death symptoms from
Verticillium in potato plants.
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Figure 8. Informative bands on the classification made using RF for the spectral signatures of
healthy Var. Diacol Capiro potato plants and those with symptoms of early dying. (A) Bands with
significance. (B) Comparison of important bands with respect to the spectra of the Parrot Sequoia
camera. (C) Spectral behavior in areas of importance for the discrimination of PED symptoms in
potato plants.
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Regarding the classification results for the presence and severity of the disease from the
spectral indices (Figure 10A), we found that high sensitivity and specificity are obtained for
the presence of symptoms from the spectral signatures, with the spectral indices showing
a high differentiation capacity between healthy and diseased plants. This is represented
in the differentiation capacity of different levels of severity in plants. We determined that
classifications are sensitive but have limited specificity, showing that the initial stages
(levels 1 and 2) of the disease are difficult to differentiate (Figure 10B). In the case of
the indices calculated from multispectral images, we observed a similar behavior for the
presence of the disease with respect to the spectral signatures; however, the classification is
less specific (Figure 10C). However, when classifying the severity of PED, we were able to
identify a greater capacity to differentiate high levels of the disease (levels 3 and 4), but the
models were found to have low specificity (Figure 10D).
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Figure 10. Confusion matrices of the presence and severity classifications of PED from indices
calculated with spectral data. (A) Presence—spectral signatures. (B) Severity—spectral Signatures.
(C) Presence—multispectral images. (D) Severity—multispectral images.
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We determined that the banded indices in the visible spectrum and the red edges
were the most informative in terms of discrimination regardless of the source of the data
(Figure 11). The most important indices were the RECI, NDRE, and GRVI obtained from
the spectral signatures and the NDRE, RECI, VWI, and GCI obtained with the multispectral
images. However, the camera bands (red, green, red edge, and NIR) were observed to be
important as predictor variables in the models. Meanwhile, the proposed index (VWI) is of
high importance for presence and severity, with better behavior in the indices calculated
for multispectral images.
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4. Discussion

Recent studies related to the field of geospatial data classification and analysis have
used approaches that focus on the use of spectral signature data or multispectral imagery
independently [21]. However, in this study, we found that the comparison of data generated
from spectral signatures and multispectral images can provide significant benefits and
improve classification accuracy, as it allows for the appropriate selection of variables of
interest for disease research.

Several algorithms were compared to classify potato plants with different degrees of
early dying under two conditions (artificial and natural inoculation) using signatures and
spectral images, with the aim of establishing a method of classification and evaluation of
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the importance of variables that allow for the differentiation of plants with PED under
two levels of spectral detail. Regarding the spectral signatures, all algorithms had a similar
average accuracy, so there were no statistical differences, allowing the use of RF in most of
the processes performed. However, the severity classification rate was negatively affected
at low levels of the scale used (1 and 2). Despite this, it is observed that the algorithms used
have classification approaches that are sensitive and specific enough to classify the different
levels of the severity scale, showing their potential use in the detection of pathogens
in plants.

Regarding the classification of the presence of PED, the algorithms (RF, SVM, and
ANN) did not differ statistically in terms of accuracy. This shows that although these
are different approaches, they are all capable of using the spectral variations presented
by plants as discriminants [22,29,42], making them effective tools for the identification of
differential bands between diseased and healthy plants and variations in severity. The
generated models showed a tendency to obtain the same spectral areas as important
variables in their predictions [22], indicating that these predictors may be the key to the
detection of PED in plants.

The prior treatment of the spectral signature data improves the results when using the
PCA discrimination method [22]. In this case, the GAP segment showed a high potential
since it allowed for a greater differentiation of the spectral areas evaluated in addition
to reducing the variability in the accuracy of the models generated. However, the use of
multiple feature selection methods or a suite of multiple methods on the spectral data
is recommended. This is because the selected wavelengths are individually identified,
establishing areas with a high classification potential [22,43], allowing higher accuracy rates
to be obtained with the algorithms.

Shin et al. [29] also reported classification rates greater than 80%, which shows the
consistency of the results obtained in this investigation. The regions of the spectrum (710,
721, 723, 728, and 730) identified in this study may facilitate their use at other scales, since
most multispectral sensors are focused in the red and near-infrared regions. The finding in
this study that the 710 to 750 nm region is highly significant coincides with that reported by
Haagsma et al. 2023 in the wheat mosaic of olive crops; this region has not been reported
in relation to ED and could be used for future research. The bands identified in this study
have been reported in different crops, notably potatoes [29,42], peanuts [22], tomatoes [17],
and olives [44]. These bands are related to the decrease in pigments such as chlorophyll
and carotenoids, the water content, and the accumulation of sugars. In the case of ED, these
spectral changes may be due to the plugging and vascular damage caused by this disease.

According to the identified spectral areas, the increase in the visible spectrum region
(400 to 700 nm) in diseased plants suggests a decrease in pigments such as chlorophyll
and carotenoids in potato leaves [17]. The reflection around 680 nm is controlled only by
chlorophyll a [45], an area that had a different behavior between plants in the presence
of PED symptoms. The increase in reflectance in the bands from 1500 nm, mainly in
the severity classification of the leaves of plants affected by PED, shows a possible effect
on the water content of the evaluated plants. Some bands identified as important are
in regions related to leaf structure (780 to 1450 nm), water content, and sugar and starch
(>1500 nm) [29,46]. Furthermore, wavelengths of 1660 and 2200 nm are associated with phe-
nolic compounds that can accumulate in the cell in response to attack by pathogens [25,29].
The 1596–2396 nm region was evaluated by Shin et al. [29], who found similar results,
where the early detection of potato plants with symptoms related to PED was achieved
using these spectral areas.

Compared to foliar pathogens, which have a direct interaction with the leaves of the
plant, soil pathogen infection first affects the root or vascular system of the plants before
inducing any foliar symptoms [22]. Therefore, the symptoms observed in the aerial part
of the plant are advanced expressions of the disease, limiting the scope of tools for the
detection of alterations in the initial stages of infection [14,28,29]. For this reason, the
evaluation of the third medium leaf (L7: MT) carried out in this investigation may have a
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great potential to identify symptoms in the initial stages of the development of this disease
in potato plants.

The spectral indices related to the red and near-infrared regions were the most relevant
in the discrimination of healthy and diseased plants and severity levels of PED. This was
evidenced in the significance comparison performed for the models generated from the
data from both sensors (spectroradiometer and multispectral camera). Of these indices,
two (NDRE and RECI) take into account a red edge band related to chlorophyll absorption,
which means that their values are more affected by changes in chlorophyll content within
plants [47]. This is related to the chlorosis symptoms found in the leaves of plants affected
by PED. In this study, the mean GRVI values of the diseased plants were found to be close to
each other, which has been associated with the change in leaf greenness and senescence [48].
These spectral indices can be used as early detection tools at different levels of proximity
(near and remote sensors), which is a basis for the implementation of crop management
strategies based on elements of targeted or site-specific strategies (delimitation of outbreaks,
eradication, and the potential use of fungicides, among others).

Traditionally, analyses assessing the spectral response of plants to different causal
agents of disease in plants are carried out under controlled conditions or in the field.
Various types of equipment are used, ranging from manual spectroradiometers to fixed
devices and spectral cameras mounted on drones. These approaches have typically been
conducted in isolation, resulting in incomparable and inconclusive results. In this regard,
our work represents a methodological advancement in data analysis and proposes an index
that integrates spectral responses to plant disease under both controlled conditions and
field settings using multiple spectral sensors.

In future studies aimed at the early detection of diseases in plants, particularly those
caused by vascular pathogens such as PED, it is suggested that the evaluation of changes
generated by the development of symptoms in physicochemical terms in infected plants
incorporates visual evaluations that generate qualitative or quantitative variables [29].
These evaluations can include, for example, the measurement of chlorophyll concentration
or the detection of changes in cell structure, allowing for the creation of indicators of the
initial states of infection in the evaluated plants. In this way, accurate and objective data can
be obtained related to the development of pathogen infection in plants, which is essential
in order to conduct a proper comparison of variables captured with proximal and remote
sensors in commercial crops.

Our findings present a range of alternatives with potential applications in field pro-
duction systems for the implementation of indirect detection tools for a late-expression
disease such as PED. The ability to deploy rapid tools could facilitate their inclusion into an
integrated disease management program, focusing on early, quick, and accurate diagnosis.
Furthermore, the identification of informative spectral regions for direct PED detection
could guide the development of low-cost sensors suitable for field conditions.

5. Conclusions

In conclusion, the proposed use of spectral signature data and multispectral images
used in this research is an initial step that should be considered for the effective appli-
cation of detection approaches in the field, since by considering spectral information at
different levels, such as contextual and spatial, we can obtain more reliable and robust
results in the analysis of the disease. The capacity and potential of spectral data in the
detection of potato plants infected with early death caused by Verticillium spp. in various
stages of disease development were demonstrated. The different regions of the spectrum
(710–735/1200–1600/2300–2450 nm) identified play a crucial role in the identification of
symptoms of PED, with the 710–750 nm range being particularly relevant. These regions
can be exploited in the creation and implementation of multispectral sensors that, together
with spectral indices such as RECI, NDRE, VWI, and GRVI, and ML algorithms such as RF,
become essential components in the development of methods for the indirect detection of
the disease in potato crops.
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Appendix A

Table A1. Vegetation indices used as training variables for the models generated from the two data
sources used in this study.

Index Equation References

Verticillium Wilt Index (VWI)
√

NIR−REDEDGE
(NIR−REDEDGE)2 (A1) Proposed Index

Soil Adjusted
Vegetation Index (SAVI) *

(RNIR−RRED)(1+L)
RNIR+RRED+L (A2) [49]

Enhanced Vegetation Index (EVI2) ** G ∗
(

RNIR−RRED
(RNIR+(C1∗RRED)+1)

)
(A3) [49]

Green Normalized
Difference Vegetation Index (GNDVI)

RNIR−RGREEN
RNIR+RGREEN (A4) [50]

Green–Red Vegetation Index (GRVI) RGREEN−RRED
RGREEN+RRED (A5) [48,51]

Modified Green–Red Vegetation
Index (MGRVI)

RGREEN2−RRED2

RGREEN2+RRED2 (A6) [51]

Green Chlorophyll Index (GCI) RNIR2

RGREEN − 1 (A7) [47]

Red Edge Chlorophyll Index (RECI) RNIR
RREDEDGE − 1 (A8) [47]

Normalized Difference
Red Edge Index (NDRE)

RNIR−RREDEDGE
RNIR+RREDEDGE (A9) [51]

Chlorophyll Index Green (CIGreen) RNIR
RGREEN − 1 (A10) [52]

Anthocyanin Reflectance Index (ARI) 1
RGREEN − 1

RREDEGDE (A11) [45]

Anthocyanin Reflectance Index
(CARI)

RREDEDGE
RGREEN − 1 (A12) [53]

Normalized Difference
Vegetation Index (NDVI)

RNIR−RRED
RNIR+RRED (A13) [54]

* Correction factor for the brightness of the ground = 0.5. ** G: constant = 2.5; C: atmospheric drag coefficients
(C1 = 2.4); L: adjust background = 1.
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