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Slow Coherency Identification and Power System
Dynamic Model Reduction by Using Orthogonal

Structure of Electromechanical Eigenvectors
Ilya Tyuryukanov , Member, IEEE, Marjan Popov , Senior Member, IEEE,

Mart A. M. M. van der Meijden, Senior Member, IEEE, and Vladimir Terzija, Fellow, IEEE

Abstract—Identifying generator coherency with respect to slow
oscillatory modes has numerous power system use cases including
dynamic model reduction, dynamic security analysis, or system
integrity protection schemes (e.g., power system islanding). Despite
their popularity in both research and industry, classic eigenvector-
based slow coherency techniques may not always return accurate
results. The multiple past endeavors to improve their accuracy
often lack a solid mathematical foundation. Motivated by these
deficiencies, we propose an alternative consistent approach to gen-
erator slow coherency. Firstly, a new approach is introduced to
accurately detect slow coherent generators by effectively minimiz-
ing generic normalized cuts. As a by-product, the new approach
can also guide the choice of the number of slow coherent groups.
Secondly, it is shown that the combination of the the proposed
slow coherency approach and an enhanced version of the inertial
generator aggregation method allows to produce accurate dynamic
equivalents even if the selected number of generator groups is
relatively low.

Index Terms—Coherency identification, generator aggregation,
dynamic model reduction, number of clusters, slow coherency.

I. INTRODUCTION

COHERENCY-BASED partitioning of electric power sys-
tems has been used in many applications since its inception

in 1970s [1], [2]. Initially, coherency-based generator group-
ing and aggregation were used to accelerate transient stability
simulations of a study area in a bulk power grid by replacing
the areas external to it with reduced-order dynamic equivalents.
Besides their direct use in multiple applications involving a study
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area of interest, coherency-based reduced dynamic models are
essential for online dynamic security assessment (DSA) [3] and
DSA-related preventive or remedial control actions. Another use
case of coherency-based reduced models is motivated by the
aversion of system operators to share the full models of their con-
trol areas with third parties for confidentiality reasons. Besides
applications to power system model reduction, coherency iden-
tification techniques are instrumental for the design of certain
system integrity protection schemes (SIPS) such as intentional
controlled islanding (ICI) [4]–[6], as well as the design of
wide-area monitoring and control systems (WAMCS) [7], [8].

Existing power system coherency identification techniques
can be broadly divided into model-based and signal-based ap-
proaches. The signal-based approaches aim to estimate coher-
ent power system areas by analyzing the dynamic wide-area
response signals, and their growing development is largely
motivated by the wide availability of Synchronized Measure-
ment Technology (SMT) [9]. The advantages of signal-based
coherency approaches include high adaptation to the current
operating condition and low dependence on system model
data. However, the wide-area dynamic response signals are
disturbance-dependent, and their processing poses several chal-
lenges including unreliable results during changing system con-
ditions [10], sensitivity to spurious signal components [11],
inconclusive signal similarities and data window lengths [10],
clustering issues (e.g., choice of the number of groups) etc.

Coincidentally, model-based coherency approaches retain
their significance for a number of practical applications. In
particular, coherency-based model reduction is popular among
practitioners, and there exist automated software tools to pro-
duce reduced dynamic equivalents from the power system model
data (e.g., the DYNRED package [3], [12]). Coherency-based
power system model reduction proceeds in the following three
basic steps [3]. First, coherent generator groups are identified in
a power network. Next, each coherent generator group outside of
the study area of interest is aggregated to an equivalent generator,
while the coherent generator groups inside of the study area
remain unreduced. In the final step, the load buses outside of
the study area are reduced by using the specialized techniques
(e.g., those based on Ward reduction [13]). As each coherent
group is replaced by a standard generator model, coherency-
based dynamic reduction methods can be easily integrated with
commercial dynamic simulation packages. This is different
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to the alternative class of reduction methods stemming from
control theory [14], [15], which do not depend on the coherency
information, but can only produce equivalents in the form of
linear time-invariant (LTI) systems.

The classic model-based coherency techniques utilize the
rotor angle mode shapes of slow system modes to detect the
groups of slow coherent generators. Generator grouping based
on slow coherency results in clustering together strongly con-
nected generators [16]. As strong connections within an op-
erating region is a system property, areas obtained based on
slow coherency are robust and change little with varying system
parameters and operating conditions. The comprehensive theory
underlying slow coherency based grouping and model reduction
was developed during the 1980 s and 1990s [17], [18]. Since
then, some new ideas and algorithms that could contribute to
the topic have emerged in various disciplines [19], [20]. This
paper explores the practical implications of the close relationship
between slow coherency and normalized graph cuts (Ncuts).
Namely, considering slow coherency as an Ncut problem allows
to consistently achieve more accurate generator groupings than
with the conventional approaches. The main obstacle lies in the
NP-completeness of the Ncut problem and the large solution
space of its exact formulations (e.g., see [21]), which prompts
the development of alternative solution methods that are able to
achieve a near-global Ncut optimum in polynomial time. To re-
solve this issue, we propose a novel slow coherency grouping al-
gorithm that organically integrates the new advances in spectral
clustering and the classic coherency works, while revealing the
favorable numbers of groups present in the system. Our findings
show that Ncut values close to the global minimum are crucial
for the high fidelity of slow coherency groupings. Because of
this, some elements of our previously published highly efficient
Ncut minimization approach [22] are adapted from minimizing
standard Ncuts in sparse graphs to minimizing generic Ncuts in
complete graphs that are related to slow coherency. Besides the
precise slow coherency grouping, we propose an improvement to
the inertial aggregation algorithm (see Section VI-A) to reduce
its so-called stiffening effect [18], which also helps to further
check the validity of coherency groupings through nonlinear
dynamic reduction case studies.

From the high-level perspective, the paper has two interrelated
motivations. Firstly, it shows that the popular spectral clustering
method can be more that an ordinary analytics tool for power
system data. By the virtue of Ncut minimization from which it
derives, spectral clustering is capable of remarkably revealing
the inherent structure of various power system models, some
of which possess the graph Laplacian structure (e.g., branch
admittance matrix, parts of power flow Jacobian [23], elec-
tromechanical power system model [3]). Secondly, the paper
demonstrates that the grouping accuracy can be of crucial im-
portance. In fact, the classic slow coherency algorithm [17]
has been removed from the latest versions of the DYNRED
software due to its inferior performance [12]. The new slow
coherency grouping algorithm proposed in this paper uses the
same model and eigenvector-based principle as the classic one,
yet it allows to obtain high quality reduced dynamic models
(see Section VI), thus showing that classic slow coherency can

be used for dynamic model reduction despite being previously
discarded for this purpose.

II. SLOW COHERENCY

A. Basic Slow Coherency Model

The second-order electromechanical model with neglected
damping is widely used to study slow coherency in power
systems. It is given below in its typical compact form:

Δδ̈ = M−1KΔδ (1)

whereΔδ is a vector of small deviations in machine rotor angles,
M = 2

ω0
H is a diagonal matrix of scaled machine inertiasMi,H

is the diagonal matrix of machine inertias Hi, i = 1, . . . ,m, ω0

is the nominal system frequency in rad/s, andK is the full matrix
of synchronizing torque coefficients between the machines that
is defined element-wise as follows:

Kij = E
′
iE

′
jBij cos(δi,0 − δj,0)

− E
′
iE

′
jGij sin(δi,0 − δj,0) = KB

ij −KG
ij , j �= i (2a)

Kii = −
m∑

j=1,j �=i

Kij (2b)

where m is the number of synchronous machines, E
′
i is the per

unit magnitude of the transient emf phasor E
′
i of machine i, Gij

andBij are the (p.u.) real and imaginary components of the (i, j)
entry of the system admittance matrix reduced with respect to
machines’ internal nodes by using Kron reduction [24], and δi,0
is the angle of E

′
i at the current steady-state.

The model in (1) originates from a linearized system of swing
equations [24]. For high-voltage transmission power networks,
the components ofKij associated with the transfer conductances
Gij (i.e., KG

ij ) are normally much smaller than the components
associated with the transfer susceptances Bij (i.e., KB

ij ). If
the terms KG

ij in (2a) are neglected, the matrix K becomes
symmetric for transmission networks without phase shifters,
and it is further referred to as KB. The matrix KB is often
used in power system literature instead of the matrix K, as its
symmetry and negative semidefiniteness are favorable analytic
properties [4].

B. Slow Coherency and Power System Oscillations

The eigenvalues λ1, . . . , λm of the matrix M−1K closely
match with the squared frequencies of the electromechani-
cal system modes, and the corresponding eigenvectors closely
match with the rotor angle shapes of these modes [3]. A rotor
angle mode shape describes the rotor angle oscillation pattern at
the specific modal frequency [25]. That is, entries i and j of an
eigenvector V l having the same sign and a similar magnitude
indicate the near-coherency of rotor angles δi and δj at the
frequency

√|λl|. However, electromechanical oscillations usu-
ally involve multiple frequency components, which motivates
analyzing coherency for multiple mode shapes.

By its definition, slow coherency describes the coherency of
rotor swings with respect to the slowest system modes [3]. Given
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the k slowest eigenvectors of M−1K combined into the matrix
V = [V 1, . . . ,V k], the coherency of rotor angles δi and δj
for the frequencies

√|λ1|, . . . ,
√|λk| can be characterized by

the similarity of rows i and j of V, which is analogous to the
aforementioned rotor angle mode shape analysis. Noteworthy,
the slowest eigenvector V 1 corresponding to λ1 = 0 has all its
entries equal to the same value. This so-called DC mode seem-
ingly contains no information about the relative rotor swings.
However, its importance for slow coherency identification is
justified both from the perspective of classic slow coherency
theory (see [17, Chapter 5]) and the Ncut perspective of this
paper.

Slow coherency is traditionally associated with inter-area
oscillations. In large-scale power systems, it is common to
have generation and load areas to be interconnected by long
transmission lines. Such an area-based structure manifests itself
in the eigenvalues of M−1K being separated into slow and
fast modes. This relationship between the time-scale separation
and the strength of inter-area connections is a fundamental
property that is also related to the notions of decomposability,
localizability, and state aggregation (see [16], [17]).

C. Analogy Between Slow Coherency and Normalized Cuts

By inspecting the structure of the matrix KB introduced
in Section II-A, it can be noted that KB corresponds to a
negated graph Laplacian matrix (e.g., see [4]). This fact serves
as the main theoretical basis of our proposed slow coherency
framework, which warrants considering it in more detail while
also introducing the important definitions and notation.

If KB is seen as a graph Laplacian matrix, it is possible to
introduce an electromechanical graph G = (V,E, w, μ) based
on KB and M [4]. The node set V = {1, . . . ,m} corresponds
to all synchronous machines, and the edge setE = {(i, j) | i, j ∈
V, i �= j} defines a complete graph. The edge weights are
induced by KB as w(i, j) = KB

ij , ∀(i, j) ∈ E, and the node
weights μ(i) = Mi, ∀i ∈ V. For G , the generic Ncut minimiza-
tion problem, which plays the key role in the slow coherency
grouping process, is stated as:

minimize NcutM (X̃) =
1

k

k∑
j=1

X̃
T

j (−KB)X̃j

X̃
T

j MX̃j

(3a)

subject to: X̃ ∈ {0, 1}m×k, X̃1k×1 = 1m×1 (3b)

where k is the number of groups and 1m×1 is an all-ones column
vector. In (3), machines’ group assignment is modeled with
binary group indicator vectors. If X̃1 is the indicator vector
of group C1, X̃1 = [f1, . . . , fn]

T and fi = 1 if node i belongs
to C1 and fi = 0 otherwise. For a k-way grouping, a binary
partition indicator matrix can be defined as a concatenation of
groups’ indicator vectors: X̃ = [X̃1, . . . , X̃k].

The definition in (3) differs from the classic Ncut definition by
including scaled inertias as generic graph node weights instead
of using weighted node degrees as graph node weights [19],

[26]. The individual terms in (3) are given as:

φM (C) = X̃
T

C (−KB)X̃C

X̃
T

CMX̃C
=

∑
i∈C,j∈V\C K

B
ij∑

i∈CMi
(4)

where X̃C ∈ {0, 1}m×1 is the indicator vector of the group C.
We call (4) generic subgraph expansion by analogy to both
theoretically and practically important expansion ratios that
form the classic NCut minimization objective [26].

The Ncut problem in (3) is an NP-complete discrete opti-
mization problem even on planar graphs and for k = 2 [19]. To
overcome this issue, the authors of [20] perform the change of
variables in (3) by introducing a scaled partition matrix Z̃:

Z̃ = X̃(X̃TMX̃)−
1
2

Next, the original constraints of (3) are relaxed, which reduces
problem (3) to a trace minimization problem:

minimize NcutSR
M (Z) =

1

k
tr
(
ZT

(−KB
)
Z
)

(5a)

subjectto: ZTMZ = Ik (5b)

Where Z is a continuous relaxation of Z̃ and (5b) helps to
model the original cost function. The relaxed Ncut minimization
problem (5) can be directly solved using the Rayleigh-Ritz
theorem and its extensions [20]. Namely, the optimal objective
value of (5) is given by the negated sum of the k smallest
magnitude eigenvalues of M−1KB, and the optimal solution is
given by the corresponding eigenvectors of M−1KB combined
into the matrixZ. Therefore, the slow eigensubspace ofM−1KB

that is used for slow coherency identification is also the optimal
solution to the relaxed Ncut problem in (3).

III. RECOVERING THE ORTHOGONAL STRUCTURE OF

ELECTROMECHANICAL EIGENVECTORS

The last sentence of Section II-C explains the rationale behind
using spectral clustering for the detection of slow coherent
machines. However, the NcutM problem in (3) is different from
the usual normalized spectral clustering (see [26]). In particular,
the eigenvalues of M−1KB are not restricted to [0,−2], the
generic expansion (4) is not bounded in [0, 1] andKB represents
a complete graph. Coincidentally, solution accuracy close to the
global optimality is required, as wrongly grouping even a single
important generator can pose a serious problem. In this section,
we are introducing a crucial component of a highly accurate
spectral clustering algorithm tailored to solving (3) that is further
elaborated in Section IV.

From Section II-C, the slowest eigenvectors of M−1KB

represent the optimal solution to the spectral relaxation of (3). As
shown in [20], this optimal solution Z = [Z1, . . . ,Zk] is invari-
ant under orthogonal linear transformations. The rows of Z can
be viewed as Euclidean point coordinates of the corresponding
machines, which results in a spectral embedding of the graph G
into Rk. Orthogonal linear transformations can be used for the
alignment of spectral embeddings with the canonical coordinate
system of Rk to facilitate the group assignment process (e.g.,
see Fig. 1). In [22], we have proposed a robust algorithm to
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Fig. 1. Aligned eigenvectors of the electromechanical model of the IEEE 9
bus test system.

align normalized spectral embeddings with the standard basis.
A normalized spectral embedding corresponds to the matrix X
that is obtained from Z by normalizing the rows of Z to length
one:

Xij = Zij

/⎛⎝ k∑
j=1

Z2
ij

⎞⎠1/2

(6)

However, the columns X are no longer the eigenvectors of
M−1KB and thus no longer the proper minimizers of (5).
Moreover, the information about the row magnitudes ofZ that is
lost due to (6) is significant for slow coherency identification [2].
Therefore, aligning row-normalized spectral embeddings X can
be seen as a successful heuristic, but more precise slow co-
herency results can be achieved by considering both the angular
and radial separation of the rows ofZ by formulating the spectral
embedding alignment problem as follows:

minimize J(R) =
1

m

m∑
i=1

k∑
j=1

[ZR]2ij
U2
i

subjectto: RTR = Ik (7)

where R ∈ Rk×k is an orthogonal matrix, Ui = maxj [ZR]ij ,
and Ik is the identity matrix of size k.

The alignment cost J in (7) is preferred to its counterpart
from [20] because it is valid for any real matrices A ∈ Rm×k,
not only row-normalized ones. However, the optimization of
(7) solely by the original approach in [27] is less scalable and
more prone to local optima. The following combined approach
consistently outperforms the alternatives in optimizing (7):

1) Obtain the row-normalized matrix X from Z using (6).
2) Align the normalized spectral embedding in X with

the standard basis using the robust alignment algorithm
from [22]. Store the final aligning orthogonal matrix
as R∗.

3) Use the eigenvector matrix ZR∗ as an initialization to
further minimize (7) with a gradient descent (GD) based
algorithm similar to [27].

In the above procedure, step 2 significantly improves the
robustness to local optima. By ignoring the row magnitudes in
Z, it identifies the major k directions in the normalized spectral
k-embedding. At step 3, the rows of Z are transformed by R∗

to align them with the major directions identified at step 2.
As the row magnitudes are no longer ignored, an additional
GD-based minimization of (7) is performed to account for them;
the improvements achieved at step 3 are typically quite small.

Another important issue is the scaling of the columns of Z.
For the classic coherency grouping algorithm in [17], the eigen-
vector scaling issue was not elaborated. For the tolerance-based
coherency algorithm [3], it was recommended to scale each
electromechanical eigenvector to length one (this scaling is also
implicit in many eigensolvers). The eigenvector scaling adopted
in this paper hinges on constraint (5b) for valid optimal solutions
of the spectral relaxation in (5). Eigenvectors satisfying (5b) are
known as mass-normalized eigenvectors. The benefits of using
mass-normalized electromechanical eigenvectors for coherency
identification are illustrated on an example involving the IEEE
9 bus test system.

The electromechanical model data of the IEEE 9 bus test
system can be found e.g. in [24]. This test system contains
only three generators, so if three coherent groups are requested,
each generator is expected to be perfectly clustered into its own
group. The unit-length normalized eigenvectors V and mass-
normalized eigenvectors Z of the matrix M−1K corresponding
its three eigenvalues {0, -75.54, -179.15} are:

V =

⎡⎣ 0.577 0.315 −0.040
0.577 −0.824 −0.296
0.577 −0.470 0.954

⎤⎦ Z =

⎡⎣ 2.39 1.594 −0.30
2.39 −4.172 −2.22
2.39 −2.381 7.17

⎤⎦
The results of applying spectral embedding alignment the

above two eigenvector matrices can be seen in Fig. 1. Fig. 1b
shows that aligning the mass-normalized eigenvectors in Z
produces a discrete eigenvector matrix (i.e., the expected perfect
group assignment is achieved), while Fig. 1a illustrates the
impossibility of achieving the same result with the unity-length
normalized eigenvectors in V. The perfect alignment of eigen-
vectors in Z is despite employing the original non-symmetric
matrix K (see [17, Chapter 4]). Thus, the M-orthogonality
constraint (5b), which is not inherent in model (1), allows to
best reveal the orthogonal structure of electromechanical eigen-
vectors.

IV. SLOW COHERENCY GROUPING ALGORITHM

A. Estimation of Group Cores

The first step of the new slow coherency grouping algorithm
shares similarities with the cluster core estimation process from
our previous work [22]. To avoid repetition, this section mostly
focuses on the crucial differences of the group cores estimation
process that is summarized as Algorithm 1 from the previously
proposed cluster cores estimation process.

According to [17], it is beneficial to choose machines with
large and linearly-independent rows in the electromechanical
eigenvector matrix as reference machines of the coherent areas.
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Thus, the aligned mass-normalized electromechanical eigen-
vectors in Z∗ = ZR∗ are used in Algorithm 1 to preserve the
row magnitude information that is valuable for the coherency
analysis. In Algorithm 1, the largest rows ofZ∗ that best indicate
the reference machines of each group are always considered first.
However, without row normalization, the entries magnitudes in
the columns of Z∗ may vary considerably (e.g., see Fig. 1b),
which makes it difficult to set a fixed threshold up to which
each column of Z∗ can be considered independently from the
others. To solve this issue, the columns of the row-normalized
eigenvector matrix X∗ (see line 4 in Algorithm 1) are used in
combination with a fixed threshold value γ, and the order of
entries in a column of X∗ is determined by the descending order
of magnitudes of the corresponding column of Z∗.

Another issue arising due to possible large magnitude differ-
ences of the entries in various columns of Z∗ is the possibility
of multiple column maxima sharing the same row of Z∗. In such
cases, the same machine can be assigned to multiple groups
unless some extra measures are taken. The permutation of the
columns of Z∗ at line 3 of Algorithm 1 establishes the priority
order for the columns of Z∗ so that the prospective machine
groups featuring the largest entries in their respective columns
are considered first. Additionally, lines 19–20 ensure that no row
of Z∗ is selected for more than one group.

For Algorithm 1, the best results are obtained with γ being
set to the lowest reliable value of

√
2/2. As γ is directly set

to
√
2/2, the gains achievable by the cluster core refinement

described in [22] diminish. Consequently, the refinement stage
is not used to simplify the algorithm. Finally, the minimum
group size requirement looses its meaning (i.e., if a single large
machine constitutes a group, it must be treated as such).

B. Greedy Assignment of Remaining Machines

An execution of Algorithm 1 may not classify every machine
to a group core. The remaining machines that do not belong
to any group core form a set R. These machines are similar
to loosely coherent machines from literature [3], [17]. As the
electromechanical graph G is a complete graph, the cluster con-
nectivity constraint becomes automatically satisfied. To exploit
this problem property, a greedy machine assignment algorithm is
proposed that often exceeds the results of the min-cut recursive
bisection:

1) Evaluate the generic expansions (4) of each of the machine
group cores C1, . . . , Ck obtained from Algorithm 1 as
φM (C1), . . . , φM (Ck).

2) Attempt to move each remaining machine j ∈ R to ev-
ery group core and evaluate the signed differences in
generic expansions ΔφM (Cl ∪ j) = φM (Cl)− φM (Cl ∪
j), l = 1, . . . , k, j ∈ R resulting from these moves.

3) Identify the largest signed difference ΔφM (Cl∗ ∪ j∗),
where Cl∗ and j∗ are respectively the group core and the
remaining machine involved in the move.

4) Perform the following updates: φM (Cl∗)← φM (Cl∗ ∪
j∗), Cl∗ ← Cl∗ ∪ j∗,R ← R \ j∗.

5) Repeat steps 2, 3, 4 until all remaining machines are
assigned to a group core (i.e., untilR = ∅).

Algorithm 1: Estimation of Machine Group Cores.

Input: Aligned eigenvectors Z∗, matrix KB, matrix M
1: γ ← √2/2 �Eigenvector threshold γ gets the

lowest value
2: Reorder the columns of Z∗ in the descending order of

the maximum absolute elements of each column.
3: X∗ ← Normalize rows of Z∗ using (6)
4: for l = 1 to k do
5: Z ← Z∗[1, . . . ,m; l] �lth column of Z∗

6: X ← X∗[1, . . . ,m; l] �lth column of X∗

7: ord← Descending order of entries inZ
8: j ← 0

9: for i← 1, . . . ,m do
10: if X[ord[i]] > γ then
11: j ← j + 1
12: core[j]← ord[i]
13: phi[j]← φM (KB,M, core) �(4)
14: end if
15: end for
16: j∗ ← argminphi
17: Cl ← {core[1, . . . , j∗]}
18: Z∗[Cl; 1, . . . , k] = 0 �Set elements with row

indices Cl
19: X∗[Cl; 1, . . . , k] = 0 �and column indices

1, . . . , k
20: end for
Output: Machine group cores C1, . . . , Ck

In the above algorithm, the incremental updates of group cores
expansions at step 2 can be implemented in a computationally
efficient manner by using the following scheme:

di =
m∑
j=1

KB
ij , ∀i ∈ V (8a)

vol(Cl) =
∑
i∈Cl

di, l = 1, . . . , k (8b)

μ(Cl) =
∑
i∈Cl

Mi, l = 1, . . . , k (8c)

links(Cl, Cl) =
∑

i∈Cl,j∈Cl
KB

ij , l = 1, . . . , k (8d)

φM (Cl) = vol(Cl)− links(Cl, Cl)
μ(Cl) , l = 1, . . . , k (8e)

where di is the weighted degree of node i in the graph G ,
vol(Cl) is the volume of the group Cl [26], μ(Cl) is the total
node weight of the group Cl and links(Cl, Cl) is the total weight
of the edges inside of the group Cl. Thus, to compute the change
of φM (Cl) due to moving a single machine to or from the
group Cl, the quantities vol(Cl), μ(Cl) and links(Cl, Cl) need to
be updated accordingly. Updating vol(Cl) and μ(Cl) involves a
simple addition or subtraction, as the weighted degrees di of the
nodes in G can be precomputed and the scaled machine inertias
Mi belong to the problem data in (1). Updating links(Cl, Cl)
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involves adding or subtracting the term 2
∑

i∈Cl K
B
ij , where j is

the machine moved to or from Cl. This update scheme is also
used in Algorithm 1 at line 14.

C. Greedy Search Based Group Refinement

The mass-normalized electromechanical eigenvectors in Z
represent an optimal solution to a continuous relaxation (5)
of the NP-complete problem in (3). This implies a possibil-
ity of suboptimal groupings by Algorithm 1, especially if the
alignment cost in (7) is high. Due to NP-completeness of (3),
greedy machine assignments described in Section IV-B cannot
be guaranteed to converge close to the global optimum of (3).
Because of these complications, the solutions obtained by the
methods from Sections IV-A and IV-B may noticeably benefit
from graph cut refinement [28]. The following algorithm similar
to the one from Section IV-B has been successfully applied to
improve the NcutM values:

1) Evaluate the generic expansions (4) of the input machine
groups C1, . . . , Ck as φM (C1), . . . , φM (Ck).

2) Attempt to move each machine j ∈ V from its own
group Cf to every other group Ct unless Cf is a
group containing a single machine. Evaluate the signed
differences ΔφM (Ct ∪ j) = φM (Ct)− φM (Ct ∪ j) and
ΔφM (Cf \ j) = φM (Cf )− φM (Cf \ j) for j ∈ V, (Cf �
j) ∧ (|Cf | > 1), Ct ∈ {C1, . . . , Ck} \ Cf .

3) Identify the largest signed difference ΔφM (Ct∗, j∗) =
ΔφM (Ct∗ ∪ j∗) + ΔφM (Cf∗ \ j∗), where Ct∗ and j∗ are
respectively the receiving group and the machine to be
moved from the sending group Cf∗.

4) If ΔφM (Ct∗, j∗) > 0, perform the following updates:
φM (Ct∗)← φM (Ct∗ ∪ j∗), φM (Cf∗)← φM (Cf∗ \ j∗),
Ct∗ ← Ct∗ ∪ j∗, Cf∗ ← Cf∗ \ j∗.

5) Repeat steps 2, 3, 4 until ΔφM (Ct∗, j∗) ≤ 0.
The full potential of the proposed Ncut refinement algorithm

can be realized by running it multiple times with different initial
machine groupings. Diverse initial groupings lead to an in-
creased variety of solutions of (3) at the termination of the greedy
refinement process, some of which could be close or equal to the
global optimum of (3). Meaningful initial machine groupings
can be generated based on the output results of Algorithm 1
(i.e., the machine group cores and the set of remaining machines
R). In Section V, the initial machine groupings were obtained
by running Algorithm 1 followed by the greedy assignment of
the machines in R (see Section IV-B) and by several random
group assignments of the machines inR. For Sections V–VI, 15
random initializations were used.

D. Comparison of Machine Assignment and Node Refinement

The greedy assignment of Section IV-B and the above Ncut
refinement share a lot of similarities. In the both algorithms,
a machine is taken from one group and sequentially moved
to all others. The major difference between the two consists
in the source set from which the machines are moved. For
the greedy assignment the source set is R and the receiving
sets are C1, . . . , Ck. For the Ncut refinement, R is empty and
the machines are moved between C1, . . . , Ck. The results of

these moves are evaluated using the update scheme in (8). In
Section IV-B, the best move is implemented at every step until
all machines inR are assigned. In Section IV-C, the best moves
are executed only until they improve the objective (3a).

V. LINEAR MODEL REDUCTION RESULTS

A. Grouping Accuracy Evaluation

One way to access the accuracy of a slow coherency machine
grouping is by comparing the slow eigenvalues of the full model
(1) with the eigenvalues of an aggregate linear model based on
that machine grouping. To compare the errors in slow eigenval-
ues resulting from machine groupings obtained from different
algorithms, the linear inertial aggregate model described in [3],
[17] is going to be used. Although the eigenvalue errors can be
made smaller by using the alternative slow coherency aggregate
model, a less successful machine grouping will still produce
higher errors than a more successful one. Moreover, the inertial
aggregate model has an attractive physical meaning related to
the inertial generator aggregation method [18] considered in
Section VI.

To evaluate the eigenvalue errors of reduced linear electrome-
chanical models resulting from various machine groupings, the
mean percentage eigenvalue error is used:

δλ =
1

k

k∑
i=1

|λa,i − λf,i|
|λf,i| · 100 (9)

where λf,i is the i slow eigenvalue of the full electromechanical
model (M−1K or M−1KB) and λa,i is the eigenvalue of the
aggregate electromechanical model closest to λf,i.

B. NPCC 48-Machine Test System

The Northeast Power Coordinating Council (NPCC) 48-
machine test system contains 140 buses, 48 of which have
synchronous machines. It represents the parts of the electric
power grid in the Northeastern U.S. and Southeast Canada.
The NPCC 48-machine test system has often been used in
generator coherency studies (e.g., in [3], [18]); many of these
studies also include the system’s geographical diagram, while
its electromechanical model data is available in PST [29].

First, the alignment cost minimization method described in
Section III is applied to the first 2,...,14 mass-normalized eigen-
vectors of the studied test system. In Fig. 2, the cost in (7) is min-
imized both for the eigenvectors of M−1K (i.e., non-symmetric
K) and the eigenvectors of M−1KB. The results for M−1KB

aim to show the ideal outcome of our spectral clustering based
grouping algorithm that assumes a symmetric similarity matrix.
Noteworthy, one of the local minima of the curves in Fig. 2 cor-
responds to grouping the machines into 9 areas – the choice that
was previously advocated in [3], [17]. Other minima correspond
to 3 and 6 areas. Such local minima correspond to relatively
cohesive and well-decoupled groupings at various degrees of
granularity. The final choice of the group number depends on the
actual problem requirements, as some applications benefit from
a few larger groups, while others require a smaller group size.
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Fig. 2. Variation of alignment cost (7) for the electromechanical eigenvectors
of the NPCC 48-machine test system.

Fig. 3. Mean eigenvalue errors of inertial aggregate models based on groupings
of the NPCC 48-machine system produced by three algorithms and associated
generic Ncuts.

In any case, group numbers featuring a relatively high J-cost
should be avoided.

To show the effectiveness of the approach in Section IV,
its results are compared with those of the well-known slow
coherency grouping algorithm [17]. These two algorithms are
directly comparable, as they both return the specified number
of groups k by using the k slowest electromechanical eigen-
vectors. The resulting mean percentage eigenvalue errors (9)
are shown in Fig. 3 for both M−1K and M−1KB serving as
electromechanical model. The groupings for the model M−1K
are computed by using its aligned eigenvectors in Algorithm 1.
When M−1K serves as the model, the quantities NcutM and
φM are still evaluated by using a symmetrized version of K that
is obtained by averaging the elements above and below the main
diagonal asKS

ij = (Kij +Kji)/2. For power networks without
phase shifters, KS

ij = KB
ij , which means that the matrix KB is

used to evaluate (3) and (4) in all cases. The maximum number
of machine groups is set to 14, which is a rather high number
for a 48-machine system that is chosen to provide a general and
broad comparison.

Algorithm 2: Improved Inertial Generator Aggregation.
Input: Power system model, coherent groups C1, . . . , Ck.
1: for l = 1 to k do
2: x̂′d,eq ← 20(

∑
i∈Cl 1/x

′
d,i)
−1

3: x← Range of numbers from 10−6 to x̂′d,eq .
4: for i = 1 to |x| do
5: Aggregate group Cl with the basic method [18].
6: x′d,eq ← x[i]
7: Compute the slow modes and store errors (9).
8: end for

9: Choose x′d,eq for Cl as x[i] yielding smallest error (9).
10: end for
Output: Reduced power system model

The upper Figs. 3a and 3b show that the grouping algorithm
from Section IV (shown in two variants: with and without the
greedy refinement stage) performs equally or better than the
classic grouping algorithm (the dash-dot green curve) in all
test cases. All tested grouping algorithms have a peak in their
eigenvalue error curves at k = 4, which also corresponds to the
maximum of alignment cost in Fig. 2. This high alignment cost
value implies that the four slowest electromechanical eigenvec-
tors provide a limited amount of information to minimize the
NcutM criterion. Therefore, the Ncut refinement algorithm in
Section IV-C becomes more valuable to find lower NcutM values
using the initial information contained in the eigenvectors. For
k = 4, the complete Ncut minimization approach of Sections IV-
A–IV-C (the solid black curve) is able to noticeably improve the
machine grouping in terms of metric (9).

The lower Figs. 3c and 3d confirm the claim that minimizing
the NcutM criterion is a good strategy to obtain accurate machine
groupings based on slow coherency. As normalized cuts are
normally increasing in value with the growing number of groups,
we choose to show the ratios of the results by other algorithms
to the result of our combined algorithm in Sections IV-A–IV-C
(denoted by the † superscript), which allows us to represent the
results for different group numbers on a similar scale. Thus, the
results of our complete algorithm in Section IV are shown by
the black horizontal line at the unity level, while the results of
our proposed algorithm excluding Ncut refinement are shown by
cyan bars, and the results of the classic slow coherency algorithm
are shown by green bars. By comparing the results in Figs. 3a
and 3b with their counterparts in Figs. 3c and 3d, it can be
recognized that lower NcutM values are linked to lower slow
modes approximation errors. Moreover, the complete algorithm
in Section IV tends to produce both the lowest NcutM values
and the lowest eigenvalue errors.

VI. NONLINEAR MODEL REDUCTION RESULTS

A. Improved Inertial Generator Aggregation Algorithm

The goal of nonlinear model reduction is to produce a reduced
power system model consisting of standard power system ele-
ments (e.g., generators, loads, transformers) that is compatible
with common time-domain simulation programs. This goal can
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Fig. 4. Improved inertial generator aggregation algorithm.

be reached by replacing each coherent generator group by a
single equivalent generator – this process is known as generator
aggregation [30].

In [18], the inertial generator aggregation algorithm was pro-
posed to alleviate the stiffening effect of the widely used Podmore
generator aggregation algorithm. The stiffening effect manifests
itself in the increased electromechanical mode frequencies of
the reduced model compared to the original one. To reduce this
effect, it was proposed to aggregate the coherent generators at
their internal nodes instead of the terminal bus aggregation as
in the Podmore method. Merging together the internal generator
nodes of each coherent group as shown in [18] and linearizing
the resulting reduced system produces the same model as the
linear inertial aggregate model from Section V. From Fig. 3 it
can be seen that the stiffening effect remains quite significant.
For higher group numbers, the averaged metric in (9) decreases,
but the error in the slow inter-area modes may increase.

As the persisting stiffening effect of the inertial aggregation
algorithm may often lead to unsatisfactory nonlinear reduced
models, a simple yet effective improvement is proposed. In
Fig. 4, the initial and final stages of the inertial aggregation
algorithm are illustrated for two generators represented by their
classical models. Going from Fig. 4a to Fig. 4b involves ag-
gregation of nodes 1′ and 2′ into node eq using the Zhukov
bus aggregation method [31]. This includes adding ideal trans-
formers and phase shifters in series with reactances x′d,1 and
x′d,2 to preserve the initial power flow. The dynamic parameters
of the equivalent generator are derived from the sum of swing
equations of generators belonging to a coherent group C by
assuming their incremental speeds and rotor angles to be the
same (the coherency condition):

Heq =
∑
i∈C

Hi, Deq =
∑
i∈C

Di (10)

Where Heq is the equivalent inertia constant, and Deq is the
equivalent damping constant.

In the original inertial aggregation algorithm, the effective
reactance behind bus eq is zero (i.e., x′d,eq = 0), which strictly
corresponds to the aggregation of generator internal buses. How-
ever, we have noticed that it is possible to decrease the elec-
tromechanical frequencies of the reduced model by increasing
the reactancex′d,eq from a value close to zero to some meaningful

TABLE I
6-AREA GROUPINGS IDENTIFIED BY TWO METHODS

upper limit x̂′d,eq. The improved inertial aggregation algorithm
is summarized as Algorithm 2. In Algorithm 2, x̂′d,eq is set
to 20 times x′d,eq of the Podmore algorithm, which is chosen
empirically for studies on the NPCC 48-machine test system.

Algorithm 2 preserves the advantages of the baseline ap-
proach [18] such as conceptual simplicity and possibility to
independently aggregate each generator group. As shown in
Section VI-B, Algorithm 2 is significantly more accurate, thus
trading execution speed for accuracy. However, if execution
speed is highly important, Algorithm 2 allows for massive
parallelization. Clearly, both basic inertial aggregation and
Algorithm 2 are only valid for generators represented by the
classical model. However, representing external remote gener-
ators by the simplified 2nd order model is well-accepted and
often used in practice (e.g., in the DYNRED software [12] and
in the Dutch transmission network model).

B. Six Area Grouping of NPCC 48-Machine Test System

As discussed in Section V-B, it is known that the NPCC
48-machine test system can be well decomposed into 9 areas
based on its 9 slowest electromechanical modes. Our previous
case study in Section V-B comes to the same conclusion, but
it additionally identifies alternative area structures consisting of
3 and 6 areas (see Fig. 2). The present case study illustrates
the validity of decomposing the NPCC system into 6 areas by
using our grouping algorithm in Section IV. Additionally, the
proposed improved inertial generator aggregation is shown to
yield favorable results with our 6-area grouping that is given in
Table I. The geographic locations of the machines in Table I can
be found in multiple sources containing case studies based on
the NPCC 48-machine test system (e.g., [3], [18]).

To be consistent with several previous studies (e.g., [18]),
the simulated disturbance is a six-cycle short-circuit fault at
Medway, which is cleared by opening the line from Medway
to Sherman Road. The rotor angle swings following this dis-
turbance are shown in Fig. 5 on per-coherent area basis. As
Areas 5 and 6 each contain a single machine, only the transients
in the four multi-machine areas are shown, with the individual
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Fig. 5. Coherent swings in Areas 1–4 by our grouping method.

Fig. 6. Response of machine 4 for the Medway disturbance.

rotor angles plotted in cyan and the area center-of-inertia (COI)
rotor angle plotted in black. In Fig. 5, the machines in each area
swing coherently following the disturbance, which confirms the
validity of the 6-area grouping.

Next, the suitability of the discovered 6-area grouping for
nonlinear model reduction is examined. To further highlight
the importance of coherency grouping accuracy, we perform
one more nonlinear model reduction experiment involving the
six areas returned by the classic slow coherency algorithm. As
in [18], the unreduced study area is assumed to contain machines
1–10 for the both groupings, which corresponds to Area 1 (see
Table I). The nonlinear model reduction results in the form of the
rotor angle response of machine 4 to the Medway disturbance
are shown in Fig. 6. In Fig. 6, the upper plot shows the outcomes
of Algorithm 2, while the lower plot shows the outcomes of the
original inertial aggregation method; the red graphs are based
on the areas obtained with our grouping algorithm, while the

TABLE II
3-AREA GROUPING IDENTIFIED BY TWO METHODS

green graphs are based on the areas returned by the classic
grouping algorithm, and the blue graphs show the response of
the unreduced system. The results in Figs. 5–6 confirm that the
proposed grouping and aggregation framework is able to reliably
identify slow coherent areas in a power system and to produce
accurate reduced-order models from these areas. Noteworthy,
the high frequency components in the rotor angle response in
Fig. 6 arise due to the local mode oscillations between machines
4 and 5 that both share the same high-voltage bus without being
aggregated, as they both belong to the unreduced Area 1.

C. Three Area Grouping of NPCC 48-Machine Test System

In Fig. 2, the lowest alignment cost values correspond to
k = 3, and they are quite close to the lowest value of J equal to
one (i.e., perfectly decoupled groups with negligible external
connections). The low value of J is indicative of a distinct
clustering of the rows of Z into the k mutually orthogonal
groups. Therefore, the same three area grouping could be easily
recovered both by the classic and new method (see Table II). By
comparing Table II with the machine locations in [3], [18], it
can be noticed that Area 2 in the West and Area 3 in the South
are clearly geographically separated from the large Area 1 in
the Northeast. Only machine 47 looks as an exception, as it is
geographically (but not electrically) closer to Area 1.

Although the three area grouping reveals some valuable in-
formation about the system, it is likely to be too coarse for the
most of practical purposes. For example, Area 1 is visibly too
large and spans the most of the system. Moreover, it is no longer
possible to take machine 48 as the angle reference in the reduced
system model, as machine 48 is no longer a separate area, but a
part of Area 3. Thus, closely reproducing the benchmark rotor
angle time response [18] of the reduced system model for the
Medway disturbance does not seem possible. However, we can
point out that the rotor angle swings in Area 1 are similar to
Fig. 5a, swings in Area 2 are very similar to Fig. 5b, and swings
in Area 3 are very similar to Fig. 5c. These conclusions come as
no surprise after comparing Tables I and II.

D. Sixteen Area Grouping of NPCC 48-Machine Test System

The goal of this concluding case study is to demonstrate the
performance of the proposed machine grouping and aggregation
techniques when the selected number of groups is relatively high.
In particular, it may be more convenient for dynamic model
reduction to operate on many small and compact generator
groups as opposed to aggregating a few large areas. Thus, we
have selected k = 16, which is close to k = 17 returned by
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Fig. 7. Response of machine 4 (16-area groping).

the tight coherency algorithm in [18]. Selecting k = 16 also
corresponds to the low alignment cost value of 1.11 if theM−1K
model is used. The machine groups C1, . . . , C16 returned by our
algorithm are listed below:

C1 = {1, 2}, C2 = {3, 4, 5}, C3 = {6, 7}, C4 = {8},
C5 = {9, 10, 13, 14, 15, 23, 24, 25, 26}, C6 = {11, 12},
C7 = {16, 17, 18, 19, 20, 21, 22}, C8 = {27, 28, 29, 30},
C9 = {31, 33}, C10 = {32, 37, 38, 40, 42}, C11 = {34, 35},
C12 = {36}, C13 = {39}, C14 = {41}, C15 = {48},
C16 = {43, 44, 45, 46, 47}

(11)
where C1, . . . , C5 constitute the unreduced study area.

The rotor angle time response of machine 4 has been simulated
as described in Section VI-B, and the results are shown in Fig. 7.
By comparing the lower plots of Figs. 6 and 7, it can be concluded
that increasing the number of areas has a positive effect on
the conventional grouping and aggregation techniques. This
conclusion agrees with the decreasing eigenvalue approximation
errors as k grows in Fig. 3. By comparing the upper plots of
the two figures, it can be seen that the proposed grouping and
reduction techniques also benefit from increasing k: the reduced
model response nearly overlaps with the original one for k = 16.
Finally, the 16 areas in (11) are significantly different both from
the 16 areas by the classic grouping algorithm and the 17 areas
by the tight coherency method.

VII. CONCLUSION

This paper has proposed a new accurate approach for identi-
fying slow coherent generator groups in power networks. The
presented connection between slow coherency and normalized
cuts motivates the normalization of slow electromechanical
eigenvectors by machine inertias to better reveal the orthogonal
structure inherent in the slow coherency grouping problem. Fur-
thermore, the robust spectral embedding alignment algorithm

from our previous work was adjusted to robustly align mass-
normalized electromechanical eigenvectors with the canonical
coordinate system.

The aligned mass-normalized eigenvectors Z∗ can be used
to both meaningfully guide the selection of the number of
groups and to produce the actual grouping by minimizing the
NcutM criterion. To minimize NcutM more effectively, a new
machine grouping algorithm specific to the problem in (3) was
developed. This algorithm was shown to consistently outperform
the other comparable methods. Moreover, the produced NcutM
minimization results could not be further improved by the exact
mixed-binary Ncut minimization program [21] after solving
each case with Gurobi [32] for 30 minutes. Finally, an enhanced
inertial aggregation algorithm was introduced to demonstrate the
excellent suitability of our slow coherency grouping technique
for producing nonlinear power system dynamic equivalents.

Although this paper was more focused on dynamic model
reduction, we strongly believe that the proposed slow coherency
grouping technique can be useful to other applications requiring
coherent power system areas. Our usage of the basic M−1K
model is less limiting than it may seem, as networks with voltage
source inverter (VSI) generators can often be represented by a
similar dynamic model (e.g., see [33]).
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