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Abstract

Many countries around the globe are investing on e-healthcare increasingly, which offers tremendous benefits
to all stakeholders in healthcare. Nevertheless, this technology introduces unprecedented privacy concerns toward
patients and raise more uncertainty among them to use e-healthcare for monitoring their vital signs. These concerns
necessitate finding scientific solutions, which enable e-healthcare systems to process and analyze privacy-sensitive
information, and offer services to the patients without violating their privacy. One of the approaches to address the pri-
vacy concerns is utilizing cryptographic techniques, which provide us tools to create Privacy-by-Design e-healthcare
systems. Moreover, cryptographic solutions allow to process patients’ private information, while they are kept confi-
dential and only known to the patients. Although using cryptographic technique is effective in providing privacy and
processing private information, it results in high computational and communicational overhead. In fact, the current
cryptographic building-blocks are not efficient enough for processing encrypted data in large-scale databases. In this
paper, we address one of the highly used cryptographic building-blocks, which is checking the equality of two en-
crypted values. We investigate through the performance of the state-of-the-art secure equality tests and propose novel
techniques to reduce their costs in terms of computation and communication. Then, through the complexity analysis
and experimental results, we show 99% improvements in terms of computation is achieved. These improvements
make the e-healthcare systems more attractive in terms of efficiency and in reach of practical applicability.

1 Introduction

Recent advances in the collection, processing, and delivery of digital contents have been deployed in many domains.
However, processing sensitive information have also raised several privacy concerns. Possible misuse or leakage of
privacy-sensitive data has several consequences. Therefore, privacy research has been one of the most attractive topics
in the last few years. SPED, as one of the solutions to preserve the privacy of users, has found many applications in
several fields. Biometric data matching [1, 2], recommender systems [3, 4], data mining [5, 6], and data aggregation
[7, 8] are only a few examples. Instead of implicitly assuming that all processing parties are trusted, SPED provides
an environment for the parties, e.g. server and client, to collaborate for processing privacy-sensitive information in a
privacy-preserving manner. The main idea in SPED is to provide only the encrypted version of the data to the server,
and invoke interactive cryptographic protocols between the server and the decryption key owner to perform the desired
algorithms.

Although SPED protects the privacy of sensitive information, its computational and communication overhead are
the main challenges in large scale applications. Actually, the SPED algorithms are attractive from privacy preservation
perspective but they are far more complex than their plaintext versions since the core operations like comparison,
equality tests and division, which are repeated in large quantities, are computationally demanding. Therefore, reducing
the complexity of such operations is an important challenge to make the cryptographic solutions practical. As a result,
a number of protocols have been introduced [9, 10, 11, 12].

In this work, we address secure equality testing (EQT), one of the fundamental operations needed in many SPED
solutions, e.g. for search algorithms over encrypted data [13], which is addressed previously in [14, 11, 15]. In our
scenario, Alice holds two encrypted values while Bob has the decryption key. Our aim is to design a cryptographic
protocol for Alice and Bob that outputs a single encrypted bit, the result of the equality test, which is also secret for
both. We propose two EQT protocols based on [11, 15]. We introduce algorithmic changes and data packing that
improve the performance of the existing work significantly as shown in the complexity analysis. Experimental results
also show that our protocols outperform the existing work, and present up to 99% run-time improvement in a fair
experimental setup.

The rest of the paper is organized as follows. We introduce the notation, the cryptographic building blocks, and the
security assumptions in Section 2. In Section 3, we describe the related work. We describe our proposals, two EQT
protocols, in Section 4, and provide complexity and security analyses in Section 5. We demonstrate the performance
of the proposals in terms of computational complexity and run-time in Section 6. Finally, we conclude in Section 7.



Table 1: Symbols and their meaning.

Symbol Description Symbol Description Symbol | Description

a,b input messages p number of plaintext can d,d Hamming distance

x; the i*" bit of integer x packed into one ciphertext | [] Paillier encryption

/ bit length of inputs n crypto system modulus Q; coefficients of Lagrange polynomial

K statistical security parameter (;) binomial coefficients D exclusive-OR

r,7, R | random numbers U result of the equality test N number of equality tests to be performed
pk public key sk private key U(x) u exponentiations with A-bit exponents

2 Preliminaries

In this section, we describe the application setting, the security assumptions, and the cryptographic tools used in this
article. We summarize our notation in Table 1.

2.1 Homomorphic Encryption

In this article, we rely on an additively homomorphic cryptosystem, more specifically the Paillier cryptosystem [16].
An additively homomorphic encryption scheme preserves certain structure that can be exploited to process ciphertexts
without decryption. Given &,;(m1) and E,;(m2), a new ciphertext whose decryption yields the sum of the plaintext
messages m; and mso can be obtained by performing a multiplication operation over the ciphertexts under additively
homomorphic encryption schemes: Dy (Epr(mi1) @ Epp(Mma)) = m1 + mo.

Consequently, exponentiation of any ciphertext with a public value yields the encrypted product of the original
plaintext and the exponent: Dy (Epi(M)°) = € - m.

In the rest of the paper, we denote the ciphertext of a message m by [m] for the Paillier cryptosystem.

2.2 Security Assumptions and the Setting

We consider the semi-honest security model, where parties are honest in following the protocol steps, while they can
keep messages to deduce more information than they are entitled to. We assume that Bob has the decryption key sk
and Alice has the encryptions of two values a and b, which are /-bit integers each. The values a and b are secret and
should be kept hidden from Alice and Bob. However, Alice should obtain an encrypted bit ¢ <— (a = b)?1 : 0, where
9 is the result of the equality test which is also kept secret from Alice and Bob. During the computation of ¥, the
intermediate values should also be kept secret from both parties to limit the information leakage.

3 Related Work

The ideas behind existing equality testing include using Hamming distance, quadratic residuosity assumption, and bit-
decomposition. Takashi and Kazuo [14] proposed a probabilistic constant-round equality test protocol, where Jacobi
symbol is used to test quadratic residuosity of a value. Schoenmakers and Tuyls [11] have shown a practical method to
check the equality of two encrypted values by introducing a bit-decomposition protocol. In [15], Lipmaa and Toft have
introduced an equality test protocol, which is based on computing Hamming distance between two private values. The
protocol uses Lagrange interpolation [17] to generate a polynomial, which is used to obtain the result of the equality
test, and a multiplicative masking method described in [18]. In the following, we present [15] and [11] that inspired
us to design our protocols, which are also deterministic unlike [14].

3.1 EQT based on the Hamming distance (LT13)

The equality testing protocol in [15] is based on computing the Hamming distance of two private values. LT13
computes a polynomial in order to obtain an encrypted bit, which represents the result of the equality testing protocol
as given in Protocol 1.



Protocol 1 LT13
1: Alice computes [a — b], additively masks the result with a random number r, and sends [z] < [a — b + r] to Bob.
2: Bob decrypts the message [x] and computes the first £ bits x;, encrypts them separately, and sends them to Alice.
3: Alice computes the Hamming distance [d] between [z;] and [r;], masks it, and returns the masked encrypted value
[y] to Bob. The Hamming distance is zero if and only if @ = b, since in this case = r. Note that d is masked
multiplicatively with the inverse of a random number .
4: Bob decrypts [y] and computes the exponentiations %, 1 < i < ¢. The y* are encrypted and sent back to Alice.

5: Alice unmasks the [4] to obtain [d’] and computes /-degree Lagrange polynomial [1J] < [Zf:o a; - d'], where o
are coefficients that depend on .

4 improved secure equality tests

We now describe two equality testing protocols based on LT13 and ST06. We achieve this by introducing a novel
secure exponentiation protocol and employing data packing.

4.1 Improved EQT based on the Hamming distance (NEL-I)

To improve LT13 in terms of computational complexity, first, we introduce a novel method of computing exponentia-
tion securely, then we use data packing [19] to decrease the decryption cost [10]. Note that packing technique can be
used when we have multiple equality tests to perform at once. Furthermore, we add one more round to the protocol,
which results in a significant decrease in computational complexity. In fact, the degree of the polynomial that Alice
has to compute decreases from ¢ to [log, ¢].

In LT13, Alice computes the Hamming distance d between x and r, and then generates the polynomial based
on d, which results in generating an ¢-degree polynomial. Computing an ¢-degree polynomial over encrypted data
introduces significant computational overhead. To decrease the degree of the polynomial, we add one more round in
NEL-I : As shown in Protocol 2, Alice computes the Hamming distance [d], then she masks it with a random value
[y] < [d + #]. Afterwards, she computes the Hamming distance [d] between [y] and [#]. Since 0 < d < [log, £],
Alice constructs a [log, ¢]-degree polynomial using the specified mapping and computes the values [dz] which are
used later to obtain [¥].

Another computationally demanding part of LT13 is the secure exponentiation method, which is required in order
to compute [J] « [>5_, @ - d']. In the secure exponentiation protocol, Alice has [d] and she has to compute [d’]
with Bob’s help, who has the private key. Although the secure exponentiation method in LT13, given in Protocol 3, is
simple and straightforward, unmasking, [d] « [t!]"', is very expensive. In fact, the unmasking dominates the overall
computational complexity of LT13. The unmasking in Protocol 2 is an extended form of a method used in [2], which is
also computationally expensive. In this work, we introduce a novel secure exponentiation method, Protocol 4, which
makes the unmasking significantly less expensive. As it is shown in Protocol 4 (which replaces Step 7 in Protocol 2),
the additive masking is used instead of multiplicative form to blind [d]. Then, we use an efficient method to unmask
the encrypted values and obtain [d’]. Note that unlike the secure exponentiation in LT13, where [d‘] can be obtained
directly, we need to compute all [d’], 1 < i < ¢, before computing [d?] in NEL-I. However, both LT13 and NEL-I
demand computation of [Zfzo a; - d*], which requires computing all [d’], 1 <i < £.

floatnamealgorithmProtocol

4.2 Improved EQT based on the bit-decomposition (NEL-II)

Ignoring the decryption cost, STO6 has a very low computational complexity compared to LT13. However, the number
of times that Bob invokes decryption in STO06 is very high, which makes the protocol computationally expensive. To
improve the performance, we propose a variant of ST06 that is also based on the bit-decomposition method but
employs data packing, introducing a significant improvement in computation. We provide the details in Protocol 5.

S Security analysis

In this section, we argue that our algorithmic changes and deploying packing technique do not violate the security of
the protocols in the semi-honest security model as long as the underlying cryptographic primitive is secure. Further-
more, In order to show that the protocols are privacy-preserving, we need to show Alice and Bob cannot learn new



Protocol 2 NEL-I
1: Alice generates a sufficiently large (¢ + & bits) random value r, computes [x] < [a — b + 7] and sends [z] to
Bob. Alice puts multiple x values into a single ciphertext by using data packing. Assume that (a,b) and r are ¢
and ¢ + k bits integers, respectively. Then, [z] is a (¢ + « + 1)-bit integer. Let the message space of the Paillier
cryptosystem be n, then Alice packs p = |n/(¢ + k + 1)] into one Paillier message as follows:

(8] =D lwj - @Y, (1

and then sends [Z] to Bob.

2: Bob decrypts [#] and unpacks it. Then, he computes the first £ bits x;, for 0 < i < ¢, of each component; encrypts
them separately and sends [z;] to Alice.

3: Alice computes [r; ® x;] for 0 < ¢ < £ and then [d] + [Zf é T B ] = Hf é [r; ® x;], which is the Hamming
distance of r and = (note that [r; © x;] < [x][r][z] ~2"). Then, she additively masks [d] with an ([log, ] + k)-bit
random number 7 that is [y] < [d + 7] and sends [y] to Bob in packed form [j].

4: Bob decrypts [¢] and unpacks it. Then, he computes the first [log, ¢] bits y;, 0 < i < [log, £] of each component,
encrypts them separately, and sends the [y;] to Alice.

5. Alice computes [; & ;] for 0 < i < [log, £] and then [d] + [, log2 (=1 5 g v = H“Og2 - "[*; @ y;]. Then,
she additively masks [d] with another ([log, log, £] + «)-bit random number R, computes [t] < [d + R], and
sends [t] to Bob in packed form [¢].

6: Bob decrypts [t], computes !, 1 < i < [log, ¢], and sends #' to Alice in encrypted form.

7: Alice unmasks [t'] by computing [d’] « [t' — 27 _, (1)d'~ eRe} [t’][H’e [di= J(DE) 1 < i < [log, £].

8: Alice constructs a [log, ¢|-degree polynomial [J] <— [> ", [oex £1 oy, . d d'] = Hﬂog"' i [di]*, where it maps d = 1 to
l,and d € {2,3,...,[log, ¢]} t0 0.

Protocol 3 Secure exponentiation (LT13)
Input: [d]
Output: [d!] for1 <i </

1: Alice chooses a random number R 6 7, computes its 1nverse R, and R%, 1 < i < {. Then, Alice multiplica-
tively masks [d] < [d + 1] with R~! that is [] < [d + 1]® ' and sends [t] to party B. Note that 1 is added to [d]
to make sure d € Z};., which is needed to get the correct result after performing unmasking.

2: Party B decrypts [t], computes ¢, 1 < i < ¢, and sends t' to party A in encrypted form.

3: Party A unmasks [] by computing [d’] < [t']" for 1 < i < £.

private information from each other. Recall that Alice only receives encrypted messages from Bob and she cannot
distinguish ciphertexts, since the encryption scheme used in the protocols is semantically secure. Thus, it suffices to
show that there is no information leakage to Bob in order to prove the improved equality testing protocols are privacy-
preserving. It is clear that using packing technique does not leak any information since it uses homomorphic properties
of the Paillier crypto-scheme. Therefore, we need to show that additive blindings used in the NEL-I are secure. In
Steps 1, 3, and 5 of Protocol 2, Alice blinds her encrypted values additively before sending them to Bob. Thus, the
decrypted messages in Bob are statistically indistinguishable from the original values before blinding. For blinding an
£-bit value a additively, Alice chooses a random value r that is  bits longer than the actual a (x = 80 bits), and then
computes a + 7. The security proof of additive blinding is related to statistical indistinguishability of x = a + r from
a random number z g, which is drawn uniformly from {0, 1,..., 2“’“"’1}, as described in [9].

6 performance analysis

In this section, we compare the performance of the EQT protocols based on analyzing computational complexities and
the experimental results.



Protocol 4 Secure exponentiation (NEL-I)
Input: [d]
Output: [d)] for1 <i </
1: Alice chooses a random number R, where R is a ([log, d| + %)-bit value, and then she sends [t] « [d + R] to
Bob.
2: Party B decrypts [t], computes ¢, 1 < i < /, and sends ¢’ to party A in encrypted form.
3: Alice has [d] and R values and she can easily compute [p;] < [dR], and then [d?] < [t — 2p; — R?]. To
compute [d3], she computes [p1] < [d*R] and [p2] < [p1R], and then [d3] «+ [t3 — 2321 (i)pe — R3. In

order to obtain [d’], she computes [p;] < [d*"'R] and [p;] + [pi—1R], 1 < i < ¢, and then she computes
(@] [ = s (Jpe — R

Protocol 5 NEL-II

1: Alice computes [2] < [a — b], [x] < [z + 7], where 7 is a (£ + 1 + x)-bit random number, and sends [z] to Bob
in the packed form.

2: Bob decrypts and unpacks [z], decomposes first £ bits z;, 0 < i < ¢, and sends [z;] to Alice.

3. Alice computes [cg] < [20]™, [20] < [70][r0][co] 2, and sets i = 1.

4: Alice chooses ¢ — 2 random bits R to mask [¢;_1] such that [f] < [¢;—1 @ R]. Afterward, Alice sends [f] to Bob.
Note that the [f] are encrypted one-bit values, which means Alice can pack n messages into one ciphertext, p = n
that decreases the Paillier decryption and communication costs significantly.

I
—

n

0]=">"[0;-27], )

<.
I
=)

5: Bob decrypts and unpacks the [f] to obtain 6, then computes « < 6 X z; and sends [«] to Alice.

6: Alice unmasks [a] to obtain [3;] < [c;—1] ® [z;] by distinguishing R = 0and R = 1. If R = 0, [8;] < [a], else
[Bi] < [1][a] . Then, Alice computes [c;] < [x;]"[c;—1]"[B:]} 72" and [2;] < [z][r:][ci—1][ci] 2. Afterward,
Alice sets i < i + 1 and jumps to step 4 until s = £ — 1. In order to get the equality testing result Alice computes
[9] + Hf;é [1 — z;] by running secure multiplication protocol as follows:

7. Alice chooses two random bits r; and r; and computes [a] < [z; @ r;] and [3] < [z; @ r;]. Then, Alice sends
[] and [$] to Bob in packed form. Similar to step 4, using packing technique decreases number of decryption and
communication cost significantly.

8: Bob decrypts and unpacks [a] and [3], multiply them, and sends [0] <+ [a X 3] to Alice.

9: Alice computes [Zi % Zj] « [9] [Zi}Q”'iTj—T'j [Zj]QT'H'j—Ti,[_ri,r.j]1/(1_27'i—27'j+47'i7'j).

6.1 Computational complexity

Table 2 presents the computational complexities of the secure equality testing protocols in terms of multiplication and
exponentiation. As an example, the exponentiation complexity of the STO6 protocol is (6¢)_1, which means there are
6/ exponentiations with a negative 1-bit exponents. It is clear that LT13 is the most expensive protocol because of
the unmasking technique described in 3. To simplify the complexities and compare the protocols easier, we represent
the complexities of exponentiation as multiplication. We can represent a ciphertext modulo n with an x-bit exponent
as 3z/2 multiplications modulo n. In Table 2, overall complexity shows the complexity of each protocol represented
as the number of multiplications. It can be observed that LT13 has a polynomial complexity, while ST06, NEL-I,
and NEL-II are linear. Note that the complexities of encryption and decryption are not included in Table 2 since
the protocols are crypto-scheme-independent and homomorphic crypto-schemes may have different encryption and
decryption complexities.

Table 2 also presents the complexities of the secure exponentiation protocols used in LT13 and NEL-I, that
are LT13(Expo) and NEL-I(Expo), respectively. Clearly, our new unmasking technique reduces the complexity of
LT13(Expo) from O(n*) to O(¢?log ¢). Note that the d value used in NEL-I(Expo) is between 0 and /, resulting the
exponential complexity to be (£(£ — 1)/2)(f10g, ¢/214x) + (2(¢ — 1))_1. However, in NEL-1, the input of the secure
exponentiation protocol is d that is between 0 and [log, £]. Given the range of d in NEL-I, the complexity of the secure
exponentiation protocol is ([logy £]([logy €] — 1)/2) f10g, (10g, £/2)]++) T (2([10gy £] — 1)) _1, which is O((log £)?).

Table 3 presents the number of decryptions of the protocols, where ST06 has the highest number of decryptions.



Table 2: Computational complexities of the secure equality testing and the exponentiation protocols.

] Protocols Multiplication Exponentiation Overall complexity
LT13 (3/2)¢+3 11+ (€/2) -1 + 1(n)2) (1024)°~1 + 302 /4 O(n")
+ 3000 Linyzyt + L) +3¢ + 1540

ST06 1e+0/2-1 (60)_, 710/2 -1 o)

NEL-I 1/2([logs €] ([logs €] +4) + £) | 3pets + ([logy £]([logy €] — 1)/2),; | [log, €](120[log, €] — 115) o)
+3p +((¢ 4 logy £1)/2) -1 +7£/2 + 9366

NEL-II 1e+e/2+3p—1 (60)_1 + pryn + (20)2 710/2 + 3321 O(0)

LT13(Expo) I 1n/2) + 2i—a Linja)s (1042)~! + 1537 O(n’)

NEL-I(Expo) (0 +30)/2 -2 (00 —1)/2)(1og, £/21+x) 3/40%Tlog, (/2] O(f?1og?)

+(2(0—-1))_4 +600? — 55¢ — 5

Table 3 shows that NEL-II has far fewer number of decryption compared to ST06, which results in a significantly
much more efficient protocol when we consider the decryption cost.

Table 3: Decryption complexities of the protocols.

Protocols Decryption

LT13 2N

STO6 N(3¢—-1)

NEL-I N{l+r+1)/n
NEL-IT L+ NU{+r+4)/n+2[log, ]

6.2 Experimental results

We implemented the protocols using C++ and external libraries: MPIR, Boost, and SeComLib on a single Linux
machine running Ubuntu 14.04 LTS, with 64-bit microprocessor and 8 GB of RAM. The cryptographic key length
of the Paillier is chosen according to NIST standards [20], which are valid until 2030. Table 4 shows the parameters
used in the implementation of the secure equality testing protocols. We analyze the performance of the protocols with
different input sizes.

Table 4: Parameters used in the implementation.

Parameter Symbol Value
Bit size of inputs 14 2-30
Number of performed equality test N 1000
Security parameter K 80 bits
Paillier message space n 2048 bits

Figure 1 shows the run-time of the unmasking operations in LT13, NEL-I(a), and NEL-I. NEL-I(a) is another
version of NEL-I, where the data packing is not used and the number of rounds is two (the degree of Lagrange poly-
nomial is £). As it is presented in Figure 1, NEL-I(a) is much more efficient than the LT13 due to the use of proposed
secure exponentiation protocol. It also can be observed that adding one more round decreases the unmasking cost
remarkably. Recall that adding one more round reduces the degree of polynomial from ¢ to [log, £]. Consequently,
number of unmasking operations are also decreased to [log, ¢], which makes the protocol computationally much more
efficient.

Figure 2 presents the run-times of three different components of the protocols LT13, NEL-I, and NEL-I(a). These
components are Paillier decryption, computation of [¢}], and unmasking. Figure 2 shows that the unmasking cost of
NEL-I(a) is significantly less than LT13. Figure 2 also shows that adding one more round and using data packing
reduce the unmasking and decryption costs, respectively.

Figure 3 shows the run-times of the protocols. As expected, LT13 has the highest run-time among the others. It is
clear that NEL-I has a much lower run-time compared to LT13, where the improvement is 99% for the 20-bit inputs.
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Figure 1: Performance of the unmasking protocols.

Figure 3 also shows a considerable improvement in NEL-II, where it’s performance outperforms ST06 by 95% (for
the 20-bit inputs) because of using data packing.
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Figure 2: Run-times of the protocols (4-bit inputs).

According to Figure 3, NEL-II outperforms slightly NEL-I in terms of computation. However, Table 5 shows ST06
and NELII both suffer from the high number of communication rounds because of bit-decomposition. Therefore,
NEL-I is definitely a better choice for the applications with limited communicational resources.

Table 5: Number of communication rounds of the protocols.
[ Protocol [[ LTI13 | ST06 | NELI | NEL-II \

[Round [| 2 [20+2[log,¢]+2] 3 [20+2[log,l]+2 |

7 conclusion

As one of the core building blocks, testing the equality of two encrypted integer values is very important. In this work,
we describe the state-of-the-art cryptographic equality tests and propose two new protocols that are significantly more
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Figure 3: Run-times of the protocols.

efficient. We achieve high performance by introducing algorithmic changes, an efficient exponentiation subroutine and
deploying data packing. Experimental results show that our protocols are much more efficient in terms of computation
than the existing works: achieving up to 99% improvement in run-time compared to the prior works in the field.
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