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cjdb: A Simple, Fast, and Lean Database
Solution for the CityGML Data Model

Leon Powałka, Chris Poon, Yitong Xia, Siebren Meines, Lan Yan,
Yuduan Cai, Gina Stavropoulou, Balázs Dukai, and Hugo Ledoux

Abstract When it comes to storing 3D city models in a database, the implemen-
tation of the CityGML data model can be quite demanding and often results in
complicated schemas. As an example, 3DCityDB, a widely used solution, depends
on a schema having 66 tables, mapping closely the CityGML architecture. In this
paper, we propose an alternative (called ‘cjdb’) for storing CityGML models effi-
ciently in PostgreSQL with a much simpler table structure and data model design
(only 3 tables are necessary). This is achieved by storing the attributes and geome-
tries of the objects directly in JSON. In the case of the geometries we thus adopt
the Simple Feature paradigm and we use the structure of CityJSON. We compare
our solution against 3DCityDB with large real-world 3D city models, and we find
that cjdb has significantly lower demands in storage space (around a factor of 10),
allows for faster import/export of data, and has a comparable data retrieval speedwith
some queries being faster and some slower. The accompanying software (importer
and exporter) is available at https://github.com/cityjson/cjdb/ under a permissive
open-source license.

Keywords CityGML · 3DCityDB · 3D modelling · DBMS · CityJSON

1 Introduction

The international standard City Geography Markup Language (CityGML) is a data
model designed for the storage of digital 3D models representing urban areas and
landscapes (Kutzner et al. 2020; Gröger and Plümer 2012; OGC 2021b). It allows
us to define and store the majority of commonplace 3D objects within cities, such as
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buildings, roads, rivers, bridges, vegetation, and city furniture. Additionally, it sup-
ports various levels of detail (LoDs) for the 3D objects, which enables and facilitates
complex applications and use-cases (Biljecki et al. 2015).

The CityGML data model, currently at version 3.0, has three known encodings
(more details in Sect. 2):

XML/GML encoding: The XML/GML encoding (built upon GML (OGC 2007))
was initially the only standardised encoding for CityGML, which explains the—
rather confusing—name choice for the data model. The latest official release of
the XML/GML encoding supports CityGML version 2.0 (OGC 2012); however a
release planned for 2023 will also support CityGML v3.0.
CityJSON: Its version 1.0 is standardised by the OGC (OGC 2021a), and its
version 1.11 implements a subset of theCityGMLv3.0 datamodel. Its flat hierarchy
and simple structure make it around 6 times more compact than the XML/GML
encoding, thus allowing for easier manipulation and exchange on the web (Ledoux
et al. 2019).
3DCityDB: The 3D City Database is a “geo-database solution” (schema and
accompanying software) supporting three different relational DBMSs (database
management systems). It implements a mapping of the CityGML data model
(currently for v1.0 and v2.0 only) to the database schema to allow for a fast
implementation (Yao et al. 2018). It is not standardised by the OGC.

DBMSs can greatly simplify the management of large 3D city models: they are
arguably the best tool to store and manage very large datasets (of any kind), are
already part of the ecosystem of many organisations, and offer several advantages
over file-based systems, eg security, versioning, scalability, etc. (Ramakrishnan and
Gehrke 2001). This makes 3DCityDB a popular solution, especially for handling
country-level data and for offering access to multiple users. In most cases, the data
owners store the data with 3DCityDB on a remote server and allow the users to
access the data through a website, filter it by objects/LoDs/areas and obtain a subset
of the 3D city model, in various different formats, for instance KML, COLLADA,
and glTF.

However, while the 3DCityDB is widely used, Pantelios (2022) argues that its
use can be somewhat complex and difficult for end-users. The main culprit is the
fact that datasets are split over 66 tables and the Simple Feature paradigm OGC
(2006) is not used (geometries are stored across different tables, not in a column of
an object), which translates to very complex queries that necessitate several joins.
Pantelios (2022) solution is to create extra views for attributes and geometries, and
to offer simplified access to them through a graphical interface (built upon QGIS).
However, this comes at the cost of increasing the size of the database.

We present in this paper an alternative to 3DCityDB, which we name ‘cjdb’. It
is composed of a database schema (containing only 3 tables) and accompanying
software for import and export of CityJSON v1.1 files (thus the CityGML v3.0 core
model is supported). As further explained in Sect. 3, our data model is inspired

1 https://cityjson.org.

https://cityjson.org
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by the Simple Feature paradigm (each row has the geometries of the object stored
in one column), but instead of using PostGIS geometry types, we exploit the fact
that PosgresSQL can store JSON objects directly in binary format with the jsonb
type. The reason for this choice is that PostGIS geometry types (notice that to use 3D
types the SFCGAL extension (Borne et al. 2023) would be required), would not allow
the storage of appearances (textures and/or materials) and of semantic information
on the surfaces. Therefore, the geometries of a given city object (eg a building, a
tree, a lamppost) are stored together with the object in JSON format, as defined by
CityJSON. Our simple structure allows us to compress by an order of around 10 the
typical size of a database as stored with 3DCityDB (taking into account data and
(spatial) indexes), and, as shown in Sect. 4, this size reduction does not come with a
penalty for the speed of the data retrieval. Our data model is at the moment only for
PostgreSQL, but because it is so simple (only 3 tables are necessary), it could surely
be ported to other databases.

2 Related Work

2.1 CityGML Data Model

To represent a region in 3D, CityGML recursively decomposes it into semantic
objects (Gröger and Plümer 2012). It defines the classes most commonly found in
an urban or a regional context, and the hierarchical relationships between them (eg
a building is composed of parts, which are formed of walls, which have windows).
Also, theCityGML semantic classes are structured into severalmodules, egBuilding,
Land Use, Water Bodies, and Transportation.

The geometry of the objects is realised with a subset of the geometry definitions
in ISO19107 (ISO 2003) (only linear and planar primitives are however allowed),
which also allows aggregations of geometries: a single building can for instance be
modelled with a CompositeSolid. Furthermore, it is possible to attach textures,
materials, and semantics to each of the surfaces of a 3D geometry. The geometry
types of most geo-DBMSs do not allow us to represent such complex 3D geometries.

One of the main characteristics of CityGML is that it supports different levels of
detail (LoDs) for each of the classes, whichmeans that in theory for a single building,
or a single tree, several geometries could be stored.

2.2 CityJSON + CityJSONFeature

CityJSON, with its latest version 1.1, is a JSON-based exchange format for the
CityGMLdatamodel. It implements all the coremodules ofCityGMLv3.0, and some
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othermodules are supported.2 As explained inLedoux et al. (2019), it was designed to
improve the weaknesses of the XML-encoding of CityGML: large filesize, complex
structure to manipulate, several ways to store a given characteristic, unfit for the web,
etc.

Its geometry structure is similar to that of computer graphics formats (eg OBJ and
STL), and allows us to compress by a factor of around 6 XML-encoded CityGML
files. A thorough comparison shows that it is nearly as compact as formats that do
not allow semantics, complex attributes, and coordinate reference systems (Praschl
and Pointner 2022).

While the original files for CityJSON v1.0 were compact, one weakness was that
files for large areas were not suitable for streaming. That is, to be able to process
one object in a file, the client had to have in memory the whole file. Version 1.1
solved this issue by introducing a new type: CityJSONFeature, which represents
independently one city object in a CityJSON file (eg a ‘Building’ or a ‘Bridge’). The
idea is to decompose a region into its many features, create several JSON objects of
type CityJSONFeature, and stream them sequentially or store them in a JSON
text sequence (IETF 2015).3 This is conceptually the same as the GeoJSON Text
Sequences4 used for processing and exchanging large 2D GIS datasets.

We exploit this type to store independently each feature in one row of the database,
although, as explained below, we modify the JSON structure slightly, split it over a
few columns, and use indexes to accelerate performance.

2.3 NoSQL Databases

Nys and Billen (2021) developed a non-relational data model for CityJSON, and
implement it in a JSONdocument database (MongoDB). They testedwith one dataset
(containing around 3500 city objects), and managed to reduce the size by a factor
of 40% when compared to 3DCityDB. Only one query was benchmarked (retrieval
of a random building with its attributes and single geometry), and their solution
performed better than 3DCityDB (again around 40% faster). There is no information
about how their solution performs with other queries that practitioners expect from
a DBMS solution (eg the ones from Section 4.3).

2.4 3DCityDB

While the data model of CityGML could have been automatically mapped to rela-
tional tables, Yao et al. (2018) mentions that for 3DCityDB a semi-automatic method

2 see details at: https://www.cityjson.org/citygml/v30/.
3 JSON Lines text file is one possibility: https://jsonlines.org/.
4 https://datatracker.ietf.org/doc/html/rfc7946#appendix-C.

https://www.cityjson.org/citygml/v30/
https://jsonlines.org/
https://datatracker.ietf.org/doc/html/rfc7946#appendix-C
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was used to reduced the number of tables and the number of joins to perform queries
(which will also typically reduce query times). The result is nonetheless, for v4.4,
a total of 66 tables, many of which remain empty if, for instance, only buildings
without appearances are stored.

As Pantelios (2022) mentions, the attributes for a given type are stored in different
tables, depending on whether an attribute is prescribed by the CityGML data model
or not. This complicates greatly the retrieval of information with SQL queries.

Interestingly, the 3D geometries are decomposed into their (semantic) surfaces,
and each surface is stored in a separately row in a single table. Different flags are used
to indicate whether a 3D geometry is a solid/watertight or a surface/not. While this
approach allows to compactly store 3D volumetric geometries, in practice several
joins are necessary to retrieve all the surfaces of a given feature. The volumetric
3D types available in PostGIS-SFCGAL (Borne et al. 2023) are also used (thus
duplication of data).

Interestingly, PostGIS geometries for the footprint are not stored, only the 2D
bounding box. This is in our opinion an odd choice because many queries on 3D
city models are 2D queries (all buildings inside a given area, within a given distance,
etc.).

3 Data Model, Software, and Engineering Decisions

3.1 Data Model

As shown in Fig. 1,
the cjdb datamodel is simple and akin to using the Simple Feature paradigm (OGC

2006), as PostGIS does. Each row in the table city_object stores a CityJSON
city object (for instance a ‘Building’, a ‘BuildingPart’, a ‘SolitaryVegetationObject’,
etc.) and the ‘geometry’ column stores a JSON array of geometries (Fig. 2 shows an
example).

city_object
+ id: integer
+ type: text
+ object_id: text
+ attributes: jsonb
+ geometry: jsonb
+ ground_geometry: geometry

city_object_
relationships

cj_metadata
+ id: integer
+ version: text
+ source_file: text
+ metadata: jsonb
+ transform: jsonb
+ srid: integer
+ extensions: jsonb
+ extra_properties: jsonb
+ geometry_templates: jsonb
+ bbox: geometry
+ started_at: timestamp
+ finished_at:  timestamp

cj_metadata_id

0..*
1

0..*

1..*

Fig. 1 UML diagram of cjdb
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1 [
2 {
3 "type": "Solid",
4 "lod": "2.2",
5 "boundaries ": [
6 [ [[ [11.1, 22.6, 9.9], [16.21 , 42.8, 19.9], ... ]
7 ],
8 "semantics ": {
9 "surfaces" : [

10 { "type": "RoofSurface" },
11 { "type": "WallSurface" },
12 ...
13 ],
14 "values ": [ [0, 1, ...] ]
15 }
16 }
17 ]
18

Fig. 2 Example snippet stored in the ‘geometry’ column: an array of CityJSON geometries

The array is necessary because a given feature can have more than one geom-
etry (eg the most obvious case is when several LoDs are stored), and it should be
noticed that the JSON stored in the database is different from CityJSON: vertices are
not stored separately and we replace the vertex identifiers in the “boundaries”
property by their real-world coordinates.

For each row, we also store the identifier of the object, its type, the attributes
(stored as jsonb), and we also store the ground geometry as a PostGIS 2D type (to
be able to spatially index them in 2D, see below). Notice that the children objects are
stored in separate rows (and not with their parent object), ie a ‘Building’ does not
have its potential children in the same row, and each of them (eg a ‘BuildingPart’) is
stored in a separate row.

The implemented version adds one more table: a table named city_object-
_relationships to store the relations between ‘parents’ and ‘children’ city
objects (CityJSON has a flat structure and stores for instance a ‘Building’ at the
same level as its ‘BuildingPart’ or ‘BuildingInstallation’ and links them). This table
is added to improve query speed since we often need to process a parent with its
children.

Finally, the table cj_metadata has one entry for each CityJSON file imported
to the database and stores the following properties of CityJSON:

– the coordinate reference system (CRS);
– the precision used for storing the coordinates, used mostly when exporting data;
– the geometry templates (used for trees or bus stops);
– the CityJSON Extensions (to extend the base data model of CityJSON with
application-specific types/attributes/semantics);

– the bounding box of the file.
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3.2 Importer

To facilitate the usage of the cjdb data model we have implemented an importer and
released it open-source under the MIT license: https://github.com/cityjson/cjdb.5

The tool is developed in Python and has a command-line interface. Observe that
because the data model is feature-centric, the importer will read JSONL files (JSON
Sequences) and not CityJSON files. A CityJSON file can however be automatically
converted into a list of features with the accompanying software cjio.6

The importer creates the 3 necessary tables, and populates them by parsing and
modifying the CityJSON features according to the cjdb data model, as explained
above.
Ground geometry extraction: As many queries on a 3D city model are typically
performed in 2D, such as retrieving all objects within a certain area or selecting the
object clicked upon in a 2D view, we have chosen to store the ground surface of each
object as a 2D PostGIS geometry. This is achieved by iterating over all of the object’s
surfaces and selecting the horizontal ones with the lowest elevation. If multiple levels
of detail (LoDs) are available, we select the lowest LoD. This addition enables us
to perform rapid 2D spatial queries on the data without any joins (see Sect. 4). In
comparison, performing the same spatial queries in 3DcityDB requiresmultiple joins.
Alternatively, the enveloping bounding box, which in 3DCityDB is stored together
with the object, can be used instead of the actual object geometry in order to perform
spatial queries when the accuracy is not important.
Indexes: The data in the city_object table is expected to be retrieved mostly
through spatial queries. Therefore, we decided to add a GiST index on the ‘ground_
geometry’ column and cluster the table based on that index. In order to improve query
performance on the JSON columns we added a Generalized Inverted index (GIN),
which is specialised for items with composite values. Additional full or partial BTree
indexes can be applied during import, on specific attributes of the city objects, if the
user expects that the table will be queried based on those attributes.

3.3 Exporter

The Python implementation of cjdb also offers an exporter. As is the case for 3DCi-
tyDB, a SQL query is used to filter which objects in the database should be exported
(the identifiers in the table city_object). The output is a CityJSONL file (a
sequence of CityJSONFeatures), which can automatically be converted to a
CityJSON file with cjio.

5 The version described in this article is v1.3.
6 https://github.com/cityjson/cjio.

https://github.com/cityjson/cjdb
https://github.com/cityjson/cjio
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Table 1 The 3 datasets used for the benchmark

# Building #
BuildingPart

LoDs present # attributes

3DBAG 112673 110387 0/1.2/1.3/2.2 30

NYC 23777 0 2 3

Vienna 307 1015 2 7

Table 2 Import and export times, from/to CityJSONL

3DCityDB cjdb

Import Export Import Export

3DBAG 6780 721 1260 412

NYC 273 161 23 25

Vienna 12 7 2 2.5

All times in seconds

4 Benchmark

To compare the performance of the cjdb data model against that of 3DCityDB, we
created a benchmark dataset using data from 3 different countries; the Netherlands
(3DBAG), Austria (Vienna), and USA (NYC). The 3DBAG dataset is composed of
100 tiles from the 3DBAG7 (Peters et al. 2022); we randomly chose tiles from 3 cities
in the Netherlands (Delft, Amersfoort, and Zwolle). The Vienna dataset covers the
Austrian city whereas the NYC dataset covers a small part of central New York City;
both datasets can be downloaded in CityJSON format from https://www.cityjson.
org/datasets/. As can be seen in Table 1, all the datasets are building-centric, as is
often the case with 3D city models, but here they are modelled differently and have
different LoDs/sizes.

We imported each dataset in two different databases, one created with 3DCityDB
and one cjdb, and below we compare them in terms of import/export time, data size,
and data retrieval. Since cjdb is only available for PostgreSQL, we did not perform
any tests on Oracle or PolarDB.

4.1 Import and Export Times

We compared the import time for all 3 datasets andwe found that cjdb is considerably
faster than 3DCityDB. As an example, the 100 tiles of the 3DBAG were imported in
21 min in cjdb whereas it took 113 min with 3DCityDB; see Table 2 for all details.
This is expected, since the storage in the cjdb database is very close to the data model

7 www.3dbag.nl.

https://www.cityjson.org/datasets/
https://www.cityjson.org/datasets/
www.3dbag.nl
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of CityJSONL, while for 3DCityDB the geometries need to be processed and each
surface to be stored separately. However, it is worth noting that in 3DCityBD the
creation of the necessary tables is performed separately before the import, whereas
cjdb creates the necessary tables at the time of import.

For the export, we exported each dataset to a CityJSON file (for 3DCityDB) and
to a CityJSONL file (for cjdb). As shown in Table 2, cjdb is also generally faster.

Observe that those values are somewhat unfair to compare because the output is
to a different format (and some time would be needed to convert from a CityJSONL
to a CityJSON), because different languages are used for the importer/exporter (Java
for 3DCityDB, Python for cjdb), and because 3DCityDB exporter is multi-threaded.

4.2 Database Size

One significant difference between 3DCityDB and cjdb is the database size they
occupy. After importing the datasets, we measured the total size of each database,
including the indexes and the TOAST tables (The Oversized Attribute Storage Tech-
nique), as shown in Table 3. We notice that cjdb occupies significantly less space
that what 3DCityDB demands for the same data.

The main reason for this size difference lies in the different approaches to storing
the features. In 3DCityDB, the different semantic surfaces (wall/roof/ground/etc)
are considered separate city objects, contributing to the total number of rows in the
cityobject table. In cjdb, the walls, roof and surfaces are considered intrinsic
properties of each city object and thus remain in the jsonb format stored at the
geometry column of each object. This decision has several advantages: reduction of
the size of the city_objects table and faster and simpler queries where only city
objects are concerned (eg Q1 and Q4 in Table 4). But there is also a major drawback:
we cannot perform spatial queries on the geometries of specific semantic surfaces.

Another reason for the different database sizes is the different amount of indexes.
We notice that cjdb implements significantly less indexes and as a result requires way
less storage for them. In 3DCityDB, indexes account for almost half of the database’s
size.

One more noticeable difference is that, since cjdb stores attributes and geometries
in jsonb format, it requires more space for TOAST tables. TOAST (The Oversize
Attribute Storage Technique) is a PostgreSQL mechanism which controls the size of
the data stored in a field. If the data exceeds the maximum allowed limit, TOAST
breaks the too-wide field values down into smaller pieces, and stores them out-of-line
in a TOAST table. Columns of type jsonb tend to carry quite wide values and often
utilise the TOAST tables. Thus when measuring the cjdb database size we need to
take the extra toast tables into account. However, even with the extra TOAST tables,
the total database size remains around ten times smaller than that of 3DCityDB.

Finally, it should be noticed that the 3DCityDB size should in reality be larger than
the number we obtain: since its data model allows only but one geometry per LoD
and that the refined LoDs by Biljecki et al. (2016) are not supported, the 3DCityDB
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Table 3 Database size comparison for the 3 datasets, all values in MB

3DCityDB cjdb

Tables Indexes TOAST Total Tables Indexes TOAST Total

3DBAG 5463 4322 112 9898 257 57 755 1070

NYC 590 735 0.5 1326 26 4 25 54

Vienna 30 42 0.5 73 1.5 0.5 4 6

Table 4 The 8 queries we used for the benchmark

Q1 Retrieve the ids of all buildings based on one attribute (roof height higher than 20 m)

Q2 Retrieve all buildings within a 2D bounding box

Q3 Retrieve building intersecting with a 2D point

Q4 Retrieve the number of parts for each building

Q5 Retrieve all buildings having a specific LoD geometry

Q6 Add new ‘footprint_area’ attribute

Q7 Update ‘footprint_area’ attribute by adding 10 m

Q8 Delete ‘footprint_area’ attribute

importer selects either the LoD1.2 or LoD1.3 from the inputs, and thus one LoD is
missing. In cjdb, all available LoDs are stored together in the ‘geometry’ column.

4.3 Data Retrieval

The data retrieval comparison was performed based on the execution time of SQL
queries which aim to retrieve the same data from both databases. PostgreSQL heavily
relies on caching, therefore the queries below were run several times to ensure the
cache was warm.

We performed 8 queries that we believe are representative of what a typical prac-
titioner (or server hosting data to be downloaded) would need.

Those are listed in Table 4. The exact SQL queries we used for the 3DBAGdataset
are listed in Appendix 6; similar queries were used for the other 2 datasets.
Q1. Query based on attributes: 3DCityDB offers a list of predefined building
attributes within the building table, which include ‘year_of_construction’ and
‘roof_type’—attributes that are not in this list are stored in the table cityobject_
genericattrib. Cjdb on the other hand offers more flexibility since all the
attributes remain in JSON format in the attributes column, regardless of the attribute
name.

Since none of our datasets have attributes from the 3DCityDB’s predefined list,
we decided to compare the attribute-based data retrieval for both databases based
on non-listed attributes. In this specific example, we queried all the buildings with
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roof height (‘h_dak_max’ for BAG ‘HoeheDach’ for Vienna) higher than 20 m. The
New York dataset was not taken into account for this query, since there is no specific
attribute about the roof height.

For cjdb no join is necessary since the attributes are stored together with the city
object but the equivalent in 3DCityDB requires a join between the city_object
and the cityobject_genericattrib tables. As shown in Table 5, cjdb it is
faster than 3DcityDB for Vienna but performs almost the same as 3DcityDB for
the 3DBAG dataset. This is related to both the size of the dataset and the size of
the attributes column in cjdb; the bigger the jsonb column, the slower the query,
since the information stored in the TOAST tables will need to be retrieved and
decompressed.
Q2 & Q3. 2D Spatial queries: The spatial queries in 3DCityDB tend to be compli-
cated since the geometries of the objects are stored in other tables and require joins to
retrieve them. As an example, in order to find all buildings within a certain 2D bound-
ing box, their ground surfaces had to be retrieved from the surface_geometry
table. An alternative but less accurate solution would be to use the bounding box
geometry of the object, which is stored in the city objects’ table. Cjdb does not
require any join to retrieve the same data, since the city_objects table contains
the ground geometries of the objects. As a result the cjdb query is significantly faster
than the equivalent of 3DCityDB, as shown in Table 5. We observe similar speed
differences with other spatial queries, such as retrieving the building intersecting
with a given point in 2D (Q3).
Q4. Number of parts query: We compared how the two databases perform with the
retrieval of the number of building parts per building. For simplicity we considered
only first level children for each building and we also require the buildings without
any parts to be part of the result. Both queries require a single join and their execu-
tion times varies depending on the size of the dataset. When the 3DBAG dataset is
examined, cjdb seems to be slower than 3DCityBD but for the other datasets, cjdb is
faster. However it is worth mentioning that for cjdb the join with the city object table
could be skipped and the number of parts could be retrieved with a single aggrega-
tion query on the city_object_relationships table, but only for the objects
which have parts.
Q5. LoD-based query: While one strength of CityGML is that many LoDs of one
city object can be stored with the object, exporting a given one to perform an analysis
is useful in practice. We therefore tested a query to obtain all building ids with LoD1
(in 3DCityDB) and LoD1.2 (in cjdb) for the 3DBAG dataset and LoD2 for the other
2 datasets. Cjdb performs slower for all datasets; this is probably due to the large size
of the ‘geometry’ column which is in jsonb format and therefore requires joining
to the TOAST tables.

It should be noticed that if the geometry of the building needs also to be retrieved,
the equivalent query for 3DCityBD requires joinswhich significantly lower the speed.
Q6, Q7 & Q8. INSERT/UPDATE/DELETE attribute queries: We also compared
how the databases perform when adding, modifying or deleting an attribute of a
building.When it comes to adding new attributes to the database (Q6), cjdb performs
considerably slower than 3DcityDB. This can be attributed to the different structure
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Table 5 Average execution times for the benchmark queries (all times in ms)

3DBAG NYC Vienna

3DCityDB cjdb 3DCityDB cjdb 3DCityDB cjdb

Q1 290 285 – – 22 2

Q2 172 1.4 59 0.3 14 0.4

Q3 1.0 0.2 0.4 0.1 0.2 0.1

Q4 418 478 240 46 15 2

Q5 343 1877 217 392 15 34

Q6 3981 11 660 1135 1425 15 10

Q7 10 796 10 903 2333 1161 15 9

Q8 4393 10 984 1040 682 59 8

of the databases: new attributes in 3DCityDB can simply be inserted as rows in the
relevant table, whereas in cjdb thejsonbmust bemodified. However, when it comes
to updating existing attributes (Q7), the speed of cjdb is similar for datasets having
many attributes, and faster for datasets having few attibutes. Deleting attributes (Q8)
follows a similar behaviour. Generally, it can be noticed that the number of attributes
and the size of the dataset can significantly affect queries on the jsonb columns.

5 Conclusions and Future Work

The cjdb project started with the goal of creating a simpler and leaner alternative
to 3DCityDB for web servers, allowing users to efficiently store and retrieve 3D
city models. Our data model follows the Simple Feature paradigm and has only 3
tables (instead of 66 for 3DCityDB). This is achieved by maintaining the structure
of CityJSON and storing JSON directly in the database, using the PostgreSQL type
jsonb. Because the structure of the data model is close to that of CityJSONfiles, we
can significantly improve the import/export times to/from a database. Furthermore,
as we have shown, our simple model is around ten times more compact and it offers
retrieval speed comparable to those of 3DCityDB. More specifically we notice that
the cjdb performs better when it comes to 2D spatial queries but it performs slower
when the jsonb columns need to be altered (up to 3 times slower). We also notice
that the query speed on the jsonb columns is significantly affected by the size of
the dataset; the more the attributes in the jsonb columns get, more time is required
to parse them.

Figure 3 shows the 8 queries, each time have been normalised (we divided the
time of cjdb by that of 3DCityDB).

It should bementioned that the datamodel of 3DCityDB ismore generic and canbe
implemented with 3 different DBMSs (and not only PostgreSQL). It also allows us to
query semantic surfaces, something that is currently not possible with the cjdbmodel
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Fig. 3 Data retrieval comparison between cjdb and 3DCityBD for the 8 queries using the 3DBAG
dataset. The y-axis corresponds to (cjdb/3DCityDB); a bar lower than the yellow line (located at
1.0) means that cjdb has a faster query time, a bar higher than 1.0 means a slower query time

because it stores the semantic surfaces in jsonb format in the ‘geometry’ column
of each city object. However, we plan to remedy to the situation by implementing
database functions to extract the geometries from semantic surfaces. Furthermore,
at the moment, retrieving data from cjdb requires the user to parse the jsonb and
extract the necessary information, something that is far from being optimal. We plan
in the near future to implement some helper plugins in mainstream open-source
products (eg QGIS) to be able to view and query cjdb, similar to what is currently
being built for 3DCityDB.8

While this was not previously discussed, it should be mentioned that CityJSON
Extensions are supported by the cjdb data model. This means that extra functions to
dynamically extend the data model (as required for 3DCityDB, see Yao and Kolbe
(2017)) are not necessary. This is because CityJSON Extensions, unlike CityGML
Application Domain Extensions (ADEs), are constrained to follow the structure and
rules of other city objects (see Ledoux et al. (2019) for more details).

We also plan to add support for textures and material, at the moment the informa-
tion is simply stored in the JSON of each geometry, but as is the case for semantic
surfaces, we will add database functions to allow users to query and update those.

8 https://github.com/tudelft3d/3DCityDB-Tools-for-QGIS.

https://github.com/tudelft3d/3DCityDB-Tools-for-QGIS
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6 The 8 SQL Queries Used for the Benchmark for the
3DBAG Dataset

3DCityDB cjdb
Q1

SELECT
gmlid

FROM
3dcitydb.cityobject co
JOIN 3dcitydb.cityobject_genericattrib coga
ON co.id = coga.cityobject_id

WHERE
coga.attrname = ’h_dak_max’
AND coga.realval > 20;

SELECT
object_id

FROM
cjdb.city_object

WHERE
(attributes -> ’h_dak_max’) :: float > 20;

Q2
SELECT

c.gmlid,
sg.geometry

FROM
3dcitydb.thematic_surface AS ts
LEFT JOIN 3dcitydb.surface_geometry AS sg
ON ts.lod2_multi_surface_id = sg.parent_id
LEFT JOIN 3dcitydb.cityobject AS c
ON ts.building_id = c.id

WHERE
ST_Contains(

ST_MakeEnvelope(
85400,
446900,
85600,
447100,
7415

),
sg.geometry

)
AND ts.objectclass_id = 35;

SELECT
object_id,
ground_geometry

FROM
cjdb.city_object

WHERE
TYPE = ’Building’
AND ST_Contains(

ST_MakeEnvelope(
85400,
446900,
85600,
447100,
7415

),
ground_geometry

);

3DCityDB cjdb
Q3

SELECT
c.gmlid,
sg.geometry

FROM
3dcitydb.thematic_surface AS ts
LEFT JOIN 3dcitydb.surface_geometry AS sg
ON ts.lod2_multi_surface_id = sg.parent_id
LEFT JOIN 3dcitydb.cityobject AS c
ON ts.building_id = c.id

WHERE
sg.geometry && st_setsrid(ST_MakePoint(85200,
446900), 7415) AND ts.objectclass_id = 35;

SELECT
object_id,
ground_geometry

FROM
cjdb.city_object

WHERE
"type" = ’Building’
AND ground_geometry
&& st_setsrid(ST_MakePoint(85200, 446900),
7415);

Q4
SELECT

cj.gmlid AS building_id,
count(b.id) AS number_of_parts

FROM
3dcitydb.cityobject cj
LEFT JOIN 3dcitydb.building b
ON cj.id = b.building_parent_id

WHERE
cj.objectclass_id = 26

GROUP BY
cj.id;

SELECT
co.object_id AS building_id,
COUNT(cor.child_id) AS number_of_parts

FROM
cjdb.city_object co
LEFT JOIN cjdb.city_object_relationships cor
ON co.object_id = cor.parent_id

WHERE
co.type = ’Building’

GROUP BY
co.object_id;
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Q5
SELECT

co.gmlid
FROM

3dcitydb.cityobject co
JOIN 3dcitydb.building b
ON co.id = b.id

WHERE
b.lod1_solid_id IS NOT NULL;

SELECT
object_id

FROM
cjdb.city_object

WHERE
geometry::jsonb @> ’[{"lod": 1.2}]’::jsonb;

Q6
INSERT INTO

3dcitydb.cityobject_genericattrib
(attrname, datatype, realval, cityobject_id)
SELECT

’footprint_area’,
3,
ST_Area(cityobject.envelope),
cityobject.id

FROM
3dcitydb.cityobject

WHERE
cityobject.objectclass_id = 26;

UPDATE
cjdb.city_object

SET
attributes = jsonb_set(

attributes :: jsonb,
’{footprint_area}’,
to_jsonb(ST_Area(ground_geometry))

) :: json
WHERE

TYPE = ’Building’;

Q7
UPDATE

3dcitydb.cityobject_genericattrib
SET

realval = realval + 10
WHERE

attrname = ’footprint_area’;

UPDATE
cjdb.city_object

SET
attributes = jsonb_set(

attributes :: jsonb,
’{footprint_area}’,
to_jsonb(

CAST (
jsonb_path_query_first(

attributes :: jsonb,
’$.footprint_area’

) AS real
) + 10.0

)
) :: json

WHERE
TYPE = ’Building’;

Q8
DELETE FROM

3dcitydb.cityobject_genericattrib
WHERE

attrname = ’footprint_area’;

UPDATE
cjdb.city_object

SET
attributes = jsonb_set_lax(

attributes :: jsonb,
’{footprint_area}’,
NULL,
TRUE,
’delete_key’

) :: json
WHERE

TYPE = ’Building’;
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