
Activity Progress
Prediction

F. de Boer

Is there progress in video progress prediction methods?

Activity Progress
Prediction

by

F. de Boer

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Tuesday July 18, 2023 at 10:30 AM.

Student number: 5661439
Project duration: November 13, 2022 – July 18, 2023
Thesis committee: Dr. J. van Gemert, TU Delft, supervisor

Dr. S. L. Pintea, TU Delft, supervisor
Dr. J. W. Böhmer, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

This report describes the work done for my thesis for the Master Computer Science at the
Delft University of Technology.

First of all, I would like to thank my supervisor Silvia. Our weekly meetings kept me on
track, and her feedback always gave me new ideas to work on. Second, I’d like to thank Jan,
who always gave helpful ideas at just the right moment. Third, I’d like to thank my friends.
Working together made bad days better, and good days great. Finally, I’d like to thank my
family for their endless support during this thesis, and for always being there to listen to me.

F. de Boer
Delft, July 2023

iii

Contents

1 Introduction 1

2 Scientific Article 3

A Datasets 15
A.1 UCF101-24 . 15
A.2 Breakfast . 15
A.3 Cholec80 & Cholec120 . 17

B Methods 21
B.1 ProgressNet . 21
B.2 RSDNet . 22
B.3 UTE . 23

C Average-Index Baseline 25

D Results 27

v

1
Introduction

We perform activity progress prediction throughout our day-to-day lives: e.g. during cooking,
we predict how long each cooking step takes and when will the food be ready; when travelling
we predict how long it will take to reach our destination; etc. Being able to reliably predict
activity progress could impact society. For example, in assisted systems for elderly care,
progress prediction could be used to detect unintentional actions [4]. Another example is
in healthcare, where estimating a surgery duration [16] could improve the management of
resources (e.g. staff, operation rooms) and decrease patient waiting times.

The objective of activity progress prediction is relating the visual information to the activity
progress. Current progress prediction methods report great results on complicated real-world
datasets, that are challenging even for humans. In this work, we set forth to answer two main
questions: (i) On what information do progress prediction methods base their predictions?
And (ii) Is it at all possible to predict progress from visual data only?

The rest of this report aims to answer these questions and is structured as follows. First,
Section 2 contains the scientific article describing the research. Second, the Appendix gives
extra information about the topics discussed in the scientific article. Here, Section A discusses
the datasets. Section B discusses the methods. Section C gives extra information about the
average-index baseline. Finally, Section D concludes with a further discussion andmore result
visualizations.

1

2
Scientific Article

3

Is there progress in activity progress prediction methods?

Frans de Boer
Computer Vision Lab,

Delft University of Technology

Silvia L. Pintea
Division of Image Processing (LKEB),

Leiden University Medical Center

Jouke Dijkstra
Division of Image Processing (LKEB),

Leiden University Medical Center

Jan C. van Gemert
Computer Vision Lab,

Delft University of Technology

Abstract

Activity progress prediction methods report great results
on complicated and realistic video datasets. This is impres-
sive because the videos in these datasets drastically vary
in length and appearance. In this work, we examine the
results obtained by existing progress prediction methods, to
determine what information these methods use to make their
predictions. We find that current progress prediction meth-
ods do not use the visual information of the videos. Instead,
they rely on simple frame counting and averaging to obtain
their results. Additionally, we design a synthetic dataset
for the progress prediction task, and show that the consid-
ered methods can make use of the visual information in the
videos, when this directly relates to the progress prediction.
These results point to a flaw in the benchmarks used in the
context of progress prediction.

1. Introduction
Activity progress prediction is vital to our day-to-day

lives: e.g. during cooking, we predict how fast will the
food be ready; in healthcare, estimating how long a surgery
will take allows for better resource allocation and shorter
waiting times. Here, we define activity progress prediction
as the task of predicting the percentage of completion of
an activity. For our purpose, each video contains a single
activity, which covers the complete duration of the video
and may consist of multiple phases. However, we assume
there are no phase annotations available, as is generally the
case in real-world scenarios. The main challenge for activ-
ity progress prediction is extracting meaningful information
from the visual data, that relates to the specific phases of the
activity and, thus, enables predicting the progress.

To address this challenge, current methods rely on con-

volutional embeddings, such as VGG-16 [23], ResNet152
[9], YOLOv2 [22], or I3D [4] to extract visual information.
Furthermore, to remember information over time, current
progress prediction methods [3, 26] rely on memory blocks
and recurrent connections [12]. While these recurrent con-
nections are useful for keeping track of the activity progress
over time, they also allow for a trivial solution: i.e. count-
ing video frames and predicting the average progress. Here,
we aim to analyze if such undesirable learning strategies are
employed by the current progress prediction methods.

To this end, we consider the state-of-the-art progress pre-
diction methods [3, 17, 26], as well as two more simple
learning-based methods: a 2D-only ResNet, and a ResNet
model augmented with recurrent connections. We evalu-
ate all these learning methods across three video datasets
used for progress prediction: UCF101-24 [24], Breakfast
[15, 16], and Cholec80 [25]. Additionally, we compare
the learning-based methods with naive non-learning meth-
ods. Firstly, we examine the learning methods when they
are presented with the full video sequences during training,
and thus making frame counting possible. Secondly, we in-
spect the results when frame counting is made impossible
by training the networks on subsampled video segments.
In the latter case, the networks cannot count frames, and
therefore they have to rely on visual information for activ-
ity progress prediction. If the methods should fail to ex-
tract useful information from the visual data, they would
perform on par with non-learning methods based on dataset
statistics. Finally, we design a synthetic progress predic-
tion dataset, Progress-bar, on which the visual information
is directly related to the progress. And we investigate the
learning methods, when trained on this synthetic data. We
expect all learning methods should be able to make use of
the visual information.

0 200 400 600 800
Video Length

0

50

100

150

200

250

300

350

Nu
m

be
r o

f V
id

eo
s

(a) video length distribution for UCF101-24

1000 2000 3000 4000 5000 6000
Video Length

0

1

2

3

4

5

6

Nu
m

be
r o

f V
id

eo
s

(b) video length distribution for Cholec80

0 2000 4000 6000 8000 10000
Video Length

0

20

40

60

80

100

120

Nu
m

be
r o

f V
id

eo
s

(c) video length distribution for Breakfast

Figure 1. Length distributions for UCF101-24, Cholec80, and Breakfast. UCF101-24 are grouped into bins of size 10, for Cholec80 and
Breakfast the bins are of size 100. Most notable is the long-tail distribution of the video lenghts in the Breakfast dataset, which makes
progress prediction difficult. The vertical red line depicts the mean of each dataset.

1.1. Difficulties in current progress prediction

Progress prediction methods [3, 17, 26] report impres-
sive results on complicated and realistic datasets such as
UCF101-24 [24], Breakfast [15, 16], and Cholec80 [25].
The appearance and activity length can drastically vary be-
tween videos in these datasets, as shown Fig. 1. Also,
UCF101-24 and Breakfast follow a long-tail distribution,
with few videos containing long activities. Moreover, some
of the activities in these datasets do not have a clearly de-
fined endpoint: e.g. ‘skiing’, ‘walking the dog’, etc. Pre-
dicting progress on these activities would be difficult even
for a human. Therefore, we arrive at two main questions we
aim to address here: (i) On what information do progress
prediction methods base their predictions? And (ii) Is it at
all possible to predict progress from visual data only?

2. Related work

Activity progress Prediction. The task of progress predic-
tion was formally introduced in [3]. Because the progress
of an activity is an easy-to-obtain self-supervision signal, it
is often used as an auxiliary signal in a multi-task prediction
problem, as in [13] to improve the performance of spatio-
temporal action localisation networks. Progress prediction
is also used as a pretext task for phase detection [18], or to
create embeddings to perform unsupervised learning of ac-
tion classes [17, 28]. The progress prediction problem can
also be modelled as a classification problem, choosing from
n bins each of size 1/n as is done in [7]. Based on the
literature surveyed, of works done on progress prediction,
only [3, 21] have progress prediction as their primary task.
This work is also on the topic of progress prediction, but
we do not propose our own progress prediction method. In-
stead, we consider the methods from [3, 17] in our analysis

and show how their performance can drastically vary when
changing how the training data is presented to the model.

Remaining Duration. A topic closely related to progress
prediction is Remaining Duration (RD) prediction. While
the progress prediction task models the course of the activ-
ity as a percentage value in [0, 100%], RD prediction mod-
els it as a remaining time t in minutes or seconds. Previous
work that researches the RD problem often does this in a
surgical setting [1, 20, 26, 30] and thus refers to it as the
Remaining Surgery Duration (RSD) problem. Early meth-
ods work by pretraining a ResNet-152 model to predict ei-
ther the surgical phase [1] or the surgery progress [26], and
then using the frame embeddings created from the ResNet-
152 model in an LSTM block to perform RSD prediction.
Building on top of this is the observation in [20] that pre-
dicting extra information such as surgeon skill, may be ben-
eficial to do RSD prediction. Finally, RSD can also be mod-
elled in a way closer to progress. By dividing all RSD val-
ues by the highest possible RSD, the RSD can be predicted
as a value between 0 and 1 [29]. Unlike these methods that
model the passage of time as a decreasing remaining dura-
tion, we model it as an increasing progress value. We use
RSDNet [26] in our analysis, as it performs both RSD and
progress prediction.

Phase prediction. For a linear activity, an activity in
which the phases always follow the same order and are
not repeated, the current phase gives a good approxima-
tion of the progress. Previous work jointly performs phase-
based progress prediction and surgical gesture recognition
[27]. Other methods try to improve the phase prediction by
jointly predicting the phase and the surgery tools [25], or
by pretraining a CNN to predict RSD and using the embed-
dings in an LSTM to predict the surgical phase online [31].
More recent work applies transformers to perform surgical

phase recognition [14, 19]. In this work, we do not consider
phase-prediction methods as they are an inaccurate proxy
for progress. Furthermore, when activities are non-linear,
phase prediction is no longer a good indicator of activity
progress. Knowing which phase is happening may be use-
ful as an extra signal, however we do not consider this, as it
requires additional annotations.

Activity Completion. The progress for each frame can be
calculated using linear interpolation if the current activity
time, t, the starting activity time, tstart, and the ending ac-
tivity time, tend, are available. Early work on this topic
only predicts if an activity has been completed or not us-
ing an SVM [5]. Follow-up work of Heidarivincheh et al.
[10] uses a CNN-LSTM architecture to predict the exact
frame at which the activity is completed, i.e. the activity
completion moment. The detection of the activity comple-
tion moment is done in a supervised setting [10], where the
exact frame at which the activity ends is annotated. Alter-
natively, activity completion can be done in a weakly super-
vised setting where the only available annotation is if the
activity has been completed or not [11]. Although related
to progress prediction, activity completion only aims at pre-
dicting the completion moment. In contrast, we aim at pre-
dicting the more fine-grained targets of activity progression
at every frame.

3. Video progress prediction

We formulate video progress prediction as the task of
predicting a progress value pin ∈ [0, 100]% at frame i in a
video indexed by n, where

pin =
i

ln
, (1)

ln is the total number of frames for video n. Each video
consists of a single activity which starts at frame 0 and ends
at frame ln. The activity may consist of multiple phases, but
we do not use any phase annotation.

We predict progress percentages at every frame in the
test videos. During training, the videos can be presented to
the methods in two different ways: full-videos and video-
sequences. We start by using complete videos during train-
ing – full-videos, where each video frame represents a data
sample. Subsequently, we make the problem more realistic
by applying two sampling augmentations, as done in [3]: (a)
for every video, we sample a segment by randomly select-
ing a start and end point; (b) we randomly subsample every
such segment to vary its speed. We call the video sampling
strategy using (a)-(b): video-segments. On video-segments
the methods cannot rely on frame indices, and needs to pro-
cess the visual information for predicting progress.

3.1. Progress prediction methods

We consider 3 progress prediction methods from previ-
ous work: ProgressNet [3], RSDNet [26], and UTE [17].
We select these methods as they are the only methods in the
surveyed literature that report results on the progress predic-
tion task. Furthermore, these methods are the only methods
in surveyed literature that do not require additional annota-
tions, such as body joints [21].

ProgressNet [3]: A spatio-temporal network which uses
a VGG-16 [23] backbone to embed video frames and ex-
tracts further features using spatial pyramid pooling (SPP)
[8] and region of interest (ROI) pooling [6]. Additionally,
the model uses 2 LSTM layers to incorporate temporal in-
formation. Becattini et al. also introduce a Boundary Ob-
servant (BO) loss. This loss enables the network to be more
accurate around areas of phase transitions. In our work,
we do not use the BO loss because it requires annotating
the phase boundaries. ProgressNet uses ROI pooling and
requires per-frame bounding box annotations. We use the
complete frame as the bounding box on datasets where we
do not have bounding box annotations.

RSDNet [26]: It uses a ResNet-152 [9] backbone, fol-
lowed by an LSTM layer with 512 nodes, and two addi-
tional single-node linear layers to jointly predict RSD and
video progress. The trained ResNet model creates embed-
dings from all the frames, which are concatenated with the
elapsed time in minutes. RSDNet jointly trains on RSD
and progress prediction but evaluates only on RSD predic-
tion. Here, we evaluate only the progress prediction head
and train with both the RSD and progress loss.

UTE [17]: This is a simple 3-layer MLP (Multilayer Per-
ceptron) which takes as input features extracted from RGB
video frames such as dense trajectories [30] or I3D network
embeddings [4]. Both dense trajectories and I3D embed
frames over a sliding window which encodes temporal in-
formation into the features. This gives the UTE network
access to temporal information. Here, we use 3D convo-
lutional embeddings from the I3D backbone of dimension
1024 and an embedding window of size 16 on all datasets.
We use precisely the same network design as in [17].

3.2. Learning based baselines

Next to the published methods above, specifically de-
signed for progress prediction, we also consider two more
baselines. The first is a spatial only ResNet-2D model, and
the second is a spatio-temporal ResNet-LSTM model. We
use ResNet-LSTM as it is a progress-only variation of RS-
DNet. Furthermore, the 2D variant ResNet-2D can give
us insights into the spatial-only information contained in
the datasets, for progress prediction. We do not consider
other architectures, such as a Video Transformer [2], be-
cause they do not share the same architecture structure as

the progress prediction methods we consider in Section 3.1,
so they would not display similar behaviors during training.
ResNet-2D. A spatial 2D ResNet [9] architecture that can
only make use of 2D visual data present in individual video
frames, without access to any temporal information. The
last layer of the ResNet predicts the progress at each frame
via a linear layer, followed by a sigmoid activation.
ResNet-LSTM. Additionally, we extend the above ResNet-
2D with an LSTM block with 512 nodes, and a final
progress-prediction linear layer using a sigmoid activation.
The LSTM block adds temporal information, which allows
us to test the added value of the memory blocks for activity
progress prediction.

3.3. Naive baselines

Next to the learning-based baselines, we consider a set
of naive non-learning baselines. These non-learning base-
lines represent upper-bounds on the errors we expect the
learning-based methods to make.
Static-0.5. This is the most obvious non-learning baseline,
which always predicts 50% completion at every frame. This
is the best guess without any prior information.
Random. Additionally, we consider a random baseline that
predicts a random value in [0, 100]% at every frame. This
represents the worst progress prediction a model can make,
indicating that it failed to learn anything.
Average-index. Finally, we consider a non-learning base-
line which computes training-set statistics. It makes a per-
frame average progress prediction. For frame i in video n
this baseline predicts a progress value equal to the average
training-progress at frame i of all training videos indexed
by m ∈ {1, ..., Ni}:

p̂in =
1

Ni

Ni∑
m=1

pim, (2)

where Ni is the count of all the training videos with a length
of at least i frames.

4. Empirical analysis
4.1. Datasets description

Each of the considered progress prediction methods eval-
uates on a different dataset: RSDNet on Cholec80 [25],
ProgressNet on UCF101-24 [24], and UTE on Breakfast
[15, 16]. To analyze these methods, we use all 3 datasets
for all methods.
Cholec80 [25]: Consists of 80 videos of endoscopic chole-
cystectomy surgery. Note that [26] uses an extended version
of this dataset, Cholec120, containing 40 additional surgery
videos. However, Cholec120 is not publicly available, so
we used Cholec80 to report our results. We randomly create

four folds of the data, and follow the same train/test dataset
split sizes as in [26]. This dataset has limited visual vari-
ability both across training and test splits. Moreover, the
presence of different medical tools in the frames informs of
the different surgery phases, which could aid the progress
prediction task.

UCF101-24 [24]: Consists of a subset of UCF101 con-
taining 24 activities, each provided with a spatio-temporal
action tube annotation.1 Becattini et al. [3] split the dataset
into 2 categories: telic and atelic activities. Telic activities
are those with a clear endpoint, such as ‘cliff diving’, while
atelic activities, such as ‘walking the dog’, do not have a
clearly defined endpoint. Predicting progress for atelic ac-
tivities is more difficult than for telic ones. The original
implementation first trains on telic activities, and then fine-
tunes on all activities. We did not observe a difference when
using this training procedure, and instead train all methods
on the full dataset.

Breakfast [15, 16]: Contains 10 cooking activities: e.g.
‘making coffee’, ‘baking pancakes’, or ‘making tea’, etc.,
performed by 52 individuals in 18 different kitchens. We
use the default splits and train each model across all cook-
ing activities. Because the tasks are performed by differ-
ent individuals in different kitchens, the video appearance
varies even within the same task, making this dataset extra
challenging for progress prediction.

UCF101-24 contains training videos of up to 599
frames, while Cholec80 and Breakfast contain videos with
thousands of frames. When training on full-video se-
quences, we could not train the ProgressNet model on the
original Cholec80 and Breakfast datasets, because of the
long videos leading to memory problems. Thus, for the ex-
periments using full-video sequences, we use a subsampled
version of Cholec80 from 1 fps to 0.1 fps (the original fps is
25; [26] subsamples this down to 1fps); and we subsample
Breakfast dataset from 15 fps down to 1 fps. For our exper-
iments on video-segments we use the original datasets.

4.2. Experimental setup

For the considered progress prediction methods only the
code for UTE is published.2 For the other methods, we fol-
low the papers for implementation details and training pro-
cedures. We train RSDNet in a 2-step procedure following
[26], however for training the LSTM blocks we found that
using the Adam optimizer with a learning rate of 10−4 and
no weight decay, for 30k iterations works best. For Pro-
gressNet not all training details are mentioned in the paper,
so we use Adam with a learning rate of 10−4 for 50k iter-
ations, and we keep the VGG-16 backbone frozen during

1Following [3] we use the revised annotations available at https:
//github.com/gurkirt/corrected-UCF101-Annots

2https://github.com/Annusha/unsup_temp_embed

ResNet-2D ResNet
-LSTM

UTE ProgressNet RSDNet
0%

5%

10%

15%

20%

25%

30%

35%

M
AE

14.2%

25.0%

33.3%

average-index
static-0.5

random
'full-video' inputs

'random-noise' inputs

Figure 2. UCF101-24 training on full-videos . MAE in percent-
ages for all learning methods when inputting both full-video data
and random-noise. For all methods except ProgressNet inputting
random-noise performs on par or better than inputting full-videos.

training. For all experiments we report the MAE (Mean
Absolute Error) in percentages.

4.3. (i) On what information do progress prediction meth-
ods base their predictions?

(i.1) Progress predictions on full-videos. Here we want
to test what information the learning-based models use to
predict progress when trained on full-videos. For this we
evaluate all learning methods when using full-video data as
input: i.e. either frames or frame embeddings. We com-
pare this with using random-noise as input. If the models
learn to extract useful appearance information, their MAE
scores should be considerably higher than when inputting
random-noise. Additionally, we compare the learning-
based methods with the naive baselines: static-0.5, random,
and average-index.

Fig. 2 shows that when training on full-videos of
UCF101-24 both the ResNet-2D model and UTE models
perform on par with the static-0.5 baseline. This is because
these spatial-only networks do not have any way of integrat-
ing temporal information and they fail to extract progress
information from the visual data alone. When provided with
random-noise as inputs, they always predict 0.5 and score
on par with the static-0.5 baseline. The results are simi-
lar for the recurrent models, ResNet-LSTM and RSDNet
who are both close to the static-0.5 baseline. We observe
that the recurrent models overfit on the embedded features
and fail to generalise to the test set. When these recur-
rent networks are provided with random-noise they learn
to count frames, and thus reach the average-index baseline.
ProgressNet is the only outlier here: when given full-video
data it performs better than the average-index baseline, and
when given random-noise as inputs, it performs slightly

ResNet-2D ResNet
-LSTM

UTE ProgressNet RSDNet
0%

5%

10%

15%

20%

25%

30%

35%

M
AE 16.6%

25.0%

33.3%

average-index
static-0.5

random
'full-video' inputs

'random-noise' inputs

Figure 3. Breakfast training on full-videos . MAE in percent-
ages for all learning methods when inputting full-video data and
random-noise. When using random-noise as input to the recurrent
methods, they perform on par or better than when inputting full-
videos, indicating that the methods learn to count video frames.

ResNet-2D ResNet
-LSTM

UTE ProgressNet RSDNet
0%

5%

10%

15%

20%

25%

30%

35%

M
AE

11.9%

25.0%

33.3%

average-index
static-0.5

random
'full-video' inputs

'random-noise' inputs

Figure 4. Cholec80 training on full-videos . MAE in percent-
ages for all considered methods when inputting full-videos and
random-noise. On this dataset, all methods are able to learn from
the visual data. When provided with random-noise, the recurrent
methods perform on par with the average-index baseline, estimat-
ing dataset statistics.

worse. Since the visual information is not sufficiently in-
formative to predict progress, as seen for the ResNet-LSTM
and RSDNet, ProgressNet learns to count frames to aid in
its progress predictions.

For Breakfast in Fig. 3 the results look very similar to
those on UCF101-24. Both the ResNet-2D and UTE mod-
els cannot learn from visual information alone. ResNet-
LSTM and RSDNet both perform worse than the static-0.5
baseline, indicating that they are overfitting on the train-
ing data. When provided with random-noise as input, they

ResNet-2D ResNet
-LSTM

UTE ProgressNetRSDNet
0%

5%

10%

15%

20%

25%

30%

35%

M
AE

14.2%

25.0%

33.3%

average-index
static-0.5

random
'video-segments' inputs

'frame-indices' inputs

Figure 5. UCF101-24 training on video-segments . MAE in per-
centages for all considered methods when inputting both video-
segments and frame-indices. For all methods inputting frame-
indices is better than inputting video-segments. ResNet-2D and
UTE get the biggest boost in performance because they can learn
the one-to-one mapping from index to progress during training.

rely on frame counting. ProgressNet obtains similar results
when given both full-videos and random-noise, indicating
that in both cases it is performing frame counting.

Cholec80 in Fig. 4 is the only dataset where the spatial-
only networks ResNet-2D and UTE perform better than
the static-0.5 baseline. This hints to the visual informa-
tion present in this dataset being indicative of the activity
progress. When inputting random-noise the methods again
perform on par with the static-0.5 baseline, as expected.
Here, ResNet-LSTM, RSDNet, and ProgressNet, can make
use of both the visual information and frame counting and
perform slightly better than the average-index baseline.

Observation: The progress prediction methods and the
learning baselines can fail to extract useful information
from video data. When this happens, memory-based meth-
ods will rely on frame counting when presented with full-
videos as inputs.

(i.2): Progress predictions on video-segments. We test
what information learning methods use when trained to pre-
dict progress from video-segments. Using video-segments
should encourage the methods to focus more on the vi-
sual information and less so on the temporal position of the
frames. We compare this with inputting frame-indices – ab-
solute frame indices replicated as images. Ideally, we would
expect all methods to solve the progress prediction task by
relying on visual information, and therefore surpassing the
scores obtained when inputting frame-indices. Again, we
also compare with the naive baselines: static-0.5, random
and average-index.

Fig. 5 shows that when trained on video-segments of

ResNet-2D ResNet
-LSTM

UTE ProgressNetRSDNet
0%

5%

10%

15%

20%

25%

30%

35%

M
AE 16.6%

25.0%

33.3%

average-index
static-0.5

random
'video-segments' inputs

'frame-indices' inputs

Figure 6. Breakfast training on video-segments . MAE in per-
centages for all considered methods when inputting both video-
segments and frame-indices. All methods perform better when
using frame-indices as input. Also here ResNet-2D and UTE ob-
tain the lowest error.

ResNet-2D ResNet
-LSTM

UTE ProgressNetRSDNet
0%

5%

10%

15%

20%

25%

30%

35%

M
AE

11.9%

25.0%

33.3%

average-index
static-0.5

random
'video-segments' inputs

'frame-indices' inputs

Figure 7. Cholec80 training on video-segments . MAE in per-
centages for all considered methods when inputting both video-
segments and frame-indices. For RSDNet inputting frame-indices
is slightly worse. This could be due to suboptimal hyperparameter
settings.

UCF101-24 all methods perform on par with the static-0.5
baseline. Thus, the models cannot learn to predict progress
from the visual video data. Interestingly, ProgressNet using
full-videos in Fig. 2 is better than the average-index base-
line, however, here it fails to learn when trained on video-
segments. This suggests that on the full-videos the net-
work was not relying on the visual information, but just on
the temporal progression of frames – frame counts. When
provided with frame-indices as input, all methods improve.
The improvement is most visible for ResNet-2D and UTE,
which do not use recurrent blocks. This is because the non-

recurrent methods can learn the one-to-one mapping from
index to progress during training and apply it at test-time.

The results on Breakfast in Fig. 6 are similar to those
of UCF101-24 in Fig. 5. None of the networks can ex-
tract useful information from the video-segments. And, as
expected, ProgressNet performs worse than when trained
on full-videos. All methods improve when trained on
frame-indices. The improvement is again more obvious for
ResNet-2D and UTE.

On Cholec80 in Fig. 7 we see a similar trend. ResNet-
2D and UTE improve when provided with frame-indices as
input. For ResNet-LSTM and ProgressNet the performance
is on par with the average-index baseline for both video-
sequences and frame-indices as inputs, indicating that on
the Cholec80 these methods can learn progress prediction
from visual information, however, they still cannot perform
better than the average-index baseline. RSDNet performs
worst when given frame-indices as inputs; we hypothesise
that this is due suboptimal hyperparameter settings.

Observation: The progress prediction methods cannot ex-
tract sufficient information from visual data for solving the
progress prediction, on the currently used datasets. And
when not provided with the complete videos, these methods
are outperformed by native non-learning baselines relying
on data statistics.

4.4. (ii) Is it at all possible to predict activity progress from
visual data only?

We observe that existing learning-based methods often
fail to extract progress information from visual data alone.
Our goal here is to construct a synthetic dataset in such a
way that the learning-based methods perform optimal using
visual information, and outperform the naive baselines.

We construct a synthetic Progress-bar dataset, as shown
in Fig. 8. The dataset contains a progress bar (similar, for
example, to a download bar) that slowly fills up from left to
right. Each frame has a resolution of 32×32px. We gen-
erate 900 videos for the training split, and 100 for the test
split. Each bar has its own rate of progression, but there is
a variance per notch causing some uncertainty. This is why
in the first image the progression appears to be slightly be-
yond 25%, but because the video may slow down after this
section it is actually at 22.2%. Due to the large variance in
video length, ranging from 19 to 145 frames, the average-
index baseline, and thus frame-counting strategies, will give
worse results than relying on visual information. Also, be-
cause of the different progress rates per video, the learning
methods cannot just rely on visual information alone but
also have to use memory to perform well on this progress
prediction task.

Due to the reduced frame resolution and data complexity
of our synthetic dataset, we scale down the ResNet back-
bone, for these experiments. Specifically, to avoid over-

(a)
t=0

p=1.4%

(b)
t=15

p=22.2%

(c)
t=35

p=50.0%

(d)
t=58

p=81.9%

(e)
t=71

p=100.0%

Figure 8. Visualisation of a progress bar from our synthetic
Progress-bar dataset at timesteps t=0, t=15, t=35, t=58, and
t=71. Each coloured section indicates visually a 25% section, but
due to variance in the speed, the actual video progress may differ
at these points.

fitting, we use ResNet-18 as a backbone for ResNet-2D,
ResNet-LSTM, and RSDNet. ProgressNet and UTE re-
main unchanged.

Fig. 9 shows the results of all the learning-based meth-
ods when predicting progress from both full-videos and
video-segments. For this dataset the average-index base-
line has an MAE of 12.9%, which is outperformed by all
learning-based methods. UTE performs the best out of all
the networks, even though it does not have memory. This
is because UTE uses frame embeddings with a temporal-
window size of 16 frames. This temporal-window gives the
method information about 7 future frames, which is suffi-
cient on this simple dataset. For the LSTM-based methods
inputting full-videos still performs slightly better than in-
putting video-segments. At a closer look, this is because the
video-segments sampling method has a bias towards frames
in the middle of a video. The earlier frames are less likely
to get sampled, thus the progress prediction methods will
have a higher error here.

Observation: It is feasible for the progress prediction
methods to make effective use of the visual data present in
the videos and outperform the average-index baseline, when
the visual data is a clear indicator of the video progression.

5. Discussion and limitations of our analysis
Discussion. This paper demonstrates empirically that
progress prediction methods may not learn from visual in-
formation, and instead rely on frame counting. However,
our results also show that some methods can learn from the
visual information on the Cholec80 and generalize well to
the test set. Fig. 10, Fig. 11, and Fig. 12 show examples
of predictions on the Cholec80 dataset. Fig. 10 shows the
first moment a new medical tool is present in the video, and
the progress prediction methods adjust their predictions to
this new visual information. Similarly, in Fig. 11 we show
the moment the collection bag is present which signals the
end of the procedure. For Fig. 12 when no visual land-

ResNet-2D ResNet
-LSTM

UTE ProgressNet RSDNet
0%

1%

2%

3%

4%

M
AE

'full-video' inputs 'video-segments' inputs

Figure 9. MAE scores on our synthetic Progress-bar dataset,
when training on full-videos and video-segments . The average-
index baseline has an MAE of 12.9%, while the static baseline is
at 25% and the random baseline at 33.3%. We see that all meth-
ods outperform the average-index baseline. UTE obtains the best
result due to its 15-frame temporal window, which allows it to see
7 frames into the future. We conclude that the progress prediction
methods are able to learn progress from visual information, if it is
clearly present in the videos.

0 200 400 600 800 1000 1200 1400
Frame

0%

20%

40%

60%

80%

100%

Pr
og

re
ss

ResNet-2D
ResNet-LSTM
UTE
RSDNet
ProgressNet
average-index
Ground Truth

Figure 10. Progress prediction example on Video-04 of Cholec80
at timestamp t=210. The methods recognize the medical tool, and
correct their progress downwards to signal the start of the medical
procedure.

mark is introduced, the progress increases linearly. Fig. 13
and Fig. 14 show two example predictions on our synthetic
Progress-bar dataset. Here, the networks almost perfectly
follow the ground truth progression. These results illustrate
that for progress prediction is essential to have clearly rec-
ognizable visual transition points, that consistently corre-
spond to a certain progress prediction percentage. This is
related to the idea of Becattini et al. [3] who use phase an-
notations to increase the loss around the phase boundaries.

Limitations. The first limitation of our research is that
we could only find 3 progress prediction methods to ana-

0 500 1000 1500 2000
Frame

0%

20%

40%

60%

80%

100%

Pr
og

re
ss

ResNet-2D
ResNet-LSTM
UTE
RSDNet
ProgressNet
average-index
Ground Truth

Figure 11. Progress prediction example on Video-05 of Cholec80
at timestamp t=1650. The methods recognize the collection bag
and correct their progress to signal the end of the procedure.

0 200 400 600 800 1000
Frame

0%

20%

40%

60%

80%

100%

Pr
og

re
ss

ResNet-2D
ResNet-LSTM
UTE
RSDNet
ProgressNet
average-index
Ground Truth

Figure 12. Progress prediction example on Video-12 of Cholec80
at timestamp t=850. When no new visual landmarks are present
the progress increases linearly.

0 10 20 30 40 50 60 70
Frame

0%

20%

40%

60%

80%

100%

Pr
og

re
ss

ResNet
ResNet-LSTM
UTE
RSDNet
ProgressNet
Ground Truth

Figure 13. Progress prediction example on Video-00004 of our
synthetic Progress-bar dataset at timestamp t=10. All methods
are able to almost perfectly follow the ground truth.

lyze, on 3 datasets. Additionally, we do not consider here
other video-architectures such as a Video Transformer [2],
as these are not directly related to the progress prediction
methods we analyze. However, we do consider 2D (ResNet)
and 3D (I3D) convolutional networks, as well as recurrent

0 10 20 30 40 50 60
Frame

0%

20%

40%

60%

80%

100%
Pr

og
re

ss
ResNet
ResNet-LSTM
UTE
RSDNet
ProgressNet
Ground Truth

Figure 14. Progress prediction example on Video-00015 of our
synthetic Progress-bar dataset at timestamp t=25. Also here, the
learning methods can almost perfectly follow the ground truth.

networks (with LSTM blocks). Thirdly, we were unable to
match the results of ProgressNet exactly as reported in [3]:
when trained on video-segments, the authors report an MSE
of 0.052 (MAE of approximately 22.8%), while we obtain
an MAE of 25.9%. Nonetheless, the average-index outper-
forms the result reported in [3], which still validates our
conclusions. Finally, we observed that on both UCF101-
24 and Breakfast the methods have a tendency to overfit.
Maybe better strategies to overcome this overfitting phe-
nomenon could improve the results.

6. Conclusion

In this paper, we investigate the behaviour of current
progress prediction methods on the currently used bench-
mark datasets. We show that the progress prediction meth-
ods can fail to extract useful information from visual data on
these datasets. Moreover, when the methods fail to extract
visual information, memory-based methods adopt a frame-
counting strategy when presented with full-video data as
input. Additionally, we evaluate all the methods on a syn-
thetic dataset we specifically designed for the progress pre-
diction task. On our synthetic dataset the results show that
all the methods can make use of the visual information and
outperform the native, non-learning baselines. We conclude
that in its current form the task of progress prediction is ill-
posed. The learning methods tend to fail to extract useful
information from the visual data and instead rely purely on
frame counting.

References

[1] Ivan Aksamentov, Andru Putra Twinanda, Didier Mutter,
Jacques Marescaux, and Nicolas Padoy. Deep neural net-
works predict remaining surgery duration from cholecystec-
tomy videos. In International Conference on Medical Image
Computing and Computer-Assisted Intervention, 2017. 2

[2] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen
Sun, Mario Lučić, and Cordelia Schmid. Vivit: A video vi-
sion transformer, 2021. 3, 8

[3] Federico Becattini, Tiberio Uricchio, Lorenzo Seidenari,
Lamberto Ballan, and Alberto Del Bimbo. Am i done? pre-
dicting action progress in videos, 2017. 1, 2, 3, 4, 8, 9

[4] Joao Carreira and Andrew Zisserman. Quo vadis, action
recognition? a new model and the kinetics dataset, 2018.
1, 3

[5] Majid Mirmehdi Farnoosh Heidarivincheh and Dima
Damen. Beyond action recognition: Action completion in
rgb-d data. In Edwin R. Hancock Richard C. Wilson and
William A. P. Smith, editors, Proceedings of the British
Machine Vision Conference (BMVC), pages 142.1–142.11.
BMVA Press, September 2016. 3

[6] Ross Girshick. Fast r-cnn, 2015. 3
[7] Tengda Han, Jue Wang, Anoop Cherian, and Stephen Gould.

Human action forecasting by learning task grammars, 2017.
2

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Spatial pyramid pooling in deep convolutional networks for
visual recognition. In Computer Vision – ECCV 2014, pages
346–361. Springer International Publishing, 2014. 3

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition, 2015. 1, 3, 4

[10] Farnoosh Heidarivincheh, Majid Mirmehdi, and Dima
Damen. Action completion: A temporal model for moment
detection, 2018. 3

[11] Farnoosh Heidarivincheh, Majid Mirmehdi, and Dima
Damen. Weakly-supervised completion moment detection
using temporal attention. In 2019 IEEE/CVF International
Conference on Computer Vision Workshop (ICCVW), pages
1188–1196, 2019. 3

[12] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997. 1

[13] Bo Hu, Jianfei Cai, Tat-Jen Cham, and Junsong Yuan.
Progress regression rnn for online spatial-temporal action lo-
calization in unconstrained videos, 2019. 2

[14] Muhammad Abdullah Jamal and Omid Mohareri. Surgmae:
Masked autoencoders for long surgical video analysis, 2023.
3

[15] Hilde Kuehne, A. B. Arslan, and T. Serre. The language
of actions: Recovering the syntax and semantics of goal-
directed human activities. In Proceedings of Computer Vi-
sion and Pattern Recognition Conference (CVPR), 2014. 1,
2, 4

[16] Hilde Kuehne, Juergen Gall, and Thomas Serre. An end-to-
end generative framework for video segmentation and recog-
nition. In Proc. IEEE Winter Applications of Computer Vi-
sion Conference (WACV 16), Lake Placid, Mar 2016. 1, 2,
4

[17] Anna Kukleva, Hilde Kuehne, Fadime Sener, and Juergen
Gall. Unsupervised learning of action classes with continu-
ous temporal embedding, 2019. 1, 2, 3

[18] Xinyu Li, Yanyi Zhang, Jianyu Zhang, Yueyang Chen,
Shuhong Chen, Yue Gu, Moliang Zhou, Richard A. Farneth,
Ivan Marsic, and Randall S. Burd. Progress estimation and
phase detection for sequential processes, 2017. 2

[19] Yang Liu, Maxence Boels, Luis C. Garcia-Peraza-Herrera,
Tom Vercauteren, Prokar Dasgupta, Alejandro Granados,
and Sebastien Ourselin. Lovit: Long video transformer for
surgical phase recognition, 2023. 3

[20] Andrés Marafioti, Michel Hayoz, Mathias Gallardo,
Pablo Márquez Neila, Sebastian Wolf, Martin Zinkernagel,
and Raphael Sznitman. Catanet: Predicting remaining
cataract surgery duration, 2021. 2

[21] Davide Pucci, Federico Becattini, and Alberto Del Bimbo.
Joint-based action progress prediction. Sensors, 23(1), 2023.
2, 3

[22] Joseph Redmon and Ali Farhadi. Yolo9000: Better, faster,
stronger, 2016. 1

[23] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition, 2015. 1,
3

[24] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah.
Ucf101: A dataset of 101 human actions classes from videos
in the wild, 2012. 1, 2, 4

[25] Andru Putra Twinanda, Sherif Shehata, Didier Mutter,
Jacques Marescaux, Michel de Mathelin, and Nicolas Padoy.
Endonet: A deep architecture for recognition tasks on laparo-
scopic videos, 2016. 1, 2, 4

[26] Andru Putra Twinanda, Gaurav Yengera, Didier Mutter,
Jacques Marescaux, and Nicolas Padoy. RSDNet: Learn-
ing to predict remaining surgery duration from laparoscopic
videos without manual annotations. IEEE Transactions on
Medical Imaging, 38(4):1069–1078, apr 2019. 1, 2, 3, 4

[27] Beatrice van Amsterdam, Matthew J. Clarkson, and Danail
Stoyanov. Multi-task recurrent neural network for surgical
gesture recognition and progress prediction, 2020. 2

[28] Rosaura G. VidalMata, Walter J. Scheirer, Anna Kukleva,
David Cox, and Hilde Kuehne. Joint visual-temporal em-
bedding for unsupervised learning of actions in untrimmed
sequences, 2020. 2

[29] Bowen Wang, Liangzhi Li, Yuta Nakashima, Ryo Kawasaki,
and Hajime Nagahara. Real-time estimation of the remain-
ing surgery duration for cataract surgery using deep convo-
lutional neural networks and long short-term memory, 2023.
2

[30] Heng Wang and Cordelia Schmid. Action recognition with
improved trajectories. In 2013 IEEE International Confer-
ence on Computer Vision, pages 3551–3558, 2013. 2, 3

[31] Gaurav Yengera, Didier Mutter, Jacques Marescaux, and
Nicolas Padoy. Less is more: Surgical phase recognition
with less annotations through self-supervised pre-training of
cnn-lstm networks, 2018. 2

A
Datasets

A.1. UCF101-24
UCF101 [14] is a realistic human activity dataset collected from user-uploaded YouTube videos.
The dataset consists of many actors performing various activities such as ‘Cliff Diving’, ‘Push
ups’, etc. In total, the dataset has 13k videos and 101 different activities. Due to the diverse
sources of the videos, they all vary in visual information, such as camera motion, subject
appearance, and background. Each video in the dataset is downsampled to a resolution of
320 × 240 pixels and a framerate of 25 fps. This dataset has two problems for the task of
progress prediction: (1) an activity may start and end at any point in the video, and (2) there
may be multiple activities happening at the same time. As a solution to this UCF101-24 was
introduced.

UCF101-24 [14] is a subset of UCF101 of just 24 activity categories. Each video in this
subset is annotated with activity tubes, which can be seen as spatiotemporal bounding boxes.
Each frame in the tube is annotated with a bounding box, and each bounding box is linked
to the one before and after it. This encloses the subject throughout the video. There can
be multiple activity tubes per video, and even multiple activity tubes going through the same
frame. By using the activity tubes instead of the videos we can predict progress on multiple
activities throughout the video, even when they are happening concurrently.

UCF101-24 consists of 3200 videos, of which 2290 are in the train split and 910 are in the
test split. In total, there are 4456 annotated activity tubes, of which 3143 are in the train split
and 1315 are in the test split. Tab. A.1(a) shows the number of activity tubes and the average
activity length for each activity category. Fig. A.1 shows 10 videos per activity category, each
at approximately 50% completion. The dataset has many activities, each with its own visual
information, which makes the dataset challenging for the task of progress prediction.

Becattini et al. [2] split UCF101-24 into two categories, telic activities and atelic activities.
Telic activities have a clearly defined goal, such as ‘Cliff Diving’, this activity ends the moment
the actor hits the water. Atelic activities do not have a clearly defined goal, such as ‘Walking
With Dog’. Prediction progress on atelic activities is more difficult, as there is no difference
between ‘Walking With Dog’ at the start of the video and at the end. Since over half of the
activities in UCF101-24 are atelic the dataset can be challenging for the task of progress
prediction.

A.2. Breakfast
Breakfast [10, 11] is a cooking activity dataset created with the goal of capturing real-world
scenarios. The dataset consists of 1712 videos which are all downsampled to a resolution

15

16 A. Datasets

Activity Class Number of action tubes Average activity length
Basketball 171 38
BasketballDunk 132 38
Biking 202 181
CliffDiving 143 63
CricketBowling 142 39
Diving 149 114
Fencing 240 123
FloorGymnastics 125 151
GolfSwing 149 119
HorseRiding 172 187
IceDancing 322 226
LongJump 130 130
PoleVault 164 141
RopeClimbing 119 164
SalsaSpin 616 86
SkateBoarding 120 136
Skiing 135 216
Skijet 105 217
SoccerJuggling 149 276
Surfing 196 114
TennisSwing 260 40
TrampolineJumping 254 143
VolleyballSpiking 124 31
WalkingWithDog 136 198

Activity Class Number of videos Average activity length
coffee 167 596
cereals 184 706
tea 184 719
milk 187 951
juice 162 1493
sandwich 169 1547
scrambledegg 166 3122
friedegg 173 3126
salat 163 3431
pancake 157 5979

(a) Activity classes in UCF101-24 (b) Activity classes in Breakfast.

Table A.1: (a) Activity classes in UCF101-24 and the number of annotated action tubes per activity class. The
telic activities are in bold. The large number of activities, each with its own visual information, and the inclusion
of atelic activities makes predicting progress on this dataset challenging. (b) Activity classes in Breakfast and the
number of videos per activity class. The activities are well-balanced. However, the large difference in average
activity length makes predicting progress on this dataset challenging.

of 320 × 240 pixels and a framerate of 15 fps. The dataset is split into 4 groups for training
and testing, these are in Tab. A.2. The 1712 videos are split across 10 different cooking
activities, such as ‘making coffee’ and ‘baking pancakes’. The activities are chosen in such
a way that some of them share a lot of phases, while others are completely different. For
example ‘scrambled egg’ and ‘fried egg’ are very similar, and so are ‘juice’ and ‘milk’. Other
activities, such as ‘coffee’ and ‘pancake’ share almost no phases between them. This is one
of the factors which makes this a challenging dataset for progress prediction.

𝑠1 𝑠2 𝑠3 𝑠4
𝑃01 - 𝑃15 𝑃16 - 𝑃28 𝑃29 - 𝑃41 𝑃42 - 𝑃54

Table A.2: Breakfast dataset splits for testing where the actor IDs are given as 𝑃𝑖, 𝑖 ∈ {01, .., 54}. The remaining
actor IDs are used for training.

To further increase the difficulty of the dataset several additional steps were taken. The
activities are performed by 52 actors so the videos have different subjects. Because every
person cooks slightly differently, this adds extra variation to each activity. The activities are
performed in 18 different kitchens, this changes the background information and tools used for
the activity. Finally, each activity is recorded by 3 to 5 different cameras, so there are different
viewpoints and different types of motion relative to the camera. All of this means that the
learners cannot simply remember what certain objects and activities look like. Instead, they
have to understand which task is happening and which phase is happening, and combine this
to make a progress prediction.

Tab. A.1(b) shows the number of videos and the video length for each activity category.
The number of videos per activity is quite well-balanced. The average video length differs a lot

A.3. Cholec80 & Cholec120 17

per activity category, making pancakes takes on average 10 times longer than making coffee.
In other words, making pancakes progresses 10 times slower than making coffee. This large
variety in video lengths disadvantages counting-based methods because they cannot adjust
their progress prediction based on what activity is happening. Fig. A.2 shows 10 videos per
activity category, each at approximately 50% completion. There is a large variety of visual
information, a lot of which is background information that learning methods cannot use to
make predictions. For example, the first column shows the same kitchen multiple times but
each time a different recipe is being made. These factors make the dataset challenging for
the task of progress prediction.

A.3. Cholec80 & Cholec120
Cholec80 [15] is a dataset consisting of 80 endoscopic cholecystectomy surgery videos –
gallbladder removal surgeries which are recorded from inside the body. Each video is captured
with a framerate of 25 fps. For each video, the surgical phase and tool presence are labelled by
a senior surgeon. While we do not use these annotations in our research, for surgery, where
the phases often proceed in a linear fashion, this information could be useful for progress
prediction. Fig. A.4 shows frames from 6 videos, each at approximately 50% completion.
Each video in the dataset shares similar visual information. Additionally, different medical
tools used at each phase give a clear visual indication of the current phase. Because the
visual information is such an informative signal of the current progress, this dataset is easier
for the task of progress prediction.

Unlike UCF101-24 and Breakfast, Cholec80 does not have standardised train/test/eval
splits. The lack of standardised data splits can cause problems when comparing results from
various papers [5]. Because we compare to [16], we follow their data strategy as close as
possible.

Cholec120 [1] adds an additional 40 videos to the Cholec80 dataset. Very little information
is given about these 40 extra videos, and they are not publicly available. We can see from
the duration distributions in Fig. A.3 that the 40 additional videos follow roughly the same
distribution as Cholec80. Most of them are in the range of 30 to 40 minutes.

18 A. Datasets

Basketball

BasketballDunk

Biking

CliffDiving

CricketBowling

Diving

Fencing

FloorGymnastics

GolfSwing

HorseRiding

IceDancing

LongJump

PoleVault

RopeClimbing

SalsaSpin

SkateBoarding

Skiing

Skijet

SoccerJuggling

Surfing

TennisSwing

TrampolineJumping

VolleyballSpiking

WalkingWithDog

Figure A.1: 10 videos per activity category for UCF101-24, each at approximately 50% completion. The large
difference in visual information between the videos makes this a challenging dataset for the progress prediction
task.

A.3. Cholec80 & Cholec120 19

salat

pancake

coffee

cereals

tea

milk

juice

sandwich

scrambledegg

friedegg

Figure A.2: 10 videos per activity category for Breakfast, each at approximately 50% completion. The large
difference in visual information between the videos makes this a challenging dataset for the progress prediction
task.

Figure A.3: The surgery durations for Cholec120 [1] and Cholec80 [15]. Cholec120 figure taken from the original
paper [16]. Most of the 40 additional videos added in Cholec120 are in the range of 30 to 40 minutes, and they
roughly follow the same distribution as Cholec80.

Figure A.4: Visualisations for 6 videos from the Cholec80 dataset, each at approximately 50% completion. All
videos share similar visual information, making it easier to learn progress on this dataset compared to UCF101-24
and Breakfast.

B
Methods

B.1. ProgressNet
ProgressNet [2] is the first network designed specifically for the task of progress prediction.
The ProgressNet architecture can be seen in Fig. B.1. ProgressNet consists of a VGG-16
[6] backbone which extracts visual features from frames. From these features the network
creates bounding boxes, which are linked through time via a box linking algorithm to create
activity tubes. The main contribution of ProgressNet is the progress prediction head. This
further extracts features using spatial pyramid pooling (SPP) [8] and region of interest (ROI)
pooling [6]. These features are concatenated and forwarded through a linear layer, two LSTM
layers with 64 and 32 hidden nodes, and a final linear layer to predict progress. The network
predicts both bounding boxes and progress in a fully online manner. Not much information is
given about the training procedure used for ProgressNet. For our implementation, we followed
the paper as close as possible.

ProgressNet is evaluated onUCF101-24 [14] and J-HMDB [9], here we focus on the results
for UCF101-24. The loss for ProgressNet is calculated as the mean squared error (MSE) of
predicted progress and actual progress between 0 and 1. Instead, we use the mean absolute
error (MAE) of predicted progress and actual progress between 0 and 100. To compare the
results we convert ProgressNets MSE loss to an approximate MAE loss. The results can be
seen in Tab. B.1. We see that with and without the BO loss ProgressNet as implemented in
[2] gets better results compared to our implementation of ProgressNet. The 2𝐷 only variant of
ProgressNet is unable to learn from just visual information and performs worse than predicting

Figure B.1: ProgressNet [2] architecture. The network consists of a VGG-16 [13] backbone which extracts visual
features from the frames. From this network first (1) bounding boxes are created, which are linked through time
via a box linking algorithm to create activity tubes. Second, (2) Spatial Pyramid Pooling (SPP) [8] and Region of
Interest (ROI) pooling [6] layers extract further features. These features are then forwarded through a linear layer,
an LSTM layer, and a final linear layer to predict progress. Figure from the original paper [2].

21

22 B. Methods

50%. From these results, we are unsure how the original ProgressNet implementation is
able to get an improved performance. The network is unable to predict progress from visual
information alone, yet when given video-segments the performance improves. There might
be an implementation detail we are missing, but from just following the paper these are the
best results we could get.

Progressnet ProgressNet BO ProgressNet 2D Ours

22.8 21.4 28.1 25.9

Table B.1: Results of ProgressNet with and without the BO loss as implemented in [2] compared to the results
of ProgressNet as implemented in this research. ProgressNet as implemented in [2] gets an improved score
compared to ours.

B.2. RSDNet
RSDNet [16] jointly predicts remaining surgery duration (RSD) and progress. The network
architecture can be seen in Fig. B.2(a). RSDNet predicts RSD and progress for every frame
in a sequence and is trained on full-video sequences. One problem with training on full-video
sequences is that if the sequences are too large it can become difficult, if not impossible, to
train the network on a GPU. To overcome this problem the network is split into two smaller
networks which are trained separately: The CNN network and the LSTM network. To train the
CNN network the video sequences are split into individual frames. The CNN network, which
consists of a modified ResNet-152 network, is then trained on 2𝐷 images to predict progress.
After this, the LSTM network is trained on sequences of frame embeddings created by the
CNN network

Both networks are trained using the SGD optimizer with a momentum of 0.9 and a smooth
L1 loss. First, the ResNet-152 model is modified by replacing the last layer of the model with
a single-node linear layer with a sigmoid activation. The ResNet-152 backbone is trained
with an initial learning rate of 10−3. The learning rate is reduced by a factor of 10 every 20k
iterations. Finally, the weight decay is set to 5×10−4 and the model is trained for 50k iterations
with a batch size of 48. Second, the LSTM network is trained. This network is trained for 30k
iterations with an initial learning rate of 10−3. The learning rate is reduced by a factor of 10
every 10k iterations. Finally, the weight decay is set to 10−2.

To train and validate on Cholec120, Aksamentov et al. create 4 folds, which are optimized
using a genetic algorithm. This genetic algorithm optimised the folds such that the mean of
the sequence lengths is similar between all the subsets, and the diversity of the lengths is as
large as possible within each subset. This ensures that all folds are similar while maximising
diversity within the folds. Each fold is then split into 4 segments: 𝑇1, used to train the CNN,
and 𝑇2, used to train the CNN-LSTM, are both 40 videos. 𝑉, the test split, is 10 videos. Finally,
𝐸, the validation split, is 30 videos. This split enables training both the CNN and CNN-LSTM
on different videos to avoid overfitting. We follow the same strategy, but since Cholec80 is
missing 40 videos our splits are smaller. 𝑇1 and 𝑇2 are both 27 videos, 𝑉 is 6 videos, and
finally 𝐸 is 20 videos.

Twinanda et al. [16] report a Mean Average Error (MAE) for the RSD predictions of 8.1±5.4.
We get an MAE on the RSD predictions of 10.5 ± 0.8, which is slightly higher and has a much
lower standard deviation. We still think our results are comparable for the following reasons:
First, RSDNet is trained on Cholec120, which has 40 extra videos compared to Cholec80.
These 40 videos add both extra training data for the network to learn on, and extra validation
data to get a more accurate estimate of the network loss. Second, the folds created in [1] were

B.3. UTE 23

(a) RSDNet [16] architecture. (b) UTE [12] architecture.

Figure B.2: (a)RSDNet [16] architecture. The network consists of aResNet-152 [7] backbone which extracts visual
features from the frames. The features get passed through an LSTM layer after which they get concatenated with
the elapsed time in minutes. Finally, two single-node linear layers jointly predict the RSD and Progress. Figure
taken from the original paper [16]. (b) UTE [12] architecture. This simple network consists of 3 linear layers. The
second-to-last layer is used in [12] to create embeddings. Figure taken from the original paper [12].

optimized using a genetic algorithm, these folds however are not publicly available. Instead,
we opted to randomly generate our folds, which may have resulted in a worse distribution of
sequence lengths.

B.3. UTE
UTE [12] addresses the problem of detecting and segmenting phases in activity videos. Ob-
taining a phase label for each frame by human annotation is very expensive, UTE makes this
process easier by labelling phases in an unsupervised manner. The network architecture used
is a simple 3-layer MLP and can be seen in Fig. B.2(b). As input the network takes frame em-
beddings, such as dense trajectories [17] or I3D embeddings [3]. By predicting progress from
frame embeddings they obtain a new temporal embedding, which can be used to temporally
segment the activity video into phases. The main idea behind this strategy is similar to that
of using phase prediction as a proxy for progress. For many activities, the phases follow a
logical order, i.e. when making coffee the actor will get a cup early in the activity.

Kukleva et al. [12] train UTE on the Breakfast dataset in two ways. First, they train on
each activity class individually. Second, they train on the dataset as a whole. We opt to go
for the second case, training our methods on the full Breakfast dataset. This does make the
problem more difficult, as the networks now have to learn to distinguish the visual information
of 10 activity classes.

C
Average-Index Baseline

0 10 20 30 40 50
Frame

0%

20%

40%

60%

80%

100%

Pr
og

re
ss

(a) 3 Videos of length 10, 20, and 30

Video 1
Video 2
Video 3

0 10 20 30 40 50
Frame

0%

20%

40%

60%

80%

100%
Pr

og
re

ss

(b) Average-index baseline

Video 1
Video 2
Video 3
predictions

Figure C.1: Average-index baseline on videos of length 20, 20, and 30 a and the resulting predictions b. The
average-index baseline follows the average trajectory of the videos. This trajectory changes as videos end, causing
a non-monotonically decreasing prediction. The average-index baseline always predicts 100% for videos that are
longer than the longest training video. The average-index baseline minimises its error at each timestep, but except
for the final video never gets the correct progress prediction.

Fig. C.1 shows an example calculation of the baseline on three videos of length 10, 20,
and 30 (a), and the resulting predictions (b). For the first 10 frames the predictions are the
average of videos 1, 2, and 3. For frames 10 − 20, the predictions are the average of videos
2 and 3. For frames 20 − 30 the prediction follows video 3 exactly because this is the only
video left. Finally, after frame 30 the average-index baseline has no training data, so the
predictions are pinned at 100%. Note that the predictions from the average-index baseline are
non-monotonically increasing. This means that, unlike real activity progress, the predictions
may go down. Fig. C.2 shows the average-index baseline predictions on the UCF101-24,
Cholec80, and Breakfast datasets. The predicted progress increases rapidly at first. After this
rapid increases it increases much slower and flatter till 100%.

The average-index baseline gets a good MAE score for the progress prediction task. By
predicting the average progress at each frame it is able to minimise its error at each timestep.
However, the average-index baseline is not very useful in real-world scenarios. The average-
index baseline cannot exactly match the progress of any single video. The progress tends to
increase rapidly at first, and then flatten out. Furthermore, unless the tested video is longer

25

26 C. Average-Index Baseline

than the longest video in the training set, the average-index baseline will never predict 100%.
For all these same reasons a network that learns to predict progress simply by counting is
equally problematic.

0 200 400 600 800
Frame

0.0

0.2

0.4

0.6

0.8

1.0

Pr
og

re
ss

(a) Average-index baseline on UCF101-24

average-index

0 1000 2000 3000 4000 5000 6000
Frame

0.0

0.2

0.4

0.6

0.8

1.0

Pr
og

re
ss

(b) Average-index baseline on Cholec80

average-index

0 2000 4000 6000 8000 10000
Frame

0.0

0.2

0.4

0.6

0.8

1.0

Pr
og

re
ss

(c) Average-index baseline on Breakfast

average-index

Figure C.2: Average-index baseline on UCF101-24, Cholec80, and Breakfast. The predicted progress increases
rapidly at first due to the many short videos. After this, the predictions increase much slower to 100%. OnUCF101-
24 the longest train video is 599 frames, while the longest test video is 880 frames. For the last 291 frames of
the longest test video, the average-index baseline always predicts 100%. The average-index baseline is able to
minimise its per-frame error on each dataset, but in doing so makes progress predictions which are not useful for
real-world applications.

D
Results

In this section, we show visualisations of predictions the networks make on various videos of
the datasets. Fig. D.1(a) shows the networks making predictions on Video-04 of the Cholec80
dataset. The networks recognize the start of the surgical procedure by the first appearance of
the medical tool. Because of this, the networks correct their prediction downwards. Fig. D.1(b)
shows the networks making predictions on Video-05 of the Cholec80 dataset. The networks
again recognize a medical tool, the collection bag, and recognize this as the end of the pro-
cedure. All of them adjust their progress upwards towards 100%. This shows that when the
visual information is clearly present in the datasets the methods are able to make use of this.

0 200 400 600 800 1000 1200 1400
Frame

0%

20%

40%

60%

80%

100%

Pr
og

re
ss

ResNet-2D
ResNet-LSTM
UTE
RSDNet
ProgressNet
average-index
Ground Truth

0 500 1000 1500 2000
Frame

0%

20%

40%

60%

80%

100%

Pr
og

re
ss

ResNet-2D
ResNet-LSTM
UTE
RSDNet
ProgressNet
average-index
Ground Truth

(a) (b)

Figure D.1: (a) Progress prediction example on Video-04 ofCholec80 at timestamp 𝑡=210. (b) Progress prediction
example on Video-05 of Cholec80 at timestamp 𝑡=1650. The methods recognize the collection bag and correct
their progress to signal the end of the procedure.

For the next results on UCF101-24 we compare the predictions made by ProgressNet
when given full-video sequences and video-segments. No networks, except for ProgressNet
on full-video sequences, were able to learn on this dataset. They always predict a progress
value of approximately 50% and are not interesting to look at. Fig. D.2(a) and Fig. D.2(b)
show predictions made by ProgressNet on videos from the ‘Biking’ activity and the ‘Fencing’
activity on both full-video sequences and video-segments. When given video-segments Pro-
gressNet is unable to learn and predicts a static value of approximately 60%. When given
full-sequences we see that it approximately follows the ground truth values. If ProgressNet
is predicting based on visual information we expect it to adjust its progress predictions based
on recognizing phase transitions, like in Fig. D.1(a) and Fig. D.1(b). Instead, the progress ap-
pears to be increasing at a linear rate. Furthermore, if ProgressNet is using visual information

27

28 D. Results

the predictions when given video-segments should also be able to recognize the same vi-
sual information, but instead this always predicts 60%. This shows that ProgressNet is simply
counting frames and predicting an average progress. Fig. D.2(c) and Fig. D.2(d) show pre-
dictions made by ProgressNet on two videos from the ‘GolfSwing’ activity on both full-video
sequences and video-segments. When given video-segments ProgressNet is again unable to
learn and predicts a static value of approximately 60%. For Fig. D.2(c) it appears the network
is responding to the visual information of the golfer swinging to update its prediction. However,
when we look at Fig. D.2(d) the network does not respond to any visual information, and in-
stead just predicts a linearly increasing progress value again. We conclude that ProgressNet
is unable to learn from the visual information in UCF101-24.

0 20 40 60 80 100 120 140
Frame

0%

20%

40%

60%

80%

100%

Pr
og

re
ss

ProgressNet (full-video)
ProgressNet (full-video)
average-index
Ground Truth

0 20 40 60 80 100 120 140
Frame

0%

20%

40%

60%

80%

100%

Pr
og

re
ss

ProgressNet (full-video)
ProgressNet (full-video)
average-index
Ground Truth

(a) (b)

0 25 50 75 100 125 150 175
Frame

0%

20%

40%

60%

80%

100%

Pr
og

re
ss

ProgressNet (full-video)
ProgressNet (full-video)
average-index
Ground Truth

0 20 40 60 80
Frame

0%

20%

40%

60%

80%

100%

Pr
og

re
ss

ProgressNet (full-video)
ProgressNet (full-video)
average-index
Ground Truth

(c) (d)

Figure D.2: (a)ProgressNet predictions on a video from the ‘Biking’ activity for both full-video sequences and video-
segments at timestamp 𝑡=80. (b) ProgressNet predictions on a video from the ‘Fencing’ activity for both full-video
sequences and video-segments at timestamp 𝑡=45. (c) ProgressNet predictions on a video from the ‘Fencing’
activity for both full-video sequences and video-segments at timestamp 𝑡=125. (d) ProgressNet predictions on
a video from the ‘Fencing’ activity for both full-video sequences and video-segments at timestamp 𝑡=45. When
given video-segments the predictions stay static around 60%. When given full-video sequences the predictions
tend to increase in a linear fashion without responding to the change in visual information.

Finally, Fig. D.3(a) and Fig. D.3(b) show predictions made by all the LSTM-based networks
when given full-video sequences of random-noise inputs. The networks all learn to count and
make approximately the same predictions on both the videos. Note that because neither of
these videos are the longest video in the dataset the predictions never reach 100%.

29

0 25 50 75 100 125 150 175
Frame

0%

20%

40%

60%

80%

100%

Pr
og

re
ss

ResNet-LSTM
RSDNet
ProgressNet
average-index
Ground Truth

0 20 40 60 80 100 120 140
Frame

0%

20%

40%

60%

80%

100%

Pr
og

re
ss

ResNet-LSTM
RSDNet
ProgressNet
average-index
Ground Truth

(a) (b)

Figure D.3: (a) Network predictions on a video from the ‘pancake’ cooking activity for all LSTM-based methods
when given full-video sequences of random-noise at timestamp 𝑡=150. (b) Network predictions on a video from
the ‘sandwich’ cooking activity for all LSTM-based methods when given full-video sequences of random-noise at
timestamp 𝑡=65. All networks make approximately the same predictions and follow the same trajectory as the
average-index baseline. The networks all learn to count.

Bibliography

[1] Ivan Aksamentov et al. “Deep Neural Networks Predict Remaining Surgery Duration
from Cholecystectomy Videos”. In: International Conference on Medical Image Com-
puting and Computer-Assisted Intervention. 2017.

[2] Federico Becattini et al. Am I Done? Predicting Action Progress in Videos. 2017. DOI:
10.48550/ARXIV.1705.01781. URL: https://arxiv.org/abs/1705.01781.

[3] Joao Carreira and Andrew Zisserman. Quo Vadis, Action Recognition? A New Model
and the Kinetics Dataset. 2018. arXiv: 1705.07750 [cs.CV].

[4] Dave Epstein, Boyuan Chen, and Carl Vondrick. Oops! Predicting Unintentional Action
in Video. 2019. arXiv: 1911.11206 [cs.CV].

[5] Isabel Funke, Dominik Rivoir, and Stefanie Speidel. Metrics Matter in Surgical Phase
Recognition. 2023. arXiv: 2305.13961 [cs.CV].

[6] Ross Girshick. Fast R-CNN. 2015. arXiv: 1504.08083 [cs.CV].
[7] Kaiming He et al. Deep Residual Learning for Image Recognition. 2015. arXiv: 1512.

03385 [cs.CV].
[8] Kaiming He et al. “Spatial Pyramid Pooling in Deep Convolutional Networks for Vi-

sual Recognition”. In: Computer Vision – ECCV 2014. Springer International Publish-
ing, 2014, pp. 346–361. DOI: 10.1007/978-3-319-10578-9_23. URL: https:
//doi.org/10.1007%2F978-3-319-10578-9_23.

[9] Hueihan Jhuang et al. “Towards Understanding Action Recognition”. In: 2013 IEEE In-
ternational Conference on Computer Vision. 2013, pp. 3192–3199. DOI: 10.1109/
ICCV.2013.396.

[10] Hilde Kuehne, A. B. Arslan, and T. Serre. “The Language of Actions: Recovering the
Syntax and Semantics of Goal-Directed Human Activities”. In: Proceedings of Computer
Vision and Pattern Recognition Conference (CVPR). 2014.

[11] Hilde Kuehne, Juergen Gall, and Thomas Serre. “An end-to-end generative framework
for video segmentation and recognition”. In: Proc. IEEEWinter Applications of Computer
Vision Conference (WACV 16). Lake Placid, Mar. 2016.

[12] Anna Kukleva et al. Unsupervised learning of action classes with continuous temporal
embedding. 2019. arXiv: 1904.04189 [cs.CV].

[13] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-
Scale Image Recognition. 2015. arXiv: 1409.1556 [cs.CV].

[14] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. UCF101: A Dataset of 101
Human Actions Classes From Videos in The Wild. 2012. arXiv: 1212.0402 [cs.CV].

[15] Andru Putra Twinanda et al. EndoNet: A Deep Architecture for Recognition Tasks on
Laparoscopic Videos. 2016. arXiv: 1602.03012 [cs.CV].

[16] Andru Putra Twinanda et al. “RSDNet: Learning to Predict Remaining Surgery Duration
from Laparoscopic Videos Without Manual Annotations”. In: IEEE Transactions on Med-
ical Imaging 38.4 (Apr. 2019), pp. 1069–1078. DOI: 10.1109/tmi.2018.2878055.
URL: https://doi.org/10.1109%2Ftmi.2018.2878055.

31

https://doi.org/10.48550/ARXIV.1705.01781
https://arxiv.org/abs/1705.01781
https://arxiv.org/abs/1705.07750
https://arxiv.org/abs/1911.11206
https://arxiv.org/abs/2305.13961
https://arxiv.org/abs/1504.08083
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://doi.org/10.1007/978-3-319-10578-9_23
https://doi.org/10.1007%2F978-3-319-10578-9_23
https://doi.org/10.1007%2F978-3-319-10578-9_23
https://doi.org/10.1109/ICCV.2013.396
https://doi.org/10.1109/ICCV.2013.396
https://arxiv.org/abs/1904.04189
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1212.0402
https://arxiv.org/abs/1602.03012
https://doi.org/10.1109/tmi.2018.2878055
https://doi.org/10.1109%2Ftmi.2018.2878055

32 Bibliography

[17] Heng Wang and Cordelia Schmid. “Action Recognition with Improved Trajectories”. In:
2013 IEEE International Conference on Computer Vision. 2013, pp. 3551–3558. DOI:
10.1109/ICCV.2013.441.

https://doi.org/10.1109/ICCV.2013.441

	Introduction
	Scientific Article
	Datasets
	UCF101-24
	Breakfast
	Cholec80 & Cholec120

	Methods
	ProgressNet
	RSDNet
	UTE

	Average-Index Baseline
	Results

