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Abstract—Many interesting designs of soft robots with variable
stiffness capabilities have been presented in the literature. How-
ever, little attention has been given on the control of their
embedded physical intelligence.
In this work we present an algorithm that exploits the variable
joint stiffness capabilities and the redundancy of a soft manipu-
lator to achieve Cartesian stiffness control at the end effector,
thanks to model-based and optimal control techniques. The
algorithm is validated both analytically and in the real world. In
particular, we present a tendon-driven soft manipulator, equipped
with variable-stiffness segments and proprioceptive sensing. The
robot is used as a platform to test the algorithm in real tasks,
such as fitting a peg in the hole. Thanks to accurate modeling,
the soft manipulator is able to obtain the desired stiffness at the
end effector over the workspace.

I. INTRODUCTION

Numerous designs of continuum soft robots, defined as robotic
systems with purposefully designed compliant elements em-
bedded into their mechanical structure [1], have been equipped
with variable stiffness mechanisms (VSMs) [2],[3],[4]. For
example, in [5], a variable-stiffness manipulator based on
antagonistic pneumatic actuators is presented. Similarly, [2]
proposes a VS assistive manipulator that can automate the
bathing task for elderly people, while in [4], a 1 Degree of
Freedom (DOF) robot with VS capabilities is presented. The
VSMs are usually introduced in the designs to generically
tune the grade of compliance with an unknown environment,
allowing the robot to be robust or compliant with respect to
external disturbances. To the best of the authors’ knowledge,
in soft continuum robots, the stiffness is usually controlled
at the joint level, without any model on the resulting end
effector stiffness in Cartesian space. Indeed, in order to define
the relation between the VSM and the end effector Cartesian
stiffness, an accurate model of the structure of the manipulator
is needed. While controlling the stiffness at the joint level may
be sufficient for some applications, a specification of Cartesian
stiffness is required for various tasks, such as assembly of parts
or sliding along surfaces [6][7]. Therefore, we aim to realize a
desired Cartesian stiffness at the tool tip by exploiting the com-
pliant structure of the robot itself [8], augmented with a VSM.
In order to do so, we propose a soft manipulator modellable
by the Piecewise Constant Curvature (PCC) assumption and
equipped with a VSM, together with an optimization-based
algorithm for end effector Cartesian stiffness control.

Contribution

With this paper we propose:
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• the design of a soft manipulator with VS, proprioceptive
and tactile capabilities, able to control its end effector
Cartesian stiffness.

• a general optimal control algorithm for Cartesian stiffness
control of the end effector using model-based techniques
for soft manipulators.

II. FUNCTIONAL DESCRIPTION OF THE ROBOT

The robot is a soft manipulator composed of three flexible
segments, connected in series and actuated by 9 tendons. Each
segment is composed of an elastic chamber able to vary its
stiffness and by a rigid platform, in which the motors and
Inertial Measurement Units (IMUs) are embedded. The control
of each segment is independent, as the actuated tendons are
attached on two consecutive platforms.
The soft robot is able:

• to reconstruct the posture of the whole body when ex-
ternally deformed thanks to the IMUs spread along the
structure.

• to detect the contact with external objects along all its
body, providing it of a tactile skin, thanks to pressure
sensors attached to each of the chambers composing the
segments.

• to vary the stiffness of each joint independently, thanks
to a variable stiffness pneumatic mechanism.

A. Hardware design

The robot is built using 3d printing, molding and casting
techniques.
1) Connecting plates and tendon actuation: Each 3d-printed
platform is composed of two concentric circles and three
external housings for the motors and IMUs, as shown in Figure
2. The central circle is used as an attachment for the air
chamber, while the second circle keeps the electronic wires
and the air tubes in place.
Each tendon is actuated by a Micro Metal DC motor with
a 398:1 gearbox. This gear ratio has been chosen to provide
sufficient torque with a reasonable speed range. Each motor
is equipped with a quadrature encoder, to enable both the
direction and position to be determined with high precision.
The pulleys, connected to the motors, were 3d printed to
get an optimal transmission ratio between motor and tendon
turns. The motors are controlled by H-bridges, to provide
speed and direction control. An Arduino Due microcontroller
is used to control the H-bridges. The encoders are connected
to digital interrupts on the microcontroller to allow continuous
monitoring. A serial protocol has been developed to allow
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Fig. 1: Rendered and real images of the soft manipulator. A
fabric sleeve is placed on top of the manipulator to keep the
wiring and tubing in place.

communication between the high level control program run-
ning on Matlab in the PC and the Arduino. This allows a
demand position to be set for each motor. The speed of each
motor is controlled with a PID controller, integrated in the
Matlab script running on the PC so to converge to the required
encoder position in closed loop.
2) Chambers and pneumatic control: As shown in Figure
2, each segment is composed of an inflatable chamber. The
chambers are build by casting a silicon material (Dragonskin-
20) in four stages, as described in Figure 4. The molds are 3D
printed so to be easily assemblable and allow a simple removal
of the cured chamber1. The chamber is composed of a central
beam with three longitudinal communicating cavities around.
The inner beam withstands most of the loads in the uninflated
configuration and limits the deformation in the axial direction,
while the chambers, connected trough a tube to a pressure
source, allow the segment to change its bending stiffness.
Indeed, thanks to the nonlinear behaviour of the compressed
air in the chamber, the bending stiffness can be controlled as a
function of the internal pressure, with an increase in stiffness
up to the 300% in the operational range.
Indeed, in the uninflated state, the external wall is free to
bend, without any energy penalty other than its own structural
stiffness. On the contrary, when inflated, the external wall
of the chamber goes under tension, following the Young-
Lagrange equation [9]. The nonlinear air behaviour, together
with the nonlinear stress-strain relation of Dragonskin-20 [3]
makes the bending stiffness of the whole structure increase

1∗: for the interested reader, the full CAD model of the mold, to-
gether with the rigid platforms constituting the robot, is available at
”https://grabcad.com/library/mold-chamber-softmanipulator-1”

Fig. 2: Technical drawing of a single segment, composed
of a chamber and two platforms. Each platform is built in
a concentric fashion, with an external hole for connecting
wires and tubes and an internal attachment for the chamber,
composed of a central flexible beam and an elastic wall.

Fig. 3: The chamber deflection due to the 50g load at the tip
decrease when the internal pressure increase. Interestingly, the
tip displacement is smaller when the chamber is fully inflated,
i.e. the stiffness of the chamber increases with the internal
pressure.

when the chamber is inflated. In Figure 3 it is possible to
notice how the chamber, loaded at the tip, deforms as a
function of the internal pressures.

The bending stiffness of the chamber has been evaluated
as a function of the internal pressure, as in Figure 6. A
measurement setup, shown in Figure 5, has been developed
to evaluate the stiffness of each chamber as a function of the
internal pressure. The chamber is deformed by pushing the tip
through a load cell (Futek LSB200) embedded on an actuated
platform. The position of the platform is measured with a laser
sensor (optoNCDT 1420). The internal pressure is measured
with a pressure sensor (Gems Pressure Sensor350) connected
to the chamber via a tube.
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Fig. 4: Molding process: a) The first mold, composed of two
parts, in green and orange, is assembled, b) the Dragonskin-
20 is poured and it is left to cure for 4 hours, c) the cured
Dragonskin-20 is removed from the first mold, and put in
a second mold, represented in red, in which some more
Dragonskin-20 has been poured. d) Finally, the cured chamber
can be removed from the mold and attached to the air tube
and platforms.

Fig. 5: the bending stiffness of the chamber has been eval-
uated from displacement vs force curves for several internal
pressures. The experiment has been repeated five times for
each pressure level P = 1, 1.05, 1.1, 1.15, 1.2 bar. Finally, the
stiffness is evaluated as the slope of the first order regression
of the data.

Hence the position, pressure data and the force exerted by the
chamber on the load cell are collected with a data acquisition
board (NI Multi-channel data acquisition module USB-6000).
The setup is controlled with a LabView programme that saves
the data for further processing and controls the position of the
platform.

Thanks to this experiment, it is possible to approximate at the
first order the stiffness of the i − th chamber as a function
of the internal pressure s.To do so, we have to transform the
force exerted by the tip Fx and the displacement of the tip ∆x
data into the bending stiffness Kbending and the compression
stiffness Kcompression, later used to model the stiffness of
the whole robot. The length of the segment l, the radius of
curvature of the segment r and the PCC curvature angle θ are
linked by l = rθ. Therefore, the kinematic relation between

the displacement of the tip and the bending angle θ is:

∆x = r(1− cos(θ)) =
l

θ
(1− cos(θ)) (1)

For the small displacements used in the experiment (θ ≈ 0),
this relation can be approximated with a McLaurin expansion
truncated at the second order, which brings to the result

∆x =
lθ

2!
(2)

We can then write the bending stiffness as:

Kbending =
M

θ
=

Fxl
2

2!∆x
(3)

where M represents the moment applied to the chamber and
θ the bending angle of the chamber. By performing a least
squares regression on the Fx

∆x we are hence able to find the
first order approximation of the stiffness-pressure relation as
a function of the internal pressure s:

Kbendingi
(s) = kp0 + g(si − p0) (4)

where kp0
is the stiffness at the atmosferic pressure p0

and g is the slope of the first order approximation of the
stiffness/pressure relation as in Figure 6.
Hence, using a structural model of slender beams, we can find
the relation between the bending and compression stiffness by
solving the system:{

Kcompression = 3EIc
l3

Kbending = EIxx
l

(5)

where E is the elastic modulus of the material, and Ic and
Ixx represents the inertia respect to the central and radial
axes respectively. Note that thanks to the pressure sensors
connected to the chamber, it is also possible to identify
external loads on the chamber. Indeed, when the internal
pressure deviates from the model by a statistically significant
amount, we can infer that it is due to an external pressure on
the robot. This phenomenon can be developed to equip the
robot of tactile-like sensing along the whole body
3) Electronic setup: Two Arduino Due microcontrollers are
used to control the H-bridges and to record encoders, IMUs
and pressure sensors data. The encoders and the pressure sen-
sors are connected to digital interrupts on the microcontroller
to allow continuous monitoring, while the IMUs data are
connected to the Arduinos via an i2c communication. A serial
protocol has been developed, to allow communication between
the control program running on the PC and the Arduinos. This
allows a demand position to be set for each motor. The PC,
then sets the direction and speed of the motor following a PID
control scheme so to move to the desired encoder position, as
described by the algorithm in Section V. Similarly, the IMUs
and pressure data are sent and postprocessed on the PC in
real time with the algorithms described in Section IV. A block
diagram of the electronic architecture is shown in Figure 7.
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Fig. 6: Pressure-stiffness relation as a function of 5 internal pressures. Left: force displacement curve over 5 experiments for
each pressure level, together with the least square regression. The slope of the curve represents the bending stiffness, increases
with the internal pressure. Right: The regression line as presented in Equation 4, where the data points are the stiffnesses for
each pressure level.

Fig. 7: System architecture of the electronics, showing the
connections between the key components and the flow of data
through the control system.

III. ROBOT KINEMATIC MODEL

As presented in [10], in cable driven robots, the tendon
action on the beam can be approximated as a constant
moment. If the assumption of constant moment is inserted
in the Euler Bernoulli equation, the result is a beam with
constant curvature. Note that this assumption is valid only
in a steady state condition. Indeed, when some power is
exchanged from the environment to the robot, this assumption
is not valid anymore and the soft robot will be eventually
deformed out of the Constant Curvature (CC) kinematic model
[11]. Nonetheless, this assumption has been demonstrated
to approximate accurately the behavior of many continuum
robots [12], [13], [14], [15], [16], [17]. We can then take
this hypothesis as a basis for a kinematic model with a
computationally treatable number of DOFs. Therefore, it is
reasonable to describe the robot as a series of three arcs
with constant curvature, i.e. by adopting a PCC model. For
each segment the arc of constant curvature can be univocally
defined by just three Lagrangian variables, as shown in Figure
8: the angle of circumference spanned by the segment θ, the

angle of the plane containing the arc φ, and arc length L.

As presented in [18], the full pose of the i− th segment can
be completely described by the rotation matrix Ri

i−1(θ, φ) and
translation mapping tii−1(θ, φ, L):

Ri
i−1 =

[
C2
φi

(Cθi − 1) + 1 SφiCφi(Cθi − 1) CφiSθi
SφiCφi(Cθi − 1) S2

φi
(Cθi − 1) + 1 SφiSθi

−CφiSθi −SφiSθi Cθi

]
(6)

tii−1 =
L

θ

[
Cφi(Cθi − 1) Sφi(Cθi − 1) Sθi

]T
(7)

with Cφi
, Cθi , Sφi

, Sθi being cos(φi), cos(θi), sin(φi), sin(θi)
respectively.

Fig. 8: Under the assumption of piecewise constant curvature,
each section of a soft robot can be defined by three parameters:
length L, curvature θ = k

L and angle of orientation of the plane
of bending φ . Image from [19].

Moreover, we also use the equivalent description of a
CC arc presented in [20] for pose reconstruction. In this
model, the coordinates φ and θ are reparametrized into
∆x,i,∆y,i ∈ R. Hence the rotation matrix can be written as
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Ri
i−1(∆x,i,∆y,i, si) = 1 +

∆2
x,i

∆2 ξ
∆x,i∆y,i

∆2 ξ −∆x,i

∆ sin (si∆i)
∆x,i∆y,i

∆2 ξ 1 +
∆2

y,i

∆2 ξ −∆y,i

∆ sin (si∆i)
∆x,i

∆ sin (si∆i)
∆y,i

∆ sin (si∆i) 1 + ξ

 (8)

and the position can be modeled by the vector:

tii−1(∆x,i,∆y,i, Li, si) =
Li
∆2
i

(1− cos (si∆i)) ∆x,i

(1− cos (si∆i)) ∆y,i

sin (si∆i) ∆i

 (9)

where ∆i =
√

∆2
x,i + ∆2

y,i and ξ = (1− cos (si∆i)). si ∈
[0, 1] is the local coordinate along the segment, with 0 referring
to the base, and 1 to the tip. In the following, both models are
used, as the first model allows an intuitive interpretation of the
deformations, which is pivotal for modeling the stiffnesses,
while the second model is free of the singularity in θ = 0
and is therefore more robust. It is then used in the pose
reconstruction algorithm.
In both of these Lagrangian parametrizations of the arcs, tii−1

and Ri
i−1 represent the rotation matrix and the translation

mapping the reference frame at the base of the i− th segment
to the one attached to its tip. The two can be combined in a
homogeneous transformation mapping from the frame at the
bottom of the segment to the frame at the top of the segment
as:

Ti
i−1 =

[
Ri
i−1 tii−1

[0 0 0] 1

]
(10)

Finally, as schematized in Figure 9, another advantage of the
PCC assumption is that the whole kinematics can be decom-
posed into two mappings [21]: a first mapping qPCC = m(h)
from actuator coordinates h,i.e. the length of the tendons to
configuration space parameters that describe CC arcs q and
a second mapping x = f(q) = f(m(h)) that maps the PCC
coordinates into Cartesian coordinates.

Fig. 9: the three spaces and mappings between them which de-
fine the kinematics of constant-curvature robots. The mapping
m(h) transforms actuator space variables h to configuration
space variables q. Next, the mapping f(q) takes these con-
figuration space variables to the task space, in this case, the
Cartesian space.

IV. POSE RECONSTRUCTION ALGORITHM

Here we propose an algorithm that allows the robot to re-
construct its pose when deformed by external forces thanks
to the IMUs embedded at the end of each segment. Since an
IMU is embedded in each platform, it is possible to use the
posture provided by a stack of Mahony filters [22] to extract
the global posture of each reference frame R̂i

i−1. Then the

relative orientation of two consecutive platforms is evaluated

as R̂i
i−1 =

(
R̂i−1

0

)−1

R̂i
0. Finally, the parameterization of

each segment is extracted by properly inverting the rotation
matrix defined in Equation (8) for si = 1. This is done by
evaluating the configuration of the segment as the solution of
the optimization problem

arg min
∆x,i,∆y,i∈R2

||Rii−1(∆x,i,∆y,i, 1)− R̂ii−1||2F, (11)

where || · ||F is the Frobenius norm, and Rii−1(∆x,i,∆y,i, 1)
is given by Equation (8). This is evaluated by starting from
the initial guess

∆x,i =
1

2

(R̂ii−1[3, 1]− R̂ii−1[1, 3]) arccos(R̂ii−1[3, 3])

sin(arccos(R̂ii−1[3, 3]))
,

∆y,i =
1

2

(R̂ii−1[3, 2]− R̂ii−1[2, 3]) arccos(R̂ii−1[3, 3])

sin(arccos(R̂ii−1[3, 3]))
,

(12)

where R̂ii−1[j, k] is the element of R̂ii−1 positioned at row j
and column k. Note that if the PCC hypothesis were perfectly
fulfilled, than Rii−1(∆x,i,∆y,i) = R̂ii−1 - i.e. this would be
the global minimum of Equation (11). Yet the real system
will likely have a non perfectly constant bending. Therefore,
a standard gradient descent method is used to locally refine the
guess. In this way the residual drift is tamed by the constraints
imposed by the kinematic model. Finally, full postures (i.e.
both orientation and position) of each point along the segment
can be retrieved by substituting back the parameterization into
Equations (8) and (9). A more through explanation of the
method can be found in our previous work [23].

V. STIFFNESS CONTROL ALGORITHM

With a soft robot, we would like to realize a desired Cartesian
stiffness at the end effector. To realize this behavior, we can
use the mechanically variable joint stiffness and - in case of
a redundant robot - the nullspace of the robot.
For a general robotic application it is most natural to specify
the desired stiffness behaviour of the robot in Cartesian coordi-
nates. The desired values would result from a task description
with respect to the ee. The user may specify a desired constant
stiffness matrix Kx = − δf

δx ∈ Rrxr as the relation between the
Cartesian wrench f and the Cartesian displacement x. Here,
r is the number of Cartesian DOF. On the other hand, the
robot will be able to adjust the stiffness KJ = − δτδq of its n
joints, where τ is the joint torque and q is the joint position. In
particular, we propose to model the joint stiffness matrix KJ

of the manipulator presented above by computing the Hessian
of the elastic potential

U =

n∑
i

[
1

2
kbendingθ

2
i +

1

2
kcompressionL

2
i ] (13)

Therefore KJ(kJ,q) is a function of the three values of
stiffness of the chamber

kJ(s) = [k1bending(s1), k2bending(s2), k3bending(s3)]T (14)

which can be remapped in terms of the internal pressures si.
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With this section we propose a novel algorithm2 that, given a
goal Cartesian coordinate xd ∈ Rr, and a desired Cartesian
stiffness matrix Kx ∈ Rrxr, finds the optimal joint position
qopt ∈ Rn and the joint stiffness matrix KJ ∈ Rnxn which
provides the best approximation of Kx under the constraints
xd = f(qopt) and lower and upper bounds on joint stiffness
and q. In particular, the algorithm is developed for redundant
robots, i.e. robots in which r > n, so to exploit the nullspace
N ∈ Rr−n of configurations that satisfy the constraint on the
end effector position.
First, in order to developed a Cartesian stiffness controller, it
is pivotal to define a relation between the Cartesian stiffness
and the joint space, i.e. a transformation Γ : KJ = Γ(Kx).
As presented in [24], the Γ mapping can be written as:

KJ = − δτ
δq

= −δ(J(q)
T
Kx∆x)

δq
= (15)

= J(q)
T
KxJ(q)− δJ(q)T

δq
Kx∆x (16)

where J represents the manipulator Jacobian J(q) = δf(q)
δq ,

where f(q) is the forward kinematics mapping. ∆x = xd−x
is the Cartesian displacement between the desired and the
actual position. If the stiffness is computed around the equi-
librium position (i.e. ∆x = 0), Equation 16 reduces to:

KJ = J(q)TKxJ(q) (17)

In this work, we will focus on the reduced form in Equation
17 as we desire to find the optimal pose that in equilibrium
satisfies the constraint on the end effector position.
Under this simplification, we are able to solve the inverse
stiffness problem Γ−1, i.e. computing the resulting Cartesian
stiffness matrix Kx = Γ−1KJ for a given KJ by:

Kx = J(q)+TKJJ(q)+ (18)

where + denotes the pseudoinverse operator. However, as
computing J(q)+ can be analytically untreatable and computa-
tionally heavy, the inverse problem is better solved in terms of
compliances through the relations Cx = Kx

−1, CJ = KJ
−1

[25], i.e.
Cx = J(q)CJJ(q)T (19)

As presented in [6], it is highly unprobable that the desired
Cartesian stiffness can be achieved as a perfect solution due to
the non surjective mapping from joint stiffnesses to Cartesian
stiffnesses. Therefore we can search for a good approximation
of it via the nonconvex optimization problem:

min ||Cxdesired − J(q)CJ(k)J(q)T ||Fr (20)
s.t. xdesired − f(q) = 0 (21)

lbound ≤ q ≤ ubound (22)
lbound ≤ kJ ≤ ubound (23)

where || · ||Fe is the Frobenius norm.

However, it is possible to notice that finding the optimal
stiffness for a fixed configuration qfix is a convex problem in

the Riemannian manifold. Indeed, the optimal stiffness value
for a given pose can be found by solving the more efficient
convex optimization problem of for the compliance vector of
the chambers cJ(s) i.e. a vector created from the element-
wise inversion of kJ(s), at the extremes of the cost function
||Cxdesired − J(q)CJ(kJ)J(~q)T ||Fr i.e.

min Cq
TH(q,Cxdesired)CJ + b(q,Cxdesired)TCq (24)

s.t. lbound ≤ ~kJ ≤ ubound (25)

where

H =
δ2

δcJ2
|Cx − JCJJT |Fr (26)

b =
δ

δcJ
|Cx − JCJJT |Fr, cJ=0 (27)

This extremely efficient joint stiffness optimization step can
now be used as a sub-procedure in the following, unfortunately
much more complicated, non convex optimization step for the
nullspace of the robot.

In order to move efficiently in the manifold defined by
xdesired − f(q) = 0, i.e. the nullspace N of the robot, it is
important to develop a tool to project a random configuration
on the manifold in an efficient manner. This can be achieved
through Algorithm 1, which using a gradient descent with
the update ∆qi+1 = −JT (JJT )−1∆x(qi) projects a random
configuration q0 into a configuration q ∈ N . Note that in
[26], it is proved that the projection operator covers the whole
constraint manifold. That is, for any configuration on the
manifold, there exist configurations within the ambient space
that will be projected onto the configuration.

Algorithm 1 Projection on manifold
while true do

∆x← Displacement From Constraint(q)
if |∆x|≤ε then

return q
end
J← EvaluateJacobian (q)
∆qerror← JT (JJT )−1∆x
q ← (q −∆qerror)

end

Once the initial random position is projected on the manifold
N it is possible to create a local orthonormal basis Φ(q) for the
tangent space to the manifold, i.e. reconstructing the Atlas of
the manifold. From [27], an orthonormal basis can be created
by finding a solution to:(

J(q)

Φ(q)
T

)
Φ(q) =

(
0
I

)
(28)

that is finding the kernel of the Jacobian. Hence a random point
qu can be computed starting from the chart Cq = (q,Φ(q))
as:

qu = q + Φ(q)uq (29)

2∗: for the interested reader, please refer to the ”https://github.com/fstella97/SoftManipulator” repository for full the implementation of the algorithm in
Matlab



8

Note that qu will be close to the manifold but still must
be projected to N . Hence qu is projected on the manifold
N ortoghonally to the tangent space of CJ in which it is
embedded. The projected configuration qm is found by solving
the system: {

xdesired − f(qm) = 0

Φ(q)
T

(qm − q) = 0
(30)

with a gradient descent method. In Algorithm 2, the following
equations are used in the descent:

Au(qm) =

(
J(qm)

Φ(q)
T

)
,

bu(qm) =

(
xdesired − f(qm)

Φ(q)
T

(qm − qu)

)

Algorithm 2 Perpendicular Projection algorithm
Input: qu
Output: qm

qm ← qu
b← bu(qm)
while |b|2 > ε do

qm ← qm −Au(qm)−1b
b← bu(qm)
if |b|2 ≤ ε then

return qm
end

end

By iterating Algorithm 2 it is possible to walk on the manifold
i.e. moving from adjacent configurations which satisfy the
constrain on the end effector position.

Fig. 11: best performing poses and stiffnesses over the opti-
mization, where the color of the chamber indicate the stiff-
nesses kJ . Thanks to the optimization procedure it is possible
to select the configuration and and joint stiffness [q, s] so that
the modelled stiffness, represented as a blue ellipsoid minimize
the error with respect to the desired stiffness, displayed as a
green ellipsoid. In the figure it is possible to see how the
optimization algorithm progressively converges toward best
performing poses.

Given Algorithms 1 and 2, we propose to optimize on the man-
ifold by developing a genetic algorithm that moves only on the
nullspace N . Therefore we implemented a genetic algorithm
in which populations generated over the whole joint space
are projected to N through Algorithm 1. Hence, for each of
these configurations ∈ N , it is possible to efficiently compute
the optimal stiffness through the convex optimization problem

described in Equation 24. Finally, the performance of each
configuration is evaluated as the Frobenius norm between the
desired stiffness and the resulting stiffness ellipsoid. Hence,
in the next generation, new individuals are added through
Algorithm 1, in order to better cover N and the zones with
the best performing configurations are further explored by
generating children through Algorithm 2.
In Figure 12 it is possible to notice that the population, on
average, converges toward better performing individuals over
the computation. Finally, the pose with the minimal cost on
the stiffness difference is chosen as presented in Figure 11.
Finally the desired pose is translated into motor coordinates
through the mapping m−1(q) and the desired stiffness in the
chambers is translated into the desired internal pressure s with
Equation 4. Each motor is controlled to the desired position
in closed loop with a PID controller based on the encoder
readings. The chambers are inflated with a external pressure
source based on the optimal pressure state.

Fig. 12: convergence of the genetic algorithm over the genera-
tions. The best performer is reported in black, while the mean
fitness value of the whole population at the i− th generation
is shown in blue.

VI. VALIDATION OF THE ALGORITHM

A. Analytical validation
In [25], the concept of stiffability is introduced as a tool to
understand the effects of the optimization parameters on the
reachable stiffness for varying positions in the workspace. The
high dimensionality (6 DOF) of the robotic arm in the 3d
Cartesian space does not allow for an intuitive visualization.
However, given the symmetry about the plane defined by φ,
it is possible to capture the whole Cartesian workspace just
by looking at one plane. Moreover, we represent here each
stiffness matrix as an ellipsoid, with the principal axes being
the eigenvectors of the K matrix. We aim to quantify the
performance of the achieved stiffness optimized via Equation
20. To be able to compare results with different stiffness
amplitudes and orientations, we use the normalized Forbenius
norm

Ek =
||Kdesired −Kq||Fr

||Kdesired||Fr
(31)
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The normalization provides the relative deviation with respect
to the desired stiffness value. A value of Ek = 0 means
perfect tracking of the desired stiffness value. A value of
Ek = 1 means errors of the magnitude of the desired stiffness
values arise. Firstly, in Figure 13, it is possible to notice
that, with the optimization method described in Section V,
which combines the VSM and Nullspace optimization, we
achieve good performances over the workspace (mean(Ek) =
0.33, std(EK) = 0.46). Moreover, it is possible to evaluate
the effects of the VSM and of the nullspace search on the
performance individually. Interestingly, when optimizing only
between the configurations ∈ N , we perform better than if we
optimize only the VSM for fixed configurations. Moreover, if
we optimize only on the configurations ∈ N the optimization
performance is worst in zones in which the nullspace is
smaller, i.e. the reachability map [28], shown in Figure 14
and stiffability map are positively correlated.

B. Experimental evaluation

An experiment is performed to merge the analytical results
from the optimization with the physical performance of the
robot. Given the solution of the algorithm described in section
V The stiffness ellipsoid of the end effector is evaluated
perturbing the soft robot with the robotic manipulator Franka
Emika Panda [29] along 6 directions, shown in Figure 17.
During the experiment length o, both the displacement of the
end effector ∆x ∈ R3×o and the reaction forces F ∈ R3×o

are recorded. Hence, the experimental ellipsoid matrix Kexp ∈
R3×3 evaluated by minimizing the least square error as:

KExperiment = F∆x+ (32)

Over 8 experiments, the end-effector stiffness well match
the the desired stiffness ellipsoid, with an average error of
Ek = 0.43.

Fig. 13: stiffability map for different desired stiffness orientations and optimization
criteria. Left: the result of the optimization with both variable stiffness and
nullspace freedom. Center: the error heatmap in which only nullspace optimiza-
tion is considered, and the stiffness of each chamber is kept constant. Right: the
heatmap in which only nullspace optimization is considered, and the stiffness of
each chamber is kept constant.

Fig. 14: Reachability map. Thanks to the
reachability map we can have a empirical
measure of the amplitude of the nullspace
inside the workspace. The red rectangle high-
light the section of the workspace used for the
optimization evaluation

C. Task-based validation

Thanks to the algorithm presented in Section V, the robot is
able to complete tasks in which the directional control of the
stiffness ellipsoid is crucial, such as inserting a peg in the hole.
Indeed, in assembly tasks that require a tight fitting, the robot
will have to be stiff in the direction of the hole, so to be able to
push the peg inside, and compliant in the perpendicular plane,
so to adjust for misalignments. Therefore we can command the
robot to execute a peg insertion just by providing the position
of the hole and the desired direction as an input. In Figure 16,
it is possible to see the convergence the robot toward the hole
over two scenarios. Interestingly, the control scheme has no
constraints on the end effector orientation. Moreover, thanks
to the embedded softness the robot is able to comply with
unmodeled obstacles, such as the wall in Figure 16.

Fig. 17: experiment representation: the soft manipulator in
qopt, kopt is perturbed along the x, y and z axes by a second
manipulator, attached at the end effector. During the experi-
ment the position and reaction force of the manipulator are
recorded for later postprocessing.



10

Fig. 15: Top: Images of the real experiments. Center: qopt configuration and the optimal stiffness per chamber resulting
from the optimization. Bottom: the respective the Goal, Optimal and Experimental stiffness ellipsoid are shown, together
with the Ek metric. The robot is able to well approximate the desired stiffness at the end effector.

Fig. 16: Thanks to accurate control the robot was able to complete insert a peg in the hole just by knowing the position
of the hole and the desired stiffness ellipsoid. Note than no constraints on the end-effector orientation have been given.

VII. CONCLUSION

The work shows a general algorithm for Cartesian stiffness
control on model-based soft robots. The algorithm has been
validated on a carefully modeled soft manipulator equipped
with a pressure based variable stiffness mechanism. We were
able to obtain the desired Cartesian stiffness ellipsoid at
the end effector with constant accuracy over the workspace.
Moreover, with a computational analysis of the algorithm,
the achievable theoretical possible accuracy on the stiffness
over the workspace has been evaluated. Finally, analytical
and experimental results show that being able to exploit

the redundancy of the robot and its own structural stiffness,
i.e. the possibility of the manipulator to adjust its pose, is
more efficient than equipping soft manipulators with variable
stiffness mechanisms in order to achieve directional stiffness
control. The presented methodology expands soft robot capa-
bilities to tasks in which an accurate control on the stiffness
is central, such as assembly, polishing tasks, or unknown
environment exploration. Moreover, this work presents a step
forward toward bringing well known control methods for
human-machine interaction, such as impedance control, to soft
robotics.
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[26] Z. Kingston, M. Moll, and L. E. Kavraki, “Exploring implicit spaces
for constrained sampling-based planning,” The International Journal of
Robotics Research, vol. 38, no. 10-11, pp. 1151–1178, 2019.

[27] W. C. Rheinboldt, “Manpak: A set of algorithms for computations on
implicitly defined manifolds,” Computers & Mathematics with Applica-
tions, vol. 32, no. 12, pp. 15–28, 1996.

[28] F. Zacharias, C. Borst, and G. Hirzinger, “Capturing robot workspace
structure: representing robot capabilities,” in 2007 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems. Ieee, 2007, pp.
3229–3236.

[29] F. Emika, “Panda,” tech. rep, 2018.


	Introduction
	Functional description of the robot
	Hardware design
	Connecting plates and tendon actuation
	Chambers and pneumatic control
	Electronic setup


	Robot kinematic model
	Pose reconstruction algorithm
	Stiffness Control algorithm
	Validation of the algorithm
	Analytical validation
	Experimental evaluation
	Task-based validation

	Conclusion
	References

