
Biomechanical Engineering (BmechE)

Automated Mechanism Design
Introducing Reduced Operator-Space Evolution

J.A. Westra

M
as

te
ro

fS
cie

nc
e

Th
es

is

Automated Mechanism Design
Introducing Reduced Operator-Space Evolution

Master of Science Thesis

J.A. Westra

May 24, 2021

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

Copyright © Biomechanical Engineering (BmechE)
All rights reserved.

Abstract

Previous research has shown automated robotic mechanism design to be both deceptive (prone
to local minima) and rife with linkage problems (having highly interdependent parameters).
This results in a barrier to optimization that is unable to be breached by simply applying more
iterations and computational power.

The research also indicates that a graph structure model of the robot in combination with
an evolutionary algorithm yields useful robotic mechanisms for a limited set of simple problems.
This thesis expands on this pre-existing representation by introducing an indirect model that
can be used to include both controllers, motors and other new elements in the representation.

Besides this extension of the mechanism model, a framework for the automated design
optimization task itself is introduced. This thesis shows an equivalence between an operator
based representation of the mechanisms and the graph based representation. These operators
represent modifications on the mechanism structure and/or parameters. By recognizing the
operators as paths in this model a graph of the search space itself can be constructed. In this
graph the vertices are mechanisms and the edges are operators.

Using the the operator-mechanism equivalence it is shown that designing an optimization
algorithm is equivalent to (1) choosing how vertices in the space are grouped together. (2)
choosing how the vertices of this search space are connected beforehand by either implicitly or
explicitly picking operators and projecting onto their corresponding domain. (3) picking which
of the connected paths to traverse based on accumulated information at runtime.

This represents a framework that allows the accumulation of knowledge about optimization
algorithms acting within it by defining a set of meta-heuristics. With these it is possible to
make informed choices to build better optimization algorithms.

To show the effectiveness of the framework a novel quality diversity algorithm is devel-
oped, Reduced Operator-Space Evolution (ROSE), which uses the insights mentioned above
to generate a large diversity of well performing mechanisms simultaneously on a representative
pick-and-place task. This confirms the theoretical results about the effect of the operator-
mechanism equivalence and locality properties. A new step forward to breaching the barrier
to optimization.

Alongside this thesis a performant simulation and analysis Python library for mechanisms
was developed called PyMechs. The library visualizes the framework and handles mechanism
simulation and evaluation, as well as implements ROSE.

It is available at https://github.com/kooswestra/pymechs.

J.A. Westra Master of Science Thesis

Table of Contents

1 Introduction 4

1-1 Embodiment . 4

1-2 Computational design . 6

1-3 Linkage, Deception & Redundancy . 8

1-3-1 Mapping issues to computational design functions 9

1-4 Representative practical problem . 11

1-5 Research goals . 12

2 Prior Art 13

2-1 The computational design equation . 13

2-2 Evolutionary Algorithms . 14

2-2-1 The canonical evolutionary algorithm 14

2-2-2 Schema theorem . 14

2-2-3 Deception . 16

2-2-4 linkage problems . 17

2-2-5 Novelty Search . 17

2-2-6 Quality Diversity . 17

2-3 Encoding Mechanisms . 18

2-3-1 Modeling mechanisms . 18

2-3-2 Graph representation of mechanisms . 18

2-4 Related graph properties . 20

2-4-1 Graph isomorphism . 20

2-4-2 Graph connectivity . 21

2-5 Conclusion . 21

3 Mechanism model Extensions 22

3-1 Additional elements . 22

3-1-1 The end-effector . 22

3-1-2 Motors . 23

3-1-3 Controllers . 23

3-2 Parameter map . 25

3-2-1 Parameter List . 25

3-2-2 Parameter function . 25

Master of Science Thesis J.A. Westra

iv TABLE OF CONTENTS

3-2-3 Parameter invariants . 26

3-2-4 Constraints and correlations . 27

3-2-5 Effect on the evolutionary algorithm . 27

3-3 Representation example . 28

3-4 Conclusion . 29

4 ROSE: Reduced Operator Space Evolution 30

4-1 Introduction . 30

4-1-1 Fitness function . 30

4-1-2 Operators . 31

4-1-3 Operator representation . 32

4-1-4 Complexity measure . 33

4-1-5 Distance metric . 35

4-2 Dual representation using operators . 36

4-3 Mechanism space . 37

4-3-1 Definition . 37

4-3-2 Structural representation . 38

4-3-3 Operator space projection . 40

4-4 Reduced Operator Space Evolution (ROSE) . 41

4-4-1 Motivation . 41

4-4-2 Description . 43

4-4-3 Operator generator function . 43

4-4-4 Relation to deception, linkage and redundancy 44

4-5 Conclusion . 44

5 PyMechs: The Mechanism Library 45

5-1 Design goals . 46

5-2 Object-based representation . 46

5-2-1 DNA . 46

5-2-2 Mechanisms . 46

5-2-3 Operators . 47

5-2-4 Controllers . 47

5-2-5 Objectives . 48

5-2-6 Search graph . 48

5-3 Physics engine . 48

5-3-1 Assembling the equations of motion . 51

5-3-2 Numerical solver . 53

5-3-3 Numerical stability . 54

5-4 Additional functionality . 54

5-4-1 Sanity checks . 54

5-4-2 API . 55

5-4-3 Storage . 55

5-5 Program flow . 55

5-6 A few notes on computational optimization . 57

5-7 Conclusion . 57

J.A. Westra Master of Science Thesis

TABLE OF CONTENTS v

6 Results 58
6-1 Algorithm and simulator evaluation . 58

6-1-1 Objectives . 58
6-1-2 Methods . 58

6-1-2-1 Mechanism simulation benchmark 58
6-1-2-2 Pick-and-place task . 59
6-1-2-3 Algorithm seed . 60
6-1-2-4 ROSE operator set . 61

6-2 Simulator performance . 63
6-3 ROSE meta-heuristics . 63

6-3-1 Solution diversity . 67
6-3-2 Multi-objective analysis . 68

6-4 Comparison to prior art . 70

7 Discussion 73
7-1 Summary . 73
7-2 Results . 74
7-3 The three problems . 75

7-3-1 Linkage problems . 75
7-3-2 Deception . 75
7-3-3 Redundancy . 75

7-4 Drawbacks . 76
7-5 Further research suggestions . 76

7-5-1 Operator generation . 76
7-5-2 Parameter correlations and hyper-parameters 77
7-5-3 Controller generation . 77
7-5-4 Other applications . 78

7-6 Reflection . 78

8 Conclusion 79

List of Symbols 82

A Dynamics 83
A-1 Hinge example . 83
A-2 Polygonal elements . 84

A-2-1 Construction and ordering . 84
A-2-2 Center of mass . 85
A-2-3 Moment of inertia . 85

Bibliography 87

Master of Science Thesis J.A. Westra

Preface

This document is part of the graduation project for the master BioMechanical Design (BMD) at
the Delft University of Technology (TU Delft) in The Netherlands. The choice to do a project on
evolutionary robotics requires some explanation.

I have always been interested in robotics. Having been inspired, like so many others, by the
possibilities presented in literature, movies and art. Robotics lies on the crossroads between com-
puters and mechanics, artificial intelligence and motion control. Making it a true multidisciplinary
engineering field. It is the interface between computer software and the real, physical world.

During my studies I encountered the work of Michael Schmidt and Hod Lipson where through
the application of genetic algorithms they were able to automatically discover and describe natural
laws. The fact that it was possible to have computers generate such creative results inspired me,
leading me down the rabbithole of evolutionary computation and computational design.

I knew then that I wanted to do my thesis on an application of artificial intelligence to physical
systems. Through discussions with friends I came across dr. ir. W.J. Wolfslag, who suggested a
continuation of the work of ir. P.R. Kuppens on evolutionary robot design. I picked up this chance
to combine my two core interests immediately. The result is the document you see before you now.

J.A. Westra
Delft, University of Technology,
May 24, 2021

Master of Science Thesis J.A. Westra

J.A. Westra Master of Science Thesis

Master of Science Thesis J.A. Westra

Chapter 1

Introduction

1-1 Embodiment

Robot design is a complex task consisting of many different subproblems and spanning multiple
engineering fields. To make this complex, multi-disciplinary task manageable to engineers the
problem is split into different tasks and each element considered separately, often even by
different teams. This results in robots where each subsystem, such as the mechanical structure,
control loop, electronics, motors, high-level planning and more is in principle designed and
acting independently.

Yet in the natural world which inspires robotics there is no such separation; each sys-
tem evolved to act upon others in advantageous ways. This synergy allows a large reduction
in both energy usage and system complexity; the mechanical and physical structures allow
pre-computation of control and sensory information, natural stability properties reduce con-
trol effort, mechanical leverage effects reduce the required muscle force, and many more such
advantageous relations. Such synergy is known as embodiment and is ubiquitous in the natu-
ral world [1–3]. A schematic of embodiment is shown in Figure 1.1. Embodiment effectively
reduces muscular and cognitive load.

A good example is the data structuring morphology in the eye of a fly. The front of the
eye has more facets than the side [4]. This irregularity naturally compensates for the effect of
motion parallax: the effect that objects to the front appear to move slower than objects on the
side. The placement of more facets to the front results in a similar overall signal amplitude for
the same velocity as on the side: the natural layout of the eye provides the compensation [5].

The properties of embodiment would be a great benefit to the artificial world of robotics as
well. With possible advantages such as lower energy usage, less material cost, increased stability
and lower motor torques it comes as no surprise there is active research into discovering and
consequently leveraging such synergy between systems. For example by exploiting natural
dynamics to achieve lower energy usage of a robot arm [6], using natural kinematic properties
to create walking robots [7, 8] and many other applications such as e.g. [3, 9–12].

Contrary to the usual design methods designing embodiment requires an “all at once ap-
proach” of the relevant systems, which is more costly in terms of engineering time and resources

J.A. Westra Master of Science Thesis

1-1 Embodiment 5

Figure 1.1: A schematic of embodiment in a biological system. The mechanical system acts as
a pre-processor of sensory information through internal physical stimulation. Figure from [2].

than traditional robot design. Any synergy put into the design relies to a large part on the
engineer’s intuition and deeper understanding of all the systems involved. It quickly becomes
overwhelmingly complex and time consuming as every system involved needs to be consid-
ered and understood simultaneously. This limits the current level of embodiment that can be
obtained.

To create robots that leverage embodiment reliably, a process to discover and apply these
synergies is required. If we can offload the need for a creative “eureka moment” the cognitive
load on engineers is reduced, the complexity of the problem becomes manageable again.

We can achieve this by providing automated design tools. Using the continuously increasing
processor power to automatically discover novel synergy, significant improvements to robotic
systems could be achieved while simultaneously reducing the engineering effort required to do
so. Great success has been had in various fronts using this approach, including deep learning,
circuit design, controller synthesis, as well as many other fields [13].

Automated design routines often find designs that are nowhere near what a human designer
would think of, yet are far more effective. A good example of this is the cantilever truss
shown in Figure 1.2. An irregular design found by an evolutionary algorithm based automated
design routine managed to be two hundred times more effective in reducing vibrations than a
traditional design [14].

Yet the performance of robot automated robot design algorithms has thus far been relatively
stagnant. Despite a significant increase of available processing power which sparked great
success in for example deep learning [15], automated robot design has yet to make great strides;
it is clear that significant improvements of the performance of existing algorithms can’t be
achieved by simply throwing more processing power at the problem due to the poorly behaved,
infinite and discontinuous search space [16]. This suggests a different approach is necessary,
which invites a more detailed look at the automated design problem.

Master of Science Thesis J.A. Westra

6 Introduction

22 2 Evolutionary Computing: The Origins

satellite’s body with the dish needed for communication. It is essential that
this boom is stable, in particular vibration resistant, as there is no air in
space that would damp vibrations that could break the whole construction.
Keane et al. [245] optimised this construction using an evolutionary algorithm.
The resulting structure is 20,000% (!) better than traditional shapes, but
for humans it looks very strange: it exhibits no symmetry, and there is no
intuitive design logic visible (Fig. 2.4). The final design looks pretty much

Fig. 2.4. The initial, regular design of the 3D boom (left) and the final design found
by a genetic algorithm (right)

like a random drawing, and the crucial thing is this: it is a random drawing,
drawn without intelligence, but evolving through a number of consecutive
generations of improving solutions. This illustrates the power of evolution
as a designer: it is not limited by conventions, aesthetic considerations, or
ungrounded preferences for symmetry. On the contrary, it is purely driven
by quality, and thereby it can come to solutions that lie outside of the scope
of human thinking, with its implicit and unconscious limitations. It is worth
mentioning that evolutionary design often goes hand-in-hand with reverse
engineering. In particular, once a provably superior solution is evolved, it can
be analysed and explained through the eyes of traditional engineering. This
can lead to generalisable knowledge, i.e., the formulation of new laws, theories,
or design principles applicable to a variety of other problems of similar type.3

Modelling tasks typically occur in data-rich environments. A frequently
encountered situation is the presence of many examples of a certain event or
phenomenon without a formal description. For instance, a bank may have one
million records (profiles) of clients containing their sociogeographical data,
financial overviews of their mortgages, loans, and insurances, details of their
card usage, and so forth. Certainly, the bank also has information about client

3 In the case of the satellite dish boom, it is exactly the asymmetric character that
works so well. Namely, vibrations are waves that traverse the boom along the
rungs. If the rungs are of different lengths then these waves meet in a different
phase and cancel each other. This small theory sounds trivial, but it took the
asymmetric evolved solution to come to it.

Figure 1.2: A cantilever truss for use in space, the goal was to design a shape that would min-
imize vibration transfer, while maintaining integrity and strength. On the left is a traditional
design, on the right is a solution found by an automated design algorithm. Its highly irregular
shape is two hundred times more effective at reducing vibrations than the traditional one.
Image from [14].

1-2 Computational design

A design task can be thought of as a search through the space of all possible designs for a design
that optimally satisfies design requirements such as effectiveness, cost and aesthetics. Engineers
are implicitly doing a form optimization when they are creating and refining a design, even if
they haven’t made the actual parameters, goals and constraints explicit. By reasoning about
function, calculating fitting parameter values and similar tasks they are exploring the space of
possible designs for a best fit. It follows that, given a design task with sufficiently quantifiable
system parameters and requirements, a design task can be modeled as an optimization problem
[17].

The general design space is infinite, reflecting that any design is possible. To make the
problems tractable we must bound the problem by parametrization, which imposes a mod-
elling structure. A successful parametrization is a model that breaks the design problem down
to fundamental elements, while ignoring superfluous details. Clearly, designing a model and
parametrization that is aligned with the problem is important. Extending the model to be
more general is likely to yield a better optimum, but that comes with the trade-off that the
resulting optimization problem becomes harder to solve [18].

The ideal models for the system represent the Pareto front of complexity and descriptiveness
for the problem they are applied to, a front of optimal trade-off between the two. Good models
for the problem represent approximations of these unknown “truly optimal” ideal models. Fig-
ure 1.3 visualizes what this means in a concrete sense: approximating the circles using a model
that only admits squares uses a lot more parameters than strictly necessary while introducing
model error. This results in high complexity with comparatively low descriptiveness. If a circle
model is adopted an obviously much less extensive description is required that simultaneously
achieves better accuracy.

In this trivial case the truly optimal model is the description of a circle but in general such
models not so easy to find. Note that when using a circle description squares can no longer
be well described. Trying to account for this by being more general and modeling both circles
and squares simultaneously results in an optimization problem that is harder to solve instead;

J.A. Westra Master of Science Thesis

1-2 Computational design 7

Figure 1.3: Using squares as a model parametrization for circular shapes is poorly aligned:
infinitely many squares are required to fill a single circle. When using a circle model instead
this system goes from infinite parameters to only three per circle: (radius r, x and y position
of the center).

the no free lunch theorem in action [18].

We can identify three necessary components to cast the design problem as an optimization
problem:

Model: A model parametrization of the candidate designs is required. The model needs to
be as aligned with the problem as possible to reduce the amount of free parameters
and thus complexity of the optimization problem while simultaneously capturing
as much of the design as possible. A good representation shapes the search space
such that a good solution becomes easier to find. The model ideally encapsulates
tangible design choices.

Objective: The design requirements need to be quantified in an objective function, a mathe-
matical measure which directly relates the degree of performance of a design with
respect to the requirements to a numerical (fitness) score.

Solver: A solver is required to find the optimal design. The solver is a routine that explores
the design space admitted by the model parametrization for an optimal solution
on the objective. The type of solver that is effective is highly dependent on the
relation between the model and the objective.

The combination of the representation and objective function fundamentally shape the search
space of the problem. The shape of the search space in turn has a very large role in the quality
of the designs that can be automatically obtained. In general there is no explicit relation known
between the parameters and the performance on the objective function, requiring a simulation,
and thus an optimization method that can deal with the fact that no explicit relation and
gradient is known. The usual result is a black box optimization problem and compatible solver1.

1Although an explicit gradient and solver can be available in some cases, notably when designing neural
networks backpropagation is one such solution.

Master of Science Thesis J.A. Westra

8 Introduction

Evolutionary algorithms are well suited to solving the kinds of optimization problems that
arise when applying automated design. Usually the model used for the design has a com-
bination of discrete (structure) and continuous (parameters) elements: it is a mixed-integer
optimization problem. The mechanisms in particular are part of that group, as the structure of
the mechanism is discrete (e.g. the number of links and the way they are connected) while the
parameters are numeric (e.g. the positions, masses, spring constants). The objective function
for complex problems also tends to be multi-modal: it has lots of local minima. The stochastic
element of evolutionary algorithms allow them to search these local minima to find a better
solution, while the gradient-free approach of evolutionary algorithms allow them to deal with
the discrete and continuous parameters simultaneously.

1-3 Linkage, Deception & Redundancy

It seems at first glance that the problem is easily solved using the automated design formula:
develop a model for robots, model the objective and solve the resulting optimization problem
using an evolutionary algorithm. Yet this answer and many variations on it has been tried
before [19–26] and in practice the results have been limited, especially when active control
comes into the mix [27]. From literature we can identify three fundamental problems that
automated robot and mechanism design systems run into:

Linkage Evolutionary algorithms naturally require that sub-solutions can be found that rep-
resent parts of the final solution, i.e. each building block has to have a consistent
impact on the objective by itself [28]. However, when studying the mechanism
representation structure it is clear that combining building blocks generates an en-
tirely new mechanism with completely different behavior, and thus fitness, than the
parents as shown in Figure 1.5. When applying a controller this problem becomes
even more pronounced: as shown in Figure 1.4 the controller is only able to act
through the mechanism. This indirection creates a linkage between the controller
and mechanism. As a result the mechanism elements can fundamentally not be
considered independently during optimization [27,29].

Deception The search space has many local minima: it is deceptive, which means that it is not
possible to reach the objective by making incremental improvements with respect
to the objective [30].

Redundancy The search space has many mechanisms that have a different representation yet
are functionally identical [19], resulting in large amounts of redundancy and cor-
responding wasted evaluations leading to large computational inefficiency in the
exploration of the design space by the solver.

The linkage and deception problems have proven to be highly resistant to simply throwing
more processing power at the problem [16]. Yet solving them is paramount to generate better
automated designs and eventually reach embodiment for robots.

J.A. Westra Master of Science Thesis

1-3 Linkage, Deception & Redundancy 9

Control

DNA Morphology Fitness

1

Figure 1.4: The natural structure of a robot allows the controller to only influence the fitness
through the mechanism structure.Note that the DNA can also have a direct influence on the
fitness through a complexity and/or diversity score.

24 Robot Genome

[
I 2 xO yO xI yI L0 k m1 xm1 ym1 m2 xm2 ym2

]T
(3-11)

where I is the incidence number, 2 is the edge-label for springs, then we add Sj from equation
3-6 and then MT

i from equation 3-4 for each mass. A column that contains hinges looks
slightly different:

[
I 1 xh yh 0 0 0 0 m1 xm1 ym1 m2 xm2 ym2

]T
(3-12)

where I is the incidence number, 1 is the edge-label for hinges, then Hj from equation 3-5 is
added along with four zeros. The zeros are added to make the length equal to columns with
springs. After the zeros we add mass data again.

Remember that different edges can have ends at the same vertex. In this case multiple
data columns will contain the same mass data. This is no problem as long as these multiple
instances are identical. However, when we apply crossover, data from two different individuals
come together. Therefore, these multiple instances will generally be different. This is solved
by taking the average for each mass.

We are now able to apply crossover at mechanisms; we are able to sexually reproduce two
mechanisms. An example with conveniently chosen parameters, corresponding to figure 3-11,
is shown in figure 3-12.

Figure 3-12: Crossover on the level of mechanisms.

3-3-1 Implementation

An efficient implementation of the crossover procedure described in section 3-3 requires an
efficient way to compute incidence numbers. That is, we need a short-cut to assign a unique
number to a vertex coupling. It turns out that the incidence numbers I can be computed
with the closed form function:

I(v1, v2) =
(

v1 − 1
2

)
+ v2 =

v1−2∑

i=1
i

+ v2 s.t. v1 > v2 (3-13)

where v1 and v2 are the vertex numbers as shown in figure 3-10. To get the vertex numbers
v1 and v2 from the incidence number I no closed form function can be used. We will have

P.R. Kuppens Master of Science Thesis

Figure 1.5: Crossover creates mechanisms that are significantly different in behavior from
either of their parents. Image from [19].

1-3-1 Mapping issues to computational design functions

As automated mechanism design is a complex problem it is not immediately clear how these
three issues arise and relate to the different elements of automated mechanism design. To
this end we can break automated mechanism down into manageable subfunctions and pinpoint
exactly where, what problem occurs and why. We can map the three issues described by
previous research to different steps in this breakdown. This is illustrated in Figure 1.6.

Master of Science Thesis J.A. Westra

10 Introduction

Automated Mechanism
Design

Evaluation

Optimization
Algorithm

Mathematical
Representation

Quantification of
Objective

Simulation of
Mechanisms

Sampling/Mutation
strategy

Definition of search
space

Definition of design
space

Uniqueness

Performance issues Lack of specificity, large
nullspace of objective

Lack of effective search
space bounding

Issues of premature
convergence by lack of

exploration

High redundancy on design
space

Lack of effective functional
design space bounding

Linkage problems Deception

Redundancy

The sampling/mutation
strategy and/or

representation is not
effectively matched to the
functionality of the designs

The sampling/mutation
strategy is not effectively
matched to the objective

function

High redundancy leads to
costly evaluation time

being wasted

Figure 1.6: The breakdown of automated mechanism design as based on the computational
design method. The breakdown indicates the areas of issue dealt with by this thesis as the
white blocks. It is also indicated how these areas relate to the three known issues. Note that
for clarity other subfunctions that are not directly treated are not shown.

As seen in the figure the three issues relate to different elements of the automated mechanism
design recipe:

Linkage Linkage problems are coupled to the definition of the design space and sampling
and/or mutation strategy of the optimization algorithm. The representation is not
matched to the actual functionality of the design that is represented which means
that the individual building blocks of a design are highly coupled with respect to the
overall functionality of the design. This requires an investigation into the mutation
strategy of the evolutionary algorithm and the design space of the representation.
This will be treated in Chapters 3 and 4 leading to the introduction of operator-
representation duality and the ROSE algorithm which decouples the definition of

J.A. Westra Master of Science Thesis

1-4 Representative practical problem 11

the design space from the sampling/mutation strategy.

Deception Deception is coupled to the sampling and/or mutation strategy and the quantifi-
cation of the objective, if the sampling strategy is ineffective for the shape of the
objective function the optimization strategy will be ineffective. For example having
a gradient descent strategy on an objective function with many local minima. This
requires an investigation into the quantification of the objective function and again
the mutation strategy. This leads to the definition of the parameter mapping func-
tion, parameter invariants and parameter bounding in Chapter 3, and the injection
of novelty and the concept of operator-space projection in the ROSE algorithm in
Chapter 4.

Redundancy Redundancy is coupled to the uniqueness of the representation, the design space,
the search space and the objective. An isomorphism strategy from prior art is used
to reduce redundancy as will be explained in Chapter 2, parameter invariants are
also introduced in Chapter 3 to reduce redundancy. Finally, in order to deal with
the significant redundancy still present a high-performance simulator is developed
in Chapter 5, which attacks the redundancy problem from the angle of reducing
evaluation time, thereby making wasted evaluations significantly less costly in real
time.

1-4 Representative practical problem

Although these problems are not limited to the domain of automated robot design, we select
it as a representative task. The methodology of Reduced Operator-Space Evolution (ROSE)
developed in this thesis is not limited to automated robot design specifically and can be gen-
eralized to other domains such as machine learning, electrical circuits, etc.

But to generate results and solve them we need a representative automated mechanism
design problem that specifically has them. To that end this thesis will focus on 2D mechanisms,
applied to a pick-and-place task. The developed methodology can in principle be extended
to three dimensions, but staying in two allows significantly reduced computation time and
complexity while the discovered principles will still hold for both 2D and 3D.

Pick-and-place tasks are a commonplace task in robotics, extending from warehouses man-
agement to industrial robots in factories, with for example Amazon having over 200,000 robots
working in its warehouses [31]. The strict constraints around the task definition, combined
with their practical usefulness, make them an excellent choice for more theoretical research
purposes [32]. They provide easily identifiable markers of performance and success, and task
complexity can be scaled relatively easily.

Because the pick-and-place robots found by the algorithm will be actuated using motors
with control both the linkage and deception problems appear in this otherwise straightforward
task. It is of particular interest if the algorithm will find mechanisms and controllers that
effectively reduce energy usage, perhaps even discovering embodiment.

Master of Science Thesis J.A. Westra

12 Introduction

1-5 Research goals

The goal is to design an evolutionary algorithm that is able to quickly generate concept designs
for actuated mechanisms. In this case the specific test cases are pick-and-place tasks.

Research on the evolution of mechanisms and mechanical systems in combination with
active control indicates that there is a boundary of complexity that algorithms are unable to
break, no matter the amount of computational power applied to solve the problem [16,27,33].
A survey of existing literature, including [19–21, 23, 24] and others2, indicates this boundary
lies below the complexity of the pick and place task. In order to achieve our goal we have to
extend the functionality of, and improve on the existing evolutionary algorithms.

The complexity boundary suggests there is a structural problem within the optimization
landscape; the search space itself exhibits a very high level of irregularity. This sabotages the
effectiveness of evolutionary algorithms as the underlying assumption that successful building
blocks combine to a successful whole fails; the search space has significant linkage problems [30].
There is some indication that in that case abandoning the classic objective function itself and
instead using Novelty Search will lead to better results [35,36].

However, in optimization there is no such thing as a free lunch [18], improving the algorithm
always requires the injection of domain knowledge into the workings of the algorithm. In the
case of Novelty Search this is a distance-, or novelty measure for mechanisms. The definition
of this measure has significant impact on the behavior of the algorithm, and consequently has
to be well understood to be effectively applied.

Note that the danger in adding knowledge is that while it has to be specific enough to
provide benefits to the optimization algorithm, it simultaneously has to be general enough to
not narrow the scope of the search such that it excludes good or inventive solutions. Yet so far
there exists no way to quantify what is “good” knowledge and what is “bad” knowledge to add
to the automated mechanism system.

The first subgoal of this thesis is to generalize the graph representation of mechanisms to
allow any type of element, including general active controlled motors. [Chapter 3]

The second subgoal is to analyze the mechanism design space and the workings of the
automated design algorithm from a more theoretical point of view, in order to generate a
framework in which to study the behavior of optimization algorithms in automated mechanism
design. It is shown that the mechanisms can be represented by a series of operators in parallel
to the graph representation. By splitting the mechanism representation into a structural graph
and parameter function it is possible to define the concept of a mechanism space with distance
measure. A novel quality diversity evolutionary algorithm based on abstract operators called
Reduced Operator-Space Evolution is derived from the structure of this mechanism space.
[Chapter 4].

The third subgoal is to create the necessary software to computationally explore the mech-
anism space, by simulating, evaluating and analyzing both the mechanisms and search space
based on the representation of both presented in the preceding parts. The result is the open-
source Python library PyMechs, implemented in C++. [Chapter 5]

2See also the literature survey accompanying this thesis [34]

J.A. Westra Master of Science Thesis

Chapter 2

Prior Art

This chapter first introduces the necessary theoretical background on computational design,
evolutionary algorithms, linkage problems and deception in more detail in Sections 2-1 and 2-2
for those unfamiliar with them. Section 2-3 discusses the prior art representation used as a
base design.

2-1 The computational design equation

The automated design optimization problem described in Section 1-2 can be mathematically
defined as finding the optimal parameters p of the chosen model representation ŷ (p,u), given
inputs u, such that the error f (y, ŷ,p) between the specified desired behavior y (u) and model
behavior ŷ (p,u) is minimized. Additional penalties can be applied based on the parameter
values p, such as a complexity penalty so that generally the function f is itself also directly
dependent on p. Additionally, constraints g (p) may be present on the parameters of the model.
This results in the following optimization problem for the optimal design parameters:

p = arg min
p

f (y, ŷ,p) subject to g (p) ≤ 0 (2.1)

Traditionally this would be solved with gradient descent, as is often done in Machine Learn-
ing problems [15]. However to do this, the relation between the parameters of the model p and
the model behavior ŷ has to be known so that ŷ can be substituted in the objective function
f . This makes f an explicit function of p so that the gradient of the objective function with
respect to the parameters ∂f

∂p can be obtained.

In automated design there is in most cases no explicit relation known and model behav-
ior can only be determined through simulation i.e. sampling. This complicates the problem
considerably, especially if the sampling computation cost is high. The resulting black box
optimization problem is usually solved with evolutionary algorithms [17].

Master of Science Thesis J.A. Westra

14 Prior Art

2-2 Evolutionary Algorithms

2-2-1 The canonical evolutionary algorithm

Evolutionary algorithms [13] are a class of optimization methods that mimic natural evolution
as described by Darwin [37] in order to find an optimal solution. They are particularly useful
when there is no explicit relation known between the objective function and the optimization
parameters, as they use sampling as the evaluation method for individuals. It follows that
no explicit gradient is required. Additionally they are also very effective when the search
domain is poorly behaved, containing many local optima and discontinuities; this is because
the stochastic nature of the variational operators and the diversity maintained in the population
lets the algorithm explore the search space in more directions than just the one of immediately
increasing fitness.

Since both these characteristics are generally the case for the modeling problem presented
by automated design as equation 2.1, evolutionary algorithms present a natural and popular
solver choice [13].

Evolutionary algorithms work by initially generating a population of possible candidate
solutions. These are evaluated using a fitness function. This fitness function is usually the
objective function of the optimization problem, but can be augmented in order to boost the
performance of the algorithm as is done in e.g. Quality Diversity algorithms [35, 38, 39]. In-
dividuals are selected from the population to reproduce based on their fitness value, with the
goal of propagating successful building blocks. During this reproduction step variational oper-
ators are applied, such as mutation and crossover. This injects new genetic material into the
population and mixes up existing genes which allows the algorithm to effectively explore the
search space.

− Mutation is the analog of biological mutations, by inserting a random (small) change in
the representation of the individual new information is injected into the population.

− Crossover is the analog of natural sexual reproduction, where the representation (DNA)
of 2 individuals is mixed together into a new child individual. Mixing the elements of
both parents together can combine successful building blocks.

Poorly performing offspring are discarded, successful offspring are promoted to the population,
possibly replacing a worse performing existing individual. These steps can be applied to the
entire population at a time, creating a fresh generation every iteration, but they can also
be applied per individual or any combination of individuals. A schematic of the canonical
evolutionary algorithm is shown in Figure 2.1. The result is that the population as a whole
moves in the direction of better fitness.

2-2-2 Schema theorem

Perhaps the most fundamental theoretical result that explains why evolutionary algorithms
work is Holland’s schema theorem [28]. It shows that genetic algorithms accumulate successful
building blocks called schemata over the generations1. These schemata are fractions of the
genotype, that describe some part of the system under consideration.

1To stay concise the exact mathematical details and proofs are omitted here. They are explained thoroughly
however in many different papers and books such as [25,28,40]

J.A. Westra Master of Science Thesis

2-2 Evolutionary Algorithms 15

Population

Parent
Selection

Fitness
Evaluation

Variational
Operators Offspring

fit unfit

1

Figure 2.1: The canonical evolutionary algorithm. Individuals are selected as parents from
the population and transformed by a variational operator (analogous to mutations and sexual
reproduction) to generate offspring. This offspring is evaluated. Fit offspring gets promoted
back in the population, unfit offspring gets discarded.

As an example, let’s take a simple genetic encoding consisting of just 4 bits describing some
sort of system. Schemata in this 4 bit world for example are (where the * denotes a wildcard,
it could either be a 1 or 0):

[
1 ∗ ∗ ∗

] [
∗ 0 1 ∗

]
(2.2)

Where individuals are for example:

[
1 0 0 1

] [
1 0 1 0

] [
0 1 0 1

]
(2.3)

In this case individual 1 contains schemata 1, individual 2 contains both and individual 3
contains neither.

The schema theorem proves mathematically for a simple genetic algorithm that schemata
which have higher individual fitness, and thus provide some evolutionary benefit to individuals,
tend to accumulate in the population in an evolutionary algorithm over the generations. The
schemata also increase in complexity, increasingly focusing the search in the hyperplanes in the
search space spanned by these schemata [28].

As more of these successful building blocks accumulate the algorithm converges to areas of
higher overall fitness for all the members in the population, as these members are increasingly
made up of successful schemata. This explains how evolutionary algorithms can approximate
optimal solutions.

It follows that the success of objective-based evolutionary algorithms lies in the assumption
that the building blocks of a successful solution, are by themselves partially successful at solving
the problem. As the building blocks need to be beneficial on the objective to be selected for
by the algorithm. If this is not the case, the search is focused on the wrong hyperplanes of the
search space and, for complex problems, is likely not to find the solution at all. This is known
as deception [30,41].

Master of Science Thesis J.A. Westra

16 Prior Art

Figure 2.2: A maze domain problem to illustrate deception. Using naive fitness maximization
will lead to the algorithm getting stuck in the position denoted by the square

2-2-3 Deception

In order to illustrate deception we can take the simple toy optimization problem where the
representation is given by a bitstring of size 4. Let’s assume the globally optimal solution is
given by:

[
0 1 1 0

]
(2.4)

It is a deceptive problem when the schemata of the optimal solution
[
0 1 1 0

]
all result in

individually low fitness. While the schemata of a globally poor solution all perform relatively
well on the problem.

We can make the toy problem intentionally deceptive by shaping the fitness function as
an example. If we assign the bitstring

[
0 1 1 1

]
a poor fitness score and give otherwise

completely wrong solutions
[
1 0 0 1

]
and

[
1 0 0 0

]
a good score we generate deception.

This occurs because according to the schema theorem the schema
[
1 0 0 ∗

]
is propagated

in the population rather than
[
0 1 1 ∗

]
. Yet where

[
0 1 1 ∗

]
contains three out of four

elements of the optimal solution,
[
1 0 0 ∗

]
contains none. Clearly the search will in that

case be focused on the wrong area of the search space, because a single mutation or crossover
event can shape the solution from the worst to the best.

The stochastic nature of evolutionary algorithms generally allow them to deal with these
cases to a certain level. In the toy problem example the odds of finding the optimum just by
random generation is already 1/16. Yet, in the real world problem of mechanism design the odds
of randomly stumbling on the solution in a usual given population size becomes astronomically
small. When the complexity of the required combined successful blocks is too great to discover
randomly, an evolutionary algorithm will still struggle to overcome it.

An example of deception occurring in an evolutionary algorithm is illustrated in Figure
2.2. In this problem controllers are evolved to guide the robot through a maze from the open
circle to the closed circle. Using the naive optimization technique of minimizing the distance
to the objective the algorithm will get stuck in the dead-end of the maze denoted by the square
instead of finding the true (dotted) path. The problem is deceptive with respect to the objective
function.

J.A. Westra Master of Science Thesis

2-2 Evolutionary Algorithms 17

2-2-4 linkage problems

Linkage problems occur when successful building blocks are disrupted by the variational oper-
ators. This is more likely to occur in complex problems as they tend to have more complex
building blocks. It is a result of the success of one element of the representation being tightly
coupled to the success of another element.

While deception is a property of the objective, linkage problems are a property of the used
variational operators and representation. This means that with proper choice of representation,
linkage problems can be avoided. In practice this means identifying any linkages a priori, which
generally is a hard problem in it’s own right [42]. If the problem is multi-objective this becomes
even more complicated, as linkages might occur with respect to one of the objectives but not
the others and vice versa [43].

Linkage problems occur in practice when evolving the morphology of mechanisms for a
specific desired behavior, removing even one connection in a four bar linkage for example will
completely disrupt the overall behavior of the entire system. The system as a whole produces
resultant behavior which can not be easily decomposed into fundamental individual building
blocks.

2-2-5 Novelty Search

Novelty search is a variant of evolutionary algorithm that, rather than maximizing the perfor-
mance with regard to a fixed objective, is driven by the search for behavioral novelty [36, 41]
i.e. it is driven by creating an as large variety of candidate solutions as possible. The greater
diversity has been shown to reduce the threat of deception [36]. The behavior is compared to
that of the current population and an archive of past behavior. A higher likelihood of reproduc-
ing is obtained by doing something new, rather than maximizing a criterion. This aggressively
encourages exploration of the behavior space. In fact, the algorithm can be considered as
exploration only, albeit in an intelligent way.

Novelty search works by taking an existing evolutionary algorithm and replacing the ob-
jective function by a novelty metric. Defining this novelty metric requires careful planning,
as it determines the behavior space through which the algorithm will search. Defining which
behaviors are considered novel and distinct, and how to explicitly quantify this, becomes one
of the key design problems. It is known as behavior characterization [44].

However, there are some drawbacks. An archive of past individuals needs to be maintained
and compared to, which can grow to be very large. Additionally, if the search space is un-
bounded there is always new novelty to be found by going somewhere meaningless. This means
boundaries (such as the outer edges of a maze in a pathfinding problem) have to be defined a
priori.

Novelty search has been applied to generate virtual creatures [26]. The algorithm Lehman
et. al. presented was able to create a variety of functional and distinct walking creatures in a
single run.

2-2-6 Quality Diversity

Quality diversity algorithms [35] aim to generate a repertoire of high quality, diverse solutions to
a problem in a single run. A quality diversity algorithm takes the diversity generating power of

Master of Science Thesis J.A. Westra

18 Prior Art

novelty search, and combines it with a direct objective based approach to give more direction
to the search. They represent some of the newest developments in the field of evolutionary
computation [29,38,45,46]. It is interesting to note that they have shown to be more resistant
to deception and linkage problems in the search space while maintaining performance on the
objective, at the cost of taking more function evaluations.

Instead of looking for the best overall individual in the search space, quality diversity
algorithms split the search space into different regions and look for the best individuals for
each separate region. The result is that, rather than returning a single most fit solution, the
algorithm generates a QD collection; a collection of the best performers across the entire space
divided along a measure known as the characterization.

It follows that in order to use a quality diversity algorithm, a method to divide the search
space is required. Generally a behavior characterization (A metric for the difference between
two behaviors ŷ (p,u)) is used [44] but other divisions are possible such as along parame-
ters [38, 47]. The performance of the algorithm is significantly influenced by this choice of
characterization: clearly it is important to align this characterization with the design problem
similar to the way the model should be aligned with the problem. The division of the search
space has to make sense.

A great benefit over classic optimization algorithms is that the result of a quality diversity
run is a set of independent varying designs, rather than a single optimal one. A designer
could pick any one of the solutions that satisfies other objectives that are not represented in
the objective function. This is a great benefit to automated design problems as often not all
requirements can be encapsulated in the objective function, such as for example aesthetics.

2-3 Encoding Mechanisms

2-3-1 Modeling mechanisms

A model representation and parametrization of mechanisms is fundamental to apply automated
design to the design of mechanisms. There have been quite a few attempts over the years at an
unambiguous mathematical description of mechanisms, such as Denavit-Hartenberg parameters
[48], screw-theory based descriptions, graph-theory based representations and more. But these
representations were developed to provide an easy way to model the kinematics of mechanisms,
not necessarily to be conducive for automated design.

As explained in Section 2-2 the representation should ideally consist of small but effective
and general building blocks called schemata to be processed by the evolutionary algorithm,
yet these building blocks have proven hard to identify exactly, as indicated by the numerous
different competing representations and approaches [16,21,23,27].

However, success has been achieved using a graph based representation for mechanisms for
automated design using an evolutionary algorithm as solver [19]. It has as particular benefits
that identical mechanism structures can be easily identified and many mechanism properties
can be related to useful fundamental graph properties [25,49].

2-3-2 Graph representation of mechanisms

In graph-based mechanism modeling the mechanism structure is represented by the ordered pair
of an undirected, rooted, labeled graph G and corresponding parameter map P [19,20,25,50].

J.A. Westra Master of Science Thesis

2-3 Encoding Mechanisms 19

1

g

m

3m

2m

1H1H

gg

2H

3H1K

1m

3m
2m

3H

1K2H

Figure 2.3: A mechanism encoding example, the mechanism on the left can be encoded as the
labeled graph shown on the right. While multiple elements can have a ground connection at
different positions the ground is still represented by a single vertex in the representation.

The graph defines the discrete elements, such as elements, connections and their types. The
parameters represent the numerical elements such as weight, size and spring constants. An
example of a mechanism encoded as a graph G is shown in Figure 2.3. Formally an undirected,
labeled graph is defined as the ordered triple G = (V,E, Φ) where

− V is a set of vertices, also known as nodes, e.g. Figure 2.3 the vertices are the masses mn

and ground g.

− E is a set of edges, which are unordered pairs of vertices: an edge always connects two
distinct vertices, e.g. in Figure 2.3 the edges are the hinge Hn and spring connections
Kn.

− Ψ : E →
{
{x, y} | (x, y) ∈ V 2 ∧ x 6= y

}
is an incidence function which maps every edge

to an unordered pair of vertices, e.g. in Figure 2.3 the edge K1 is mapped to the vertices
m2 and m3.

All mechanisms graphs are rooted because a single vertex, in this case the ground g, is both fixed
and unique. This is considered the root vertex of the graph. To complete the representation a
list of numerical parameters P corresponding to each of the labels has to be given.

The connections in the graph are specified by the incidence function Φ which maps every
edge to a pair of vertices. As incidence function we use an incidence matrix: an incidence
matrix is a Boolean matrix where the columns represent edges and the rows represent masses.
If a mass is connected to an edge, the value at that row, column combination is set to 1. All
other entries are set to 0. It follows that columns can only contain two nonzero values, while
rows can contain multiple. The incidence matrix belonging to the mechanism of Figure 2.3 is
shown in equation 2.5:

Ψ =

H1 H2 H3 K1

g 1 1 0 0
m1 1 0 0 1
m2 0 1 1 0
m3 0 0 1 1

 (2.5)

Each label carries its own parameters as defined by the parameter list.

Master of Science Thesis J.A. Westra

20 Prior Art

1

g

m

2m

1H

2H

2

g

m

1m

1H

2H

≅1K 1K

g

m

g

m

2H1H

1K

Figure 2.4: Two graphs describing the same simple mechanism consisting of two pendulums
connected to the ground and to each other by a spring. The graph on the left can be obtained
from the graph on the right by exchanging the numbering of the masses m1 and m2: the
graphs are isomorphic.

2-4 Related graph properties

Several graph properties are closely related to properties of the mechanisms represented by
them and will be used to refine the encoding. This section gives a short, qualitative overview
of these. For a more detailed treatment see e.g. [49].

2-4-1 Graph isomorphism

Representing the structure of mechanisms with labeled graphs is intuitive but has a distinct
pitfall: the resulting encoding is not unique. Multiple different labeled graphs can result in
identical mechanisms. This follows from the fact that the elements are interchangeable; the
order of numbering is irrelevant, only the label type matters. Figure 2.4 illustrates this problem
for a simple mechanism structure.

The two masses are not initially numbered but to assign parameters we need to label the
graph such that the vertices are distinct. However, there is more than one way to label the
masses as there is no distinct starting point available. Depending on whether the left or right
mass is picked as the starting point m1 a different graph representation and incidence matrix
is obtained.

From the graphs shown in Figure 2.4 we can determine the incidence matrices as:
H1 H2 K1

g 1 1 0
m1 1 0 1
m2 0 1 1

 ∼=

H1 H2 K1

g 1 1 0
m1 0 1 1
m2 1 0 1

 (2.6)

While the incidence matrices and graphs are not identical, they actually represent the same
mechanism. It’s still possible to say that the two graphs are closely related because if the num-
bering is discarded, they are in fact identical. They share the same elements and connections.
In that case the graphs are considered isomorphic. (Denoted by ∼=).

Two graphs are considered isomorphic if they can be transformed into each other by moving
around the labeling but keeping all connections and elements intact.

By checking the mechanism graphs for isomorphisms the effective search space can be
significantly reduced [25].

J.A. Westra Master of Science Thesis

2-5 Conclusion 21

e

Figure 2.5: This graph is fully connected since a path exists between every vertex. However,
if the edge denoted by e is removed this is clearly no longer the case: it becomes disconnected.

2-4-2 Graph connectivity

Another quirk of the representation is that, in principle, mechanisms can be defined that are
disconnected. It’s possible to define elements that are entirely free floating, mechanisms that
consist of several different disconnected sections. Even two unrelated complete mechanisms
can technically be defined within a single representation.

The connectedness of mechanisms is defined by another important graph property: graph
connectivity. A graph is considered connected if it has at least one vertex and there exists a
path between every pair of vertices in the graph. Figure 2.5 illustrates this concept.

It can be checked if a graph is connected by traversing the graph, following all the edges
from the starting vertex, and marking any traversed vertices as visited. If no more edges are
available to traverse and all vertices have been marked the graph is considered connected. By
enforcing that a graph that represents a mechanism has to be fully connected loose ends and
disconnected elements can be prevented.

2-5 Conclusion

In this section an explanation was given of the issues of automated mechanism design that
prior techniques ran into. Significant strides have been made to reduce the complexity of the
search space [19, 20, 50]. Graph isomorphism can be used to significantly reduce the search
space. However, graph isomorphism checks are very computationally expensive and should be
performed as rarely as possible to keep performance up.

Novelty search and quality diversity algorithms have been successful by injecting the neces-
sary exploration to avoid deceptive attractors [26,35,38,51]. However, these approaches require
strict boundaries on the search space to prevent the algorithm from generating functionally
meaningless novel solutions.

None of the approaches have thus far solved the underlying linkage problems in the mech-
anism design search space.

Master of Science Thesis J.A. Westra

Chapter 3

Mechanism model Extensions

This section will explain the modifications to the mechanism representation structure. The
original structure is summarized in Section 2-3-2. These are necessary because the prior graph-
based mechanism model fails to satisfy the following requirements:

− The mechanism representation should have clear, pre-defined points of interaction with
the environment. Requiring the introduction of the end-effector element. This is necessary
to reduce redundancy.

− The mechanism representation model should include active motors to facilitate possible
control elements. This requires the introduction of an active motor element and controller
map. This is necessary to make the representation generalizable.

− The mechanism representation should allow parameters to be defined arbitrarily, i.e.
possibly indirectly through an external function. This requires the introduction of the
parameter map. This is needed in particular to functionally decouple the representation
of the parameters from the representation of the discrete elements.

3-1 Additional elements

While the graph-based representation of mechanisms has proven to be effective [25], it lacks the
proper extensions to deal with motors and control. In addition, a pick-and-place robot usually
has a single end-effector, to properly model a robot the end-effector should be included in the
model. This requires the inclusion of newly defined end-effector, motor and controller elements
to the mechanism representation.

3-1-1 The end-effector

Robots and mechanisms often have fixed points of interaction with their environment, either
a gripper, linkages to external systems or other such connections. To model these kinds of
relations the end-effector element is introduced to the representation.

J.A. Westra Master of Science Thesis

3-1 Additional elements 23

1H

g

2H

1m

2m
1e

Figure 3.1: A mechanism with added end-effector e1, the end-effector is visualized as a gripper
and modeled as a point mass.

The end-effector (e), like the ground (g), is a unique vertex that can be added to the
structure of the mechanism. It represents the ability of the mechanism to manipulate the
world around it. To account for connections with varying degrees of freedom a fully constrained
connection type (F) is introduced alongside the end-effector.

The end-effector behaves like a variable mass point-mass. Picking up an object can be
simulated by adding the mass of the object to that of the end-effector, external forces can also
be applied to the end-effector to model the interaction with the environment. Like the ground
vertex is always the first, the end-effector is always the last. This aligns with the concept that
a mechanism structure is defined by the (parallel) chains of elements between the ground and
the end-effector.

3-1-2 Motors

The motor element is a special element in the mechanism representation structure as it is
able to add and extract mechanical energy, it is a non-conservative element. It provides the
connection bridge between the controller and mechanism representation structures. A controller
must be attached to the motor, which applies a (possibly state-feedback) control torque to the
mechanism. This controller representation is independent from the mechanism representation,
but can be correlated to the mechanism structure.

A controller in the mechanism representation is considered a black box function, in which
the mechanism state and time is provided as input and a control torque results as output. If
no controller is attached a motor will be treated as a passive hinge.The separation of represen-
tations facilitates a co-evolutionary approach to the optimization problem.

3-1-3 Controllers

As controllers are part of more complex mechanism structures it is important to keep them in
mind as well. In order not to inherently limit the possibilities of controller encodings these are
considered as a separate attachment.

Controllers don’t fit neatly into the rest of the mechanism representation since the controller
itself can technically be considered a parameter of the mechanism representation. I.e. to fully
define a controlled mechanism the parameter set contains not just real-valued vectors defining
the mechanism element parameters and positions but also controller objects, which have their
own respective independent representations. The result is a nested structure.

Master of Science Thesis J.A. Westra

24 Mechanism model Extensions

A controller is defined as a function that maps the time t, states x and velocities ẋ of the
mechanism to a control output torque τ :

C (t,x, ẋ) = τ (3.1)

A mechanism M can be assigned an ordered set of controllers C = {C1, C2, ..., Cn} to result
in a controlled mechanism MC = {M, C}. Where the number of controllers is equal to the
amount of motors present in the mechanism.

The controller representation itself is purposely left unspecified in the general model of the
controlled mechanism representation. Many different competing evolutionary controller models
exist [10,52–55] and the optimal control strategy choice is ultimately highly problem-dependent.

J.A. Westra Master of Science Thesis

3-2 Parameter map 25

3-2 Parameter map

3-2-1 Parameter List

The parameter list is the general structure used for a single mechanism definition, the parameter
function is defined as a list lookup of uncorrelated parameters. This can be viewed as a trivial
case of a parameter assignment function: rather than generating a set of parameters the set is
completely predefined.

Each label in the list fundamentally corresponds to an element type, which has a known
predefined structure of parameters. The position of the element is always represented by the
first two parameters, except for springs which define two connections and no constraint. For
the elements in the representation this leads to the following definitions from prior art [19]:

− Ground (g): The ground g is the root vertex and has no corresponding parameters
(positions are encoded in edge connection locations)

− Mass (m):
[
x y m

]
, the mass of the element, as well as the position of the center of

mass at t = 0. This position is only used in case the position is not already fully defined
by the connection elements.

− Hinge (H):
[
x y

]
, the x and y position of the hinge at t = 0

− Spring (K):
[
x1 y1 x2 y2 l0 k

]
, the two connection positions at t = 0, the zero

length l0 and the spring constant k of the spring

And the new elements introduced here:

− Torsion Spring (T):
[
x y θ0 k

]
, the position of the hinge, the zero angle θ0 and the

spring constant k.

− Motor (M):
[
x y Cn

]
, the position of the hinge, and the number of the assigned con-

troller Cn.

− Fixed connection (F):
[
x y

]
, the position of the fully constrained connection.

− End-Effector (e):
[
m
]
, The end effector e is the second fixed vertex element, which only

has a mass parameter (the position is fixed through the connection elements)

Other elements are possible in this representation by defining them on the graph structure and
defining the required parameters to describe these new elements.

3-2-2 Parameter function

The parameters of the mechanism determine the mechanism behavior to a significant degree,
as exemplified by the large amount of 4-bar linkage mechanisms in existence [56]. Every 4-bar
linkage has the same graph structure so clearly it are the relations of the parameters that
explain the behavioral differences between these mechanisms.

There also exists an underlying structure within these parameters; effective motor param-
eters depend on the mass and length parameters, torsion spring constants on the moment of
inertia. Many such relations exist.

Master of Science Thesis J.A. Westra

26 Mechanism model Extensions

As a result rather than the absolute parameters it is the relative relation of the parameters
with respect to each other that ultimately determines the mechanism behavior. A simple
example to illustrate this concept would be to imagine changing the units from Metric to
Imperial, while the numeric values change the mechanism behavior remains exactly the same.
This property can be shown from Newton’s laws of motion [57].

Simply describing the parameters as a list is not able to capture all these properties. Fol-
lowing the realization that the parameters are both correlated and subject to constraints the
following definition is proposed:

Definition 1. Given a labeled graph G, a parameter assignment P : G→ {
⋃

k {pi} | pi ∈ Rn ∧ k = |G|}
is a map that, to each vertex and edge, assigns a corresponding real-valued vector of numerical
parameters.

Applying P to a labeled graph structure G results in an ordered set of parameter vectors
{p1,p2...,pk} where the total amount of parameter vectors k is equal to the sum of the amount
of vertices and edges.

By defining parameter assignment as a function, rather than more weakly tying the numer-
ical parameters to a list, it is possible to define a parameter generation function that explicitly
takes the parameter correlations on the mechanism into account. The set of all possible param-
eters can be mapped to a space, the domain of possible parameter assignments. This domain
represents the set of spaces of possible mechanisms corresponding to each mechanism graph
structure.

In a general sense P is an indirect encoding (a function which generates parameters encoded
in a generator function rather than drawing from a list) which has shown to be effective for
neural networks [58, 59]. Additionally the parameter function can be split off from the graph
representation, resulting in a structure representation given by the graph G, and a parameter
representation given by P (G).

3-2-3 Parameter invariants

Mechanism parameters can be transformed by a behavior preserving transformation: one that
scales, rotates and otherwise influences the parameters but does not change the behavior. These
are transformations on the parameters such that the mechanism fitness does not change. I.e.
these transformations lie in the nullspace of the gradient of the objective function. To be more
specific, it is possible to specify operations for which the behavior in question is invariant.

An interesting consequence is that the parameter assignment function can be designed to
be aware of these invariants. This allows a reduction in search complexity, as mechanisms that
are different only in parameter scale are treated as identical. The domain of P is contracted
such that any regions that represent parameter invariants of the objective function are reduced
to single points.

To makes this a bit more concrete we can look at the example of finding a particular
resonance frequency for the simple mass-spring system in Figure 3.2.

J.A. Westra Master of Science Thesis

3-2 Parameter map 27

k

m

l0

Figure 3.2: A simple Mass-Spring system described by the set of parameters m, k, l0

We can derive the resonance frequency of this system as ω =
√

k
m . Clearly any transfor-

mation of k, m and l0 that preserves the ratio k
m lies in the nullspace of the gradient of the

objective function. We can simplify the complexity of this problem by looking for the ratio
r = k

m instead of all parameters k, m and l0, a reduction from three to one dimensions that is
achieved by contracting the search space using the parameter function.

Doing this for the mechanism parameter function is not as trivial as forces, inertia, mass,
lengths all interact to produce the final behavior of the dynamics of the mechanism but this is
already very useful to for example fix an end-effector starting position or to correct for trajectory
scaling. This significantly reduces search space redundancy, one of the major problems of
automated mechanism design.

3-2-4 Constraints and correlations

Constraints on the parameter assignment function provide boundaries for the parameters and
are implemented as rules on P . They explicitly modify the domain of possible solutions.

The parameter assignment function is considered correlated if for some element of the
assignment function depends on the values at other edges or vertices. While in a way a trivial
observation, existing correlations provide valuable information that can be provided as input for
an optimization algorithm: Assume a correlation exists, when adding or removing an element
to the mechanism a correlation rule h could then look like:

Pn+1 = h (Pn) (3.2)

i.e. when an element is added or removed the new parameters (which have a different size) are
some function of the old parameters. For example a rule such that, when adding another mass
and spring to the mass-spring damper of Figure 3.2, the new parameters are such that the first
eigenfrequency of the new system is identical to the eigenfrequency of the single spring-mass
system.

3-2-5 Effect on the evolutionary algorithm

As per the chain rule the gradient of the objective function with respect to the parameters,
while keeping the structure fixed, is now defined as:

∂f

∂p
=
∂f

∂P

∂P

∂p
(3.3)

Master of Science Thesis J.A. Westra

28 Mechanism model Extensions

e.g. the gradient is projected along the directions spanned by the parameter function. In an
evolutionary algorithm we normally provide a change in parameters ∆p and observe the change
in fitness ∆f . By using a parameter map function to generate this change in parameters we
ensure the effect is always along ∂f

∂P , such that desired properties will be maintained.

This leads to the important result of the introduction of the parameter map function: dif-
ferent parameter functions can be used as input for the creation of operators, each of which can
represent possible sampling strategies that explore the objective function along directions that
maintain certain desired behavioral properties. By doing this, multiple parameter invariants
can be explored simultaneously.

3-3 Representation example

To summarize, the representation structure M = {G,P, C} defines an actuated mechanism:

1. The labeled graph structure G = {E, V }, with the unique end-effector and ground ver-
tices. Including the edge labels of the connections.

2. The parameter assignment map P , which provides either the parameter set explicitly or
defines a function to generate that set.

3. The controller set C = {C1, C2, ..., Cn} , if applicable. The controller has it’s own nested
representation which is separate from the mechanism.

To illustrate the complete representation of a mechanism and controller we can use the example
mechanism shown in Figure 3.3: a spring-connected double pendulum that is driven by a motor
with a PD controller at the base with reference signal θref and input state θ1, which is the
angle of rotation of the mass element m1 in Figure 3.3.

g

m1 m2

e

M1K1

H2

E

1

Figure 3.3: The motorized mechanism (left) and it’s graph representation (right), the ground
and end-effector are a unique vertices. The motor is represented by the dotted circle, the
ground locations by the black triangles and the end-effector by the gripper.

From the graph structure in Figure 3.3 we can deduce that it has the following incidence

J.A. Westra Master of Science Thesis

3-4 Conclusion 29

matrix:

Ψ =

E M1 H1 K1

g 0 1 0 1
m1 0 1 1 0
m2 1 0 1 1
e 1 0 0 0

 (3.4)

The mechanism has the following parameter set, representing the connection locations and
parameters:

P =

m1 =
[
1 0 0

]
m2 =

[
1 0 0

]
E =

[
1 2 0.1

]
M1 =

[
0 0 1

]
H1 =

[
0.5 1

]
K1 =

[
−1 0.7 0 0.7 1.6 10

]

(3.5)

The motor is assigned controller 1, which has its own independent representation which is
separate from the representation presented here.

3-4 Conclusion

This section introduced additional elements which extend the prior graph representation of
mechanisms. The motor element allows the addition of controlled motors, while the end-effector
is introduced as a pre-defined point of interaction used by the objective function.

This section also introduced the concept of the parameter map function. The parameters
can be derived from functions, which represent invariants in the search space. These invariants
can be captured by using parameter functions. By sampling the gradient of the objective
along the directions of these parameter functions which describe invariants the overall search
complexity of the evolutionary algorithm is reduced. This can be achieved in practice by using
these parameter functions as input for operator generation rules in an evolutionary algorithm,
which reduces both deception and search space redundancy.

Master of Science Thesis J.A. Westra

Chapter 4

ROSE: Reduced Operator Space
Evolution

This section will explain the core concepts of reduced operator space evolution. First operator-
representation duality is shown, which uses the decoupling of the parameter function from the
representation introduced in chapter 3, then the mechanism space is constructed based on this
duality. Using the newly defined mechanism space a new evolutionary algorithm is introduced.

This novel algorithm is necessary in order to solve the linkage problems that have plagued
automated mechanism and robot design algorithms. In particular, it decouples the mechanism
representation from the optimization algorithm sampling strategy through the use of abstract
operators.

4-1 Introduction

In order to solve the linkage and deception problems we need to build an understanding of
how the algorithm operates and how these problems manifest in the search for an optimal
mechanism design.

Section 3-2 shows that the set of parameter functions has an associated domain of possible
mechanism designs. By applying a set of constraints on these parameters we can bound and
contract this domain, and thus the possible mechanism designs corresponding to that structure
which reduces deception. Adding effective correlations such as done for the mass-spring system
lets us map the problem to a lower-dimensional space as well while dealing with linkage problems
effectively.

This inspires an investigation into how these insights can be applied to the structural
(discrete part) of the computational design optimization problem as well.

These obtained insights are used to develop an effective evolutionary algorithm.

4-1-1 Fitness function

Ideally we want to explore the fitness space in a structured way, as this is the value we desire
to optimize. Yet in practice it is only the mechanisms which we can influence directly through

J.A. Westra Master of Science Thesis

4-1 Introduction 31

g

m

g

Figure 4.1: A mechanism corresponds to an n-dimensional fitness value in some subset of
the reals Ω ⊂ Rn as mapped by the objective function f : M → Ω. The mapping from
mechanism to fitness is obtained through simulation. The resulting question that defines any
optimization algorithm is then: how do we relate a desired change in fitness ∆f back to a
change ∆M on a mechanism? This is nontrivial as the inverse mapping f−1 : Ω → M is
unknown a priori and not unique.

operators. A direct relation is not known, as the fitness function requires simulation to be
evaluated; it can only be sampled. The question that arises: How can we map a desired
transformation in fitness space to a transformation on a mechanism, doing essentially the
inverse of the evaluation step. The intuition behind this concept is illustrated in Figure 4.1.

Evaluating f requires simulation, so it follows that while f (M) is known exactly it’s gradient
∂f
∂M is unknown. In fact, since the mechanism structure representation is discrete the gradient
only exists locally as a function of the parameter function P when the structure G is kept
fixed. Yet the gradient of the mechanism in fitness space, but expressed in mechanism space
coordinates. Or more simply, how fitness function evolves with respect to the mechanism
parameters, is precisely the knowledge need to move in the direction of better fitness.

So while ∂f
∂M isn’t available we need to use some estimate of it, either implicitly or explicitly,

to move the mechanisms in the direction of better fitness i.e. we need it in order to construct
an optimization algorithm. We can however sample the fitness function.

Using the sampled fitness values we can construct an a posteriori estimate f̂ (M) of the
fitness function f (M). These estimates can guide the optimization algorithm.

4-1-2 Operators

In order to study an optimization algorithm in the context of mechanisms it is necessary to
look at ∆M from Figure 4.1 in some more detail. It is clear what ∆f is since it is a real valued
number or vector:

∆f = f (M2)− f (M1) (4.1)

What is ∆M? We might try just applying the above expression but for mechanisms which
results in:

∆M = M2 −M1 (4.2)

Master of Science Thesis J.A. Westra

32 ROSE: Reduced Operator Space Evolution

but this actually has no meaning, since the minus operation for mechanisms is not defined.
We know that the new mechanism can obtained from the old one by applying some operation

ϕ which acts on the graph representation and parameters of the mechanism representation: by
adding the spring K1 and connecting it to the ground g and to the link m1 we obtain M2 from
M1. This is visualized in Figure 4.2. Using this insight we can define operators on mechanisms

g

m

Figure 4.2: A general operation on a mechanism can itself be visualized as a section of
mechanism to be added or subtracted from the structure, combined with possible parametric
changes to any of the shared elements.

in the following way:

Definition 2. An operator ϕ :M→M is a transformation that maps a mechanism to another
mechanism

Armed with this definition we can now determine the meaning of ∆M :

∆M = [ϕ : ϕ (M1) = M2] (4.3)

In words: The difference ∆M between two mechanisms M1 and M2 is given by the operator ϕ
which maps M1 to M2 such that M2 = ϕ (M1). This gives a nice interpretation to the question
posed by Figure 4.1: Finding the mechanism with increased fitness means finding the right
operator to apply.

As shown in chapter 3 a mechanism is represented as the combination of a labeled graph
defining the structure, and a list of parameters of the elements in the graph. The graph
structure is discrete, while the parameters are continuous. As a consequence operators are also
described as labeled graph structures, fundamentally they describe pieces of mechanisms to be
connected to or removed from the mechanisms. In the special case where the structure of the
mechanism remains the same the operators reduce down to parametric maps, which can be
represented in a much simpler way.

Inverse operators also exist for every operator i.e. ϕ−1 ◦ ϕ = ϕI where ϕI is the identity
operator: ϕI (M) = M . A trivial example is the operation of adding a link, where the operation
to remove that link is its immediate inverse.

4-1-3 Operator representation

To utilize the operators in practice we need to be more specific about their representation. An
operator ϕ can be represented as a chain of possible parameterized operations on the mechanism
representation, of which we can identify the following fundamental base types for a mechanism
exploiting the fact that they are described as labeled graphs.

J.A. Westra Master of Science Thesis

4-1 Introduction 33

− {ϕG} The set of canonical graph operators for labeled graphs [49]: add a node, remove a
node, add an edge, remove an edge, relabel a node, relabel an edge.

− ϕp The parameter point mutation

We can use this operator base to define the general structure of a mechanism operator. Note
that the order of the operators is important. For example we can define an operator ϕl that
adds a link with a hinge connection in the following way: first add a link (vertex), add the
parameters for the link, add a hinge connection for that link (edge) and then add the parameters
for that hinge connection:

ϕl = ϕ2
p

(
ϕe

(
ϕ3
p (ϕv (. . .))

))
= ϕ2

p ◦ ϕe ◦ ϕ3
p ◦ ϕv (4.4)

The symbol ◦ represents the ordered composition of the operators as shown in equation 4.4.
For notational simplicity the superscript on the parameter mutation indicates the number of
chained parameter mutations. This composition of operators can be visualized as a chain of
base operations as shown in Figure 4.3.

φ
v

φ
p

φ
e

φ
p

Figure 4.3: A chain of base operators defines the operator to add a link ϕl, each vertex in
this chain represents an in-between mechanism representation.

A note on crossover

Crossover in an evolutionary algorithm is the recombination of sections of the representation
between two members of the population, essentially mixing both representations together. In
contrast to generating a mutator operation which is only a function of a single mechanism a
crossover operator generator is a function of two mechanism representations.

It is possible to represent any crossover event as a general operator so it is not necessary
to explicitly include them here from a theoretical viewpoint. Studying crossover operators is
however of great interest for further research.

While crossover has been shown to be possible for mechanisms [19] it’s effectiveness suffers
from the linkage problems, the behavior of the parent mechanisms that makes them successful
is not preserved. A good example of this is shown in Figure 1.5. For this reason only mutations
are considered here.

4-1-4 Complexity measure

We have obtained a description for ∆M , but still no ability to quantify and compare these
differences explicitly. Logically an operator that does a lot of modifications should result in a
larger ∆M than one that only does a few. By applying concepts from information theory we
can quantify this more specifically.

To quantify the complexity of a mechanism I propose the following definition:

Definition 3. The complexity measure c : M → R≥0 is a function that for each mechanism
assigns a positive real valued number. It is equal to the self-entropy of the mechanisms repre-
sentation

Master of Science Thesis J.A. Westra

34 ROSE: Reduced Operator Space Evolution

The self-entropy [60] is given by:

c (M) = − ln (p (M)) (4.5)

Where p (M) is the probability of this particular mechanism randomly occurring on it’s repre-
sentation.

In other words: the complexity of the mechanism represents the log-inverse of the odds of
the mechanism to occur when randomly generating mechanisms. This definition of complexity
has an important corollary: changing the base of the representation can increase or decrease
the complexity value of a mechanism. This happens because modifying the base can exclude
or include possible mechanism structures, modifying the probability p (M).

We can obtain an explicit form by calculating the probabilities. The probability of a mech-
anism occurring randomly is given by the multiplication of the probability of each of it’s
elements:

p (M) =
∏
i

p (Mi) (4.6)

The complexity of the mechanism is given as the negative logarithm of the probability, using
equation 4.6 for the probability of the mechanism:

c (M) =− ln (p (M))

=− ln

(∏
i

p (Mi)

)
=−

∑
i

ln (p (Mi)) (4.7)

This means that the complexity of a mechanism is the sum of the complexity of it’s parts. The
exact probability p (Mi) of an element occurring technically depends on factors such as the
bit-depth of the representation. But since it is a constant multiplication factor that is identical
to every parameter and every mechanism, we can filter it out. We care about the about the
comparative complexity between mechanisms rather than the exact numerical value.

If we assume pf is the probability of randomly drawing exactly one value for the parameter
from a uniform distribution1, which is a shared constant factor between all elements. Then an
element’s probability is determined by it’s degrees of freedom n, as given by table 4.1.

p (Mi) =
∏
n

pf = (pf)n (4.8)

if a parameter has n degrees of freedom then (pf)n is the probability of drawing that parameter.
This results in the following equation for the mechanism complexity:

c (M) = −
∑
i

ln
(
pni
f

)
= − ln (pf)

∑
i

ni (4.9)

1When using double-precision floating-point representation and every number is equally likely pf ≈ 2−64

J.A. Westra Master of Science Thesis

4-1 Introduction 35

Element Degrees of freedom

Ground 0

End-effector 0

Mass 3

Hinge 2

Spring 6

Torsion spring 4

Motor 2*

Table 4.1: The amount of parameters required to fully describe particular elements are the
degrees of freedom of the element. Note that for the degrees of freedom we only care that the
connection exists, not what two masses it connects: the connection is guaranteed to always
be between two masses that already exist in the structure and these are already counted.
The motor is a special case, it has two degrees of freedom but also an associated controller
object. The controller has it’s own representation and degrees of freedom which adds more
complexity to the mechanism. If no controller is added, a motor simply acts like a hinge in
every way.

We don’t care about the value of pf , but note that it is by definition smaller than one, so
that ln (pf) < 0. We can drop this negative constant and cancel out the minus signs to get a
simplified complexity equation for the mechanism:

ĉ (M) =
∑
i

(ni) (4.10)

The mechanism complexity from definition 6 is, apart from a constant factor − ln (pf), equal
to the sum of the degrees of freedom of it’s elements if every possible parameter permutation
is assumed to be equally likely.

From the definition of mechanism complexity we can also infer that there is a minimal
representable mechanism. This minimal mechanism is defined as:

Definition 4. The minimal mechanism M̂ ∈ M is defined as the (possibly not unique) mech-
anism with the lowest complexity score, such that for every M ∈ M on that representation it

follows that c
(
M̂
)
≤ c (M).

In an identical way we can define the complexity of an operator and the minimal operator.
Note that the minimal operator is a walk where all vertices are distinct, known as a path [49]. If
any vertex appears twice in a walk this means that somewhere along the line two base operators
acted as each others inverse and canceled out, which means that a shorter walk is possible and
such an operator is not minimal.

4-1-5 Distance metric

Using the complexity measure we can finally put a number on ∆M , this number can actually
be interpreted as a (pseudo) distance metric. From the mathematical definition of a metric
space [61] we obtain the properties that are required in order for a distance metric:

Master of Science Thesis J.A. Westra

36 ROSE: Reduced Operator Space Evolution

The mechanism distance metric is defined as a function d : M2 −→ R≥0 that maps two
mechanisms into a positive real valued number such that:

− The distance from a mechanism to another mechanism is than zero d (Mi,Mj) > 0, Mi 6=
Mj

− The distance from a mechanism to itself is exactly equal to zero d (Mi,Mj) = 0, Mi = Mj .

− The distance satisfies the triangle inequality d (Mi,Mj) + d (Mj ,Mk) ≥ d (Mi,Mk)

− The distance satisfies d (Mi,Mj) = d (Mj ,Mi).

Note that we can identify the following relation between Mi and Mj :

Mi = ϕ̂j
i (Mj) , ϕ̂j

i ∈ Φ (4.11)

Where ϕ̂j
i is the minimum complexity operator which, when applied to mechanism Mj , results

in mechanism Mi. We can use this relation to define a distance measure in mechanism space:

d (Mi,Mj) = c
(

ˆ
ϕj
i

)
(4.12)

Where c (ϕ) is the complexity of the operator ϕ, again given by the self-entropy of the operator
representation. Intuitively it scales such that mechanisms which require more operations to
turn into eachother are further apart than mechanisms which are closer. It satisfies the relation
d (Mi,Mj) = 0, Mi = Mj as ϕj

i = ϕI if Mi = Mj and ϕI by definition has a complexity of zero

as it is an empty operator. Similarly it satisfies d (Mi,Mj) > 0, Mi 6= Mj since c
(

ˆ
ϕj
i

)
= 0 if,

and only if Mi = Mj .

The triangle inequality also holds, the minimum operator represents the shortest possible
chain of operations between two mechanisms. Any vertices not on this path require additional
operations to reach and as such d (Mi,Mj) + d (Mj ,Mk) ≥ d (Mi,Mk). This follows from the
close relation to the edit distance of graph spaces and proof is given in e.g. [ref].

That leaves the final requirement d (Mi,Mj) = d (Mj ,Mi). This requirement holds if c (ϕ) =
c
(
ϕ−1

)
for all ϕ ∈ Φ, which is not inherently the case for all possible operator sets: it is easy

to imagine a destruction operator with no parameters which takes any existing mechanism and
returns an empty mechanism. This means that when designing an operator some care should
be taken that the requirement c (ϕ) = c

(
ϕ−1

)
holds when using the distance metric in a strict

sense. In practice this distinction is of lesser importance and the resulting pseudo-metric is still
very useful. The base set of section 4-1-3 satisfies this requirement.

Remember from definition 6 that the complexity measure is dependent on the set of base
operators Φ selected. This has an important implication: By selecting a different set of base
operators, mechanisms can be moved closer or further away from each other.

4-2 Dual representation using operators

It is possible to use the operators to represent mechanisms in the form of deltas on some
predefined mechanism structure by applying equation 4.3.

J.A. Westra Master of Science Thesis

4-3 Mechanism space 37

Mapping the mechanisms onto an operator domain has some distinct benefits, it lets us
analyze the resulting space, map evolutionary algorithms and reinforcement learning algorithms
to pseudo-random walks on this graph and it lets us bound the search space in easily understood
ways.

To begin we need two definitions:

Definition 5. The domain ΩΦ of a set of operators Φ is defined as the subset of mechanisms
ΩΦ ⊆ M where, for any pair of mechanisms Mi,Mj ∈ ΩΦ, there exists an operator ϕj

i ∈ Φ

such that Mi = ϕj
i (Mj).

Definition 6. Given an operator ϕ ∈ Φ the associated minimal operator ϕ̂ ∈ Φ is defined as
ϕ̂ = arg min c (ϕ) , subject to ϕ̂ (M) = ϕ (M), where c (ϕ) is the complexity of the operator.

The domain ΩΦ corresponding to a set of operators Φ can be visualized as the slice of
the larger set of all mechanisms that is interconnected by that particular set of operators.
This is closely related to the notion of graph connectivity from section 2-4-2: if we map all
mechanisms as vertices to an infinite graph where the operators Φ are the edges there will be
a single connected embedded subgraph, the vertices of this subgraph span ΩΦ.

Lemma 1. Given a set of operators Φ with domain ΩΦ ⊆ M, any mechanism M ∈ ΩΦ can
be represented by the unordered pair {ϕm,Ms} of a fixed seed mechanism Ms ∈ ΩΦ and corre-
sponding representational operator ϕm ∈ Φ

Proof. The result follows immediately from the definition of the domain ΩΦ by specifying that
Mj = Ms.

Lemma 2. A mechanism M that can be represented by an operator and seed mechanism pair
M (ϕm,Ms) can be minimally represented by a minimal operator and minimal seed mechanism

pair M
(
ϕ̂m, M̂s

)
Proof. By definition a minimal operator ϕ̂ exists for every operator ϕ if min c (ϕ) exists. From
the definition of c (ϕ) we note this is the case for every ϕ ∈ Φ. As by Lemma 1 Ms can be
chosen freely we can simply specify it to be equal to M̂s

The resulting structure is a type of labeled graph known as a directed walk [49]. An
example of this parallel encoding is shown in Figure 4.4. This parallel encoding is important
since it is these walks that the evolutionary algorithm explores in an immediate sense. This
structure allows us to gain intuition on deception in the operator based representation: The
optimization problem is deceptive if there exists no path ϕS

M ∈ Φ from the starting mechanism,
to the optimal mechanism, for which the vertices are traversed on order of increasing fitness.

This has an interesting result, changing the operator base will change this path, which
directly affects deception in the search space.

4-3 Mechanism space

4-3-1 Definition

The set of possible mechanisms M that can be encoded by a specific representation can be
considered a space. Where a mechanism represents a single unique point in this space, and
operations ϕ on them represent transformations.

Master of Science Thesis J.A. Westra

38 ROSE: Reduced Operator Space Evolution

g

1H

gg

1H

2H

2m

1m
1m

1K
M

φ

M
φ

S M
φ
i

φ
j

φ
k

Figure 4.4: The mechanism M (right) can be represented by the operator ϕM on a base
mechanism S (left): M = ϕM (S). The operator ϕM can be expanded into any suitable
choice of operator base. In this example ϕM = ϕk ◦ ϕj ◦ ϕi where ϕi adds the mass m2, ϕj

adds the hinge connection H2 and ϕk adds the spring connection K1.

The algorithm is effectively searching through this mechanism space, which contains all
possible mechanism solutions given this specific encoding. Evaluation of a mechanism is the
mapping of a point in mechanism space onto a corresponding point of the fitness space, which
is spanned by the fitness values of all possible mechanisms for this specific problem. There is
a single, but not necessarily unique, fitness value associated with every point in mechanism
space. As it is likely that the encoding does not capture every possible mechanism, only a
subset of the fitness space is explored.

An encoding provides a base for the mechanisms and allows them to be described with a
coordinate system (parameters), but the mechanism itself exists independently of the encoding;
the mechanism can be transformed from one representation to the other2 without changing it.

The set of all mechanisms in combination with the distance measure defined in section can
be viewed as a space. This leads to the following definition:

Definition 7. Mechanism space M = {M, d} is a metric space which consists of the set of all
mechanisms M and the mechanism distance measure d :M2 −→ R≥0.

4-3-2 Structural representation

A mechanism consists of both a structural and parametric element, by setting the mechanism
structure fixed we obtain the following special case for operators:

Theorem 1. Let Pi be the parameter function belonging to mechanism Mi ∈ M, and Pj the
parameter function belonging to mechanism Mj ∈ M. If Mi is structurally identical to Mj,
i.e. their graphs Gi, Gj are isomorphic, the operator ϕ : Mi →Mj can be reduced to a bijective
numerical mapping ϕn

P : Rn → Rn.

2Of course keeping in mind that the mechanism must exist within the intersection of the space spanned by
both representations.

J.A. Westra Master of Science Thesis

4-3 Mechanism space 39

Ms

M10M11M12

M20M21M22M23M24

V̂24

V̂20
23

Increasing C(M)

1

Figure 4.5: A slice of mechanism space defined as a rooted graph structure starting at the
seed mechanism Ms, the edges represent the base operators used to represent transformations
in this space. The vertices represent fundamental structural mechanism types. The opera-
tors transform one mechanism into another. The amount of ’hops’ required to go from one
mechanism to another, weighted by the complexity of those hops, is the mechanism distance
d (Mi,Mj).

This result is particularly notable since operators in general are not bijective.

By separating the parameter assignment function P from the mechanism representation the
parameter mutations ϕp can be ignored. By additionally specifying a complexity bound η such
that c (M) < η for all M ∈ M the space becomes finite in size. It is possible to construct and
visualize that part of the mechanism space itself as a graph structure and gain insight in what
it looks like.

As the minimal seed mechanism M̂s is by definition the minimum complexity mechanism
allowed by the representation, any operations on it can only increase the complexity. Setting the
minimal seed mechanism at the root of the graph, each node represents an allowed structural
variation of a mechanism (i.e. independent of the parameter values) while the edges represent
possible operators that are applied on the mechanism. This is visualized by Figure 4.5. The
depth of the graph is the level of complexity of the node as given by the complexity function
c (M) up to η.

The structural operators represent paths from mechanism nodes to other nodes in this
representation, while the parameter variations are internal to the nodes in this graph. A
theoretical maximum fitness value for each of these nodes exists, but in practice only an estimate
of this fitness value can be obtained.

The nodes are natural to the space, not to the operators or the algorithm, the nodes always
exist. Structural operators provide the paths between the nodes, showing the possible traversal
options for an optimization algorithm. The shortest path traversal between two mechanisms Mi

and Mj is equal to the mechanism distance d (Mi,Mj), which can be clearly visually identified
in this graph structure.

Master of Science Thesis J.A. Westra

40 ROSE: Reduced Operator Space Evolution

s

Figure 4.6: A simple evolutionary algorithm can be visualized as a walk through mechanism
space. At every vertex surrounding vertices are sampled randomly, the vertex showing the
most promise will become the new base for further sampling. Dotted nodes and paths are
unexplored. Arrows represent applied operators. Clearly an evolutionary algorithm represents
a stochastic exploration of the mechanism space graph, resulting in a subgraph of that space.

4-3-3 Operator space projection

We can exploit the dual representation of mechanisms and operators presented in section 4-
1-3 to reduce the search complexity. by formulating a good choice of operator base Φ the
mechanisms can be projected from their representation onto an operator domain ΩΦ ⊆ M
with desirable properties.

Projecting a problem onto a simpler parametrization leads to an easier optimization algo-
rithm since (1) less parameters need to be found and (2) deception is reduced. If the projection
preserves all the desired solutions this can be achieved without loss.

Nodes which are not connected and parameter values that are not reachable will be ignored
completely by the optimization algorithm. Additionally, shortcuts in the mechanism space
can reduce deception. Figure 4.7 illustrates how introducing these shortcuts can simplify the
optimization problem.

A run of an optimization algorithm is a path through this space, where it attempts to guess
the maximum fitness at each node it passes through, and picks nodes to ’survive’ based on
their fitness value.Because the graph nodes and their maximum fitness values are persistent
when using the same objective every run of the algorithm explores the same set of nodes, even
when using a different set of operators Φ∗ 6= Φ. This makes it possible to compare two different
algorithms and their effectiveness and fundamentally allows the accumulation of knowledge
about mechanism space. This provides a useful set of meta-heuristics for algorithm analysis.

The building blocks processed by the evolutionary algorithm can be identified as the blocks
preserved by operators. This provides a fundamental link between the schema theorem and
operator structure. Operators introduce higher levels of abstraction and it is these higher
abstractions that handle the linkage between the different elements in the mechanism represen-
tation. Because the operators handle the linkage problems and not the representation multiple
differing linkage issues in the representation can be handled simultaneously.

This is a generalization of using parameter map functions to generate operators as in Section
3-2 to to the mixed continuous-discrete case. Rather than capturing just parametric invariants
for numeric parameters, structural invariants such as connectivity can be captured as well.

J.A. Westra Master of Science Thesis

4-4 Reduced Operator Space Evolution (ROSE) 41

Base 1
All nodes reachable

Base 2
Some nodes unreachable

New shortcuts introduced

Figure 4.7: A change in operator base can be visualized as a change to the way the vertices
(representing mechanisms) are connected. If the domain of the new operator base is smaller
than before there will be vertices that become disconnected. The change in base will also
modify the distance between the vertices. Both these properties can be highly beneficial for
optimization as they fundamentally change the behavior of the evolutionary algorithm.

4-4 Reduced Operator Space Evolution (ROSE)

4-4-1 Motivation

We can draw an important conclusion from the structure of the search space derived in the
previous sections: the operators define the behavior of the evolutionary algorithm and the
preserved schemata. The actual representation of the mechanisms is only relevant to the
building blocks processed by the algorithm insofar the representation informs the operators.

Let’s illustrate how we can use this to our benefit with a simple example. Assume we have
a beam structure such as represented in Figure 4.8: a beam that has to connect two points.
During previous design operations the beam itself is already constructed, using a model that
takes each separate link into account. But, there is a flaw: the end-point position is off by
just a bit. To obtain the optimal solution the optimization algorithm will have to modify the
parameters of every element such that the end-point is placed exactly where we want it to be
while preserving the relative structure, a clear linkage problem.

d

Figure 4.8: The beam structure is off by just a little bit as the endpoint is a vertical distance
d from the desired endpoint, it has to be scaled and rotated as a whole to be just right.

The effect when using point mutations is dramatic: every single element will have to be
modified individually, yet doing this will compromise the structure of the beam. Because
performance on the other objectives also has to be maintained the result is that the algorithm
will struggle to find the right solution because it tries to get there by modifying each individual

Master of Science Thesis J.A. Westra

42 ROSE: Reduced Operator Space Evolution

link one coordinate at a time. The model representation is not conducive for this particular
optimization task.

Yet something different occurs if we include a new operator to the base set Φ, an abstract
operator that modifies every coordinate parameter in the system by a scaling factor s and
rotation around the ground connection θ. This operator can be defined on the base as the
combination of a large amount of point mutations, identical to the amount of links:

ϕT (s, θ) =
⊙
i

ϕp (4.13)

Where the composition
⊙

is over all the parameters of the mechanism, in any order.

The complexity of this operator is only 2, as the operation can be fully described by two
parameters. A much simpler operator compared to the complexity of 22 for the full combination
of point mutations that it contains. The operator has such a comparatively simple description
as it is generated from a parameter function which captures a fundamental parameter invariant,
the relative beam structure.

We can visualize what happens in the mechanism space graph structure as shown in Figure
4.7. If we introduce this abstracted operator the correct solution is suddenly only one operation
removed from the current solution, the abstract operator introduced a shortcut in the search
space that can be used by the evolutionary algorithm; this shortcut introduced a path of
increasing fitness from the current structure to the optimal solution. In order to achieve this
we did not actually have to fundamentally modify the representation of the beam at all. It is
fully contained within the abstract operator of equation 4.13.

In the light of this insight I propose a novel algorithm based around the operators, their
representation and operator constraints. An algorithm that exploits the dual representation of
mechanisms: Reduced Operator-Space Evolution (ROSE).

Instead of the usual point mutations and crossover design operators that represent actual
design choices, ignoring the underlying representation except for the eventual implementation.
These higher level operators represent combinations of the base operators. This set of operators
is defined by a set of constraints on the full possibilities given by the base operators by only
allowing specific combinations. As a consequence this abstract set is always some subset of the
possible operators spanned by the original base. This leads to an overall reduction in operator-
and algorithm complexity.

The constraints can be used to shape the search space, because any mechanism can be
represented using operators, constraints on the mechanism can be represented as constraints
on those operators. This provides an easy way to implement prior knowledge by shaping the
domain ΩΦ with the operator set. It is for example possible to select operators such that any
mutated mechanism will always have one degree of freedom [50, 62]. Such an approach could
inform a possible implementation of ROSE.

The operators represent a connection map of the mechanism space nodes. I.e. the nodes of
the mechanism space, the structures, are independent of the choice of operators. But picking
operators defines the set of edges of that space, it determines how the mechanism structures
are connected and these connections ultimately determine how an optimization algorithm in
this space behaves.

J.A. Westra Master of Science Thesis

4-4 Reduced Operator Space Evolution (ROSE) 43

4-4-2 Description

The algorithm can be divided into three phases, initialization, local fitness estimation, and
search space exploration.

Initially the algorithm spreads out randomly from a seed mechanism using the operators,
this mechanism can be the minimal mechanism, but could just as well be a mechanism already
close to the desired design. The path from the seed mechanism to the initial structural nodes
is mapped out.

The nodes are optimized using a local optimization strategy, in this case an evolutionary
algorithm. This leads to a fitness estimate for every explored node. This is similar to speciation,
where the species are determined as the unique structures.

Search space exploration occurs when the local populations are considered to be sufficiently
optimized. A generator function generates operators to apply to the most successful nodes that
connect to new structural nodes, these nodes are checked for isomorphism with existing nodes
to prevent duplicates. If a new node is a duplicate the old node will simply be reactivated. The
worst performing nodes of the original population are deactivated so the algorithm maintains
the same amount of active nodes at all times.

The end result is a ranked map of the explored section of mechanism space. A graph
where each explored node contains the best discovered performing mechanism for that par-
ticular structure, the edges of that graph represent the operator paths and provide relational
information.

We can identify the following two requirements on top of the usual evolutionary algorithm
requirements:

− Operator set

− Operator generator function

Note that the representation model is no longer important to the effectiveness of the algorithm,
as long as the operators can process the model.

4-4-3 Operator generator function

To use the abstract operator set in an evolutionary algorithm a random generator function is
required. It is a function that, given a mechanism, generates an appropriate random operator
from the defined set. To implement such a function an operator will be generated in accordance
to a set of predefined rules. These rules enforce the parametric constraints as well.

This puts hard bounds on the possible set of resulting operators rather than on the mech-
anisms explicitly. Because the operator and mechanism structure are so tightly coupled this
also results in implicit constraints on the mechanism search space, many nodes are made un-
reachable by the algorithm because the paths to them are removed. This removes the need
to explicitly check for connectedness, groundedness and other necessary properties that are
required for the mechanism to be functional which eat up additional computation time.

By default all paths are closed off, picking operators means choosing which paths to open
up. Because the operators are higher level their effect is easier to visualize and design. It is
also possible to avoid linkage problems by picking the right combinations of operators, as the
linkage in the mechanism dna can be reflected as linkage in the operator set. As is illustrated
by the scaling operator of the beam structure example.

Master of Science Thesis J.A. Westra

44 ROSE: Reduced Operator Space Evolution

4-4-4 Relation to deception, linkage and redundancy

Reduced Operator-Space Evolution can solve the fundamental problems in the system in the
following ways:

− Linkage: Linkage can be taken into account by the operators, but it is not forced into
the model itself. This means that using a single model a problem can be solved where
for one of the objectives the linkage problem occurs, while for others it does not.

− Deception: Deception can be countered by the right choice of operators, abstract opera-
tors can create paths of increasing fitness to the solution. Additionally, by always having
a large amount of active nodes and locally optimizing these it is also much less likely to
get stuck in a local minimum. Every node represents a variation, and the large amount
of nodes means large variance is maintained throughout optimization which is shown to
be beneficial to guard against deception [41].

− Redundancy: Redundancy can be avoided in parameter space by using parameter func-
tions to contract those areas of the parameter space that the behavior is invariant to.
Additionally, the search space can be effectively bounded by maintaining desired proper-
ties such as connectivity through the operators as well by making sure these properties
are structural invariants of the used operators.

4-5 Conclusion

A parallel representation of mechanisms using operators was developed, this provides more
insight in the workings of the optimization algorithm and, because it is persistent, allows an
in-depth definition and analysis of the problems encountered applying automated design using
a graph-based representation.

This analysis led to the design of a novel operator based evolutionary algorithm called Re-
duced Operator-Space Evolution (ROSE) to solve the automated design optimization problem
while bypassing the linkage and deception problems. This is achieved by designing operators
which preserve useful properties of the mechanisms, such as the relative structure, connectivity
or degrees of freedom. These properties are invariant to those particular operators. The search
space is projected onto the domain of these operators, which is effective in dealing with linkage
problems represented by the invariant property.

By splitting the search space further into parametric and structural optimization and in-
jecting novelty into the search, a map of the entire search space is built and evaluated. This
leads to an overall collection of solutions ranked on the objective and mapped across the space.
This way meta-heuristic information is obtained and a quality diversity collection is created.

J.A. Westra Master of Science Thesis

Chapter 5

PyMechs: The Mechanism Library

Figure 5.1: How standards proliferate, from xkcd.com (CC BY-NC 2.5 license) [63]

The choice to develop another new planar multibody simulation engine among many dif-
ferent existing implementations requires some explanation, after all it is of no use to reinvent
the wheel as aptly illustrated by xkcd in Figure 5.1. Initially I investigated the option to use
existing simulation libraries as well as matlab implementations developed by previous students.
Takeaways

Yet while existing planar engines such as Box2d are fast and fully featured, they generally
use approximation methods to obtain a result which can cause problems as the energy present
in the system will not be constant. They have overhead that will not be used such as collision
detection, and creating an interface adaptor for the mechanism representation and controllers
to an existing library to get the right data in and out is also a time consuming process with no
guarantee of payoff.

Existing matlab implementations turned out to instead not be fully featured enough, were
hard to extend and incompatible with other libraries and software such as python graph-tools.
Due to the nature of matlab the simulations were also slow and the lack of proper object

Master of Science Thesis J.A. Westra

46 PyMechs: The Mechanism Library

oriented programming in matlab meant the code is very hard to maintain and not particularly
modular. This limits the potential significantly.

By developing a custom library the library can be deeply tied to both the mechanism
representation and the evolutionary algorithm.

Finally, developing this library has proven a valuable learning experience.

5-1 Design goals

As it is expected that the evolutionary algorithm will require many calls to the simulator
it is essential that this simulator is computationally efficient, multi-threadable and accurate.
Additionally, the code should be easily possible to extend to mechanism design with new types
of components. Finally, each element should be modifiable independently of the others so many
different controller types, evolutionary strategies and mechanism types can be tested with only
minor modifications to the same core library.

From these requirements it follows that a modular approach would be the most successful.
Where the heavy lifting is done by a c++ physics solver to obtain optimal performance, while
the analysis, algorithm design and visualization is done from python to provide it’s usability.

5-2 Object-based representation

This section provides a quick overview of the core objects of the library and their main purpose.
Note that every object has a direct relation to the description of mechanism space given by
chapter 4. To keep this section concise only the objects that provide a python interface are
mentioned. Detailed documentation is available at https://github.com/kooswestra/pymechs.

5-2-1 DNA

The Dna class is the software form of the graph representation of the mechanisms. It stores
the labeled graph structure and the set of parameters. In addition to being a data structure
it provides helper functions to determine if the dna is valid according to specific criteria. The
dna is checked on construction to be valid as a representation, but note that dna of an invalid
mechanism structure (e.g. containing disconnected elements) may be defined as long as the
representation of that structure is complete and internally consistent.

5-2-2 Mechanisms

The Mechanism class is the core object of the library. Where dna objects represent the geno-
type, mechanism class objects represent the phenotype. When constructing a mechanism a
dna object has to be provided, the mechanism takes ownership of the dna, applies mechanism
validity checks such as connectivity, and stores it. A translation is made from the encoding
to obtain the links and connections that make up the structure. As a final step the initial
conditions and equations of motion of the mechanism structure are assembled.

The resulting mechanism object is a container that stores all the individual elements such
as links and hinges but also the mechanism state and equations of motion. It presents methods
that can be called for analysis, simulation and animation.

J.A. Westra Master of Science Thesis

5-2 Object-based representation 47

Mechanism

+ dna: DNA
+ fitness: Vector<double>
+ connections: Vector<Connection>
+ state_equation: StateEquation
+ solver: Solver
+ controllers: Vector<Controller>

+ simulate(time, steps):
+ evaluate(Objective, time, steps):
+ assignControllers(Vector<Controller>):
+ animate():
+ plot():
+ graph():

DNA

+ incidence_matrix: Matrix<int>
+ edge_labels: Vector<int>
+ masses: Vector<Vector<double>>
+ parameters: Vector<Vector<double>>

+ isConnected(): bool
+ isGrounded(): bool
+ isDynamic(): bool
+ toGraph(): networkx graph

Figure 5.2: Structure of the python accessible mechanism and DNA classes

Note that once constructed the structure of the mechanism object is not modifiable. This is
in keeping with the idea that it should only be possible to get a new mechanism when obtaining
a new dna object. It is however possible to assign a different controller object to a mechanism
motor after construction.

The StateEquation class is an internal helper class that is always part of a mechanism
object and represents the dynamics model of the equations of the mechanism. It translates
the elements and connection logic of the mechanism into the mathematical objects that are
required to solve for the trajectory, such as the constraint Jacobian or the equations of motion.

An overview of the structure of the mechanism class is shown in Figure 5.2.

5-2-3 Operators

Operators are defined by the Mutator1 class. They represent instructions acting on dna object.
An operator can be generated and then applied to a dna object to construct a new, modified,
dna object. They have their own internal representation given by the series of base operators
and corresponding parameters as described in section 4-1-3.

Several wrappers around the mutator class are provided that implement specific types of
operations that can be easily identified, such as adding a link. These represent higher level
abstractions of base operators as described in section 4-3-3. It is possible to implement new
operators in a similar way. A complete list of the implemented operators and an implementation
example is given in the appendix. These operators also implement a generation function, which
allows the random generation of the operators for use with an evolutionary algorithm. I.e.
randomly add a link, mutate a random parameter, etc.

5-2-4 Controllers

The controller class provides an interface to connect controllers to the mechanism motors, it
is a virtual class and as such an implementation has to be chosen or provided. Any controller
model can inherit from this class and will work with the library given that it implements
the controlOutput method, which is the function given by equation 3.1. Both a PID controller
model and the feedforward controller model used later on in section ... are provided as example
implementations.

1I have opted to use the term Mutator for the class name rather than Operator because the latter has too
much overlap with the protected operator keyword in c++. Mutator is an unambiguous alternative.

Master of Science Thesis J.A. Westra

48 PyMechs: The Mechanism Library

5-2-5 Objectives

Similar to the controllers the objective class is an interface to calculate the fitness function. An
implementation has to be provided, the objective functions for the tests used in this thesis are
included with the package.

5-2-6 Search graph

As shown in section 4-3 an automated mechanism design algorithm can be represented by a
rooted, directed graph structure. Where the nodes represent mechanism structural variations
and the edges represent structural operators. This graph structure is implemented as the
FitnessGraph class. It provides a method to visualize the graph structure and stores the
explored portion of mechanism space.

In line with the theoretical structure of the mechanism space, isomorphic mechanism graphs
are considered identical structures and are grouped together in a single node. Inside this node
a local population exists which can be modified by appropriate parametric operators. This
local structure is implemented in the FitnessNode class.

To allow exactly reproducible results the evolution section of the library has a function to
set the seed of the random generator used for the algorithms, parameters and other random
numbers by the evolution.

5-3 Physics engine

In order to simulate a mechanism the equations of motion of the mechanism have to be de-
termined and numerically solved. Fundamentally the equations of motion for solid bodies are
given by the Newton-Euler equations, where for simplicity the angular accelerations and acting
moments are added to the state and force vectors:

Mẍ =
∑

f (5.1)

Where x =
[
x1 y1 θ1 ... xk yk θk

]T
is a vector of the states of each of the k solid body

links present in the system. The equation is subject to a set of holonomic constraints Dn (x)
resulting in internal forces that are included in f . To determine the reaction forces we can
exploit the fact that the reaction forces are unable to add energy to the system. By applying
the principle of virtual power we can add these reaction forces to the equations of motion using
lagrange multipliers, which leads to the following relation:

Mẍ +
∂D

∂x

T

λ =
∑

f (5.2)

However, this adds the vector of n unknown variables λ representing the magnitude of the

reaction forces, with ∂D
∂x

T
representing the direction of those forces; this leaves the equations

of motion undefined as we now have k equations for n+ k variables. However, the constraints
define k additional equations that have to be satisfied. We can add the constraints on the
accelerations to the equation system in order to solve for ẍ.

J.A. Westra Master of Science Thesis

5-3 Physics engine 49

Using the chain rule for D (x) and noting that the constraints added by mechanism elements
are not directly dependent on time (scleronomic) we can calculate the first derivative of the
constraint equations with respect to time as:

∂D

∂t
=
∂D

∂x

dx

dt

=
∂D

∂x
ẋ = 0

Additionally, by noting that ∂2D
∂t∂x = ∂2D

∂x∂t if the constraint equations in question have continuous
2nd derivatives2we can calculate the second derivative as:

∂2D

∂t2
=
∂

∂t

(
∂D

∂x
ẋ

)
=
∂D

∂x

∂ẋ

∂t
+
∂2D

∂t∂x
ẋ

=
∂D

∂x
ẍ +

∂

∂x

(
∂D

∂t

)
ẋ

=
∂D

∂x
ẍ +

∂

∂x

(
∂D

∂x
ẋ

)
ẋ = 0 (5.3)

Isolating the terms containing ẍ results in the following set of k equations which represent
constraints on the accelerations:

∂D

∂x
ẍ = −

(
∂

∂x

(
∂D

∂x
ẋ

)
ẋ

)
(5.4)

Combining equation 5.2 with equation A.4 results in the following system of n+ k variables in
n+ k equations for the equations of motion:[

M JT

J 0

] [
ẍ
λ

]
=

[∑
f

−∂(Jẋ)
∂x ẋ

]
(5.5)

Where for simplicity J = ∂D
∂x is defined as the Jacobian of the constraints. In order to solve

this equation numerically we can recast the equation as a first order D.E. by setting v = ẋ
resulting in the following first order algebraic differential equation:ẋv̇

λ

 =

I 0

0

[
M JT

J 0

]−1 v∑
f

−∂(Jv)
∂x v

 (5.6)

We can reduce the form of this equation to significantly increase the computational efficiency:
note that the equation of motion given by equation 5.5 has a block structure where M specifi-
cally is not time dependent, as the mass is assumed constant throughout. As a consequence it
follows that M−1 can be precomputed, saving valuable computation time. In order to achieve

2This is a consequence of not allowing collisions, a collision constraint does have a discontinuity and special
care has to be taken in that case.

Master of Science Thesis J.A. Westra

50 PyMechs: The Mechanism Library

this we can solve the algebraic part of the algebraic differential equation by decomposing the
blockmatrix inversion into inversions of the submatrices to obtain explicit equations for λ and
ẍ.

By applying a LDU decomposition on the left hand side matrix, and noting that M is
invertible we obtain the following:[

M JT

J 0

]
=

[
I 0

JM−1 I

] [
M 0
0 −JM−1JT

] [
I M−1JT

0 I

]
(5.7)

This decomposition can easily be inverted to solve equation 5.5 in terms of the inverse of the
Jacobian and mass matrices:[

ẍ
λ

]
=

[
I −M−1JT

0 I

] [
M−1 0

0 −
(
JM−1JT

)−1

] [
I 0

−JM−1 I

] [∑
f

−∂(Jẋ)
∂x ẋ

]
(5.8)

Writing out the terms results in the following set of equations:[
ẍ
λ

]
=

[
M−1 −M−1JT

(
JM−1JT

)−1
JM−1 M−1JT

(
JM−1JT

)−1(
JM−1JT

)−1
JM−1

(
JM−1JT

)−1

][∑
f

−∂(Jẋ)
∂x ẋ

]
(5.9)

The bottom row of which gives the independent solution for λ:

λ =
(
JM−1JT

)−1
(
JM−1

∑
f − ∂ (Jẋ)

∂x
ẋ

)
(5.10)

And the top row the independent solution for ẍ:

ẍ = M−1

(∑
f − JT

(
JM−1JT

)−1
(
JM−1

∑
f − ∂ (Jẋ)

∂x
ẋ

))
(5.11)

= M−1
(∑

f − JTλ
)

From these equations we can immediately discern some useful properties:

− M is time independent and diagonal, as a consequence so is M−1, this means it is only
necessary to calculate it once for every mechanism simulation instead of for every time-
step. Since M is by definition a nonsingular diagonal matrix the inverse is trivial to
compute.

− Solving equation 5.11 really only requires solving equation 5.10 and applying a few matrix
multiplications. The result is a set of equations of which the linear system to be solved
with a costly matrix decomposition only has size n, in comparison to the complete 2k+n
system when solving equation 5.6. As solving a linear system scales computationally as
O
(
n3
)

this represents a significant performance gain when running numerical simulations.

− The matrix
(
JM−1JT

)
is positive definite, square and symmetric by construction since

the mass of an element can only ever be positive and larger than zero. This means
a Cholesky decomposition is always possible and the symmetry of this matrix can be
exploited to speed up computation further.

J.A. Westra Master of Science Thesis

5-3 Physics engine 51

− For a solution to exist
(
JM−1JT

)
has to be nonsingular. This can be understood in

simpler terms as the fact that the mechanism links should remain distinguishable at all
times: identical links in identical positions become indistinguishable, they can be freely
interchanged with no change to the system, causing a singularity in

(
JM−1JT

)
.

− It is the reaction forces that are solved numerically each time step. I.e. the simulation
has the following structure: Algebraically solve for the reaction forces at xn, subtract
these from the external forces f at xn, estimate xn+1 using the total force vector and
trivial M−1 and integrating, then refine the estimate of xn+1 by solving D (xn+1) = 0.

5-3-1 Assembling the equations of motion

In order to solve equation 5.11 for an arbitrary general mechanism we need to assemble M, D,
J,
∑

f and ∂J(D)ẋ
∂x ẋ automatically from the mechanism representation given by chapter 2-3.

We can directly determine from the Newton-Euler equations that the overall state of the
system can be defined in terms of the states of the K separate links xi = [xi, yi, θi]

T as:

x =

x1

x2
...

xK

 (5.12)

For link Li with state xi the mass matrix and it’s inverse are given by:

Mi =

mi 0 0
0 mi 0
0 0 Ii

 , M−1
i =

1/mi 0 0
0 1/mi 0
0 0 1/Ii

 (5.13)

The complete mass matrix and inverse mass matrix of the mechanism can be obtained by
placing the mass matrices of each of the K links present in the mechanism along the diagonal:

M =

M1 0 0 0
0 M2 0 0

0 0
. . . 0

0 0 0 MK

 , M−1 =

M−1

1 0 0 0

0 M−1
2 0 0

0 0
. . . 0

0 0 0 M−1
K

 (5.14)

The force vector can easily be constructed by elementwise concatenation of the forces affecting
each of the K links:

∑
f =

∑

f1∑
f2

...∑
fK

 (5.15)

While we don’t know what the full state looks like as the mechanism structure is variable, we
can already define the constraint equation for the nth constraint inducing edge element as a
function of the states of the two connected links:

Dn (x) = Dn (xi,xj) = 0 (5.16)

Master of Science Thesis J.A. Westra

52 PyMechs: The Mechanism Library

Every constraint equation has to be equal to zero, consequently we find the full set of constraint
equations by concatenation:

D =

D1

D2
...

DN

 = 0 (5.17)

We can also immediately calculate two derivatives for this constraint, the ones in terms of the
states of the connected elements. These are given by:

Ji
n =

∂Dn

∂xi
, Ji

n =
∂Dn

∂xj
(5.18)

because Dn is by definition only a function of xi and xj it follows that ∂Dn
∂xk

= 0 for k 6= i, j .
Using this relation the actual Jacobian for the nth constraint for a system with K states can
be obtained from the two relations of equation 5.18 as:

Jn =
[
01..i−1 Ji

n 0i+1...j−1 Jj
n 0j+1...K

]
(5.19)

Where Jn
i is the part of the Jacobian corresponding to xi and Jj

n corresponding to xj , 0i...j
represents a zero matrix of size 2 by 3 (i− j). The full Jacobian of the entire system with N
constraints and K states can then be obtained by the concatenation of each of the N Jacobians
given by equation 5.19:

J =

J1

J2
...

JN

 (5.20)

Finally we need to assemble the Coriolis terms ∂(Jẋ)
∂x ẋ. Applying 5.19 results in:

∂ (Jẋ)

∂x
ẋ =

∂

∂x

J1

J2
...

JN

ẋ1

ẋ2
...

ẋK

ẋ1

ẋ2
...

ẋK

 =
∂

∂x

Ji
1ẋi1 + Jj

1ẋj1

Ji
2ẋi2 + Jj

2ẋj2
...

Ji
N ẋiN + Jj

N ẋjN

ẋ1

ẋ2
...

ẋK

 (5.21)

Evidently only the states of the connected elements have a nonzero contribution to Jnẋ. Ad-
ditionally, for the nth constraint it follows from equation 5.16 that:

∂Jnẋ

∂xk
= 0 for k 6= i, j (5.22)

By combining this property with equation 5.21 we obtain a way to assemble the Coriolis term
for the entire system as a concatenation of terms belonging to the separate constraints:

∂ (Jẋ)

∂x
ẋ =

C1

C2
...

CN

 (5.23)

J.A. Westra Master of Science Thesis

5-3 Physics engine 53

Where:

Cn =
∂ (Jnẋi,j)

∂xi,j
ẋi,j (5.24)

In conclusion: we can assemble the equations of motion for the complete mechanism in an
elementwise fashion, if, for each element, we have at least the following definitions available:

For each link:

− The equation for the moment of inertia around the center of mass of the link.

For each constraint inducing element:

− The constraint (equation 5.16).

− The Jacobian of the constraint w.r.t. the states of the connected masses (equation 5.19).

− The Coriolis terms belonging to the constraint, in terms of the state of the connected
elements.

For each force inducing element:

− The force as a function of the state of the connected elements.

An example that shows how to define these equations for a rotational hinge joint which
connects two masses is given in appendix A-1. The moment of inertia for a rod is given by
mL2

12 , the inertia equation for more complex polygonal elements is derived in appendix A-2.

5-3-2 Numerical solver

The equations of motion given by equation 5.11 are solved for each timestep by using a Cholesky
decomposition implemented by the Eigen library [64]. This particular method was chosen
because it is computationally efficient, while more accurate than iterative solvers.

The result is integrated using a fixed-step explicit Runge-Kutta 4 method. This method is
chosen since it has much better stability and accuracy properties than for example fixed step
Euler integration at identical computational cost [65], while requiring no implicit solution for
vn+1. A fixed time step makes mechanism trajectories easily comparable; the scale of each
simulation is identical. The method is given by (for a fixed step size h, state vector x, time t
and first order O.D.E. ẋ = f (t,x)):

xn+1 = xn +
h

6
(k1 + 2k2 + 2k3 + k4)

tn+1 = tn + h
(5.25)

where:
k1 = f (tn,xn)

k2 = f

(
tn +

h

2
,xn +

k1

2

)
k3 = f

(
tn +

h

2
,xn +

k2

2

)
k4 = f (tn + h,xn + k3)

(5.26)

Master of Science Thesis J.A. Westra

54 PyMechs: The Mechanism Library

After the solution is obtained the error on the constraints is checked using equation 5.17, if the
error is too large as defined by the desired precision ε the state is corrected by taking a step of
Newton’s method to find x̂n+1 ≈ xn+1 such that D (x̂n+1) ≤ ε:

x̂n+1 = xn+1 − J+D (xn+1) (5.27)

Where the pseudoinverse J+ = JT
(
JJT

)−1
is used, as the Jacobian of the constraints is not

invertible.

5-3-3 Numerical stability

J+ exists only if the rows of J are independent [66]. This implies that the constraints on
the velocities must be independent. When JJT becomes (nearly) singular the solver becomes
unstable and the mechanism simulation stops and sets a failure flag. Note that increasing the
step size generally resolves this issue unless it is a true singular state of the system, which can
happen in mechanisms exhibiting exact symmetry.

A practical result of explicit integration is that the simulator is not particularly suitable
for stiff mechanisms which result in a stiff differential equation [65]. A simple temporary
workaround for stiff mechanisms is to decrease the step size if the simulation fails. Creating
a more stable numerical integrator based on an iterative solver method to perform implicit
integration would solve the stability problems for stiff mechanisms but such a solver is non-
trivial.

It is also important to mention that the solver is not optimized for sparse matrices, which
appear when building very large mechanisms.

However, both very large and stiff mechanisms are not considered to be suitable for the
task goals discussed in this thesis and as such solving these edge cases is not part of the current
simulator design goals. I invite anyone with the interest reading this to implement a sparse
and/or implicit physics solver.

5-4 Additional functionality

Not every mechanism in the mechanism space is functional, some will fall apart immediately
because they lack enough connections, some will fall into infinity because they lack a ground
connection, others cannot move. We can significantly reduce computation by discarding these
without having to do a costly evaluation by simulation them. the library applies these checks
on every mechanism that is constructed.

5-4-1 Sanity checks

Dna objects are checked for validity on construction. If the parameters, labels and incidence
matrix do not match up or are simply invalid an exception is raised. The same is done for
operator objects.

If negative parameters are provided for a parameter that can only be positive, such as the
spring constant of a spring, the constructor will use the absolute value of that parameter by
default. It is also possible to disable this behavior and raise an exception instead.

To prevent the algorithm spending costly evaluations on mechanisms which can be deemed
invalid each mechanism can be checked for the following properties on construction

J.A. Westra Master of Science Thesis

5-5 Program flow 55

− Grounded: Returns true if every element of the mechanism is connected with the ground
in a constrained way. It checks if the graph with spring edges removed is fully connected.
This prevents mechanisms with dangling or floating links.

− Connected: Returns true if every element of the mechanism is connected, excluding the
ground. This prevents mechanisms that consist of many different separate parts that do
not connect. It checks if the graph with ground node removed is fully connected.

− Dynamic: It is checked if the resulting mechanism has at least a single degree of freedom
available.

Trying to generate a mechanism that does not satisfy these three requirements will raise an
exception. These checks are enabled by default but can be disabled so it is still possible to
create such mechanisms if desired.

Other general warnings and exceptions with helpful feedback will usually3 pop up if a user
will try to do something that is not possible. For example when trying to animate a mechanism
without simulating it first or trying to assign a controller to a mechanism with no motors.

5-4-2 API

A method is provided to convert dna objects of the mechanism library to graph-tool [67] graph
objects as well as networkx [68] graph objects. These external Python libraries can then be
used to determine useful graph properties such as isomorphism and edit distance. The dna
graphs can also be plotted using the graph-tool toolbox. The full possibilities of these external
libraries are given by their respective documentations.

5-4-3 Storage

Methods are provided to store and read mechanisms, operators, and evolutionary space graphs
into json files on disk. This lets users easily store and load interesting mechanisms they or the
algorithm discovered.

5-5 Program flow

A script using the library can generally be broken down into two different types

− Construction and simulation of singular actuated mechanisms.

− The evolutionary algorithm, which uses the simulations and manages entire populations
of mechanisms.

Note that the evolutionary algorithm embeds the mechanisms.
The modular structure of the code is visualized in the schematic shown in Figure 5.3.

A mechanism is constructed once and many of it’s properties are precomputed, this logic is
only processed once. This provides a big benefit over the previous implementations, which
required many comparisons and memory allocations every run to rebuild the equations of
motion equations for each time step of the simulation.

3Not every possible issue is guaranteed to be handled, .

Master of Science Thesis J.A. Westra

56 PyMechs: The Mechanism Library

Core Optimization loop
While(fitness < desired) /

For(N Generations) Initialize population

DNA input
Mechanism

Class Constructor
(DNA)

Build State Equation

Build Connections
Build Elements

Jacobian of
Constraints

Mass Matrix
(static)Constraints Convective

Acc.

Get Initial Conditions

Simulation Loop
for(dt in t)

Evaluate Dk, Dkk
per constraint

(x4)

Update RHS matrix
Update RHS Vector

(x4)

Solve
(x4)Check constraints

Take RK4 Step

if(error > precision)
Update using

Newton-Raphson

Store state

Check system energy
levels

For Loop Each
individual in the

Population

Is grounded
Is connected
Is dynamic

X0

Force
Vector

State Trajectory
x(t)

Evaluation on
Objective FunctionGather fitness values

Fitness Based
Reproduction

Figure 5.3: Schematic of the program structure of the simulation of a mechanism.

J.A. Westra Master of Science Thesis

5-6 A few notes on computational optimization 57

5-6 A few notes on computational optimization

Because the library had to be particularly fast for relatively small mechanisms it has been
optimized using extensive profiling.

Some of the used practices include:

− Preallocation of memory, only relevant dynamic elements of matrices and vectors are
updated. In some cases only these elements are stored.

− Precomputation of sines and cosines of the state that are reused by different elements

− Minimization of copy operations and comparisons

− Minimization the amount the Jacobians and constraints have to be calculated

5-7 Conclusion

The goal was to design and build a modular library suitable for the evolution, simulation
and analysis of planar mechanisms. Both functionality and performance has been adequately
determined using testing and profiling. Python bindings are made available to increase the ease
of use and a set of example scripts is included with the package. . The full library is available
as a python wheel package and source code is available at [gitlab link] or on request from the
author of this thesis.

Master of Science Thesis J.A. Westra

Chapter 6

Results

6-1 Algorithm and simulator evaluation

6-1-1 Objectives

It is shown in Chapter 4 that the mechanisms can also be represented by a series of operators
and mapped onto a metric space. A novel quality diversity evolutionary algorithm based on
abstract operators is derived from the structure of this mechanism space: ROSE. This algorithm
is used to computationally design mechanisms for a pick-and-place task.

In Chapter 5 the necessary software to computationally explore the mechanisms and search
space was described and developed. High performance was required and this is put to the test
in a simulation performance benchmark in Section 6-2.

ROSE provides meta-heuristics to analyze the algorithm run, these are visualized and an-
alyzed in Section 6-3. since ROSE can be classified as a Quality Diversity algorithm [35] the
properties of the resulting solution space are analyzed in Section 6-3-1.

Finally the ROSE algorithm is also compared to previous iterations of automated mecha-
nism design algorithms in Section 6-4.

These questions will be treated separately using the example application of a 2D pick-and-
place problem.

6-1-2 Methods

6-1-2-1 Mechanism simulation benchmark

The double pendulum shown in Figure 6.1 is simulated for 10 seconds in 200 timesteps using
a naive Python implementation of the equations of motion that uses Numpy [69] and then
compared to both multi- and single-threaded simulation of that same double pendulum by the
mechanism library presented alongside this thesis.

J.A. Westra Master of Science Thesis

6-1 Algorithm and simulator evaluation 59

Figure 6.1: The double pendulum without end-effector that is used to generate the profile
results, shown here in it’s initial position.

6-1-2-2 Pick-and-place task

The automated design task is designed around a basic pick and place task, a common and
representative practical robotics application [32]. Because the algorithm could otherwise always
find simple single pendulum solutions by moving the ground the original ground connection
is kept fixed at

[
0 0

]
. This should result in more interesting solutions as a more complex

mechanism is required to satisfy the task.

The pick and place task is visualized in Figure 6.2. The task itself is time dependent
resulting in a dynamic objective: the optimal solution would be a stable limit cycle. This
is of particular interest as the generated mechanisms should not only have to have the right
kinematics, but also tune the parameters such that their periods match the specified task time
exactly.

Figure 6.2: Visualization of the task, the positions where the boxes should be picked up
on the top and put down at the bottom are represented by the striped-dotted boxes. The
fixed ground at

[
0 0

]
is also shown. An example end-effector trajectory for the full cycle is

illustrated as the dotted path.

Master of Science Thesis J.A. Westra

60 Results

The position error is defined by a time-based closed-loop trajectory reference based on a
Poincaré map; be at place xr with velocity zero at time dtr, at the end of the simulation the
mechanism should be back at the starting position:

Er =
∑
n

‖x (te)− xr‖2 − ‖ẋ (te)‖2 (6.1)

A complexity penalty is applied to pressure towards simpler mechanisms, this has the effect of
the algorithm reducing redundant elements:

Ec = c (M) (6.2)

While the mechanism search space is technically unbounded (see chapter 4), the mechanism
complexity fitness puts soft limits on the parts of the mechanism space that are explored. This
soft cap helps in practice to avoid the unbounded novelty trap [36].

A total distance traveled penalty is also used, which is the total traveled distance minus
the minimum distance required for the task to be completed.

Ed =

∥∥∥∥ˆ te

0
x (t) dt− L0

∥∥∥∥1

(6.3)

A side-effect is that the average velocity of the mechanism is also soft capped, as a large average
velocity will lead to a high distance traveled for the end-effector. An optimal mechanism on this
task will have a closed end-effector trajectory such that x (0) = x (te) and ẋ (0) = ẋ (te) = 0,
which highly increases the likelihood of this mechanism trajectory being quasi-stable as well.
Although there is no stability guarantee beyond te because only the end-effector trajectory is
tracked, not the entire mechanism trajectory.

The final objective function is a weighted rms sum of these values, the weights are applied
such that they scale the fitness values to the same degree of contribution, otherwise one fitness
contribution will dominate over the others. As each of the contributions define an error the
negative is taken as the fitness value. This results in the total fitness equation to be maximized:

E = −
√

(λrEr)
2 + (λcEc)

2 + (λdEd)2 (6.4)

Scaling weights were heuristically determined from test runs as λr = 1, λr = 0.1 and λr = 0.03
resulting in an approximately spherical distribution. These weights are used in all further tests
except where specifically noted.

6-1-2-3 Algorithm seed

Every algorithm run uses the same seed mechanism: the single pendulum grabber mechanism
shown in Figure 6.3. In addition every run uses the same parameters as well as the same
random number generator seed 0. This provides consistency across runs and platforms and
makes it easier to reproduce the results using the scripts accompanying this thesis which are
also provided as examples in the mechanism library.

J.A. Westra Master of Science Thesis

6-1 Algorithm and simulator evaluation 61

Figure 6.3: The seed mechanism Ms for all tests is a single pendulum with end-effector at[
1 1

]
and a fixed ground connection at

[
0 0

]
which is initially a hinge H1.

6-1-2-4 ROSE operator set

Compounded operators were defined for use with ROSE. The compound operators are combi-
nations of the fundamental base operators; an abstracted operator set Φ with corresponding
domain ΩΦ as described in section 4-3-3. These operators and their generation function provide
the core of the evolutionary algorithm. The following combinations were used:

Add Link

Adds a mass, but also always adds a hinge connection for that mass to another non-ground
link. Preserves connectivity. It is defined on the base operator set as:

ϕ+
L = ϕ5

p ◦ ϕ+
e ◦ ϕ+

v (6.5)

Remove Link

Only removes a link if it has no more than one constraint connection which prevents removal
of middle out links. It is defined on the base operator set as:

ϕ−
L = ϕ5

p ◦ ϕ−
e ◦ ϕ−

v (6.6)

Add Connection

Adds a connection with label and appropriate parameters. Never add a connection such that
the mechanism becomes fully constrained. Additional ground connections are only possible as
springs as these are non-constrained. It is defined on the base operator set as:

ϕ+
C = ϕn

p ◦ ϕ+
e (6.7)

Master of Science Thesis J.A. Westra

62 Results

Remove Connection

Only removes connections if doing so keeps the mechanism grounded and connected. It is
defined on the base operator set as:

ϕ−
C = ϕn

p ◦ ϕ−
e (6.8)

Where n is the number of parameters of the connection.

Relabel

When relabeling, preserves the connection location. It is defined on the base operator set as:

ϕR = ϕn−2
p ◦ ϕr (6.9)

Where n is again the number of parameters of the connection.

Transform

Transformation operator, that scales, rotates and moves the mechanism as a whole. It acts on
the positions of all elements. It is defined on the base operator set as:

ϕT =
⊙
M

ϕ2
p (6.10)

Where the composition
⊙

is over M , all the elements of the mechanism, in any order.

Move End-Effector

Operator that specifically moves the end-effector to another link while preserving it’s position.
It is defined on the base operator set as:

ϕE = ϕ+
e ◦ ϕ−

e (6.11)

Mutate Parameters

Mutates the parameters of an element all at once by adding or subtracting the existing pa-
rameters with new random values. Every mutation operator there is a 50% chance another
mutation is created, modifying the mechanism further. It is defined on the base operator set
as:

ϕM = ϕk
p (6.12)

Where k is a random number from a geometric distribution.

J.A. Westra Master of Science Thesis

6-2 Simulator performance 63

6-2 Simulator performance

First the simulator is put to the test. Due to the high required number of simulations perfor-
mance was of the essence when developing the simulator. To illustrate the performance gained
by the library a comparison test has been set up in Python. All the timings for the tests in
this section and the following sections are generated on an Intel core i5 9300H CPU with 16Gb
DDR4 RAM. The CPU has 4 cores and 8 logical processors using hyper-threading, resulting in
8 effectively usable threads by the library.

Figure 6.4: Simulation timing results averaged over 10 runs. Using the multi-thread im-
plementation PyMechs is approximately 600 times as fast on simulation than the Python
implementation when simulating 5000 mechanisms.

There is a clear difference in performance, the mechanism library PyMechs is on the order
of 450 times faster in the case of 50 mechanisms and over 600 times as fast in the case of 5000
mechanisms. The PyMechs implementation manages 5000 simulations in less time than the
Python implementation needs for 50 simulations.

Using more cores beats single threaded simulation by just over a factor 4 in the case of
50 mechanisms. However when simulating 5000 mechanisms the result is in an increase in
performance much closer to the theoretically optimal factor of 8. As the amount of simulations
goes up the time per mechanism goes down. This effect is caused by the inherent overhead of
the Python interface.

6-3 ROSE meta-heuristics

A run of the ROSE algorithm for the 2D pick-and-place problem results in a rooted graph
structure as described in section 4-3. The exploration of the projection presented in section
4-3-3 can be visualized and analyzed because of the close integration with graph-tool [67]. This
structure where the vertices represent mechanism structures and the edges represent operators
is shown in Figure 6.5. The red vertex is the seed mechanism as shown in Figure 6.3.

A first glance shows that many different paths between mechanisms are present, the graph
is densely interconnected as can be expected from the quite general operator base that is used.

Master of Science Thesis J.A. Westra

64 Results

The shortest paths to the 40 best performing mechanisms are represented as bold edges in
the image. These paths are the corresponding minimal representational operators ϕ̂M of these
mechanisms as represented on the base operator set Φ.

Of note is the presence of loops, some operators connect a node to itself. This is the result
of symmetric mechanism structures where for example moving the end-effector to another link
actually results in an isomorphic mechanism structure.

371

367

332

329

350
352

319

320

331

363

220

222

229

16

225

17

66

364

226

218

234

339

316

333

334

341

323

356

247

232

324

327
250

228

38

78224351

238
80

24

326

23

330 336

73

242

266

246

231

240

353

340

6

244

243

45

365

361

230

348

219

265

40

275

276

287

381

277

257

325

96

262

346

380

345

337

221
237

260

245

13

286

289

1

42

212

2

338

254

342

91

251

223

235

264

261

307

133

172

255

283

301
375

310

258

300

290

127

14

5

214

256

236

248

269

298

181

278

101

273

154

335

296

292

318

302

201

117

209

270

239

136

268

227

282

274

279

74

46
349

378

322

382

18

206

241

377

165

272

314

344

21

79

162
93

86152

263

215

249

112

58

362

48

19

170

155

178

190

233

372

358

163

202

368

166

211

77

27

37

208

29

119

8

297

180

3

171

188

31

184

187

205

383

360

213

130

207

216

125

15

110

321

63

35

191

173

288

357

88

142

370

313

194

197
150

92

51

105

87

317

82

306

379

291

134

183

193

47

182

52

203

153

210

299

167

347

185

61
177

81

179

139

294

253

22138

114

100

147

144

43
158

374

373

57

34

118

83

204

156

122

104

217

169

140

132

121

137

328

95

157
131

366

161

135

70

111

30

53

281

143

141

159

200

126

120

4

309

67

285

71

76

9

75

108

295

195

354

129

89

267

12

44

146

355

69

41

271

196

123

106

107

308

109

168

176

199

36

369

284

293

97

11

85

115

94

103

116

56

64

20

189

311

98

60

186

49

151

113

28

39

10

65

54

84

305

62

148

175

32

25

102 164

160

304

33

312

55

68

303

174

359
99

26
259

343

198

59

315

149

72

145

90

128

7

124

376

50

252

192

280

Figure 6.5: A visualization of the stochastic exploration of the domain ΩΦ as generated by a
ROSE run. Every node represents a unique mechanism structure and every arrow represents
an operator from the generation set that is applied to that node, connecting it to neighboring
nodes. The nodes are ranked by order of the fitness of their best member and sorted radially
by their complexity from the seed mechanism. The original seed mechanism structure is
denoted in red. Clearly the graph is densely interconnected. The minimum paths connecting
the 40 best nodes ϕ̂M are printed as bold lines.

J.A. Westra Master of Science Thesis

6-3 ROSE meta-heuristics 65

371

367 332

319
320

331

363

220

222

229
16

225

17

218

323

228
38

224

351238

80

24

326
23

73

242266

231

240

340

6

243

40

262

221

13

1

42

2

91

133

172

14

5

154 117

136

18

21

162

9348

19

27

37

29

8

3

31

130

15

35

87

47

52

22

43

34

30

4

9

12

44

36

11
20

28

39 10

32

25

33
26

7

Figure 6.6: The same exploration of mechanism space but reduced to the minimum paths ϕ̂M

connecting the 40 most optimal mechanism structures (The bold lines from Figure 6.5).

Figure 6.6 shows the same exploration but projected onto the domain of the minimal rep-
resentational operators of the 40 best performing mechanisms. A clear reduction of complexity
occurs which suggests that the used operator base Φ can be refined further to one that admits
a smaller domain without reducing the quality of the resultant solutions. This shows that the
ideal mechanism structures for this problem are embedded within a significantly reduced subset
Ω∗ ⊂ ΩΦ of the already reduced space ΩΦ used by the ROSE algorithm. The clusters of good
solutions visible in this graph represent groupings of highly similar solution strategies. It is also
visible that some sections of the good solution subspace require the algorithm to pass through
a significant amount of poorly ranked nodes, indicating the presence of deception.

The behavior of the fitness over time of the vertices is shown in Figure 6.7. While the maxi-
mum fitness eventually remains stagnant the average fitness of active vertices keeps fluctuating
with an upward trend. This shows that the algorithm is still exploring other promising paths
for possible breakthroughs.

Master of Science Thesis J.A. Westra

66 Results

Figure 6.7: Fitness of the explored mechanism space vertices from Figure 6.5 over time.

J.A. Westra Master of Science Thesis

6-3 ROSE meta-heuristics 67

6-3-1 Solution diversity

Due to the ROSE algorithm processing many prospective nodes at once and keeping the suc-
cessful nodes active in the graph the end-result is not just a single optimal mechanism, but a
listing of the best mechanism of every vertex. As each vertex represents a unique structural
variation the result of an algorithm run is a diversity of possible solutions. ROSE provides an
estimate of the maximum fitness of every single vertex present in it’s structure. This represents
a great diversity of solutions each with varying fitness values on the objective function given
by equation 6.4, each vertex represents different combinations of properties such as complexity
and position error.

Some of the resultant varying strategies are shown in Figure 6.8, representing the best
mechanism for their particular structural vertex in mechanism space. Note the usage of a
counterweight link to balance against the weight of the end-effector for the mechanisms with
rank 6.

Figure 6.8: Some of the diverse strategies found by the ROSE 40 algorithm to solve the pick
and place task. Ranked by their performance on the objective.

Master of Science Thesis J.A. Westra

68 Results

6-3-2 Multi-objective analysis

An effect of the high diversity of solution strategies is that we can analyze the resultant mech-
anism space graph structure as if it were a true multi-objective optimization result.

To study this further we can analyze the passive mechanism pick and place results from
section 6-3-1. The fitness of each node separated out into complexity λcEc and position error
λrEr is shown in Figure 6.9. Despite not actively solving as a multi-objective optimizer the
algorithm still generates a front of solutions on the different variables of the objective func-
tion. Notably a significant amount of mechanisms satisfies the minimum requirement of overall
fitness > −1. The log plot clearly indicates an inverse correlation between complexity and
minimum position penalty: to achieve a smaller position penalty, the mechanisms has to grow
in complexity and vice-versa.

Figure 6.9: The complexity versus position penalty for the best mechanisms of the explored
mechanisms space nodes plotted linearly (left) and plotted as log-log (right). The color of the
node represents the mechanisms rank in the ROSE graph, with green being the best and blue
being the worst.

Of particular note is the line-shaped cluster of solutions visible at a position penalty of
approximately 1, which looks like a soft boundary on the fitness. Two mechanisms from this
line are shown in Figure 6.11.

The line represents single-pendulum mechanism solutions, which have a theoretically opti-
mal position error of exactly 1. This boundary represents a deceptive attractor in the search
space, which the algorithm manages to bypass by constantly injecting more diversity in struc-
tural possibilities. This is also visible in the violin plot of Figure 6.13, the 10 island algorithm
in particular tends to get stuck in this particular attractor.

J.A. Westra Master of Science Thesis

6-3 ROSE meta-heuristics 69

The fitness of each node separated out into weighted excess distance traveled penalty λdEd

and weighted position penalty λrEr is shown in Figure 6.10. The log-log plot shows there is
quite a bit of variance still between the best performing mechanisms on these two penalties.
It also indicates that in this case there is no clear trade-off. Contrary to the complexity and
position trade-off it is possible to reduce the position penalty and traveled distance penalty
simultaneously with the best performing mechanisms doing both.

Again we can identify visible clusters in this plot, but in this case it is not a line but
two distinct clusters, the difference is explained by the difference between clockwise and anti-
clockwise rotating single spring-pendulum mechanisms as shown in Figure 6.11. Contrary to
Figure 6.9 there is no clear trade-off between these penalties. Instead, mechanisms with small
position penalty also tend to have small traveled distance penalty.

Figure 6.10: The traveled distance versus position penalty for the best mechanisms of the
explored mechanisms space nodes plotted linearly (left) and plotted as log-log (right).

Figure 6.11: Two mechanism structures that have a position error of approximately 1. Both
structures employ a single rotating pendulum structure for their end-effector. The right has
better overall fitness as it manages to reduce the excess traveled distance error by rotating
counter-clockwise rather than clockwise around the ground. Ranked on complexity penalty.

Master of Science Thesis J.A. Westra

70 Results

6-4 Comparison to prior art

The initial test is a comparison of the performance of operator guided evolution versus the
performance of a more classic island model [70] approach as used previously to automatically
design mechanisms [19]. This island model still fits within the operator approach: by specifying
the operators accessible for local node optimization as the full set, rather than just the para-
metric operators, and by specifying an exchange operator which exchanges the best operators
of the nodes as is done in the island model, a version of the island model is obtained within
the framework of operator guided evolution. This version does not exploit any of the structure
present in mechanism space however.

Finally a comparison is made with classic evolution with no islands or other diversity
maintenance tricks. The PyMechs multi-thread implementation presented with this thesis is
used to generate and analyze all results. The parameters displayed table 6.1 were used for the
tests. The higher initial spread for the Island models is to account for the differences in initial
population generation of those algorithms [70].

ROSE 40 ROSE 10 Island 40 Island 10

Parameter Value Value Value Value

Epochs 50 50 50 50

Generations 32 32 32 32

Active leaves/Islands 40 10 40 10

Population 32 32 32 32

Initial spread 5 5 10 10

Table 6.1: The parameter values used for the algorithm comparison results.

First the ability to generate passive mechanisms is tested for these algorithms. The fitness
vs the amount of used simulations is plotted in Figure 6.12. Comparing the median optimal
fitness over 50 separate runs shows that the ROSE algorithm is much more likely to converge to
an effective solution than either of the island model runs. The ROSE algorithm even achieves
a 100% convergence rate on this test when using 40 active nodes.

Using statistical non-parametric mapping, a form of statistical parametric mapping [71] we
can compare the resulting data over time. A non-parametric approach was used because the
data is not normally distributed. The result is displayed as the bars on the top of Figure 6.12.

Even though for the initial epochs there is no significant (p < 0.05) difference between the
40 node ROSE algorithm and the Island model algorithm after approximately 10 epochs the
ROSE algorithm gains a decisive lead over the Island algorithm. After 50 epochs the confidence
of ROSE being better than Islands grows to p < 0.001. This clearly improved performance in
the long run can be attributed to the ROSE algorithm continually injecting more diversity into
its solution population making it much less likely to get trapped in local minima.

J.A. Westra Master of Science Thesis

6-4 Comparison to prior art 71

This effect is also qualitatively evident in the violin plot of the final fitness values shown
in Figure 6.13, which illustrates the distribution of the maximum fitness found by the algo-
rithm between different runs. There are clusters at lower fitness values visible for both Island
algorithms and they have a larger variance of fitness endpoints because they get stuck in the
deceptive attractor. Both ROSE versions have a higher median fitness and a tighter distribu-
tion than the Island algorithms, indicating that they converge to better solutions and do so
more reliably.

Figure 6.12: A comparison of the median optimal fitness obtained from 50 separate runs,
the shaded area represents the range between the 25th and 75th percentile optimal solution
respectively. The bars on top indicate p < 0.05 confidence intervals as obtained by applying
a pairwise SnPM t-test.

Figure 6.13: A violin plot illustrates the distribution of the best mechanism fitness after
50 epochs. The top and bottom bars represent the maximum and minimum value of the
distribution respectively while the middle bar represents the median fitness value.

Master of Science Thesis J.A. Westra

72 Results

Figure 6.14: The best pick-and-place mechanisms of ROSE 40 (top left) ROSE 10 (top right)
Island 40 (bottom left) and Island 10 (bottom right) after 50 epochs.

The best resulting mechanisms of all four algorithms for the first run, which uses seed 0, are
displayed in Figure 6.14. Both ROSE algorithms converged on the same structure, a spring-
loaded double pendulum that moves counter-clockwise. Island 40 found a solution that uses
a counterweight to balance against gravity instead, while Island 10 found a solution with the
same structure as the two ROSE solutions but moving clockwise rather than counterclockwise
resulting in a much larger overall path and lower position accuracy.

J.A. Westra Master of Science Thesis

Chapter 7

Discussion

7-1 Summary

The objective was to build a system that could aid designers of mechanical systems and mecha-
nisms to better exploit natural dynamics and embodiment in their design process. From further
analysis this goal could be split up into two fundamental tasks:

− The development of an algorithm that achieves automatic generation of mechanisms with
desired natural dynamics and kinematics.

− The creation of a software package for the construction, visualization and simulation of
mechanisms. Of which the simulator in particular is required to be very fast due to the
needs of the computational design algorithms.

The development of the algorithm followed from the mathematical analysis of the search space
introduced in Chapter 4, which leads up to the creation of the Reduced Operator-Space Evolu-
tion (ROSE) algorithm. A Quality Diversity algorithm which exploits the dual representation
of mechanisms introduced in Section 4-2 and the resultant metric space introduced in Section
4-3.

The requirement for a software package led to the creation of PyMechs. A fully documented
mechanism simulation, visualization and computation library in Python. With API’s for further
graph analysis using graph-tool [67] or networkx [68], and the possibility for the addition of
active controlled elements in the structure through the provided controller API.

As shown in Figure 6.1 the PyMechs library simulator is up to 600 times as fast as a
Python simulator based on Numpy, representing an order of magnitude of performance gain
over previous iterations. It also provides visualizations and animations of the mechanisms,
such as in e.g. Figures 6.8 and 6.14. This satisfies the design goal of building a performant
simulation and visualization package.

The ROSE algorithm developed in this thesis manages to produce viable pick-and-place
mechanisms that satisfy the task criteria as shown in Figure 6.8. Satisfying the design goal of
a viable computational design system. It outperforms the previously used Island model [25] in

Master of Science Thesis J.A. Westra

74 Discussion

the number of simulations required to find a solution, in the quality of the resulting solutions
and in the diversity of the solutions as shown by Figures 6.12 and 6.13.

The combination of all the ROSE algorithm and the PyMechs simulator results in a system
where an entire set of high-quality solutions to a pick-and-place problem is found in a matter
of minutes, compared to the days required for a single solution by the system that inspired this
thesis [25].

Of particular benefit is that it generates a large variety of viable solution strategies which
makes it more effective as a design aid. An engineer can study the resulting mechanisms and
decide which one to use or be inspired by based on any criteria of their choosing.

The ROSE algorithm and mechanism space framework also provides a set of meta-heuristics
to give deeper insight into the structure of the search space and the behavior of the algorithm
during a run such as shown in Figures 6.5 and 6.10. This allows designers to create their own
task-specific operator generator rules and analyze the results in a structured way.

In conclusion the objective to design an automated mechanism design aid was achieved.

7-2 Results

The underlying representation of the mechanisms has no effect on the performance of the ROSE
algorithm when using operator based evolution, because the operators become the representa-
tion used by the algorithm as shown by the duality presented in Section 4-2.

ROSE uses the mechanism space model to generate a large variety of effective results. This
can usually be expected to be relatively costly in terms of computation because it maintains
a lot of diversity. In practice however it turns out to actually be less costly than the Island
model, while obtaining better results as shown by Figure 6.12. It appears that for this prob-
lem exploration, e.g. diversity, is more important than exploitation. This matches well with
previous adjacent research by e.g. [26, 33, 35] and supports the notion that the search space is
highly deceptive.

A deceptive attractor is clearly visible in the analysis of Figure 6.9, which matches the
clusters around −1.25 in the endpoint fitness violin plot of Figure 6.13 presented by the Island
runs. Clearly the Island algorithms tend to often get stuck in this attractor while ROSE
manages to deal with it effectively. As can be seen in Figure 6.7 the ROSE algorithm is still
exploring other promising paths for possible breakthroughs even when apparently stuck on a
local maximum, which explains how it is able to escape.

Using a more basic island model, but maintaining the complex operators results in greatly
improved performance as well as shown in section 6-4. There clearly is great benefit to using
abstract operators even with random vertex groupings. The benefit of obtaining the resultant
graph structure like Figure 6.5 for analysis is lost however when using just a simple island
model. An Island model without the complex operators fails to converge entirely.

J.A. Westra Master of Science Thesis

7-3 The three problems 75

7-3 The three problems

7-3-1 Linkage problems

Linkage problems occur because of the disruption of behavior when a mechanism changes
structure or parameters. These linkages can effectively be taken into account in ROSE by
implementing an operator for them. In the proof of concept operator set presented in Section 6-
1-2-4 the transformation operator for example deals with the linkage of mechanism parameters.
By applying it the mechanism can be scaled and rotated as a whole. Taking this linkage into
account already results in significantly improved performance.

Other linkages can be dealt with simultaneously in ROSE by creating more such operator
generation rules, for example to deal with the mechanism control and morphology linkage
explained in the introduction.

7-3-2 Deception

Deception represents the presence of solutions in the search space that are powerful local
maxima which are particularly hard to escape.

The version of ROSE used for the results in chapter 6 constitutes a proof of concept.
It shows that by utilizing the theoretical analysis it is possible to straightforwardly define
meaningful heuristics on operator space through operator generation rules of an operator set
Φ. The corresponding domain ΩΦ can then be analyzed such as is done in Section 6-3.

In the meta-heuristics analysis a deceptive attractor is clearly visible in the fitness space
of Figure 6.9. This is further reinforced by analyzing the domain in Figure 6.6, which shows
that despite the use of abstract operators the algorithm still has to pass through several low
performing structures to reach the high performing mechanism structures. When no operators
would be used the number of poorly performing nodes in between would be even larger, since
the current domain excludes for example disconnected mechanisms. By introducing shortcuts
around these with operators while introducing more diversity the ROSE algorithm manages to
deal with it very effectively. This is especially clear in the violin plot of Figure 6.13.

Mechanism and operator complexity are closely related, it has been shown in chapter 4 that
a mechanism M can be represented as an associated operator ϕM . Solution complexity is also
closely related to the difficulty of the optimization problem, a complex solution is harder to
find on a given representation than a simpler one in much the same sense that a small maze is
easier to navigate than a large one.

This leads to the interesting conclusion that it is possible to lower the difficulty of the
optimization problem: by reducing the complexity of the mechanism on it’s operator represen-
tation. This can be achieved by for example picking the right combinations of operators as a
set of base operators for the search. By projecting onto the domain of the right set of operators
deception can in theory be bypassed altogether.

7-3-3 Redundancy

Redundancy is the lack of uniqueness of the representation, the design space, the search space
and the objective. An isomorphism strategy from prior art was used to condense the structural
nodes in the ROSE algorithm. The parameter invariants 3 are used to reduce redundancy,

Master of Science Thesis J.A. Westra

76 Discussion

in particular the scaling operator which maintains the relative mechanism structure. The
high-performance simulator reduced the cost of simulation as well, making redundancy a less
important problem.

7-4 Drawbacks

Keeping track of the space exploration graph requires memory, the usage of which can in theory
grow to be very large. For any of the tests the size of the graph even with no optimization of
memory usage at all is reasonable (<200 Mb) even for very long algorithm runs that explore
most of the effective search space. But, due to the penalty on the complexity the total search
space is bounded to be relatively small for most test problems. More advanced optimization
problems might run into memory issues when highly complex graph structures are explored.
Dividing and bounding the search space effectively for Quality Diversity algorithms such as
ROSE is an ongoing research topic [35].

Generating a new vertex requires comparing it to every vertex already in existence to check
if it is isomorphic to an existing structure, as the amount of vertices grows this comparison
scales poorly. To avoid a lot of very expensive isomorphism computations the algorithm already
checks if the complexity is equal, and only then checks for isomorphism.

In the practical tests the cost of adding new nodes is very small compared to the cost of
simulation, not in small part because this only happens every epoch. In different problems
with very computationally cheap evaluations and lots of possible nodes, the epoch step of the
algorithm can quickly become comparatively computationally expensive.

The mechanism distance is only used implicitly and the mapping of the mechanism space is
stochastic. The result is that it can actually be possible for nodes that are very far away from
each other in the fitness space graph to actually be really close to each other in mechanism
space. This means that the graphs drawn by the algorithm can occasionally be misleading, it
is important to keep this in mind.

Many of these problems can be avoided by picking another type of vertex grouping, as the
current grouping is itself a heuristic overlaid on top of the infinite mechanism space structure as
explained in Section 4-3. When exploring larger, more complex spaces the groupings themselves
could also be made larger and more complex.

Another solution is obtained by picking the right operator set to reduce the space complexity
further, already many possible mechanism structure nodes are discarded as these are unviable.
When dealing with more complex problems using the right operators with the right domain is
likely to be even more effective.

7-5 Further research suggestions

7-5-1 Operator generation

The operators defined in Section 6-1-2-4 used to generate the results are just one among many
different possible sets. However it is clear that through careful study of the mechanisms it is
possible to create many more effective operators. For example ones that preserve the degrees
of freedom of the mechanism.

J.A. Westra Master of Science Thesis

7-5 Further research suggestions 77

It is possible to convert existing mechanisms from a database of successful existing mecha-
nisms into the representation defined in this thesis. It should be possible to find operators that
are more effective than the base operators in solving the automated design problem. This could
be done for example by minimizing the total complexity of all operators used to represent the
successful mechanisms.

The mechanism space admits an entirely different optimization approach as well. As shown
in Section 4-3 the search space of automated mechanism design can be represented by a graph.
The possible paths through this graph can be interpreted as a decision tree. A different ap-
proach could be to let the algorithm explore the operators as a set of decisions with corre-
sponding expected fitness results using a reinforcement learning approach.

As indicated by the results in chapter 6 there are some nodes that have more viability for
solutions than others, this is especially clear from Figures 6.5 and 6.6. This is supported by the
observation that the structural variance of real world mechanisms is generally limited. With
many mechanisms consisting of just four links [56]. Studying what properties make certain
structures more viable than others, and refining the set of operators such that only viable ones
are explored would likely significantly reduce search difficulty.

Of course filtering too much prematurely might end up preventing novel solutions being
discovered. Designing good operators to bound the search space in desired ways would be of
interest for future research.

7-5-2 Parameter correlations and hyper-parameters

The parameter function has not been utilized to it’s potential in the proof of concept version
of ROSE presented in chapter 6. By statistically analyzing existing mechanisms it should be
possible to discover useful correlations between their parameters. These can then be used to
define rules on new parameter generation.

An interesting possibility for future research would be to let the parameters of the mech-
anism themselves be a function of some hyper parameter based network or function. This
indirect encoding could maintain parameter correlations and behavior better, this approach
has shown significant success when applied to the evolution of neural networks [59,72].

An alternative way to capture these parameter correlations would be to define them on the
operators instead and only use parameter mutations that take them into account, this is more
flexible with respect to many different objectives.

7-5-3 Controller generation

While the mechanism library presented here allows motors and control through the provided
API the consequences of them have not yet been fully explored to their potential and the results
have been limited.

A control mutation operator could be developed, one that takes into account both the con-
troller and the mechanism with some simple rules such as stability. This should take care of the
inherent linkage problems between mechanisms and controllers. Designing the right operator
generation strategy for this is still an open question and would prove an interesting research
direction. In particular an operator that maps a controller behavior to a new mechanism
topology would be invaluable.

Master of Science Thesis J.A. Westra

78 Discussion

Because mechanisms are constructed as interconnected elements with holonomic constraints,
a Port-Hamiltonian approach [73] might prove to be an effective strategy to inform controllers
or at a minimum provide constraints of stability.

7-5-4 Other applications

A further look at the method of automated design as described here shows that the method
itself is in fact not limited to just mechanisms at all. It is possible to apply it to any problem
where an initial model representation of the problem and objective function can be created. By
letting the algorithm explore for a better model representation and evaluating and analyzing
the steps it took to get to a solution it is possible to continuously learn to improve the search
efficiency for that specific domain.

This could be used to for example topologically reduce neural networks, electronic circuits,
or any other mixed-integer computational design problem where an underlying structure is
present.

7-6 Reflection

A set of simple generation rules can lead to very complex structures and emergent behavior,
as shown by Conway’s Game of Life [74] and the field of Cellular Automata [75]. Conversely,
many resulting complex structures can actually be described by a very simple, short set of
rules. A highly condensed representation of a complex system.

The field of Machine Learning which has seen a recent boom fundamentally relies on this
property. Training a neural network on a dataset is equivalent to finding the right set of reduced
mathematical rules to describe the desired transformation from network input to output [15].
Recent work in GAN’s for example has shown that neural networks can capture a set of simple
rules to generate eerily realistic human faces [39].

This type of representation and algorithm has analogies to the natural world: a DNA strand
does not directly encode the structure of a flower but rather holds a set of instructions which
leads to the growth of one, a subtle but important distinction.

This notion was the inspiration for ROSE, rather than rely on the modification of the
parameters directly a set of rules leads to the resulting mechanisms. The operators defined in
Section 6-1-2-4 are a proof of concept but the resulting algorithm already outperforms existing
methods in convergence rate, solution quality and solution diversity as shown in the case
study. However, rather than these particular operators it is the mathematical framework and
the software tools to analyze it that are the real contribution of this thesis.

Capturing underlying rules of the complex system under consideration, either automatically
or by manual investigation, is a goal worthy of further investigation. It is what I believe to
be a key step to the creation of improved computational design methods that could eventually
capture some of the wonders of the natural world.

J.A. Westra Master of Science Thesis

Chapter 8

Conclusion

ROSE algorithm

Automated design tasks can be defined as an optimization problem by combining a model
representation which maps the desired real world object to a mathematical object (and vice
versa) with a model evaluation function which maps this object to a numerical measure of
success on the objective. Prior art shows this can be applied to mechanism design using a
graph based mechanism representation and an evolutionary algorithm.

However, existing implementations suffer from significant linkage problems, the deceptive
search space and design space redundancy. To improve upon these the problem is analyzed
in-depth leading to the following:

− The graph model of mechanisms is extended using a parameter map function, which maps
the vertices and edges of the graph representation to numerical parameters. It is shown
this can be used to define constraints and correlations on the parameters. In particular
the correlations can be used effectively generate parametric mutations by defining these
as operators. These operators can capture combinations of parameters which combine to
overall behavior, by making those combinations invariant to the operator the behavior is
preserved by the operator.

− Extra elements are introduced to the mechanism structure, the end-effector, the torsion
spring, the fixed connection and the motor. These allow a richer solution space and can
better model the desired mechanism solutions.

− The concept of mechanism space is introduced as the possible solution space of planar
mechanisms. This is a metric space, where the distance between mechanisms is equal
to a word metric where the set of generating elements is the set of operators used. By
modifying the operator set the connectivity of this space is modified, which reshapes the
search space and the resultant evolutionary algorithm in beneficial ways. By creating
operators that preserve certain mechanism properties, such as connectivity, the search
space can also be effectively bound. This reduces both redundancy and deception.

Master of Science Thesis J.A. Westra

80 Conclusion

− Operators acting on the mechanisms are studied in the context of the mechanism space.
It is shown that there is a dual representation of mechanisms using operators. The mech-
anism space together with a fitness function and set of operators represent a projection
of mechanism space onto the domain of operators in which the algorithm explores for
an optimal solution. By defining a seed mechanism and setting this as the initial root
node the search space is shown to be a rooted, ordered graph where each level of depth
represents a change in mechanism complexity, a useful meta-heuristic tool.

These extensions culminated in the development of the Reduced Operator-Space Evolution
(ROSE) algorithm. A quality diversity algorithm that relies on operator generation rules and
the corresponding projected domain in mechanism space. A proof-of-concept implementation of
ROSE using simple operator generation rules is tested against previous state-of-the-art Island
models and a clear improvement in both convergence properties and solution quality is shown.

PyMechs

In order to generate and analyze the results, a fully documented planar mechanism simulation
and evolution toolbox called PyMechs has been developed for Python based on the representa-
tion presented in this thesis. The physics simulator is coded in C++ and has been optimized
using both profile guided optimization and mathematical reductions to achieve significant per-
formance gains of up to 6000% compared to previous iterations using Numpy.

To provide analysis tools a visualizer is provided with the library to animate and plot
mechanism trajectories and structures. The library can optionally be linked with Graph-
Tool [67] or Networkx [68] to easily analyze the mechanism and search-space graph structures.

The software that was developed in order to study mechanisms based on the graph repre-
sentation is available at https://github.com/kooswestra/pymechs.

J.A. Westra Master of Science Thesis

Acknowledgments

This document came to be through the support of many people over a long period, owing to a
variety of medical issues.

I would like to give special thanks to my supervisor ir. A. Berry for his continued support, in
particular in helping me deal with the multitude of setbacks I encountered. His administrative
and moral support was invaluable.

I want to thank prof. dr. ir. M. Wisse for his support and willingness to organize a change
in supervision, as well as his personal involvement. I want to thank dr. ir. W.J. Wolfslag for
helping me get started on the project and motivating me to see it through. I would also like
to thank ir. P.R. Kuppens for the many interesting discussions we had on this subject. I want
to thank C. Verdier for his support as interim supervisor as well.

Additionally I would like to thank ir. B. van Vliet for his support as study coordinator in
helping me clear up my program and getting everything back in order.

Finally I want to thank both my parents and my partner in crime Miara Fraikin for their
continued and enduring support.

Master of Science Thesis J.A. Westra

List of Symbols

Notation Description
p Parameter vector
x State vector
u Input vector
ŷ Model
y Desired ideal model
f Objective function
M Mechanism
C Controller
MC Controlled mechanism
G Graph
V Vertex set
E Edge set
Ψ Incidence function
P Parameter assignment map
Ω Domain
M Set of all mechanisms
ϕ Operator
c Complexity measure
ĉ Simplified complexity measure
d Distance measure
Φ Set of operators
ΩΦ Domain corresponding to a set of operators
M Mechanism space
M Mass matrix
ẍ Acceleration vector
v Velocity vector
f Force vector
D Constraint equations
λ Lagrange multiplier vector

J.A. Westra Master of Science Thesis

Appendix A

Dynamics

A-1 Hinge example

In order to illustrate how to actually obtain the required formulas to build the equations of
motion in an automated way we can look at a hinge linkage in more detail. A sketch of the
linkage is shown in Figure A.1:

Figure A.1: Sketch of a hinge linkage between two links mi and mj , mi is in it’s initial position
while mj is rotated around H0 compared to the initial position, the initial locations of the
centers of mass are given by ci and cj and the initial coordinates of the hinge linkage by H0.

From the figure we can deduce the constraints introduced by hinge n as:

Dn = R (θi) li + xi −R (θj) lj − xj = 0 (A.1)

Where li = ci − H0 and lj = cj − H0 are the distance vectors of the centers of mass of the
links to the hinge position at the initial state as visualized in the figure. These vectors are
then rotated with a 2D rotation matrix R (θ) to obtain the distance vector at the current state.
Writing out all components results in the following set of equations:

Dn =

[
xi − xj + lix cos (θi)− liy sin (θi)− ljx cos (θj) + ljy sin (θj)
yi − yj + lix sin (θi) + liy cos (θi)− ljx sin (θj)− ljy cos (θj)

]
= 0 (A.2)

Which defines the constraints for this specific connection. Calculating the Jacobian of con-

straint n with respect to the state of the connected linkages
[
xi yi θi xj yj θj

]T
results

Master of Science Thesis J.A. Westra

84 Dynamics

in the following expression:

Jn =

[
1 0 −lix sin (θ1)− liy cos (θi) −1 0 ljx sin (θj) + ljy cos (θj)
0 1 lix cos (θ1)− liy sin (θi) 0 −1 −ljx cos (θj) + ljy sin (θj)

]
(A.3)

Calculating the corresponding Coriolis terms yields:

∂ (Jnẋ)

∂x
ẋ =

[
θ̇i

2
(−lix cos (θi) + liy sin (θi)) + θ̇j

2
(ljx cos (θj)− ljy sin (θj))

θ̇i
2

(−lix sin (θi)− liy cos (θi)) + θ̇j
2

(ljx sin (θj) + ljy cos (θj))

]
(A.4)

A-2 Polygonal elements

The shape of each mass element is defined by locations of it’s connection points. Since masses
can have more than two connections, this means that the shape can be a polygon consisting of
a number of points equal to the number of connections. These elements are defined as simple
polygons: shapes defined as the area enclosed by a sequence of points P. Figure A.2 shows an
example of such a polygon.

P1

P4

P3

P2

Figure A.2: A simple polygon defined by the sequence of points {P1, P2, P3, P4}, note that
the polygon is ordered anti-clockwise.

A-2-1 Construction and ordering

To calculate the properties of these planar elements and be able to properly draw them the
polygon has to be constructed and ordered anti-clockwise. This is done by calculating the
incident angle φn of each connection point Pn (xn, yn) with a point which is inside the polygon
area Pin (xin, yin), as:

φn = arctan

(
yn − yin
xn − xin

)
(A.5)

And reordering n→ k the connections points by increasing angle such that φk+1 > φk, defining
a polygon boundary. The result is that any lines drawn from this point to the polygon vertices
can not cross the polygon boundary. We pick the mean of the connection points to by definition
be a point inside the polygon area:

Pin =
1

n

∑
n

Pn (A.6)

This precludes the use of hollow shapes or other shapes that can not be described in this manner.
A possible workaround is to manually order the connections before element construction and
disable automatic ordering.

J.A. Westra Master of Science Thesis

A-2 Polygonal elements 85

A-2-2 Center of mass

Since a constant density ρ of the link element is assumed, the center of mass of the polygonal
shape is equal to it’s centroid. Which is given by:

Cx =
1

6A

∑
n

(xn+1 + xn) (xnyn+1 − xn+1yn)

Cy =
1

6A

∑
n

(yn+1 + yn) (xnyn+1 − xn+1yn) (A.7)

Where A is the polygon area is given by:

A =
1

2

∑
n

(xnyn+1 − xn+1yn) (A.8)

For both equations the vertices loop around Pn+1 = (x0, y0) i.e. the polygon boundary ends at
the some point where it begins.

A-2-3 Moment of inertia

For solid rods the moment of inertia can easily be shown to be equal to mL2

12 , but for general
polygonal shapes this is a bit more involved. The moment of inertia for a planar elements with
constant density ρ = m

A and center of mass at the origin is defined as:

I = ρ

¨
A
r2dA = ρ

¨
A

(
x2 + y2

)
ρdA (A.9)

Note that the (anti-clockwise ordered) polygon of the mass element by definition defines a
closed boundary around the area in terms of the connecting lines Pn → Pn+1 between it’s
n ≥ 3 points Pn = (xn, yn). Green’s theorem states that it is possible to turn an integral
over an area A enclosed by a piecewise smooth, oriented curve C into an integral along the
boundary: ¨

A

(
∂M

∂x
− ∂L

∂y

)
dA =

˛
C

(Ldx+Mdy) (A.10)

Where the path of integration is anti-clockwise. This means that if we define the functions M
and L satisfying ∂M

∂x −
∂L
∂y =

(
x2 + y2

)
, we can turn the integral over the polygon area into

an integral over the polygon boundary. By setting M = 1
3x

3 and L = −1
3y

3 we satisfy this
condition resulting in:

I = ρ

˛
C

(
−1

3
y3dx+

1

3
x3dy

)
(A.11)

Where the integral is along the polygon boundary defined by the piecewise connecting lines
between the ordered polygon points C = C0∪C1∪ ...∪Cn. As this is a line integral the integral
along the entire boundary is equal to the sum of the integrals along each individual segment

˛
C
f (u) du =

∑
n

˛
Cn

f (u) du (A.12)

Master of Science Thesis J.A. Westra

86 Dynamics

Note that each segment of the curve is a line connecting the point Pn with the point Pn+1. We
can parameterize each curve section as:

Cn = ((xn+1 − xn)u+ xn, (yn+1 − yn)u+ yn) , 0 ≤ u ≤ 1 (A.13)

substituting this parameterization into equation A.11 to obtain the contribution of a segment
Cn results in:

ρ

˛
Cn

(
−1

3
y3dx+

1

3
x3dy

)
= −ρ

3

ˆ 1

0
((yn+1 − yn)u+ yn)3 (xn+1 − xn) du

+
ρ

3

ˆ 1

0
((xn+1 − xn)u+ xn)3 (yn+1 − yn) du (A.14)

Performing the integral and collecting terms results in the following complete expression for
the inertia of a polygonal element, whose center of mass is at the origin:

I =
∑
n

ρ

12

[
(yn+1 − yn) (xn+1 + xn)

(
x2
n+1 + x2

n

)
− (xn+1 − xn) (yn+1 + yn)

(
y2
n+1 + y2

n

)]
(A.15)

We can calculate the inertia of any general polygon by shifting the vertices such that the center
of mass is at zero and then using equation A.15.

Note that the area of the polygon can be derived by setting M and L such that ∂M
∂x −

∂L
∂y = 1.

By defining M = 1
2x and L = −1

2y and using the parametrization from equation A.13 we obtain
the expression for the polygon area given by equation A.8. It is important to note that it is not
possible to substitute ρ = m

A inside the sum of equation A.15, as the contribution of a single
section of the curve to the area can be equal to zero.

J.A. Westra Master of Science Thesis

Bibliography

[1] Rolf Pfeifer, Max Lungarella, and Fumiya Iida. Self-organization, embodiment, and biologically
inspired robotics. science, 318(5853):1088–1093, 2007.

[2] Rolf Pfeifer and Josh Bongard. How the body shapes the way we think: a new view of intelligence.
MIT press, 2006.

[3] Rolf Pfeifer and Gabriel Gómez. Morphological computation–connecting brain, body, and environ-
ment. Creating brain-like intelligence, pages 66–83, 2009.

[4] Nicolas Franceschini, Jean-Marc Pichon, and Christian Blanes. From insect vision to robot vi-
sion. Philosophical Transactions of The Royal Society Of London. Series B: Biological Sciences,
337(1281):283–294, 1992.

[5] Kazunori Hoshino, Fabrizio Mura, and Isao Shimoyama. Design and performance of a micro-sized
biomorphic compound eye with a scanning retina. Journal of Microelectromechanical Systems,
9(1):32–37, 2000.

[6] Michiel Plooij and Martijn Wisse. A novel spring mechanism to reduce energy consumption of
robotic arms. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference
on, pages 2901–2908. IEEE, 2012.

[7] Steve Collins, Andy Ruina, Russ Tedrake, and Martijn Wisse. Efficient bipedal robots based on
passive-dynamic walkers. Science, 307(5712):1082–1085, 2005.

[8] Roger D Quinn and Roy E Ritzmann. Construction of a hexapod robot with cockroach kinematics
benefits both robotics and biology. Connection Science, 10(3-4):239–254, 1998.

[9] Wouter Wolfslag, Michiel Plooij, Robert Babuška, and Martijn Wisse. Learning robustly stable
open-loop motions for robotic manipulation. Robotics and Autonomous Systems, 66:27–34, 2015.

[10] Heiko Hamann, Jürgen Stradner, Thomas Schmickl, and Karl Crailsheim. A hormone-based con-
troller for evolutionary multi-modular robotics: From single modules to gait learning. In Evolu-
tionary Computation (CEC), 2010 IEEE Congress on, pages 1–8. IEEE, 2010.

[11] Yasuhiro Fukuoka, Hiroshi Kimura, and Avis H Cohen. Adaptive dynamic walking of a quadruped
robot on irregular terrain based on biological concepts. The International Journal of Robotics
Research, 22(3-4):187–202, 2003.

[12] Da-peng Yang, Jing-dong Zhao, Yi-kun Gu, Xin-qing Wang, Nan Li, Li Jiang, Hong Liu, Hai
Huang, and Da-wei Zhao. An anthropomorphic robot hand developed based on underactuated
mechanism and controlled by emg signals. Journal of Bionic Engineering, 6(3):255–263, 2009.

[13] AE Eiben and JE Smith. Introduction to Evolutionary Computing. Springer, 2nd edition, 2015.

[14] AJ Keane. The design of a satellite beam with enhanced vibration performance using genetic
algorithm techniques. Journal of the Acoustical Society of America, 99(4):2599–2603, 1996.

Master of Science Thesis J.A. Westra

88 BIBLIOGRAPHY

[15] Aurélien Géron. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts,
tools, and techniques to build intelligent systems. O’Reilly Media, 2019.

[16] Agoston E Eiben. Grand challenges for evolutionary robotics. Frontiers in Robotics and AI, 1:4,
2014.

[17] David E Goldberg. Genetic algorithms as a computational theory of conceptual design. In Appli-
cations of Artificial Intelligence in Engineering VI, pages 3–16. Springer, 1991.

[18] David H Wolpert and William G Macready. No free lunch theorems for optimization. IEEE
transactions on evolutionary computation, 1(1):67–82, 1997.

[19] P Reinier Kuppens and Wouter J Wolfslag. A string-based representation and crossover operator for
evolutionary design of dynamical mechanisms. IEEE Robotics and Automation Letters, 3(3):1600–
1607, 2018.

[20] I.C. Staal. Evolutionary mechanisms automated synthesis of robotic mechanisms by an evolutionary
algorithm. Master’s thesis, TU Delft, 2014.

[21] Karl Sims. Evolving virtual creatures. In Proceedings of the 21st annual conference on Computer
graphics and interactive techniques, pages 15–22. ACM, 1994.

[22] Yong-Mo Moon and Sridhar Kota. Automated synthesis of mechanisms using dual-vector algebra.
Mechanism and Machine Theory, 37(2):143–166, 2002.

[23] Hod Lipson and Jordan B Pollack. Automatic design and manufacture of robotic lifeforms. Nature,
406(6799):974–978, 2000.

[24] Chris Leger. Darwin2K: An evolutionary approach to automated design for robotics, volume 574.
Springer Science & Business Media, 2012.

[25] P.R. Kuppens. Automated robot design with artifical evolution. Master’s thesis, TU Delft, 2016.

[26] Joel Lehman and Kenneth O Stanley. Evolving a diversity of creatures through novelty search and
local competition. In Proceedings of the genetic and evolutionary computation conference, 2011.

[27] Anton Bernatskiy and Josh Bongard. Choice of robot morphology can prohibit modular control
and disrupt evolution. In European Conference on Artificial Life (ECAL), pages 60–67. Cambridge,
MA: MIT Press, September 2017.

[28] John H Holland. Adaptation in natural and artificial systems: an introductory analysis with appli-
cations to biology, control, and artificial intelligence. Oxford, England: U Michigan Press, 1975.

[29] Milan Jelisavcic, Rafael Kiesel, Kyrre Glette, Evert Haasdijk, and A. E. Eiben. Benefits of lamarck-
ian evolution for morphologically evolving robots. In Proceedings of the Genetic and Evolutionary
Computation Conference Companion, GECCO ’17, pages 65–66, New York, NY, USA, 2017. ACM.

[30] D.E. Goldberg. Simple genetic algorithms and the minimal deceptive problem. Genetic Algorithms
and Simulated Annealing, Research Notes in Artifical Intelligence, pages 71–88, 1987.

[31] Brian Heater. Amazon says it has deployed more than 200,000 robotic drives globally, Jun 2019.

[32] Amazon robotics challenge. https://www.amazonrobotics.com/, 2017.

[33] Nick Cheney, Josh Bongard, Vytas SunSpiral, and Hod Lipson. On the difficulty of co-optimizing
morphology and control in evolved virtual creatures. In Proceedings of the Artificial Life Conference,
pages 226–234, 2016.

[34] Literature Survey. 2017.

J.A. Westra Master of Science Thesis

BIBLIOGRAPHY 89

[35] Justin K Pugh, Lisa B Soros, Paul A Szerlip, and Kenneth O Stanley. Confronting the challenge
of quality diversity. In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary
Computation, pages 967–974. ACM, 2015.

[36] Joel Lehman and Kenneth O Stanley. Abandoning objectives: evolution through the search for
novelty alone. Evolutionary computation, 19(2):189–223, 2011.

[37] Charles Darwin and William F Bynum. The origin of species by means of natural selection: or, the
preservation of favored races in the struggle for life. John Murray, 1859.

[38] Adam Gaier, Alexander Asteroth, and Jean-Baptiste Mouret. Data-efficient exploration, optimiza-
tion, and modeling of diverse designs through surrogate-assisted illumination. In Proceedings of the
Genetic and Evolutionary Computation Conference, GECCO ’17, pages 99–106, New York, NY,
USA, 2017. ACM.

[39] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for
improved quality, stability, and variation. arXiv preprint arXiv:1710.10196, 2017.

[40] Darrell Whitley and Timothy Starkweather. Genitor ii: A distributed genetic algorithm. Journal
of Experimental & Theoretical Artificial Intelligence, 2(3):189–214, 1990.

[41] Joel Lehman and Kenneth O Stanley. Exploiting open-endedness to solve problems through the
search for novelty. In ALIFE, pages 329–336, 2008.

[42] Lennart Ljung. System identification. Wiley encyclopedia of electrical and electronics engineering,
pages 1–19, 1999.

[43] Carlos A Coello Coello, Gary B Lamont, David A Van Veldhuizen, et al. Evolutionary algorithms
for solving multi-objective problems, volume 5. Springer, 2007.

[44] Elliot Meyerson, Joel Lehman, and Risto Miikkulainen. Learning behavior characterizations for
novelty search. In Proceedings of the Genetic and Evolutionary Computation Conference 2016,
GECCO ’16, pages 149–156, New York, NY, USA, 2016. ACM.

[45] Elliot Meyerson and Risto Miikkulainen. Discovering evolutionary stepping stones through behavior
domination. In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’17,
pages 139–146, New York, NY, USA, 2017. ACM.

[46] Jonathan C. Brant and Kenneth O. Stanley. Minimal criterion coevolution: A new approach
to open-ended search. In Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO ’17, pages 67–74, New York, NY, USA, 2017. ACM.

[47] Jean-Baptiste Mouret and Jeff Clune. Illuminating search spaces by mapping elites. arXiv preprint
arXiv:1504.04909, 2015.

[48] J. Denavit and R. S. Hartenberg. A kinematic notation for lower-pair mechanisms based on matri-
ces. Trans. ASME E, Journal of Applied Mechanics, 22:215–221, 1955.

[49] Reinhard Diestel. Graph Theory. Springer Graduate Texts in Mathematics. Springer-Verlag, 5th
edition, 2017.

[50] Kaz Vermeer, Reinier Kuppens, and Justus Herder. Kinematic synthesis using reinforcement learn-
ing. In International Design Engineering Technical Conferences and Computers and Information
in Engineering Conference, volume 51753, page V02AT03A009. American Society of Mechanical
Engineers, 2018.

[51] Fabian Fränz, Jan Paredis, and Rico Möckel. On the combination of coevolution and novelty search.
In Evolutionary Computation (CEC), 2017 IEEE Congress on, pages 201–208. IEEE, 2017.

Master of Science Thesis J.A. Westra

90 BIBLIOGRAPHY

[52] Askhat Diveev, David Kazaryan, and Elena Sofronova. Symbolic regression methods for control
system synthesis. In Control and Automation (MED), 2014 22nd Mediterranean Conference of,
pages 587–592. IEEE, 2014.

[53] P.J. Fleming and R.C. Purshouse. Evolutionary algorithms in control systems engineering: a survey.
Control engineering practice, 10(11):1223–1241, 2002.

[54] Jose Miguel Atiencia Villagomez, Askhat Diveev, and Elena Sofronova. The network operator
method for synthesis of intelligent control system. In Industrial Electronics and Applications
(ICIEA), 2012 7th IEEE Conference on, pages 174–179. IEEE, 2012.

[55] Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through augmenting topolo-
gies. Evolutionary computation, 10(2):99–127, 2002.

[56] Franklin Day Jones, Holbrook Lynedon Horton, and John A Newell. Ingenious Mechanisms for
Designers and Inventors, volume 1-4. Industrial Press Inc., 1967.

[57] Russell Charles Hibbeler. Dynamica. Pearson Education, 2010.

[58] Kenneth O. Stanley and Jason Gauci. A hypercube-based indirect encoding for evolving large-scale
neural networks. Artificial Life, 2009.

[59] Matthew Hausknecht, Piyush Khandelwal, Risto Miikkulainen, and Peter Stone. Hyperneat-ggp:
A hyperneat-based atari general game player. In Proceedings of the 14th Annual Conference on
Genetic and Evolutionary Computation, GECCO ’12, pages 217–224, New York, NY, USA, 2012.
ACM.

[60] Claude E Shannon. A mathematical theory of communication. The Bell system technical journal,
27(3):379–423, 1948.

[61] Mı́cheál O’Searcoid. Metric spaces. Springer Science & Business Media, 2006.

[62] Hod Lipson. How to draw a straight line using a gp: Benchmarking evolutionary design against
19th century kinematic synthesis. In Late Breaking Papers at the 2004 Genetic and Evolutionary
Computation Conference, Seattle, Washington, USA, volume 26, 2004.

[63] Randall Munroe. Standards. https://xkcd.com/927/.

[64] Gaël Guennebaud, Benôıt Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.

[65] William E Boyce, Richard C DiPrima, and Douglas B Meade. Elementary differential equations.
John Wiley & Sons, 2017.

[66] Eliakim H Moore. On the reciprocal of the general algebraic matrix. Bull. Am. Math. Soc., 26:394–
395, 1920.

[67] Tiago P Peixoto. The graph-tool python library. figshare, 2014.

[68] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure, dynamics,
and function using networkx. In Gaël Varoquaux, Travis Vaught, and Jarrod Millman, editors,
Proceedings of the 7th Python in Science Conference, pages 11 – 15, Pasadena, CA USA, 2008.

[69] Charles R. Harris, K. Jarrod Millman, St’efan J. van der Walt, Ralf Gommers, Pauli Virta-
nen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert
Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane,
Jaime Fern’andez del R’ıo, Mark Wiebe, Pearu Peterson, Pierre G’erard-Marchant, Kevin Shep-
pard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant.
Array programming with NumPy. Nature, 585(7825):357–362, September 2020.

J.A. Westra Master of Science Thesis

BIBLIOGRAPHY 91

[70] Darrell Whitley, Soraya Rana, and Robert B Heckendorn. The island model genetic algorithm: On
separability, population size and convergence. Journal of Computing and Information Technology,
7(1):33–47, 1999.

[71] William D Penny, Karl J Friston, John T Ashburner, Stefan J Kiebel, and Thomas E Nichols.
Statistical parametric mapping: the analysis of functional brain images. Elsevier, 2011.

[72] Jeff Clune, Benjamin E. Beckmann, Charles Ofria, and Robert T. Pennock. Evolving coordinated
quadruped gaits with the hyperneat generative encoding. In Proceedings of the Eleventh Conference
on Congress on Evolutionary Computation, CEC’09, pages 2764–2771, Piscataway, NJ, USA, 2009.
IEEE Press.

[73] Arjan Van Der Schaft and Dimitri Jeltsema. Port-hamiltonian systems theory: An introductory
overview. Foundations and Trends in Systems and Control, 1(2-3):173–378, 2014.

[74] John Conway. The game of life. Scientific American, 223(4):4, 1970.

[75] B Chopard and M Droz. Cellular automata, volume 1. Springer, 1998.

Master of Science Thesis J.A. Westra

