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at the TU Eindhoven, I learned much theory needed to finish this thesis. During my bachelor, I already
learned a lot of the practical knowledge required to carry out research. This research was always done in
groups. During my thesis, I got challenged to do this on my own and on a more significant human subject
project. I became more familiar with the subject step by step, and even today, I seem to learn more about
the fascinating illusion of the rubber hand. Along the process, I got more and more enthusiastic about my
research. Therefore, I am proud to present the experiment results and the from-scratch-created dynamical
model.

My research aimed to create a dynamic model related to the embodiment of the rubber hand illusion.
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Zgonnikov and Phillip Beckerle. I would like to thank them for their help and critical thinking throughout
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during the project. I also would like to thank my parents and brother for helping me wherever they could
and being there for me whenever I needed them. Finally, I would like to thank my friends and housemates
for their support during the mental ups and downs that are part of doing a master’s project. Besides that, I
would like to thank them for the conversations we had about the project, which kept me critical of my own
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Abstract

A common method to investigate multisensory integration is using multisensory illusions. The rubber
hand illusion is one of the best-known multisensory illusion used in clinical applications. By stroking a
visible rubber hand and the participant’s occluded hand, the illusion arises that the rubber hand belongs
to the participant. Possible applications based on this illusion are for neurorehabilitation or developing
robotic devices. These applications are still in a very initial state, and this thesis aims to take these
possible applications a step further. The thesis provides the results of a rubber hand illusion experiment
over time and a dynamic model related to the embodiment of the rubber hand. The dynamical model can
visualize the proprioceptive drift that arises from the illusion and predict the time it takes to experience
it. The results of the experiment and other empirical findings from the literature form the basis of the
model. The experiment measured these factors and the feeling of ownership and agency over time. The
results from this experiment have much variance but are in line with the literature. The dynamical model
fails to visualize the body ownership and agency results. Adding extensions and improvements could
make this dynamic model more complete and applicable in many research fields.

1 Introduction

The rubber hand illusion is a phenomenon involving
cross-modal, and multi-modal integration [1].
Cognitive neuroscience studies use it to describe
the influence of visual and somatosensory cues
on body representations [1]. The rubber hand
illusion is not only of interest in the cognitive
neuroscience department but has also extended into
other disciplines. The rubber hand illusion has been
used in philosophy to explain the concept of body
ownership and what exactly contributes to one’s
’self’, as well as in psychology for the existence of
dis-sociable body representations [2]. Botvinick and
Cohen [3] propose that the feeling of ownership in
the rubber hand illusion is mediated by integrating
multiple senses. Suggesting that ownership is
related to a match between the visual, tactile, and
proprioceptive signals and the individual’s internal
representation of the hand [1].

Botvinick and Cohen [3] were the first to describe
the rubber hand illusion. In their study, the seen
stroking of the rubber hand while synchronously
feeling the stroking of one’s hidden hand was
enough to conduct a feeling of ownership over the
rubber hand in most participants. Besides the
feeling of ownership, they observed distortion in the
proprioceptive information. The researchers asked
the participants to close their eyes after the stroking
and indicate with their non-stimulated hand the
location where they perceived their hand. The
perceived location was closer to the rubber hand.
This proprioceptive drift varied per participant and
duration of the stroking.

Many studies on rubber hand illusions have been
published since the original study of Botvinick and
Cohen [3]. These studies use different methods
for quantifying the effects of the illusion [4]. For
example, the skin temperature [5] and histamine
reactivity [6] have been measured. A more interesting
quantifying method is measuring the time it takes
to perceive the illusion. This onset time, as well as
the proprioceptive drift and body ownership, could
be important for scientists who want to apply these
principles into other fields such as neurosurgical
treatment [1], neuro-rehabilitative therapies [7],
advanced prosthetic research [1, 7] or understanding
different pathologies [1, 7].

To apply the principles of the rubber hand
illusion in these fields, more should be known first.
Understanding the relationship between the onset
time, proprioceptive drift, and ownership and the
process over time is necessary. Furthermore, a
patient-specific model is needed for applicability
rather than an assumption based on the results of a
population. Existing models of RHI are not dynamic
and therefore do not describe important measures

such as the onset time, the proprioceptive drift, and
the body ownership. Previous research has tried
to model the multisensory illusion computationally.
These models use the Bayes rule [8] to solve the
conflict between the visual, proprioceptive, and
tactile stimuli. Two different approaches can be
found in literature, the bottom-up model [9] and the
top-down model [10].

The bottom-up model [9] adopts the Bayesian
causal inference model [11] to model the rubber
hand illusion. The bottom-up model assumes that
the rubber hand illusion only operates on the
temporal and spatial information and the cross-model
recalibration of these senses. Temporal aspects give
information over time; thus, the stroking and the
spatial aspects are related to the distances between
the hands. The illusion creates a conflict between
the spatiotemporal senses, which it tries to minimize
using the mean squared error between the estimates.
This type of modeling is called model averaging
[12]. Their model can recreate the results from
the experiment; A delay between the visual and
tactile stroking will not create the illusion, while
synchronous stroking does. Additionally, increasing
the distance between the hand will weaken the
illusion. A drawback of their model is that it cannot
visualize the differences between individuals and the
change over time.

The top-down model [10] considers
individual differences by introducing higher-level
representations of the body. These body
representations are related to the body’s visual,
anatomical, and structural properties. According to
their model, body ownership during the illusion arises
as an interaction between multisensory input and
modulations exerted by stored and online internal
models of the body. Their model explains the
comparisons made during the illusion rather than a
computational model. It also fails to give a dynamic
model in which the internal models change over time.

None of these models present the ability to model
the dynamics of the illusion. They fail to visualize
the body ownership and the proprioceptive drift over
time. They further fail to visualize the expected time
it takes for the illusion to occur. This thesis aims to
address these limitations by modeling the dynamics
of the body ownership, the proprioceptive drift, and
the onset time during the rubber hand illusion.
Since the mechanism underlying the illusion is the
multisensory conflict between different senses and a
conflict between the internal model and the external
signals, the proposed dynamical model combines
ideas of existing bottom-up [9], and top-down [10]
models. However, since both these models do not
describe the change over time, the need for another
algorithm arises. The proposed model addresses this
by utilizing Kalman filtering. The Kalman filter
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Figure 1: Experiment set up inspired by
Sivasubramaniam et al. [14], and updated
to meet the experiments requirements.

Figure 2: Overview of the experimental
design. * ten participants received an
induction time of 15, 30, 45, and 60 seconds.
** for the other participants, the 15-second
induction was replaced with 75 seconds.

provides estimates of an unknown variable given the
measurements observed over time [13].

In addition to the model, this thesis reports
an original experiment with human participants
designed and executed to investigate the dynamics of
the illusion. It was hypothesized that over time the
proprioceptive drift shifts more to the rubber hand
and that the ownership statements are rated higher
with a longer induction time [15] and that the illusion
was more likely to arise in the synchronous condition
[16]. Finally, I analyzed the model’s validity based
on the experiment’s results.

Section 2 provides the experimental setup and
protocol as well as the results of the experiment.
More information about the proposed dynamical
model is found in Section 3.

2 Experiment

The experiment’s main objective is to investigate the
dynamics of the illusion and the relationship between
the onset time, the proprioceptive drift, and the body
ownership.

2.1 Materials and methods

2.1.1 Participants

A total of 37 participants (14 male, 23 female),
between 19 and 29 years old (with a mean age of 24
years) and a hand size between 15 and 21 cm (average
of 17.6 cm) gave written consent to participate in
the study, which had the Human Research Ethics
committee of the TU Delft’s approval. For all
participants, it was the first time they experienced
the illusion. A compensation of e10 was given for
their participation.

2.1.2 Materials

I used an automated setup for the induction of the
illusion. Figure 1 shows a visualization of the setup,
which is similar to Sivasubramaniam et al. [14].
The stimulation device comprises three significant
components: the mechanical brushing mechanism,
the electronic control system, and the peripherals.
The brushing mechanism and control system are
housed inside a wooden box.

The brushing mechanism is attached to the
mechanical components and fixated to a stage.
Two slots secure the brushes fastened to the
horizontal rotating shaft, allowing for synchronous
and asynchronous stimulation [14]. The distance
between the two brushes is initially fixed at 15.7 cm.
Wooden shaft holders hold the rotating shaft in place
and minimize shaft bending and pitching.

An addition to the setup makes measuring the
proprioceptive drift possible. This addition consists
of a wooden plate with four legs supporting the
plate (Figure 1). A white erasable foil with paper
clips is fixed on this plate during every measurement.
Designs and codes for this setup are available in the
supplementary data.

A white noise track (mono track, 44,100 Hz
sampling frequency with 32-bit float) was generated
using Audacity software (Version 2.2.2) with an
amplitude of 0.05 and exported to a .wav file [14].
The rubber right hand used in the experiment is a
prosthetic glove from Fillauer with item description:
130910Y021. A cloth covers the participants’ right
arms during the experiment. The provided code from
Sivasubramaniam et al. [14] was updated to meet the
experiment’s needs.

2.1.3 General procedure

Before the experiment, the participants removed
all jewelry from their hands to keep the visual
congruence with the rubber hand as high as possible.
The participants were seated comfortably at a chair
behind a desk on which the experimental setup was
placed. The participants placed their right arm inside
the wooden box and positioned their body midline
in front of a blue line. This blue line was placed
so that the setup was placed 30 cm in front and 10
cm lateral of the participant. Therefore, the total
distance between the body midline and the middle
finger of the rubber hand was approximately 23 cm.

A within-subject design was used in which
all participants first experienced two introduction
sessions, after which the experiment began. This
session consisted of 90 seconds of synchronous
stroking followed by 90 seconds of asynchronous
stroking (500 ms delay). Then there was a practice of
identifying the location of the own hand by placing
the dots on the foil. This practice session is used
as the initial guessed location of the own hand.
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The experiment consisted of four stroking conditions,
either synchronous or asynchronous, resulting in eight
conditions. The first 10 participants received an
induction duration of 15, 30, 45, and 60 seconds
of stroking. For the remaining 27 participants, the
researcher replaced the 15-second stroking with an
induction time of 75 seconds. The order of conditions
was pseudo-randomized, and after each session, there
was a resting period of 45 seconds. The entire
experiment took approximately 1 hour.

During each condition, the participants indicated
the moment they felt the rubber hand was their
own if they felt it. After the induction period, the
participants indicated where they felt their hand and
filled in an embodiment questionnaire. (Figure 2)

2.1.4 Onset time

I wrote a Python code to measure the time it takes
for participants to experience the illusion. The
participants received a mouse and clicked on the right
mouse button as soon as they experienced the illusion
with their left hand. After this button press, the
experiment continued till the end of the stroking.
Lane et al. [17], and Zopf et al. [18] used this type
of measurement as well. Instructions were placed on
the table to remind the participants when to press
the button.

2.1.5 Proprioceptive drift

After the stimulation period, the participants closed
their eyes and placed dots on the fixated erasable
foil on top of a wooden plate (see Figure 1). They
placed the dot with a marker on the location where
they felt their hand. After placing a dot, they had to
stretch their left arm again to receive another colored
marker. Once three dots were placed on the foil,
the researcher replaced it with another foil, and the
participants could open their eyes again.

2.1.6 Questionnaire

An embodiment questionnaire measured the
subjective strength of the illusion. This questionnaire
is similar to the one used by Riemer et al. [19]. The
questionnaire consists of 6 statements stated in the
enumeration below. Answers are given in a 7 point
Likert scale, ranging from -3 (strongly disagree) to

3 (strongly agree). Questions 1&2 are related to
ownership, 3&4 to agency, and questions 5&6 are
control statements. The questions were randomized
during each session.

Questionnaire:
1. It felt as if the rubber hand was my own hand
2. It seemed like the rubber hand was part of my
body
3. It seemed like I could grab something with the
rubber hand
4. It seemed like I could make a fist with the
rubber hand
5. I had the sensation that my hand was numb
6. It seemed like my hand had disappeared

2.2 Results

The analysis includes the results of all participants.
The group that received an induction time of 15
seconds does not significantly differ from the group
that received an induction time of 75 seconds.
Appendix A elaborates the statistics used for the
analysis. Here, the statistics compare the outputs
against the groups (15 or 75 seconds), the condition
they received (synchronous or asynchronous), and
the duration of the stroking. I used the Fit linear
regression model (fitlm) as the analysis method.
Overall the R2 is small, indicating that the results
are noisy and unpredictable.

2.2.1 Onset times

Of the 37 participants, 25 pressed the onset
button during the experiment. 13 pressed the
button in both conditions, 11 pressed it only in
the synchronous condition, and one only in the
asynchronous condition. The button was pressed 68
times (n = 24) in the synchronous condition and
24 times (n = 14) in the asynchronous condition.
(Figure 3)

The average onset time for the synchronous
condition was 21.1 seconds, while the average
onset time for asynchronous stroking was 24.3
seconds. There is no significant difference between
synchronous and asynchronous stroking (p = 0.45).
The duration of the experiment and the onset time
(p < 0.05) show a significant difference. The model
itself is not significant (p = 0.137).

Figure 3: Frequency distribution of the onset times in the synchronous (left-top) and asynchronous
(left-bottom) conditions. on the right: Box plots of the onset times in the synchronous (n = 68) and
asynchronous (n = 24) conditions.
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Figure 4: Visualization of the proprioceptive drift and the questionnaire results.

2.2.2 Proprioceptive drift

The proprioceptive drift does not start at zero
in this experiment. An initial mismatch between
the hand and the perceived location was 1.77 ±
2.62cm. After an induction time of 15 seconds,
this mismatch increased to 5.16 ± 1.23cm in the
synchronous condition and 4.43 ± 1.59cm in the
asynchronous condition after 30 seconds (Figure 4
left top). With a longer induction period, this drift
stayed approximately the same. The mean of the
proprioceptive drift is is significant over time (p <
0.05), but not per condition (p = 0.08). The model
itself is also significant (p < 0.05). The average
variance of the placed dots on the foils shows no
significant linear difference in all tests.

2.2.3 Questionnaire

Then the results from the questionnaire (see Figure 4)
are analyzed for the averaged ownership, agency, and
control questions. The average of the two statements
in each category creates a more solidified subjective
output. The data for two participants were lost,
and that of another participant for the asynchronous
condition at 30 seconds.

Overall it can be seen that the ownership
ratings are rated higher than the agency and
control questions. For the ownership ratings,
the synchronous and asynchronous conditions differ

significantly (p < 0.05), but the time does not
significantly differ (p = 0.06). Overall the ownership
statements are significant (p < 0.05) and have the
highest R2 of all tests with a value of 0.11. The
agency statements differ between the synchronous
and asynchronous conditions (p < 0.05), and the
model itself is also significant. This significance is
the same for the control statements.

2.2.4 Correlation between onset time,
proprioceptive drift and ownership

Finally, the correlation coefficient and the
corresponding p-values between the different
measurement outputs were calculated for the
synchronous (Table 1) and asynchronous condition
(Table 2). Appendix B.1 provides scatter plots of
these comparisons. Measurements of the onset time
are during the induction time, and the proprioceptive
drift and ownership measurements are afterward.

For the synchronous condition, all correlation
coefficients are significant. The onset time and
proprioceptive drift correlate negatively. The
correlation between the onset time and the ownership
is negative as well. The relationship between
proprioceptive drift and ownership is positively
correlated. The correlation coefficients in the
asynchronous condition are similarly related but show
no significance.

Table 1: Correlation coefficients - synchronous.
Significance is indicates as: ∗p < 0.05, ∗ ∗ p <
0.01, ∗ ∗ ∗p < 0.001

Onset
time

proprioceptive
drift

Ownership

Onset time 1 -0.45∗∗∗ -0.34∗∗

proprioceptive
drift

1 0.40∗∗∗

Ownership 1

Table 2: Correlation coefficients - asynchronous.
Significance is indicates as: ∗p < 0.05, ∗ ∗ p <
0.01, ∗ ∗ ∗p < 0.001

Onset
time

proprioceptive
drift

Ownership

Onset time 1 -0.04 -0.22
proprioceptive
drift

1 0.33

Ownership 1
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Figure 5: Simplified version of the dynamic model and the relationship between the sections

Table 3: Relation of the used components in the
dynamics with the rubber and own hand in the
illusion.

Rubber hand Own hand
Xvis

rubber ✓
X̂rubber ✓
X̂vis

rubber ✓
Pre - existing model ✓

Xprop
own ✓

X̂own ✓
X̂prop

own ✓
X̂diff ✓ ✓
τvisrubber ✓
τ tactown ✓
σT ✓ ✓

Overlap ✓ ✓

3 Dynamical model

3.1 Method

The Bayesian-based dynamical model proposed here
operates on the spatial (the own and rubber
hands location), the temporal (the seen and felt
stroking), and internal information to estimate the
proprioceptive drift and the onset time during the
illusion. The dynamic model proposed here will
resolve conflicts between internal and external signals
as proposed by Tsakiris [10]. Additionally, conflicts
between the different cues will be solved, similar to
the top-down model [9] with the Bayes rule. The
dynamical model is analogous to predictive coding,
which is a unified model explaining the interactions
in the brain [20]. This theory sees the brain as
a hierarchical and bidirectional model. In this
hierarchical model, top-down information tries to
predict the sensory data coming from bottom-up.

In the proposed model, the Kalman filter
constantly updates the top-down information. The
Kalman filter consists of two steps, the prediction

step and the update step [13]. In the proposed
model, the prediction step functions at a higher
level in the hierarchy than the update step and
works bi-directionally. Due to the combination of
the top-down, bottom-up, and Kalman filter, the
proposed dynamical model of the illusion can account
for the majority of the empirical findings of the
illusion. It can also be adjusted to justify individual
differences. The figure in Appendix B.2 visualizes the
total model diagram, while Figure 5 is a simplified
version. Each section has its elaborated diagram for
clarification. Table 3 provides an overview of how the
used components relate to the own and rubber hand
in the illusion.

3.1.1 Representing sensory information

Explanation The external signals used in the
illusion are internally represented as Gaussian
distributions.

The first step in this model is to represent the
external signals as internal sensory information. This
internal sensory information related to the seen and
perceived location of the rubber and own hand and
the timing of the seen and felt stroking all have a
variance. What precisely the variance of the internal
sensory information is, is unknown. The internal
sensory information represents the external signals as
a Gaussian distribution related to the sensory process
[21]. During the illusion, these external signals do
not change over time. The variance of the different
sensory cues are different [22] and vary per individual
[23].

Implementation into the model Four external
sensory cues represent the external signals needed
for the illusion. These are the rubber hand’s visual
location (Xvis

rubber) and the own hand’s proprioceptive
location (Xprop

own ), as well as the time in which the
participant sees the rubber hands’ being stroked
(τvisrubber) and felt the own hand being stroked (τ tactown ).
The delay between the strokes is constant throughout
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the experiment. The dynamical model captures these
sensory cues as Gaussian distributions represented as
follows:

Xvis
rubber ∼ N(µXvis

rubber
, σ2

Xvis
rubber

)

Xprop
own ∼ N(µXprop

own
, σ2

Xprop
own

)

τvisrubber ∼ N(µτvis
rubber

, σ2
τvis
rubber

)

τ tactown ∼ N(µτtact
own

, σ2
τtact
own

)

(1)

The locations of the hands (X) are inmm, and the
time when the seen and felt stoking happens (τ) are
in msec. In the model the mean of the seen stroking
(µτvis

rubber
) is set at 0, while the mean of the felt stroke

(µτtact
own

) indicates the delay between the strokes.

3.1.2 Estimation of the rubber hand

Explanation The visual signal from the rubber
hand is compared to the pre-existing model of the own
hand. The comparison output is the visual estimate
of the rubber hand location.

Figure 6: Visualization of how the different blocks
relate to each other to estimate the location of the
rubber hand (X̂rubber)

Before the experiment starts, the participant
makes a first critical comparison by comparing the
visual form of the rubber hand against a pre-existing
model. The pre-existing model contains a reference
description of the body’s visual, anatomical, and
structural properties. It also contains representations
about (a) the shape and contours of the human body,
(b) a detailed plan of the body surface, and (c) the
location of body parts, the boundaries between them,
and their internal part-relation [10].

The comparison between the visual form of
the hand and the pre-existing model predicts that
the more the viewed object matches the structural
appearance of the body part’s form, the stronger
the illusion will be. For example, replacing the
rubber hand with and non-corporeal object, such as a
cardboard box, decreases the possibility of receiving
the illusion [5].

The participant makes a second comparison based
on the postural and anatomical features of the rubber
hand. This comparison relates mainly to the postural
configuration between the own and rubber hand. If
the rubber hand is rotated 180°, the illusion will be
less likely to arise. [10]

In the model, the results of the comparisons
between the visual form of the own hand and the
rubber hand determine the variance of the internal
visual signal of the rubber hand (X̂vis

rubber). This
signal is a Gaussian distribution. The model takes the
average of the external and internal representation
of the rubber hand’s location, resulting in the final
estimation of the rubber hand (X̂rubber).

Implementation into the model The model’s
proprioceptive drift and onset time rely on the rubber
and own hands’ estimated variance, which Section
3.1.4 explains. When there is a mismatch between
the visual rubber hand (Xvis

rubber) and the pre-existing
model, the illusion is less likely to arise. The model
should then rely less on the visual location of the
rubber hand, and thus the variance should increase.

In the model, a Gaussian distribution represents
the comparisons between the visual form of the
hand and the pre-existing model. This Gaussian
distribution is the internal visual signal of the
rubber hand (X̂vis

rubber). A larger variance in the
Gaussian distribution relates to a more considerable
mismatch between the visual form of the hand and
the pre-existing model. The mean of the X̂vis

rubber is
similar to the location of the rubber hand µXvis

rubber
.

Then the model combines the Xvis
rubber and X̂vis

rubber

to estimate the location of the rubber hand (X̂rubber).
Based on the assumption that the Xvis

rubber and

X̂vis
rubber are measurements of the same quantity [24],

the location of the rubber hand (X̂rubber) is the
average between the two. Since both the Xvis

rubber and

X̂vis
rubber are normally distributed, their average is also

a Gaussian random variable. (Equation 2)

µX̂rubber
=

µXvis
rubber

+ µX̂vis
rubber

2

σ2
X̂rubber

=
σ2
Xvis

rubber
+ σ2

X̂vis
rubber

22

(2)

3.1.3 Calculating the perceived asynchrony

Explanation The perceived delay between the
strokes is calculated as the overlap between the seen
and felt Gaussian distributions, which indicate the
delay between the strokes.

Figure 7: Visualization of how the different blocks
relate to each other to estimate the perceived
asynchrony (Overlap)

Once the experiment starts, the participant makes
the third comparison. They compare the seen
and felt stroking, and their temporal resolution
of multisensory perception [10]. This temporal
resolution is the individuals’ sensitivity to perceive
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asynchrony during the stimulation [23]. This
principle is also called the temporal binding window.
The larger the perceived asynchrony during the
stimulation, the less likely the illusion is to arise.

The model describes perceived asynchrony as
the fraction of overlap between the Gaussian
distributions of the seen (τvisrubber) and felt (τ tactown )
stroking. This overlap fraction depends on the delay
between the strokes and the variance of the Gaussian
distributions. The variance is linearly related to the
temporal binding window. The mean of the seen
stroking (µτvis

rubber
) is fixed at zero and the mean of

the felt stroking (µτtact
own

) indicated the delay between
the strokes, which is constant during the experiment.

Implementation into the model To implement
the perceived asynchrony into the model, the model
assumes that it is similar to the fraction of overlap of
the Gaussian distributions of the seen (τvisrubber) and
felt (τ tactown ) stroking. The model needs the mean of
the seen and felt strokes, which indicates the delay
between them, and their variances to calculate this
fraction.

Based on research from Hirsh and Sherrick [25],
the variances of the seen (στvis

rubber
) and felt (στtact

own
)

strokes are the set to be the same (σT). The
amount of variance is dependent on the individual’s
temporal binding window. With a higher temporal
binding window, the participant can perceive larger
delays between the strokes as synchronous [23]. In
the model, the overlap fraction is larger with an
increased temporal binding window, resulting in more
perceived synchrony between the strokes. Appendix
C.1 shows the derivation of the relationship between
σT and the temporal binding window.

For the perceived asynchrony or the overlap
fraction, three options are possible: a) There is no
delay, and thus the Gaussian distributions are in total
overlap (total perceived synchrony); b) the delay and
temporal binding window result in no overlap at all
(total perceived asynchrony) or; c) there is a delay,
and the Gaussian distributions are in partial overlap
(as shown in Figure 12-Temporal). The fraction
overlap results in 1 or 0 for the first two options.
For the third option, the model calculates the overlap
fraction.

The model does this by calculating the fraction
of the overlapping regions of the two Gaussian
distributions. The first step in this process is
finding the intersection point of the two Gaussian
distributions. Because both Gaussian distributions
have the same variance (σT), the intersection point is
in the middle of the two distributions. In the model,
µτtact

own
is defines as the delay between the strokes and

µτvis
rubber

is zero. (Equation 3)

t =
µτvis

rubber
+ µτtact

own

2
(3)

Since the Gaussian distributions of the visual and
tactile cues are similar, it is possible to normalize
them. Then the area of both distributions is equal to
one, and the area of the tactile Gaussian distribution
below the intersection point is equal to the p-value.
The p-value is found by calculating the z-score and
using the Z-table.

Z =
t− µτtact

own

σT
(4)

The overlap fraction is then calculated as the total
probability area divided by the total area, which is
the total of two normalized distributions minus the
total probability area.

Overlap =
2 ∗ 1 ∗ p(τ tactown < t)

2 ∗ 1− p(τ tactown < t) ∗ 1 ∗ 2

Overlap =
p(τ tactown < t)

1− p(τ tactown < t)

(5)

3.1.4 Dynamic estimation of the own hand
location

Explanation The proprioceptive location of the
own hand is compared to the constantly updating
internal predicted location of the own hand. The
comparison output is the proprioceptive estimate of
the own hand location.

Figure 8: Visualization of how the different blocks
relate to each other to estimate the location of the
own hand (X̂own)

After finding the estimated location of the rubber
hand and the perceived asynchrony between the
stroking, it is time to estimate the location of the own
hand. The estimated location of the own hand (X̂own)
is modeled as the complete Bayesian fusion between
the external location of the own hand (Xprop

own ) and an
internal predicted location of the own hand (X̂prop

own ).
These are all Gaussian distributions. The ability
to combine the external and internal cues differ
between individuals [26]. Therefore, a coupling prior
(σcoupling) is added to the weighting factors of the
Bayesian integration.

To make this model dynamic, the internal
predicted location of the own hand (X̂prop

own ) is
constantly updating. The updating of the X̂prop

own uses
the prediction step of the Kalman filter [13]. The
model assumes that the internal predicted location of
the own hand (X̂prop

own (t+ dt)) is related to its current
prediction X̂prop

own (t) and the estimation of the rubber
hand X̂rubber. This assumption is based on Van
Beers et al. [27]. They showed that the estimation
partly relies on the visual cue, even with a mismatch
between the visual and proprioceptive senses.

The estimated location of the own hand X̂own

is a direct representation of the proprioceptive drift
in the experiment. The literature shows that the
proprioceptive drift is related to the (a)synchrony
of the stroking [28]. As shown in the experiment,
the proprioceptive drift also differs per participant.
Therefore, the updating of the internal predicted
location of the own hand (X̂prop

own (t+dt)) also depends
on perceived asynchrony (Overlap) and a variable
related to µX̂prop

own
, and σX̂prop

own
, namely the drift and

diffusion.

9
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Implementation into the model The model
calculates the estimation of the own hand using
the Bayes rule by integrating the external location
and the predicted internal location of the hand
[8] (Equation 6). This integration uses weighting
factors for both cues (ωXprop

own
(t) and ωX̂prop

own
(t)) and

a coupling prior (σ2
coupling(t)) to influence their

reliability (Equation 7). The coupling prior is equal
to a constant C at t = 0. It varies with the
distance between the internal predicted location of
the own hand and the estimated location (Equation
8). The coupling prior constant C scales with the
participants’ ability to merge internal and external
signals [26].

µX̂own
(t) = ωXprop

own
(t)µXprop

own
+ ωX̂prop

own
(t)µX̂prop

own
(t)

σ2X̂own(t)
= ω2

Xprop
own

(t)σ2
Xprop

own
+ ω2

X̂prop
own

(t)σ2
X̂prop

own
(t)

(6)

ωXprop
own

(t) =
σ2
X̂prop

own
(t)

σ2
Xprop

own
+ σ2

X̂prop
own

(t) + σ2
coupling(t)

ωX̂prop
own

(t) =
σ2
Xprop

own
+ σ2

coupling(t)

σ2
Xprop

own
+ σ2

X̂prop
own

(t) + σ2
coupling(t)

(7)

σ2
coupling(t+ dt) =

C +
µX̂prop

own
(t = 0)− µX̂own

(t)

µX̂own
(t = 0)− µX̂rubber

(t = 0)
∗ C

(8)

In this model, the internal predicted location of
the own hand (X̂prop

own ) updates constantly. The model
assumes that the updating of this prediction involves
the estimated location of the rubber hand (X̂rubber),
based on research of Van Beers [27]. The difference
between the estimated location of the rubber hand
(X̂rubber) and the current predicted location of the
own hand (X̂prop

own (t)) influence the predicted location
of the own hand at the next time step (X̂prop

own (t+dt)).
This difference is normalized by dividing it by the
initial difference between the estimated location of
the rubber hand (X̂rubber) and the predicted location
of the own hand (X̂prop

own (t = 0)). This matches
empirical findings related to the proprioceptive drift
[29]. (Equation 9)

∆µ(t) =
µX̂prop

own
(t)− µX̂rubber

µX̂prop
own

(t = 0)− µX̂rubber

∆2
σ(t) =

σ2
X̂prop

own
(t)− σ2

X̂rubber

σ2
X̂prop

own
(t = 0)− σ2

X̂rubber

(9)

The updating of the X̂prop
own results in an updated

estimated location of the own hand X̂own, which
is directly related to the proprioceptive drift. The
influence of the perceived asynchrony (Overlap) and
individual differences (Drift and Diffusion) on the
proprioceptive drift are included in the updating
process of the predicted location of the own hand
X̂prop

own (t+ dt). (Equation 10)

M = Drift + Drift ∗Overlap

V = Diffusion + Diffusion ∗Overlap
(10)

Using both Equation 9 and 10 the equation for
the updating of the of internal predicted location
of the own hand (X̂prop

own ) is calculated. It uses
the internal predicted location of the own hand
(X̂prop

own (t)) and the difference between the estimated
location of the rubber hand (X̂rubber) and the current

predicted location of the own hand (X̂prop
own (t)). This

is influenced by the Drift, Diffusion and Overlap, and
is used to calculate the internal predicted location of
the own hand at the next time step (X̂prop

own (t + dt)).
(Equation 11)

µX̂prop
own

(t+ dt) = µX̂prop
own

(t)−∆µ(t) ∗M ∗ dt
σX̂prop

own
(t+ dt) = σX̂prop

own
(t) + ∆σ(t) ∗ V ∗ dt

(11)

In this equation, the minus in the formula for the
µX̂prop

own
(t + dt) indicates a drift towards the rubber

hand. This minus is due to how the rubber and own
hand’s location are defined in the model.

3.1.5 Perceiving the illusion

Explanation The difference between the predicted
internal location of the own hand and the estimated
location of the rubber hand reaches a threshold. The
intersection of the threshold with this distribution is
the probability of perceiving the illusion.

Figure 9: Visualization of how the different blocks
relate to each other to perceive the illusion at a
certain time (onset)

Besides the proprioceptive drift, researchers also
quantify the illusion with the onset time, which is the
time it takes to perceive the hand as one’s own [16].
For the onset time, the participant unconsciously
perceives the illusion at a particular time point.
Researchers believe that the onset time is related to
the sensation of ownership [30] or the referral of touch
sensation [31].

Results from the experiment show no significant
correlation between the onset time and the ownership
in both the synchronous and the asynchronous
conditions, only for the synchronous condition. This
result is the same between the onset time and the
proprioceptive drift. Therefore, the model assumes
that the onset time is related to a higher level in
the hierarchy mentioned in Section 3.1.1. Here, this
higher level is the difference between the predicted
internal location of the own hand X̂prop

own and the
estimated location of the rubber hand X̂rubber.

The difference between the predicted internal
location of the own hand X̂prop

own and the estimated
location of the rubber hand X̂rubber is a Gaussian
distribution that differs over time X̂diff(t). I assume
that once the X̂diff(t) reaches a threshold, the
participant unconsciously decides that the rubber
hand is his/her own. Due to the differences
in proprioceptive drift and the given onset time
between participants, the model assumes that the
threshold height is participant-specific. Over time the
proprioceptive drift needed before pressing the onset
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time button decreases (Table 1), suggesting that the
threshold declines over time.

Implementation into the model The model
uses the difference between the predicted internal
location of the own hand X̂prop

own and the estimated
location of the rubber hand X̂rubber. Once this
Gaussian distribution (X̂diff) reaches a threshold,
the intersection point represents the probability of
receiving the illusion at that time point.

The model uses standard Gaussian rules to
calculate the difference between the X̂prop

own and the
X̂rubber (Equation 12). It also uses a linear formula
for the threshold (Equation 13). The threshold’s
height and decline are participant-specific.

µX̂diff
(t) = µX̂prop

own
(t)− µX̂rubber

σX̂diff
(t) = σX̂prop

own
(t) + σX̂rubber

(12)

Threshold = height− decline ∗ dt ∗Overlap (13)

Once the X̂diff reaches the threshold at a certain
time point, the model calculates the probability that
the threshold is equal to the X̂diff. Doing this for
every time step results in the probability function of
the onset time. (Equation 14)

Onset(t) = p(X̂diff(t) = Threshold(t)) (14)

3.1.6 Simulation

An app with realistic parameters calculates the
proprioceptive drift and the onset time with the
equations above and visualizes them in graphs
(Figure 12). The app uses typical distances between
the hands (0-60 cm) and normal temporal delays
between the strokes (0-1000 msec) for the external
signals. The stimulation uses a distance of 15
cm between the hands. The variance of the
proprioception (σ2

Xprop
own

) was set to 15 mm [9].
The variance of the visual location of the rubber
hand (σ2

Xvis
rubber

) is 1 mm, corresponding results from

literature [9]. The delay between the stroking is
0 msec for synchronous stroking and 500 msec for
asynchronous stroking.

Besides the external signals, the parameters for
the internal variables (temporal binding window,
coupling prior constant, drift, diffusion, onset height,
and decline) have also been set. Table 11 in Appendix
D shows an overview, and Section 3.3 explanations of
the ranges of the variables.

3.2 Results

Figures 10 and 11 show the simulation results
that results from the created app shown in Figure
12. When there is a temporal delay between the
signals, in the case of asynchronous stroking, the
proprioceptive drift is lower than in the synchronous
condition. The onset time in the asynchronous
condition arises later and is more spread. Therefore,
the model can account for the rubber hand illusion.

The maximal proprioceptive drift stabilizes after
a certain distance when the effect of distance between
the rubber and the real hand is assessed. When
the distance between the rubber and the real hand
reaches zero, the drift also decreases (Figure 10).
This matches findings from Erro et al. [29]. Besides
that, the onset time gradually vanishes as the
distance between the hands approaches 30 cm when
the height of the onset threshold is at its maximum.
This implies that the illusion vanishes when the
distance between the hands is larger than 30 cm.
These results closely match empirical findings, which
had shown that the illusion deteriorates as a function
of distance, and found that the spatial limits on the
experience of the illusion was 27.5 cm [31]. When
the distance between the hands is smaller than the
threshold height, the model has no onset time. In
these cases, the threshold should be decreased to
match the literature.

The effect of the delay between the stroking
has been assessed to further examine the model’s
validity (Figure 11). An increasing delay between
the stoking decreases the maximal proprioceptive
drift, stabilizing as the delay increases. The peak
of the onset time arises later with an increasing delay
between the strokes. A final effect of an increasing
delay between the stroking is an increase in the total
duration of the onset time. This is in line with the
results of the experiment and empirical findings [17].

3.3 Effect of parameters on model
behavior

Each variable has its influence on the model. Besides
that, each parameter has its ranges based on the
experiment’s results or values from the literature.
Below the influences and the ranges of each parameter
are explained. For the representation, the distance
between the hands is set at 15 cm for a duration of 600
seconds. Further, the model uses the initial values
while only varying one of the parameters (Table 11).
The graphs in Appendix D visualize the effects of
each parameter.

Figure 10: Simulation results: Spatial
effects, increasing the distance between the
seen rubber hand and the felt own hand.

Figure 11: Simulation results: Temporal
effects, increasing the delay between the
seen strokes on the rubber hand and the
felt strokes on the own hand

11



Figure 12: Visualization of the app: The spatial and temporal plot visualize the model’s inputs. In the
temporal plot, the user can adjust the location of the own hand with the slider of the own hand. The
variance of the seen and felt stroking can be changed with the temporal binding window slider, and with
the delay slider, the Gaussian distribution of the stroking of the own hand can be changed. Furthermore,
the duration and the internal variables can be adjusted. Section 3.3 summarize the effects of these internal
variables. In the app, only one line is visible. Here, the synchronous and asynchronous condition illustrates
the difference between the two.

3.3.1 Temporal binding window (ms)

The temporal binding window affects the width of
the Gaussian distributions in the temporal aspects.
A higher value will result in a Gaussian distribution
with a higher variance. This directly results in a
higher overlap when there is a delay between the
seen and felt stroking. The temporal binding window
has no effect when there is no delay. The fraction of
overlap in the temporal aspect is responsible for the
amount of proprioceptive drift and the width of the
onset time. Thus, increasing the temporal binding
window when there is a delay between the felt and
seen stroking will increase the proprioceptive drift
and decrease the time it takes for the peak of the
onset time to arise. Increasing the temporal binding
window will also decrease the duration of the onset
time.

The temporal binding window parameter ranges
are based on the results of Constantini et al.
[23]. They found that the average width of the
temporal binding window was 196 ms with a standard
deviation of 47 ms. To include 99.7% of all
participants or three times the standard deviation
results in the range of 55 to 337. The given value
is linearly related to the variance of the felt and seen
stroking Gaussian distributions in the model (σT ).
The mathematical derivation is in Appendix C.1.

3.3.2 Coupling prior constant (−)

Increasing the coupling prior constant (C) will
result in more proprioceptive drift. The maximal
proprioceptive drift stabilizes as the coupling prior
constant increases. There is a slight difference
in the maximal proprioceptive drift in synchronous
and asynchronous conditions. The time of the
maximal drift is different for the synchronous and
asynchronous conditions. The maximal drift arises
earlier in the synchronous condition. Besides the
maximal drift, the prior coupling constant also
influences the proprioceptive drift’s variance. This
variance decreases once the coupling prior constant
reaches zero and then increases again with an
increasing coupling prior constant. The coupling
prior constant does not influence the onset time.

The coupling prior constant is directly related to
the weighting factor used in the estimation of the own
hand. This weighting factor is calculated using the
external and internal signals variances. The variance
of the external signals is set to 15, similar to Samad et
al. [9], and the variance of the internal signal at t = 0
is 30. A coupling prior of -15 lets the model rely solely
on the external signal to calculate the estimation of
the own hand. A coupling prior of 125 lets the model
rely mainly on the internal signals. These values are
mathematically explained in Appendix C.2.

3.3.3 Internal model - Drift and diffusion
(mm−1s−1)

Increasing the drift results in more proprioceptive
drift, where the time it reaches the maximal drift
differs for synchronous and asynchronous conditions.
The time it takes to reach the maximal proprioceptive
drift in the synchronous condition decreases as the
drift increases. With an increasing drift, the time it
takes to reach the peak of the onset time decreases
and stabilizes. The duration of the onset time
behaves similarly.

Increasing the diffusion will decrease the maximal
proprioceptive drift. While the maximal variance
of the proprioceptive drift increases. The duration
of the onset time increases as the diffusion of the
internal model increases.

The ranges of the drift and diffusion of the
internal model are based on the formulas in equation
10. To change the predicted internal location of
the own hand, the output of equation 10 must
be greater than zero and is therefore set to 0.01.
The maximal influence of the difference between the
estimated location of the rubber hand (X̂rubber) and
the predicted location of the own hand (X̂prop

own ) should
be 1. From this, it directly follows that the maximal
value for the drift should be 0.5.

The variance of the X̂prop
own is also used in the

weighing factors and has more influence on the model.
Therefore the diffusion ranges are ten times smaller
than those of the drift.
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Figure 13: Best fit between the synchronous
results of the experiment and the dynamic
model.

Figure 14: Best fit between the
asynchronous results of the experiment and
the dynamic model.

Table 4: Values of the parameters used for the best fit. The temporal binding window does not influence
the results from the synchronous condition.

Condition Temporal
binding
window

Coupling
prior
constant

Drift Diffusion Height
threshold

Decline
threshold

Best fit 337 121.8 0.5 0.001 140 0

3.3.4 Threshold onset time - Height (mm)

The height of the onset threshold and its influence
on the model is dependent on the initial distance
between the own and rubber hand. Once the
threshold is high enough to touch the X̂diff (Figure
12) and keeps increasing, the time it takes to reach
the peak of the onset time will decrease. The onset
time duration will increase until the Gaussian’s mean
(µX̂diff

) crosses the threshold. Then the duration of
the onset time will decrease again. The height of the
threshold does not influence the proprioceptive drift.

The lowest value for the height of the threshold is
zero, which means that there is no difference between
the position of the rubber hand and the predicted
location of the own hand. The maximum value for
the height is related to the spatial limit found by
Lloyd [31]. The time to elicit the illusion decreases
when the distance between the hands is larger than
30 cm. By setting the maximum value of the height
of the threshold to 250 mm, the model generates
similar onset times with a distance between the hands
between 0 and 250 mm. A larger distance between
the hands will result in an increased onset time, which
is in line with the results of Lloyd [31].

3.3.5 Threshold onset time - Decline (s−1)

Increasing the decline of the onset threshold is related
to an increase in the time it takes to reach the peak
of the onset time. The duration of the onset time also
increases with an increasing decline in the onset time.
The decline of the onset threshold does not influence
the proprioceptive drift.

The threshold’s decline ranges are based on the
experiment’s results. The asynchronous condition
has a non-significant correlation coefficient of 0.04. In
the synchronous condition, the significant correlation
is 0.45. Due to the non-significance and the fact
that the onset time is not directly related to the
proprioceptive drift, the ranges are 0-0.2.

3.4 Dynamical model vs Experiment

To further validate the model, I compared the
results from the experiment with the model using

a grid search (Figures 13 and 14). For this
grid search, all possible values for the mean and
variance of the proprioceptive drift and onset time are
calculated using all possible parameter combinations
(1.038.180). Then every parameter combination
is compared with the results of the experiment.
For comparing the mean and variance of the
proprioceptive drift between the model and the
experiment, the error sum of squares was calculated.
For the onset time, the correlation between the model
and participant was calculated using the function
corr2 from Matlab. Then all the outcomes were
normalized over the parameter options. Finally,
the sum was taken from the normalized mean and
variance of the proprioceptive drift and the onset time
values, in which the lowest value is the best fit.

Figure 13 and 14 show the results of the
comparison between the model and the results of the
experiment. The proprioceptive drift arises earlier
in the experiment than in the model. After 75
seconds, the proprioceptive drift from the model
and the experiment are close. Furthermore, the
proprioceptive drift of the experiment starts at a
higher point than the model. The model can correctly
predict the onset time outcomes from the experiment
in the synchronous condition. In the asynchronous
condition, the onset time from the experiment is more
spread over time. Here, the model is less able to
include all the results from the experiment. The
model fails to include the onset times further away
from the main distribution. Due to the lack of data
for individual participants, I did not compare the
model and one participant.

4 Discussion

4.1 Experiment

The experimental output consisted of three tasks:
pressing the button when the illusion arises, placing a
marker at the position of the own hand, and filling in
a questionnaire. For pressing the button and thus
finding the onset time, 25 out of 37 participants
pressed the button. The onset time output is
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consistent with the literature; 60-62 out of the 117
participants responded in a synchronous active and
passive movement experiment from Kalckert and
Ehrsson [16]. Of the 52 participants Lloyd recruited,
42 agreed in all conditions with the statement: ’It
seemed as though the touch I felt was caused by the
experimenter touching the rubber hand’ [31].

Besides the number of responses, the average
onset time for the synchronous condition (21.1
seconds) is also consistent with the literature.
Kalckert and Ehrsson [16] found an average onset
time of approximately 23 seconds. The presented
frequency histogram in their study (Figure 4) is
equivalent to the top-left graph in Figure 3. With
an initial distance of 27.5 cm between the hands,
Lloyd [31] found an average onset time of 15 seconds.
Lane et al. [17], who also investigated the duration
of the illusion, found a much higher onset time for
the illusion. The onset time was approximately
100 seconds. Their results included participants
who had not experienced the illusion, which explains
the slower responses. The experimental setup and
procedures differ in the number of responders and
average onset time. This study shows that an
automated setup can obtain similar onset times.

At first sight, my findings regarding the
proprioceptive drift seem inconsistent with the
literature. In most studies that use motor response
as proprioceptive drift measurement [28, 32, 33, 34],
a significant difference can be found between the
synchronous and asynchronous conditions. In this
study, these conditions did not significantly differ
at all. The results are, however, similar to the
results of Rohde et al. [35], who investigated
the difference between measurement frequency in
synchronous and asynchronous conditions. They
found that the proprioceptive drift also occurred
in the asynchronous condition in an increased
measurement frequency (12x10 sec). In other groups
(3x40 sec and 1x120 sec), the asynchronous stroking
resulted in a significant difference, suggesting that a
session has an optimum frequency of measurements.
The conducted experiment probably went over this
optimum.

The amount of drift in the synchronous
and asynchronous conditions (t = 75 s, 5.1 ±
1.5 cm and 4.6±1.8 cm) is larger than measurements
seen in other studies which used a horizontal set-up
[18, 19, 36]. They all found a 2.5-3.5 cm drift
in the synchronous condition and 1-3 cm in the
asynchronous condition. The results of Rohde et al.
[37] are more similar to the results of this experiment;
they found a drift of approximately 7 cm in the
synchronous condition and 3 cm in the asynchronous
condition. The results are, however, hard to compare
since the experimental setup and the duration differ
from the current study. In the study of Rohde et
al. [35], who investigated the measurement frequency,
the amount of drift seems to stabilize around 5 cm for
both the synchronous and asynchronous conditions,
which is in line with the results of this study.

The questions used in the questionnaire are from
Riemer et al. [19]. They implemented passive tactile
stimulation and active voluntary movements in their
experiment. The synchronous and asynchronous
conditions are significantly different for the ownership
and agency items with passive tactile stimulation,
while the control items were not significant. These
results are similar to the presented results, but in
my research, the control items also significantly differ
in conditions. In non of the questions, a significant
difference over time is noticeable.

Increasing the duration of the stimulation did not
affect the ownership results. However, there is a
significant difference over time in the proprioceptive
drift, mostly related to the initial measurement.
This phenomenon is in line with the results of
Gallagher et al. [38], who had an increasing drift over
time compared to a stable ownership questionnaire.
Their study’s most prolonged condition took 5
minutes, which might explain the significance of
the proprioceptive drift. This study, the study
of Gallagher et al. [38] and Rohde et al. all
draw similar conclusions. They all suggest that a
dissociation between the proprioceptive drift and the
questionnaire is in place and that they reflect separate
underlying processes of the illusion.

Even though the increased duration of the
stimulation indicates a dissociation between the
proprioceptive drift and the ownership results, direct
comparisons between the two show a significant
positive correlation between them. The correlation
between the ownership statements in the synchronous
and the asynchronous conditions are positive, but
only the synchronous condition is significant. Figure
17 shows that the different routines scatter though
out the graph, and the correlation between the
proprioceptive drift and ownership over time is
inconclusive. This is similar for the other correlations
(Figures 15 and 16). Therefore no conclusions
can be drawn about the correlation between the
measurement methods over time.

I used an automated setup for the induction of the
illusion. This setup was replicated and updated from
Sivasubramaniam et al. [14]. I updated the coding
to include different induction times, measurement
of the onset time, filling in a questionnaire, and
saving the data in the corresponding excel sheets.
Besides that, I added a plate for measurements of
the proprioceptive drift. Due to one of the legs of this
plate, the rubber hand is not completely visible to the
participant, which may influence the study results.
Eliminating this possible influence is a must in a
future version. Another motor could be added to the
setup in further research so that the brushes rotate
separately. This way, the temporal binding window
could be found, and an increased delay or inconsistent
stroking between the brushes can be induced.

Using an automated setup version has clear
advantages over a manual setup. It is easier
to compare results, and the precision of visual
and tactile stimuli is much higher than manual
stroking. This way, the potential error due to human
limitations is decreased [14]. The downside of using
an automated setup is the loss of social or empathetic
factors, which are also involved in the rubber hand
illusion [37].

4.2 Dynamical model

In this thesis, I proposed a dynamic model related
to the rubber hand illusion’s proprioceptive drift
and onset time. The model includes most of the
rubber hand illusion’s underlying theories. The
dynamical model allows interpreting the perceptual
decision process in predictive coding [20], which
postulates that a decision is made using a comparison
of predicted and observed sensory input. The
predicted sensory input is updated over time, while
the observed sensory input is static. The model
shows that varying the internal variables explains
the experiment results of the proprioceptive drift and
onset time.

The general equations are directly derived
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and interpreted from the experiment results and
conclusions from literature [28, 29]. The formulas of
the estimation of the own hand (X̂own) are based on
the Kalman filter [13] and the Bayes rule [8]. The
X̂own is directly related to the proprioceptive drift.
The predicted location of the own hand (X̂prop

own ),
the result of the Kalman filter’s prediction step, is
later used in the process for calculating the onset
time. The drift-diffusion model [21] inspires the
decision-making process for the onset time. Which
accumulates noisy pieces of evidence over time. The
model consists of six parameters. Further research
is needed to determine these parameters better
and generalize these parameters using, for example,
personal traits.

I based the parameter ranges on the experiment’s
results or values from the literature. The values
based on the experiment’s results may have improved
ranges once an experiment is done without reaching
the optimum number of conditions. This experiment
might lead to better results and improve the ranges
of the parameters.

The presented model is related to previous models
of the rubber hand illusion. For example, Samad et
al. [9] adopted the Bayesian causal inference model
of multisensory perception. They applied it to visual,
proprioceptive, and tactile stimuli. They showed that
their model could reproduce the rubber hand illusion
but failed to show the dynamics and interpersonal
differences of the illusion. Tsakiris et al. [10] included
the interpersonal differences in their model but only
mentioned the comparisons made during the illusion
rather than concrete formulas for the illusion. The
literature has not yet presented another model related
to the dynamics of the rubber hand illusion. The
presented model has the advantage that it shows the
dynamics of the illusion and compares the external
signals proposed by Samad et al. [9] and includes
interpersonal differences as presented by Tsakiris et
al. [10].

The model contains additional constraints to
decrease the number of parameters to six. Without
these constraints, the model would have had ten
parameters. I constrained four parameters that relate
to the external signals. These are the means of
the seen stroking, the seen location of the rubber
hand, and the variances of the rubber and own hand’s
locations. I based the constraints on the results of van
beers et al. [22] and Jones et al. [39]. Who found that
the variability of the visuals is around 0.36 degrees
[22], which, with an eye-rubber hand distance of 35-45
cm, translates to a standard deviation of 1 mm [9].
For the proprioception, the standard deviation was
set to 15 mm [22, 39, 9]. Arguably, these values vary
per participant and per condition. A less illuminated
environment would result in a higher visual variance
than a more illuminated environment. The model
ignores these external factors for simplicity and the
literature’s lack of data.

The dynamical model can be used to investigate
novel experimental questions. For example, as
suggested by Rohde et al. [35] and the results of
this study, there could be an optimum amount of
measurements in a session for the proprioceptive
drift. This optimum limits the experimenter in
finding the dynamics of the proprioceptive drift. The
proprioceptive drift of other time points can be found
using this model and decreasing the measurements.
Besides predicting results from an experiment, it
could be used for post-stroke rehabilitation or in the
use of robotic devices. These fields are, however, not
mature yet [7]. This model could be a step maturing

process of these fields.

4.2.1 Extensions

The current model is a simplified version to explain
the dynamics of the rubber hand illusion. More
research increases the model’s accuracy. This
research should focus on the parameter formulas and
possible additional model components to make it
more applicable. This section discusses the possible
improvements and extensions of the presented model.

The first improvement is looking into the
possibility of having the hand at the same distance,
for example, in the case of virtual reality [40] or
with amputees [41]. Due to the current formulas
used, the model gives errors when the location of the
rubber hand and the own hand are the same. No
proprioceptive drift is possible in these cases, but the
feeling of ownership can still arise. I did not develop
formulas related to the feeling of ownership due to
the unknown relationship between the proprioceptive
drift, onset time, and the feeling of ownership.

Two parameters introduced in the formulas
related to the predicted location of the own hand
(X̂prop

own ) (Equations 10 and 11) vary not only with the
given input but also with the amount over synchrony
of the stroking. The main objective of these
formulas is that the amount of drift and diffusion
is related to the amount of synchrony between the
strokes. Comparing the model’s results with values
in literature [28, 33, 38] suggests that the influence
of stroking is, in reality, higher than in the proposed
formulas.

The incorrect influence of the temporal aspects
on the proprioceptive drift is also visible in the onset
time prediction. In the asynchronous condition, it
takes longer to receive the illusion, which is in line
with literature [17], and the probability is similar
to the synchronous condition. The probability of
receiving the illusion in the asynchronous condition is
lower, as shown in the performed experiment (Section
2.2). More research is needed to formulate better the
influence of the temporal aspects of the illusion.

As mentioned before, this model could be used to
predict results from an experiment. From the first
introduction of the rubber hand illusion experiment
[3], researchers investigate the strength of the illusion
with a questionnaire. These questionnaires mainly
consist of questions related to body ownership and
agency, which I also used in this experiment. The
suggested dissociation between the proprioceptive
drift and the questionnaire and suggested separation
of the underlying processes of the illusion [35, 38]
prohibited an attempt to include it in the proposed
model. More knowledge about the relationship
between the proprioceptive drift and body ownership
and agency is essential before implementing this
element into the model. If there is no relation, more
research is needed to find the underlying processes in
body ownership and agency.

Riemer et al. [4] analyzed the methodological
differences in the rubber hand illusion and found
many differences between experimental setups in
studies and induction types. The researcher
integrated some differences into the model. These
differences relate to the distance between the hand
and the amount of synchrony between the strokes.
The distance between the hands is currently on the
horizontal axis. In literature, a vertical [28] or distal
[34] set up have also been used for the induction
of the illusion. The reliability of the visual and
proprioceptive senses for the location of the hand
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differ in these directions [22]. This directly results
in different proprioceptive drift and onset times in
these directions. Incorporating these other axes into
the model might extend it to a 3D version.

Researchers can use different measurements for
the proprioceptive drift: perceptual and motor
responses. A study done by Kalckert and Ehrsson
[42] showed a difference in measurement method for
the perceived location of the hand in the method
used. The stimulation type (tactile, passive, or
active movements) also influences the illusion results.
Using the results from Tsakiris et al. [43] could
give more insight into incorporating this into the
model to predict the experiment’s results. For an
even further advanced dynamical model related to the
rubber hand illusion experiment, the properties of the
induction method (tactile [44], or active movement
[4]), the number and type of fingers used in the
illusion [4], and the difference between an automatic
or manual set up [35] could be incorporated.

Extensions in clinical applications

The model could also be used in clinical
applications, but it should be adjusted to meet its
needs. For example, if the model is used in pathology,
one must incorporate the effects of specific deceases.
Schizophrenic patients demonstrate a faster onset
of the illusion than healthy patients [7]. Other
pathologies have different effects, and incorporating
this in the model will precisely predict pathology’s
effect on the rubber hand illusion. These differences
are related to internal variables and might be hard to
investigate.

Besides implementing the model with psychiatric
disorders, the model could also be used to design
neuroprosthetics [1]. The illusion in amputees is
much less vivid than in the traditional rubber
hand illusion. This model alone would not be
sufficient to satisfy the amputee with the prosthesis.
Other models with tactile sensors and stimulators
are needed to reproduce and maintain the illusion
[1]. With extensions related to tactile sensors
and stimulators, the developers might be able to
predict the satisfaction of the prosthesis before
experimenting with it on amputees.

4.3 Comparison

Validating the model with a comparison between the
results of the model and the results of the experiment
suggests that the optimization technique used might
not be good enough. A often used method for this is
with Monte Carlo simulations [9, 21, 45]. For this
comparison, I coded and performed a grid search
with a total of 1.038.180 parameter combinations. I
compared these combinations with the experiment’s
results using the error sum of squares for the
proprioceptive drift and the correlation coefficient for
the onset time for the experiment results. The scaled
and summed results show the closeness of fit between
the experiment and the model. The option with the
lowest number is the best fit. Due to the limited
number of responses, I could not validate the model
with the results of the individual participants.

While this grid search method does a complete
search for the given set, it has the advantage over
the random search and the genetic algorithm to
guarantee the best results [46]. A drawback of this
method is the constraint on the testable number of
combinations. For example, I used a step size of 5 mm
for the height of the onset threshold. Decreasing this
step size will lead to better results for the onset time

but will increase the number of combinations above
the file size Matlab can work with. Using another
optimization technique might lead to better results.

More data from one individual must be obtained
for the onset time to compare the dynamic model
with individuals. A total of four presses, the
maximum number of presses in the synchronous
and asynchronous condition, is not enough to find
a good fit between the model and the individual.
Conducting more experiments with one participant
over multiple days might be the solution to not exceed
the measurement frequency but takes more time. It
is, however, also possible that participants do not
experience the illusion and do not press the onset
button at all. In these cases, the current grid search
cannot correctly match the onset time. I, therefore,
suggest that another optimization technique should
be used to match the model to the experiment’s data.

The results from the best fit (Figures 13 and
14) show that the proprioceptive drift from the
experiment starts at a higher point than the model.
In the dynamical model, the proprioceptive drift
cannot start at a different point than zero. In articles,
the proprioceptive drift is calculated as the difference
between pre-and post-testing [18, 35, 36]. Here,
the proprioceptive drift is the difference between the
hand’s location and the dots on the foil. More
research is needed into the initially felt location of
the own hand to improve the model.

5 Conclusion

The within-subject rubber hand illusion experiment
was performed to investigate the dynamics of
the multisensory integration during the illusion.
The experiment measured the onset time, the
proprioceptive drift, the body ownership, and agency.
Using different time points (15, 30, 45, 60, and 75
seconds) in either a synchronous or asynchronous
condition (500 ms delay) made it possible to find
the dynamics of the embodiment. Concluded from
the experiment, participants are more likely to
perceive the rubber hand as their own in the
synchronous condition than in the asynchronous
condition. In this experiment, the proprioceptive
drift does, and the ownership statements do not
significantly differ over time. The proprioceptive
drift does not, and the ownership statements
differ significantly between the synchronous and
asynchronous conditions. Furthermore, the different
measurements, the onset time, the proprioceptive
drift, and the ownership correlate significantly in the
synchronous condition but not in the asynchronous
condition. The results are, however, noisy and thus
overall inconclusive.

Besides this experiment, a mathematical model
describing the dynamics of the multisensory
integration during the rubber hand illusion is
developed. Using the experiment’s results and
empirical findings from the literature, this model
can replicate the proprioceptive drift and onset time
using the Kalman filter and the Bayes rule. It fails to
include ownership over the hand due to the unknown
relationship between the outputs. The external
inputs, the distance between the hands, and the delay
in stroking can be changed to match the performed
experiment. The influence of the delay between the
stroking in the model is insufficient and should be
improved. The dynamical model visualizes a broad
spectrum of rubber hand illusion-related phenomena
but is far from finished.
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Appendices

A Statistics on the experiment

Estimate SE tStat pValue
(Intercept) 16.718 9.7342 1.7175 0.089407
Group -1.9482 4.9335 -0.3949 0.69387
Condition -2.5288 3.3817 -0.74778 0.45659
Time 0.19524 0.089821 2.1737 0.032417

Table 5: Linear regression model: Onsettime ∼ 1 +Group+ Condition+ Time
Number of observations: 92, Error degrees of freedom: 88
Root mean Squared Error: 14.2
R-squared: 0.0605, Adjusted R-Squared: 0.0285
F-statistics vs. constant model: 1.89, p-value = 0.137

Estimate SE tStat pValue
(Intercept) 20.541 0.94913 21.642 1.7892e-67
Group -1.6588 0.51968 -3.1919 0.0015355
Condition 0.80432 0.45115 1.7828 0.075445
Time 0.044844 0.0091512 4.9003 1.4399e-06

Table 6: Linear regression model: Proprioceptivedriftmean ∼ 1 +Group+ Condition+ Time
Number of observations: 370, Error degrees of freedom: 366
Root mean Squared Error: 4.34
R-squared: 0.0805, Adjusted R-Squared: 0.073
F-statistics vs. constant model: 10.7, p-value = 9.49e-07

Estimate SE tStat pValue
(Intercept) 2.0564 0.59936 3.431 0.00066993
Group 0.19198 0.32817 0.58501 0.5589
Condition 0.15335 0.2849 0.53827 0.59072
Time -0.0095753 0.0057789 -1.657 0.098386

Table 7: Linear regression model: Proprioceptivedriftvariance ∼ 1 +Group+ Condition+ Time
Number of observations: 370, Error degrees of freedom: 366
Root mean Squared Error: 2.74
R-squared: 0.00838, Adjusted R-Squared: 0.0000252
F-statistics vs. constant model: 1.03, p-value = 0.379

Estimate SE tStat pValue
(Intercept) -1.6482 0.48937 -3.368 0.00086528
Group -0.10084 0.26667 -0.37815 0.70561
Condition 1.1492 0.20911 5.4957 8.8762e-08
Time 0.011989 0.0062254 1.9259 0.055149

Table 8: Linear regression model: Ownership ∼ 1 +Group+ Condition+ Time
Number of observations: 279, Error degrees of freedom: 275
Root mean Squared Error: 1.75
R-squared: 0.11, Adjusted R-Squared: 0.1
F-statistics vs. constant model: 11.3, p-value = 5.05e-07

Estimate SE tStat pValue
(Intercept) -2.3046 0.41181 -5.5963 5.2918e-08
Group -0.085928 0.22441 -0.38291 0.70208
Condition 0.60117 0.17597 3.4163 0.00073062
Time 0.0075395 0.0052388 1.4392 0.15124

Table 9: Linear regression model: Agency ∼ 1 +Group+ Condition+ Time
Number of observations: 279, Error degrees of freedom: 275
Root mean Squared Error: 1.47
R-squared: 0.0476, Adjusted R-Squared: 0.0372
F-statistics vs. constant model: 4.58, p-value = 0.00379
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Estimate SE tStat pValue
(Intercept) -0.71167 0.45192 -1.5748 0.11646
Group -0.65636 0.24627 -2.6653 0.00814879
Condition 0.39802 0.19311 2.0611 0.040232
Time 0.0048308 0.005749 0.84027 0.40148

Table 10: Linear regression model: Control ∼ 1 +Group+ Condition+ Time
Number of observations: 279 Error degrees of freedom: 275 Root mean Squared Error: 1.61
R-squared: 0.0399, Adjusted R-Squared: 0.0294
F-statistics vs. constant model: 3.81, p-value = 0.0106

B Additional figures

B.1 Scatter plots of the outputs of the onset time, proprioceptive drift and
ownership

Figure 15: Scatter plot of the given onset time and the corresponding proprioceptive drift for the synchronous
and asynchronous condition. The different colors indicate the duration of the stroking.

[h!]

Figure 16: Scatter plot of the given onset time and the corresponding ownership statements for the
synchronous and asynchronous condition. The different colors indicate the duration of the stroking.

21



Figure 17: Scatter plot of the given ownership statements and the corresponding proprioceptive drift for the
synchronous and asynchronous condition. The different colors indicate the duration of the stroking.

B.2 Figure of the complete dynamical model

Figure 18: Complete overview of the dynamical model.
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C Mathematical explanation of the parameter ranges

C.1 Temporal binding window

Assumption: The stoking is interpreted as synchronous when Overlap > 0.5.

AreaTotal =Areaseen-stroking +Areafelt-stroking

−AreaOverlapseen-over-felt
−AreaOverlapfelt-over-seen

(15)

σseen-stroking = σfelt-stroking

Areaseen-stroking = Areafelt-stroking

AreaOverlapseen-over-felt
= AreaOverlapfelt-over-seen

(16)

Integration of equations 15 16 results in equation 17:

AreaTotal = 2 ∗Areaseen-stroking − 2 ∗AreaOverlapseen-over-felt
(17)

Overlap =
2 ∗AreaOverlapseen-over-felt

AreaTotal

Overlap =
2 ∗AreaOverlapseen-over-felt

2 ∗Areaseen-stroking − 2 ∗AreaOverlapseen-over-felt

1

2
=

AreaOverlapseen-over-felt

2 ∗Areaseen-stroking − 2 ∗AreaOverlapseen-over-felt

2 ∗ 2 ∗AreaOverlapseen-over-felt
= 2 ∗Areaseen-stroking − 2 ∗AreaOverlapseen-over-felt

6 ∗AreaOverlapseen-over-felt
= 2 ∗Areaseen-stroking

AreaOverlapseen-over-felt
=

1

3
∗Areaseen-stroking

(18)

From equation 18 it can be concluded that when the overlap of one of the Gaussian distributions is 33
%, the fraction overlap of the two Gaussian distributions is equal to 0.5 when the delay between the signals
and the temporal binding window are equal. To calculate the corresponding variance a z-score of -0.43 and
the normal distribution formula:

Z =
x− µ

σ
(19)

The intersection of the two Gaussian distributions should be at the center of the two means. Filling in
equation 19 with the most extreme values (55-337) results in the variance for both:

−0.43 =
55−0

2 − 55

σ
∧ − 0.43 =

337−0
2 − 337

σ

−0.43 =
27.5− 55

σ
∧ − 0.43 =

168.5− 337

σ

−0.43 =
−27.5

σ
∧ − 0.43 =

−168.5

σ
−27.5 = −0.43 ∗ σ ∧ − 168.55 = −0.43 ∗ σ

σ = 63.95 ∧ σ = 391.86

σ2 = 4090 ∧ σ2 = 153554

(20)

With these values the linear relationship between the variance and the temporal binding window can be
calculated as followed:

σ2 = a ∗ temporal binding window + b

4090 = a ∗ 55 + b ∧153554 = a ∗ 337 + b

b = a ∗ 55− 4090 ∧b = a ∗ 337− 153554

a ∗ 55− 4090 = a ∗ 337− 153554

282 ∗ a = 149464

a = 530

b = 4090− 55 ∗ 530
b = −25061

σ2 = 530 ∗ temporal binding window− 25061

(21)

C.2 Coupling prior constant

To let the estimate of the own hand rely solely on external signal, the weighting factor of the external signal
must be 1.
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ωXprop
own

(t = 0) =
σ2
X̂prop

own

σ2
Xprop

own
+ σ2

X̂prop
own

+ σ2
coupling

1 =
30

30 + 15 + σ2
coupling

1 =
30

45 + σ2
coupling

30 = 45 + σ2
coupling

σ2
coupling = −15

(22)

Due to the rest of the calculations, the weighting factor will not change over time when a coupling prior
constant (C) of -15 is used. This is not the case for the other extreme. To calculate the maximal value of
the range, one must look into the formula in which the coupling prior (σ2

coupling) is calculated (Equation 8).
To let the estimate of the own hand rely most on the internal signal, the weighting factor of the external

signals must be as close to zero as possible. The decay, when a value for the coupling prior greater then 255
is used, is negligible.

From equation 8 follows that more drift between the internal model of the own hand and the estimate
of the own hand results in more weighting of the internal signals. With the constraint that maximal drift of
the estimate of the own hand is equal to the location of the rubber hand, the maximum value of the coupling
prior proprioception can be calculated as followed:

σ2
coupling(t+ dt) =C +

µX̂prop
own

(t = 0)− µX̂own
own

(t)

µX̂prop
own

(t = 0)− µX̂rubber
(t = 0)

∗ C

σ2
coupling(t+ dt) =C +

µX̂prop
own

(t = 0)− µX̂rubber
(t = 0)

µX̂prop
own

(t = 0)− µX̂rubber
(t = 0)

∗ C

255 =C + 1 ∗ C
2 ∗ C =255

C =127.5

(23)

D Influence of the internal variables in the dynamical model

For the influence of the parameters, an distance between the hands of 15 cm is used. The delay was set
to 500 ms and the duration of the experiment was set to the maximal duration, 600 seconds, with a time
interval of 1 second. The initial values of the parameters and the ranges in which the parameters are varied
can be found in Table 11

Parameter Initial value Ranges Figure
Temporal binding window 196 55:1:337 19
Coupling prior constant 56.25 -15:0.5:127.5 20
Drift 0.245 0.01:0.001:0.5 21
Diffusion 0.0245 0.001:0.0001:0.05 22
Height onset threshold 140 0:1:150 23
Decline onset threshold 0.1 0:0.0001:0.2 24

Table 11: The initial values and the ranges in which the influence of the internal variables are visualized

Figure 19: The effects of the temporal binding window
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Figure 20: The effects of the coupling prior constant

Figure 21: The effects of the drift

Figure 22: The effects of the diffusion
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Figure 23: The effects of the height of the
onset threshold

Figure 24: The effects of the decline of the
onset threshold
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