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We analyze whether circuit QED Hamiltonians are stoquastic, focusing on systems of coupled flux qubits.
We show that scalable sign-problem-free path integral Monte Carlo simulations can typically be performed for
such systems. Despite this, we corroborate the recent finding [I. Ozfidan et al., Phys. Rev. Appl. 13, 034037
(2020)] that an effective, nonstoquastic qubit Hamiltonian can emerge in a system of capacitively coupled flux
qubits. We find that if the capacitive coupling is sufficiently small, this nonstoquasticity of the effective qubit
Hamiltonian can be avoided if we perform a canonical transformation prior to projecting onto an effective qubit
Hamiltonian. Our results shed light on the power of circuit QED Hamiltonians for the use of quantum adiabatic
computation and the subtlety of finding a representation which cures the sign problem in these systems.

DOI: 10.1103/PhysRevA.103.042401

I. INTRODUCTION

An important subject in quantum computational complex-
ity theory is the study of the computational power of quantum
Hamiltonians, in particular the hardness of estimating its
ground-state energy. Estimating the ground-state energy of
quite general quantum Hamiltonians with sufficiently high ac-
curacy is known to be a hard problem for quantum computers
(QMA-hard) [1].

There is however an important subclass of so-called sto-
quastic Hamiltonians, first introduced in Ref. [2], for which
the ground-state problem is believed to be easier: rather
than being QMA-complete it is StoqMA-complete [3,4]. The
class StoqMA is not very well understood, but it is known
that NP ⊆ StoqMA ⊆ QMA, suggesting that ground-state en-
ergy problem for stoquastic Hamiltonians is at least as hard
at the ground-state energy problem for classical Hamilto-
nians (NP-complete) but not as hard as the problem for
quantum Hamiltonians which do have a sign problem (QMA-
complete).

A quantum Hamiltonian H is stoquastic in a certain basis
B = {|x〉} if its entries are real and its off-diagonal elements
are all nonpositive, i.e., 〈x|H |y〉 � 0 for x �= y [2]. If H
is stoquastic, it can easily be shown that the Gibbs matrix
exp(−βH ) is entrywise non-negative for all β > 0 in the
basis B and the partition function Z (β ) = Tr exp(−βH ) can
be written as a sum of products of non-negative weights. In
addition, the ground state of H has non-negative amplitudes
in the basis |x〉.

The term stoquastic was introduced to capture that these
systems avoid the sign problem: the estimation of the partition
function or the energy expectation value in the Gibbs state are
amenable to stochastic Monte Carlo methods. Of particular
interest is the use of stoquastic Hamiltonians for quantum
adiabatic computation. It has been shown that adiabatic com-
putation using only stoquastic frustration-free Hamiltonians
can be efficiently classically simulated [5], but there are more

general adiabatic stoquastic computations whose output can
only be obtained using a subexponential, hence inefficient,
number of classical queries [6,7]. This shows that even when
one avoids a sign problem, the power of stochastic Monte
Carlo methods can be limited. On the other hand, such
methods provide heuristic, often well-performing, classical
simulation strategies. We refer the reader to [8] for a general
review on adiabatic quantum computation including the use
of stoquastic Hamiltonians.

Important physical realizations of quantum adiabatic com-
putation in the form of quantum annealing use inductively
coupled flux qubits [9]. These coupled flux qubits, de-
scribed by the formalism of circuit QED, give rise to the
effective transverse field Ising model (TIM) of quantum an-
nealing [10–12]. Since the TIM Hamiltonian is stoquastic
and hence amenable to quantum Monte Carlo methods, the
power of the quantum annealing method is not well under-
stood [8,13]. Some research has been devoted to the use
of additional nonstoquastic terms in the quantum annealing
schedule [14–17], usually referred to as nonstoquastic cata-
lysts. Again, it should be clear that the use of purely stoquastic
Hamiltonians does not preclude a quantum computational ad-
vantage, in particular when the computation evolves through
states other than the ground state via so-called diabatic quan-
tum annealing [18].

In this paper, we study general Hamiltonians that emerge
in circuit QED [19–21] and their stoquasticity. In circuit QED
one starts with a Lagrangian, and then one constructs a Hamil-
tonian, expressed in terms of electrical degrees of freedom,
such as fluxes and charges which are by definition conjugate
variables. Quantization of such system results in a Hamilto-
nian which is the electric equivalent of a quantum mechanical
system with conjugate variables of momentum and position.
Such continuous-variable Hamiltonian is then represented in
its low-energy discrete subspace, using perturbative methods,
leading to an effective Hamiltonian which emulates a spin
system.
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What we find in this paper is that very general flux qubit
Hamiltonians—and even transmon qubit Hamiltonians from
a certain perspective—can be called stoquastic: their ther-
mal properties are directly simulatable using classical Monte
Carlo methods. Curiously, this does not imply that a cor-
responding low-energy effective qubit Hamiltonian is also
stoquastic, even allowing for local basis changes on the qubits.
Such example of a nonstoquastic qubit coupler for a pair
of capacitively and inductively coupled flux qubits was first
presented in Ref. [22].

However, we also show that for weak coupling, if we apply
a canonical transformation on the continuous-variable Hamil-
tonian before projecting down to a qubit space, the resulting
qubit Hamiltonian is a transverse field Ising model and thus
no longer nonstoquastic.

These results show that apparent sign problems can be
cured by transformations and that the power of such trans-
formations can depend at what level they are applied, i.e., on
the global (continuous-variable) Hamiltonian or on the effec-
tive qubit Hamiltonian. Previously, the effect of curing the
sign problem by local basis changes for qubit Hamiltonians
was studied in Refs. [23–27]. It has been an open ques-
tion whether a stoquastic high-energy “master” Hamiltonian
can have a nonstoquastic effective low-energy Hamiltonian,
–obtained using Schrieffer-Wolff perturbation theory—even
allowing for local basis changes in the basis of the low-energy
Hamiltonian.1

The capacitively and inductively coupled flux-qubit Hamil-
tonians thus seem to provide new examples of such stoquastic
master Hamiltonians. Our aim in this paper is not to prove this
with full mathematical rigor however: we caution that even the
perturbation theory for a simple anharmonic oscillator can be
subtle in its convergence [28].

The contents of this paper are as follows. In Sec. II, we
study the general form of circuit QED Hamiltonians and
their Lagrangians showing that they never give rise to a sign
problem if we work in the continuous flux basis (details
in Appendix A). We also discuss a generally nonstoquas-
tic Hamiltonian based on a nonreciprocal electric circuit for
contrast and the role of gauge transformations. Section III
deals with the stoquasticity of effective Hamiltonians for
coupled flux qubits. The flux qubit itself is reviewed in
Appendix C 1. In Sec. III A, we show that two capacitively
coupled flux qubits can be described by an effective nonsto-
quastic Hamiltonian (we also show when this does not happen
in Appendix C 2).

In Sec. III B, we then show how in flux qubit systems
with weak capacitive and inductive coupling, we can always
project onto an approximate effective qubit transverse-field
Ising Hamiltonian which is stoquastic. Crucial to our deriva-
tion is the application of an efficient canonical transformation
before obtaining this effective model, and the identification of
a suitable qubit basis. This procedure is inequivalent to apply-
ing local unitaries to cure nonstoquasticity once an effective
model is obtained and it explicitly exploits the structure of

1One can easily construct an example of a three-qubit stoquastic
Hamiltonian which has a nonstoquastic two-qubit low-energy effec-
tive Hamiltonian without permitting additional local basis changes.

the initial Hamiltonian. This result is not in contradiction
with that of Ref. [22], since in [22] the capacitive cou-
pling is not weak, and thus the derivation does not directly
apply.

In Sec. III C, we apply the path integral Monte Carlo
method to estimate the thermal energy of two capaci-
tively coupled flux qubits. In particular, for weak capacitive
coupling, we perform path integral Monte Carlo (PIMC) sim-
ulations both in the original flux basis and using the effective
stoquastic Hamiltonians, showing good agreement with di-
rect numerical diagonalization. For strong capacitive coupling
only PIMC in the flux basis can be used without suffering
from the sign problem. Using this method, the average thermal
energy can still be accurately estimated, even if the system
is described by a low energy effective Hamiltonian which is
nonstoquastic. We finally provide some discussion and per-
spective in Sec. IV.

II. CIRCUIT QED HAMILTONIANS

In this section, we consider typical Hamiltonians in cir-
cuit QED [19] and discuss their stoquasticity. We focus on
Hamiltonians without time-dependent external driving fields
as we are interested in thermal and ground-state properties
for quantum adiabatic computing. For Hamiltonians subject
to time-dependent driving, one can easily break-time reversal
invariance, leading to generally complex Hamiltonians [29],
which are thus not stoquastic. In addition, electric circuits
which are not included in the discussion here and which may
lead to nonstoquastic Hamiltonians are ones where phase-slip
junctions are present [30,31].

We first consider classical Hamiltonians with N indepen-
dent degrees of freedom of the following form:

H = K (Q) + U (�) = 1
2 QT C−1Q + U (�), (2.1)

where � = [�1, . . . , �N ]T is the vector of independent

fluxes, Q = [Q1, . . . , QN ]T is the vector of conjugate charges.
This Hamiltonian originates from a Lagrangian of the
form

L(�̇,�) = 1
2 �̇

T
C�̇ − U (�). (2.2)

The Hamiltonian is obtained via a Legendre transform H =
QT �̇ − L, with the vector of charges defined as Q = ∂L

∂�̇
. By

definition, through a Poisson bracket, the classical charges and
fluxes are conjugate variables. The definition of Q for this
Lagrangian gives

Q = C
d�

dt
. (2.3)

The capacitance matrix C is a N × N symmetric positive-
definite matrix with diagonal entries and negative off-diagonal
entries and it is thus invertible.2 This implies that C−1 is a
symmetric, entrywise non-negative matrix [32].

2Using standard methods, the case when C is not invertible can be
treated separately, i.e., the modes with zero energy are eliminated as
they have no dynamics
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When we quantize this electric system, we promote the
conjugate variables to quantum operators and they obey the
canonical commutation relations by definition:

[�̂k, Q̂l ] = ih̄δkl . (2.4)

We note that these conjugate operators Q̂k and �̂l , like mo-
menta and positions in a quantum-mechanical system, take
values in R (see Sec. II A 1 and Appendix B for a discussion
on the common switch to 2π -periodic phase variables).

The term 1
2 QT C−1Q in Eq. (2.1) represents the electro-

static energy stored in the capacitors of the system and, in
a mechanical analogy, it has the interpretation of a kinetic
term. The term U (�) represents the inductive, “potential,”
contribution to the energy. We assume no particular form
of U (�) as our discussion will be general. In circuit QED,
U (�) will be given by the sum of the inductive energies
of linear self- and mutual inductances, and by the con-
tributions of the (nonlinear) Josephson junctions. We refer
the reader to Refs. [19,33] for a detailed description of
how to obtain the Hamiltonian of a superconducting circuit
and how this Hamiltonian can be formally written as in
Eq. (2.1).

If the inverse capacitance matrix C−1 is a diagonal matrix,
Hamiltonians of the form of Eq. (2.1) are clearly stoquastic in
the flux basis when we consider the discretized version of the
Hamiltonian operator, i.e., we discretize the flux basis. This
can be seen from the fact that the term U (�̂) is diagonal in this
basis, while the kinetic term gives rise to terms Q̂2

k = − ∂2

∂�2
k
.

Discretizing the flux basis so that �k = δm with integer m
in some interval, the finite-difference second derivative is ap-
proximated as − d2 f

dx2 | ≈ 1
δ2 (− f (x + δ) − f (x − δ) + 2 f (x)).

Hence, as a matrix, this finite-difference negative Laplace
operator is real and has nonpositive off-diagonal entries. This
fact is explicitly used in Ref. [34] to construct a path integral
Monte Carlo method. When C is not diagonal, the discretiza-
tion becomes more awkward, but, as we show in the next
section, we still obtain a sign-problem-free representation of
the partition function.

A. Time-reversal invariance and stoquasticity

Rather than using a discretization of of the flux de-
grees of freedom we determine a non-negative path integral
expression for exp(−βH ) and Z = Tr exp(−βH ) as an in-
tegral over non-negative weights for the Hamiltonians in
Eq. (2.1).

This representation can be directly used to perform path
integral simulations of a quantum adiabatic computation us-
ing Hamiltonians of this form. We use this representation in
Sec. III A to simulate the thermal state of a system of two
capacitively coupled flux qubits.

Indeed, for the quantum Hamiltonian in Eq. (2.1), we can
write exp(−βH ) in the flux basis using a Feynman path
integral. It can be obtained in discretized form, using Trot-
terization, see Appendix A, leading to

Z =
∫

d� 〈�| e−βH |�〉 ≈ C
∫

d�1 . . . d�Me−βHc (�1,...,�m )

(2.5)

with non-negative constant C, periodic boundary conditions
�M+1 = �1 and classical Hamiltonian

Hc = κ

2

M∑
s=1

(
�T

s+1 − �T
s

)
C(�s+1 − �s) + 1

M

M∑
s=1

U (�s),

(2.6)
with coupling coefficient κ = M

h̄2β2 assuming large Trotter
parameter M � 1. This expresses the well-known mapping
from the partition function of a quantum Hamiltonian with its
N-dimensional phase space onto the partition function of a
N + 1-dimensional classical Hamiltonian [35]. Taking a con-
tinuum limit we can introduce the variable τ , taking values
τ = sβ

M , with s = 1, . . . , M and for large enough number of
Trotter slices M, the integrand on the right-hand side (r.h.s.)
in Eq. (2.5) equals

exp

(
−
∫ β

0
dτ

[
1

2h̄2

∂�T

∂τ
C

∂�

∂τ
+ U (�)

])
. (2.7)

In this continuum limit, we also have

〈�1| exp(−βH ) |�0〉 = C
∫

�0→�1

D�

× exp

(∫ β

0
dτL

(
i

h̄

d�

dτ
,�)

))
.

(2.8)

with Lagrangian L(�̇,�). Clearly, if the integrand L on the
r.h.s. of Eq. (2.8) is real-valued for all �, then the r.h.s.
is a path integral over non-negative weights and suffers no
sign problem. For the time-reversal invariant Lagrangian of
Eq. (2.2), the integrand is real-valued [as can also be seen
from the finite Trotter parameter expressions in Eq. (2.5)
and (2.6)]. For more general Lagrangians of the form L =
K (�̇) − U (�)—assuming that they lead to a well-defined
Hamiltonian—the path integral seems less useful as the in-
tegral over momenta (as in Appendix A) cannot necessarily
be executed [36]. In such cases, one could discretize the
flux basis and express Q̂k = −ih̄ ∂

∂�k
as a finite-difference

operator. In case H can be expanded as a Taylor series in
Q̂, the Hamiltonian will be real when it only contains terms
Q̂2n with n ∈ N, i.e., only containing terms which are in-
variant under time-reversal of operators Q̂k → −Q̂k, �̂k →
�̂k . However, this does not seem sufficient to let 〈�1| I −
βK (Q)

M |�0〉 be non-negative as the finite-difference expres-
sion of, say, a fourth-derivative Q4

k has alternating signs on
the off-diagonal. [An example is the Lagrangian of a rel-
ativistic, but noncausal, particle, expressed in circuit QED

coordinates as L = −mc2
√

1 − �̇2

c2 − U (�) with Hamiltonian

H = c
√

m2c2 + Q2 + U (�).]
.
In circuit QED, one also encounters Hamiltonians such as

Hshift = 1
2 (Q − Qg)T C−1(Q − Qg) + U (�), (2.9)

where Qg is a vector of classical (gate) charges. This Hamil-
tonian originates from a Lagrangian of the form

Lshift = 1
2 �̇

T
C�̇ + QT

g �̇ − U (�) (2.10)
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using the definition Q = ∂Lshift

∂�̇
and the Legendre transform

Hshift = QT �̇ − Lshift .
It is clear that the Lagrangian Lshift is not time-reversal

invariant due the presence of the charge vector Qg. When we
use Q = −ih̄ ∂

∂�
, the Hamiltonian is complex.

It is also apparent that a canonical transformation Q′ =
Q − Qg, �′ = � can bring this Hamiltonian to the form in
Eq. (2.1). At a quantum level, this transformation preserves
the commutation relations between Q̂ and �̂ and corresponds
to the basis change

|�′〉 = ei�T Qg/h̄ |�〉 . (2.11)

Note that then eiεT Q′/h̄ |�′〉 = |�′ + ε〉 for some vector ε, as
is expected. Since the basis change merely applies overall
phases, one can verify, following the analysis in Appendix A
for Hshift , that 〈�| exp(−βHshift ) |�〉, i.e., using the original
basis, still has a Monte Carlo path integral representation with
non-negative weights as we start and begin at the same state
|�〉.

However, if we use the original basis |�〉 then
〈�1| exp(−βHshift ) |�0〉 for �1 �= �0 is complex, and hence
Hshift cannot be called stoquastic in this basis. The rather
trivial basis change to |�′〉 in Eq. (2.11) cures this, but since
the path integral expression for Z uses the same initial and
final state one could also omit it. In any case, it follows
that for the Hamiltonian in Eq. (2.9) one can apply the path
integral Monte Carlo method without sign problem to study
the thermal expectation value of H and any diagonal operator
in �.

1. Transmon qubit

A Cooper-pair box or transmon qubit coupled to an exter-
nal voltage source, inducing an offset charge Qg, provides a
simple example of the Hamiltonian in Eq. (2.9) [37]. In that
case, we have a single flux � and its conjugate charge Q.
By the basis change in the previous paragraph, the transmon
qubit Hamiltonian is thus stoquastic and its thermal state a
non-negative matrix (assuming discretization). However, the
transmon qubit Hamiltonian is often stated in a rotor subspace
of the oscillator space which is spanned by a compact 2π -
periodic superconducting phase basis. This rotor subspace is
fixed by the operator SQ = exp(iπQ̂/e) taking a certain phase
eigenvalue, see a detailed analysis in Appendix B. Physical
processes which affect the support of the quantum state in
these rotor subspaces are the tunneling of single or frac-
tional electron charges through the Josephson junction: these
are energetically suppressed due to superconductivity. Even
though changes in the support are energetically suppressed,
an initial state of a transmon qubit device could well be one
with support in multiple rotor subspaces. The upshot of these
considerations is this. Whether the transmon qubit can be
called stoquastic or not depends on whether one considers
the Hamiltonian in a rotor subspace or the full oscillator space
and whether one is physically interested in the thermal state
in the full oscillator space or the thermal state in a single rotor
subspace. In all but one rotor subspace, the Hamiltonian is not
stoquastic with respect to the phase basis in this subspace and
the ground-state wave function is not a non-negative function
of phase.

The flux-type qubits used in quantum annealing [9,38], i.e.,
the focus of this paper, include self- and mutual inductances,
which makes a switch to a rotor subspace not correct as the
dynamics induced by the Hamiltonian is not confined to such
subspace.

2. Non-time-reversal invariant Hamiltonians

As another class of examples, we consider the Lagrangian
of a so-called nonreciprocal electric circuit which involve
gyrators or circulators [39–41]. Such elements can be ob-
tained through active driving [42] or coupling to a magnetic
field [43]. The Lagrangian is then of general form

Lgyr = 1
2 �̇

T
C�̇ + �̇

T
M� − U (�), (2.12)

with real, antisymmetric matrix M [39]. Applying a Legendre
transformation, one obtains the Hamiltonian

Hgyr = 1
2 (Q − M�)T C−1(Q − M�) + U (�). (2.13)

It is clear that the Lagrangian Lgyr is not time-reversal invari-

ant due to the term �̇
T

M�, making the Hamiltonian complex
and hence not stoquastic. Following the path integral analysis
in Appendix A for exp(−βHgyr ), one finds complex expres-
sions due to the presence of QT � terms.

In this general case, the application of canonical (sym-
plectic) transformations—possibly mixing “positions and
momenta” but preserving their commutations relations—
cannot even bring Hgyr to a real, time-reversal invariant form,
that is, a form in which it is invariant under Q′ → −Q′. Thus
the sign problem for such nonreciprocal Hamiltonians can
generically not be cured by a canonical transformation.

3. Gauge transformations

Here we also like to comment on the well-known fact that
the Lagrangian L does not determine the (quantum) dynam-
ics uniquely, i.e., one can always add a total time derivative
of an arbitrary function to the Lagrangian: L(�̇,�, t ) →
L(�̇,�, t ) + df (�,t )

dt . Namely, assuming (for simplicity) that

f (nor L) has no explicit time dependence, we have df (�)
dt =∑N

k=1
∂ f
∂�k

�̇k . This implies that the conjugate variables Qk

get changed to Q′ = Q + ∂ f
∂�

and the Hamiltonian is invariant
under the transformation: H (Q,�) = H ′(Q′,�) where H ′ is
a different function.

Thus the gauge freedom expressed in f can lead to a
Hamiltonian which seems (at first sight) nonstoquastic. An
example is the case k = 1 with L(�, �̇) = C

2 �̇2 − U (�)
and let’s take, say, f (�) = �3. We get H ′(Q′,�) = 1

2C (Q′ −
3�2)2 + U (�) which is not manifestly stoquastic. Nonethe-
less, this still does not lead to a sign problem as Eq. (2.8) is
still satisfied with the new Lagrangian.

One can view gauge transformations as potential curing
transformations. In fact we can observe that for a Hamiltonian
of the form

H = 1
2 (Q − A(�))T C−1(Q − A(�)) + U (�), (2.14)

where A(�) is a N-dimensional vector field depending on
�, we can gauge away this field when A = ∇ f (�) = ∂ f

∂�
for

some f (�).
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Considering the non-time-reversal invariant Lagrangian of
the previous section, taking f (�) = �T M� would indeed
lead to ∂ f

∂�
= M�, but the antisymmetry of the matrix M im-

mediately implies that f (�) = �T M� = 0. Said differently,
we cannot gauge away these time-reversal symmetry breaking
terms, similar as one cannot gauge away the vector potential
�A = �∇ × �B in a minimal coupling Hamiltonian of a particle
in a magnetic field.

The effect of gauge transformations on the form of effec-
tive Rabi model Hamiltonians has been recently discussed for
instance in [44,45] and references therein. Our analysis of how
canonical transformations on the full circuit QED Hamilto-
nian can affect stoquasticity of the effective qubit Hamiltonian
bears some resemblance to this discussion, although the focus
is different.

III. STOQUASTICITY OF EFFECTIVE FLUX
QUBIT HAMILTONIANS

In this section, we prefer to work with dimensionless vari-
ables and we thus introduce dimensionless charges q = Q

2e ,
and fluxes φ = 2π�

�0
, with �0 = h

2e the superconducting flux
quantum. Then, for k, l = {1, . . . , N} we then have

[φ̂k, φ̂l ] = [q̂k, q̂l ] = 0, [φ̂k, q̂l ] = iδkl , (3.1)

The quantum Hamiltonian of Eq. (2.1) in terms of the rescaled
operators equals

H = 4q̂T ECq̂ + U (φ̂). (3.2)

where we defined the charging energy matrix

EC = e2

2
C−1. (3.3)

In the previous section we have shown that a general cir-
cuit QED Hamiltonian of the form in Eq. (3.2) is stoquastic
and free of the sign problem and can be simulated by the
PIMC algorithm. We note that the Hamiltonian in Eq. (3.2)
also models various other ‘modern’ flux qubits such as the
fluxonium [46].

For superconducting circuits one usually wants to represent
the problem using an effective qubit Hamiltonian that de-
scribes the behavior of a discrete number of low-lying energy
levels. It is thus natural to ask the question of whether these
effective Hamiltonians on qubits are stoquastic or not. Weak
inductive coupling in flux qubits gives rise to the Hamiltonian
of an effective TIM, i.e., with X , Z and ZZ interactions (see
Appendix C 1), which is stoquastic (by applying Pauli Z basis
changes so the X terms are negative).

It was shown in [22] that by adding a capacitive coupling
between flux qubits, the effective two-qubit Hamiltonian is
nonstoquastic and the nonstoquasticity cannot be cured by
local unitaries, according to the criteria of Ref. [24]. This
finding was further confirmed in Ref. [47], where the authors
put forward a more refined analysis based on the perturbative
Schrieffer-Wolff (SW) transformation [48].

While a higher-order SW transformation is usually neces-
sary in order to achieve good accuracy of all the parameters
in the problem, for the purpose of studying stoquasticity,
and build intuition, we start by considering effective qubit

FIG. 1. Electric circuit of two capacitively and inductively cou-
pled flux qubits.

Hamiltonians that are obtained by simply projecting the initial
Hamiltonian onto the computational subspace. This is the SW
transformation at lowest-order and it is the common way to
obtain an effective qubit model in systems of flux qubits [49].

We review the basics of flux qubits in Appendix C 1. In the
next section, we explain why and under which conditions, a
system of two coupled flux qubits can give rise to an effective
nonstoquastic Hamiltonian.

A. Two coupled flux qubits with a nonstoquastic
effective qubit Hamiltonian

We consider a system of coupled flux qubits shown in
Fig. 1. We show why the reduced Hamiltonian obtained using
the standard flux qubit basis is, in a certain parameter regime,
nonstoquastic even if we allow for single-qubit unitary trans-
formations.

The Hamiltonian of the circuit in Fig. 1 can be written as

H =
2∑

k=1

4ECkq̂2
k + 1

2 ELkφ̂
2
k − E eff

Jk cos
(
φ̂k + φx

qk

)
+ 8EC12q̂1q̂2 + EL12φ̂1φ̂2, (3.4)

where ECk and EC12 are the diagonal and off-diagonal entries
of the charging matrix, respectively. The charging energy ma-
trix is in turn directly related via Eq. (3.3) to the capacitance
matrix

C =
[
C1 + Cc −Cc

−Cc C2 + Cc

]
. (3.5)

In addition, the ELk and EL12 are the diagonal and off-
diagonal entries of the inductive energy matrix, respectively,
while E eff

Jk (φx
cjj ) is the effective Josephson energy defined in

Eq. (C2). We assume that EC12 and EL12 are much smaller
than the gap of the qubit subspace and any other energy level,
so that we can treat the coupling at lowest-order perturbation
theory. For concreteness, considering a flux qubit with param-
eters as in Table I in the symmetric configuration this gap is
5.9 GHz.

We can immediately note that if we project the Hamilto-
nian in Eq. (3.4) onto a tensor product of qubit spaces, each
qubit space associated with an uncoupled Hamiltonian with
conjugate variables qk, φk , the presence of both inductive and
capacitive couplings will typically lead to Pauli interactions
of rank equal to 2. Said differently, the projected two-qubit
interaction term of the form H = ∑3,3

i=1, j=1 βi jPi ⊗ Pj is such
that the 3 × 3 matrix β has rank 2.
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TABLE I. Parameters for simulations. The effective Josephson
energy is obtained by setting the external fluxes to φx

cjj = 0.685550 ×
π . This choice of parameters corresponds to E eff

J /EL = 1.08 and the
tunnel coupling 
/h = (Ee − Eg)/h = 1.36 GHz.

Parameter GHz

EC/h 0.124
EJ/h 1600
E eff

J /h 760
EL/h 704

But when either one of the couplings EC12 or EL12 is zero,
we note that the rank of matrix β is 1. It can be proved quite
directly that a two-qubit Hamiltonian with a rank 1 β-matrix
and arbitrary single-qubit terms can be locally sign-cured [24].

Let us look at this in detail here. We can project onto the
qubit subspace for each flux qubit as in Appendix C 1 we
obtain

H2q/h = −
1

2
X1 − ε1

2
Z1 − 
2

2
X2 − ε2

2
Z2

+ JYY Y1Y2 + JZZ Z1Z2, (3.6)

where

JYY = 8
EC12

h
〈0|q̂1|1〉1 〈0|q̂2|1〉2 , (3.7a)

JZZ = EL12

h
〈0|φ̂1|0〉1 〈0|φ̂2|0〉2 . (3.7b)

By definition, the tunnel couplings 
1,2 are positive, see
Eq. (C4), while the local fields ε1,2, see Eq. (C9), are real.

If we do not have capacitive coupling JYY = 0, the Hamil-
tonian in Eq. (3.6) is that of a TIM, which can always be
made stoquastic via single-qubit unitaries. If the inductive
coupling is absent, then JZZ = 0. The Hamiltonian is clearly
nonstoquastic in the chosen basis as the Y ⊗ Y matrix has
alternating signs on the off-diagonal elements. However, as
said above, we can always make it stoquastic via single-qubit
unitaries in the following way. In this case, we first perform a
rotation around the Y -axis, leaving the term YY unchanged, on
each qubit that transforms −
kXk/2 − εkZk/2 �→ −
̃kXk/2,
k = 1, 2. Now we can easily make the Hamiltonian stoquastic
by performing the transformation Y1,2 ↔ Z1,2.

More generally, we show in Appendix C 2 that if the local
fields ε1,2 are zero, even in the case in which we have both
capacitive and inductive couplings, the two-qubit Hamiltonian
can always be made stoquastic and this in fact holds at arbi-
trary order in SW perturbation theory.

If the local fields ε1,2 are nonzero, and we have capacitive
and inductive coupling such that |JYY | > |JZZ | > 0 we con-
clude that the Hamiltonian cannot be made stoquastic by a
product of two single-qubit unitaries, following the reasoning
in Ref. [24], The basic (rough) idea is that in order for H
to have nonpositive off-diagonal elements a term like Y1Y2

should be accompanied by a term X1X2 of equal magnitude
(which it is not) or be rotated away to the XZ-plane. In the
latter case, one however also rotates the single-qubit X and
Z terms into having a Y component, making the Hamiltonian
complex and nonstoquastic.

We remark that, for simplicity of exposition, we present
the discussion assuming the validity of the projection, in order
to highlight the mechanism that leads to a nonstoquastic be-
havior. By refining the perturbation theory, i.e., using higher
order SW transformation for instance [47], the Hamiltonian
can still be nonstoquastic even in the absence of an inductive
coupling. In particular, it is shown in Ref. [22] that in the
case of strong capacitive coupling, the higher levels of the flux
qubits generate an additional X1X2 term which can make the
Hamiltonian nonstoquastic under single-qubit unitaries.

Naturally, for a two-qubit Hamiltonian we can apply a two-
qubit unitary basis change to diagonalize the Hamiltonian,
hence there is always a basis change which removes the sign
problem. However, one can readily extend this two-qubit case
to a line of N coupled flux qubits. When the capacitive and
inductive couplings are sufficiently weak (so that EC couples
only nearest-neighbor qubits on the line), we obtain a N
flux qubit Hamiltonian with YiYi+1, ZiZi+1 coupling between
nearest-neighbor qubits i and i + 1 on the line. The same
arguments then apply as in the two-qubit case: when 
i �= 0,
εi �= 0 the N-qubit Hamiltonian cannot be made stoquastic by
a product of N single-qubit basis changes.

This is thus in sharp contrast with the fact that the general
master Hamiltonian in Eq. (3.2) can be called stoquastic in
the flux basis and was amenable to the PIMC method, see the
numerics in Sec. III C.

Note also that when coupled flux qubits are nonidentical in
their parameters, finding a curing transformation for a single
pair of qubits does not necessarily imply the existence of a
curing transformation which works for the entire set of qubits
as the local basis changes have to be chosen to work for each
two-qubit interaction.

In the previous discussion, we have shown that the effective
qubit Hamiltonian of two coupled flux qubits can be non-
stoquastic even after single-qubit unitary rotations. However,
there could be other ways to cure nonstoquasticity. We show
in the next Sec. III B that if the capacitive and inductive
couplings are weak enough, effective flux qubit Hamiltonians
can always be made approximately stoquastic if we perform
a canonical transformation before obtaining the reduced qubit
Hamiltonian. While these transformations are highly nonlo-
cal, they can still be implemented efficiently before reducing
to a qubit model. In particular, we show that the addition
of capacitive couplings to flux qubit Hamiltonians yields,
to lowest perturbative approximation, a TIM with modified
parameters. While this derivation relies on the fact that the
coupling is weak, it has the appealing feature that it is valid
for an arbitrary number of qubits.

B. Flux qubits with weak-strength capacitive and
inductive couplings

We consider flux-qubit systems where the Hamiltonian
takes the following particular form

H = 4q̂T ECq̂ + 1

2
φ̂

T
ELφ̂ −

N∑
k=1

E eff
Jk cos

(
φ̂k + φx

qk

)
, (3.8)

with E eff
Jk the effective Josephson energy and φx

qk the external
flux threading the loop formed by the SQUID loop and the
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corresponding shunting inductance of the kth flux qubit. The
inductive energy matrix equals

EL = �2
0

4π2
L−1, (3.9)

with L−1 the inverse of the inductance matrix L (which can be
assumed to be positive-definite).

By taking parameters such that all degrees of freedom
are in the flux qubit regime, the Hamiltonian in Eq. (3.8)
models a system of capacitively and inductively coupled flux
qubits, where the inductive coupling is expressed in EL and
the capacitive coupling is expressed in EC . See Fig. 1 for two
such coupled qubits.

We now show how this Hamiltonian, which has no sign
problem in the flux basis as we discussed in Sec. II A, can
be reduced to an effective qubit Hamiltonian which is also
stoquastic if the capacitive couplings are small, i.e., the off-
diagonal elements of EC are much smaller than the diagonal
ones. In addition, the mutual-inductive couplings between the
flux qubits should also be small so that a projection onto the
eigenbasis of the uncoupled qubits is a good approximation.

In some sense this is not a surprising result as our symplec-
tic transformation removes the capacitive couplings, leaving
only the inductive couplings which lead, when projected, to
rank-1 β matrices.

We introduce the following canonical transformation:

q̂′ = Sq̂, φ̂
′ = S−1φ̂, (3.10)

where we defined the matrix

S = ST =
(

EC

EC0

)1/2

, (3.11)

with EC0 an arbitrary charging energy which just ensures the
entries in S are dimensionless. S preserves the canonical com-
mutation relations as S = ST , i,e. [φ̂′

k, q̂′
l ] = [φ̂k, q̂k] = iδkl .

We will drop the primes from now on for these canonical
variables. The Hamiltonian in Eq. (3.8) becomes

H = 4EC0q̂T q̂ + 1

2
φ̂

T
E ′

Lφ̂

−
N∑

k=1

E eff
Jk cos

⎡
⎢⎢⎣Skkφ̂k + φx

qk +
N∑

l=1
l �=k

Skl φ̂l

⎤
⎥⎥⎦, (3.12)

where we have introduced an effective inductive energy ma-
trix

E ′
L = ST ELS. (3.13)

We now first show that we can map the Hamiltonian in
Eq. (3.12) to a transverse field Ising model when the ca-
pacitive couplings between the flux qubits are not too large.
This implies that matrix EC ∝ C−1 has off-diagonal elements,
which are small compared to its diagonal elements and hence
so will S when we treat the capacitive coupling between flux
qubits as a perturbation.

In this case, we can expand each cosine term as

− E eff
Jk cos

⎡
⎢⎢⎣Skkφ̂k + φx

qk +
N∑

l=1
l �=k

Skl φ̂l

⎤
⎥⎥⎦

≈ −E eff
Jk cos

[
Skkφ̂k + φx

qk

]
+ E eff

Jk sin
[
Skkφ̂k + φx

qk

] N∑
l=1
l �=k

Skl φ̂l . (3.14)

This allows us to rewrite Eq. (3.12) as

H ≈
N∑

k=1

Hk + H ind
c + H jj

c , (3.15)

where we defined (1) the effective Hamiltonian of the kth flux
qubit Hk as

Hk = 4EC0q̂2
k + (E ′

L)kk

2
φ̂2

k − E eff
Jk cos

[
Skkφ̂k + φx

qk

]
; (3.16)

(2) the inductive coupling Hamiltonian H ind
c as

H ind
c =

∑
〈k,l〉

(E ′
L)kl φ̂kφ̂l ; (3.17)

and (3) the additional coupling due to the Josephson junctions
H jj

c as

H jj
c =

N∑
k=1

E eff
Jk sin

[
Skkφ̂k + φx

qk

] N∑
l=1
l �=k

Skl φ̂l . (3.18)

We can now use the flux qubit Hamiltonians Hk to define
a local computational basis Bk = {|0〉k , |1〉k}, similar to what
is done in Appendix C 1. The global computational basis B is
obtained by taking all possible tensor products of these states,
i.e., B = ⊗N

k=1 Bk . By projecting onto this basis we obtain a
reduced N-qubit Hamiltonian that can be written as

Heff/h = −
(

N∑
k=1


k

2
Xk + εk

2
Zk

)
+
∑
〈k,l〉

Jkl ZkZl . (3.19)

The parameters in this Hamiltonian are obtained as follows.
With the definition of the flux qubit Hamiltonian Hk defined
in Eq. (3.16) the tunnel couplings 
k are given by


k = E (k)
e − E (k)

g

h
, (3.20)

with E (k)
g,e are the ground and first-excited eigenenergies of Hk

in the double well configuration φx
qk = π . By defining δx

qk =
φx

qk − π the parameters εk and considering small δx
qk , similarly

to Appendix C 1, we define

εk = E eff
J

h
δx

qk[〈0| sin(Skkφ̂k )|0〉k − 〈1| sin φ̂k|1〉k]

= 2
E eff

J

h
δx

qk 〈0| sin(Skkφ̂k )|0〉k . (3.21)
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Finally, neglecting the small corrections we get when δx
qk �= 0,

the exchange coupling Jkl reads

Jkl = E ′
Lkl

h
〈0|φ̂k|0〉k 〈0|φ̂l |0〉l

− E eff
J

h
Skl 〈0| sin(Skkφ̂k )|0〉k 〈0|φ̂l |0〉l . (3.22)

Equation (3.19) is the Hamiltonian of a TIM, which is sto-
quastic in the computational basis. Notice that this derivation
is valid for an arbitrary number of flux qubits.

The transverse field Ising model in Eq. (3.19) can also be
mapped to a classical system and be studied using the PIMC
method. We refer the reader to Ref. [50] for a derivation. The
N + 1-dimensional classical Hamiltonian associated with the
TIM reads

Heff,c/h = −
M∑

s=1

(
N∑

k=1

J⊥
k σ

(s)
k σ

(s+1)
k +

N∑
k=1

εk

2
σ

(s)
k

−
∑
〈k,l〉

Jklσ
(s)
k σ

(s)
l

)
, (3.23)

where the variables σ
(s)
k are classical spins which can take

value ±1 and we defined the parameter

J⊥
k = − M

2β
ln tanh


kβ

2M
, (3.24)

with M the number of Trotter slices as in Sec. II.

C. Monte Carlo simulations

In this section, we perform sign-problem-free Monte Carlo
simulations for the average thermal energy of a system of two
capacitively coupled flux qubits. We begin by studying the
problem using the path integral representation of the original
Hamiltonian in the flux basis as discussed in Sec. II A for the
case of weak capacitive coupling. We compare the result with
the PIMC with those using the effective TIM discussed in
Sec. III B. The goal is to compare the results using these two
methods for weak capacitive coupling versus the exact results
for the estimation of the average thermal energy

〈H〉β = 1

Z
Tr(He−βH ), (3.25)

with Z = Tr[exp(−βH )] the partition function. We also
study whether in the case of strong capacitive coupling, for
which the effective qubit Hamiltonian is nonstoquastic as in
Ref. [22], the PIMC using the original Hamiltonian provides
reliable results. We consider two identical flux qubits with
parameters as in Table I. Throughout this subsection the min-
imum of the potential is taken as the zero of the energy in any
parameter set.

We start by considering the case of a symmetric poten-
tial for both flux qubits and small coupling capacitance. We
provide some details of the Monte Carlo simulations in Ap-
pendix A 2. The results are shown in Fig. 2. We see that the
PIMC in the flux basis needs more Trotter slices to accurately
estimate the average thermal energy compared to the TIM.
Qualitatively this happens because in the TIM we are using
a basis in which the Hamiltonian is approximately diagonal

FIG. 2. Average thermal energy using the PIMC in the flux basis
and the effective TIM model obtained in Sec. III B as a function
of the number of Trotter steps M. The temperature is taken to be
(hβ )−1 = 0.93 GHz. The coupling capacitance is chosen to be Cc =
10 fF, so that we obtain EC12/h = 0.008 GHz � EC/h. Both flux
qubits are operated in the symmetric double well configuration with
φx

q1,2 = π . The black dashed line corresponds to the exact thermal
energy obtained from numerical diagonalization, while the ground-
state energy is Eg = 7.675 GHz.

and so the quantum effects are already taken into account.
Notice also that the simulations in the flux basis consistently
underestimate the average thermal energy for small M. This
is due to the fact that the Trotter break-up formula neglects
the commutation relation, i.e., quantum mechanical effects,
and so we expect to have lower zero-point energy compared
to the exact quantum solution for small M. However, we see
that as expected with 50 Trotter slices, PIMC in the flux basis
accurately estimates the average thermal energy.

The PIMC method in the flux basis can also be used to
study the case of strong capacitive coupling as considered in
Ref. [22], without fundamental limitations. This is shown in
Fig. 3. For the given parameters, the effective qubit Hamilto-
nian is nonstoquastic as discussed in Sec. III A. However, the
PIMC using the original Hamiltonian is still able to estimate
the average thermal energy accurately with similar number of
Trotter slices for the same temperature as for the case of Fig. 2.
However, for this case the Trotter error is clearly worse as we
can see from the fact that at low M we have larger relative
error compared to the case of weak coupling. This is simply
due to the larger coupling capacitance and not a signature of
a fundamental obstruction. In addition, the orange (light gray)
line also shows that similar accuracy can be achieved even
if we reduce the temperature so that the thermal energy gets
closer to the ground-state energy. This naturally comes at the
price of increasing the number of Trotter slices by a factor
of three, while the number of Metropolis iterations was not
changed between the two different temperatures.

IV. DISCUSSION

In this paper, we have seen that qubit Hamiltonians which
may appear to be nonstoquastic can have “master” circuit
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FIG. 3. Average thermal energy using the PIMC in the flux basis
for the case of strong capacitive coupling. The coupling capaci-
tance is Cc = 104 fF giving EC12/h = 0.062 GHz. The flux qubits
are operated in an asymmetric configuration with δx

q1/2π = 10−4,
δx

q2/2π = 2 × 10−4. According to the color coding, the dashed lines
denote the exact thermal energy at the respective temperature. The
ground-state energy is Eg/h = 9.016 GHz, which is within 0.2%
accuracy the thermal energy in the orange (light gray) dashed line.

QED Hamiltonians which are manifestly stoquastic. We have
used this observation to propose an efficient simulation
method for quantum adiabatic computation with such Hamil-
tonians, using path integral Monte Carlo methods.

It is not entirely straightforward to reconcile the projected
nonstoquastic Hamiltonian in Sec. III A with the TIM Hamil-
tonian in III as we do not discuss the error induced by only
using the lowest-order Schrieffer-Wolff projection. For exam-
ple, if the nonstoquasticity of Eq. (3.6) is of the same order
of magnitude as the error induced by perturbation theory, then
one cannot draw any hard conclusions.

We have observed that circuit QED Hamiltonians are
generically stoquastic and thus amenable to Monte Carlo
methods in their continuous variable representation if they do
not contain explicit time-reversal invariance breaking terms
due to driving or nonreciprocity in the electric circuit. We
have also recently become aware of Ref. [34], where similar
conclusions are drawn, although using a different Monte Carlo
method that requires the discretization of the flux degrees
of freedom. In our case, instead, we do not require this flux
discretization, but we rely on a finite number of Trotter slices.

Naturally, these arguments do not directly apply to
fermionic systems or fermionic field theories, in which the
path integral is an integral over (noncommuting) Grassmann
variables. Alternatively, for fermions treated in first quantiza-
tion, we can view the sign problem as arising from the fact that
we are restricting the space of states to wave functions which
are fully antisymmetric under the interchange of particles: a
Gibbs state or a ground state in the full phase space is not
the relevant physical object to study. If we use second quanti-
zation, we encapsulate the antisymmetry constraint—working
in the subspace of antisymmetric wave functions—and gener-
ally see that the corresponding Hamiltonian, say a Hubbard
model, is not stoquastic when expressed in a fermionic Fock

or qubit basis. Time reversal does however play a role in some
special cases when we avoid the sign problem for fermionic
systems [51].

As for complexity, it is important to note that it is highly
unlikely that one can find computationally-efficient curing
transformations which map any (local) Hamiltonian onto a
stoquastic Hamiltonian as it would have unlikely complexity-
theoretic consequences. It was shown in Ref. [2] that the
ground-state energy estimation problem for stoquastic qubit
Hamiltonians is a problem contained in AM (and StoqMA ⊆
AM). The class AM is contained in the so-called polynomial
hierarchy, while on the other hand, BQP, let alone QMA, is not
believed to be contained in the polynomial hierarchy [52,53].
Establishing the precise physical origin of the sign problem,
and when it can be avoided, is important as the sign problem is
precisely what separates quantum from classical computation:
At least, the sign problem necessitates the use of quasiprob-
ability distributions (which lead to potentially-exponential
variances in Monte Carlo simulations) which can be used
quite widely for the simulation of quantum computation by
classical stochastic means [54–56].
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APPENDIX A: PIMC IN THE FLUX BASIS

In this Appendix, we explicitly derive the PIMC method
for the general Hamiltonian in Eq. (2.1) by performing a
mapping to a classical model and its partition function. The
derivation is a simple adaptation of those that can be found in
Refs. [35,57], where the only additional complication that is
added is that the inverse of the capacitance matrix in Eq. (3.2)
is not diagonal. We consider the general task of computing the
thermal average of an observable O:

〈O〉β = 1

Z
Tr(Oe−βH ). (A1)

We will evaluate the trace in the flux |�〉 basis and we will
further assume that the observable O that we are evaluating is
diagonal in this basis. We remark that one can also evaluate the
thermal average of H itself, even though it has an off-diagonal
kinetic term in the flux basis. This follows by virtue of the
quantum virial theorem [58], which states that that the average
of the kinetic energy K in any eigenstate of H , and thus also
for thermal averages, satisfies

〈K〉β = 1

2

N∑
k=1

〈
�̂k

∂U

∂�k

〉
β

. (A2)
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We make use of this result to evaluate the thermal energies for
the PIMC in the flux basis discussed in Sec. III C.

For general off-diagonal observables O there is no rigorous
relation between 〈O〉β and the evaluation of Z .

Let us start by rewriting Eq. (A1) as

〈O〉β ≈ 1

Z

∫
d�1 〈�1|O e−βH/M . . . e−βH/M︸ ︷︷ ︸

M times

|�1〉 , (A3)

where the integral is over RN and we compactly denote
d�1 = ∏N

k=1 d�1k . Assuming β/M � 1 we can use Trotter’s
break-up formula [59] and approximate

e−βH/M = e−β(K+U )/M ≈ e−βK/Me−βU/M . (A4)

Inserting the identity∫
dφ |�〉 〈�| =

∫
dQ |Q〉 〈Q| = 1, (A5)

in the flux basis M times we obtain

〈O〉β ≈ 1

Z

∫
d�1d�2 . . . d�M 〈�1|O|�1〉

× 〈�1|e−βK/M |�M〉 . . . 〈�2|e−βK/M |�1〉
×e−β/M

∑M
s=1 U (�s ), (A6)

where we used the fact that O is diagonal in the flux basis. We
thus need to evaluate the matrix element 〈�s+1| e−βK/M |�s〉.
Using Eq. (A5) in the charge basis and [60]

〈�|Q〉 = 1

(2π h̄)N/2
eiQT �/h̄, (A7)

we obtain

〈�s+1|e−βK/M |�s〉
= 〈�s| e− β

2M Q̂
T

C−1Q̂ |�s+1〉

= 1

(2π h̄)N

∫
dQe

i
h̄ QT (�s+1−�s )e− β

2M QT C−1Q

=
√

det C
(

M

h̄22πβ

) N
2

exp

{
− M

2h̄2β
|C1/2(�s+1 − �s)|2

}
,

(A8)

which is clearly positive. Eq. (A6) becomes

〈O〉β ≈
∫

d�1d�2 . . . d�M 〈�1|O|�1〉 p(�1, . . . ,�M ),

(A9)
where we defined the path probabilities

p(�1, . . . ,�M ) = w(�1, . . . ,�M )

Z

= (det C)
M
2

Z

(
M

h̄22πβ

) NM
2

exp(−βHc)

(A10)

with periodic boundary condition �M+1 = �1, and classical
Hamiltonian given in Eq. (2.6) in the main text.

Notice that all path probabilities are positive and they are
correctly normalized since by repeating the previous deriva-

tion we can write the partition function as

Z =
∫

d�1d�2 . . . d�Mw(�1, . . . ,�M ). (A11)

We thus have written the thermal average of a diagonal
operator as the average of an estimator 〈�1|O|�1〉 over
a classical probability distribution. We remark that also∑M

m=1 〈�m|O|�m〉 /M is a valid, unbiased estimator.
Equation (A9) is the basis for the PIMC method, where we

sample from the probability distribution over path configura-
tions p(�1, . . . ,�M ), for instance, by using the Metropolis
Hastings algorithm [61,62] that we detail in the next Sec. A 1
for completeness.

1. Metropolis Hastings reviewed

The Metropolis Hastings algorithm allows to sample from
an arbitrary probability distribution, in our case p(�), given
the ability to compute a function f (�) proportional to it, i.e.,
f (�) = cp(�) for some c ∈ R.

In our case,

p(�)

p(�′)
= exp(−β(Hc(�) − Hc(�′))). (A12)

The algorithm works as follows.
(1) Choose an initial configuration (�(k)

1 , . . . ,�
(k)
M ), k = 0.

The initial configuration can be chosen randomly, but this is
not necessary.

(2) Propose a new configuration (�′
1, . . . ,�

′
M ) according

to some probability distribution (transition rule). Evaluate
the variation of the Hamiltonian (energy) 
Hk = Hc(�′) −
Hc(�(k) ). It is assumed that the transition rules are chosen
such that the probability for a transition from (�1, . . . ,�M )
to (�′

1, . . . ,�
′
M ) is the same as that of transition from

(�′
1, . . . ,�

′
M ) to (�1, . . . ,�M ) (Markov chain is symmetric).

(3) Accept the new configuration and set
(�(k+1)

1 , . . . ,�
(k+1)
M ) = (�′

1, . . . ,�
′
M ) with probability

p = min[1, e−β
Hk
], (A13)

otherwise (�(k+1)
1 , . . . ,�

(k+1)
M ) = (�(k)

1 , . . . ,�
(k)
M ).

(4) Update k = k + 1 and go to 2.
(5) Halt the algorithm when a sufficient number of config-

urations have been generated from which we can compute the
desired averages as arithmetic averages.

We see that the Metropolis Hastings algorithm generates a
Markov chain whose equilibrium distribution can be shown to
be the desired probability distribution. Thus we should start
to average only when equilibrium is reached. Also, the perfor-
mance of the algorithm is strongly influenced by the choice
of the transition rule. These can be broadly distinguished into
two main categories.

(1) Local update. at step k, a random particle s with
s = 1, . . . , M in imaginary time is chosen and its configu-
ration is randomly changed as �′

s = �k
s + δ where δ is a

N-dimensional vector of random variables, usually chosen
uniformly within a range [−
,
] for some 
;

(2) Global update. at step k, all particles are shifted by the
same N-dimensional vector δ of random variables.

One can also come up with mixed strategies. As pointed
out in Ref. [57] it is generally good to have a variety of update
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rules that we select with a certain probability. These consider-
ations are however always dependent on the particular system
we are dealing with.

2. Details of the Monte Carlo simulations

We give some details of the Monte Carlo simulations dis-
cussed in Sec. III A. In Fig. 2, we initialize in both the PIMC
and TIM simulations the corresponding classical system in
a random configuration. We let the system equilibrate for
5 × 106 Metropolis iterations, after which we start to sample
the energy every 1000 iterations. We continue to run the
Metropolis algorithm until 30 × 106 iterations are reached.
In the calculation of the error bars we take into account the
correction due to the correlation between the samples by
explicitly computing the autocorrelation time of the samples.
This explains why the error bars are increasing with the num-
ber of Trotter slices M in Fig. 2, since if we fix the number of
iterations, we expect the autocorrelation time to increase with
M. For the PIMC in the flux basis we apply local updates with
probability 0.9, while otherwise we attempt a global update.
In both cases, we attempt to modify the chosen flux variables
by shifting them by a certain δ from a uniform distribution in
[−0.75, 0.75] (see discussion in the previous subsection). The
same procedure is applied for Fig. 3. A similar update rule
is applied for the PIMC derived from the TIM model. With
probability 0.9 we apply a local update where we suggest to
flip a random spin. Otherwise, we attempt to flip all spins.

APPENDIX B: STOQUASTICITY OF
THE COOPER-PAIR BOX

The quantum Hamiltonian of a Cooper-pair box or trans-
mon qubit is

Htransmon = 1

2C
(Q̂ − Qg)2 − EJ (cos(2π�̂/�0), (B1)

with �0 = h
2e , as a special case of Eq. (2.9). The conjugate

operators flux �̂ and charge Q̂ take eigenvalues in R so that
this shifted Hamiltonian can be made manifestly stoquastic in
the flux qubit basis by a simple transformation, as discussed
in the main text, namely Eq. (2.11).

When treating the Hamiltonian in Eq. (B1), one often
moves to a rotor basis defined by a 2π -periodic phase ϕ and
integer n ∈ Z [37]. We can indeed convert from �̂ and Q̂ to ϕ̂

and n̂ by defining the basis

|ϕ〉 =
∑
k∈Z

|φ = ϕ + 2πk〉 , (B2)

with φ = 2π�
�0

. This basis |ϕ〉 is an eigenbasis for the sub-
space of the oscillator space defined by the operator SQ =
exp(iπQ̂/e) taking eigenvalue 1. In this (rotor) subspace we
thus have that Q̂ = 2en̂ takes eigenvalues 2en with n ∈ Z,
which is interpreted as there being an offset of n Cooper pairs
with total charge 2en on the superconducting island defining
the transmon qubit.

In this subspace, the transmon Hamiltonian of Eq. (B1)
equals

Htransmon,sub = 4EC (n̂ − ng)2 − EJ cos(ϕ̂), (B3)

with offset charge ng ∈ [0, 1) and Qg = 2eng. We could have
picked another rotor subspace in which SQ takes the eigen-
value, say, ei2π ñg for some ñg. The basis for this subspace is

|ϕ〉ñg
=
∑
k∈Z

e2π iñgk |φ = ϕ + 2πk〉 . (B4)

since SQ |ϕ〉ñg
= ei2π ñg |ϕ〉ñg

.
The spectrum and eigenstates of Htransmon,sub in Eq. (B3) re-

late to eigensolutions of the Mathieu equation [37] and depend
on ng. For ng �= 0, the ground-state |ψ0〉 = ∫ 2π

0 dϕ ψ0(ϕ) |ϕ〉
has a complex wave function ψ0(ϕ) [37,63]. For ng = 0, the
wave function ψ0(ϕ) � 0.

We can consider in which subspace the Hamiltonian has a
ground state with minimal energy overall. We observe that by
going to the subspace in which ñg = ng, we obtain a Hamil-
tonian as in Eq. (B3) with ng = 0. The standard spectrum
of the transmon qubit [37] shows that this choice achieves
the lowest energy eigenvalue. Hence the global ground-state
is a nonnegative wavefunction in the subspace basis |ϕ〉ñg

.
We observe that the basis |ϕ〉ñg=ng

is non-negatively related

to the transformed basis |�′〉 = ei�̂Qg/h̄ |�〉 in which the
original Hamiltonian was explicitly stoquastic: this holds as
ei�̂Qg/h̄ |ϕ〉 = |ϕ〉ng

.
Thus we see that the fact that the ground-state wave func-

tion is complex in some rotor subspace is entirely compatible
with the stoquasticity of the Hamiltonian (when considered in
the full space and in the right basis).

On a separate note, the convergence and accurate pre-
dictions of the Monte Carlo path integral simulation of the
transmon qubit in the subspace labeled by ñg can be examined.
It can depend on whether the numerical simulation varies the
winding number or not [64]. Here the winding number is the
number of times the phase ϕ wraps around 2π in the path
integral.

APPENDIX C: FLUX QUBIT HAMILTONIANS

1. The flux qubit reviewed

We briefly review the Hamiltonian of the flux qubit circuit
and its mapping to a qubit model. A similar discussion can
be found in Refs. [38,49]. The basic circuit of a compound
Josephson junction rf-SQUID flux qubit is shown in Fig. 4.
Notice that in this circuit we are neglecting the small induc-
tance of the SQUID loop. While there are also other flux qubit
designs [38,65–67], we here focus on this simple circuit since
it captures the fundamental physics behind the flux qubit and
it is also the design used in Ref. [22].

The Hamiltonian of the circuit in Fig. 4 reads

H = 4ECq̂2 + EL

2
φ̂2 − E eff

J

(
φx

cjj

)
cos

(
φ̂ + φx

q

)
, (C1)

where we defined the charging energy EC = e2

2C and the induc-

tive energy EL = �2
0

4π2L . The external flux in the SQUID loop
φx

cjj allows to control the effective Josephson energy via the
relation

E eff
J

(
φx

cjj

) = EJ cos

(
φx

cjj

2

)
. (C2)
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FIG. 4. Circuit of a flux qubit. The dynamical variable φ is given
by φ = 2π�

�0
with � the flux across the inductor. Analogously, the

external fluxes in the superconducting loops �x
α , α ∈ {cjj, q} are

given in terms of φx
α = 2π�x

α

�0
.

In what follows, we will assume φx
cjj ∈ [−π, π ).

The flux qubit is operated in the regime EL, E eff
J � EC ,

φx
q ≈ π and E eff

J /EL � 1 [38,68].
With these conditions the potential becomes a double well

potential. The computational qubit basis is defined by consid-
ering the case of a symmetric potential obtained for φx

q = π .
In this case the eigenstates obey a parity symmetry and conse-
quently they are either even or odd in the flux representation.
An example of the wave functions for the ground-state |g〉 and
first-excited state |e〉 is shown in Fig. 5(a). The computational
basis is defined by taking symmetric and antisymmetric su-
perpositions of |g〉 and |e〉 as

|0〉 = 1√
2

(|g〉 + |e〉), (C3a)

|1〉 = 1√
2

(|g〉 − |e〉). (C3b)

As we see from Fig. 5(b), the computational basis states
|0〉, |1〉 are localized on the left and right wells, respectively.
They correspond to anticlockwise and clockwise average per-
sistent currents in the loop formed by the inductor and the
SQUID in Fig. 4. The energy difference between ground and
first-excited state in case of a symmetric potential


 = Ee − Eg

h
(C4)

is usually called the tunnel coupling.
By projecting onto the computational subspace the Hamil-

tonian with symmetric potential is

Hq/h = −


2
X. (C5)

The external flux in the SQUID loop φx
cjj can be used to control

the height of the barrier and thus, the tunnel coupling 
.
Let us now consider the asymmetric case in which we

slightly bias φx
q away from π , i.e., we take φx

q = π + δx
q. By

expanding the cosine in Eq. (C1) to first order in δx
q, we obtain

H ≈ 4ECq̂2 + EL

2
φ̂2 + E eff

J

(
φx

cjj

)
cos φ̂ − E eff

J δx
q sin φ̂

= Hsym + V. (C6)

(a)

(b)

FIG. 5. Flux qubit with symmetric potential. (a) Ground and
first-excited wave functions in φ and their energies as dashed lines.
(b) Computational basis states obtained as symmetric and anti-
symmetric combination of the first two eigenstates. The relevant
parameters are taken as in Table I.

The Hamiltonian is now given by the Hamiltonian in the
symmetric case plus a perturbation

V = −E eff
J δx

q sin φ̂. (C7)

By projecting V onto the computational subspace we obtain a
term that is (by design) diagonal in the computational basis,
since 〈0| sin φ̂|1〉 = 0. In addition, we can also neglect the
coupling that V induces to other energy levels with higher
energy. The projected qubit Hamiltonian in the asymmetric
case then becomes

Hq/h = −


2
X − ε

2
Z, (C8)

where we defined

ε = E eff
J

h
δx

q(〈0| sin φ̂|0〉 − 〈1| sin φ̂|1〉)

= 2
E eff

J

h
δx

q 〈0| sin φ̂|0〉 . (C9)
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For relatively large asymmetry of the potential δx
q and small


 the computational basis states also become the eigenba-
sis. In addition, the parameter δx

q can be used to control the
strength of the parameter ε, independently of the tunnel cou-
pling 
. The independent tunability of 
 and ε by means of
external fluxes is one of the features that makes flux qubits
suited for quantum annealing algorithms [69]. In addition, an
inductive coupling between two flux qubits with index k, l
would give a term in the Hamiltonian proportional to φ̂kφ̂l ,
which when projected onto the computational basis gives a
term ∼ZkZl , thus realizing a TIM.

2. Two-flux qubit Hamiltonian with symmetric
double well potentials

We analyze a two-flux qubit Hamiltonian with inductive
and capacitive couplings, as in Fig. 1, and choose symmet-
ric double wells for both flux qubits. As we will see this
implies parity symmetry of the Hamiltonian. Based on this
symmetry we show that the effective qubit Hamiltonian is
always stoquastic by a simple basis change, at any order in SW
perturbation theory.3 This shows that asymmetry in the flux
qubit potential is necessary to get an effective nonstoquastic
qubit Hamiltonian.

First, let the global parity operator π̂ be a unitary, Hermi-
tian operator, defined via its action on φ̂k , q̂k as

π̂ φ̂kπ̂ = −φ̂k, π̂ q̂kπ̂ = −q̂k . (C10)

Note that π̂ = �k exp(iπa†
kak ) with φ̂k = 1√

2
(ak + a†

k ), q̂k =
i√
2
(a†

k − ak ).

Since π̂2 = 1 the parity operator has eigenvalues ±1. We
call an operator O parity symmetric when π̂Oπ̂ = O.

The Hamiltonian of the two flux qubits in case φx
q = π

(symmetric double wells) reads

H =
2∑

k=1

4ECkq̂2
k + 1

2
ELkφ̂

2
k + E eff

Jk cos φ̂k

+ 8EC12q̂1q̂2 + EL12φ̂1φ̂2, (C11)

and we can define the single flux qubit Hamiltonian

Hk = 4ECkq̂2
k + 1

2 ELkφ̂
2
k + E eff

Jk cos φ̂k, (C12)

k = 1, 2, with ECk and ELk the diagonal elements of the charg-
ing energy and inductive energy matrix respectively.

We can write Eq. (C11) as

H = H0 + V, (C13)

with H0 = H1 + H2, i.e., the uncoupled flux qubit Hamiltoni-
ans, and

V = 8EC12q̂1q̂2 + EL12φ̂1φ̂2, (C14)

where EC12 and EL12 denote the off-diagonal element of EC

and EL respectively. Clearly, both H0 as well as V are invariant
under the global parity transformation π̂ .

3The analysis applies also to fluxonium qubits in a double well
configuration since the Hamiltonian is effectively the same as for
flux qubits, but in the parameter regime, EL < EC < E eff

J .

In the remaining part of this section the index k will always
be k = 1, 2. The Hamiltonians Hk admit only bound states
as eigenstates. As a consequence the average of q̂k in any
eigenstate |ψ〉k of Hk is zero, i.e., 〈ψ |q̂k|ψ〉k = 0 [70].

Due to parity symmetry, the eigenstates of Hamiltonians
H0 and H can be chosen as eigenstates of the parity operator
with eigenvalues ±1. This implies that the eigenstate wave
functions in flux are either even or odd functions, and that
〈ψ |φ̂k|ψ〉k = 0.

We now assume the validity of first order perturbation
theory in the eigenbasis of the Hk and obtain an effective two-
qubit Hamiltonian by projecting Eq. (C11) onto the subspace
P0 spanned by the first two levels of each subsystem |g〉k , |e〉k .
This consists in applying the projector

P0 = P1 ⊗ P2 = (|g〉 〈g|1 + |e〉 〈e|1) ⊗ (|g〉 〈g|2 + |e〉 〈e|2)

to the Hamiltonian in Eq. (C11). By defining our Pauli opera-
tors in the eigenbasis as

Xk = |g〉 〈e|k + |e〉 〈g|k , (C15a)

Yk = −i |g〉 〈e|k + i |e〉 〈g|k , (C15b)

Zk = |g〉 〈g|k − |e〉 〈e|k , (C15c)

the effective qubit Hamiltonian reads

H2q/h = P0HP0 = −
1

2
Z1 − 
2

2
Z2 + JXX X1X2 + JYY Y1Y2,

(C16)
where the tunnel couplings 
1,2 are defined as in Eq. (C4),
JYY is given by

JYY = −EC12

h
〈g|q̂1|e〉1 〈g|q̂2|e〉2 (C17)

and the XX coupling JXX is

JXX = EL12

h
〈g|φ̂1|e〉1 〈g|φ̂2|e〉2 . (C18)

The Hamiltonian in Eq. (C16) can always be made sto-
quastic by simple Clifford transformations. The conditions for
stoquasticity is here that JXX � −|JYY |.

If |JXX | � |JYY | apply the transformation X1 �→
−sign(JXX )X1, Z1 �→ −sign(JXX )Z1 and then the Hamil-
tonian is stoquastic. If |JXX | < |JYY | apply the transformation
that exchanges X and Y on both qubits, and use the previous
transformation.

The previous result relies on the validity of the projection
onto the computational subspace. A natural question to ask
is whether the effective qubit Hamiltonian can still always
be made stoquastic if the perturbation theory is refined. We
here show this is indeed the case by using a Schrieffer-Wolff
transformation [48]. Note that this was also used in Ref. [47]
to obtain the effective Hamiltonian of two capacitively and
inductively coupled flux qubits, and to study its stoquasticity.

To properly discuss the SW transformation, we recall some
notions from Ref. [48]. Let λmin

P0
and λmax

P0
be the minimum and

maximum eigenvalues of H0 with eigenvectors in P0, respec-
tively, and let I0 = [λmin

P0
, λmax

P0
] ⊆ R. We define the energy

gap � = λmin
Q0

− λmax
P0

, where λmin
Q0

is the minimum eigenvalue
of H0 whose eigenvectors is in the complement subspace Q0

of P0. We introduce a new interval I = [λmin
P0

− �/2, λmax
P0

+
�/2] ⊆ R, and the subspace P with projector P spanned by
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the eigenvectors of H with eigenvelue in I. Our general goal is
to obtain an effective Hamiltonian that is block-diagonal with
respect to P0 and Q0, i.e., P0Heff Q0 = Q0Heff P0 = 0 and has
the same spectrum as H . In particular, by projecting the ef-
fective Hamiltonian onto P0 we obtain a reduced Hamiltonian
H0eff = P0HeffP0 with spectrum in I. The SW transformation
is a unitary transformation defined as

U = exp(S) =
√

(1 − 2P0)(1 − 2P), (C19)

where S is a block-off-diagonal, antihermitian operator with
respect to P0, Q0. In order for the SW to be uniquely defined
we require the condition ‖S‖ < π/2 [48]. The (exact) effec-
tive Hamiltonian H0eff is

H0eff = P0UHU †P0. (C20)

Since the Hamiltonians H and H0 are invariant under parity
transformations, also the projectors P, P0 satisfy the parity

symmetry. Consequently also the unitary U in Eq. (C19) and
the generator S are parity symmetric, and thus also H0eff , i.e.,

π̂H0eff π̂ = H0eff . (C21)

Since π̂ |g〉k = +1 |g〉k and π̂ |e〉k = −1 |e〉k , the parity oper-
ator π̂ acts on the Pauli operators defined in Eq. (C15) as

π̂Xkπ̂ = −Xk, π̂Ykπ̂ = −Yk, π̂Zkπ̂ = Zk . (C22)

Thus the only terms allowed in H0eff in order to satisfy the
parity symmetry, and the fact that the Hamiltonian is real, are
local Z1,2 and the interactions X1X2, Y1Y2, and Z1Z2.

Hence, compared to the lowest-order SW projection only
the Z1Z2 term can be added, and since this term is diagonal
we can employ the same Clifford transformations as before to
cure the nonstoquasticity.

We note that this observation does not immediately gen-
eralize to multiple flux qubits as the SW transformation may
introduce k-local terms and it is not clear whether the parity
symmetry would suffice in that case.
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