
Bachelor Thesis
-

Comparative analysis of the Metropolis-Hastings algorithm as
applied to the domain of program synthesis

Victor van Wieringen, V.J.vanWieringen@student.tudelft.nl
Supervised by: Sebastijan Dumancic

January 23th, 2021

1



Abstract

In this research the Metropolis-Hastings algorithm
is implemented for the problem of program
synthesis and compared with Brute[1], a best-
first search, together with multiple other different
search algorithms. The implementation and
choices of the Metrolpolis-Hastings algorithm are
discussed in detail. The algorithms are tested
for three different domains, each with their own
associated DSL. Finally, comparisons are drawn
between the search algorithms by analyzing the
results of these experiments. It is found that the
performance of any search algorithm depends very
heavily on the specific domain and cost function
used and the Metropolis-Hastings algorithm falls
short in terms of performance when compared
with other conventional methods.

1 Introduction

1.1 Program Synthesis

Program synthesis is an area of ongoing research
focusing on the automatic generation of explicit
programs that match a given specification. It
allows us to automate various parts of the
software development process, which has large
implications, since software development is a
difficult, time consuming and costly task[2].
By being able to automate different parts of
the software development process, progress in
program synthesis might lay the foundation for
new programming paradigms such as natural
language programming [3].

Program synthesis can be split up into
a combination of the following three sub
problems[4]:

1. Intention, Deriving the specification for the
program.

2. Invention, Deriving the program itself.

3. Adaptation, Adapting the program to
changing needs.

For this research, the intention part of our
program synthesis problems will consist of
input/output-examples, the research will be
focused on the invention phase in the above three-
component program synthesis pipeline.

Figure 1: Example input/output pair

1.1.1 Cost heuristic

The total set of all possible programs (program
space) is too large to explicitly enumerate for
any meaningful domain, yet it is the goal of the
invention phase to find, within this vast space, a
program that matches a certain behaviour. One
of the main challenges of the invention phase
therefore, is finding an efficient means of searching
this vast program space[5].

A general property of programs that we can
utilize when searching, is that similar programs
tend to create similar outputs when ran on the
same input. Because of this property, a strategy
that can be used is to define an example-dependent
loss function for every domain. The cost function
simply compares the candidate program’s output
with the expected output, and serves, within the
search algorithm, as a measure of how close this
candidate program is to finding a solution. The
cost function is therefore used as an important
guiding heuristic in the program synthesis search
effort.

1.1.2 Research focus

This research will build forward on a paper by
Andrew Cropper and Sebastijan Dumancic[1],
in which they describe a novel ILP system
called "Brute" which makes use of an example-
dependent loss function. They show that Brute
performs relatively well in comparison with other
classical ILP systems because of the use of such an
example-based loss function. However, Brute had
a tendency to get stuck in local minima and failed
to find a correct program in these cases.

In this research, different search algorithms
are implemented for the problem of program
synthesis, these algorithms are then evaluated in
terms of their performance and learning time.
We work with a group of 5 students, each of us
responsible for implementing a different algorithm
to search the program space. The different
algorithms are then ran on the same domains as
Brute was in the original paper in order to draw
comparisons between them. The report places
an emphasis specifically on the development and

2



adaptation of the Metropolis-Hastings algorithm,
since the author of this paper was responsible for
adapting it to the domain of program synthesis.

2 Related work

2.1 Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm is based off the
concept of Markov-chains, which are state models
with a set of probabilistic transitions between
them[6]. The Fundamental Theorem of Markov-
chains states that for Markov-chains with certain
properties, a stationary probability of a Markov-
chain can be calculated [7]. This stationary
probability will be an eigenvector of the transition
matrix like so.

π(x) = π(x) ∗K(x, y) (1)

Where K(x, y) corresponds to the probability of
a state change from state x to state y. The
stationary probability of a state - π(x) - is the
chance of the Markov-chain being in state x after
starting at a random state and running for a long
time.

We can construct a Markov-chain with a given
stationary distribution by defining a proposal
distribution J(x, y) and using it in our definition
of K(x, y) like so:

K(x, y) =

{
J(x, y) if A(x, y) ≥ 1

J(x, y) ∗A(x, y) if A(x, y) < 1

(2)
Or more concisely as:

K(x, y) = J(x, y) ∗min(1, A(x, y)) (3)

Where A(x, y) is defined as:

A(x, y) =
π(y) ∗ J(y, x)
π(x) ∗ J(x, y)

(4)

The function A(x,y) is known as the acceptance
ratio because it essentially determines whether we
accept a transition from x to y or not based on
the ratio between the two solutions’ costs.

2.2 Search methods

Below is an overview of the different search
methods that are compared in this research.

2.2.1 Brute (best-first search)

The deterministic algorithm as described in the
original paper[1]. Brute consists of two stages,
the first stage (invent), functions simply as a
way to increase the possible step size for program
construction. This happens by generating all
permutations of the simple atomic tokens up until
a maximum length, these permutations form the
library that the second stage (search) can use.
The second stage then is simply a best-first search
using this library: a list of candidate programs is
maintained and every iteration the candidate with
the lowest cost is expanded with all tokens in this
library.

2.2.2 Metropolis-Hastings

A stochastic search technique, well suited for large
spaces from which direct sampling is difficult. The
algorithm models the search tree as a Markov-
chain, this Markov-chain is explicitly constructed
first and then weighted by using the cost function
as a guiding heuristic. By starting at a
random state and then simulating the constructed
Markov-process for this state, progressively better
programs will be generated.

2.2.3 Genetic Algorithms

Genetic Algorithms are a class of algorithms
rather than a specific implementation. However,
a genetic algorithm takes inspiration from the
natural process of evolution. By defining
operators on one or multiple programs, we can
simulate the natural evolution process. A large
’population’ of programs is kept and updated,
and through selective breeding, random mutations
and removal of bad programs, the population of
programs is slowly evolved to minimize this cost.

2.2.4 Very large-scale neighborhood

Another class of largely stochastic search
techniques, enveloping a whole array of different
implementations. The common principle is the
following: as the algorithm searches through the
space, a copy of the best candidate(s) is kept,
when expanding the search to more candidates
the algorithm looks at the neighbours of these
candidates and evaluates those. However, when
the neighbourhood of the search is small, a basic
neighbourhood search will suffer from getting

3



stuck in local minima. The principle of a very
large-scale neighborhood search is then to expand
this space and allow for programs ’further away’
from the best candidate to also be evaluated. By
simply making the space of candidates broader,
the algorithm hopes to escape local minima.

2.2.5 A*

This deterministic search technique in principle
works very much like Brute does, only it extends
the cost heuristic to include a cost function based
on the path to the solution. By including this new
heuristic, A* hopes to imbue the best-first search
with more sense of direction. Hence speeding up
the search effort. For this search technique then,
the difficulty lies in defining this path heuristic. If
it is possible and done right however, A* should
yield significant improvements as compared with
the best-first search.

2.2.6 Monte Carlo tree

This stochastic search technique works by
modeling the syntax tree of the DSL and
associating a weight with every node. The
weights will start out randomized, then when
the algorithm is ran it will pick a token from
the syntax tree based on these weights. Based
on the induced change in cost, the algorithm
can determine if the action was beneficial or not
and through back-propagation, the weights are
updated. In this way the Monte Carlo tree
search trains itself and develops a predisposition
over time for actions that result more often in a
decrease of the cost.

3 Method

3.1 Adapting the Metropolis-
Hastings algorithm

In applying the Metropolis-Hastings algorithm to
the domain of program synthesis, we model the
search tree as a Markov-chain K and simulate it
starting at a random state P0, which corresponds
in our case to the empty program. By simulating
the state changes in K for P0, we are able
to repeatedly mutate the initial program and
eventually hope to reach a state in the Markov-
chain that corresponds to a program that solves
our task.

Figure 2: Example of a state change (add
instruction) in the Markov chain.

The difficulty in implementing the Metropolis-
Hastings algorithm for the specific case of program
synthesis, is in how to best construct this Markov-
chain K.

3.1.1 Proposal distribution J(x,y)

Since the program space is infinitely large, it is
infeasible to define unique transitions for every
program in the space. Instead, we start with a
random program and define a transition function,
which will take program as input and apply a
mutation to it. Since the usage of Markov-chains
makes it infeasible for our algorithm to backtrack,
it is important that our algorithm defines plenty
of smaller mutations if we want to have any hope
of our algorithm ever converging.

To construct Markov-chain K, we start out
with a proposal distribution J , which we
explicitly defined as a set of mutations with
associated (unweighted) probabilities. The
proposal distribution is then weighted with the
cost to form K. The state transitions in J and
K are the same, and are explicitly defined as a set
of mutations, these mutations can be applied to
any program to change it to a new program.

The set of mutations and associated
probabilities forms the basis of our algorithm: the
proposal distribution J . Because we associated
a probability with our mutations, we can sample
mutations from J .

Figure 3: The mutations and weights that were
used.
Mutation Unweighted probability
add_token 10
remove_token 20
add_loop 10
add_if 10
start_over 2

4



3.1.2 Calculating the acceptance ratio

Looking at equation 4, it becomes clear that in
calculating the acceptance ratio for a mutation
sampled from J(x, y), we also need to calculate the
value of J(y, x), the inverse probability. It would
seem since we have such easy access to J(x, y),
that the value of J(y, x) would be just as easy
to calculate. In practice however, it’s not that
simple.

The way that the proposal distribution is
defined allows for easy sampling, but it doesn’t
allow us to calculate the chance of a transition
between arbitrary programs. There are multiple
ways around this.

1. Make every operation have an explicit inverse.

2. Make it so that J(x, y) ≈ J(y, x) for all
mutations.

On first sight, the first option might seem
most logical, however, it poses some additional
challenges. The biggest challenge that comes
with trying to define an explicit inverse for every
mutation, is that for some mutations this might
be difficult or even impossible to do. Take for
instance the mutation "start_over", which turns
the program into P0, the empty program: it is easy
to see that for longer programs this inverse chance
will be much lower than for shorter programs.
Additionally, even with properly defined inverses
for all mutations, there will still be inconsistencies:
in defining an explicit inverse for every mutation,
we implicitly assume that this is the only way
the algorithm can make this inverse transition.
This isn’t true: many of these explicitly defined
operations could be modeled by using multiple
other different transitions, thus leaving us with an
underestimate of J(y, x).

Since the first option has its flaws, the usual
way of dealing with the problem of calculating
inverse probabilities is the second option: Make
it so that J(x, y) ≈ J(y, x) for all mutations.
This also has the following benefit: it reduces the
calculation of the acceptance ratio to the much
simpler Metropolis-ratio[8].

A(x, y) =
π(y)

π(x)
(5)

3.1.3 Defining the stationary distribution

It is clear that the cost should map to the
stationary distribution. However, since the cost

can be arbitrarily high, it needs to be normalized
first:

π(x) = e−Cost(x) (6)

By normalizing the cost in this manner, the
resulting probability π(x) will have a value
between 0 and 1.

3.1.4 Final algorithm

After constructing the proposal distribution J,
which we can use to obtain a mutated version of
the input program, the algorithm is rather simple:

P ← {}
while Cost(P ) ̸= 0 do

P ′ ← J(P )
C ← A(P, P ′)
R← rand(0, 1)
if R < C:
P ← P ′

end while
P will contain the solution program

Where rand(0, 1) returns a real number between
0 and 1 and the Cost function corresponds to the
example-based cost function as described in the
original paper[1].

3.2 Domains

We define three different domains, each with
their own associated DSL. Every DSL will consist
of Loop- and If-tokens, these specify program
control flow and are hence not unique to the
domain. All the other tokens that are used in the
search however, are unique to the domains. The
complete set of instructions for every one of the
DSL’s can be found in Appendix A.

Domain Description Cost function

String Manipulate strings
in specific ways. Levenshtein

Pixel Paint the right
pixels in a grid. Hamming

Robot Pickup and move a
ball to the right spot. #Steps

4 Experiments

Seeing as there are substantial differences between
the different domains, the methodology and

5



results pertaining to each domain will be discussed
separately.

4.1 Robot

The first domain is one on giving directions to a
robot. The goal of this robot is to move a ball to
a designated cell in the grid (the flag). In order
to achieve this the robot has to move to the cell
containing the ball, pick it up, and drop it in the
cell where the flag is placed.

4.1.1 Domain

In this domain, a robot, ball, and flag are placed
in a grid. Below is a visualization of this domain.
The robot, ball, and flag are marked with R, B
and F respectively.

Figure 4: Simple representation of robot domain

In the above example, the robot is expected to
move to the right three times and then down once,
pick up the ball, and drop the ball after moving
in a similar fashion to the flag. The DSL for this
domain consists of few basic instructions to move
the robot about the grid, pickup and drop the ball,
as well as simple loop and conditional constructs.

4.1.2 Method

The different algorithms were ran for increasing
grid sizes to compare the relative performance for
increasing complexity.

The cost function as described in the original
paper consisted of the Manhattan distance
between the current and goal location of the Ball
added with the Manhattan distance of the old
and new location of the Robot[1]:
OCost=MD(BC ,BG)+MD(RC ,RG)

However, an improvement to this heuristic
was found: by recognizing the problem consists
of stages, the cost function was split up for every
stage.

Robot moves to ball:
Cost1=MD(BC ,RC)+MD(BC ,BG)+MD(BG,RG)+2

Robot moves ball to flag:
Cost2=MD(RC ,BG)+MD(BG,RG)+1

Robot moves to goal:
Cost3=MD(RC ,RG)

This improved cost heuristic is continuous as
well as consistent: it exactly matches the amount
of steps the robot should minimally take. The
overestimate in this case only being due to the fact
that in certain cases, a single instruction (loop)
can be used to take multiple steps.

4.1.3 Results

Due to the old heuristic not being consistent, a
lot of local optima were introduced, for example,
there were cases in which the robot prioritized
moving to the end spot without ever picking up
the ball.

Figure 5: Robot domain performance with old
heuristic

As seen in the above figure, using the old
heuristic makes performance drastically decrease
as the grid gets larger because these local optima
get deeper, e.g. the robot needs to take more steps
to reach a certain waypoint.

After improving the cost function, all the
algorithms except for the genetic algorithm were
able to solve all of the test cases. The reason for
this is because there is no more possibility for local
optima to occur: any decrease in the cost function
means the program is actually closer to solving the
task.

6



Figure 6: New heuristic, cases solved
Search Algorithm Robot
Brute 250/250
Metropolis-Hastings 250/250
VLNS 250/250
MCTS 250/250
GP 19/250
A* 250/250

With this improved cost function, the robot
domain turned into what is essentially a sanity
check for the search algorithms.

Seeing as the performance for the genetic
algorithm was extremely low here, the choice was
made not to include it in the other domains, where
it similarly underperformed.

4.2 Pixel

The second domain is about painting pixels in a
grid. The DSL of this domain deals with moving
a cursor through a grid, being able to paint cells
that are under the cursor. Starting from an empty
grid (input), the task is to paint the grid so it
corresponds to the output example.

4.2.1 Domain

In the below figure, an example of a problem in
the pixel domain is shown, the cursor is labeled C.

Figure 7: Visualization of robot domain in/out

The DSL for this domain consists only of
instructions to move the cursor up, down, left
or right, together with instructions to colour or
uncolour the grid. A possible solution for the
problem shown in Figure 7 would be the following
generated program:
"[MoveRight, MoveDown, Draw]". Of course,
most of the actual testing examples consisted of
more than just one pixel.

4.2.2 Method

The pixel domain is ran for increasing grid sizes,
all consisting of a random combination of coloured
and uncoloured pixels. The cost function for this
domain consists of the number of differing pixels
between the two domains being compared: the
hamming distance. The results are plotted for
both the percentage of the tasks solved as well
as the mean learning time in seconds, both with
respect to the increasing grid sizes.

4.2.3 Results

Figure 8: Pixel domain performance

Figure 9: Pixel domain learning times

It can be seen that compared to the other
algorithms, brute performs really well. This
is because for the pixel domain, the cost only
decreases if a pixel is coloured in the right place:
it in no way depends on the location of the cursor.

7



In practice this means that often a large number of
steps have to be taken before any decrease in the
cost is induced. Furthermore, it should be noted
that the cost function of the pixel domain in no
way allows for local minima to occur. It is purely
this characteristic of minimal distance that makes
the pixel domain very difficult to deal with for the
stochastic methods (Metropolis-Hastings, VLNS,
MCTS), the cursor is moved randomly about the
grid without any sense of direction, depending on
blind luck to draw the right pixels. In contrast,
Brute takes much larger steps due to making use
of the library "invent" step: these algorithms have
a big chance to get somewhere within only a few
iterations and decrease the cost.
Note: in principle, A-star should function largely
like brute, it is unclear why it underperformed this
much here.

4.3 String
The last domain is the domain of real-world string
manipulations, these vary from simple tasks: (e.g.
Capitalize the first letter of a word), to more
difficult ones: (e.g. Remove the middle word in
a sentence).

4.3.1 Domain

The string domain provides a simple DSL for
string manipulations, it consists of a pointer that
points to a character in the current string. The
pointer can then be moved and used to manipulate
the character below.

An input/output example set is shown below:
In Out
amelia! amelia
robert! robert
Similar to the other domains, we can come up

with a program that solves this particular task:
"[LoopWhile(IsLowercase [MoveRight]), Drop]"

The cost function that is used for the String
domain is the Levenshtein distance: the minimal
amount of atomic operations to change one string
into another.

4.3.2 Method

For the string domain, there are 10 examples that
can be solved generally by a single program. These
examples are then split up into test and training
groups in such a way that some cases will have
only one training example, and some cases will

be trained on multiple training examples. By
using multiple examples in a set and adding up
the cost over all of them, we incentivise the search
algorithms to find general programs, rather than
programs that solve a single example. We plot
the results of the string experiments against the
number of examples that were given.

4.3.3 Results

Figure 10: String domain performance

Figure 11: String domain learning times

As expected, the more examples are given,
the better the performance of the algorithms
gets. Whereas the Metropolis-Hastings and Brute
approaches perform similarly, great improvements
are seen in the other search algorithms: especially
the VLNS boasts an impressive learning time as
compared with the rest, being at least twice as
fast as Brute in most cases. Whether it is for
learning time or performance, all of the algorithms
outperform Brute for the string domain.

8



5 Conclusion and Limitations

Brute is a best-first search approach defined
for program synthesis, it performs really well
when compared to classic methods because of the
inclusion of a cost heuristic. In this research
the best-first search was compared with multiple
different other search techniques, all of them
making use of a similar cost-heuristic too. These
different search algorithms were then compared
with one another.

5.1 Cost-heuristic

As seen in the case of the Robot domain, the exact
definition of the cost-heuristic used can determine
how well the search algorithms are able to find
solutions. By making sure to pick a cost function
that doesn’t allow for local minima, we can make
sure to create a synthesis problem that is trivial
to solve. Additionally, in the case of the Pixel
environment, a bad heuristic can make ’smarter’
search algorithms perform worse than simpler,
enumerative approaches.

In practice, a cost function is good if it ensures
that the following properties hold:

• Small minimal amount of steps to take to see
a decrease in cost.

• Cost function should not allow local optima
to occur.

How to best ensure these properties depends
highly on the specific domain. But in general,
the more the cost-heuristic ’assumes’ about a
problem domain, the better it will be for the
specific problem. This means there’s a tradeoff
between performance and generality. Lastly, in the
extreme case, writing a ’perfect’ cost-function for a
domain will be akin to solving the general problem
yourself, voiding the need for program synthesis in
the first place.

5.2 Local minima

For some domains it is impossible to define a cost
function with the properties listed above, these
domains will have local minima even in the best
case. One of the concerns around Brute was its
inability to escape these minima.

It was found that while using Metropolis-
Hastings provided some benefit for some domains,

it performed similar to or worse than the other
approaches that were evaluated.

Especially VLNS and MCTS proved to be
reliable solutions when applied to the string
domain. One thing to be noted however, is
the fact that for these search algorithms, explicit
training was done on the different domains, while
the Metropolis-Hastings and Brute approaches are
non-assuming: exactly the same version of these
algorithms are used for all domains, down to the
weights and biases.

The benefit of training a search algorithm to a
specific domain is clear: performance is increased
by quite a lot, as can be seen in Figure 6. However,
there can be drawbacks too: specializing a search
algorithm to a certain domain can mean a loss of
generality, much like is true for the cost function.
In Figure 5 this effect can be seen at play for the
VLNS, suddenly, when using a heuristic that is
different than the one that was trained on, the
performance drops tremendously.

6 Responsible Science

This is the responsible research section of the
report, it deals with ethical remarks about the
integrity and reproducibility of this research.

6.1 Integrity and Responsibility

Seeing as the development of the codebase was a
joint effort, there are some points to make here.
As written in the Code of Conduct, section 3.3,
all students should be critical of the material they
receive, be respectful of the work of their peers
and give credit where credit is due. During a large
project like this, all people working on a codebase
together are mutually dependent, especially for
comparative analysis like this, where each student
was responsible for a different algorithm. I made
sure to check the validity of the results of the
different algorithms as well as to understand the
code. The other side of this mutual-dependency is
the fact that my group members wrote large parts
of the codebase that this research is built on, and
for that reason they deserve credit too.

6.2 Open data

The results that were acquired for this paper were
generated using a custom codebase written in

9



Python. In the light of open data and reproducible
results, this codebase is made open-source and
can be found on Github at the following URL:
https://github.com/victorvwier/BEP_project_synthesis
Instructions on how to install and run can be
found here as well.

References

[1] A. Cropper and S. Dumancic, “Learning large
logic programs by going beyond entailment,”
Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence,
Jun 2019.

[2] C. David and D. Kroening, “Program
synthesis: Challenges and opportunities,”
Philosophical Transactions of the Royal
Society A: Mathematical, Physical and
Engineering Sciences, vol. 375, no. 2104,
p. 20150403, 2017.

[3] A. Desai, S. Gulwani, V. Hingorani, N. Jain,
A. Karkare, M. Marron, S. R, and S. Roy,
“Program synthesis using natural language,”
Proceedings of the 38th International
Conference on Software Engineering, 2016.

[4] J. Gottschlich, A. Solar-Lezama, N. Tatbul,
M. Carbin, M. Rinard, R. Barzilay,
S. Amarasinghe, J. B. Tenenbaum, and
T. Mattson, “The three pillars of machine
programming,” Proceedings of the 2nd
ACM SIGPLAN International Workshop
on Machine Learning and Programming
Languages, 2018.

[5] “Introduction to program synthesis,” MIT
lecture series (6.S084/6.887 2020).

[6] Merriam-Webster, “Markov chain..”
https://www.merriam-webster.com/
dictionary/Markov\chain, 2021. Accessed
14 Nov. 2021.

[7] Megan Goldman, “Markov chains - stationary
distributions.” https://www.stat.berkeley.
edu/~mgoldman/Section0220.pdf, Spring
2008. Accessed 14 Nov. 2021.

[8] E. Schkufza, R. Sharma, and A. Aiken,
“Stochastic superoptimization,” in
Architectural Support for Programming
Languages and Operating Systems, ASPLOS
’13, Houston, TX, USA - March 16 - 20,
2013, pp. 305–316, 2013.

10



A Appendix

A.1 DSL’s
As well as featuring If and While tokens, every
DSL consists of the following tokens:

A.1.1 String

Boolean Tokens:
AtEnd,NotAtEnd,AtStart,NotAtStart, IsLetter, IsNotLetter, IsUppercase, IsNotUppercase, IsLowercase,
IsNotLowercase, IsNumber, IsNotNumber, IsSpace, IsNotSpace
Transition Tokens:
MoveRight,MoveLeft,MakeUppercase,MakeLowercase,Drop

A.1.2 Pixel

Boolean Tokens:
AtTop,AtBottom,AtLeft, AtRight,NotAtTop,NotAtBottom,NotAtLeft,NotAtRight
Transition Tokens:
MoveRight,MoveDown,MoveLeft,MoveUp,Draw

A.1.3 Robot

Boolean Tokens:
AtTop,AtBottom,AtLeft, AtRight,NotAtTop,NotAtBottom,NotAtLeft,NotAtRight
Transition Tokens:
MoveRight,MoveDown,MoveLeft,MoveUp,Drop,Grab

11


