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Abstract
The need for accurate estimation of hydrodynamic and water quality model variables arises from the
UNITED project, which aims to create high-resolutional forecasting systems for monitoring the cultiva-
tion of seaweed and flat oysters and operating of the Belgian pilot of UNITED in the coastal area of the
North Sea.
Accurate observations of physical variables are usually only known for small domains of the model, on
the water surface. Therefore, data assimilation is applied on different hydrodynamic models to search
for improved estimates of waterlevel, water velocity and temperature. The sequential data assimilation
algorithm, the Ensemble Kalman filter is considered. The algorithm is a Monte-Carlo approximation
of the Kalman filter, both using accurate observations assimilated into the model, where the model
each time is shifted towards the observations when available, providing an optimal trade-off estimation
between the model estimations and observations.
Two models are considered: a 1D model of the Western Scheldt estuary in Python and the 2D model
with depth of theWestern Scheldt estuary implementedwith software packagesDelft3D FMandOpenDA.
Model estimates and estimates of model with assimilated observations are investigated in various ex-
periments to look for improved predictions, using twin experiments to generate artificial observations
over the whole domain. The various experiments contained the search for the effect of assimilation
location on the estimates, of the effect of assimilation of different physical parameters, the effect of the
observational error covariance and the effect of water surface assimilation on the estimation within the
water column.
In most cases, the Ensemble Kalman filter improved the estimate of waterlevel and water velocity with
varying results up to a decrease in rmse of a factor four, while the assimilation of temperature gave a
worse prediction. Furthermore, assimilation of waterlevel gave the best improvement in estimate. For
the investigated models, assimilation of observations near the boundary conditions with implied noise
gave the most improved estimates. Furthermore, assimilation of water surface observations improved
the estimate within the water column for water velocity with a factor of 2, while temperature assimila-
tion did not show any improvement. The result for temperature may be due to a collapsing Ensemble
Kalman filter due to small standard deviations and a not realistic model setup for temperature. There-
fore, assimilation of only observations at the surface may be used to accurately improves water column
estimations for water velocity. For temperature, more research is needed. Advised is an experiment
with a different model setup with more realistic and longer spin-up time of temperature. The collapsing
Ensemble Kalman filter can be prevented by initialization of new ensembles before the the collapse
happens.
In further research, data assimilation can be applied on the DCSM model, a model involving the area
of the Belgian pilot.
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1
Introduction

The UNITED project [9] is a European project of Deltares [2], an independent institute for applied
research in the field of water and subsurfaces, and 25 other contributing companies. The project was
brought to life to provide evidence of the viability (economically, socially and environmentally) of multi-
use of marine space (MU). Multi-use of marine space is intentional shared use of marine resources in
close geographic proximity by two or more maritime activities. Figure 1.1 shows some of the maritime
activities that can be combined: offshore windfarms, seaweed and/or mussel cultivation, flat oyster
cultivation, floating solar energy by solar panels, fishery and tourism. MU allows for combined efficient
operational planning of these maritime activities, and can increase both efficient usage of the ocean
space and can decrease socio-economic costs and the impact on the environment [64].

Figure 1.1: Schematic of multi-use of marine space, with maritime activies as offshore windfarms, seaweed and/or mussel
cultivation, flat oyster cultivation, floating solar energy by solar panels, fishery and tourism. This is the ambition of multi-use of
marine space what will be generally possible in 2030 [7, 48], by validation through the UNITED project. Figure retrieved from
[84].

By setting up five offshore test locations or pilots in different coastal areas, with different combinations
of marine activities, data is gathered and analyzed to obtain more information about MU, and to validate
its use. The project started in 2020, and the pilot sites are currently in development. At the end of the
project, UNITED aims to have created a validation of MU and raise the level of technology available

1



2 1. Introduction

for MU activities within Europe [7]. Other companies and entrepreneurs will be able to start MU sites
in the coastal regions more easily. The ambition for 2030 by one of the partners, North Sea Farmers,
is to have 500 km2 of multi-use farms within the Dutch North Sea [15, 84]. The list of UNITED pilots is
given here and see Figure 1.2 for the locations:

1. Germany: Offshore windfarms, blue mussel and seaweed cultivation,

2. The Netherlands: Offshore windfarms, floating solar energy and seaweed cultivation,

3. Belgium: Offshore windfarms, flat oyster aquaculture and restoration and seaweed cultivation,

4. Denmark: Offshore windfarms and tourism,

5. Greece: Fish aquaculture and tourism.

Figure 1.2: The five pilot sites of the UNITED project. In each pilot, multiple maritime activities are conducted. Figure retrieved
from [9].

1.1. Belgian pilot
In this thesis, the Belgian pilot site is taken into consideration. The Belgian pilot aims to integrate flat
oyster aquaculture and seaweed cultivation into existing windfarms, located approximately 38km off
the Belgian coast [6]. This will be the first attempt to combine flat oyster aquaculture with existing
windfarms. To that end, this section explains the three maritime activities to be conducted within the
Belgian pilot: offshore windfarms, flat oyster aquaculture and restoration, and seaweed cultivation.
The windfarms in the Belgian coast are maintained by the company Parkwind [6]. There are 4 opera-
tional windfarms, with 771 MW of production capacity, stationed off the coast at Oostende, Belgium, to
promote offshore wind energy development. This is roughly the amount to supply 820,000 EU house-
holds with electricity for one year [6].
The European flat oyster, also known as Ostrea edulis, has a large history within the North Sea. Since
the Roman times, flat oysters were collected from the sea to grow in grow-out ponds, ponds where
young fish are stocked and grown for consumption [8]. In the 18th and 19th century, flat oysters were
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a main source of nutrition within Europe, resulting from large oyster reefs. Mainly due to overfishing,
the flat oyster disappeared from the European waters. Furthermore, wild spat is becoming rare, and
therefore aquaculture of flat oysters is very difficult in most rearing areas [8].
The creation of oyster reefs will be combined with seaweed cultivation. Seaweed is one of the fastest
growing biomass in the world. It has many applications: in food, fuel, cosmetics, building materials and
many more [10]. The demand for seaweed is increasing drastically with an averaged growth rate of
8% over the past few years [32]. Right now, it is cultivated for the most part in Asia by hand and with
low quality. Therefore, specialized industrial production of seaweed of high-quality has big potential.
Combining these three maritime activities could strengthen eachother. Since fishery is not allowed in
windfarms, potential oyster reefs will not be harmed by fishing nets. Furthermore, the solid bases of
windturbines could be potential attachment points for aquaculture devices for seaweed cultivation [16],
and will create a more diverse and resilient ecosystem also found on e.g. ship wrecks [51].

1.2. Problem statement
There is a lot of work involved in setting up offshore MU platforms and it entails various types of risk
[49, 75]. The North Sea is a fairly rough sea and the distance from the coast results in more intense
water conditions than near shore. This complicates the construction and operations using vessels.
Furthermore, optimal growing conditions of flat oysters and of seaweed are very specific [8]. Flat oysters
are typically found in coastal areas, estuaries and marine habitats and prefer waters of relatively high
salinity, with clear or low turbidity [21]. Flat oysters show high growth rates when salinity is above 22.5
psu (practical salinity units) [21], with optimal salinities of 24 − 34 psu [57] and show high growth rates
when temperature ranges between 17.5−30∘ C. Growth is limited by for example the presence of algae
[21].
The growth of seaweed is affected by light availability, wave behavior, water currents, nutrient concen-
tration, type of substratum, temperature, salinity and grazing pressure [74]. The seaweed will grow
adequately when sea water temperatures are confined between 5−15∘C and summer sea water tem-
peratures do not exceed 18 − 20∘C for more than a few days, when salinity measures stay between
30−35 psu, and when water motion is relatively moderate, around 0.1−0.25 ms [47]. Hence, limiting
factors to the growth of both flat oysters and seaweed will be e.g. rough waters due to storms, algae
blooms, high turbidity, high temperature, diverging salinity and oil spreading [37].
Another important process taking place in the North Sea is stratification [77]. Stratification is the form-
ing of layers of unequal temperature within the ocean, caused by warming up of the top layers by the
atmosphere or direct sunlight. Main consequences of stratification are the disruption of mixing in be-
tween the layers, lower density, lower salinity and higher temperature in the top layer. Due to higher
temperature, less oxygen will be dissolved in the water. Low oxygen levels cause sediments to release
nutrients in the water [12], which will stimulate the grow of algae [12], which in turn limits the growth of
flat oysters and seaweed. The Belgian pilot is located on the border between permanently mixed and
intermittently stratified areas [77]. Therefore, the amount of stratification will not be perfectly known
throughout the year, which impacts clear decision-making in growthplans.

To safely plan constructions and schedule and maintain growthplans based on the desired growing
conditions of flat oysters and seaweed, offshore MU platforms need high-resolutional hydrodynamic
and water quality forecasting systems. These forecasting systems display and predict the status of
physical parameters of a marine space and therefore can warn the pilot sites for potential problems. To
that end, a high-resolutional prediction tool of hydrodynamics (i.e. water wave and velocity prediction)
and waterquality (i.e. temperature, suspended particulate matter, chlorophyll-a) of the coastal area
involving the UNITED pilot is desired.
Hydrodynamic and water quality models, for example in software such as Delft3D FM [24], give insight
into the behavior of the physical parameters mentioned. Although models correctly display the physics
behind the processes involved, the predictions can deviate a lot from the real situation and have large
errors, as shown in Figure 1.3, due to several factors such as erroneous initial and boundary conditions.
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Figure 1.3: Forecast of a model simulating the atmosphere. The true state in red depicts the actual state the atmosphere is in.
The model forecasts in blue are simulated with an initial state starting close to the true state. Since small errors in the initial
conditions of the atmospheric model result in significantly different outcomes, the model forecasts diverge in time further from
the true state. This is called the butterfly effect. Figure retrieved from [52].

Observational techniques used to gather measurements in the ocean are in situ and remote sens-
ing, see Figure 1.4. In situ observations are measurements locally conducted at for example buoys
measuring multiple physical variables directly within the water. Remote sensing is an observational
technique indirectly determining the physical characteristics of an area by measuring its reflected and
emitted radiation, making use of satellite or aircraft images. Observations are usually very precise,
but scarce due to the limited amount of measuring devices and thus do not give information about the
entire domain. In addition, observations are mostly only available on the water surface and not in the
water column. Therefore, using only observations to predict on an entire 3D domain is not feasible.

Figure 1.4: Various methods to obtain measurements within the ocean. Both in situ (local) measurements acquired via for
example buoys, and remote sensing measurements via satellites, radars and aircrafts. Figure retrieved from [67].

Consequently, the combination of both numerical models and observations is the most beneficial for
prediction of the ocean [37]. One of the most optimal techniques behind this specific concept is data
assimilation. The usage of Artificial Intelligence (AI) as alternative is discouraged due to the scarcity of
the measurements and since the necessary underlying physical models are disregarded within AI.



1.3. Related research in Data assimilation 5

1.3. Related research in Data assimilation
In this section, related research to data assimilation and background information on this thesis is given.
Generally, data assimilation is described as [11]: “The science of combining different sources of in-
formation to estimate possible states of a system as it evolves in time”. It makes use of optimization
techniques, such that predictions do not deviate too far from assumed precise given measurements.
Data assimilation is widely applied in forecasting systems with atmosphere, ocean and land surface
predictions. There are two branches in data assimilation: variational and sequential methods. Vari-
ational methods, such as Three-dimensional Variational Data Analysis (3DVar) and Four-dimensional
Variational Data Analysis (4DVar) will find an estimation that minimizes a cost function between obser-
vations and model. Sequential methods are e.g. the Kalman filter (KF), the Ensemble Kalman filter
(EnKF), which stochastically estimate variables per timestep and update these estimates with obser-
vations. Generic implementation is possible with software packages as OpenDA [5]. In this thesis, the
focus is put on sequential methods and mainly the Ensemble Kalman filter, which is a Monte-Carlo
data assimilation algorithm for nonlinear systems, explained in detail in this thesis, as this filter is used
frequently in similar applications.
Already in the seventeenth and eighteenth century, mathematicians and astronomers saw the use of
observations while predicting orbits of comets and planets using the least squares criterion [53]. The
first real data assimilation filter was implied by Kalman in 1960 [45]. The Ensemble Kalman Filter
(EnKF) was first introduced by Evensen in 1994 [34]. Multiple studies have been conducted on the
theory behind the Ensemble Kalman filter [17, 35, 36].
An extension on data assimilation with the goal to reduce spurious correlations is localization. It was first
introduced by Houtekamer and Mitchell in 2001 [44], and further worked out in [40], where localization
proved to reduce the total error on the prediction. Localization provide that observations will only have
an effect in their close local neighborhood in space. It is said to be likely that the cost of localizing
covariances will be significantly less than the cost of generating a large enough ensemble for the errors
to be similar [40]. In [44], it is argued that applying localization effectively on only 10% of the globe is
as effective as multiplying the number of ensemble members of the EnKF by a factor of 10.

1.3.1. History of forecasting systems
The field of forecasting systems started around 1922 with weather forecasting, when the first erroneous
attempt to forecast the atmosphere was made by Richardson [65], producing a 6 hour forecast of the
state of the atmosphere in two points in Europe. At that time, his dream for the future was that “Per-
haps some day in the dim future it will be possible to advance the computations faster than the weather
advances and at a cost less than the saving to mankind due to the information gained” [65], pointing at
the very high computational costs of the method. This computational power was not available at that
time. In 1950, the first successful 24 hour weather forecast was produced on a pioneering digital com-
puter (ENIAC [83]) by a team of international scientists including Charney, Fjörtoft, and Von Neumann
[20]. The calculations took 24 hours to complete, which is too long for a useful forecast, however the
team suggested that the computational time could be reduced in the future. From 1954, operational
numerical weather prediction began. Since then, computational power has improved drastically and
numerical weather prediction has been researched thoroughly described in e.g. [59] and improved
drastically, leading up to very accurate 7 day weather forecasts seen nowadays.

In 1954, forecasting of waves became relevant to scientists [14], when a part of The Netherlands
flooded during the North Sea flood of 1953. Scientists had noticed that the atmosphere and ocean
behave in a similar unpredictable way, and therefore could be coupled to eachother and same the-
ory could be used [59]. In 1970, the first operational hemispheric wave model called Spectral Ocean
Wave Model or SOWM was created. Around 1997, it was discussed that using data assimilation could
optimize ocean forecasting models [37].

1.3.2. Applications Ensemble Kalman filter
The Ensemble Kalman filter is since its foundation in 1994 widely used in multiple fields of research
were both model and observations are available, such as Oceanography (study of Earth’s oceans),
Meteorology (study of the Earth’s atmosphere), Satellite Orbit Determination in space.
The Ensemble Kalman filter and Kalman filter are widely applied on various models in oceanography
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where application of the filter improved the estimated, e.g. in storm surge forecasting models [46, 80,
87], in coastal models [33, 56], in state estimation in operational circulation models for the ocean and
atmosphere as well as parameter estimation or history matching in reservoir simulation models [36].
Furthermore, multiple studies are conducted on the assimilation of temperature data with the EnKF
on a shallow water model in the North Sea for 1D and 3D [60–63] by Ponsar et al.. In these studies,
it is shown that the boundary of the stratified layers in the North Sea are not accurately displayed.
Using temperature assimilation the boundary between the stratified layers is recovered. Furthermore,
temperature assimilation in coastal models is investigated and this resulted in improved estimations.
In [42], assimilation of sea surface temperature has been implemented on the MICOM model in the
Indian Ocean.
Recent studies into high-resolutional forecasting systems are conducted [39, 71, 72], showing the fea-
sibility of high-resolutional forecasting systems.
The DCSMmodel, a hydrodynamic model for the North Sea considered in this thesis, has been used for
numerous studies [85, 86, 88]. There are also numerous studies where the OpenDA software is applied
as data assimilation technique on various models, e.g. in [79] and in [13], where a data assimilation
framework is made for 3D hydrodynamic lake models and applied on Lake Geneva.

1.4. Thesis approach
In this thesis, a start will be made to the realization of an operational high-resolutional hydrodynamic
and water quality forecasting system for the area of the Belgian pilot of the UNITED project within the
coastal area of the North Sea. In particular, this thesis puts the focus on the forecasting of the physical
variables: waterlevel, water velocity and temperature. Hereby, the most generally applicable data
assimilation algorithm, the Ensemble Kalman filter, is performed on different hydrodynamic models.
This to investigate the accuracy and computational efficiency of the resulting forecasting system by
uncertainty and sensitivity analyses, in comparison to only hydrodynamicmodel predictions. This thesis
aims to give insight if the prediction in unobserved locations can be improved by using the Ensemble
Kalman filter. Since observations are often only present at the water surface, this thesis aims to look
at the improvement of the estimate within the water column as production of seaweed and flat oysters
takes place within the water and the physical variables need to be known within the water column. The
main research questions this thesis aims to answer are:

• How much does the implementation of the Ensemble Kalman filter on the hydrodynamic mod-
els improve the prediction of waterlevel, water velocity and temperature in comparison to the
prediction of only the hydrodynamic model?

• Assimilation of which physical variable gives the greatest reduction in prediction errors?

• What is the influence of assimilation applied at different locations on the prediction?

• How much does the estimate through the water column in a 2D model with depth improve by
assimilating only observations at the surface for e.g. water velocity or temperature?

To that end, the approach of this thesis will be the implementation and validation of the Ensemble
Kalman filter onto coastal models and estuaries. An estuary is a river which on one side reaches the
ocean. The models considered are:

• A linear 1D shallow water hydrodynamic model of the Western Scheldt estuary with Ensemble
Kalman filter in Python,

• A nonlinear 2D hydrodynamic model of an estuary with Ensemble Kalman filter in Delft3D FM
and OpenDA,

• The 3D Delft Continental Shelf Model (DCSM), a nonlinear model based on the North Sea, in
Delft3D FM and OpenDA.

The 1D shallow water hydrodynamic model is a straightforward model that will allow the understanding
of the settings of the Ensemble Kalman filter, the more complex 2D hydrodynamic model will introduce
the implementation of the Ensemble Kalman filter in data assimilation software package OpenDA on a
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model within Delft3D FM and will investigate the assimilation on the water surface. Lastly, the founda-
tions of both of these models will be needed to understand the DCSM model and it will be described
how to proceed with this model to arrive at a high-resolutional forecasting system. The assimilated
models will be validated with twin experiments by generation of synthetic observations, a common ap-
proach to asses data assimilation. Experiments are conducted showing the accuracy of all considered
models.

In this thesis, the mathematical notation of state-space representation is introduced in Chapter 2. Chap-
ter 3 describes the theory of hydrodynamic models in one dimension and discusses the scientific soft-
ware packages as Delft3D FM modelling hydrodynamic and water quality models used for the 2D and
3D models in this thesis. Furthermore, Chapter 4 will discuss data assimilation in detail, in particular
the Kalman filter and Ensemble Kalman filter and will describe the software package OpenDA used for
data assimilation. Chapter 5 describes the experimental setup of the experiments in detail, whereas
Chapter 6 will focus on the 1D hydrodynamic model with Ensemble Kalman filter in Python and shows
results of executed experiments. Chapter 7 focuses on the 2D hydrodynamicmodel implemented within
Delft3D FM and OpenDA, Chapter 8 will focus on the 3D DCSM model and will describe further steps
to be made with this model. Chapter 9 provides the conclusions of this thesis and will present some
recommendations for future research.





2
State-space representation

In this chapter, some general mathematical notation is introduced needed in this thesis. State-space
representation for model evolution (section 2.1), the stochastic nature of these models (section 2.2)
and the true state these models are representing (section 2.3) are discussed.

2.1. State-space representation
Within mathematics, models, such as a hydrodynamic model, are a way to estimate certain real life
processes. A mathematical way to describe the evolution of models over time is by state-space rep-
resentation. State-space representation describes the evolution of a state vector x ∈ ℝ , a vector
containing all available 𝑛 state variables of the underlying model at a specific time 𝑡, as:

x = (𝑥 ,… , 𝑥 ) , (2.1)

with 𝑥 for 𝑖 = 1,… , 𝑛 the state variable 𝑖 at time 𝑡. The state vector can consist of multiple different state
variables, for example physical variables as waterlevel at a specific position, water velocity at specific
positions, temperature and salinity. The model is usually denoted by a set of differential or difference
equations. In these models, the time derivative of each state variable is expressed in terms of the state
vector x and some system input u ∈ ℝ , with 𝑟 inputs, containing for example boundary conditions,
are written as:

�̇� = 𝑀 (x ,u , 𝑡)
�̇� = 𝑀 (x ,u , 𝑡)
⋮ = ⋮
�̇� = 𝑀 (x ,u , 𝑡),

where �̇� = d
d

and the model operator 𝑀 for state variable 𝑖 at time 𝑡 for 𝑖 = 1,… , 𝑛. The model
operator may be a general nonlinear, time-varying function. In vector notation, it is written as

ẋ =M (x ,u , 𝑡). (2.2)

When a set of inital conditions x and input u at each time 𝑡 with boundary conditions, the state at
each proceeding time is found by integration.
In this thesis the focus is put on sequential data assimilation, governed by discrete time algorithms.
Therefore, only discrete time is considered. In discrete time 𝑘 ∈ ℤ a general, nonlinear time-varying
model evolves according to a first-order nonlinear difference equation as

x =M (x ,u , 𝑘). (2.3)

When initial conditions x and input u for all 𝑘 > 0 is given, the state at each proceeding time is found
by performing the model operatorM and finding x in a sequential way.
For linear time-independent models, Equation 2.3 reduces to a matrix multiplication as

x =M x + B u , (2.4)

9
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withM a 𝑛×𝑛matrix containing the model specifics andB a 𝑛×𝑟matrix containing the input specifics.

In addition to sequential model evolution, state-space representation includes observations z ∈ ℝ
with 𝑚 the amount of observations, of some of the state variables as

z = (𝑧 ,… , 𝑧 ) . (2.5)

Usually the amount of observations is much lower than the amount of state variables, so 𝑚 ≪ 𝑛. The
observations are linked to the specific state variables with

z = H (x ,u ), (2.6)

where H is the possibly nonlinear time-dependent operator projecting the model space onto the ob-
servation space. In this thesis, it is assumed z is only dependent on the state vector x . For linear
models, Equation 2.6 reduces to

z = H x . (2.7)

H is an 𝑚 × 𝑛 matrix, linking each observation 𝑧 to a state variable. When all observations 𝑧 are
directly related to a state variable 𝑥 , H is a sparse matrix containing only zeros and ones.
To summarize, the general state-space representation is given as,

{x =M (x ,u , 𝑘)
z = H (x ,u ), (2.8)

while the linear state-space representation is stated as

{x =M x + B u
z = H x . (2.9)

2.2. Deterministic and stochastic models
In addition, multiple classes of models exist: deterministic and stochastic models. In deterministic
models, every model run with the same model representation and same initial conditions will have the
same estimate, and therefore no noise is present in the model. In Equation 2.8 and Equation 2.9, the
deterministic case of the state-space representation is denoted. In stochastic models, however, the
estimate in each separate model run changes due to added noise w in the system. This noise can
enter in multiple ways: via initial conditions, boundary conditions, the model and observation errors. It
is assumed all noise in this thesis is zero mean white noise, thus normally distributed with E(w ) = 0
and Cov(w ) = Q and thus w ∼ 𝒩(0,Q ). In the case that Q is symmetric and positive definite,
then w is Gaussian white noise. In this thesis, model noise as w and observation noise v are
considered. The observation noise is distributed as v ∼ 𝒩(0,R ), where R = Cov(v ). w and v
are added to the state representation in Equation 2.8 and 2.9 as

{x =M (x ,u , 𝑘) +w
z = H (x ,u ) + v , (2.10)

and for the linear case

{x =M x + B u +w
z = H x + v . (2.11)

Now both state-space representations in Equation 2.10 and 2.11 are stochastic of nature, meaning
every estimate x in separate model runs is different.

2.3. True state vector
It is assumed models and thus state-space representations derive a state vector estimate x of a true
or actual state vector, x at time 𝑘. The true state vector is the state vector the system is actually in.
This vector usually is not known as models are estimating this true state vector. However, to investigate
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how well the derived estimates are compared to the true state, methods are needed to generate a true
state, by using observations and model predictions. These are so called twin experiments, explained
further in section 5.2. In this thesis, the optimal estimates of true states are investigated. Therefore,
the error statistics between the true and estimated state need to be considered. The error between the
true state x and an estimated model state vector x is given as:

e = x − x , (2.12)

and furthermore the model error covariance is defined as:

P = Cov(x − x ) = 𝔼((x − x )(x − x ) ). (2.13)

The error between observations and the true state is given as:

e = z −H x . (2.14)





3
Hydrodynamic models

Hydrodynamics is the study of liquids in motion and therefore includes the study of coastal areas, as
shallow waters and estuaries. The motion of water is described by a hydrodynamic model. Hydrody-
namic models in general are nonlinear systems, described by nonlinear partial differential equations.
Solutions of hydrodynamic models will give insight into the behavior of waterlevel and water velocity.
In this chapter, the 1D linear case for shallow waters in estuaries is considered, since a shallow water
model for estuaries is studied in this thesis. Furthermore the 2D and 3D nonlinear models are explained
for the more complex models. The shallow water hydrodynamic model will be analytically derived in
section 3.1, prosecuted with a description of boundary conditions for this model in section 3.2. The
numerical discretization of the resulting model is described in section 3.3. The stochastic behavior of
hydrodynamic models is described in section 3.4. Lastly, the nonlinear models and software packages
for modelling hydrodynamic models and waterquality models are considered only computationally in
section 3.5.

3.1. Linear 1D hydrodynamic model
Every hydrodynamic model stems from three main conservation laws: conservation of mass, conserva-
tion of momentum and conservation of energy. Conservation of mass states that for any closed system
with no mass entering or leaving the system, the mass𝑀 of the system must remain constant over time
𝑡. Conservation of momentum states that for any closed system, in this case with fluids, the amount
of momentum 𝜌𝑢 with density 𝜌 and velocity 𝑢, remains constant over time. Conservation of energy,
also known as the First Law of Thermodynamics, states that for any closed system, the total energy
remains constant over time. Energy in systems are present in the shape of kinetic energy, potential
energy and heat and can be converted to other forms of energy within the system. Inflow and outflow of
mass, momentum and energy define how the mass, momentum and energy of the system will change
over time.

In this section, a linear 1D hydrodynamic model for shallow water estuaries is derived by using the laws
of conservation of mass and conservation of momentum. To that end, assume a system of infinitesimal
small element Δ𝑥 of an 1D estuary of length 𝐿 from 𝑥 to 𝑥 + Δ𝑥 of constant width 𝑏, flowing water with
density 𝜌 as in Figure 3.1. The waterlevel is denoted as 𝜂(𝑥, 𝑡) and the water velocity with 𝑢(𝑥, 𝑡). The
river bed is possibly curved. Assume a time-dependent volume 𝑉(𝑥, 𝑡) in 1D of the system, defined as

𝑉(𝑥, 𝑡) = 𝜂(𝑥, 𝑡)𝑏Δ𝑥. (3.1)

Assume an inflow (discharge) 𝑄(𝑥, 𝑡) and outflow 𝑄(𝑥 + Δ𝑥, 𝑡) defined by:
𝑄(𝑥, 𝑡) = 𝑢(𝑥, 𝑡)𝜂(𝑥, 𝑡)𝑏. (3.2)

Assume no energy or mass leaves the system in any other way than via the left and right boundary.
The mass 𝑀(𝑡) of the system at a time 𝑡 is defined by the density 𝜌, assumed constant by assuming
an incompressible fluid by the shallow water approximation, and volume 𝑉(𝑥, 𝑡) as,

𝑀(𝑥, 𝑡) = 𝜌𝑉(𝑥, 𝑡) = 𝜌𝜂(𝑥, 𝑡)𝑏Δ𝑥. (3.3)

13



14 3. Hydrodynamic models

Figure 3.1: Longitudinal view of an infinitesimal small element of an 1D estuary with width . The waterlevel is denoted by
( , ), the water velocity with ( , ). Water flows in and out of the system with an inflow ( , ) and outflow ( , )

respectively. Figure retrieved from [54] and adapted.

The mass inflow and outflow is defined by 𝜌𝑄(𝑥, 𝑡). The system must adhere to the law of conservation
of mass. Due to the conservation of mass, mass cannot be created or destroyed. Therefore, the only
way to increase or decrease the amount of mass is by in- or outflow of water. The change in mass is
equal to the change in flow:

d𝑀
d𝑡 = 𝜌𝑄(𝑥, 𝑡) − 𝜌𝑄(𝑥 + Δ𝑥, 𝑡). (3.4)

The change in mass is simplified by substituting𝑀 in Equation 3.3 into the left-hand side of Equation 3.4
and assuming density 𝜌 is constant as:

d𝑀
d𝑡 =

d(𝜌𝜂(𝑥, 𝑡)𝑏Δ𝑥)
d𝑡 = 𝜌𝑏Δ𝑥𝜕𝜂(𝑥, 𝑡)𝜕𝑡 . (3.5)

The change in flow is simplified by substituting 𝑄 in Equation 3.2 into the right-hand side of Equation 3.4:

𝜌𝑄(𝑥, 𝑡) − 𝜌𝑄(𝑥 + Δ𝑥, 𝑡) = 𝜌𝑢(𝑥, 𝑡)𝜂(𝑥, 𝑡) − 𝜌𝑢(𝑥 + Δ𝑥, 𝑡)𝜂(𝑥 + Δ𝑥, 𝑡)

= −𝜌𝜕(𝑢𝜂)𝜕𝑥 Δ𝑥. (3.6)

Substituting the result of Equation 3.5 and Equation 3.6 in Equation 3.4 gives

𝜕𝜂
𝜕𝑡 = −

𝜕(𝑢𝜂)
𝜕𝑥 . (3.7)

This equation describes the change of waterlevel in time.

In a similar way described in for example [73], the law of conservation of momentum holds. Production
of momentum in the system is generated by the pressure 𝑝 acting on the system. By neglecting body
forces such as gravity, molecular transport and shear stresses in the system but adding friction with
−𝜆𝑢, with friction coefficent 𝜆, the resulting change of momentum is

𝜕𝑢
𝜕𝑡 + 𝑢

𝜕𝑢
𝜕𝑥 = −

𝜕𝑝
𝜕𝑥
1
𝜌 − 𝜆𝑢. (3.8)

This is a form of the Navier-Stokes equation in 1D, see e.g. [66], where body forces, shear stresses
and molecular transport are neglected. By assuming 𝜂 ≪ 𝐿 in shallow waters, hydrostatic pressure
follows [70] e.g. pressure from the water which increases by increasing depth as 𝑝 = 𝜌𝑔𝜂, with 𝑔 the
gravitational acceleration, the pressure term in Equation 3.8 is simplified to

𝜕𝑝
𝜕𝑥
1
𝜌 = 𝑔

𝜕𝜂
𝜕𝑥 , (3.9)

which results into
𝜕𝑢
𝜕𝑡 + 𝑢

𝜕𝑢
𝜕𝑥 = −𝑔

𝜕𝜂
𝜕𝑥 − 𝜆𝑢. (3.10)
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Therefore, the generalized 1D hydrodynamic model for shallow waters is expressed via Equation 3.7
and Equation 3.10 in the following way:

{
= − ( ) ,
+ 𝑢 = −𝑔 − 𝜆𝑢.

(3.11)

These are linearized by taking 𝜂 = 𝐷 + ℎ, where 𝐷 is the mean water level, assumed constant, and
ℎ is the height deviation from the mean waterlevel, and assuming ℎ and 𝑢 are very small. Therefore,
products of two small variables, such as 𝑢 are neglected and this results in

𝜕(ℎ + 𝐷)
𝜕𝑡 + 𝜕(𝑢(ℎ + 𝐷))𝜕𝑥 = 0 ⟹ 𝜕ℎ

𝜕𝑡 + 𝐷
𝜕𝑢
𝜕𝑥 = 0.

The second equation in Equation 3.11 is simplified by neglecting the convective acceleration 𝑢 since
it is a product of two small variables, to

𝜕𝑢
𝜕𝑡 + 𝑢

𝜕𝑢
𝜕𝑥 = −𝑔

𝜕(ℎ + 𝐷)
𝜕𝑥 − 𝜆𝑢 ⟹ 𝜕𝑢

𝜕𝑡 + 𝑔
𝜕ℎ
𝜕𝑥 + 𝜆𝑢 = 0.

The resulting equations are known as the linearized shallow water equations:

{
+ 𝐷 = 0
+ 𝑔 + 𝜆𝑢 = 0.

(3.12)

With the derivation of the 1D shallow water hydrodynamic model, the following is assumed for shallow
waters:

• The water is incompressible, thus the density 𝜌 is constant.

• 𝜂 ≪ 𝐿, resulting in hydrostatic pressure: 𝑝 = 𝜌𝑔𝜂 [70].

• Product of the small variables ℎ and 𝑢, such as 𝑢 and 𝑢 are neglected.

• Body forces, shear stresses and molecular transport is neglected [66].

3.2. Boundary conditions
To fully describe a hydrodynamic model, the set of differential equations needs boundary conditions.
Both open and closed boundaries are possible. Open boundary conditions come from cases where
water can flow outside of the boundary, which happens in e.g. oceans and cases where estuaries reach
oceans. Closed boundaries are present when the water reaches the coast. These are represented by
for example Neumann, Dirichlet and Riemann conditions, but also by discharge and outflow boundary
conditions as described in [29].
Recall that an estuary is river channel which is on one side ending in the ocean. To that end, describing
the estuary boundary conditions can be done by an open boundary in the sea at 𝑥 = 0 (open boundary)
and the other a closed end at 𝑥 = 𝐿 (reflecting boundary), as respectively:

ℎ(0, 𝑡) = ℎ(𝑡), 𝑢(𝐿, 𝑡) = 0, (3.13)

with 𝐿 the end of the estuary. Therefore, the 1D shallow water equations in Equation 3.12 together with
the set of boundary conditions in Equation 3.13 define the hydrodynamic model of an estuary, and the
solutions contain the waterlevel ℎ(𝑥, 𝑡) and velocity 𝑢(𝑥, 𝑡).

3.3. Numerical model 1D estuary
In order to approximate the solution to the hydrodynamic model, numerical models are needed. To that
end, the shallow water hydrodynamic model in Equation 3.12 with boundary conditions for estuaries
in Equation 3.13 is discretized in this section, where a new solution at timestep 𝑘 + 1 based on the
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previous timestep 𝑘 is derived. Assume a 1D grid with length 𝐿 and grid size or resolution Δ𝑥 and 𝑛
grid points, see Figure 3.2.

𝐿
Δ𝑥

Figure 3.2: A 1D grid of length with grid size or resolution and grid points.

The solutions of ℎ(𝑥, 𝑡) and 𝑢(𝑥, 𝑡) are defined on this grid. To that end, the discretization of the solution
in space will use a staggered grid notation, which indicates that waterlevel components will be stored
on grid points and velocity components in between grid points. This discretization is used in favor
of defining ℎ(𝑥, 𝑡) and 𝑢(𝑥, 𝑡) on the same grid point (collocated discretization) since this is preferred
for incompressible fluids, as collocated grids lead to unstabilities [41]. Therefore, the waterlevel and
velocity at each locations are assembled in a state vector x at a time step 𝑘 (see section 2.1), as the
vector with all solutions at each location for a specific time 𝑘:

x = (ℎ , 𝑢 , ℎ , 𝑢 , … , 𝑢 , ℎ , 𝑢 ) ,

where ℎ , 𝑢 are the waterlevel and respectively velocity at 𝑥-position 𝑖 at timestep 𝑘, see Figure 3.3.

Figure 3.3: A staggered grid discretization in space, where waterlevel components are defined on grid points and velocity
components in between grid points.

Assume time is discretized by forward difference scheme, with a timestep Δ𝑡 between two times 𝑘 and
𝑘 + 1. Then the time differentials in Equation 3.12 will be approximated by

𝜕ℎ
𝜕𝑡 ≈

ℎ − ℎ
Δ𝑡 + 𝒪(Δ𝑡); 𝜕𝑢

𝜕𝑡 ≈
𝑢 − 𝑢

Δ𝑡 + 𝒪(Δ𝑡). (3.14)

The position differentials in Equation 3.12 will be approximated by:

𝜕ℎ
𝜕𝑥 ≈

ℎ − ℎ + ℎ − ℎ
2Δ𝑥 + 𝒪(Δ𝑥 + Δ𝑡); 𝜕𝑢𝜕𝑥 ≈

𝑢 − 𝑢 + 𝑢 − 𝑢
2Δ𝑥 + 𝒪(Δ𝑥 + Δ𝑡). (3.15)

Then, combining Equation 3.12 and Equation 3.14 and Equation 3.15 results into the following dis-
cretization scheme:

{
ℎ + 𝐷 (𝑢 − 𝑢 ) = ℎ − 𝐷 (𝑢 − 𝑢 )

𝑢 + 𝑔 (ℎ − ℎ ) + Δ𝑡𝜆𝑢 = 𝑢 − 𝑔 (ℎ − ℎ ) − Δ𝑡𝜆𝑢 .

Applying the discretization scheme for the whole estuary with 𝑛 grid points, taking into account the
boundary conditions in Equation 3.13, ℎ(0, 𝑡) = ℎ(𝑡) and 𝑢(𝐿, 𝑡) = 0, results into the set of equations:

Ax = Bx + c (3.16)
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where c denotes the open boundary condition as c = [ℎ(𝑘), 0, 0, … , 0] , and the matrices A and B of
dimensions 2𝑛 × 2𝑛 are given as:

A =
⎛
⎜⎜⎜⎜

⎝

1 0 0 0 0 … 0
−t1 1 + t2 t1 0 0 … 0
0 −t3 1 t3 0 … 0
⋮ 0 −t1 1 + t2 t1 ⋱ 0
0 ⋮ 0 ⋱ ⋱ ⋱ 0
0 0 ⋮ ⋱ −t1 1 + t2 t1
0 0 0 … 0 0 1

⎞
⎟⎟⎟⎟

⎠

and

B =
⎛
⎜⎜⎜⎜

⎝

0 0 0 0 0 … 0
t1 1 − t2 −t1 0 0 … 0
0 t3 1 −t3 0 … 0
⋮ 0 t1 1 − t2 −t1 ⋱ 0
0 ⋮ 0 ⋱ ⋱ ⋱ 0
0 0 ⋮ ⋱ t1 1 − t2 −t1
0 0 0 … 0 0 0

⎞
⎟⎟⎟⎟

⎠

where {
t1 = 𝑔
t2 = 𝜆Δ𝑡
t3 = 𝐷

, and with the right closed boundary condition incorporated in the last row of B.

Solving the set of equations in Equation 3.16 for a new state at a new timestep 𝑘 + 1 is accomplished
by taking the inverse of A, as

x = A (Bx + c ). (3.17)

Equation 3.17 is a linear model following the state-space representation introduced in Equation 2.9 in
section 2.1, with M = A B and B u = A c . Equation 3.17 allows for sequential computations
of waterlevel and velocities by stating an initial state x , where all new states x for any time 𝑘 are
immediately followed. Since each new iteration 𝑘 +1 will only depend on the previous time step 𝑘, this
process is called a Markov process.

3.4. Stochastic model
Hydrodynamic models are stochastic processes, which indicates that noise may be present within the
system, already stated in section 2.2. Until now, the deterministic model without noise is derived in
section 3.1, section 3.2 and section 3.3. The deterministic model will always have the same estimate
when the same initial state is applied. In this section, the ways noise may be present in the system is
described.
Forms of noise may include: model noise, initial state noise and measurement noise. Model noise
is defined by the inaccuracy of the model, initial state noise by a poorly chosen initial state and mea-
surement noise by measurement errors in observations. These may be only at one instant, spatial
correlated or time correlated. Spatial correlated noise is described by a covariance matrix ΓΓΓ defined by
coefficients 𝛾(𝑥 , 𝑥 ) as

𝛾(𝑥 , 𝑥 ) = 𝑎𝑒 | |, (3.18)

with 𝑎, 𝑏 ∈ ℝ. Then the noise for each grid cell is determined by the Cholesky decomposition as:

w = ΓΓΓ 𝒩(0, I), (3.19)

where the Cholesky decomposition of a real symmetric positive-definite matrix A is defined as the
decomposition of the matrix A into

A = LL , (3.20)

with L a lower triangular matrix where the diagonal entries are real and positive. This kind of noise
defined in Equation 3.19 is large when two grid cells are close to eachother.
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For time correlation, the noise is time correlated andmodelled with an first-order autoregressive process
or AR(1) model on the open boundary condition. This will simulate noise on the boundary condition
due to not knowing the boundary condition with certainty. To that end,

ℎ = ℎ(𝑘) + 𝑁 ,

where
𝑁 = 𝛼𝑁 + 𝑤 ,

with 𝛼 = exp (−Δ𝑡/𝑇), with 𝑇 the time period of the water flowing in the boundary and 𝑤 white noise
distributed as 𝑤 ∼ 𝒩(0, 𝜎 ) and 𝑁 = 0. The variance 𝜎 can be chosen according to what the
variance of 𝑁 , 𝜎 should be. Since

𝜎 = 𝔼(𝑁 ) = 𝔼((𝛼𝑁 + 𝑤 ) )
= 𝔼(𝛼 𝑁 + 2𝛼𝑁 𝑤 + 𝑤 )
= 𝛼 𝔼(𝑁 ) + 2𝛼𝔼(𝑁 )𝔼(𝑤 ) + 𝜎

= 𝜎
1 − 𝛼 , (3.21)

where is used that 𝔼(𝑁 ) = 𝜎 , 𝑤 has zero mean and 𝑁 and 𝑤 are independent. Therefore, 𝜎 =
𝜎 √1 − 𝛼 and thus the variance of 𝑁 depends on the variance of 𝑤 . Upon adding the AR(1) forcing
term to our sequential model in Equation 3.17, a problem occurs. Since 𝑁 is depending on all previous
𝑁 with 0 < 𝑙 < 𝑘, the model will not be a Markov process anymore. To be able to apply sequential
data assimilation algorithms on this model in later chapters, the model needs to be a Markov process.
To attain this problem, the AR(1) forcing is taken to be a part of the state vector as:

x = (ℎ , 𝑢 , ℎ , 𝑢 , … , 𝑢 , ℎ , 𝑢 , 𝑁 ) .

Therefore, the model in Equation 3.16 is updated as:

A∗x = B∗x + c +w (3.22)

where w = (0, 0, 0, … , 0, 0, 𝑤 ) and

A∗ =
⎛
⎜
⎜

⎝

−1
0

A 0
⋮
0

0 0 … 0 0 1

⎞
⎟
⎟

⎠

; B∗ =
⎛
⎜
⎜

⎝

0
0

B 0
⋮
0

0 0 … 0 0 𝛼

⎞
⎟
⎟

⎠

.

To arrive at the sequential Markov process:

x = (A∗) (B∗x + c +w ). (3.23)

To summarize, the sequential 1D shallow water model for an estuary with one open boundary condition
and one closed boundary condition is given in algorithm 1.
Algorithm 1: Stochastic Hydrodynamic shallow water sequential model for 𝑘 = 0 until 𝑘 = 𝑇.
For the computation of A∗ and B∗, the settings for 𝑔, 𝜆, 𝐷, Δ𝑡, Δ𝑥, 𝑛 and 𝛼 are needed.
Result: x for all 𝑘 ;
Initialize: x ;
Input: x , A∗, B∗, w , c ;
for k = 1 to T do

y = B∗x + c +w ;
x = (A∗) y ;

end
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3.4.1. Ensemble model
Since stochastic models possess randomness and therefore result in different model estimates for runs
of the same model, examining multiple of these estimates and their differences will explain a lot about
the behavior of the stochastic model. A set of possible estimates of a stochastic model is called an
ensemble, and generating this ensemble is called a Monte-Carlo simulation, see Figure 3.4.

Figure 3.4: A Monte-Carlo simulation. A stochastic model is modelled by taking an ensemble of the model distribution. The
mean of the ensemble is used as prediction, while the covariance of the ensemble will represent the variance of the prediction.
Figure retrieved from [69].

The hydrodynamic model is a stochastic process. Therefore, by performing multiple model simu-
lations, information is obtained about the spread of the model. To that end, assume an ensemble
𝜉𝜉𝜉 = (x ,x , … ,x ) of 𝑁 different stochastic model estimates or ensemble members at time 𝑘. The
ensemble mean �̂�𝜉𝜉 at a time step 𝑘 represents the total averaged estimate as:

�̂�𝜉𝜉 = 1
𝑁 ∑x = 𝜉𝜉𝜉 1 × , (3.24)

where 1 × is a square matrix of dimension 𝑁×𝑁 where each element is equal to . The covariance
of the ensemble P = Cov(𝜉𝜉𝜉 ,𝜉𝜉𝜉 ) shows the spread in ensemble. Applying the ensemble theory at the
earlier defined stochastic hydrodynamic model in algorithm 1, will give the algorithm in algorithm 2.
Algorithm 2: Stochastic Hydrodynamic shallow water sequential ensemble model for 𝑘 = 0
until 𝑘 = 𝑇. For the computation of A∗ and B∗, the settings for 𝑔, 𝜆, 𝐷, Δ𝑡, Δ𝑥, 𝑛 and 𝛼 are
needed.
Result: �̂�𝜉𝜉 ,P for all 𝑘 ;
Initialize: 𝜉𝜉𝜉 ;
Input: 𝜉𝜉𝜉 , A∗, B∗,W , C ;
for k = 1 to T do

Y = B∗𝜉𝜉𝜉 + C +W ;
𝜉𝜉𝜉 = (A∗) Y ;
�̂�𝜉𝜉 = 𝜉𝜉𝜉 1 × ;
E = 𝜉𝜉𝜉 − 𝜉𝜉𝜉 1 × ;
P = E (E ) ;

end

In this algorithm,W ∈ ℝ × denotes the matrix with Gaussian white noise, C is defined as the matrix
with boundary conditions for every ensemble member and P equals the error covariance matrix.
An example run of the 1D model explained in section 6.1 with 𝑁 = 50 ensembles at Vlissingen is
depicted in Figure 3.5 for waterlevel and 3.6 for water velocity.
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Figure 3.5: An ensemble of 50 waterlevel estimates at Vlissingen, modelled stochastically with algorithm 2 with settings in
Table 6.1 over 2 days. The mean of this ensemble results into the prediction of the waterlevel.

Figure 3.6: An ensemble of 50 water velocity estimates at Vlissingen, modelled stochastically with algorithm 2 with settings in
Table 6.1 over 2 days. The mean of this ensemble results into the prediction of the velocity.

3.5. Delft3D FM for 2D and 3D nonlinear models
For the higher-dimensional and nonlinear hydrodynamic models, this thesis will focus on software pack-
ages instead of analytical differential equations. The software package considered is Delft3D FM,
since it is used in many sortlike applications (see subsection 1.3.2) and it is developed within Deltares.
Delft3D FM or Delft3D Flexible Mesh Suite [24] is a modelling environment software package for the
modelling of hydrodynamical situations made by Deltares combining earlier versions of other hydro-
dynamical modelling software, like Delft3D 4 [23] and SOBEK [25]. It is useful for a broad range of
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applications, like simulation of storm surges, hurricanes, tsunamis and coastal, river or urban floods.
The software package produces detailed waterlevels and flows, waves, sediment transports, water
quality and ecology, morphology maps and can simulate the interactions between all of these different
processes. These are incorporated into the state vector. The usage of Delft3D FM instead of other
software packages is stimulated by high flexibility in the software: the software supports 1D/2D/3D
calculations, flexible creation of unstructured grids unlike previous versions, has high computational
performance and allows for parallel computations on high-performance computing clusters [55]. D-
Flow FM, the software engine of Delft3D FM, runs up to 20 times faster than previous SOBEK FLOW
engine of Deltares modelling software SOBEK 2 and is faster than Delft3D-FLOW engine of Delft3D 4
as well [55].

The exact model solved within Delft3D FM is a very extensive set of partial differential equations and
is described in chapter 8 through 14 of [28], respectively for hydrodynamics, transport of matter, 3D
modelling, heat transport, wind, hydraulic structures and bedforms and vegetation. These equations
are solved using discretization techniques, making use of Gauss elimination based onminimum degree,
Conjugate Gradient method and the applied finite element method, further explained in [29]. Depending
on the situation, some unnecessary models can be left out, such that the resulting model will represent
the situation best and will reduce computational time. In this thesis, the model is limited to include
hydrodynamics, 3D modelling, heat transport and wind.

The usage of Delft3D FM and techniques behind the models are all explained within the manuals
[26, 28–31], while an introduction for the usage of the software is given in an introductory exercise
course constructing themodel with 2D grid of theWestern Scheldt [22]. In Figure 3.7, the GUI of Delft3D
FM is depicted with an example of the modelled waterlevel within the Western Scheldt, retrieved from
this course.

Figure 3.7: Graphical User interface of Delft3D FM with plotted the bedlevel within the Western Scheldt, part of the introductory
exercises course on using Delft3D FM from Deltares [22].

Delft3D FM works with a main input file where all model parameters, involved processes and in- and
output files for the specific model are described, see Table 3.1 for the most important settings. This file
is the Master Definition Unstructured file (MDU) file. Furthermore, extra input as e.g. the grid for the
model, boundary conditions, measuring stations and wind can be set by inputting the necessary files.
Upon running a model, a nonlinear state-space representation is obtained, where multiple physical
variables can be estimated. An example of the waterlevel in the Western Scheldt is given in Figure 3.8.
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Table 3.1: For this thesis relevant model in- and output settings and input files of the Delft3D FM MDU file. All other parameters
are set to their default values, found in [28].

Setting Unit Description

WaterLevIni m Initial water level at the whole grid
Bedlevuni m Uniform bedlevel for the whole grid
Bedslope - Bedslope inclination, as 𝑧 = bedlevuni+ 𝑥 ∗ bedslope
AngLat - Angle of latitude S-N ∘, (0 = no Coriolis force)
AngLon - Angle of longitutde E-W ∘, (0 = GMT+0)
Kmx - Number of vertical layers
Layertype - Type of vertical layers (1 = 𝜎-layers, 2 = 𝑧-layers)
Vicouv m

s
Uniform horizontal eddy viscosity

Dicouv m
s

Uniform horizontal eddy diffusivity
TidalForcing - Tidal forcing (0 = no, 1 = yes)
Temperature - Temperature model (0 = no, 5 = heat-flux model)
InitialTemperature ∘C Initial temperature level for the whole grid
Secchidepth m Water clarity parameter
Stanton - Coefficient of convective heat flux
Dalton - Coefficient of evaporative heat flux
RefDate - Reference date at initial time step as YYYYMMDD
Tunit - Time unit in MDU file (D, h, m or s)
DtUser s Timestep in for interval ext forcing and his/map-file
TStart Tunit Start time of calculation w.r.t. RefDate
TStop Tunit Stop time of calculation w.r.t. RefDate
WindExt - Include wind (0 = no, 2 = yes)

HisInterval s Time interval of model output at the measuring stations
MapInterval s Time interval of model output at every grid cell
Wrihis_temperature - Write temperature output to his file (0 = no, 1 = yes)
Wrimap_waterlevel_s0 - Write old waterlevel s0 output to map file (0 = no, 1 = yes)
Wrimap_waterlevel_s1 - Write new waterlevel s1 output to map file (0 = no, 1 = yes)
Wrimap_velocity_component_u0 - Write old velocity component to map file (0 = no, 1 = yes)
Wrimap_velocity_component_u1 - Write new velocity component to map file (0 = no, 1 = yes)
Wrimap_velocity_vector - Write velocity vector to map file (0 = no, 1 = yes)
Wrimap_flow_flux_q1 - Write flux q1 to map file (0 = no, 1 = yes)
Wrimap_heat_fluxes - Write heat fluxes to map file (0 = no, 1 = yes)
Wrimap_temperature - Write temperature to map file (0 = no, 1 = yes)
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Figure 3.8: The waterlevel estimate in the Western Scheldt at 2014-01-05 21:00, computed with Delft3D FM, part of the intro-
ductory course on using Delft3D FM from Deltares [22].

3.5.1. Grid in 2D and 3D
The hydrodynamic model described in Delft3D FM uses both structured and unstructured grids for
the 𝑥𝑦-plane. Structured grids are grids with implicit connectivity which structure allows for simple
identification of nodes and edges, see left figure in Figure 3.9. Unstructured grids are grids with more
random assigned nodes and edges, see right figure in Figure 3.9. Both structured and unstructured

Figure 3.9: Left: structured triangular grid. Right: unstructured triangular grid. Figure retrieved from [43].

grids allow for changes in resolution size. The advantage of unstructured grids compared to structured
grids is that it is easier to locally refine the grids to for example follow curved boundaries, and therefore
easier to create grids for areas with complex structure that completely cover the area. An example of
a 2D computational grid for the Western Scheldt estuary is given in Figure 3.10.
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Figure 3.10: The computational grid in theWestern Scheldt at 2014-01-05 21:00, created with Delft3D FM, part of the introductory
course on using Delft3D FM from Deltares [22].

For vertical layering, the more complex models in 2D and 3D are able to use a cartesian grid and
so called 𝜎-layers using the 𝜎-coordinate system. The 𝜎-coordinate system is often used describing
the depth profile in oceanics. The grid of the 𝜎-coordinate system consists of layers in between two
so-called 𝜎 planes with 𝜎 = 0 and 𝜎 = 1, see the left figure in Figure 3.11. These planes follow the
bedlevel and the moving free surface of the water exactly. The layers in between are evenly spaced in
the 𝑧-direction, and therefore a smooth grid is presented, where all depth information is present within
the grid and a higher resolution is present in shallower areas. For a grid with 20 𝜎-layers, the layers
are divided as in Table 3.2. In comparison to a normal Cartesian 𝑥, 𝑦, 𝑧 coordinate system, see the right
figure in Figure 3.11, the grid consists of straight lines and is orthogonal. In this way, a bedlevel which
is not straight will not be accurately represented by the grid.

Figure 3.11: Left: Depth profile with -coordinate system ( -model). Right: Depth profile with Cartesian -coordinate system
(Z-model). Figure retrieved from [29].
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Table 3.2: -value, number of the -layer and position within the water column for 20 -layers.

𝜎 𝜎-layer Position

1 - Water surface
0.975 20
0.925 19
0.875 18
0.825 17
0.775 16
0.725 15
0.675 14
0.625 13
0.575 12
0.525 11
0.475 10
0.425 9
0.375 8
0.325 7
0.275 6
0.225 5
0.175 4
0.125 3
0.075 2
0.025 1
0 - Bedlevel





4
Data assimilation

The mathematical framework for data assimilation models is described in section 4.1, 4.2 and 4.3 and
software performing data assimilation is described in section 4.4. Most information in this chapter is
obtained from [61], [60] and [53] and other sources are mentioned.

4.1. What is data assimilation?
Data assimilation is, as mentioned by [58, p.73]: “the process of finding the model representation which
is most consistent with the observations.” The model representation is defined by a state vector, already
explained in section 2.1.

The goal of data assimilation may differ. Most often the goal is defined as: the optimal state estimate of
a system is sought for, which will represent the true state of a system best. This is also the goal in this
thesis. Other goals may include: optimal determination of initial conditions of a model, interpolation of
sparse observation data using knowledge of the system to estimate on the whole domain, optimizing
numerical model parameters based on observations and estimating unobserved quantities.

There exist two branches of data assimilation methods, as mentioned in section 1.3: variational and
sequential methods. Variational methods, like 3D-Var and 4D-Var, seek to find a state that minimizes a
cost function 𝐽 depending on a determined difference (mainly least square error) between the observa-
tions and model solution over a given time interval. This allows to solve the global problem immediately.
However, these methods often do not converge [60] and are difficult to implement since these methods
require that both the linearized and their adjoint models (backward in time) are implemented.

Sequential methods, like the Kalman filter and Ensemble Kalman filter, propagate themodel and correct
the model state estimate at times when observations are available. The procedure of sequential data
assimilation methods is shown in Figure 4.1. The process starts with the known model, in this thesis
the hydrodynamic model. The model progresses one time step, also called the forecast or background
step, where no observations are included yet. Subsequent to the forecast step, the data assimilation
method is applied. The results of the forecast step are updated with the observations via a metric
resulting in the state update or analysis step, or also known as the assimilation step, which lie closer
to the true state of the system, see Figure 4.1 right. The result then is again input for the model to
progress one time step further until the stopping time of the model is reached.

This thesis focuses on the use of sequential data assimilation methods for forecasting systems, since
sequential methods not only provide state estimates but also explicit error estimates and thus give
insight into the accuracy of the method. Furthermore, sequential methods are used often for similar
applications sought for in this thesis, see subsection 1.3.2. Moreover, the use of variational methods
is discouraged due to their complex implementation.

27
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Figure 4.1: Procedure of sequential data assimilation. Left: Schematic. Figure retrieved from [50]. Right: Updated state
estimation in time with model state in orange, true state in green, observations in red and assimilated state in black. Figure
retrieved from [18].

4.2. Kalman Filter for linear systems
The Kalman filter (KF) is a linear minimum-error-variance sequential data assimilation algorithm. The
algorithm optimally combines model predictions and observations to achieve more accurate forecast
values and will determine error estimates of the result. The Kalman Filter operates as all sequential
data assimilation algorithms, see section 4.1, in two steps: the forecast step, where the next model
time iteration is performed and assimilation step, where the result of the forecast step is updated with
observations.

The Kalman filter adapts the state-representation notation from section 2.1. To that end, consider a
model state vector x with observations z at time 𝑘, defined as

{x = (𝑥 ,… , 𝑥 )
z = (𝑧 ,… , 𝑧 ) , (4.1)

with 𝑥 …𝑥 state variables and 𝑧 … 𝑧 observations of specific state variables. Note that the dimen-
sion of the state vector 𝑛 is generally much larger than the dimension of the observation vector 𝑚, due
to the sparse amount of observations available. Consider both deterministic and stochastic models,
see section 2.2. For the deterministic case, the state vector is progressed in time 𝑘 and related to the
observations with output matrix H as:

{x =M x + B u
z = H x , (4.2)

where the model matrix M and the observation operator matrix H , may be time-dependent. The
stochastic model representation is described as:

{x =M x + B u +w
z = H x + v , (4.3)

where w , v are Gaussian white noise, of respectively positive definite, symmetric and possibly time-
dependent covariance matrices Q = Cov(w ) and R = Cov(v ), thus w ∼ 𝒩(0,Q ) and v ∼
𝒩(0,R ). Within the Kalman filter, the optimal trade-off between model prediction x and observations
z is made at every time step. The algorithm is presented in algorithm 3.
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Algorithm 3: Kalman Filter. The Kalman Filter assumes a stochastic model and solves for
the optimal x given the observations z at each timestep 𝑘 in the forecast and analysis or
assimilation step.
Result: x , P ;
Input: x ,P ,u ,z ;
for k = 1 to T do

Forecast step:
x =Mx + Bu ;
P =MP M +Q ;
Assimilation step:
x = x +K (z −H x );
P = (I−K H )P ;

end

In the forecast step, the model prediction x and model error covariance P gets forwarded to the
next timestep 𝑘. The assimilation step calculates the optimal trade-off for the assimilated or analysis
prediction x and analysis error covariance P . It is done via the Kalman gain K , which determines
by how much the previous forecast should be updated, based on the error between the forecast x and
the observations z . The analysis error covariance P is defined via Equation A.2 in Appendix A.
The filter is optimal when the model error covariance P is minimized. This happens when the trace of
P is minimized. Since by Equation A.1 in Appendix A:

P = P −K H P − P H K +K (H P H +R )K , (4.4)

minimization of P results into

𝜕tr(P )
𝜕K = 0 ⟹ −2(H P ) + 2K (H P H +R ) = 0,

and thus an optimal Kalman gain K for

K = P H (H P H +R ) . (4.5)

Intuitively, to notice the trade-off between the model error covariance P and the observation error
covariance R , in the scalair case with one observation, the Kalman Gain can be written as (𝐻 = 1 in
this case):

𝐾 = 𝑃
𝑃 + 𝑅

.

When the observation error covariance 𝑅 becomes very large in comparison to 𝑃 , then by intuition:

lim
→
𝐾 = lim

→
𝑃

𝑃 + 𝑅
= 0

and then the assimilation step in the Kalman filter in algorithm 3 reduces to:

{𝑥 = 𝑥
𝑃 = 𝑃 .

Thus, the filter will completely ignore the presence of observations and will only consider the model
results in the optimization process. Similarly, when 𝑃 becomes very large in comparison to 𝑅 , then

lim
→
𝐾 = lim

→

𝑃
𝑃 + 𝑅

= lim
→

1
1 = 1,
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where l’Hôpital’s rule is used for the calculation of the limit. Consequently the assimilation step in the
Kalman filter in algorithm 3 reduces by using Equation 4.4 to

{𝑥 = 𝑧 ,
𝑃 = 𝑅 ,

resulting in a filter that will completely ignore the model results and will only update the estimate with
observations. Therefore, the ratio between the model error covariance and the observation error co-
variance should not be too large in order to take into account for both model and observations.
Upon applying the Kalman filter, the algorithm stores the full model error covariances. When the di-
mensions of these matrices are very large, as is the case with hydrodynamic models with many state
variables, the memory required to perform the Kalman filter is very high.

4.3. Ensemble Kalman Filter for nonlinear systems
The Ensemble Kalman filter (EnKF) is a sequential data assimilation algorithm, based on Monte-Carlo
methods and the Kalman filter mentioned in section 4.2. Monte-Carlo methods are methods used
to model the probability of different outcomes in a stochastic model, already mentioned in subsec-
tion 3.4.1. Monte-Carlo methods examine an ensemble of possible estimates of a stochastic model
with known distributions, where the average results in the estimate.
The Ensemble Kalman filter is a Monte-Carlo approximation of the Kalman filter, in a way that the
model error covariances are approximated by a sample error covariances. To that end, the model error
covariances are not fully computed, resulting in a decreased computational time and memory needed
to perform this algorithm in comparison to the Kalman filter. The Ensemble Kalman filter is an extension
to the Kalman filter in the way that it can be used for nonlinear systems. Again, assume a model state
vector x with observations z as defined in section 2.1:

{x = (𝑥 ,… , 𝑥 )
z = (𝑧 ,… , 𝑧 ) . (4.6)

Assume an ensemble of 𝑁 of these model state vectors 𝜉𝜉𝜉 ∈ ℝ × and assume an ensemble of
observations Z ∈ ℝ × defined as:

{𝜉𝜉𝜉 = (x , … ,x )
Z = (z , … ,z ), (4.7)

where
z = z + e , (4.8)

with 𝑖 = 1,… ,𝑁 and e a perturbation on the observations. The perturbations are assembled in a matrix
ΥΥΥ ∈ ℝ × :

ΥΥΥ = (e , … ,e ). (4.9)
The ensemble perturbation matrix is given as

E = 𝜉𝜉𝜉 − �̂�𝜉𝜉 = 𝜉𝜉𝜉 (I− 1 × ). (4.10)

Themodel and observation error covariancematrices from the Kalman filter in algorithm 3 are estimated
via the perturbations on the ensembles as

P ≈ P = 1
𝑁 − 1E (E ) (4.11)

and
R ≈ R = 1

𝑁 − 1ΥΥΥ (ΥΥΥ ) . (4.12)

The nonlinear state-space representationmentioned in section 2.1 and 2.2, for deterministic and stochas-
tic models, is again given as:

{x =M (x ,u , 𝑘)
z = H (x ,u ), (4.13)
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and

{x =M (x ,u , 𝑘) +w
z = H (x ,u ) + v . (4.14)

For an ensemble of estimates, it is given for deterministic and stochastic models as

{𝜉𝜉𝜉 =M (𝜉𝜉𝜉 ,U , 𝑘)
Z = H (𝜉𝜉𝜉 ,U ), (4.15)

and

{𝜉𝜉𝜉 =M (𝜉𝜉𝜉 ,U , 𝑘) +W
Z = H (𝜉𝜉𝜉 ,U ) + V , (4.16)

with U input with boundary conditions for every ensemble, W ∈ ℝ × and V ∈ ℝ × matrices with
Gaussian white noise. The analysis update in the Kalman filter is exchanged by an ensemble analysis
update as

𝜉𝜉𝜉 = 𝜉𝜉𝜉 + P H (H P H +R ) (Z −H 𝜉𝜉𝜉 ). (4.17)

The algorithm for the Ensemble Kalman filter is presented in algorithm 4.
Algorithm 4: Ensemble Kalman Filter. The Ensemble Kalman Filter assumes a stochastic
model and solves for the optimal ensemble 𝜉𝜉𝜉 given the perturbed observations Z at each
time step 𝑘 in the forecast and analysis or assimilation step.
Result: �̂�𝜉𝜉 , (P ) ;
Initialize: 𝜉𝜉𝜉 ;
Input: 𝜉𝜉𝜉 ,M,W , U , Z , R ;
for k = 1 to T do

Forecast step:
𝜉𝜉𝜉 =M(𝜉𝜉𝜉 ,U , 𝑘) +W ;
E = 𝜉𝜉𝜉 − 𝜉𝜉𝜉 1 × ;
P = E (E ) ;
Assimilation step:
K = P H (H P H +R ) ;
𝜉𝜉𝜉 = 𝜉𝜉𝜉 +K (Z −H 𝜉𝜉𝜉 );
�̂�𝜉𝜉 = 𝜉𝜉𝜉 1 × ;
E = 𝜉𝜉𝜉 − 𝜉𝜉𝜉 1 × ;
(P ) = E (E ) ;

end

The algorithm is indeed similar to the Kalman filter in algorithm 3 in section 4.2, as both have a forecast
and assimilation step and the same optimal Kalman gain K as trade-off between the model estimates
and the observations 𝑧 . However, the model estimates x in algorithm 3 have been replaced by an
ensemble 𝜉𝜉𝜉 = (x ,x , … ,x ) of 𝑁 model estimates. Furthermore, the model error covariances of
the forecast and assimilation step are approximated and thus replaced by sample error covariances,
based on the error between each ensemble member and the mean of the ensemble. 1 × is a square
matrix of dimension 𝑁 × 𝑁 where each element is equal to .
While algorithm 4 is more efficient than algorithm 3, when the amount of state variables becomes
large, the algorithm has a problem. It calculates the inverse of the sample error covariance P , which
is a very large matrix. The algorithm can be rewritten to a more efficient algorithm, where taking the
inverse of a large matrix is abandoned, see algorithm 5. Instead, the inverse of the matrix ΨΨΨ , based
on the observation matrix H and Cholesky decomposition matrix L of the sample error covariance,
is taken, see Equation 3.20. ΨΨΨ has reduced dimensions, since it is assumed that the dimension of the
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observation space is lower than the dimension of the model space.
Algorithm 5: Ensemble Kalman Filter: Efficient formulation. The Ensemble Kalman Filter
assumes a stochastic model and solves for the optimal ensemble 𝜉𝜉𝜉 given the perturbed ob-
servations Z at each time step 𝑘 in the forecast and analysis or assimilation step.
Result: �̂�𝜉𝜉 ;
Initialize: 𝜉𝜉𝜉 ;
Input: 𝜉𝜉𝜉 ,M,W , U , Z , R ;
for k = 1 to T do

Forecast step:
𝜉𝜉𝜉 =M(𝜉𝜉𝜉 ,U , 𝑘) +W ;
L = √ (𝜉𝜉𝜉 − 𝜉𝜉𝜉 1 × );
Assimilation step:
ΨΨΨ = H L ;
K = L ΨΨΨ (ΨΨΨ ΨΨΨ +R ) ;
𝜉𝜉𝜉 = 𝜉𝜉𝜉 +K (Z −H 𝜉𝜉𝜉 );
�̂�𝜉𝜉 = 𝜉𝜉𝜉 1 × ;

end

4.4. OpenDA
OpenDA [5] is an opensource software toolbox written in both JAVA and C for quick generic imple-
mentation of data assimilation algorithms. The software is designed to work with building blocks or
configuration files, where each can be adapted to fit the purpose of the problem. It was brought to life
through the merge of two other data assimilation software platforms: COSTA [78] and DATools [82].
Other possible software packages are PDAF [3], Sequoia [4] and DART [1]. However, the use of
OpenDA is opted for since it is developed within Deltares and knowledge about the usage is close by.
Furthermore, its modular framework allows for clear implementation and quick adaptations.
The building blocks of this software package are divided into the following components, a method,
model and observations, shown in Figure 4.2.

Figure 4.2: OpenDA building blocks, which consist of an overall method, which is using a model and observations. Figure
retrieved from [79].

Themethod is the data assimilation method, where the options are between calibration and data assim-
ilation. Possible calibration algorithms are e.g. DUD and Conjugate Gradient (not discussed further
in this thesis) and data assimilation algorithms are e.g. EnKF and 3DVar. These methods are ap-
plied to a model, created either in OpenDA or are delivered by external software packages compatible
with OpenDA, like Delft3D FM, see section 3.5. To that end, the model in OpenDA or by the external
software delivers a deterministic model run to OpenDA. OpenDA is able to combine this deterministic
model run and observations in the applied method, to arrive at the sought for application.
How this works into practice is via XML files. These are divided into four categories:

• The main configuration file: an .oda file, specifying the path locations of the other building blocks.
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• Stochastic Model: an .xml file specifying the file locations of the model.

• Algorithm: an .xml file specifying which algorithm is used and the settings of this algorithm.

• Stochastic Observer: an .xml file specifying which datasets are used as observations in the algo-
rithm.

When each is specified, the software will automatically derive an optimal state vector prediction with
error estimates.
Advantages of OpenDA are the clear implementation with the modular framework with clear distinctions
between model, noise, algorithm, and observations, the good performance of OpenDA and the ability
to work with small- and large-scale models. Furthermore, since the combination of Delft3D FM and
OpenDA is frequently used, the connection between the two software methods already exists and does
not need to be implemented. Disadvantages are the high computational time needed for simulations
with large ensemble sizes.





5
Experimental setup

This thesis will focus on a start of an operational high-resolutional hydrodynamic and water quality
forecasting system for the area of the Belgian pilot of the UNITED project within the North Sea. In par-
ticular, this thesis puts the focus on the forecasting of the physical variables waterlevel, water velocity
and temperature. The most generally applicable Ensemble Kalman filter data assimilation algorithm
is implemented on different hydrodynamic models to investigate the accuracy and computational ef-
ficiency of the resulting forecasting system by uncertainty and sensitivity analyses. The goal is to
investigate if the application of the filter on the models will result in improved estimates of the models.
For this purpose, hyperparameters of the Ensemble Kalman filter are tweaked in experiments to see
the difference in performance.
The experimental setup will be discussed in this chapter. In section 5.1, the applicattion of the Ensemble
Kalman filter on the investigated models is discussed. Furthermore, in section 5.2, twin experiments
to investigate the accuracy and efficiency are discussed and the creation of synthetic data needed for
these experiments is discussed. This chapter concludes with an explanation on how to evaluate the
estimates in section 5.3.

5.1. Ensemble Kalman filter applied on the hydrodynamic model
In this thesis, multiple variants of the Ensemble Kalman filter on hydrodynamic models in 1D and 2D
are investigated to see if the Ensemble Kalman filter improves prediction. Therefore, the application of
the Ensemble Kalman filter on the hydrodynamic model for the 1D case is discussed.
The Ensemble Kalman filter has been discussed previously in algorithm 5 in section 4.3. The hydro-
dynamic model has been discussed in algorithm 2 in section 3.4. The application of the Ensemble
Kalman filter on the hydrodynamic model and the resulting algorithm is shown in algorithm 6.
To estimate the performance of algorithm 6 in comparison to the 1D hydrodynamic model without En-
semble Kalman filter described in algorithm 2 in section 3.4, estimates �̂�𝜉𝜉 produced by both algorithms
can be compared. Both algorithms produce error covariances P, thus the spread in estimates can be
investigated.
The settings needed for both of the algorithms are presented in Table 5.1. Varying some of these
hyperparameters will result in better or worse performing filters, measured by the root mean square
error explained in section 5.3. Since the testing of the Ensemble Kalman filter is required, the model
settings will not be changed in this thesis. Only the noise settings to change the performance of the
Ensemble Kalman filter are varied, in experiments performed in chapter 6.
For the 2D and 3D cases, software is used for the computations, see section 3.5 and section 4.4.
Delft3D FM will produce a deterministic estimate, while OpenDA operates on the Delft3D FM software
to produce stochastic estimates with or without Ensemble Kalman filter applied. Both estimates can be
compared, while noise settings within OpenDA are varied. Experiments are conducted within chapter 7.
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Algorithm 6: Hydrodynamic model with applied Ensemble Kalman filter. This algorithm com-
bines algorithm 2 from subsection 3.4.1 and algorithm 5 from section 4.3.
Result: �̂�𝜉𝜉 , P for all 𝑘;
Initialize: 𝜉𝜉𝜉 ;
Input: 𝜉𝜉𝜉 , A∗, B∗,W , C , z , R ;
for k = 1 to T do

Forecast step:
Y = B∗𝜉𝜉𝜉 + C +W ;
𝜉𝜉𝜉 = (A∗) Y ;
L = √ (𝜉𝜉𝜉 − 𝜉𝜉𝜉 1 × );
Assimilation step:
ΨΨΨ = H L ;
K = L ΨΨΨ (ΨΨΨ ΨΨΨ +R ) ;
𝜉𝜉𝜉 = 𝜉𝜉𝜉 +K (Z −H 𝜉𝜉𝜉 );
�̂�𝜉𝜉 = 𝜉𝜉𝜉 1 × ;
E = 𝜉𝜉𝜉 − 𝜉𝜉𝜉 1 × ;
P = E (E ) ;

end

Table 5.1: Settings used for the hydrodynamic model with EnKF in algorithm 6, divided in model settings and noise settings.

Parameter Description

𝐷 Depth
𝜆 Friction coefficient
𝑔 Acceleration of gravity
𝑛 Number of grid cells
𝐿 Length of the estuary
Δ𝑡 Time resolution
𝑇 Total time of the model
𝑡 Starting time of the model
Δ𝑥 Space resolution
𝑁 Number of ensembles

𝛼 Boundary noise coefficient
𝜎 Model error variance
R Observational error covariance
W Model time-dependent noise
𝜉𝜉𝜉 Initial ensemble

5.2. Twin experiments
Upon determining the performance of the data assimilation filter in comparison to the model, it is re-
quired to know the true state the system is in, as earlier discussed in section 2.3. When the true state
vector is known, the estimates of the model with filter and only model are both compared to this true
state vector, as will be discussed in section 5.3. Then the performance of both methods is determined.
However, the true state the system is in, generally is not known in advance, since both model and
model with Ensemble Kalman filter seek to estimate this true state. Sometimes observations are seen
as the true state of the system, but these usually do not give a whole true state vector for the whole
domain. Therefore, it is not possible to compare and validate estimates on unobserved locations. In
twin experiments therefore, the true state is chosen from the stochastically generated model runs,
where a fully state vector is computed. Since it is often investigated if data assimilation algorithms will
improve model values on unobserved locations, and via a full known true state vector that is possible,
twin experiments are useful for validation in data assimilation.
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The workflow of a twin experiment is given in Figure 5.1. First, a true state x is generated by a
stochastic simulation of the model (in red). The estimate of this simulation will assumed to be the true
state. Thereafter, from this true state, observations are generated at available measuring locations
by adding zero mean white noise to the true state (in blue). The observations to this true state are
generated via

z = H x + v , (5.1)

where v ∼ 𝒩(0,R ). In this thesis, R is a constant matrix. Notice that the covariance to generate the
synthetic observationR is the same as the observation error covariance used in the Ensemble Kalman
filter. The observation operator H makes sure that only observations are generated in a measuring
station. To that end, the elements of H are constructed in the following way:

(H ) = {1, if measurement station 𝑖 measures state vector element x (𝑗)
0,otherwise. (5.2)

It is by choice of the user how many measurement stations and at which locations the measurements
are taken, based on the problem at hand. The measurements are assimilated into a simulation of the
model to arrive at the assimilated states (also in blue). Lastly, a deterministic simulation of the model
is conducted to arrive to the simulated states the model would get without data assimilation (in green).
The simulated states or model states and assimilated states are compared with the generated true
state by the performance evaluation mentioned in section 5.3.

Figure 5.1: The workflow of twin experiments within data assimilation. The red part assumes a stochastic simulation to obtain a
generated true state representation of themodel. From the true state, a set of measurements is generated. Thesemeasurements
are assimilated within the blue part of the workflow, to arrive at assimilated states. The green part shows a deterministic simulation
of the model, to arrive at the deterministic model estimate. Both the assimilated state estimate and model state estimate are
compared to the true state, explained in section 5.3. Figure retrieved from [81].

5.3. Performance evaluation
To validate the estimates from the different algorithms, the root mean square error and the standard
deviation of these estimates will be computed. The root mean square error shows the differences
between the true state and the ensemble estimates, while the standard deviation shows the spread in
the ensemble. Therefore, the deviation from the true state and spread in estimate for each estimate can
be compared. Both root mean square error and standard deviation are computed per measurement
location within the model. To that end, the root mean square error (rmse) of the model estimate at a
time step 𝑘 is given by

rmse = √ 1𝑚(H x −H �̂�𝜉𝜉 ) (H x −H �̂�𝜉𝜉 ). (5.3)



38 5. Experimental setup

with 𝑚 the amount of measurement locations. To get to the rmse of the algorithm, all rmse at each
time step is averaged over time. Likewise, the rmse of the estimate at a single measurement location
𝑖 can be investigated, which is computed as

rmse , = √((H ) x − (H ) �̂�𝜉𝜉 ) ((H ) x − (H ) �̂�𝜉𝜉 ), (5.4)

with (H ) the 𝑖-th row ofH . Again, averaging over time gives the rmse for the estimate at that specific
measurement location. The standard deviation of the estimate at a time step 𝑘 is given as

std = √ 1𝑚 tr(H P H ), (5.5)

where the trace of the covariance matrix is taken. To arrive at the std of the whole estimate in time,
all std at each timestep is averaged over time. The standard deviation of the estimate at a single
measurement location 𝑖 is given as

std , = √(H ) P ((H ) ) . (5.6)

Averaging over time gives the standard deviation for the measurement location 𝑖. Both Equation 5.3
and Equation 5.5 are taken from [61].
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1D model

In this chapter, the twin experiments mentioned in chapter 5 are performed with the Ensemble Kalman
filter (section 4.3) on the 1D hydrodynamic model (section 3.1) for a simplified Western Scheldt estuary
model. The results in this chapter are to better understand the workings of the Ensemble Kalman filter
applied to a model, before applying the algorithm to more complex models. The aim of this chapter is to
research whether the combination of 1D hydrodynamicmodel of the estuary and Ensemble Kalman filter
will perform better than only the 1D hydrodynamic model. To that end, the detailed setup is discussed
in section 6.1, the performed experiments are discussed in section 6.2 and the results are shown in
section 6.3.

6.1. Setup 1D model Western Scheldt estuary
The Western Scheldt is an estuary located in the southwest of the Netherlands. It flows from the North
Sea border at Cadzand to the Dutch/Belgian border, see Figure 6.1 for the contour, close to the Belgian
pilot of UNITED. Around the Western Scheldt, a few coastal cities are located where measurements of
water characteristics are performed. These locations are Cadzand, Vlissingen, Terneuzen, Hansweert
and Bath.

Figure 6.1: TheWestern scheldt contours and bathymetry (depth profile). Five coastal cities are considered, where measurement
stations are present. Figure retrieved from [68] and adjusted.

The contour of the estuary can be approximated by a 1D grid of 100km long, see Figure 6.2, where
the measurement stations are located at every 25th km, except for Bath. It is assumed that waterlevel
ℎ and water velocity 𝑢 are measured at these stations, except for Bath where only ℎ is measured. The
observations are generated explained in section 5.2 with R = 0.01I.
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Cadzand
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Figure 6.2: 1D grid approximation of the Western Scheldt estuary for the 1D model, with the five measuring stations Cadzand,
Vlissingen, Terneuzen, Hansweert and Bath at respectively 0, 25, 50, 75 and 99km. It is assumed in each station observations
of waterlevel and/or velocity are taken, displayed by the parameters above the measuring stations.

On this grid, the 1D hydrodynamic model with ensembles, discussed in algorithm 2 in subsection 3.4.1
is applied, as well as the 1D hydrodynamic model with Ensemble Kalman filter in algorithm 6. The
model produces the time evolution of the state vector, containing waterlevel ℎ and water velocity 𝑢.
The settings used for both algorithms are given in Table 6.1. As boundary conditions, the waterlevel
at Cadzand is retrieved from MATROOS series database [76] starting from 2013-12-05 00:00 to 2013-
12-07 00:00 with a time interval of 10 min. The boundary at Bath is reflecting, thus the velocity will be
0.

Table 6.1: Settings used for the hydrodynamic model and hydrodynamic model with Ensemble Kalman filter. Some noise pa-
rameters are varied in experiments later.

Parameter Value Description

𝐷 20 m Depth
𝜆 1.93 ⋅ 10 s Friction coefficient
𝑔 9.81 m s Acceleration of gravity
𝑛 100 Number of grid cells
𝐿 100 km Length of the estuary
Δ𝑡 10 min Time resolution
𝑇 2 days Total time of the model
𝑡 2013-12-05 00:00 Starting time of the model
Δ𝑥 . km Space resolution
𝑁 50 Number of ensembles

𝛼 e [hours] = e Boundary noise coefficient
𝜎 0.2 Model error variance
R 0.01I Observational error covariance

W ( 0 … 0
𝑤 … 𝑤 ) Model time-dependent noise

𝜉𝜉𝜉 0 Initial ensemble

A run of the deterministic 1Dmodel will result in estimates of the waterlevel ℎ and water velocity 𝑢 on the
whole grid in Figure 6.2 from 2013-12-05 00:00 to 2 days later, see Figure 6.3. However, plotting on the
whole grid as in Figure 6.3 is only possible for deterministic model runs, when there is no need for the
plotting of error estimates. Therefore, estimates at separate locations are shown with error estimates.
A run of the stochastic 1D model with 𝑁 = 50 ensembles at Vlissingen is depicted in Figure 6.4 for
waterlevel and 6.5 for water velocity. In these figures, clearly the periodic behavior of the tides is present
in the estimates of the waterlevel and velocity. Furthermore, the standard deviation is around 0.2 for
both, which was the set value.
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Figure 6.3: Deterministic estimates of the hydrodynamic model for the Western Scheldt determined via algorithm 2 in subsec-
tion 3.4.1, plotted as a function of position in the Western Scheldt and time after 2013-12-05 00:00. Left: Waterlevel
( , ). Right: Water velocity ( , ).

Figure 6.4: Waterlevel estimate with standard deviation at Vlissingen, modelled stochastically with algorithm 2 with settings in
Table 6.1 over 2 days from 2013-12-05 00:00 for .
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Figure 6.5: Velocity estimate with standard deviation at Vlissingen, modelled stochastically with algorithm 2 with settings in
Table 6.1 over 2 days from 2013-12-05 00:00 for .

6.2. Experiment setup
Since the output of the Ensemble Kalman filter filter depends on the input settings, experiments are
performed to test the Ensemble Kalman filter (algorithm 6 in section 5.1) in comparison to the model
(algorithm 2 in subsection 3.4.1). In all experiments mentioned below, the true state and observations
are generated. The true state is generated by taking one of the estimates from the ensemble model
run. In Figure 6.6 and 6.7, the waterlevel and velocity predictions of the model at Vlissingen are shown
with standard deviation and chosen true state. The observations are generated from this true state with
observations error covariance R , unless mentioned otherwise.

Figure 6.6: The waterlevel prediction with standard deviation at Vlissingen, modelled stochastically with algorithm 2 with settings
in Table 6.1, and chosen true state from the ensembles, over two days from 2013-12-05 00:00 until 2013-12-07 00:00.
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Figure 6.7: The water velocity prediction with standard deviation at Vlissingen, modelled stochastically with algorithm 2 with
settings in Table 6.1, and chosen true state from the ensembles, over two days from 2013-12-05 00:00 until 2013-12-07 00:00.

The experiments to test the Ensemble Kalman filter (EnKF) are mentioned here:
1. Test implementation model with EnKF in algorithm 6 in section 5.1

At first, it is checked if algorithm 6 in section 5.1 with settings in Table 6.1 is implemented correctly
in Python. To this end, the algorithm will assimilate waterlevel values at each grid location, called
EnKF5, see Figure 6.8. One way to check the performance is by checking if the rmse between
model with EnKF (EnKF5) and the true state is equal to the standard deviation of EnKF5. Fur-
thermore, when the rmse for the model is larger than for EnKF5, it means the filter has a smaller
error and thus has a better estimate.
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Figure 6.8: EnKF5. Assimilation of only waterlevel at each location (yellow marked).

2. Effect of more assimilated physical variables
To be able to see if assimilation of more observations of another physical variable has an effect on
the estimate, the rmse for algorithm 6 with only waterlevel assimilated (EnKF5) and algorithm 6
with both waterlevel and water velocity assimilated are compared, called EnKF9, see Figure 6.9.
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Figure 6.9: EnKF9. Assimilation of waterlevel and water velocity at each location (yellow marked).

3. Effect of assimilation location
This experiment will test the effect of assimilation at different locations on the total errors of the es-
timate. To that end, only one physical variable per location is assimilated, for example waterlevel
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at only Cadzand, see Figure 6.10. Furthermore, three cases with assimilation from waterlevel
observations at Vlissingen and Terneuzen (ℎ Vli ℎ Ter), assimilation from velocity observations at
Vlissingen and Terneuzen (𝑢 Vli 𝑢 Ter) and assimilation from waterlevel and velocity observations
at Vlissingen (ℎ Vli 𝑢 Vli) are investigated. These will show the importance of waterlevel obser-
vations to velocity observations, and which is most useful to assimilated. Furthermore, the effect
from assimilation on Cadzand on other measuring stations can be seen by comparing the rmse
of the estimates in each measuring station.
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Figure 6.10: EnKF Cad. Assimilation of only waterlevel at Cadzand (yellow marked). For other physical variables and other
measuring stations, the EnKF estimate is similarly named.

4. Effect of frequency of assimilation
In this experiment, it is examined if the frequency of assimilation has an effect on the errors of the
predictions. To that end, the frequency of assimilation is changed from every time step to only
once in every 40 time steps. The experiment is performed on EnKF5.

5. Effect of observation error covariance R
In this experiment, the observation error covariance R is varied, and thus the error on the true
state and observations, to see the effect of the trade-off of the Kalman Gain between the sample
error covariance P and the observation error covariance. To that end, R is varied from 0.01I
to 5I. To that end, the true state and observations are varied. In comparison, the model error
covariance is determined by the boundary noise coefficient 𝛼, recall Equation 3.21 in section 3.4,
which is taken to be around 0.2. Therefore, the range of values for R has values smaller and
larger than 𝛼, and the effect of the Kalman Gain is investigated.

6. Effect of other observations
How well does the EnKF5 perform while assimilating with observations not generated from the
model? In this experiment, it is assumed that the true state is more distinct from the model. It is
investigated if the EnKF is able to create a good prediction while assimilating with observations
generated from this true state. To that end, three cases are distinguished:

• Observations from the hydrodynamic model with offset of 50 cm for waterlevel and 10 cm/s
for velocity.

• Observations from the hydrodynamic model with delay in time of 5Δ𝑡.

• Observations created with a sin function not close to the model, defined as: z = sinsinsin(𝜙𝑘)
with approximately the same period as the model, defined as 𝜙 = .

6.3. Results 1D experiments
In this section, the 6 experiments mentionend in section 6.2 are executed and the results shown and
examined. To that end, first the results of the estimates of the EnKF5, Figure 6.11 and 6.12, and EnKF9,
Figure 6.13 and 6.14 are shown. In red, the estimates of the EnKF are displayed with standard deviation
in yellow. The model estimates are shown in blue with lightblue standard deviation and the true state
and measurements are shown with black striped and dots respectively. Notice from these figures that
both EnKF5 and EnKF9 have estimate close to the true state, closer than only the hydrodynamic model.
Furthermore, the standard deviation for both EnKF models decreased, which is as expected, since the
EnKF algorithm produces lower standard deviation.
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Figure 6.11: The waterlevel estimates at Vlissingen over two days, computed with the hydrodynamic model and the EnKF5 with
settings in Table 6.1. Left: over two days from 5th of December until 7th of December. Right: Zoomed in peak between 5th of
December 12:00 and 5th of December 19:00. Blue: The estimate of the model. Light blue: standard deviation of the model
estimate. Red: Estimate of EnKF5. Yellow: standard deviation of EnKF5. Black striped: chosen true state from the model.
Black dots: measurements.

Figure 6.12: The velocity estimates at Vlissingen over two days, computed with the hydrodynamic model and the EnKF5 with
settings in Table 6.1. Left: over two days from 5th of December until 7th of December. Right: Zoomed in peak between 6th of
December 10:00 and 6th of December 17:00. Blue: The estimate of the model. Light blue: standard deviation of the model
estimate. Red: Estimate of EnKF5. Yellow: standard deviation of EnKF5. Black striped: chosen true state from the model.
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Figure 6.13: The waterlevel estimates at Vlissingen over two days, computed with the hydrodynamic model and the EnKF9 with
settings in Table 6.1. Left: over two days from 5th of December until 7th of December. Right: Zoomed in peak between 5th of
December 12:00 and 5th of December 19:00. Blue: The estimate of the model. Light blue: standard deviation of the model
prediction. Red: Estimate of EnKF9. Yellow: standard deviation of EnKF9. Black striped: chosen true state from the model.
Black dots: measurements.

Figure 6.14: The velocity estimates at Vlissingen over two days, computed with the hydrodynamic model and the EnKF9 with
settings in Table 6.1. Left: over two days from 5th of December until 7th of December. Right: Zoomed in peak between 6th of
December 10:00 and 6th of December 17:00. Blue: The estimate of the model. Light blue: standard deviation of the model
estimate. Red: Estimate of EnKF9. Yellow: standard deviation of EnKF9. Black striped: chosen true state from the model.
Black dots: measurements.

6.3.1. Test implementation EnKF
To test the implementation of EnKF5, the total std and rmse are computed at each measuring station
using Equation 5.6 and Equation 5.4 in section 5.3, see Figure 6.15. This figure shows that the rmse
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and std for the EnKF model are similar in value. Therefore, the EnKF filter is applied correctly on
this model. The spread in prediction for the EnKF5 model is clearly lower than for the model without
EnKF5, as can be seen by comparing the std EnKF5 with the std model for each measuring station.
Furthermore, the rmse for EnKF5 decreases with almost a factor 4 for waterlevel and 2,5 for water
velocity, which indicates that applying EnKF5 indeed results into a more precise model.

Figure 6.15: Left: rsme and std of the waterlevel estimate of model (in black/grey) and EnKF5 (in blue) for each measuring
station. Right: rmse and std of the velocity estimate of model (in black/grey) and EnKF5 (in blue) for each measuring station.

6.3.2. Effect of more assimilated physical variables
To be able to see if the assimilation of more observations of another physical variable has an effect on
the prediction, the rmse for EnKF5 with only waterlevel assimilated and EnKF9 with both waterlevel
and water velocity assimilated are compared. The rmse is shown in Figure 6.16 and the standard
deviations in Figure 6.17. When extra assimilating the velocity observations in four extra measuring

Figure 6.16: Left: rsme of the waterlevel estimate of model (in grey), EnKF5 (in blue) and EnKF9 (in purple) for each measuring
station. Right: rmse of the velocity estimate of model (in grey), EnKF5 (in blue) and EnKF9 (in purple) for each measuring station.

stations for EnKF9, both the rmse and std values decrease slightly in comparison to EnKF5, but are still
much lower than only the model rmse. Therefore, when more variables are assimilated, the estimate
becomes slightly more accurate. To conclude, when extra observations at different measuring stations
become available, assimilation of those will result in a slightly more accurate estimate.
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Figure 6.17: Left: std of the waterlevel estimate of model (in grey), EnKF5 (in blue) and EnKF9 (in purple) for each measuring
station. Right: std of the velocity estimate of model (in grey), EnKF5 (in blue) and EnKF9 (in purple) for each measuring station.

6.3.3. Effect of assimilation location

To see the effect of assimilation at different locations on the total errors of the estimate, only one
physical variable per location is assimilated, for example waterlevel at only Cadzand (EnKF ℎ Cad), in
(1)-(9). The estimates are not shown here, since displaying all at all measuring stations would result
in 120 more or less the same figures, however some are shown in Appendix B. The rmse of all EnKF
models at all measuring stations are plotted for waterlevel in Figure 6.18 and for velocity in Figure 6.19.
Furthermore, the cases with two assimilated observations EnKF ℎVli ℎTer, EnKF 𝑢Vli 𝑢Ter and EnKF
ℎVli 𝑢Vli ((10)-(12)) are shown as well, to see if assimilation of waterlevel or of velocity is preferred for
a better estimate.

Figure 6.18: rmse in waterlevel estimate per measuring station per model. The models are from left to right respectively are
EnKF assimilated with (1) EnKF with observations of Cadzand, (2) EnKF with observations of Vlissingen, (3) EnKF with
observations of Terneuzen, (4) EnKF with observations of Hansweert, (5) EnKF with observations of Bath, (6) EnKF with
observations of Cadzand, (7) EnKF with observations of Vlissingen, (8) EnKF with observations of Terneuzen, (9) EnKF
with observations of Hansweert, (10) EnKF with observations of Vlissingen and Terneuzen, (11) EnKF with observations
of Vlissingen and Terneuzen, (12) EnKF with observations of Vlissingen and Vlissingen.
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Figure 6.19: rmse in velocity estimate per measuring station per model. The models are from left to right respectively are
EnKF assimilated with (1) EnKF with observations of Cadzand, (2) EnKF with observations of Vlissingen, (3) EnKF with
observations of Terneuzen, (4) EnKF with observations of Hansweert, (5) EnKF with observations of Bath, (6) EnKF with
observations of Cadzand, (7) EnKF with observations of Vlissingen, (8) EnKF with observations of Terneuzen, (9) EnKF
with observations of Hansweert, (10) EnKF with observations of Vlissingen and Terneuzen, (11) EnKF with observations
of Vlissingen and Terneuzen, (12) EnKF with observations of Vlissingen and Vlissingen.

Looking at the rmse values in both Figure 6.18 in 6.19, notice that upon assimilating observations in
measuring station Cadzand, the rmse is lowest. Furthermore, it seems that each measuring station
farther from the Cadzand will have higher rmse. Therefore, assimilation at Cadzand is most important.
An hypothesis is that assimilation on the boundary where the noise is applied is the most useful. How-
ever, it is beyond the scope of this thesis to prove this. Furthermore, it is noticed that most EnKFs in
blue, where waterlevel is assimilated, have lower rmse than their velocity assimilated (in red) counter
parts at the same measuring station. Also for the assimilation with two physical parameters in purple,
the assimilation where waterlevel is incorporated is lower than without assimilation of waterlevel. To
conclude, assimilation of waterlevel observations results in a better estimate than assimilation of water
velocity. Even more, when comparing (10) and (12) in purple again, it is noticed that the case (12) has
slightly lower error in measuring stations than case (10). Therefore, for a slightly better estimate, it is
preferred to have observations of multiple physical variables compared to only one physical variables.

6.3.4. Effect of frequency of assimilation

In this experiment, it is examined if the frequency of assimilation has an effect on the errors of the
estimates. Therefore, the frequency of assimilation is changed from every time step up until only once
in every 40 time steps. The experiment is performed on EnKF5. Some of the estimates for 𝑇 = 2Δ𝑡,
𝑇 = 10Δ𝑡 and 𝑇 = 40Δ𝑡 at Vlissingen are shown in Appendix C. The result of the rmse can be seen in
Figure 6.20 for waterlevel and 6.21 for velocity. Also the rmse of the model without EnKF is shown.

From both plots, a clear trend is seen. When increasing the assimilation frequency, the rmse increases
as well. Important to notice is that even with assimilation frequency 𝑇 = 40Δ𝑡, the rmse in all cases
is lower than only the model rmse. Therefore, applying the EnKF with sparse observations in time still
results in a better estimate than in the case that no EnKF is applied. It can be argued that if taking many
observations in time is costly for measuring stations, the assimilation frequency and thus frequency of
taking observations may be reduced to a value of rmse what is desired.
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Figure 6.20: rmse in waterlevel estimate per measuring station per model. The models from left to right respectively are (1)
Model, (2) EnKF with , (3) EnKF with , (4) EnKF with , (5) EnKF with , (6) EnKF with ,
(7) EnKF with , (8) EnKF with and (9) EnKF with .

Figure 6.21: rmse in velocity estimate per measuring station per model. The models are from left to right respectively are (1)
Model, (2) EnKF with , (3) EnKF with , (4) EnKF with , (5) EnKF with , (6) EnKF with ,
(7) EnKF with , (8) EnKF with and (9) EnKF with .

6.3.5. Effect of observation error covariance
In this experiment, the observation error covariance R is varied, to see the effect of the trade-off of the
Kalman Gain between the sample error covariance P and the observation error covariance discussed
in section 4.2. R is varied from 0.01I to 5I. In comparison, the model error covariance is determined
by the boundary noise coefficient 𝛼, which is taken to be around 0.2. Therefore, R takes on values
smaller and larger than 𝛼, and thus the Kalman Gain will favor the observations for lower R and favor
the model for higher R .
The estimates are not shown due to their similarities with previous estimates. In Figure 6.22 and 6.23
the rmse of these models is shown. A clear trend is visible, when the observation error covariance R
becomes large, the rmse becomes large as well for every measuring station and both waterlevel and
velocity. Notice that R = 5I results in a quite large observation error, but that in this case still the
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model with EnKF will outperform the model without EnKF (in black).

Figure 6.22: rmse in waterlevel estimate per measuring station per model. The models are from left to right respectively are
(1) Model, (2) EnKF with R . I, (3) EnKF with R . I, (4) EnKF with R . I, (5) EnKF with R . I, (6) EnKF
with R . I, (7) EnKF with R . I, (8) EnKF with R . I, (9) EnKF with R I, (10) EnKF with R I,(11) EnKF
with R I.

Figure 6.23: rmse in water velocity estimate per measuring station per model. The models are from left to right respectively
are (1) Model, (2) EnKF with R . I, (3) EnKF with R . I, (4) EnKF with R . I, (5) EnKF with R . I, (6)
EnKF with R . I, (7) EnKF with R . I, (8) EnKF with R . I, (9) EnKF with R I, (10) EnKF with R I,(11)
EnKF with R I.

6.3.6. Effect of other generated observations
It is investigated if the EnKF5 is able to create a good estimate while assimilating with observations
more distinct from the model. To that end, three cases are distinguished:

• Observations from the hydrodynamic model with offset of 50 cm for waterlevel and 10 cm/s for
velocity.

• Observations from the hydrodynamic model with delay in time of 5Δ𝑡.
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• Observations created with a sin function not close to the model, defined as:

z = sinsinsin(𝜙𝑘), (6.1)

with approximately the same period as the model, defined as 𝜙 = .

For these experiments, the estimates are shown, since these vary from previous estimate plots.

Offset
The estimates at Vlissingen for the models with offset in observations are shown in Figure 6.25 and
6.26. The true state in black stripes is not located within the standard deviation of the model estimate
anymore. However, when applying the EnKF5, the estimate of EnKF5 in red is very close to the true
state, for both waterlevel and velocity. Therefore, the EnKF5 is still able to create a good estimate
when having measurements varying slightly from the model.

Cadzand
[ℎ, 𝑢]

Vlissingen
[ℎ, 𝑢]

Terneuzen
[ℎ, 𝑢]

Hansweert
[ℎ, 𝑢]

Bath
[ℎ]

0km 25km 50km 75km 99km
𝑥

Figure 6.24: EnKF5. Assimilation of only waterlevel at each location (yellow marked). The red box markes that estimate of
Figure 6.25 and 6.26 are shown at Vlissingen.

Figure 6.25: The waterlevel estimates at Vlissingen over two days, computed with the hydrodynamic model and EnKF5 with
generated measurements with offset of 50 cm for waterlevel and 10 cm/s for velocity from the model and furthermore with
settings in Table 6.1. Left: over two days from 5th of December until 7th of December. Right: Zoomed in peak between 5th of
December 12:00 and 5th of December 19:00. Blue: The estimate of the model. Light blue: standard deviation of the model
estimate. Red: Estimate of EnKF5. Yellow: standard deviation of EnKF5. Black striped: chosen true state from the model.
Black dots: generated measurements.
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Figure 6.26: The velocity estimates at Vlissingen over two days, computed with the hydrodynamic model and EnKF5 with
generated measurements with offset of 50 cm for waterlevel and 10cm/s for velocity from the model and furthermore with settings
in Table 6.1. Left: over two days from 5th of December until 7th of December. Right: Zoomed in peak between 5th of December
12:00 and 5th of December 19:00. Blue: The estimate of the model. Light blue: standard deviation of the model estimate. Red:
Estimate of EnKF5. Yellow: standard deviation of EnKF5. Black striped: chosen true state from the model.

Delay

Figure 6.27: The waterlevel estimates at Vlissingen over two days, computed with the hydrodynamic model and EnKF5 with
generated measurements with delay of from the model and furthermore with settings in Table 6.1. Left: over two days from
5th of December until 7th of December. Right: Zoomed in peak between 5th of December 12:00 and 5th of December 19:00. Blue:
The estimate of the model. Light blue: standard deviation of the model estimate. Red: Estimate of EnKF5. Yellow: standard
deviation of EnKF5. Black striped: chosen true state from the model. Black dots: generated measurements.
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Figure 6.28: The velocity estimates at Vlissingen over two days, computed with the hydrodynamic model and EnKF5 with
generated measurements with delay of from the model and furthermore with settings in Table 6.1. Left: over two days from
5th of December until 7th of December. Right: Zoomed in peak between 6th of December 10:00 and 6th of December 17:00. Blue:
The estimate of the model. Light blue: standard deviation of the model estimate. Red: Estimate of EnKF5. Yellow: standard
deviation of EnKF5. Black striped: chosen true state from the model.

The estimates at Vlissingen for the models with delay of 5Δ𝑡 in observations are shown in Figure 6.27
and 6.28. The true state in black stripes is not located within the standard deviation of the model es-
timate. When applying the EnKF5, the estimate of EnKF5 in red is very close to the true state, for
both waterlevel and velocity. Therefore, the EnKF5 is still able to create a good estimate when having
measurements with a slight time delay.

Sin
The estimates at Hansweert (Figure 6.29) for the models with EnKF with assimilated observations gen-
erated by Equation 6.1 are shown in Figure 6.30 and 6.31. The true state in black stripes is not located
within the standard deviation of the model estimate. When applying the EnKF5, the estimate of EnKF5
in red is somewhat close to the true state for waterlevel, however for velocity deviates very much. No-
tice that velocity is not assimilated in this EnKF model. The EnKF tries to account for the physics of the
model for the velocity prediction, but does not get close to the true state. It has to be noted that these
observations could be invalid observations with respect to the hydrodynamic model. To conclude, the
EnKF cannot predict the chosen true state very well in this situation.
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Vlissingen
[ℎ, 𝑢]
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Figure 6.29: EnKF5. Assimilation of only waterlevel at each location (yellow marked). The red box markes that estimates of
Figure 6.25 and 6.26 are shown at Hansweert.
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Figure 6.30: The waterlevel estimates at Hansweert over two days, computed with the hydrodynamic model and EnKF5 with
generated measurements as in Equation 6.1 and furthermore with settings in Table 6.1 over two days from 5th of December
until 7th of December. Blue: The estimate of the model. Light blue: standard deviation of the model estimate. Red: Estimate
of EnKF5. Yellow: standard deviation of EnKF5. Black striped: chosen true state from the model. Black dots: generated
measurements.

Figure 6.31: The velocity estimates at Hansweert over two days, computed with the hydrodynamic model and EnKF5 with
generated measurements as in Equation 6.1 and furthermore with settings in Table 6.1 over two days from 5th of December
until 7th of December. Blue: The estimate of the model. Light blue: standard deviation of the model estimate. Red: Estimate of
EnKF5. Yellow: standard deviation of EnKF5. Black striped: chosen true state from the model.

The rmse of all experiments with other generated observations are given in Figure 6.32. First of all, it
is noticed that the rmse of the ‘sin’ experiment for velocity is very large. In that way, even worse than
the model estimates. Also the rmse of delay is quite large compared to the model rsme. The rmse for
‘offset’ for velocity is also larger than the model rmse. It can be concluded that observations should be
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close to the model. Therefore, models that already predict the true state to some extend are preferred,
which is intuitive.

Figure 6.32: Left: rmse of the waterlevel estimate per measuring station per model with generated observations for experi-
ments EnKF5, Offset, Delay and Sin. Right: rmse of the velocity prediction per measuring station per model with generated
observations for experiments EnKF5, Offset, Delay and Sin.



7
2D model

In this chapter, the twin experiments mentioned in chapter 5 are performed with the Ensemble Kalman
filter (section 4.3) on a 2D hydrodynamic model with depth made with Delft3D FM (section 3.5) for a
simplifiedWestern Scheldt estuary model. In this model, waterlevel, velocity and temperature are taken
into account. The model and experiments in this chapter are performed to get a better understanding of
the workings Delft3D FM and OpenDA and to understand the implementation of both. Furthermore, the
effect of assimilation of water velocity and temperature on the water surface on the depth is investigated.
Since usually observations are only present at the water surface, knowing if estimates within the water
column improve by assimilation on the water surface is useful for better prediction of estimates within the
water column. To that end, the detailed setup is mentioned in section 7.1, the performed experiments
are discussed in section 7.2 and the results are shown in section 7.3.

7.1. Setup 2D model Western Scheldt estuary
A simplified grid for the Western Scheldt estuary is assumed, see Figure 7.1 and Figure 7.2. In this grid
of approximately 100 km long and 0.5 km wide, 3 measuring stations are considered, called Station01,
Station02 and Station03, at respectively 30 km, 60 km and 90 km. The grid has assumed depth of
-8 m at the left boundary linearly increasing to -5 m at the right boundary below the average water
surface at 0 m added with 20 𝜎-layers (subsection 3.5.1). The model used on this grid is implemented
in Delft3D FM, with settings in Table 7.1. Wind is taken into account with 5 m/s in both 𝑥 and 𝑦-
direction, furthermore humidity is set on 70 %, the air temperature at 30 ∘C and cloudiness at 10 %.
The boundary conditions are an astronomic boundary for waterlevel with 2 constituents is initialized
on the eastboundary at 99 km. A discharge of 500 m /s is initialized on the left boundary at 0 km.
It is assumed that waterlevel ℎ, water velocity 𝑢 and temperature 𝑇 are measured at the measuring
stations and thus that the state vector contains waterlevel ℎ (s1 in Delft3D FM), water velocity 𝑢 (unorm
in Delft3D FM), and temperature 𝑇 (tem1 in Delft3D FM). The true state and observations are generated
as explained in section 5.2.

Station03Station02Station01

Figure 7.1: The grid of the 2D model, view of the -plane. There are 199 nodes in the -direction and 2 in the -direction, with
a regular grid size (resolution) of m. The red dots represent 3 measuring stations, called Station01, Station02, Station03,
at respectively ( m, m), ( m, m) and ( m, m). The grid in the -direction has 20 -layers, with
layer 1 at the bedlevel and layer 20 at the water surface. The bed level varies from -8m at the left boundary to m at the right
boundary.

57
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Station03Station02Station01

Figure 7.2: The grid of the 2D model, view of the -plane. There are 199 nodes in the -direction and 2 in the -direction, with
a regular grid size (resolution) of m. The red dots represent 3 measuring stations, called Station01, Station02, Station03,
at respectively ( m, m), ( m, m) and ( m, m). The grid in the -direction has 20 -layers, with
layer 1 at the bedlevel and layer 20 at the water surface. The bed level varies from -8 m at the left boundary to m at the right
boundary.

Within the OpenDA software environment, the settings from Delft3D FM are retrieved and the model
can be run deterministic or stochastic. A run of the deterministic model will result in estimates of the
waterlevel ℎ, water velocity 𝑢 and temperature 𝑇 on the whole grid in Figure 7.1 and Figure 7.2 from
1991-01-01 00:00 to 2 days later, see Figure 7.3 for the surface estimates and Figure 7.4 for the bedlevel
estimates. In Appendix D, temperature and water velocity estimates in intermediate 𝜎-layers: 4, 8, 12
and 16 are shown, to see how temperature and water velocity estimates change in the water column.
Waterlevel and water velocity have a periodic behavior in time caused by tidal propagation, while the
temperature is increasing with increasing time.

Furthermore, deterministic velocity and temperature depth profiles from 1991-01-01 00:00 to 2 days
later at Station01 are shown in Figure 7.5, to see the estimate at one location. In addition, determin-
istic velocity and temperature depth profiles from 1991-01-01 00:00 to 2 days later in Station02 and
Station03 are shown in Appendix D. Within the water column at a specific time 𝑡, water velocity and
temperature do not vary much. However, water velocity increases with increasing 𝜎-layer. This is
expected since water velocity is largest at the water surface [19]. Plotting on the whole grid is only
possible for deterministic model runs, when there is no need for plotting error estimates. To that end,
for stochastic model runs, estimates with error estimates at separate locations are considered.

The computational time of the software for the stochastic model is an issue. The time OpenDA needs to
perform amodel run depends on the number of ensemble members of the algorithm, the total time, time
step and the computational time to perform a model run with the external software. In this thesis, it has
been found that the computational time of running the model with settings in Table 7.1 doubles when
doubling the number of ensembles, see Table 7.2. It is chosen to produce model runs with OpenDA
with number of ensemble members of 𝑁 = 16.
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Table 7.1: Settings of the 2D model in the MDU file. All other parameters are set to their default values, found in [28].

Setting Value Unit

WaterLevIni 1 m
Bedlevuni -5 m
Bedslope 0 -
AngLat 52 -
AngLon 0 -
Kmx 20 -
Layertype 1 -
Vicouv 10 m

s
Dicouv 10 m

s
TidalForcing 1 -
Temperature 5 -
InitialTemperature 6 ∘C
Secchidepth 1 m
Stanton 1.3d-3 -
Dalton 1.3d-3 -
RefDate 19910101 -
Tunit M -
DtUser 60 s
TStart 0 Tunit
TStop 2880 Tunit
WindExt 1 -

HisInterval 3600 s
MapInterval 3600 s
Wrihis_temperature 1 -
Wrimap_waterlevel_s0 1 -
Wrimap_waterlevel_s1 1 -
Wrimap_velocity_component_u0 1 -
Wrimap_velocity_component_u1 1 -
Wrimap_velocity_vector 1 -
Wrimap_flow_flux_q1 1 -
Wrimap_heat_fluxes 1 -
Wrimap_temperature 1 -

Table 7.2: Computational time of openDA for the 2D model, depending on the number of ensemble members.

Number of ensemble members Computational time

𝑁 = 4 3 min
𝑁 = 8 7 min
𝑁 = 16 15 min
𝑁 = 32 30 min
𝑁 = 64 1 hour
𝑁 = 128 2 hours
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Figure 7.3: Deterministic estimates of the 2D estuary model, plotted as a function of position and time after 1991-01-01 00:00.
Top: Waterlevel ( , ). Middle: Velocity ( , ) in the surface with -layer 20. Bottom: Temperature ( , ) in the surface layer
with -layer 20.
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Figure 7.4: Deterministic estimates of the 2D estuary model, plotted as a function of position and time after 1991-01-01 00:00.
Top: Velocity ( , ) at the bedlevel with -layer 1. Bottom: Temperature ( , ) at the bedlevel with -layer 1.
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Figure 7.5: Deterministic estimate of the depth profile of velocity ( , ) and temperature ( , ) at Station01 over two days after
1991-01-01 00:00, plotted as a function of time and -layers, where 1 is the water surface and 0 the bed level divided in 20
layers.

For stochastic model runs, noise is set on the east boundary condition for waterlevel of standard devia-
tion 0.2. A run of the stochastic 2D model with 𝑁 = 16 ensembles at Station01 is depicted in Figure 7.6
top for waterlevel, middle for water velocity and bottom for water temperature.
As can be seen by comparing the figures in Figure 7.6, the standard deviation on the waterlevel, water
velocity and temperature is present. However, the standard deviation on the temperature is not really
constant over time. This is the case since no noise on the temperature is set, while only noise on the
boundary of the waterlevel is set and this propagates into the water velocity and temperature. In this
thesis, the effect of assimilation of surface parameters on the estimate within the water column is sought
for. To be able to assimilate observations into the model, it is required that the standard deviation is
more constant. Additionally, [61] advocates the importance of having constant standard deviation for
temperature assimilation experiments, as the EnKF may collapse due to very low standard deviation
on EnKF. Sequential data assimilation algorithms require a stochastic version of the estimate. Spatially
correlated noise may be set on the temperature flux, in OpenDA specified as heat flux, to tackle this.
Due to time constraints for this thesis, it has not been accomplished to set noise on the temperature.
Therefore, assimilation of temperature at the water surface is investigated, but the results may be
inaccurate. Additionally, assimilation of water velocity at the water surface is investigated.
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Figure 7.6: Stochastic estimates of the 2D estuary model over two days starting at 1991-01-01 00:00. Top: Waterlevel . Middle:
Water velocity at the water surface with -layer 20. Bottom: Temperature at the water surface with -layer 20. Computed
with Delft3D FM and OpenDA.
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7.2. Experiment setup
The twin experiments to investigate the assimilation of observations with the Ensemble Kalman filter
on the model specified in section 7.1 are mentioned. Especially, the focus lies on assimilation of water
surface parameters, and the effect on the estimates within the water column. The experiments are
given here:
1. Effect of assimilation location

This experiment, related to experiment 3 in section 6.2, will test the effect of assimilation at dif-
ferent locations. To that end, waterlevel observations are assimilated at Station01, Station02,
Station03 and all possible combinations of these stations, to see if the filter improves the esti-
mate. The true state is chosen from the stochastic model and observations are generated as
explained in section 5.2 with R = 0.01I.

2. Effect of observation error covariance R
This experiment, related to experiment 5 in section 6.2, will test the effect of the observation error
covariance R on the estimate. The model error covariance is kept at a value of 0.2, while the
observation error covariance R is varied from 0.01I to I. Both values of observation error covari-
ance below and above the model error covariance are chosen. This is done to analyze the effect
of the Kalman Gain between the model error covariance and observation error covariance on the
estimate. The true state is chosen from the stochastic model and observations are generated as
explained in section 5.2 with varying R .

3. Effect of surface assimilation of water velocity on estimate within water column
Since the 2D model has depth included, experiments are setup to investigate if the Ensemble
Kalman filter can improve the estimation of physical parameters within the water column. This
is only possible for physical variables other than waterlevel. Water velocity observations are
assimilated on the surface at 𝜎-layer 20 in Station01, Station02 and Station03. It is investigated
if water velocity assimilation on the surface will improve the estimates in the water column. To
that end, the estimates in the 𝜎-layers: 4, 8, 12, 16 (within water column) and 20 (at the water
surface) below the stations are investigated, see Figure 7.7. The true state is chosen from the
stochastic model and observations are generated as explained in section 5.2 with R = 0.01I.

Station03Station02Station01

Figure 7.7: The grid of the 2D model, view of the -plane. Water velocity or temperature at the water surface ( -layer 20) in
Station01, Station02 and Station03 is assimilated (in red). The estimates of water velocity or temperature in -layers 4, 8, 12,
16 and 20 (in green and red) are investigated.
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4. Effect of surface assimilation of temperature on estimate within water column
Similarly to experiment 3, it is investigated if temperature assimilation on the surface will improve
the estimates in the water column. Therefore, temperature observations are assimilated on the
surface at 𝜎-layer 20 in Station01, Station02 and Station03. The estimates in the 𝜎-layers: 4, 8,
12, 16 (within the water column) and 20 (at the water surface) below the stations are investigated,
see Figure 7.7. The true state is chosen from the stochastic model estimations and observations
are generated as explained in section 5.2 with R = 0.01I.

7.3. Results
In this section, the three experiments mentioned in section 7.2 are executed and the results shown and
examined.

In Figure 7.8, the model prediction and chosen true state for waterlevel for Station01 is shown. Indeed,
the model prediction has standard deviation of around 0.2 m. The true state is clearly taken from the
model due to the prediction laying in the standard deviation zone from the model estimate.

Figure 7.8: The waterlevel estimates over two days starting at 1991-01-01 00:00. Blue: The estimate of the model. Light blue:
standard deviation of the model estimate. Black striped: chosen true state from the model.

Again, many estimates of performed EnKF model runs could be shown showing the estimates of wa-
terlevel, water velocity and temperature, where only a few will be shown here. In experiment 1 and
2, only waterlevel is considered. The EnKF estimations for assimilation of waterlevel observations at
Station01, Station02 and Station03 with R = 0.01I are shown in Figure 7.9. The figures show that the
estimate of waterlevel in Station01 and Station02 are very accurate. However, the true state and thus
the EnKF estimate do not seem smooth, due to the many non-differentiable function pieces. It can be
argued that the true state is not generated smoothly in OpenDA. For Station03, the standard deviation
of the EnKF prediction is larger than in Station01 and Station02. Although the EnKF clearly gives a
better estimation, the error in Station03 is higher.

In Figure 7.10, the EnKF estimations for assimilation of waterlevel observations at Station01, Station02
and Station03 with R = 0.5I are shown. Since the observations are relatively far away from the true
state, it is expected that the predictions of the EnKF will not be much better than the model predictions.
This is also seen in Figure 7.10, although it seems the EnKF does change in estimation from the model.
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Figure 7.9: The waterlevel estimates over two days starting at 1991-01-01 00:00. Top: Station01. Middle: Station02. Bottom:
Station03. Blue: The estimate of the model. Light blue: standard deviation of the model estimate. Red: Estimate of EnKF with
assimilated waterlevel observations at Station01, Station02 and Station03 with R . I. Yellow: standard deviation of the
EnKF estimate. Black striped: chosen true state from the model. Black crosses: generated observations.
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Figure 7.10: The waterlevel estimates over two days starting at 1991-01-01 00:00. Top: Station01. Middle: Station02. Bottom:
Station03. Blue: The estimate of the model. Light blue: standard deviation of the model estimate. Red: Estimate of EnKF with
assimilated waterlevel observations at Station01, Station02 and Station03 with R . I. Yellow: standard deviation of the
EnKF estimate. Black striped: chosen true state from the model. Black crosses: generated observations.
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7.3.1. Effect of assimilation location

This experiment, related to experiment 3 in section 6.2, will test the effect of assimilation at different
locations. To that end, waterlevel observations are assimilated at Station01, Station02, Station03 and
all possible combinations of these stations, to see if the filter improves the estimate. The true state
is chosen from the stochastic model and observations are generated as explained in section 5.2 with
R = 0.01I. The rmse between the true state and the model and EnKF predictions are shown in
Figure 7.11.

Station03Station02Station01

Figure 7.11: rmse in waterlevel estimation per measuring station for the model and EnKF for assimilation of waterlevel at
respectively S1 (Station01), S2 (Station02), S3 (Station03), S1 S2, S1 S3, S2 S3 and S1 S2 S3 with R . I.

All EnKF estimates have smaller rmse than the model, and thus all EnKF estimates give a more accu-
rate estimate than the model. Furthermore, at Station01 and Station02 the assimilation of observations
at multiple station gives a better estimate. Most important for the estimation at Station02 is the assim-
ilation of observations at Station03, which gives the greatest reduce in rmse. For the estimation at
Station01, both assimilation of observations at Station02 and Station03 is most beneficial, while assim-
ilation of only observations at Station01 reduces the rmse by a half. The rmse in estimation at Station03
does not reduce as much as in Station01 or Station02. The hypothesis it that this the case due to the
fact how the model propagates the noise through the water in the 𝑥-direction. As the noise is set on
the east boundary near to Station03, more noise is coming into the water column than the EnKF can
keep up with.

7.3.2. Effect of observation error covariance

This experiment, related to experiment 5 in section 6.2, will test the effect of the observation error co-
varianceR on the estimate. The model error covariance is kept at a value of 0.2, while the observation
error covariance R is varied from 0.01I to I. Both values of observation error covariance below and
above the model error covariance are chosen. This to see the effect of the Kalman Gain between the
model error covariance and observation error covariance on the estimate. The true state is chosen
from the stochastic model and observations are generated as explained in section 5.2 with varying R .
The rmse between the true state and the model and EnKF predictions are shown in Figure 7.12.
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Station03Station02Station01

Figure 7.12: rmse in waterlevel estimation per measuring station for the model and EnKF for assimilation of waterlevel at
Station01, Station02 and Station03 with varying R .

All EnKF estimates have smaller rmse than the model, and thus all EnKF estimates give a more accu-
rate prediction than the model. Furthermore, at Station01 and Station02 the assimilation of observa-
tions with decreasing R gives an decreasing rmse and thus a better estimation. Again as discussed
in subsection 7.3.1 the estimation at Station03 does not improve much by assimilation of observations.
For Station01 and Station02, assimilation has a big effect on the accuracy.

7.3.3. Effect of surface assimilation of 𝑢 on estimate within water column

Water velocity observations are assimilated at the water surface at Station01, Station02 and Station03.
Time series of water velocity model estimates and water velocity estimates with EnKF at Station01 and
Station03 for 𝜎-layers 20 (at water surface), 12 and 4 (within water column) are shown in Figure 7.13 and
Figure 7.14 respectively. When comparing both Figure 7.13 and Figure 7.14, it stands out that the EnKF
estimate has a smaller standard deviation for Station01 than Station03, as seen as well in experiment
1 and 2 for the estimate in waterlevel. Where the EnKF gets the estimate close to the true state at
Station01 (and similarly for Station02), the estimate at Station03 is a bit less accurate. Furthermore,
assimilation of water velocity observations at the water surface seems to predict the conditions in the
water column quite well for Station01, as all EnKF estimates seem to lay closer to the true state.

In Figure 7.15, the rmse in water velocity model and EnKF estimate for different 𝜎-layers is displayed.
The EnKF estimate has always lower rmse than the model estimate counterpart. For Station01 and
Station02, the rmse for estimate with EnKF is two times lower than the model estimate counter part.
For Station03, the rmse for EnKF is only slightly lower as discussed earlier. To conclude, it may be
beneficial to assimilate observations at the water surface to get a two times more accurate estimate
within the water column.
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Figure 7.13: The water velocity estimates at Station01 over two days starting at 1991-01-01 00:00. Top: -layer 20 (water
surface). Middle: -layer 12. Bottom: -layer 4. Blue: The estimate of the model. Light blue: standard deviation of the
model estimate. Red: Estimate of EnKF with assimilated water velocity observations at -layer 20 in Station01, Station02 and
Station03. Yellow: standard deviation of the EnKF estimate. Black striped: chosen true state from the model. Black crosses:
generated observations.
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Figure 7.14: The water velocity estimates at Station03 over two days starting at 1991-01-01 00:00. Top: -layer 20 (water
surface). Middle: -layer 12. Bottom: -layer 4. Blue: The estimate of the model. Light blue: standard deviation of the
model estimate. Red: Estimate of EnKF with assimilated water velocity observations at -layer 20 in Station01, Station02 and
Station03. Yellow: standard deviation of the EnKF estimate. Black striped: chosen true state from the model. Black crosses:
generated observations.
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Station03Station02Station01

Figure 7.15: rmse in water velocity estimate for the model and EnKF for assimilation of water velocity at Station01, Station02
and Station03 in -layer 20. The rmse for both model and EnKF is shown at different -layers: 4, 8, 12, 16, 20, per measuring
station Station01, Station02 and Station03.

As already stated in subsection 6.3.3, assimilation of velocity 𝑢 does not result in a significant better
estimate of the waterlevel ℎ. Figure 7.16 shows the rmse per measuring station in waterlevel estimate
for the model without EnKF and EnKF with water velocity at the water surface assimilated. The values
of the rmse in Figure 7.16 comply with this statement, the estimates become slightly better or slightly
worse.

Station03Station02Station01
Figure 7.16: rmse in waterlevel estimate for the model and EnKF for assimilation of water velocity at Station01, Station02
and Station03 in -layer 20. Plotted per measuring station Station01, Station02 and Station03.

7.3.4. Effect of surface assimilation of 𝑇 on estimate within water column
Similarly to experiment 3, time series of temperature model estimates and temperature estimates with
EnKF estimates with assimilation of temperature at the water surface at Station01 and Station03 for
𝜎-layers 20 (at water surface), 12 and 4 (within water column) are shown in Figure 7.17 and Figure 7.18
respectively.
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Figure 7.17: The temperature estimate at Station01 over two days starting at 1991-01-01 00:00. Top: -layer 20 (water sur-
face). Middle: -layer 12. Bottom: -layer 4. Blue: The estimate of the model. Light blue: standard deviation of the model
esimate. Red: Estimate of EnKF with assimilated temperature observations at -layer 20 in Station01, Station02 and Station03.
Yellow: standard deviation of the EnKF estimate. Black striped: chosen true state from the model. Black crosses: generated
observations.
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Figure 7.18: The temperature estimate at Station03 over two days starting at 1991-01-01 00:00. Top: -layer 20 (water sur-
face). Middle: -layer 12. Bottom: -layer 4. Blue: The estimate of the model. Light blue: standard deviation of the model
estimate. Red: Estimate of EnKF with assimilated temperature observations at -layer 20 in Station01, Station02 and Station03.
Yellow: standard deviation of the EnKF estimate. Black striped: chosen true state from the model. Black crosses: generated
observations.
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When comparing both Figure 7.17 and Figure 7.18, it stands out that the EnKF estimate has smaller
standard deviation for Station01 than Station03, as seen as well in experiment 1 and 2 for the estimate
in waterlevel. However, for both Figure 7.17 and Figure 7.18 at all 𝜎-layers, the EnKF does deviate
a lot from the true state. It seems that the EnKF cannot give a better estimate in this case. Only for
𝜎-layer 20, where the observations are assimilated, the estimate is a bit closer to the true state than in
other 𝜎-layers.
In Figure 7.19, the rmse between the true state and model and EnKF estimates are shown. It confirms
that the EnKF produces estimates with higher rmse than the model does. It seems for Station01, the
rmse is two times as large, for Station02, only slightly larger, and for Station03 more than two times as
large, at the same 𝜎-layer.

Station03Station02Station01

Figure 7.19: rmse in temperature estimate for the model and EnKF for assimilation of temperature at Station01, Station02
and Station03 in -layer 20. The rmse for both model and EnKF is shown at different -layers: 4, 8, 12, 16, 20, per measuring
station Station01, Station02 and Station03.

These results may be due to the fact that the model standard deviation is not constant over the whole
time period. The amount by which the model is updated is determined by the Kalman Gain (see Equa-
tion 4.5), or the trade-off between the model error covariance and the observational error covariance.
When a sharp decrease in model error covariance occurs, the Kalman Gain quickly changes, which
could interrupt clear estimate. This happens on occasion in the top figures in Figure 7.17 and Fig-
ure 7.18. However the most likely explanation is given by [61]. [61] states that the EnKF may collapse
when a too-low standard deviation on the EnKF estimate is present. Indeed in every figure in Fig-
ure 7.17 and Figure 7.18, the EnKF estimates have very low standard deviation at least around time
steps 10, 22 and 34. A hypothesis is that the EnKF thus collapses and therefore does not give good
estimates.
[61] overcomes the collapsing filter by stopping the algorithm before it collapses, initiating a new ensem-
ble from that time step with the results of the ended run and executing the model on this new ensemble.
This may be researched in a later stage. However, it is advised in that case to set spatially correlated
noise on the temperature to create noise with more constant standard deviation. The hypothesis is that
this experiment may produce better estimates for temperature, as it does for water velocity.
Furthermore, the model itself may be tweaked further. The model has initial waterlevel of 6 ∘C, while
the air temperature is 30 ∘C. This is not very realistic. More than two days may be examined as well,
since the spin-up time for water temperature is larger than two days.





8
DCSM model

The 3DDCSMmodel is a hydrodynamic and water quality model, which covers the northwest European
continental shelf, see Figure 8.1. There are different versions of this model. The one described here
is the version made with an unstructured grid in Delft3D FM, see section 3.5.

Figure 8.1: Left: Bathymetry (depth profile) of the DCSM model. Right: Resolutions (grid sizes) of the DCSM model. Bottom:
Description colors of different resolutions within right figure. Figure retrieved from [27].

A detailed description of all settings in the model is given in [85, 88]. A few are mentioned here. The
grid of the model consists of approximately 630,000 cells and is designed to have a resolution that
increases with decreasing water depth. The differences in resolution allows for high resolution in areas
of interest, such as coastal areas and areas near boundary conditions, while the computational time is
decreased by lower resolution in other areas. For the vertical layers of the grid, the 𝜎-layer approach is
used, see section 3.5.1. For the DCSM model, 20 𝜎-layers with a uniform thickness of 5% of the local
water depth are applied.
At the open ended water boundaries at the northern, western and southern side, waterlevel boundary
conditions are applied with astronomical waterlevels obtained from the harmonic expansion of 32 tidal
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constituents. Temperature boundary conditions are obtained from a dataset World Ocean Atlas 2013
[38] and temperature is modelled using heat-flux models. A discharge is present through 10 incoming
rivers in the Netherlands and Germany. The model has been validated with measurements from mea-
suring stations along the coastline, see Figure 8.2. The rmse is about 9 to 10 cm for waterlevel and 0.7
∘C for temperature [27], while a more detailed validation is presented in [88].

Figure 8.2: The measurement stations present at the DCSM model and used for validation of the DCSM model [85]. Figure
retrieved from [85].

The high-resolutional model covering a large area has its disadvantages. The computational time
to progress this model is 13 minutes per simulation-day, which means 3,3 days per simulation-year.
Therefore, running experiments with this model is quite time consuming.
The Belgian pilot lies within the red coastal area in Figure 8.1, with a resolution (grid size) of approx-
imately 0.5nm (nautical miles, 1nm = 1.85km). To reduce the computational time, a subset of the
DCSM grid can be taken where redundant areas will be neglected, but all important tidal effects are
still present.
Applying data assimilation and the Ensemble Kalman filter will be the next step for producing a high-
resolutional forecasting system for the Belgian pilot in the UNITED project. With slight adjustments in
OpenDA, it should be possible to assimilate water temperature for the DCSM model as performed with
the 2D model in subsection 7.3.4. On this scale, localization as addition to the Ensemble Kalman filter,
as mentioned in section 1.3, can be applied. It will assure that the effect of assimilation will be present
only in the local proximity of the measuring stations. It is beyond the scope of this thesis to go into
much more detail to test this model.
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Conclusions

This thesis aims to show the effect of the data assimilation algorithm the Ensemble Kalman filter on
estimates of waterlevel, water velocity and temperature in models for the Western Scheldt estuary. A
1D model and a 2D model are investigated, where twin experiments provided the basis for comparison
between the models without and with assimilation of generated observations. The 1D model has been
implemented in Python and provided for understanding the Ensemble Kalman filter. The software
packages Delft3D FM and OpenDA are used for the implementation of the 2D model. These software
packages will be needed in the future for a high-resolutional forecasting system using the DCSMmodel
for monitoring and operations for the Belgian pilot of the UNITED project.
The research questions posed in section 1.4 provided the main goals for this thesis and are answered
by the conclusions found by experimenting with the two different models examined in this thesis.

• How much does the implementation of the Ensemble Kalman filter on the hydrodynamic models
improve the prediction of waterlevel, water velocity and temperature in comparison to the predic-
tion of only the hydrodynamic model?

The estimate accuracy depends on the model settings and settings of the Ensemble Kalman filter.
The Ensemble Kalman filter applied on the 1D model with assimilation of waterlevel and water
velocity showed improvement in all cases where observations close to the model predictions
were used. The magnitude of improvement varies with different settings for the model and EnKF
parameters, in the best case an improvement of four times the accuracy, in lesser cases only
slight improvement. For the 2D model assimilation of waterlevel and water velocity observations
resulted in improved estimates, where assimilation of temperature resulted in worse estimates.

• Assimilation of which physical variable gives the greatest reduction in prediction errors?

The assimilation of waterlevel gives the greatest reduction in prediction errors. For the 1D model,
assimilation of waterlevel had the most effect on decreasing the rmse for the estimation. Assimi-
lation of water velocity lowered the rmse, but assimilation of only waterlevel at the same location
offered better estimations.

• What is the influence of assimilation applied at different locations on the prediction?

The influence of assimilation is location dependent. Assimilation locations close to or at Cadzand
in the 1D model have proven to give the most accurate estimates. In the 2D model, assimilation
at the estimates for Station01 improve most by assimilation of observations at Station02 and
Station03. Estimates for Station02 improve most by assimilation of observations at Station03.
Since both Cadzand and Station03 are located close to the tidal boundary condition with added
noise, the hypothesis is that assimilation at locations close to boundary conditions with introduced
noise is most beneficial. However, providing definitive proof for this was not the aim of this thesis.
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• How much does the estimation through the water column in a 2D model with depth improve by
assimilating only observations at the surface for e.g. water velocity or temperature?

For water velocity a decrease in rmse for assimilated model of two times the initial rmse for the
model was discovered for some of the observed locations. Temperature assimilation was exe-
cuted but proved to give worse estimates than the model itself. A possible explanation for this
may be the absence of constant model error covariance, causing the Kalman Gain in the Ensem-
ble Kalman filter to change quickly, which could cause rapid changes in estimates. Furthermore,
a collapse of the Ensemble Kalman filter could be occuring due to small standard deviation of
the estimation. This may be resolved by restarting the algorithm before the filter collapses, by
creation of a new ensemble at this time.

Based on this research, multiple ways to go forward could be investigated. Firstly, we recommend
researching if temperature assimilation in a different model setup with more realistic longer spin-up
time of temperature, will give rise to better estimate accuracy within the water column. Then, a collaps-
ing Ensemble Kalman filter can be prevented by initializing a new ensemble just before the collapse
occurs. Furthermore, assimilation of other physical variables, such as salinity and suspended particu-
late matter, is advised to investigate to see if assimilation on the surface will result in better estimation
within the water column. The answer to these questions will determine whether assimilation of surface
observations will improve forecasts within the water column sufficiently or not, for physical variables
important for cultivation of seaweed and flat oysters.
Although with slight adjustments in OpenDA, it should be possible to assimilate water temperature for
the DCSMmodel as we have provided a first proof of concept with the 2D model of the Western Scheldt
implemented in Delft3D FM. Experiments to see where assimilation is best to apply and possibly apply
localization to reduce the effect of assimilation to only the local proximity of the assimilation locations.
Other interesting questions may be to look at how far in the future the model with assimilation still gives
accurate predictions.



A
Derivations model error covariance

In this appendix, a result needed for derivation of the optimal Kalman Gain in section 4.2 is derived:

P ≡ Cov(x − x ) = P −K H P − P H K +K (H P H +R )K . (A.1)

Using the definitions ofP = Cov(x −x ), P = Cov(x −x ), x = x +K (z −H x ),R = Cov(v )
and z = H x+ v and covariance properties:

P ≡ Cov(x − x ) ⟺
P = Cov[x − (x +K (z −H x ))] ⟺
P = Cov(x − [x +K (H x + v −H x )]) ⟺
P = Cov[(I−K H )(x − x ) −K v ] ⟺
P = Cov[(I−K H )(x − x )] + Cov[K v ] ⟺
P = (I−K H )Cov(x − x )(I−K H ) +K Cov(v )K ⟺
P = (I−K H )P (I−K H ) +K R K ⟺
P = P −K H P − P H K +K (H P H +R )K .

Furthermore, the formulation of the analysis model error covariance P , used in the Kalman filter in
algorithm 3 is derived, using Equation A.1 and the optimal Kalman Gain K = P H (H P H +R )
(Equation 4.5):

P = P −K H P − P H K +K (H P H +R )K ⟺
P = P −K H P − P H K + (P H (H P H +R ) )(H P H +R )K ⟺
P = P −K H P ⟺
P = (I−K H )P ,

and therefore:
P = (I−K H )P . (A.2)
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Additional estimates 1D model

experiment 3

EnKF ℎ Cad

Figure B.1: The waterlevel estimates at Vlissingen over two days, computed with the hydrodynamic model and EnKF Cad
with settings in Table 6.1. Left: over two days from 5th of December until 7th of December. Right: Zoomed in peak between 5th
of December 12:00 and 5th of December 19:00. Blue: The estimate of the model. Light blue: standard deviation of the model
estimate. Red: Estimate of EnKF Cad. Yellow: standard deviation of EnKF Cad. Black striped: chosen true state from the
model. Black dots: generated measurements.
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Figure B.2: The velocity estimates at Vlissingen over two days, computed with the hydrodynamic model and EnKF Cad with
settings in Table 6.1. Left: over two days from 5th of December until 7th of December. Right: Zoomed in peak between 6th of
December 10:00 and 6th of December 17:00. Blue: The estimate of the model. Light blue: standard deviation of the model
estimate. Red: Estimate of EnKF Cad. Yellow: standard deviation of EnKF Cad. Black striped: chosen true state from the
model.

EnKF ℎ Ba

Figure B.3: The waterlevel estimates at Vlissingen over two days, computed with the hydrodynamic model and EnKF Ba with
settings in Table 6.1. Left: over two days from 5th of December until 7th of December. Right: Zoomed in peak between 5th of
December 12:00 and 5th of December 19:00. Blue: The estimate of the model. Light blue: standard deviation of the model
estimate. Red: Estimate of EnKF Ba. Yellow: standard deviation of EnKF Ba. Black striped: chosen true state from the
model. Black dots: generated measurements.
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Figure B.4: The velocity estimates at Vlissingen over two days, computed with the hydrodynamic model and EnKF Ba with
settings in Table 6.1. Left: over two days from 5th of December until 7th of December. Right: Zoomed in peak between 6th of
December 10:00 and 6th of December 17:00. Blue: The estimate of the model. Light blue: standard deviation of the model
estimate. Red: Estimate of EnKF Ba. Yellow: standard deviation of EnKF Ba. Black striped: chosen true state from the
model.

EnKF 𝑢 Cad

Figure B.5: The waterlevel estimates at Vlissingen over two days, computed with the hydrodynamic model and EnKF Cad
with settings in Table 6.1. Left: over two days from 5th of December until 7th of December. Right: Zoomed in peak between 5th
of December 12:00 and 5th of December 19:00. Blue: The estimate of the model. Light blue: standard deviation of the model
estimate. Red: Estimate of EnKF Cad. Yellow: standard deviation of EnKF Cad. Black striped: chosen true state from the
model. Black dots: generated measurements.
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Figure B.6: The velocity estimates at Vlissingen over two days, computed with the hydrodynamic model and EnKF Cad with
settings in Table 6.1. Left: over two days from 5th of December until 7th of December. Right: Zoomed in peak between 6th of
December 10:00 and 6th of December 17:00. Blue: The estimate of the model. Light blue: standard deviation of the model
estimate. Red: Estimate of EnKF Cad. Yellow: standard deviation of EnKF Cad. Black striped: chosen true state from the
model.

EnKF 𝑢 Ha

Figure B.7: The waterlevel estimates at Vlissingen over two days, computed with the hydrodynamic model and EnKF Ha with
settings in Table 6.1. Left: over two days from 5th of December until 7th of December. Right: Zoomed in peak between 5th of
December 12:00 and 5th of December 19:00. Blue: The estimate of the model. Light blue: standard deviation of the model
estimate. Red: Estimate of EnKF Ha. Yellow: standard deviation of EnKF Ha. Black striped: chosen true state from the
model. Black dots: generated measurements.
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Figure B.8: The velocity estimates at Vlissingen over two days, computed with the hydrodynamic model and EnKF Ha with
settings in Table 6.1. Left: over two days from 5th of December until 7th of December. Right: Zoomed in peak between 6th of
December 10:00 and 6th of December 17:00. Blue: The estimate of the model. Light blue: standard deviation of the model
estimate. Red: Estimate of EnKF Ha. Yellow: standard deviation of EnKF Ha. Black striped: chosen true state from the
model.
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Additional estimates 1D model

experiment 4

𝑇 = 2𝑇 = 2𝑇 = 2ΔΔΔ𝑡𝑡𝑡

Figure C.1: The waterlevel estimates at Vlissingen over two days, computed with the hydrodynamic model and the EnKF5 with
assimilation frequency of and furthermore with settings in Table 6.1. Left: over two days from 5th of December until 7th
of December. Right: Zoomed in peak between 5th of December 12:00 and 5th of December 19:00. Blue: The estimate of the
model. Light blue: standard deviation of the model estimate. Red: Estimate of EnKF5. Yellow: standard deviation of EnKF5.
Black striped: chosen true state from the model. Black dots: measurements.
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Figure C.2: The velocity estimates at Vlissingen over two days, computed with the hydrodynamic model and the EnKF5 with
assimilation frequency of and furthermore with settings in Table 6.1. Left: over two days from 5th of December until 7th
of December. Right: Zoomed in peak between 6th of December 10:00 and 6th of December 17:00. Blue: The estimate of the
model. Light blue: standard deviation of the model estimate. Red: Estimate of EnKF5. Yellow: standard deviation of EnKF5.
Black striped: chosen true state from the model.

𝑇 = 10𝑇 = 10𝑇 = 10ΔΔΔ𝑡𝑡𝑡

Figure C.3: The waterlevel estimates at Vlissingen over two days, computed with the hydrodynamic model and the EnKF5 with
assimilation frequency of and furthermore with settings in Table 6.1. Left: over two days from 5th of December until
7th of December. Right: Zoomed in peak between 5th of December 12:00 and 5th of December 19:00. Blue: The estimate of the
model. Light blue: standard deviation of the model estimate. Red: Estimate of EnKF5. Yellow: standard deviation of EnKF5.
Black striped: chosen true state from the model. Black dots: measurements.
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Figure C.4: The velocity estimates at Vlissingen over two days, computed with the hydrodynamic model and the EnKF5 with
assimilation frequency of and furthermore with settings in Table 6.1. Left: over two days from 5th of December until
7th of December. Right: Zoomed in peak between 6th of December 10:00 and 6th of December 17:00. Blue: The estimate of the
model. Light blue: standard deviation of the model estimate. Red: Estimate of EnKF5. Yellow: standard deviation of EnKF5.
Black striped: chosen true state from the model.

𝑇 = 40𝑇 = 40𝑇 = 40ΔΔΔ𝑡𝑡𝑡

Figure C.5: The waterlevel estimates at Vlissingen over two days, computed with the hydrodynamic model and the EnKF5 with
assimilation frequency of and furthermore with settings in Table 6.1. Left: over two days from 5th of December until
7th of December. Right: Zoomed in peak between 5th of December 12:00 and 5th of December 19:00. Blue: The estimate of the
model. Light blue: standard deviation of the model estimate. Red: Estimate of EnKF5. Yellow: standard deviation of EnKF5.
Black striped: chosen true state from the model. Black dots: measurements.
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Figure C.6: The velocity estimates at Vlissingen over two days, computed with the hydrodynamic model and the EnKF5 with
assimilation frequency of and furthermore with settings in Table 6.1. Left: over two days from 5th of December until
7th of December. Right: Zoomed in peak between 6th of December 10:00 and 6th of December 17:00. Blue: The estimate of the
model. Light blue: standard deviation of the model estimate. Red: Estimate of EnKF5. Yellow: standard deviation of EnKF5.
Black striped: chosen true state from the model.
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model

Figure D.1: Deterministic estimate of water velocity ( , ) at -layer 4 of the 2D estuary model, plotted as a function of position
and time after 1991-01-01 00:00.
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Figure D.2: Deterministic estimate of temperature ( , ) at -layer 4 of the 2D estuary model, plotted as a function of position
and time after 1991-01-01 00:00.
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Figure D.3: Deterministic estimates of the 2D estuary model, plotted as a function of position and time after 1991-01-01
00:00. Top: Velocity ( , ) at -layer 8. Bottom: Temperature ( , ) at -layer 8.
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Figure D.4: Deterministic estimates of the 2D estuary model, plotted as a function of position and time after 1991-01-01
00:00. Top: Velocity ( , ) at -layer 12. Bottom: Temperature ( , ) at -layer 12.
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Figure D.5: Deterministic estimates of the 2D estuary model, plotted as a function of position and time after 1991-01-01
00:00. Top: Velocity ( , ) at -layer 16. Bottom: Temperature ( , ) at -layer 16.
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Figure D.6: Deterministic estimate of the depth profile of velocity ( , ) and temperature ( , ) at Station02 over two days after
1991-01-01 00:00, plotted as a function of time and -layers, where 1 is the water surface and 0 the bed level divided in 20
layers.
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Figure D.7: Deterministic estimate of the depth profile of velocity ( , ) and temperature ( , ) at Station03 over two days after
1991-01-01 00:00, plotted as a function of time and -layers, where 1 is the water surface and 0 the bed level divided in 20
layers.
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