Teaching Computational Thinking:
what do our educators need?

Julian de Groot

leacning
Computational
1 Ninking: wnat
dO OUr edycators
need’”

by

Julian de Groot

to obtain the degree of Master of Science
at the Delft University of Technology,
to be defended publicly on Thursday June 28, 2018 at 14:00 CET.

Student number: 4616316

Project duration: June 1, 2017 — June 28, 2018

Thesis committee: drs. M. Bruggink, TU Delft, supervisor
dr. ir. F. Hermans, TU Delft, supervisor
Prof. dr. M. de Vries, TU Delft, supervisor

This thesis is confidential and cannot be made public until June 28, 2018.

]
TUDelft

Preface

With pride I am able to present this thesis. It is the result of a research that I have conducted
between February 2017 and June 2018 to meet the graduation requirements of the master
Science Education and Communication for the subject Informatica. The research focused on
teachers’ needs, more specifically: the support they need teaching computational thinking
concepts. The completion of this work would not have been possible without the guidance,
support and help I received from many people. First and foremost I want to thank both
supervisors Martin Bruggink and Felienne Hermans who, despite the often vastly different
schedules, have guided me throughout each stage of the research and provided me with great
advice and useful information. Operating at the frontier of science in the field of education
and programming has been a great experience with you. I also want to thank co-supervisor
Marc de Vries for his time and effort concerning the ethical part of the research and Jo-
hannes Hofmeister and Jeroen Spandau for helping me out with the quantitative part of my
research. Furthermore I want to thank all course participants, respondents and colleagues
for the input they have provided. Ever since I set the goal to become a 1st degree computer
science teacher in 2009, I have studied each year next to my work to get where I am now
today. There were difficult times and it was not always easy to stay motivated. All this time
my family has been there for me to fall back on and provide me with the necessary support.
Finally with great love I want to thank my wife for her patience and support to take the final
steps in this journey I set myself on.

Julian de Groot
Middelharnis, June 2018

Summary

The educational landscape is changing to a more digitally oriented one. In this landscape
digital literacy has become an important aspect for future generations. In the Netherlands
a task-force, supported by the institute of curriculum development, Stichting Leerplan On-
twikkeling (SLO), has been assembled to define core objectives and learning goals for digital
literacy that are to be finalized by 2019. The SLO defined digital literacy with the follow-
ing four elements: ICT basic skills, computational thinking, information skills and media
awareness. Computational thinking, frequently taught through programming lessons, is of-
ten considered to be the most challenging component of digital literacy. Despite all the work
around planning and curriculum building, it is important that teachers’ perspective, their in-
volvement and professional development is thoroughly investigated and prepared to let them
teach the concepts of computational thinking (CT) with confidence. With a limited amount
of research focusing on teachers, this study aimed at identifying the needs for teachers who
are getting started teaching the concepts of CT. In the first part of the study examination of
teachers’ TPACK took place via semi-structured interviews. Assessment of learning was iden-
tified as a major challenge/need. Teachers expressed not being able to measure how much
and what a pupil has learned about CT-concepts and primarily used computer-based prac-
tical assignments as an assessment tool in a formative way. In the second part of the study
a lead-up survey was created to gain more insight about the used CT assessment tools and
teachers’ attitude towards CT assessment. To test whether attitude towards assessment and
assessment tool suitability was different for programming lessons, respondents were asked
to rate statements and assessment tool suitability within three different contexts (i.e. educa-
tion in general, their own subject and programming lessons). Despite a noticeable decrease in
summative score and an increase in formative score for programming lessons, no statistically
significant difference was found across the three contexts when measuring latent variables
for formative and summative assessment. However, several statistically significant differ-
ences were found measuring the suitability of assessment tools. In terms of programming
lessons, teachers rated not practical and not computer-based assessment tools significantly
lower in suitability while a set of small practical computer-based assignments were rated sig-
nificantly higher in suitability. Future research can focus on examining teachers’ arguments
with regard to the suitability scores that they have given and measuring attitude towards
assessment for programming in general.

Contents

Preface

Summary

1

Introduction

1.1 Background e e
1.2 Studygoals e
1.3 Research Question e

Theoretical Framework

2.1 Abrief history of digital literacy

2.2 Digital literacy inthe Netherlands

2.3 Computational Thinking e
2.3.1 Computational Thinking concepts and dispositions
2.3.2 Computational Thinking as digital competence
2.3.3 Computational Thinking and programming

2.4 Teaching computational thinking,
241 Educational activities
242 Contexts
2.4.3 Collaborative strategies
244 Tracing e e
245 Assessment
24.6 Toolsand CTrichenvironments

2.5 Teaching CT: the challenges and unresolvedissues
2.5.1 Professional development: back totheteachers

Research Method

3.1 Relevance andobjectives
3.2 Researchdesign e
3.3 Ethics e

Qualitative methods and data

4.1 Exploratory interviews

4.2 Professional developmentcourse e

4.3 CT TPACK coding scheme and interview format

4.4 Semi-structured interviewresultso Lo
441 Participants TPACK e
442 TPACKGapPS o o o e e e

4.5 Conclusion e

Quantitative methods and data

51 Respondents
5.2 Survey design
53 Surveyresults
54 Conclusion e

Contents 7
6 Research integrity 31
6.1 Researchproposal 31
6.2 Theoretical Framework 32
6.3 Exploratory interviews e 32
6.4 Professional development coursedesign 32
6.5 Courseobservations 33
6.6 Semi-structured interviews and surveydesign 33

7 Conclusion 35
7.1 Answering theresearchquestiono 35
7.1.1 Qualitative results: identifying the main challenge 35

7.1.2 Quantitative results: generalizing findings 36

7.1.3 Finalconclusion 36

7.2 Limitations and futurework 36
Bibliography 37
Appendices 45

Semistructured Interview Format
Intercoder reliability SPSS output

Coding scheme updates

Survey

A

B

C

D Final coding scheme
E

F Survey results open question
G

Discussion: Programming and CT

Introduction

1.1. Background

In a computerized and data-driven world using, understanding and creating systems that
solve the problems of our future becomes especially relevant. The importance of teaching
future generations the techniques to accomplish this were already clear for Papert in the 80s
[60] but were later on brought back to life by Wing [80] who redefined problem-solving in a
new age as computational thinking (CT).

Wing’s work has been steadily gaining attention over the years from researchers who are
trying to find a definition for CT, but also from policy makers. Computational thinking, often
associated with programming, coding and algorithmic thinking, has been put on the agenda
of the European Union as a 21st century skill but also as part of ’digital literacy’ [23]. This
prominent position of CT resulted in initiatives and research aimed at making computational
thinking part of compulsory education by teaching children how to program [75]. Besides
helping to solve future predicted shortages on the global job market, teaching every child
to program and think ’computationally’ also paves the way to digital citizenship and gives
children a new set of tools to express themselves and use in many contexts. Guided by this
awareness and importance, bringing computational thinking and its concepts into school
curricula has now become a focus for many countries[9].

The foundation of curriculum development (SLO) and public organization Kennisnet, which
help and contribute to changes of school curricula in the Netherlands, are helping a team'
build a digital literacy curriculum containing core objectives and learning goals, which will
be finalized by 2019. Digital literacy, according to SLO, contains four elements: ICT basic
skills, computational thinking, information skills and media awareness. Research shows
how schools experience difficulty bringing CT into their curricula[43]. Unfortunately, the
amount of research that focuses specifically on teachers and the challenges they are facing
teaching CT-concepts is still limited [10, 33, 69]. Preparing teachers to face these challenges
and understand the concepts of computational thinking (i.e. learn how to link them to their
own and other domains) can increase self-efficacy. Without knowing how concepts such as
abstraction, generalization, decomposition, algorithmic thinking and debugging apply in the
world around us, it cannot be expected of teachers to teach these things effectively and con-
fidently. With discovered links between teacher self-efficacy and student achievement [14] it
is logical to focus on the teachers, supporting them with pedagogical strategies and ways to
determine a learner’s development in computational thinking.

The TU Delft, as a partner of Bétasteunpunt Zuid-Holland, has started professional de-
velopment projects for digital literacy that specifically focus on helping teachers teach com-
putational thinking by letting children work on programming. Through this project teachers
learn about several CT concepts and pedagogical strategies to teach CT more confidently.
The study took place within the context of this professional development project.

1https://curriculum.nu/ontwikkelteam/digitale—geletterdheid/

9

https://curriculum.nu/ontwikkelteam/digitale-geletterdheid/

10 1. Introduction

1.2. Study goals

With an increasing shortage of teachers that are properly trained to teach CT-concepts cur-
riculum innovation runs the risk of failing as Webb et al. state [77]. Considering the cur-
rent focus on curriculum change in the Netherlands, it becomes evident proper training for
teachers is required and more insight in teachers’ needs and the challenges they face is nec-
essary. This study aims at identifying needs for teachers who are getting started applying
the concepts of computational thinking in their lessons. As such they can be more effectively
supported by policy makers, trainers and other educators. The recommendations and con-
clusions of this study can be used to speed up and improve the education of CT by focusing
on the teachers and their professional development.

1.3. Research Question

To reach the goals of this study the following research question was a main guideline:
What do our teachers need in order to teach computational thinking concepts?

In order to answer this question the following subquestions have to be explored:
1. What is the biggest challenge teachers are facing teaching computational thinking con-
cepts?
2. In what way can this challenge be overcome in terms of teacher support and professional
development?

Theoretical Framework

This chapter introduces digital literacy, its history and origin with Computational Thinking
(CT) as one of its components and main focus of this theoretical framework.

2.1. A brief history of digital literacy

The term ‘digital literacy’ was first used and simplified by Gilster in his book in 1997 in which
he describes it as an ‘essential life skill’ [29]. Since Gilster’s publication several researchers
have been conducting extensive review on the origin of the term, trying to understand its
scope and importance for education. It has since then become clear that whilst encompassing
multiple literacies over time, it has also become a more ambiguous term. [8, 38]

Digital literacy as we know it today has since its first use by Gilster become a collection of
several literacies: information-, computer-, library-, media- and network literacy. Analysis
of the literature by Bawden [6] shows us how computer-, media- and library literacy shaped
into ‘information literacy’ and later combined with computer- and network literacy would
form the concept of what we know today as ‘digital literacy’.

Driven by the focus on digital literacy from the European Commission, Fraillon et al. [26]
created a framework that encompasses all aspects of computer- and information literacy
(CIL) with four distinct levels and descriptions. Despite its growing ambiguity researchers
concluded the educational sector had to focus more on this ‘digital literacy’ to truly prepare
the children of today for the more software-driven world of tomorrow [13].

2.2. Digital literacy in the Netherlands

In the Netherlands the Dutch Ministry of Education, Culture & Science (Ministerie van OCW)
is tasked with the transformation of current curricula.

In 2016 the ministry created the platform ‘Onderwijs2032’ that aims to redesign current
school curricula so that they become more future-proof. One of the major contributors to
these curriculum changes is the institute of curriculum development, Stichting Leerplan
Ontwikkeling (SLO).

The platform released an advisory report with a strong focus on digital literacy:

"Digital literacy should be at the core of future-oriented education. This domain has four
components: information and communication technology (ICT) basic skills, information
skills, media awareness and computational thinking, which helps to understand how tech-
nology works.” [58, p. 33]

The report describes four components similar to those in Fraillon et al.’s framework [26]:
* ICT basic skills are required to take advantage of, understand and see the limits of the
way current technology, networks and other digital systems work.
* Information skills are required to effectively select, find, analyze, process and use spe-
cific information from (online) resources combined with assessing its quality, usability
and reliability.

11

12 2. Theoretical Framework

* Media awareness is required to form a certain mindset with which a person can un-
derstand the role of the media in our society in such a way that they can be an active
and critical consumer and they can act according to ethical norms involving privacy and
security.

* Computational thinking is required to be able to (re)formulate problems in such a
way that it becomes possible to solve it with computer technology. Generally but not
necessarily achieved by the use of ICT-tools (hard- and software) it is combined with
thinking skills that involve logical reasoning, (data) analysis, representation and pattern
recognition.

The SLO has released a draft curriculum' based on these four components in which it de-
scribes learning goals for several stages in primary education. The draft provides structure
to schools that seek help implementing digital literacy. A definitive version for both primary
and secondary education has not been released yet.

Computational thinking left behind

By the time SLO’s draft was released, several components of digital literacy had already been
known to schools as part of the 21st century skills. However, one component in particular,
computational thinking, received a lot of attention from the Royal Netherlands Academy of
Arts and Sciences (KNAW). The KNAW wrote a report [45] in which it pleads for immedi-
ate integration of ‘computational thinking’ into current school curricula and describes it as
follows:

“Computational thinking is a prerequisite for understanding and controlling the conse-
quences, chances and risks of digitizing information and communication.” [45, p. 18]

Digital literacy as described by SLO is still relatively new to most Dutch primary- and sec-
ondary schools even though many of its learning goals have already been implemented into
lesson programs of several subjects over the last years. The major component that many
schools are struggling to implement is computational thinking [43].

2.3. Computational Thinking

Since Wing [80] first used the term ‘Computational Thinking’ there have been several updates
by herself [79, 81] and other researchers explicating it further. In her first work Wing defines
it as:

“Computational thinking involves solving problems, designing systems, and understand-
ing human behavior, by drawing on the concepts fundamental to computer science. Com-
putational thinking includes a range of mental tools that reflect the breadth of the field of
computer science.” [80, p. 33]

Once her work caught more attention internationally in all types of sectors (education, pol-
itics, industry etc.) the topic was extensively explored but also interpreted in various ways.
As such there came a need to make the definition of CT more precise. Wing then redefined
CT as follows:

“Computational thinking is the thought processes involved in formulating problems and
their solutions so that the solutions are represented in a form that can be effectively carried
out by an information-processing agent.” [81, p. 1]

From her new definition it can be deducted that the thought processes in CT are not depen-
dent on technology and that there is a clear focus on problem-solving skills where the actual
steps towards the solution can be carried out by a person, a computer or both. Inspired
by Wing’s work, the Computer Science Teachers Association (CSTA) and the International
Society for Technology in Education (ISTE) created a CT framework [18] for teachers with
‘Learning Examples’ for direct use in the classroom. These ‘Learning Examples’ are based on
their developed operational definition of CT in which they describe its practices as follows:

1http://downloads.slo.nl/Repository/Computational%ZOthinking%ZOPO—VO%ZO(versie%203—2—2017)
.docx

http://downloads.slo.nl/Repository/Computational%20thinking%20PO-VO%20(versie%203-2-2017).docx
http://downloads.slo.nl/Repository/Computational%20thinking%20PO-VO%20(versie%203-2-2017).docx

2.3. Computational Thinking 13

Computational Thinking (CT) is a problem-solving process that includes (but is not limited
to) the following characteristics [18, p. 13]:

« Formulating problems in a way that enables us to use a computer and other tools to

help solve them.

Logically organizing and analyzing data.

« Representing data through abstractions such as models and simulations.

Automating solutions through algorithmic thinking (a series of ordered steps).

Identifying, analyzing, and implementing possible solutions with the goal of achiev-

ing the most efficient and effective combination of steps and resources.

« Generalizing and transferring this problem-solving process to a wide variety of prob-
lems.

Further finetuning on the definition of CT took place in 2016 when the CSTA published the
K-12 Computer Science Standards [19] in which they describe it as:

A problem-solving methodology that expands the realm of computer science into all disci-
plines, providing a distinct means of analysing and developing solutions to problems that
can be solved computationally. With its focus on abstraction, automation, and analysis,
CT is a core element of the broader discipline of computer science.” [19, p. 6]

Over the years, Wing’s definition and viewpoints on CT served as inspiration for the CSTA
and ISTE, but also for Computing at School (CAS) in the UK [39].

The frameworks of the CSTA, ISTE and CAS provide examples and pedagogical approaches
for ways in which CT can be embedded across all subjects for both primary and secondary
education. The importance of this implementation is further explained by Stephen Wolfram
[72] as ‘computational trends’. His overview of the ways in which CT-concepts play an impor-
tant role all around us, was also emphasized by The Royal Society [74] defining the essence of
CT as “applying tools and techniques from Computer Science to understand and reason about
both natural and artificial systems and processes.” [74, p. 29]

The CSTA and ISTE built their framework on nine unique CT-concepts that have been widely
discussed and studied by numerous researchers over time.

2.3.1. Computational Thinking concepts and dispositions

After Wing’s publication in 2006 and her redefinition of CT in 2011, a lot of research has
been performed exploring the concepts and skills of CT.

One of the key works in this quest for a clear definition and CT-framework is that of Barr
and Stephenson [4]. Their work is known for its model showing nine core CT-concepts &
capabilities where each relationship between a CT-concept and CT-capability is explained
through an example that can be used in the classroom. The concepts and capabilities are
shown in Table 2.1.

Barr and Stephenson’s nine core CT-concepts were used by the CSTA/ISTE working group
later that year for the development of their own framework [18].

In this framework the following list of dispositions is mentioned and described as CT ‘attitude’
[18, p. 7]

« Confidence in dealing with complexity

« Persistence in working with difficult problems

The ability to handle ambiguity

The ability to deal with open-ended problems

Setting aside differences to work with others to achieve a common goal or solution
« Knowing one’s strengths and weaknesses when working with others

Since Barr and Stephenson’s publication (2011), several highly cited works with a wide scope
have been released:
* Lee et al. [47] with their focus on creativity and design, introducing a use-modify-
create oriented CT-framework with K-12 classroom examples on modeling & simulation,
robotics and game design.

14 2. Theoretical Framework

* Brennan and Resnick [11] with their three dimensional classification of CT that uses a
subset of Barr and Stephenson’s concepts but expands their original dispositions and
attitudes with coding practices and perspectives to let learners understand others and
the world around them (see Table 2.2).

* Grover and Pea [33] and Selby [66] with their extensive literature review on Computa-
tional Thinking, that tries to find consensus by structuring the concepts and disposi-
tions from Barr and Stephenson and Brennan and Resnick.

In line with the views of The Royal Society [74], Yadav et al. [84] argue that the body of abilities,
knowledge and skills for Computational Thinking can be seen as a competence. They stress
its importance for individuals to thrive in today’s society, its place as 21st century skill and
the need to implement it in primary and secondary school curricula.

Table 2.1: Barr and Stephenson’s nine core CT-concepts and capabilities

Concepts Capabilities

Data collection

Algorithms & procedures

Computer Science (CS)

Data analysis

Automation

Math

Data representation Parallelization Science
Problem decomposition | Simulation Social studies
Abstraction Language Arts

Table 2.2: Brennan and Resnick’s practices and perspectives

Practices Perspectives
Being incremental and iterative | Expressing
Testing and debugging Connecting
Reusing and remixing Questioning

Abstracting and modularizing

2.3.2. Computational Thinking as digital competence

Voogt et al. attempted to speed up implementation of CT in compulsory education by provid-
ing an outline of what should be taught and how CT should be positioned in the curriculum
[75]. They argue that by adding lists of dispositions and attitude for CT, it runs the risk of
“diluting the idea of CT, blurring and making it indistinct from other 21st century skills (e.g.,
media information literacy).”

One year later in 2016 Gretter and Yadav present two approaches in which UNESCO’s com-
petencies for media & information literacy are merged with CT. In their work Gretter and
Yadav show how CT as a competency can fit in with 21st century skills and its competencies
without risking dilution as Voogt et al. mentioned.

Another year later in 2017 Yadav et al. show their way of exploring CT as an emerging com-
petence domain [84] and state that CT and its framework of cognitive dispositions "requires
students to develop both domain-specific and general problem-solving skills”. In their work
Yadav et al. also bring up the difficulty of separating CT cognitive processes from the actions
involved merely working with digital devices. They explain that letting someone build web-
pages involves the use of digital technology but does not necessarily foster the knowledge
needed in order to understand the concepts behind CT and argue, among others [25], that
working on CT-competencies should be more than programming.

2.3.3. Computational Thinking and programming
Wing [80] was very specific about the characteristics of Computational Thinking:

“Thinking like a computer scientist means more than being able to program a computer.
It requires thinking at multiple levels of abstraction.” [80, p. 34]

However, it is by programming many of the concepts behind CT are introduced as Lye and
Koh point out in their extensive review of 27 intervention studies [50]. Their general outline of

2.4. Teaching computational thinking 15

the CT-concepts and dispositions show that there is a focus on problem-solving skills [4, 47]
by using specific programming tools that foster CT [33, 82]. This brings us to the distinction
between CT and programming. Brennan and Resnick state that CT does not necessarily
require programming, but programming does provide a practical way to foster CT-concepts
[11]. Despite the clarification in literature about CT being more than programming [54], the
idea that they are the same persists [25]. Mitch Resnick stated:

“computational thinking is more than programming, but only in the same way that lan-
guage literacy is more than writing.” ... “programming, like writing, is a means of expres-
sion and an entry point for developing new ways of thinking.” [54, p. 13]

Programming, often being used interchangeably with the term ‘coding’, is the activity of solv-
ing a problem towards the design of a solution. The last ‘implementation’ step of writing down
the instructions for the computer to execute is referred to as coding. Along with Brennan
and Resnick’s framework [11] Duncan et al. reason that the skills required implementing the
solution (e.g. debugging and testing) is beyond coding and is part of CT, giving programming
a more prominent position [22].

This higher process and skill is often referred to as ”algorithmic thinking”, which is needed
to formulate the solution of a problem into an algorithm so that it can be implemented as a
computer program [12]. Lee et al. point out how CT overlaps with elements from other ‘types
of thinking’ (e.g. engineering thinking, design thinking, and mathematical thinking) and has
a strong connection with creativity [47].

Due to research such as Lee et al.’s, programming has been included in all types of Euro-
pean policy documents [24, 76] and found its way to classrooms all around the world [9].
Along with this surge in interest and necessity for curriculum refinement implications for
K-12 education arose [50].

2.4. Teaching computational thinking

As described in the previous sections, a surge of interest in computational thinking took
place. Inspired by Wing’s work [80] the National Research Council held workshops in 2010
and 2011 in which several experts explored the nature and scope of computational thinking
[54] and its pedagogical aspects [55].

During the first workshop several participants suggested and validated computational think-
ing’s close relationship with Seymour Papert’s notions and work on ‘procedural thinking’ [60].
The different views on how Papert’s notions could be built upon and how to best teach it be-
yond the use of computers and programming was the topic of the second workshop.

2.4.1. Educational activities

One of the starting points during this second workshop was the description of activities
associated with computational thinking. The following category of educationally relevant
activities, addressing ‘problems’ and possible solutions, were mentioned:

* Breaking big problems into smaller problems in the context of scientific models and vi-
sualizations in which students can interact with and explore visualizations and datasets
similar to the way scientists explore the natural world (e.g. chemical reactions, the hu-
man genome, plate tectonics, simulations on the laws of Newton).

* Cooperatively use computational media to build, create and invent solutions to prob-
lems along with the ability to express your ideas in computational terms. (e.g. build
an educational game as context for modeling of abstractions, determine the most envi-
ronment friendly energy solution by constructing, evaluating and communicating about
possible designs)

* Being able to apply ‘systems thinking’ as a way to understand and see the world as a
set of interacting social and physical environmental systems in which complex prob-
lems have to be addressed. (e.g. applied along with geography and earth science using
scientific visualizations of the climate to let learners reason how their behaviour affects
the planet as a whole)

16 2. Theoretical Framework

These categories of activities underline the application of computer science principles as a
way to increase our understanding of the world around us.

2.4.2. Contexts

The National Research Council participants argued that teachers are supported best by pro-
viding plentiful domain-specific content and contexts. To promote contextualization of learn-
ing CT the following examples were given [54, 55]:

CT in an IT context:

* Troubleshooting and general problem solving with electronic devices from everyday life
such as smartphones, computers and cameras that require the learner to understand
the concept of system states and boundary conditions.

* Game playing and game development to gain domain-specific knowledge by practicing
the modeling of abstractions.

* Working with simple models of physical phenomena to understand complex systems
and basic principles of science through simulations that allow learners to experiment
and tinker as a way of iterative refinement.

CT in a non-IT context, which is often referred to as unplugged?:

* Replay, structure and analyze processes from nature to gain a better understanding
and uncover the concepts of sequencing and algorithms behind them (e.g. model the
behaviour of bees in a beehive where scouts have to communicate with others to effi-
ciently gain access to nectar).

* Discussing, analyzing and understanding user interfaces as a critical part of CT because
of their specific role within a system where user input can affect program behavior while
also allowing users to see program output.

* Practicing sorting algorithms, principles of cryptography through kinesthetic activities
to let learners understand concepts that can affect us on a daily matter [21].

* Writing a story by iteratively writing and rewriting it, researching, collecting data, fact-
check information, debug elements and loop this process collaboratively similar to that
of the publishing of stories in a journalism.

Ursula Wolz is very clear on the CT concepts that can be found in journalism:

The similarities stem from the reliance of both fields on language. Languages can be nat-
ural as found in journalism or formal as found in computer science. Both formal and
informal languages involve access to information, aggregation of data, and synthesis of
information. Concepts of reliability, privacy, accuracy, and logical consistency are es-
sential to both formal and informal languages. Both involve knowledge representation
(e.g., determining the appropriate granularity for reporting a story or taking data) and
abstraction from cases. [55, p. 7]

Wolz’s description on the connection with language stresses the point of using plentiful
domain-specific content and teachers’ context awareness to show how CT concepts apply
for various domains.

2.4.3. Collaborative strategies
Both IT and non-IT context examples have in common that they can be strengthened by
applying collaborative strategies referred to as ‘computational participation’ [40, 41]:

* pair programming, as an industry technique in the classroom to improve learners’ abil-
ities communicating concepts, reviewing and designing code.

* peer mentoring, which is often described as having a secondary teacher or class tutor.
This strategy makes it possible for the teacher to share responsibility and regulate work
being done through the use of peer mentors.

* physical and virtual collaboration, in which learners can effectively execute team work
through digital learning environments, gather information and work on projects to form
new ways of online collaboration.

2http://www.csunplugged.nl/

http://www.csunplugged.nl/

2.4. Teaching computational thinking 17

Collaborative strategies such as pair programming have proven to work better for learners
than those that went through the learning process without it [50].

2.4.4, Tracing

Next to the set of earlier mentioned collaborative strategies, it is also important within IT
contexts where writing code is a common practice, to focus on code tracing to help learners
understand code. Research has made it clear that being good at programming requires the
necessary tracing and explaining skills [67]. An effective way to work on these skills is by
letting learners draw trace tables, storyboards, write pseudo-code and sketching out code
traces that visualize a program’s state to read and understand code better [20, 39].

Another option of visualizing processes and interpreting code, is by letting students create
state transition diagrams and flow charts as a way of pedagogical link-making [65]. The focus
on tracing, by drawing and working on ‘paper’ exercises to understand the concepts, is backed
by Lister in his epistemology of computer programming where he shows example exercises
and a waves-model describing the stages of programming reflecting the developmental stages
of Jean Piaget [48]. Lister describes how learners can progress beyond a preoperational stage
of programming by being guided through and shown many examples of code online. He
argues that additional steps would still be required to progress towards a concrete operational
and formal operational stage of programming. In this last stage a learner would be able to
reason logically, consistently and systematically about any written code.

Similarly, Nelson et al. [56] show the importance of tracing skills through a novel pedagogy
that focuses on teaching program semantics to explain computer behavior before writing
code. Letting learners trace code and train concepts ‘unplugged’ before letting them write
code has proven to be beneficial to the learning process [37].

Logically, a successful pedagogical strategy is not fully focused on one specific approach,
but combines elements, can follow multiple pathways and can provide learners with proper
accessibility and enough challenge.

2.4.5. Assessment

Collins and Halverson describe how education has entered the ‘lifelong learning’ era after
progressing through the apprenticeship and schooling eras [15]. In the lifelong learning’ era,
the pedagogy has evolved towards a "pedagogy of reliance on interaction” where rich techno-
logical environments often serve as tutor.

Collins and Halverson argue that despite having entered this era, the means of assessment
have not progressed but remained stuck in the ‘apprenticeship’ era. They argue that assess-
ment mostly takes place inside rich technological often computer-based environments where
learners get feedback and support to carry out tasks. Learning CT this way means that the
pedagogical strategies that teachers apply shift from a teacher-centered pedagogy towards a
more student-centered pedagogy [10]. Despite the wealth of potential in applying new ped-
agogical strategies, it has often been combined with a shift away from the traditional ‘direct
instruction’ approach which, based on recent research [73] through an extensive analysis of
328 studies, still proves to be superior compared to other educational methods.

Logically, for any pedagogical strategy to be successful there have to be proper means of as-
sessment. During the workshops of the National Research Council [54, 55] the participants
touch on this topic and stress the importance of rich learning environments that provide
necessary guidance and challenge for learners as they explore complex topics, study scien-
tific visualizations and collaborate with others. The council promotes the use of embedded
assessment in these technological environments in such a way that it provides immediate
feedback for learners but also allows teachers to monitor progress real-time for targeted tu-
toring.

Understanding the connections between several topics is mentioned as a key element for CT
and could be evaluated properly through a case study approach: learners would have to
design a solution to a problem, discuss its positives and negatives, provide evidence, eval-
uate and debug possible prototypes towards optimization. The council thinks a lab-centric
instruction would be ideal where a lot of hands-on time gives room for the necessary assess-
ment.

18 2. Theoretical Framework

Brennan and Resnick discuss the council’s design-oriented approach in their framework [11]
but also provide an overview of assessment strengths and limitations for other approaches.
Gouws et al. provide an additional framework [31] that describes the CT skill sets and the spe-
cific levels at which they can be practiced (e.g. recognize, understand, apply and assimilate).
Repenning et al. take this further by providing an embedded assessment framework through
their CTP Analysis (CTPA) tool that allows measurement of performance, CT skill progression
and transfer [64]. The organization Computing at School (CAS) then also released several
documents discussing ways to collect evidence of learning [39], formative assessment [42]
and an overview of indicators in their ‘Computing Progression Pathways’ that can be used as
an assessment framework [17].

CAS also announced the work on ‘Project Quantum™ that serves as an online open assess-
ment system to help educators. In the Netherlands the assessemnt framework of Eduscrum
is gaining attention. The framwork combines the team-based principles of SCRUM into an
educational setting *.

Another tool that can help teachers evaluate students work is Dr. Scratch®, which can pro-
vide specific feedback and assign CT scores to a given Scratch project [52].

Grover et al. and The Computer Science Education Research (CSER) Group in Australia
give an overview of assessment approaches and strategies, showing how various assessment
tools can be used to assess student learning in a formative and summative way [16, 34].
Any educator using these approaches has a starting point for assessment. However, without
agreement on strategies for teaching and analysis of methods, assessment of CT remains in
an early stage.

2.4.6. Tools and CT rich environments

In the previous sections several educational activities and focus points for pedagogical envi-
ronments were discussed, from which a set of criteria for CT tools and environments emerge
similar to that of Repenning et al. [63]:

* easy for beginners but challenging enough for advanced learners, often referred to as:
"low floor, high ceiling”.

* scaffolding the process in which tasks are solved incrementally with an increasing com-
plexity; examples are extending an existing program or debugging it.

* enables transfer in such a way that the introduced topics and connected concepts can
be applied or used to explain elements from other subjects and real-life examples to
support the contextualization of learning.

* systematic and sustainable in such a way that it can be used by all teachers for all
students, possibly with an existing curriculum.

* The use of interactive visualizations and simulations for modeling and promoting the
understanding of domain-specific contexts.

* The modeling and troubleshooting of data sets in order to gain understanding on its
limitations and possibilities by fitting it to models.

* Incorporates learner knowledge to tackle common misconceptions.

* Provides proper means of assessment to validate student achievement and CT develop-
ment.

* Searching for patterns in large data sets seeking out its dynamics and possible emergent
behavior.

6

For several of the items described above, researchers have investigated ways of bringing them
to classrooms. Lee et al. show how interactive visualizations can shape into an educationally
relevant activity [47]. With their project GUTS they propose a three-stage progression model
called ‘use-modify-create’ engaging learners in CT.

Weintrop et al. show how the principles of CT concerning interpreting and the analysis of
datasets in computational modeling can be effectively combined with learning principles of

Shttp://community.computingatschool.org.uk/resources/4382/single/
“http://eduscrum.nl/

5http://www.drscratch.org/

bhttp://www.pddcs.org/mc-index/

http://community.computingatschool.org.uk/resources/4382/single/
http://eduscrum.nl/
http://www.drscratch.org/
http://www.pd4cs.org/mc-index/

2.5. Teaching CT: the challenges and unresolved issues 19

science, technology, engineering and math (STEM) [78].

Repenning et al. advised to use the principles of programming and game design as starting
point towards successful implementation of modeling and simulation through ‘computational
thinking patterns’ (CTP) [64]. Basawapatna et al. reasoned that these design patterns can
help with the transfer of knowledge and skills when creating STEM simulations [5].
Repenning et al. were not the first to mention this transfer of skills and knowledge. Papert’s
notions in 1980 on ‘procedural thinking’ also include the bold claim that his pupils, by pro-
gramming, were able to improve their learning and become better thinkers. It is exactly this
claim that inspired many researchers to investigate and measure if and how this transfer
takes place to other domains. Small signs of evidence are showing up but results are unfor-
tunately still limited [34].

There are several CT-tools that meet most of the previously mentioned criteria in various
degrees: Scratch, Snap!, Alice, Kodu, Greenfoot, Agentsheets, Agentcubes, App Inventor,
www.code.org and other environments that involve more tangible tools such as Lego Mind-
storms, Arduino, BBC Micro:bit and the Raspberry Pi. For the younger children (e.g. K-6)
working with tangible objects by programming movements of robots such as the Bee-Bot can
be particularly useful to train CT-concepts. Bee-Bot allows children to physically work to-
gether on tasks or if preferred share things and collaborate virtually through an app. This
possibility of approaching a task both virtually and physically in a programming environment
was first used by Seymour Papert in 1967 when he introduced his programming environment
Logo that used a robot turtle. Many of the environment’s features are still present in modern
programming learning environments that use drag and drop click-able blocks.

These block-based programming environments let users carry out activities and solve tasks
with varying complexity. By using visual programming languages novice programmers can
focus on the concepts, creating and experimenting rather than dealing with specific syntax
rules of higher level programming languages such as Python and Java that increase cognitive
load. [22, 50]

Gender bias and disabilities

Beyond the earlier mentioned criteria for educational activities and pedagogical environ-
ments, it is relevant to make sure any pedagogical approach is gender-inclusive and sup-
ports learners with disabilities. In terms of gender bias we see how, due to societal and
cultural factors, girls do not get exposed equally to CT concepts and approaches [68]. De-
spite the teachers’ challenges of understanding CT and connected pedagogy, Snodgrass et al.
presented a framework to help them guide learners with disabilities [71].

2.5. Teaching CT: the challenges and unresolved issues

Despite the efforts of many researchers in establishing CT-frameworks to increase our un-
derstanding of its scope and necessity, there are challenges that need to be addressed before
it can be brought into schools. In some cases these challenges involve curriculum building:
* Who a CT curriculum is for (e.g. all students or only certain educational levels [77].)
* At what age teaching elements of CT starts and in which order concepts are introduced
and taught (i.e. a separate subject or as part of existing subjects [33].)
* How the curriculum provides balance in terms of teaching concepts and practices, as-
sessing achievement and preventing gender bias [33, 78].
For any school to get started several political and legislative challenges have to be overcome
that need to be addressed by national curriculum development organizations, school-boards
and management. This entire process of curriculum-building, implementing and teacher
involvement requires complex change and a significant amount of resources [4]. An example
is England, where they focused on developing a strong curriculum first 7.

7https 1/ /www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/

https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/

20 2. Theoretical Framework

2.5.1. Professional development: back to the teachers
With a curriculum as foundation to bring CT into schools, the next steps involve teachers
and more specifically: their professional development. Despite the relatively large amount
of research focused on definitions, frameworks and CT-related tools, the amount of research
that focuses on the perspective of teachers concerning integration of CT is still scarce [10, 69].
This scarcity is problematic since a teacher’s perception of CT influences the way they teach it
[51]. Studies show what preconceptions pre-service and in-service teachers have concerning
CT and how quickly they can be positively changed, which gives professional development
an even more prominent position [7, 83]. Over the last years researchers have discovered the
following problems teachers are facing teaching CT:

* providing feedback and assessing progress for many learners at once [2].

* pedagogical challenges of teaching CT concepts at certain ages [25, 48].

* inadequacies in existing digital learning environments to teach CT [82].

* a lack of systematic assessment procedures [47].

* challenges of differentiation, lack of learner knowledge and lack of resources [43, 69]

* limited ways to get certified for in-service and pre-service teachers [19, 28, 53].

* ways to collaborate with other educators as a form of community building [61].

The challenges described above, combined with the earlier mentioned preconceptions, can
lead to a lack of self-efficacy to teach CT. [30, 36] show a connection between the behavior
of teachers and their efficacy on teaching the subject, which makes self-efficacy crucial to
improve teachers’ classroom practices and student learning outcomes. With so many chal-
lenges to be met it’s not strange that even England, despite having a CT curriculum, is still
experiencing difficulties developing pedagogical strategies for teachers that serve learners on
any level [77].
Many of the earlier mentioned problems that teachers face in England are being overcome
by setting up special teacher training sessions through Computing at School (CAS). To in-
crease the sense of community and collaboration, CAS has introduced a system of schooling
through regional ‘Master Teachers’ that host training sessions in specific areas, supported
and endorsed by companies such as Microsoft, Google, British Telecom and the Raspberry
Pi foundation. Similar initiatives exist in other countries:

* Project Inria in France 8

+ www.code.org in USA °
Furthermore, handbooks are being released to help teachers take the first steps ', but the
amount of research evaluating these practices, methods and the influence they have on the
quality of teaching CT, are still limited.

8https://project.inria.fr/classcode/
9https://code.org
1Ohttps://edoc.coe.int/en/internet/7515—internet—literacy—handbook.html

https://project.inria.fr/classcode/
https://code.org
https://edoc.coe.int/en/internet/7515-internet-literacy-handbook.html

Research Method

The digital age that we are in today requires pupils to possess skills and knowledge, often
referred to as computational thinking (CT), to successfully navigate and participate in society
(See Chapter 2). England leads by example with putting CT into curricula of primary schools
and upwards. However, the Netherlands, like many other countries, is still in the process of
preparation and planning with regard to curriculum change [9]. Besides offering an optional
subject ‘Computer Science’ in upper-secondary school there is no similar equivalent offering
CT in lower-secondary school and primary education. To change this outlook the Dutch
government is stimulating and supporting schools to reform curricula in several ways:
* The Kennisnet Foundation released a book with a lot of practical information concerning
the introduction of digital literacy (including CT) into schools."
* Curriculum.nu is working on a digital literacy curriculum with core objectives for CT
that will be finalized in 2019.2

3.1. Relevance and objectives

Many schools in the Netherlands do not want to wait until the core objectives for digital liter-
acy are set and autonomously have been working on ways to let CT be part of their curricula
despite the challenges that are faced[43]. These perspectives have resulted in a large demand
for professional development and a need to find out what teachers exactly have to learn and
know in order to effectively be able to teach CT concepts [3]. To uncover these needs this
study focuses on answering the following research question:

What do our teachers need in order to teach computational thinking concepts?

The research objective is to make recommendations for curriculum makers, university course
builders and educators in order to develop a better study program and provide means for
teachers to teach CT-concepts more successfully. The TU Delft Science Education & Com-
munication (SEC) department and the regional Beta Steunpunt Zuid can directly benefit from
the results of this research.

3.2. Research design

Following a sequential mixed methods design, qualitative data was first gathered and inter-
preted before quantitative data collection took place (See Chapter 4 and Chapter 5 respec-
tively). A general purposive sampling strategy was used: teachers with a various amount of
experience teaching CT-concepts were approached. For the qualitative part of the study the
initial sample focus was aimed at teachers with a limited amount of experience teaching CT-
concepts to get a broad view of the challenges that they face during the first experiences of

"http://bit.ly/2CTOMEV
2https://curriculum.nu/wp—content/uploads/2018/01/2594.OO.O29_Curriculum.nl_
Roadmap-A3-formaat geactualiseerd 15012018.pdf

21

http://bit.ly/2CTOMEV
https://curriculum.nu/wp-content/uploads/2018/01/2594.00.029_Curriculum.nl_Roadmap-A3-formaat_geactualiseerd_15012018.pdf
https://curriculum.nu/wp-content/uploads/2018/01/2594.00.029_Curriculum.nl_Roadmap-A3-formaat_geactualiseerd_15012018.pdf

22

3. Research Method

teaching CT. To improve response rate, for the quantitative part of the study the sample focus
was increased to include teachers with any amount of experience teaching CT-concepts.

3.3. Ethics

To ensure the integrity and quality of the research, a proactive approach was used following
the ethics principles®. Meetings with supervisors were frequently set up (e.g. weekly or bi-
weekly) in which each step was evaluated and challenges were discussed.

For each stage of the research the concepts of valid consent* were applied in the following
ways:

Approval to approach participants was asked through supervisors.

Participants were fully informed before participating.

Participants could stop participating in the research at any point preventing any form
of data collection.

All interviews were recorded and transcribed verbatim.

All collected data was anonymized, stored on encrypted online volumes and protected
by two-factor authentication.

As final part of an ethics instructional module, research integrity, possible weaknesses and
moral dilemmas that were faced during this study will be discussed in Chapter 6.

3http://www.ethicsguidebook.ac.uk/Key—ethics—principles—15
4http://www.ethicsguidebook.ac.uk/Consent—72

http://www.ethicsguidebook.ac.uk/Key-ethics-principles-15
http://www.ethicsguidebook.ac.uk/Consent-72

Qualitative methods and data

The goal of this research was to find out what teachers need in order to teach CT concepts
effectively. To reach this, teachers were questioned via semi-structured interviews. To know
what questions to ask, exploratory interviews were conducted. The input from the exploratory
interviews lead to the design of a professional development course. Information from the
interviews and observations of the course lead to the creation of an interview format. This
format was used to question four participants that enrolled in the course.

4.1. Exploratory interviews

The four teachers that were approached had experience teaching CT-concepts and/or were
responsible in their school for the design of a curriculum that encompasses CT-concepts.
Two teachers already used a curriculum or a set of learning goals and described the chal-
lenges they are facing. The other two expressed being occupied with curriculum design and
explained the challenges they are facing designing it (i.e. in accordance with to the challenges
in section 2.5. In terms of professional development all teachers expressed that any profes-
sional development aiming to teach CT-concepts effectively should focus on the following
elements:
* Providing plentiful content knowledge explaining what CT is and explicating its rele-
vance.
* Providing learning goals for schools to use for pedagogical strategies and curriculum
design.
* The use of small steps, plenty of examples and simple tools for maximum accessibility
and opportunities so teachers can implement what they have learned immediately.
These elements were used as guidelines for the design of a professional development course.

4.2. Professional development course

Highlighted elements from the exploratory interviews were used to design a professional de-
velopment course. Twenty-two teachers enrolled in the the course consisting of four training
sessions. It was held in the period between September and November 2017. Each session fo-
cused on didactics and pedagogical strategies, giving participants tools and practice activities
to start teaching CT concepts right away (e.g. code tracing, debugging, remixing & reusing,
pair programming, unplugged and live coding). Every participant started out with the ac-
celerated introductory Computer Science course from the website www.code.org! with the
option to switch to a higher level by executing tasks with the visual programming language
Snap! from the ‘Beauty and Joy of Computing’ (BJC) curriculum created by the University of
Berkeley?. Beyond this two-tier approach all participants worked with CT-concepts in a more
creative way by following parts of the ‘Creative Computing’ guide developed by the Harvard

"https://studio.code.org/s/20-hour
https://bjc.edc.org/

23

https://studio.code.org/s/20-hour
https://bjc.edc.org/

24 4. Qualitative methods and data

University ScratchEd research team.® Each session included homework and participants

could stay in touch and communicate through an online Google group to discuss progress
and ask questions. At the end of each session participants received exit cards to answer sev-
eral questions. The answers were used to get a better understanding of the teachers’ needs
in comparison to existing research results from Kennisnet?.
Beyond the similarities with the research of Kennisnet the following teacher needs emerged:
* Improve knowledge on CT-concepts and in what order to introduce them to learners.
* Knowing how to teach CT-concepts to a large group with mixed abilities.
* Having more and better teaching tools with proper means of assessment and easy ways
to monitor progress of CT-learning.
In general participants of the professional development course expressed difficulty to describe
their needs due to their limited amount of knowledge and experience teaching CT-concepts.

4.3. CT TPACK coding scheme and interview format

To prevent negative effects of the paradox of socratic ignorance (e.g. a participant not knowing
what they do not know) for the semi-structured interviews a TPACK framework was used to
uncover participants’ knowledge gaps (e.g. implicit needs). The combination of a CT TPACK
framework [3] and the needs from the professional development course were used to create an
a priori coding scheme and an interview format with questions that let participants describe
their needs and TPACK for CT. CT TPACK is defined as an extension of the PCK model by
Angeli et al. [3]:

”TPCK is conceptualized as a unique body of knowledge that is formed by the
contribution of five distinct knowledge bases, namely, content knowledge (CK), ped-
agogical knowledge (PK), knowledge of learners (LK), knowledge of the educational
context (CX), and technology knowledge (TK). This body of knowledge grows when
teachers are engaged systematically in useful educational practices, either in their
own classrooms or teacher professional development programs.” [3, p. 53]

Findings from each interview were used to refine the coding scheme and the interview format.
To validate the coding scheme, Krippendorff’s alpha method was used for intercoder reliability
assessment, which took place between the first and the second interview. The minimum
acceptable level of reliability was set at 0.667 due to the exploratory nature of the research
[49]. A lower alpha value was found (0.6050) due to the nature of the data (e.g. ambiguity in
terms of unit start & end and overlap in used codes). The detailed calculation output can be
found in Appendix B. Further reliability of coding was assessed through peer review between
each interview. The changes made in the coding scheme as a result of the peer review can
be found in Appendix C. The final version of the interview format and coding scheme can be
found in Appendix A and Appendix D respectively. For analysis of the interview transcripts
the final coding scheme was used.

4.4. Semi-structured interview results

Introductory questions showed how all participants:

» were teaching CT-concepts in secondary schools.

* had a STEM-background: three participants had a teaching degree for a STEM-subject,
one participant had no teaching degree but worked as a technical assistant.

* had limited experience teaching CT-concepts (e.g. one year or less than one year).

* represented a total of three schools: in one school CT-lessons were offered to all children
while the other two schools offered it to higher-level classes in the first and second year
only.

* expressed how the professional development course had an immediate positive impact
on the type of material offered during their lessons and the confidence with which they
teach CT-concepts.

Shttp://scratched.gse.harvard.edu/guide/
4https://www.kennisnet.nl/fileadmin/kermisnet/digitale_vaardigheden/programmeren_maken/
bijlagen/Programmeren_nog een_moeilijk verhaal voor_ scholen.pdf

http://scratched.gse.harvard.edu/guide/
https://www.kennisnet.nl/fileadmin/kennisnet/digitale_vaardigheden/programmeren_maken/bijlagen/Programmeren_nog_een_moeilijk_verhaal_voor_scholen.pdf
https://www.kennisnet.nl/fileadmin/kennisnet/digitale_vaardigheden/programmeren_maken/bijlagen/Programmeren_nog_een_moeilijk_verhaal_voor_scholen.pdf

4.4. Semi-structured interview results 25

4.4.1. Participants TPACK
The interviews in which the participants described their CT TPACK showed the following re-
sults for each of the five knowledge bases:

Content knowledge (CK)

* CT was described close to its generic description: problem-solving.

* In terms of algorithmic thinking, abstraction and decomposition were mentioned but
decomposition was emphasized.

» Skills, attitude and connected pedagogical strategies for debugging were described in
detail (e.g. stimulate learners to approach a problem in various ways through trial and
error).

Learner knowledge (LK)

* Difficulties with abstraction and decomposition were described (e.g. the pupils’ ability
to split a problem into smaller pieces and see how previously written code can be used
in another context).

* Difficulties with debugging were described (e.g. pupils struggling to interpret an error
message and determine where it goes in the flow of a program).

Pedagogical knowledge (PK)

* Three participants favored a primarily student-centered approach based on a more con-
structivist 'whole language’ vision [48] whereas one participant expressed applying both
a teacher- and student-centered approach due to the professional development course.

* Pedagogical strategies not necessarily connected to CT were emphasized (e.g. asking
questions to promote understanding)

* Didactics focused around a computer-based tool or platform that make pupils go through
a series of small practical tasks that teach CT-concepts in each lesson.

* Participants taught several unplugged lessons® due to the professional development
course.

* Two participants used the professional development course to improve and adjust the
learning goals in both the curriculum and learning activities. The other two participants
used the course to get started.

Technical knowledge (TK)

* Participants expressed how they use online platforms and computer based (technical)
tools to foster learning CT-concepts.

* The following platforms or tools were used: Scratch, Code.org, RoboMind, GameMaker,
Human Resource Machine and Arduino.

* A proactive attitude in terms of learning and adapting to new technologies was ex-
pressed.

Context knowledge (CX)

* Three participants expressed having started to teach CT-related lessons due to the per-
ceived positive impact of CT on a societal level.

* Three participants described how the schools’ vision as a Technasium’ had a large
influence on the popularity of CT on an organizational level.

* Ways of connecting CT-concepts with other subjects were described by three partici-
pants. From these three participants one mentioned connections with physics. The
other two mentioned involving companies to enrich the curriculum and relevance of CT
within their school.

* All participants described how they believe CT is necessary to understand and partici-
pate fully in a technology driven world.

Shttp://www.csunplugged.nl/

http://www.csunplugged.nl/

26 4. Qualitative methods and data

4.4.2. TPACK gaps
The interviews in which the participants described their CT TPACK uncovered the following
gaps:
* [CK] Everyone expressed a strong desire for more subject knowledge.
* [LK] None of the participants were able to express their pupils’ specific pre- or miscon-
ceptions to which they adapted their teaching methods and lesson material.®
+ [PK]

— Two participants expressed a desire for more lesson material, used the course to
get started and expressed greatly depending on a CT-curriculum before being able
to teach CT-concepts effectively.

— All participants expressed difficulties dealing with the differences in skills and
knowledge among the pupils.

— One participant expressed the desire to know more about different educational
learning activities for CT.

— One participant expressed the desire to have more lesson material showing the
relevance of CT through real life examples.

— One participant wondered what pupils learned at the end of the lesson series.

— Beyond checking the progress through computer-based tools all participants de-
scribed not measuring and verifying for each learner if the CT-concepts were un-
derstood (e.g. assessment of learning) and expressed their inability to do so due to
either a lack of time, a lack of a CT-curriculum - or both.

+ [CX]

— Two participants considered environments with drag and drop programming not to
be real programming.

— Three participants expressed needing more time and resources similar to the find-
ings by Kennisnet research’.

— Three participants described how their pupils have a severe lack of basic ICT skills
(i.e. the ability to create an online account and formatting a text document).

— One participant expressed the desire to stay in touch with other teachers who face
the same challenges teaching CT-concepts.

The following four trends emerged for all participants:
1. A lack of subject knowledge. [CK]
2. A lack of learner knowledge about pre- or misconceptions. [LK]
3. Alack of general pedagogical knowledge to deal with differences in pupils’ abilities. [PK]
4. No assessment of learning to verify if the CT-concepts are understood. [PK]
From these trends numbers 1 and 3 were explicitly mentioned by participants as a need.
Numbers 2 and 4 were not, only after specifically asking about it. The assessment of learning
was identified as the biggest challenge or need due to its absence.

4.5. Conclusion

In every interview participants referred to the professional development course but none of
them were able to point out how or in what way their pedagogical strategies contribute to
assessing which CT-concepts their pupils had actually learned. Despite the large number of
assessment tools that can be used in a formative and summative way [16], all participants
described primarily using computer based practical assignments in a formative way. Despite
not being able to establish what had truly been learned by their pupils, two participants
mentioned grading the progress of the computer-based practical assignments anyway. The
gaps in content knowledge and pedagogical knowledge could have influenced participants’
beliefs about CT assessment and the suitability of CT assessment tools. A lead-up survey
was designed to gain more insight into both the CT assessment tools and teachers’ attitude
towards CT assessment for learning (formative) and CT assessment of learning (summative).

bhttp://www.pddcs.org/mc-1index/
7https://www.kennisnet.nl/fileadmin/kennisnet/digitale_vaardigheden/programmeren_maken/
bijlagen/Programmeren_nog een_moeilijk verhaal voor_ scholen.pdf

http://www.pd4cs.org/mc-index/
https://www.kennisnet.nl/fileadmin/kennisnet/digitale_vaardigheden/programmeren_maken/bijlagen/Programmeren_nog_een_moeilijk_verhaal_voor_scholen.pdf
https://www.kennisnet.nl/fileadmin/kennisnet/digitale_vaardigheden/programmeren_maken/bijlagen/Programmeren_nog_een_moeilijk_verhaal_voor_scholen.pdf

Quantitative methods and data

The goal of this research was to find out what teachers need in order to teach CT concepts
effectively. To reach this, teachers were questioned via semi-structured interviews from
which the assessment of learning was identified as the biggest challenge or need, due to
its complete absence. Furthermore, interview participants described predominantly using
computer-based assessment tools in a formative way. A survey was designed to generalize
findings and gain insight into CT assessment tools and attitude towards formative and sum-
mative assessment for CT. Throughout the survey the term ’programming lessons’ was used
instead of CT. This decision, the question options and layout are discussed in Chapter 6.
The survey can be found in Appendix E.

5.1. Respondents

Teachers were asked to participate through the supervisors’ social networks, computer sci-
ence sites and news bulletins. To capture attitude towards assessment for CT from a larger
audience, teachers were invited from both primary and secondary education. These teachers
indicated that they were either about to start or already teaching programming. The total
number of respondents was 54. Table 5.1 and Figure 5.1 show the distribution of the re-
spondents per age category and the gender distribution per age category.

25

20

Frequency Percent

. <25 years 3 13.65
26-35years 6 11.1
36 -45years 11 204
* 46 - 55 years 11 20.4
56 - 67 years 23 42.6
5 Total 54 100.0

0 Table 5.1: Age distribution
<25 26-35 36 - 45 46 - 55 56 - 67

Figure 5.1: Age distribution by gender
(male in blue and female in red)

27

28 5. Quantitative methods and data

5.2. Survey design
In the first part of the survey teachers were asked to provide some background information
such as gender, year of birth, teacher degree, subject and years of experience teaching pro-
gramming lessons. In the second part of the survey they were asked to what extent they
agreed with statements regarding assessment attitude and rate assessment tool suitability.
The five-point Likert scales that were used ranged from strongly disagree to strongly agree
and very unsuitable to very suitable, respectively. To be able to capture assessment attitude,
a series of statements related to formative and summative assessment were created inspired
by comparisons made from existing research [35, 46, 70] and peer review. Respondents were
asked to rate these statements and assessment tool suitability within three different contexts
as part of a 'repeated measures’ design to test whether assessment attitude and assessment
tool suitability is different within the context of programming lessons. The three different
contexts implemented in the survey were:

* Education in general

* The subject they feel most comfortable teaching

* Programming lessons
In the third part of the survey teachers were asked how frequently they used each type of
assessment tool for their programming lessons on a five-point Likert scale (e.g. from never
to often). In the fourth and final part of the survey they could leave notes, sign up to receive
research results and were asked to finish a sentence stating what they think would help
assessment for programming lessons the most.

5.3. Survey results

The data from the survey was analyzed through IBM’s statistical software SPSS. Friedman
tests were executed to determine if there were any statistically significant differences between
different contexts. The first step of the analysis involved a check whether the data passed
all assumptions (i.e. ordinally scaled dependent variables, a random sample and multiple
measures for the same group). Differences between 5% trim mean and mean values were
found to be marginal preventing affection of outliers for further analysis [59].

Each context contained the same five statements related to formative assessment, five state-
ments for summative assessment and six examples of assessment tools: a total of sixteen
questions per context.

Table 5.2 shows per context, by measuring Cronbach’s alpha, whether the five formative and
five summative questions reliably measure the same latent variable (e.g. attitude towards
formative and summative assessment). Except for the ‘questionable’ formative latent vari-
able within the educational context, all values are considered to range from acceptable to
good [44].

Table 5.2: Latent variable Cronbach alpha values

Context Latent variable with alpha value

Formative: 0.654
Summative: 0.792

Formative: 0.790
Summative: 0.810

Formative: 0.726
Summative: 0.858

Education in general

Own subject

Programming lessons

The Friedman test, as non-parametric variant of a repeated measures ANOVA, compared
medians for the statements/questions for each of the three contexts. A visual overview of
the data showing the differences, for every latent variable per context, can be seen in Figure
5.2. A Friedman test was carried out to compare the aggregated latent variable scores for the
different contexts. Despite programming lessons’ highest mean score of the formative latent
variable and lowest mean score of the summative latent variable, there was no significant dif-
ference between the different contexts.The remaining six questions concerning suitability of

5.3. Survey results 29

assessment tools were not measuring a latent variable, but were seen as a family of hypothe-
ses for which Bonferonni correction [1, 27] had to be applied to prevent false positives (e.g.
an adjusted sigma: 0.05/6 = 0.0028). Wilcoxon Signed Rank post-hoc tests were performed
and Kendall’s coefficient (W) of concordance was calculated to assess agreement among the
respondents. For each of the assessment tools a separate Friedman test was carried out.
The results of these tests can be seen in Table 5.3, Table 5.4 and Table 5.5.

Figure 5.2: Latent variable mean scores per context

25 e} _

’ I

011
o
29
o
8
10 o
41
5 o
Education in Education in Own subject Own subject Programming Programming
general general (formative) (summative) ess50ns essons
(formative) (summative) (formative) (summative)

Table 5.3: Friedman test results for assessment tools without significant differences (p > 0.0028)

Mean ranks for education in general,

Assessment tool

Test statistics

own subject and programming lessons

A digital test with

Y2 (2) = 10.377,

open and/or closed p = 0.006, 215,212 and 1.73
questions W= 0.096
2 —
. x%(2) = 2.986,
A large practical
) . p=0.225, 1.94,1.95 and 2.11
assignment (project) W= 0.028

Table 5.4: Friedman test results for assessment tools with significant differences (p < 0.0028)

A t tool Test statisti Mean ranks for education in general,
ssessment too eststatistics | 5wn subject and programming lessons

A (non-digital) written | x%(2) = 41.277,
test with open and/or p = 0.000, 2.35,2.19 and 1.45
closed questions W= 0382
A set of small practical | y* (2) = 12.687,
not computer-based p=0.002, 2.29,1.95and 1.76
assignments W=0117
A set of small practical | y? (2) = 13.462,
computer-based p=0.001, 1.81,1.91 and 2.28
assignments W=0.125

x%(2) = 33.042,
A verbal test p = 0.000, 2.49,1.91 and 1.60

W= 0306

A visual overview showing how often each assessment tool was used (e.g. the mean score
of each Likert-scale) can be seen in Figure 5.3. An overview of the responses on the final
open-ended question can be found in Appendix F.

30 5. Quantitative methods and data

Table 5.5: Friedman pairwise post hoc results for assessment tools with significant differences (p < 0.0028)

Assessment tool | No significant difference | Significant differences

A (non-digital) written
test with open and/or
closed questions

Reduction in ratings between:
- education in general and programming lessons (p = 0.000)
- own subject and programming lessons (p = 0.000)

Between own subject and
education in general

A set of small practical
not computer-based
assignments

Reduction in ratings between:
- education in general and programming lessons (p = 0.000)
- own subject and programming lessons (p = 0.002)

Between own subject and
programming lessons

A set of small practical | Between:
computer-based - own subject and education in general
assignments - own subject and programming lessons

Increase in ratings between:
- education in general and programming lessons (p = 0.001)

Reduction in ratings between:
- education in general and programming lessons (p = 0.000)
- education in general and own subject (p = 0.000)

Between own subject and

A verbal test programming lessons

Figure 5.3: Mean frequency score of each assessment tool (on Likert scale 1-5)

Mean

A (non- A digital test A set of small A set of small Alarge A verbal test
digital) with open practical not practical practical

written test and/or computer- computer- assignment

with open closed based based (project)
and/or questions assignments assignments

closed
questions

5.4. Conclusion

No statistically significant differences were found when measuring the latent variables for
formative and summative assessment across the three contexts (i.e. education in general,
own subject and programming lessons). Despite a lack of significant differences between the
contexts, the programming lessons context had the highest mean score for formative assess-
ment and the lowest mean score for summative assessment. Various statistically significant
differences were found for programming lessons with regard to the suitability of assessment
tools:

* A (non-digital) written test with open and/or closed questions was rated lower

* A set of small practical not computer-based assignments was rated lower

* A set of small practical computer-based assignments was rated higher

* A verbal test was rated lower

The other assessment tools (i.e. a digital test with open and/or closed questions and a large
practical assignment) showed no statistically significant differences. Frequencies of the used
assessment tools show an emphasis on (practical) computer-based assignments. This pri-
mary use of practical computer-based assessment tools and its perceived suitability is un-
derpinned by results from the final part of the survey in which respondents emphasize the
use of computer-based practical assignments, formative assessment and a general desire
for more assessment material. Despite the various suitable tools that support both forma-
tive and summative assessment for programming [16], respondents showed a limited use
and limited perceived suitability for assessment tools other than (practical) computer-based
assignments.

Research integrity

A researcher needs to be committed adhering to the standards and ethical norms that come
with responsible research conduct by applying a certain set of practices and rules [57].
Despite the extensive amount of literature and legislation based around research integrity,
it remains a fact that each research comes with challenges that have to be faced (e.g. moral
dilemmas) in order to keep making progress. As part of a course requirement this chapter
discusses the research integrity challenges for each stage of the research from a third-person
view to provide more objectivity.
The author feels that the following elements of research integrity held true for the entire
research:
* Being honest and fair in the way findings are reported and the research is performed.
* Accountability and openness in sharing research methods, findings/results in an open
and professional way.

6.1. Research proposal

In this stage the author was confronted with the following challenge in terms of research
integrity:
* The disclosure of conflicts and competing of interest.

The author’s wish to integrate several university courses into the thesis was granted but
required the creation of an educational product in the form of a professional development
course for Bétasteunpunt Zuid. This competing of interest with regard to the author’s wishes
resulted in a research strategy and objectives as described in Chapter 3. A moral issue arose
when the author had to chose between the following options offered by the supervisors:
1. A research aimed at measuring and increasing teachers’ self-efficacy concerning the
teaching of CT-concepts.
2. A research aimed at measuring used CT-tools, knowledge and attitude regarding CT-
concepts.

To stay aligned with the interests of both supervisors, a combination of both options was
chosen by focusing on teachers’ needs. The chosen methods and steps taken as described in
Chapter 3, Chapter 4 and Chapter 5 show how teachers’ self-efficacy was indirectly measured
and their knowledge and attitude was measured by analyzing their TPACK. Further analysis
of used tools and attitude took place in a lead-up survey as discussed in Chapter 6.

31

32 6. Research integrity

6.2. Theoretical Framework

During the creation of the theoretical framework the author was confronted with the following
challenges in terms of research integrity:
* Respect and authorship so that credit is properly given to those that contributed to the
research.
* Responsible publication, fairness and proficiency in terms of authorship and peer re-
view.

The author had to combine pieces of literature fast enough to present them correctly during
the professional development course. To preserve quality and validity during this process
extensive peer review was performed in which pieces of the theoretical framework were dis-
cussed. To prevent plagiarism the author used APA style guidelines for all used literature
and citations.

6.3. Exploratory interviews

In this stage the author was confronted with the following challenges in terms of research
integrity:
* Ethical/responsible research when animals or humans are involved by complying with
the rules and law.
* Respect and authorship so that credit is properly given to those that contributed to the
research.
* Responsible publication, fairness and proficiency in terms of authorship and peer re-
view.
* Accuracy in the treatment of data so that there are clear records of all data and material
and confidential materials are curated properly.
* Objectivity in data examination and analysis preventing bias and the disclosure of con-
flicts and competing of interest.

Several interviews were conducted with participants chosen by the supervisors for their ex-
periences with CT curriculum design or the teaching of CT-concepts. For these interviews
the principles of valid consent were followed as described in section 3.3. Despite the descrip-
tive nature of the data collected from these teachers, their input was used for the design of a
professional development course.

A more open method involving the random approach of teachers (e.g. not known by the su-
pervisors) could not be chosen due to the severe time constraints it would have created. In
terms of respect and authorship a conflict of interest arose for participants who preferred to
be mentioned in the thesis, but also wanted to remain anonymous. The author decided to
opt for full anonimization in the final work but gave credit to those due in the preface.
Between each exploratory interview their findings were peer reviewed. After all exploratory
interviews took place a summary of findings was reviewed once more (e.g. recorded parts of
the interviews were played back) to verify the findings before using them as guidelines for a
professional development course.

6.4. Professional development course design

In this stage the author was confronted with the following challenges in terms of research
integrity:
* Ethical/responsible research when animals or humans are involved by complying with
the rules and law.
* Accuracy in the treatment of data so that there are clear records of all data and material
and confidential materials are curated properly.

The results of the exploratory interviews as described in Chapter 4, served as an input and
starting point for the design of the professional development course. In the exploratory inter-
views participants were asked what they think would be important for any professional devel-

6.5. Course observations 33

opment course to be successful. Based on the feedback from them, the educational activities,
contexts and strategies from the theoretical framework (See Chapter 2) new lesson material
would have had to be created that would not only let learners experience programming but
would also provide a balance between the practical and theoretical side (e.g. practicing skills
and learning concepts). Due to time constraints this could not be fully realized before the
start of the professional development course: selections from existing lesson material were
combined with newly created material to maintain balance between theory and practice. Af-
ter registration for the course closed, it became clear that video recording on-site would be
possible. However, to prevent last-minute dropouts with regard to a new form of consent the
recording was canceled. Instead, for each session several notes were taken in the form of
memo’s.

6.5. Course observations

As described in Chapter 1 the study took place within the context of a professional develop-
ment project from Bétasteunpunt Zuid-Holland. The author was confronted with the follow-
ing challenges in terms of research integrity:
* Accuracy in the treatment of data so that there are clear records of all data and material
and confidential materials are curated properly.
* Objectivity in data examination and analysis preventing bias and the disclosure of con-
flicts and competing of interest.

During this stage of the research a conflict of interest was to observe and write memo’s as an
‘outsider’ while also co-presenting several of the professional development course sessions. It
is possible that during the co-presenting and answering of teachers’ questions some elements
were not observed that would have been put into the memo’s otherwise. However, one can
argue by deciding to take the role as co-presenter the author also had the opportunity to
witness situations and receive certain information that otherwise would have not have taken
place as observer only. For continuity of the course and to ensure objectivity, the author
took both roles and peer reviewed each session’s memo. For these memo’s any data leading
to the potential identification of individual course participants was removed or anonymized.

6.6. Semi-structured interviews and survey design

In these stages the author was confronted with the following challenges in terms of research
integrity:
* The disclosure of conflicts and competing of interest.
* Objectivity in data examination and analysis preventing bias and the disclosure of con-
flicts and competing of interest.

Analysis of the semi-structured interview transcripts uncovered several teachers’ TPACK gaps
(see Chapter 4). Ideally, similar to the format of the semi-structured interviews, all TPACK
elements would have been analyzed through a survey (i.e. CK, PK, LK, TK and CX) to see
if the same ’gaps’ are found for a larger group. A survey analyzing all five knowledge areas
would have had too many questions which would have lead to dropouts and would have also
imposed time constraints building it. To counter this and increase the chance of measuring
an effect, further investigation of one particular TPACK gap was performed (e.g. assessment
of learning).

An important part of the survey was to consider how participants are informed and how cer-
tain topics are framed. With so many people having different ideas about what computational
thinking is, there was a risk of priming subjects with a definition of computational thinking
so generic (e.g. problem solving) that it would skew the results.

An in-depth discussion on this topic can be found in Appendix G. The discussion itself went
beyond the scope of the research but had strong implications for the way the survey par-
ticipants were primed (e.g. given context before questions were asked). After extensive peer
review the author decided to prime subjects with the context of programming lessons’ rather
than working with the definition of CT.

Conclusion

This study aimed at improving the integration of computational thinking (CT) into compul-
sory education by focusing on teachers’ needs. To realize this, information from the semi-
structured interviews was used which lead to the identification of explicit and implicit needs,
from which assessment attitude and tools were investigated further with a lead-up survey.
Based on the results of this study several recommendations were formulated. The research
question that served as main guideline of this study was:

“What do our teachers need in order to teach computational thinking concepts?”

7.1. Answering the research question

To answer the main research question the following subquestions are discussed below:

* What is the biggest challenge teachers are facing teaching computational thinking con-
cepts?

* In what way can this challenge be overcome in terms of teacher support and professional
development?

7.1.1. Qualitative results: identifying the main challenge
In this study teachers who had just started teaching computational thinking related lessons
reported several challenges:
1. Alack of resources, similar to findings from existing research by Kennisnet [43], ranging
from technical issues in the classroom to being in need of a curriculum.
2. Differentiation (e.g. how to teach a group with differences in knowledge and skill).
3. A (perceived) lack of subject knowledge resulting in less confidence to teach.
4. Teachers’ pedagogical strategies (e.g. using various educational activities and knowing
when and how to introduce which concepts).
S. Pupils’ lack of basic IT skills (e.g. abilities to format a document or creating accounts).
6. The assessment of learning to verify if the CT-concepts are understood.

The analysis of the participants’ TPACK uncovered assessment as the biggest challenge or
need for teachers who have recently started CT-related lessons. The participants expressed a
desire to be able to check what has been learned by their pupils in terms of CT concepts, but
showed no pedagogical strategies supporting it. Instead of using various assessment tools in
a formative and summative way, the teachers primarily used a set of computer-based prac-
tical assignments as assessment tool in a formative way. In some cases the progress of the
assignments was graded without really knowing what concepts the pupils had mastered. To
investigate whether this approach was driven by a different attitude towards CT assessment
(tools), a survey was created.

35

36 7. Conclusion

7.1.2. Quantitative results: generalizing findings
The first part of the study showed how teachers who had recently started teaching CT used
a specific set of assessment tools primarily in a formative way. To investigate this further a
survey was designed to determine whether they have a different attitude towards summative
and formative assessment for CT related lessons in comparison to their own subject and
education in general. Teachers were also asked to rate the suitability of various assessment
tools for each of the three contexts (i.e. education in general, own subject and programming
lessons). In the survey CT-related lessons were described as ’programming lessons’ due to
the multi-interpretable nature of CT. No statistically significant differences were found when
measuring the latent variables for formative and summative assessment across the three
contexts. However, statistically significant differences were found with regard to assessment
tools for programming;:

* reductions in suitability for written (non-digital) tests, verbal tests and a set of small

practical not computer-based assignments, and

* an increase in suitability for a set of small practical computer-based assignments.
Respondents were also asked to finish a sentence stating what they think would help as-
sessment for programming lessons the most, which showed similar results to those that
were found in the first part of the study. Furthermore, most teachers emphasized formative
assessment and the use of practical computer-based assignments to teach CT-concepts in
programming lessons.

7.1.3. Final conclusion

Results from this study show that the biggest challenge teachers are facing is assessing
what has been learned by their pupils in terms of CT concepts. The majority of them took a
student-centered pedagogical approach with a focus on formative assessment and practical
computer-based assessment tools. Existing CT-frameworks emphasize a student-centered
pedagogy with a design-based constructionist approach originating from Papert’s work [60].
The favoring of this pedagogy over a teacher-centered one [10] was visible in the way teachers
described their lessons. Moreover, they explained how they let pupils train CT concepts in a
way that Lister describes as ’the bottom-up’ approach [48]. Due to a lack of subject knowledge
participants expressed difficulty taking a teacher-centered top down’ approach. Besides the
primarily student-centered methods this study showed a limited use of assessment tools
and a perceived limited view of their suitability (e.g. a focus on formative assessment and
practical computer-based assessment tools). Next to the explicitly mentioned desire for more
subject knowledge it is necessary that any future professional development initiatives focus
on showing teachers’ pedagogical strategies that offer a balance between a bottom-up and top-
down approach. Such pedagogical strategies need to be guided by learning goals connected
to CT-concepts with various assessment tools (i.e. not only computer-based) that can be
used in a formative and a summative way.

7.2. Limitations and future work

In this research there were several limitations that could have influenced the findings. For
the first part of the study the sample of teachers was limited to teachers that had just started
teaching CT. To increase reliability and validity, data could be collected from more teachers
with various amounts of experience, possibly through triangulation.

During the course observations and the interviews an existing coding scheme was refined
that could be used to measure and assess teachers’ TPACK related to CT. Using the refined
coding scheme lead to theory building and assessment as a key element for teachers’ needs.
Future work could use the coding scheme as a starting point and focus on multiple elements
to obtain a more complete result.

One of the main elements of the survey focused on testing whether teachers would express
a different attitude concerning formative and summative assessment for which, despite an
increase in mean scores between both latent variables for programming lessons, no statis-
tically significant results were found. Future research could focus on measuring attitude
towards assessment for programming by exploring this increase in further detail.

[1]

(2]

3]

[4]

5]

[6]

[7]

(8]

[9]

[10]

[11]

Bibliography

Mikel Aickin and Helen Gensler. Adjusting for multiple testing when reporting research
results: The Bonferroni vs Holm methods. American Journal of Public Health, 86(5):
726-728, 1996. ISSN 00900036. doi: 10.2105/AJPH.86.5.726.

Charoula Angeli and Nicos Valanides. Epistemological and methodological issues for
the conceptualization, development, and assessment of ICT-TPCK: Advances in tech-
nological pedagogical content knowledge (TPCK). Computers and Education, 52(1):
154-168, 2009. ISSN 03601315. doi: 10.1016/j.compedu.2008.07.006. URL http:
//dx.doi.org/10.1016/7.compedu.2008.07.006.

Charoula Angeli, Joke Voogt, Andrew Fluck, Mary Webb, Margaret Cox, Joyce Malyn-
Smith, and Jason Zagami. A K-6 Computational Thinking Curriculum Framework: Im-
plications for Teacher Knowledge. 19(3):47-57, 2016.

Valerie Barr and Chris Stephenson. Bringing computational thinking to K-12. ACM
Inroads, 2(1):48, feb 2011. ISSN 21532184. doi: 10.1145/1929887.1929905. URL
http://dl.acm.org/citation.cfm?doid=1929887.1929905.

Ashok Basawapatna, Kyu Han Koh, Alexander Repenning, David C. Webb, and
Krista Sekeres Marshall. Recognizing computational thinking patterns. In Proceedings
of the 42nd ACM technical symposium on Computer science education - SIGCSE ’11, page
245, New York, New York, USA, 2011. ACM Press. ISBN 9781450305006. doi: 10.1145/
1953163.1953241. URL http://portal.acm.org/citation.cfm?doid=1953163.
1953241.

David Bawden. Information and digital literacies: a review of concepts. Journal of Docu-
mentation, 57(2):218-259, 2001. ISSN 0022-0418. doi: 10.1108/EUMO0000000007083.
URL http://www.emeraldinsight.com/doi/10.1108/EUM0O000000007083.

Nathan Bean, Joshua Weese, Russell Feldhausen, and R. Scott Bell. Starting from
scratch: Developing a pre-service teacher training program in computational thinking.
Proceedings - Frontiers in Education Conference, FIE, 2014, 2015. ISSN 15394565. doi:
10.1109/FIE.2015.7344237.

Daj Belshaw. What is digital literacy? A Pragmatic investigation. EdD Thesis, Durham:
University of Durham, ..., page 274, 2011. URL http://neverendingthesis.com/
doug-belshaw-edd-thesis-final.doc.

Stefania Bocconi, Augusto Chioccariello, Giuliana Dettori, Anusca Ferrari, Katja En-
gelhardt, Panagiotis Kampylis, and Yves Punie. Developing Computational Thinking :
Approaches and Orientations in K-12 Education. Number June. 2016. ISBN 978-1-
939797-24-7. doi: 10.2791/792158.

Matt Bower, Leigh Wood, Jennifer Lai, Cathie Howe, Raymond Lister, Raina Mason,
Kate Highfield, and Jennifer Veal. Improving the Computational Thinking Pedagogical
Capabilities of School Teachers. Australian Journal of Teacher Education, 42(3):53-72,
mar 2017. ISSN 03135373. doi: 10.14221/ajte.2017v42n3.4. URL http://ro.ecu.
edu.au/ajte/vold2/iss3/4/.

Karen Brennan and Mitchel Resnick. New frameworks for studying and as-
sessing the development of computational thinking. annual American Educa-
tional Research Association meeting, Vancouver, BC, Canada, pages 1-25, 2012.
doi: 10.1.1.296.6602. URL http://web.media.mit.edu/{~}kbrennan/files/
Brennan{ }Resnick{ }AERA2012{ }CT.pdf.

37

http://dx.doi.org/10.1016/j.compedu.2008.07.006
http://dx.doi.org/10.1016/j.compedu.2008.07.006
http://dl.acm.org/citation.cfm?doid=1929887.1929905
http://portal.acm.org/citation.cfm?doid=1953163.1953241
http://portal.acm.org/citation.cfm?doid=1953163.1953241
http://www.emeraldinsight.com/doi/10.1108/EUM0000000007083
http://neverendingthesis.com/doug-belshaw-edd-thesis-final.doc
http://neverendingthesis.com/doug-belshaw-edd-thesis-final.doc
http://ro.ecu.edu.au/ajte/vol42/iss3/4/
http://ro.ecu.edu.au/ajte/vol42/iss3/4/
http://web.media.mit.edu/{~}kbrennan/files/Brennan{_}Resnick{_}AERA2012{_}CT.pdf
http://web.media.mit.edu/{~}kbrennan/files/Brennan{_}Resnick{_}AERA2012{_}CT.pdf

38

Bibliography

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

Peter Brusilovsky, Eduardo Calabrese, Jozef Hvorecky, Anatoly Kouchnirenko, and
Philip Miller. Mini languages: A Way to Learn Programming Principles. Educa-
tion and Information Technologies, 2(1):65-83, 1997. ISSN 1360-2357. doi: http:
//dx.doi.org/10.1023/A:1018636507883.

C. Burnett. Technology and literacy in early childhood educational settings: A review
of research. Journal of Early Childhood Literacy, 10(3):247-270, 2010. ISSN 1468-
7984. doi: 10.1177/1468798410372154. URL http://ecl.sagepub.com/cgi/doi/
10.1177/1468798410372154

Gian Vittorio Caprara, Claudio Barbaranelli, Patrizia Steca, and Patrick S. Malone.
Teachers’ self-efficacy beliefs as determinants of job satisfaction and students’ academic
achievement: A study at the school level. Journal of School Psychology, 44(6):473-490,
2006. ISSN 00224405. doi: 10.1016/j.jsp.2006.09.001.

Allan Collins and Richard Halverson. The second educational revolution: re-
thinking education in the age of technology. Journal of Computer Assisted Learn-
ing, 26(1):18-27, jan 2010. ISSN 02664909. doi: 10.1111/j.1365-2729.2009.
00339.x. URL http://ocw.mit.edu/courses/media-arts-and-sciences/
mas-714j-technologies—-for-creative-learning-fall-2009/readings/
MITMAS{ }714JF09{ }read03{ }coll.pdfhttp://doi.wiley.com/10.1111/3.
1365-2729.2009.00339.x.

CSER. Supporting teachers to assess F — 10 Digital Technologies Literature review.
(June):0-16, 2017.

Andrew Csizmadia, Paul Curzon, Mark Dorling, Simon Humphreys, Thomas Ng, Cynthia
Selby, and John Woollard. Computational thinking A guide for teachers. pages 20-24,
2015. URL http://computingatschool.org.uk/computationalthinking.

CSTA. Computational Thinking in K-12 Education - Teacher Resources 2nd edition,
2011. URL https://c.ymcdn.com/sites/www.csteachers.org/resource/resmgr/
472.11CTTeacherResources{ }2ed.pdf.

CSTA. [INTERIM] CSTA K-12 COMPUTER SCIENCE STANDARDS. 2016. ISBN
9781450347624.

Kathryn Cunningham, Cherry Street, Sarah Blanchard, Barbara Ericson, and Mark
Guzdial. Using Tracing and Sketching to Solve Programming Problems. pages 164-172,
2017.

Paul Curzon, Peter W. McOwan, Nicola Plant, and Laura R. Meagher. Introducing
teachers to computational thinking using unplugged storytelling. Proceedings of the
9th Workshop in Primary and Secondary Computing Education on - WiPSCE ’14, pages
89-92, 2014. doi: 10.1145/2670757.2670767. URL http://dl.acm.org/citation.
cfm?doid=2670757.2670767.

Caitlin Duncan, Tim Bell, and Steve Tanimoto. Should your 8-year-old learn coding?
Proceedings of the 9th Workshop in Primary and Secondary Computing Education on -
WiPSCE 14, pages 60-69, 2014. doi: 10.1145/2670757.2670774. URL http://dl.
acm.org/citation.cfm?doid=2670757.2670774.

European Commission. Communication From the Commission To the European Parlia-
ment, the Council, the European Economic and Social Committee and the Committee
of the Regions - a New Skills Agenda for Europe. pages 1-18, 2016. URL https://ec.
europa.eu/transparency/regdoc/rep/1/2016/EN/1-2016-381-EN-F1-1.PDF.

Anusca Ferrari. DIGCOMP : A Framework for Developing and Understanding Digital Com-
petence in Europe . 2013. ISBN 9789279314650. doi: 10.2788/52966.

http://ecl.sagepub.com/cgi/doi/10.1177/1468798410372154
http://ecl.sagepub.com/cgi/doi/10.1177/1468798410372154
http://ocw.mit.edu/courses/media-arts-and-sciences/mas-714j-technologies-for-creative-learning-fall-2009/readings/MITMAS{_}714JF09{_}read03{_}coll.pdf http://doi.wiley.com/10.1111/j.1365-2729.2009.00339.x
http://ocw.mit.edu/courses/media-arts-and-sciences/mas-714j-technologies-for-creative-learning-fall-2009/readings/MITMAS{_}714JF09{_}read03{_}coll.pdf http://doi.wiley.com/10.1111/j.1365-2729.2009.00339.x
http://ocw.mit.edu/courses/media-arts-and-sciences/mas-714j-technologies-for-creative-learning-fall-2009/readings/MITMAS{_}714JF09{_}read03{_}coll.pdf http://doi.wiley.com/10.1111/j.1365-2729.2009.00339.x
http://ocw.mit.edu/courses/media-arts-and-sciences/mas-714j-technologies-for-creative-learning-fall-2009/readings/MITMAS{_}714JF09{_}read03{_}coll.pdf http://doi.wiley.com/10.1111/j.1365-2729.2009.00339.x
http://computingatschool.org.uk/computationalthinking
https://c.ymcdn.com/sites/www.csteachers.org/resource/resmgr/472.11CTTeacherResources{_}2ed.pdf
https://c.ymcdn.com/sites/www.csteachers.org/resource/resmgr/472.11CTTeacherResources{_}2ed.pdf
http://dl.acm.org/citation.cfm?doid=2670757.2670767
http://dl.acm.org/citation.cfm?doid=2670757.2670767
http://dl.acm.org/citation.cfm?doid=2670757.2670774
http://dl.acm.org/citation.cfm?doid=2670757.2670774
https://ec.europa.eu/transparency/regdoc/rep/1/2016/EN/1-2016-381-EN-F1-1.PDF
https://ec.europa.eu/transparency/regdoc/rep/1/2016/EN/1-2016-381-EN-F1-1.PDF

Bibliography 39

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

George H. L. Fletcher and James J. Lu. EducationHuman computing skills. Communi-
cations of the ACM, 52(2):23, 2009. ISSN 00010782. doi: 10.1145/1461928.1461938.
URL http://portal.acm.org/citation.cfm?doid=1461928.1461938

Julian Fraillon, John Ainley, Wolfram Schulz, Tim Friedman, and Eveline Gebhardt.
Preparing for Life in a Digital Age. Springer International Publishing, Cham, 2014. ISBN
978-3-319-14221-0. doi: 10.1007/978-3-319-14222-7. URL http://link.springer.
com/10.1007/978-3-319-14222-17.

Andrew V Frane. Are Per-Family Type I Error Rates Relevant in Social and Behavioral
Science? Journal of Modern Applied Statistical Methods, 14(1):12-23, 2015. ISSN 1538-
9472. doi: 10.22237/jmasm/1430453040. URL http://digitalcommons.wayne.
edu/jmasm/voll4/issl/5.

F Garcia-Penalvo, D Reimann, M Tuul, A Rees, and I Jormanainen. TACCLE
3, O5: An overview of the most relevant literature on coding and computational
thinking with emphasis on the relevant issues for teachers KA2 project ” TAC-
CLE 3 - Coding ” (2015-1-BE02-KA201-012307). page 72, 2016. doi: 10.
5281 /zenodo.165123. URL http://repositorio.grial.eu/bitstream/grial/688/
1/TACCLE305Literaturereview-final.pdf.

Paul Gilster. Digital Literacy, volume 273. 1997. ISBN 0471249521. URL http://www.
nwlg.org/digitalliteracy/.

R. D. Goddard, W. K. Hoy, and A. W. Hoy. Collective Teacher Efficacy: Its Meaning,
Measure, and Impact on Student Achievement. American Educational Research Journal,
37(2):479-507, 2000. ISSN 0002-8312. doi: 10.3102/00028312037002479. URL http:
//aer.sagepub.com/cgi/doi/10.3102/00028312037002479.

Lindsey Ann Gouws, Karen Bradshaw, and Peter Wentworth. Computational think-
ing in educational activities. Proceedings of the 18th ACM conference on Innova-
tion and technology in computer science education - ITiCSE ’13, page 10, 2013. doi:
10.1145/2462476.2466518. URL http://dl.acm.org/citation.cfm?id=2462476.
2466518{%}5Cnhttp://dl.acm.org/citation.cfm?doid=2462476.2466518.

Sarah Gretter and Aman Yadav. Computational Thinking and Media & Information
Literacy : An Integrated Approach to Teaching Twenty-First Century Skills. TechTrends,
pages 510-516, 2016. ISSN 8756-3894. doi: 10.1007/s11528-016-0098-4. URL http:
//dx.doi.org/10.1007/s11528-016-0098-4.

S. Grover and R. Pea. Computational Thinking in K-12: A Review of the State of
the Field. Educational Researcher, 42(1):38-43, jan 2013. ISSN 0013-189X. doi:
10.3102/0013189X12463051. URL http://edr.sagepub.com/cgi/doi/10.3102/
0013189X12463051.

Shuchi Grover, Roy Pea, and Stephen Cooper. Designing for deeper learning in a
blended computer science course for middle school students. Computer Science Ed-
ucation, 25(2):199-237, apr 2015. ISSN 0899-3408. doi: 10.1080/08993408.2015.
1033142. URL http://dx.doi.org/10.1080/08993408.2015.1033142http://www.
tandfonline.com/doi/full/10.1080/08993408.2015.1033142.

Judith T.M. Gulikers, Harm J.A. Biemans, Renate Wesselink, and Marjan van der Wel.
Aligning formative and summative assessments: A collaborative action research chal-
lenging teacher conceptions. Studies in Educational Evaluation, 39(2):116-124, 2013.
ISSN 0191491X. doi: 10.1016/j.stueduc.2013.03.001.

Ying Guo, Shayne B. Piasta, Laura M. Justice, and Joan N. Kaderavek. Relations among
preschool teachers’ self-efficacy, classroom quality, and children’s language and literacy
gains. Teaching and Teacher Education, 26(4):1094-1103, 2010. ISSN 0742051X. doi:
10.1016/j.tate.2009.11.005.

http://portal.acm.org/citation.cfm?doid=1461928.1461938
http://link.springer.com/10.1007/978-3-319-14222-7
http://link.springer.com/10.1007/978-3-319-14222-7
http://digitalcommons.wayne.edu/jmasm/vol14/iss1/5
http://digitalcommons.wayne.edu/jmasm/vol14/iss1/5
http://repositorio.grial.eu/bitstream/grial/688/1/TACCLE3O5Literaturereview - final.pdf
http://repositorio.grial.eu/bitstream/grial/688/1/TACCLE3O5Literaturereview - final.pdf
http://www.nwlg.org/digitalliteracy/
http://www.nwlg.org/digitalliteracy/
http://aer.sagepub.com/cgi/doi/10.3102/00028312037002479
http://aer.sagepub.com/cgi/doi/10.3102/00028312037002479
http://dl.acm.org/citation.cfm?id=2462476.2466518{%}5Cnhttp://dl.acm.org/citation.cfm?doid=2462476.2466518
http://dl.acm.org/citation.cfm?id=2462476.2466518{%}5Cnhttp://dl.acm.org/citation.cfm?doid=2462476.2466518
http://dx.doi.org/10.1007/s11528-016-0098-4
http://dx.doi.org/10.1007/s11528-016-0098-4
http://edr.sagepub.com/cgi/doi/10.3102/0013189X12463051
http://edr.sagepub.com/cgi/doi/10.3102/0013189X12463051
http://dx.doi.org/10.1080/08993408.2015.1033142 http://www.tandfonline.com/doi/full/10.1080/08993408.2015.1033142
http://dx.doi.org/10.1080/08993408.2015.1033142 http://www.tandfonline.com/doi/full/10.1080/08993408.2015.1033142

40

Bibliography

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Felienne Hermans and Efthimia Aivaloglou. To Scratch or not to Scratch ?: A controlled
experiment comparing plugged first and unplugged first programming lessons. 2017.

N. Hockly. Digital literacies. ELT Journal, 66(1):108-112, jan 2012. ISSN 0951-0893.
doi: 10.1093/elt/ccr077. URL http://content.ebscohost.com/ContentServer.
asp?T=P{&}P=AN{&}K=39774959{&}S=R{&}D=11ih{&}EbscoContent=
dGJIyMNLr40SeqLI4v+bwOLCmrO0gep65SsaudSrOWxWXS{&}ContentCustomer=
dGJIyMPGutk6eugbFQuePfgeyx44Dt6fIA{%}5Cnhttp://search.ebscohost.com/
login.aspx?direct=true{&}db=1ih{&}AN=3977495

Simon Peyton Jones. COMPUTING AT SCHOOL Computing A CPD toolkit for primary
teachers. 2014. ISBN 9781783395217. URL http://primary.quickstartcomputing.
org/resources/pdf/gs{_ }handbook.pdf.

Yasmin B. Kafai. From computational thinking to computational participation in K-12
education. Communications of the ACM, 59(8):26-27, jul 2016. ISSN 00010782. doi: 10.
1145/2955114. URL http://dl.acm.org/citation.cfm?doid=2975594.2955114.

Yasmin B. Kafai and Quinn Burke. Connected Code : Why Children Need to Learn Pro-
gramminged Teaching. 2014. ISBN 9780262027755.

P Kemp. Computing in the national curriculum A guide for secondary teachers Computing
in the. 2014. ISBN 9781783393763. URL http://www.computingatschool.org.uk/
data/uploads/cas{_ }secondary.pdf.

Kennisnet. Computational thinking in het Nederlandse onderwijs. page 48,
2016. URL https://www.kennisnet.nl/fileadmin/kennisnet/publicatie/
Computational{ }Thinking{ }in{ }het{ }Nederlandse{ }onderwijs.pdf.

Paul Kline. Other types of Psychological Tests. In The Handbook of Psychological Testing,
pages 325-346. 2000. ISBN 0415211581.

KNAW. Digitale geletterdheid in het voortgezet onderwijs. 2012. ISBN 9789069846606.
URL http://www.knaw.nl/Content/Internet{ }KNAW/publicaties/pdf/
20121027 .pdf.

Alice Man Sze Lau. ‘Formative good, summative bad?’ — A review of the dichotomy in
assessment literature. Journal of Further and Higher Education, 40(4):509-525, 2016.
ISSN 14699486. doi: 10.1080/0309877X.2014.984600.

Irene Lee, Fred Martin, Jill Denner, Bob Coulter, Walter Allan, Jeri Erickson, Joyce
Malyn-Smith, and Linda Werner. Computational thinking for youth in practice. ACM
Inroads, 2(1):32, 2011. ISSN 21532184. doi: 10.1145/1929887.1929902. URL http:
//dl.acm.org/citation.cfm?doid=1929887.1929902.

Raymond Lister. Toward a Developmental Epistemology of Computer Programming.
In Proceedings of the 11th Workshop in Primary and Secondary Computing Education
on ZZZ - WiPSCE ’16, pages 5-16, New York, New York, USA, 2016. ACM Press.
ISBN 9781450342230. doi: 10.1145/2978249.2978251. URL http://dl.acm.org/
citation.cfm?doid=2978249.2978251.

Matthew Lombard, Jennifer Snyder-Duch, and Cheryl Campanella Bracken. Content
Analysis in Mass Communication: Assessment and Reporting of Intercoder Reliability,
2002. ISSN 03603989.

Sze Yee Lye and Joyce Hwee Ling Koh. Review on teaching and learning of compu-
tational thinking through programming: What is next for K-12? Computers in Hu-
man Behavior, 41:51-61, dec 2014. ISSN 07475632. doi: 10.1016/j.chb.2014.09.
012. URL http://dx.doi.org/10.1016/j.chb.2014.09.012http://linkinghub.
elsevier.com/retrieve/pii/S0747563214004634.

http://content.ebscohost.com/ContentServer.asp?T=P{&}P=AN{&}K=39774959{&}S=R{&}D=lih{&}EbscoContent=dGJyMNLr40SeqLI4v+bwOLCmr0qep65Ssau4SrOWxWXS{&}ContentCustomer=dGJyMPGutk6uqbFQuePfgeyx44Dt6fIA{%}5Cnhttp://search.ebscohost.com/login.aspx?direct=true{&}db=lih{&}AN=3977495
http://content.ebscohost.com/ContentServer.asp?T=P{&}P=AN{&}K=39774959{&}S=R{&}D=lih{&}EbscoContent=dGJyMNLr40SeqLI4v+bwOLCmr0qep65Ssau4SrOWxWXS{&}ContentCustomer=dGJyMPGutk6uqbFQuePfgeyx44Dt6fIA{%}5Cnhttp://search.ebscohost.com/login.aspx?direct=true{&}db=lih{&}AN=3977495
http://content.ebscohost.com/ContentServer.asp?T=P{&}P=AN{&}K=39774959{&}S=R{&}D=lih{&}EbscoContent=dGJyMNLr40SeqLI4v+bwOLCmr0qep65Ssau4SrOWxWXS{&}ContentCustomer=dGJyMPGutk6uqbFQuePfgeyx44Dt6fIA{%}5Cnhttp://search.ebscohost.com/login.aspx?direct=true{&}db=lih{&}AN=3977495
http://content.ebscohost.com/ContentServer.asp?T=P{&}P=AN{&}K=39774959{&}S=R{&}D=lih{&}EbscoContent=dGJyMNLr40SeqLI4v+bwOLCmr0qep65Ssau4SrOWxWXS{&}ContentCustomer=dGJyMPGutk6uqbFQuePfgeyx44Dt6fIA{%}5Cnhttp://search.ebscohost.com/login.aspx?direct=true{&}db=lih{&}AN=3977495
http://content.ebscohost.com/ContentServer.asp?T=P{&}P=AN{&}K=39774959{&}S=R{&}D=lih{&}EbscoContent=dGJyMNLr40SeqLI4v+bwOLCmr0qep65Ssau4SrOWxWXS{&}ContentCustomer=dGJyMPGutk6uqbFQuePfgeyx44Dt6fIA{%}5Cnhttp://search.ebscohost.com/login.aspx?direct=true{&}db=lih{&}AN=3977495
http://primary.quickstartcomputing.org/resources/pdf/qs{_}handbook.pdf
http://primary.quickstartcomputing.org/resources/pdf/qs{_}handbook.pdf
http://dl.acm.org/citation.cfm?doid=2975594.2955114
http://www.computingatschool.org.uk/data/uploads/cas{_}secondary.pdf
http://www.computingatschool.org.uk/data/uploads/cas{_}secondary.pdf
https://www.kennisnet.nl/fileadmin/kennisnet/publicatie/Computational{_}Thinking{_}in{_}het{_}Nederlandse{_}onderwijs.pdf
https://www.kennisnet.nl/fileadmin/kennisnet/publicatie/Computational{_}Thinking{_}in{_}het{_}Nederlandse{_}onderwijs.pdf
http://www.knaw.nl/Content/Internet{_}KNAW/publicaties/pdf/20121027.pdf
http://www.knaw.nl/Content/Internet{_}KNAW/publicaties/pdf/20121027.pdf
http://dl.acm.org/citation.cfm?doid=1929887.1929902
http://dl.acm.org/citation.cfm?doid=1929887.1929902
http://dl.acm.org/citation.cfm?doid=2978249.2978251
http://dl.acm.org/citation.cfm?doid=2978249.2978251
http://dx.doi.org/10.1016/j.chb.2014.09.012 http://linkinghub.elsevier.com/retrieve/pii/S0747563214004634
http://dx.doi.org/10.1016/j.chb.2014.09.012 http://linkinghub.elsevier.com/retrieve/pii/S0747563214004634

Bibliography 41

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Marion Milton, Mary Rohl, and Helen House. Secondary Beginning Teachers ’ Prepared-
ness to Teach Literacy and Numeracy: A Survey. Australian Journal of Teacher Educa-
tion, 32(2):37-56, 2007. URL htt://ro.ecu.edu.au/ajte/vol32/iss2/4.

Jesuis Moreno-leén, Gregorio Robles, Universidad Rey, and Juan Carlos. Analyze your
Scratch projects with Dr . Scratch and assess your Computational Thinking skills.
Scratch Conference 2015, pages 1-7, 2015.

Chrystalla Mouza, Lori Pollock, Kathleen Pusecker, Kevin Guidry, Ching-Yi Yeh, James
Atlas, and Terry Harvey. Implementation and Outcomes of a Three-Pronged Approach
to Professional Development for CS Principles. In Proceedings of the 47th ACM Technical
Symposium on Computing Science Education - SIGCSE ’16, pages 66-71, New York, New
York, USA, 2016. ACM Press. ISBN 9781450336857. doi: 10.1145/2839509.2844585.
URL http://dl.acm.org/citation.cfm?doid=2839509.2844585.

National Research Council. Report of a Workshop on The Scope and Nature of Com-
putational Thinking. 2010. ISBN 978-0-309-14957-0. doi: 10.17226/12840. URL
http://www.nap.edu/catalog/12840.

National Research Council. Report of a Workshop on the Pedagogical Aspects of Com-
putational Thinking. 2011. ISBN 978-0-309-21474-2. doi: 10.17226/13170. URL
http://www.nap.edu/catalog/13170.

Greg L Nelson, Benjamin Xie, and Andrew J Ko. Comprehension First : Evaluating a
Novel Pedagogy and Tutoring System for Program Tracing in CS1. pages 42-51, 2017.

National academy of engineering of medicine National academy of sciences and Institute.
On Being a Scientist. 2009. ISBN 9780309119702. doi: 10.17226/12192.

Platform Onderwijs2032. Advisory Report Ons onderwijs2032 Advisory Report. Number
January. 2016. ISBN 9789082492804.

J Pallant. SPSS survival manual. Journal of Advanced Nursing, 36(3):478-478, 2007.
ISSN 03092402. doi: 10.1046/j.1365-2648.2001.2027¢c.x. URL http://mcgraw-hill.
co.uk/openup/chapters/0335208908.pdf.

Seymour. Papert. Mindstorms: Computers, children, and powerful ideas. NY: Basic
Books, page 1980, 1980. URL http://dl.acm.org/citation.cfm?id=1095592.

Lori Pollock, Crystalla Mouza, Amanda Czik, Alexis Little, Debra Coffey, and Joan
Buttram. From Professional Development to the Classroom: Findings from CS K-
12 Teachers. Proceedings of the 2017 ACM SIGCSE Technical Symposium on Com-
puter Science Education, pages 477-482, 2017. doi: 10.1145/3017680.3017739. URL
http://doi.acm.org/10.1145/3017680.30177309.

Laura Helena Porras-Hernandez and Bertha Salinas-Amescua. Strengthening Tpack:
A Broader Notion of Context and the Use of Teacher’s Narratives to Reveal Knowledge
Construction. Journal of Educational Computing Research, 48(2):223-244, 2013. ISSN
0735-6331. doi: 10.2190/EC.48.2.f. URL http://journals.sagepub.com/doi/10.
2190/EC.48.2.f.

Alexander Repenning, David Webb, and Andri loannidou. Scalable game design
and the development of a checklist for getting computational thinking into public
schools. In Proceedings of the 41st ACM technical symposium on Computer science ed-
ucation - SIGCSE ’10, page 265, New York, New York, USA, 2010. ACM Press. ISBN
9781450300063. doi: 10.1145/1734263.1734357. URL http://portal.acm.org/
citation.cfm?doid=1734263.1734357.

Alexander Repenning, Ryan Grover, Kris Gutierrez, Nadia Repenning, David C Webb,
Kyu Han Koh, Hilarie Nickerson, Susan B Miller, Catharine Brand, lan Her Many Horses,
Ashok Basawapatna, and Fred Gluck. Scalable Game Design. ACM Transactions on

htt://ro.ecu.edu.au/ajte/vol32/iss2/4
http://dl.acm.org/citation.cfm?doid=2839509.2844585
http://www.nap.edu/catalog/12840
http://www.nap.edu/catalog/13170
http://mcgraw-hill.co.uk/openup/chapters/0335208908.pdf
http://mcgraw-hill.co.uk/openup/chapters/0335208908.pdf
http://dl.acm.org/citation.cfm?id=1095592
http://doi.acm.org/10.1145/3017680.3017739
http://journals.sagepub.com/doi/10.2190/EC.48.2.f
http://journals.sagepub.com/doi/10.2190/EC.48.2.f
http://portal.acm.org/citation.cfm?doid=1734263.1734357
http://portal.acm.org/citation.cfm?doid=1734263.1734357

42

Bibliography

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[735]

[76]

Computing Education, 15(2):1-31, apr 2015. ISSN 19466226. doi: 10.1145/2700517.
URL http://dl.acm.org/citation.cfm?doid=2767124.2700517.

Phil Scott, Eduardo Mortimer, and Jaume Ametller. Pedagogical link-making: A fun-
damental aspect of teaching and learning scientific conceptual knowledge. Studies in
Science Education, 47(1):3-36, 2011. ISSN 03057267. doi: 10.1080/03057267.2011.
549619.

Cynthia Selby. Computational Thinking : The Developing Definition. ITiCSE Conference
2013, pages 5-8, 2013.

Cynthia C. Selby. Relationships: computational thinking, pedagogy ofprogramming,
and Bloom’s Taxonomy. In Proceedings of the Workshop in Primary and Secondary
Computing Education on ZZZ - WiPSCE ’15, pages 80-87, New York, New York, USA,
2015. ACM Press. ISBN 9781450337533. doi: 10.1145/2818314.2818315. URL http:
//doi.acm.org/10.1145/2818314.2818315{%}5Cnhttp://dl.acm.org/citation.
cfm?id=2818315http://dl.acm.org/citation.cfm?doid=2818314.2818315.

Oshani Seneviratne. Emerging Research, Practice, and Policy on Computational Think-
ing. Springer International Publishing, Cham, 2017. ISBN 978-3-319-52690-
4. doi: 10.1007/978-3-319-52691-1. URL http://link.springer.com/10.1007/
978-3-319-52691-1.

Sue Sentance and Andrew Csizmadia. Teachers ’ perspectives on successful strategies
for teaching Computing in school. Ifip Tc3, (June):1-11,2015. URL http://community.
computingatschool.org.uk/files/6303/original.pdf.

Valerie J. Shute and Yoon Jeon Kim. Formative and stealth assessment. In Handbook
of Research on Educational Communications and Technology: Fourth Edition, pages 311—
321.2014. ISBN 9781461431855. doi: 10.1007/978-1-4614-3185-5_3.

Melinda R. Snodgrass, Maya Israel, and George C. Reese. Instructional supports for
students with disabilities in K-5 computing: Findings from a cross-case analysis. Com-
puters and Education, 100:1-17,2016. ISSN 03601315. doi: 10.1016/j.compedu.2016.
04.011. URL http://dx.doi.org/10.1016/73.compedu.2016.04.011.

Stephen Wolfram. How to teach Computational Thinking, 2016. URL http://blog.
stephenwolfram.com/2016/09/how-to-teach-computational-thinking/.

Jean Stockard, Timothy W. Wood, Cristy Coughlin, and Caitlin Rasplica Khoury. The
Effectiveness of Direct Instruction Curricula: A Meta-Analysis of a Half Century of Re-
search. Review of Educational Research, XX(X):003465431775191, 2018. ISSN 0034-
6543. doi: 10.3102/0034654317751919. URL http://journals.sagepub.com/doi/
10.3102/00346543177519109.

The Royal Society. Shut down or restart? The way forward for computing in UK schools.
Technology, (January):1-122, 2012. doi: 10.1088/2058-7058/25/07/21.

Joke Voogt, Petra Fisser, Jon Good, Punya Mishra, and Aman Yadav. Computational
thinking in compulsory education: Towards an agenda for research and practice. Ed-
ucation and Information Technologies, 20(4):715-728, 2015. ISSN 15737608. doi:
10.1007/s10639-015-9412-6.

Riina Vworikari, Yves Punie, Stephanie Carretero, and Lieve Van Den Brande.
DigComp 2.0: The Digital Competence Framework for Citizens. 2016. ISBN
978-92-79-58876-1. doi: 10.2791/11517. URL http://publications.jrc.
ec.europa.eu/repository/bitstream/JRC101254/3rcl01254{ }digcomp2.
Othedigitalcompetenceframeworkforcitizens.updatephasel.pdf.

http://dl.acm.org/citation.cfm?doid=2767124.2700517
http://doi.acm.org/10.1145/2818314.2818315{%}5Cnhttp://dl.acm.org/citation.cfm?id=2818315 http://dl.acm.org/citation.cfm?doid=2818314.2818315
http://doi.acm.org/10.1145/2818314.2818315{%}5Cnhttp://dl.acm.org/citation.cfm?id=2818315 http://dl.acm.org/citation.cfm?doid=2818314.2818315
http://doi.acm.org/10.1145/2818314.2818315{%}5Cnhttp://dl.acm.org/citation.cfm?id=2818315 http://dl.acm.org/citation.cfm?doid=2818314.2818315
http://link.springer.com/10.1007/978-3-319-52691-1
http://link.springer.com/10.1007/978-3-319-52691-1
http://community.computingatschool.org.uk/files/6303/original.pdf
http://community.computingatschool.org.uk/files/6303/original.pdf
http://dx.doi.org/10.1016/j.compedu.2016.04.011
http://blog.stephenwolfram.com/2016/09/how-to-teach-computational-thinking/
http://blog.stephenwolfram.com/2016/09/how-to-teach-computational-thinking/
http://journals.sagepub.com/doi/10.3102/0034654317751919
http://journals.sagepub.com/doi/10.3102/0034654317751919
http://publications.jrc.ec.europa.eu/repository/bitstream/JRC101254/jrc101254{_}digcomp 2.0 the digital competence framework for citizens. update phase 1.pdf
http://publications.jrc.ec.europa.eu/repository/bitstream/JRC101254/jrc101254{_}digcomp 2.0 the digital competence framework for citizens. update phase 1.pdf
http://publications.jrc.ec.europa.eu/repository/bitstream/JRC101254/jrc101254{_}digcomp 2.0 the digital competence framework for citizens. update phase 1.pdf

Bibliography 43

[77]

[78]

[79]

(80]

[81]

(82]

[83]

[84]

Mary Webb, Niki Davis, Tim Bell, Y. Katz, Nicholas Reynolds, Dianne P. Chambers, and
Maciej M. Systo. Computer science in K-12 school curricula of the 21st century: Why,
what and when? Education and Information Technologies, 22(2):445-468, 2017. ISSN
15737608. doi: 10.1007/s10639-016-9493-x.

David Weintrop, Elham Beheshti, Michael Horn, Kai Orton, Kemi Jona, Laura Trouille,
and Uri Wilensky. Defining Computational Thinking for Mathematics and Science Class-
rooms. Journal of Science Education and Technology, 25(1):127-147, feb 2016. ISSN
1059-0145. doi: 10.1007/s10956-015-9581-5. URL http://link.springer.com/
10.1007/s10956-015-9581-5.

J. M Wing. Computational thinking and thinking about computing. Philosophical Trans-
actions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366
(1881):3717-3725, oct 2008. ISSN 1364-503X. doi: 10.1098/rsta.2008.0118. URL
http://rsta.royalsocietypublishing.org/cgi/doi/10.1098/rsta.2008.0118.

Jeannette M. Wing. Computational thinking. Communications of the ACM, 49(3):33, mar
2006. ISSN 00010782. doi: 10.1145/1118178.1118215. URL http://portal.acm.
org/citation.cfm?doid=1118178.1118215.

Jeannette M Wing. Computational Thinking: What and Why? the-
link - The Magaizne of the Varnegie Mellon University School of Computer
Science, (March 2006):1-6, 2010. URL http://www.cs.cmu.edu/link/

research-notebook-computational-thinking-what-and-why.

Ursula Wolz, Meredith Stone, Kim Pearson, Sarah Monisha Pulimood, and Mary Switzer.
Computational Thinking and Expository Writing in the Middle School. ACM Transactions
on Computing Education, 11(2):1-22, jul 2011. ISSN 19466226. doi: 10.1145/1993069.
1993073. URL http://dl.acm.org/citation.cfm?doid=1993069.1993073.

Aman Yadav, Ninger Zhou, Chris Mayfield, Susanne Hambrusch, and John T. Korb. In-
troducing computational thinking in education courses. In Proceedings of the 42nd ACM
technical symposium on Computer science education - SIGCSE ’11, number 2, page 465,
New York, New York, USA, 2011. ACM Press. ISBN 9781450305006. doi: 10.1145/
1953163.1953297. URL http://portal.acm.org/citation.cfm?doid=1953163.
1953297.

Aman Yadav, Jon Good, Joke Voogt, and Petra Fisser. Competence-based Vo-
cational and Professional Education. 23:1051-1067, 2017. ISSN 1871-3041.
doi: 10.1007/978-3-319-41713-4. URL http://link.springer.com/10.1007/
978-3-319-41713-4.

http://link.springer.com/10.1007/s10956-015-9581-5
http://link.springer.com/10.1007/s10956-015-9581-5
http://rsta.royalsocietypublishing.org/cgi/doi/10.1098/rsta.2008.0118
http://portal.acm.org/citation.cfm?doid=1118178.1118215
http://portal.acm.org/citation.cfm?doid=1118178.1118215
http://www.cs.cmu.edu/link/research-notebook-computational-thinking-what-and-why
http://www.cs.cmu.edu/link/research-notebook-computational-thinking-what-and-why
http://dl.acm.org/citation.cfm?doid=1993069.1993073
http://portal.acm.org/citation.cfm?doid=1953163.1953297
http://portal.acm.org/citation.cfm?doid=1953163.1953297
http://link.springer.com/10.1007/978-3-319-41713-4
http://link.springer.com/10.1007/978-3-319-41713-4

Appendices

45

A

Semistructured Interview Format

47

Acties van mijzelf:
(1 Uitleg opname, verwerking van data anoniem (informed consent / ethics) en structuur interview
(d Redundant opnemen (telefoon+macbook)

Inleidende vragen:
d naam / school / leeftijd / hoe lang voor de klas / achtergrond/vak
d hoe lang ervaring CT-gerelateerde lessen

U heeft nu een (basis) curus digitale geletterdheid achter de rug waarbij de focus lag op CT, waar in de praktijk
vorm aan gegeven kan worden via programmeren. Met deze vorm van professionalisering achter de rug ..

d Open: Wat zijn uw behoeftes op dit moment om CT te onderwijzen?
Vervolg/verdiepende vragen indien nodig:
(4 Middelen
d Op het gebied van professionalisering
Aan het einde komen we nog een keer bij deze vraag terug.

d Open: Hoe zou u CT omschrijven aan iemand?
Vervolg/verdiepende vragen indien nodig:
d Wat komt er bij u op als u denkt aan ‘Computational Thinking’?

(1 Open: Welke pedagogische strategie / didactiek zet u in bij het onderwijzen van CT ?
Vervolg/verdiepende vragen indien nodig:
d Welke activiteiten wilt u dat leerlingen doorlopen en in welke volgorde?
[Waarom bied je deze activiteiten in deze volgorde aan?
1 Waarom heb je voor dit lesmateriaal gekozen?
[Wat heeft je de overtuiging gegeven om deze keuzes te maken?
Wat wilt u de leerlingen aanleren om uw doelen te behalen?
1 Wat heeft je de overtuiging gegeven om deze keuzes te maken?
Hoe geeft u hen les om deze doelen te behalen?
Wat is uw rol als docent hierbij?
Hoe controleert u of leerlingen uw doelen behalen?
Wat doet u helemaal buiten de computer en/of andere ICT om mbt het lesgeven in CT?

()

Uodod

Indien nodig draag ik voorbeelden aan zoals omschreven bij het stuk over pedagogiek ter
verduidelijking om te vragen in hoeverre de deelnemer dit toepast/kent.

(d Open: Welke leerproblemen zijn voor u bekend bij het onderwijzen van CT?
Vervolg/verdiepende vragen indien nodig:
[Bij complexe situaties waarbij, buiten de inzet van een programmeertaal, zaken vereenvoudigt
moeten worden om tot de kern van een probleem te komen.
Voor verduidelijking toelichting abstractie
[Bij het formuleren van een oplossing in generieke termen zodanig dat het ook toegepast kan
worden bij een ander probleem
Voor verduidelijking toelichting generalisatie
1 Bij het opdelen van een probleem of taak in kleinere deelproblemen/deeltaken om de
complexiteit te kunnen hanteren
Voor verduidelijking toelichting decompositie
(d Bij het verklaren van algoritmes aan de hand van een serie geordende instructies/regels die
stap voor stap uitgevoerd worden om een probleem op te lossen of een doel te bereiken.
Voor verduidelijking algoritmisch denken
(d Bij het opsporen en verhelpen van fouten door logisch te redeneren. (debugging)

(d Open: Welke kennis/vaardigheden past u toe aangaande integratie van ICT in uw lessen CT?
Vervolg/verdiepende vragen indien nodig:

Hoe zet u ICT in om leerlingen CT aan te leren?

Welke vormen van digitale technologie ziet u als geschikt om CT aan te leren?

Wat beschouwt u als ICT-basisvaardigheden voor een docent om CT aan te kunnen leren?

Hoe maakt u zich nieuwe vormen van technologie eigen? (software & hardware)

In hoeverre gaat u mee met nieuwe technologische ontwikkelingen?

oodoodno

Indien nodig draag ik voorbeelden aan zoals omschreven bij het stuk over technologie ter
verduidelijking om te vragen in hoeverre de deelnemer dit toepast/kent.

d Open: Wat kunt u vertellen over de condities op sociaal-, technologisch-, organisatorisch en
economisch vlak die ertoe hebben geleid dat CT in uw school een (grotere) rol is gaan spelen?
Vervolg/verdiepende vragen indien nodig:

d Van wie is het initiatief gekomen (leerlingen/directie/collega’s e.d.)
(d Wat voor noodzaak is er volgens u aanwezig (geweest)?

d Open: Wat kunt u vertellen over de voorwaarden die nodig zijn om binnen de klas aan CT te werken?
Vervolg/verdiepende vragen indien nodig:
d Welke behoeften zijn er op het gebied van middelen/tijd/geld?
d Wat is uw mening/opvatting en die van uw leerlingen aangaande het nut van CT?

Na deze verkenning van CT in en rondom uw lessen keren we nu weer terug naar de eerste vraag aangaande
de behoeftes.

(1 Wilt u hier nog iets aan toevoegen?

(d Heeft u verder nog op- of aanmerkingen aangaande het interview?

Abstractie

Omschrijving: Complexe situaties eenvoudiger weergeven door het belangrijkste te benadrukken en details

buiten beschouwing te laten om zo te komen tot de kern van een probleem.

Zoals:
- Herkennen van belangrijke elementen in een proces, verhaal of foto.
- ldentificeren van verschillen in vergelijkbare situaties en deze in versimpelde termen benoemen.
- Beschrijven hoe apparaten en digitale instrumenten werken door de hoofdlijnen en belangrijkste
componenten aan te geven.
- Weergeven van de werkelijkheid in een conceptueel model.
- Herkennen en gebruiken van verschillende geabstraheerde verschijningsvormen (zoals een

plattegrond/kaart of begrip/concept).

Voorbeeld activiteiten:
http://www.drscratch.org/learn/Abstraction/
https://scratch.mit.edu/projects/120178758/#editor

Laat een leerling bijvoorbeeld een conceptueel model bedenken van een tafel; ‘wanneer is iets een tafel’ ?

Generalisatie (patronen)

Omschrijving: Formuleren van een oplossing in generieke termen zodanig dat het ook toegepast kan worden

bij een ander probleem.

Zoals:

- Herkennen van patronen, overeenkomsten en verbanden om die vervolgens toe te passen.

- Een manier om nieuwe problemen (snel) op te lossen op basis van oplossingen en voorgaande
ervaring van eerdere problemen.

- Je afvragen in hoeverre iets lijkt op problemen die je al eerder hebt opgelost en op welke manier ze
anders zijn.

- Een algoritme dat de oplossing is voor een bepaald probleem kan op een zodanige manier worden
aangepast dat het toepasbaar is op een groot aantal overeenkomstige problemen. Wanneer in zo'n

geval een zelfde type probleem moet worden opgelost kan een universele oplossing worden toegepast.

Voorbeeld activiteiten:

Een leerling maakt in Scratch een tekening om een driechoek en een vierkant te tekenen. De leerling maakt er
uiteindelijk door middel van abstractie een 'eigen blok' van met de naam driehoek en een blok met de naam
vierkant. Vervolgens wil de leerling een vijthoek tekenen. Gebaseerd op de code van het vierkant en de
driehoek komt de leerling tot de realisatie dat er een relatie is tussen het aantal zijden en de bijbehorende
hoeken. Vervolgens schrijft de leerling het algoritme uit die deze relatie tot uitdrukking laat komen om

vervolgens elke veelhoek te kunnen tekenen.

orootte FECT I Beweging I Gebeurtenissen
otk B] viterliiken Jl Besturen wanneer wordt aangeklikt
I Geluid I Waarnemen 5
) wis alles
I Pen I Functies
\ [Meer blokken pen neer
{ ‘\ maak grootte -100
\ /,/ Maak een variabele ,ﬁ
o maak hoeken
L oroote | ——
[[
4 @ veelhoek | grootte | hoeken
X: 240 y: -180 |4
1. maak hoeken
d/an
i hoek < o
& pepncey] hosken_ [eriEY definieer driehoek [grootte definieer | veelhoek [grootte | hoeken

Speelveld Pencil verberg variabele hoeken 2 M
1 achtergrond draai (4 graden
Nieuwe achtergr r

a/am

draai (4 (€D / (hoeken = graden
13

=
" neem | grootte stappen @
Maak een lijst neem [grootte stappen

" draa (g o)
13

neem (‘grootte stappen

Decompositie

Omschrijving: Probleem of taak opdelen in kleinere deelproblemen of deeltaken om de complexiteit te kunnen

hanteren.

Zoals:
- Opdelen van een grotere en meer complexe taak in een aantal deeltaken (bijv. bij een zaakvak,
werkstuk, regie van film of lesstof)
- Omzetten van een concreet probleem in een passende visuele weergave (bijv. stappenschema)
- Uitwerken van deelopdrachten en de opbrengsten samenstellen tot een eindproduct

- Checken of geen belangrijk deel gemist of vergeten wordt bij het uitvoeren van deelopdrachten

Voorbeeld activiteiten:
https://scratch.mit.edu/projects/2647059/

Algoritmisch denken

Omschrijving: De werking van algoritmes verklaren als een serie geordende instructies of regels die stap voor
stap worden uitgevoerd om een probleem op te lossen of een doel te bereiken. Veelgebruikte concepten

daarbij zijn sequences, loops, parallelism, events, conditionals, operators, en dataflow.

Verdere verduidelijking

Sequences (sequentie) & Loops / Voorbeeld:

repeat)
move m steps

move m steps
wait (0.2
move m steps
wait (0.2 T

move m steps

wait (¥} secs
T T,

e Al'™ programming! RETS 2 EEL

wait m s5ecs

move m steps

wait (0.2 BT

say [IFIEFIOUIIT for €) secs

Figure 2. A sequence of repeated instructions expressed as a loop.
Parallelism (parallellisatie) / Voorbeeld:

Spritel

I love dancing.

move steps
&

wait m secs

L

move §T) steps
e

New sprite: ,‘/ 'J.} ’)}

(%7

Spritel

Figure 4. Example of parallelism within a single object.

Events (gebeurtenissen) / Voorbeeld:

when clicked when space | key pressed

when Spritel clicked
say REIEH for secs

i it T

turn (& degrees wait (F) secs
- change y by m

Figure 3. Examples of events producing actions.

Conditionals (condities) / Voorbeeld:

touching color [l 7
repeat
'change ghost | effect by B
b_--.el: vspeed |to [
.set ‘hspeed |to [@
h:hange brightness |effect by B

=y
go to x:) y: @)
»

set ghost |effact to ()

[iu-Tnadcast nextLevel

sat brightness |effect to 0
R

New sprite: ”

Spritel

Figure 5. Example of conditionals.

Operators (operatoren) / Voorbeeld:

@rodP =i hello Jworld’
round [letter §§ of [T

length of [T
sqrt |of

pick random ¥ to

Figure 6. Operator blocks.

Data (gegevens) / Voorbeeld:

e '
Joirel & EH D File Edit Share Help

W
Motion Control

Looks Sensing Click the green flag.
Move the mouse to eat
6 the small fish

Pen Variables E

Sound Operators

(ke o variable when cicked
Delete a variable set score

[£d ' score

forever if distance to m
score
Egp score [l point towards MOUS

change score by) move) steps
show variable score

hide variable score

Make a list | shetge

play sound chomp

goldfish... hungry ...

Figure 7. Using a variable to keep score.

Dataflow / Omschrijving:

Het kunnen verklaren en ordenen van gebeurtenissen in een logische volgorde op basis van het aangeleverde
probleem.

Pedagogiek

e Het gebruik van vragen voor meer begrip (onderwijs leergesprek)

e Het gebruik van voorbeelden (uitleg en demonstraties)

e Werken aan het (iteratief & incrementeel) opbouwen van modellen van een probleem

e Het presenteren of uitleggen van een probleem aan de hand van een serie stappen

e Het modelleren van beslissingen nemen aan de hand van bepaalde condities

e Het uitbouwen en herbruiken van bestaande tools/oplossingen van jezelf en anderen (reuse/remix)

e Het opdelen van een complex probleem in kleinere (simpelere) stappen waarbij incrementeel naar de
oplossing toegewerkt wordt.

e Het uitwerken van een model (voor een bepaald probleem) voordat er gebruik word gemaakt van de
computer om het op te lossen

e Het laten uitproberen, constant evalueren en aanpassen

Technologie

- Hetvinden en gebruiken van online animaties/filmpjes om zaken te demonstreren/verduidelijken

- Het internet gebruiken om misconcpten te ontdekken gerelateerd aan CT

- Het inzetten van digitale technologie geschikt voor het aanleren van CT

- Het helpen van leerlingen bij de inzet van digitale technologie om gegevens te verzamelen

- Het helpen van leerlingen bij de inzet van digitale technologie om gegevens te ordenen en er patronen
in te ontdekken

- Het helpen van leerlingen bij de inzet van digitale technologie om modellen/simulaties te maken en/of

aan te passen.

- Het inzetten van digitale technologie om mijn productiviteit als docent te vergroten

- Het inzetten van digitale technologie om mijn communicatie met leerlingen te verbeteren

- Het inzetten van digitale technologie om leerlingen te motiveren

- Het inzetten van digitale technologie om de presentatie van gegevens te verbeteren (spreadsheets
ed.)

- Hetinzetten van digitale technologie om te helpen bij het toetsen van de leerdoelen

- Het inzetten van digitale technologie die wetenschappers gebruiken

- om gegevens inzichtelijk te maken die anderzijds moeilijk waar te nemen zijn

- om de weergave van gebeurtenissen te verlangzamen/ versnellen

- om modellen/simulaties te maken van wetenschappelijke fenomenen

- om gegevens te verzamelen die anderzijds moeilijk te verzamelen is

- om gegevens zodanig te organiseren/ordenen zodat patronen ondekt kunnen worden die

normaliter moeilijk te achterhalen zijn.

- ICT basisvaardigheden zoals
- het opslaan van afbeeldingen
- opzoeken van specifieke informatie aangaande een bepaald onderwerp
- een email opstellen met bijlagen
- een presentatie- en tekstdocument maken met bijbehorende software
- een nieuw programma jezelf eigen maken
- een programma zelf installeren
- het aanpassen/maken van foto/video

- het gebruiken van ‘nieuwere media’ zoals blogs, social media, podcasts, eigen website

Intercoder reliability SPSS output

Run MATRIX procedure:

Krippendorff’s Alpha Reliability Estimate

Alpha LL95%CI UL95%CI Units Observrs Pairs
Nominal .6050 .3582 .8025 24.0000 2.0000 24.0000

Probability (g) of failure to achieve an alpha of at least alphamin:

alphamin q
.9000 .9964
.8000 .9434
.7000 .7382
.6700 .7382
.6000 .41006
.5000 .1414

Number of bootstrap samples:
5000

Judges used in these computations:
julian felienne

Observed Coincidence Matrix

.00 .00 1.00 .00 .00 .00 2.00 1.00 .00 2.00
.00 4.00 .00 1.00 .00 .00 .00 .00 .00 .00
1.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 1.00 .00 4.00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 16.00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 2.00 .00 .00 .00 .00
2.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
1.00 .00 .00 .00 .00 .00 .00 .00 1.00 .00
.00 .00 .00 .00 .00 .00 .00 1.00 2.00 .00
2.00 .00 .00 .00 .00 .00 .00 .00 .00 4.00

59

60

B. Intercoder reliability SPSS output

Expected Coincidence Matrix

.64 .64
.64 .43
.13 .11
.64 .53
2.04 1.70
.26 .21
.26 .21
.26 .21
.38 .32
17 .64
Delta Matrix

.00 1.00
1.00 .00
1.00 1.00
1.00 1.00
1.00 1.00
1.00 1.00
1.00 1.00
1.00 1.00
1.00 1.00
1.00 1.00
Rows and columns
1.00 6.00

.13
.11
.00
.11
.34
.04
.04
.04
.06
.13

1.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

[

I T = S =y

.64
.53
.11
.43
1.70
.21
.21
.21
.32
.64

1.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

=

el e

2.04
1.70
.34
1.70
5.11
.68
.68
.68
1.02
2.04

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

el

el

.26
.21

.04

.21
.68

.04
.09
.09

.13
.26

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

el

e

.26
.21

.04

.21
.68

.09
.04
.09
.13
.26

.00
.00
.00
.00
.00
.00
.00

e e e

1.00
1.00

correspond to following unit values

7.00

18.00

19.00

20.00

21.00

.26
.21

.04
.21

.68

.09
.09
.04
.13
.26

.00
.00
.00
.00
.00
.00
.00
.00
1.00
1.00

e

24.00

.38
.32

.06

.32

1.02

.13
.13
.13
.13
.38

e e

.00
.00
.00
.00
.00
.00
.00
.00

.00

1.

25.00

Examine output for SPSS errors and do not interpret if any are found

00

L7
.64
.13
.64

2.04

.26
.26
.26
.38
.64

R e T = T = = W S Sy =

.00
.00
.00
.00
.00
.00
.00
.00
.00

.00

28.00

Coding scheme updates

Between the first and the second interview the following changes/updates were made:

For the content knowledge (CK) and learner knowledge (LK) the sublabels for abstrac-
tion, decomposition and generalization were merged into a new label called ’algorithmic
thinking’ after establishing granularity is too high.

An implication was established for learner knowledge (LK), i.e. a teacher that is capa-
ble of explicating LK for a certain LK subcategory also means this teacher has content
knowledge (CK) for this particular subcategory. Please note that the reverse is not nec-
essary truel!

Between the second and the third interview the following changes/updates were made:

A new subcategory for pedagogical knowledge (PK) concerning the general transforma-
tion of content knowledge (CK) to pedagogical knowledge (PK) was added.

Learning programming languages (tools) now belongs under the category technological
knowledge (TK) instead of CK

When trying to differentiate between PK and CK related the following agreements were
made: if a participant describes elements of CT it belongs in the CK category, but if it
is being described as how to teach it than it belongs in the PK category.

Between the third and the fourth interview the following changes/updates were made:

To reduce ambiguity within the ‘CT related PK labels’ a clear line between CT-related PK
and non-CT related PK was made. As such 4 originally split up labels are now merged
into 1 label.

To improve granularity for PK connected to CT, considering the transformation of CK
about algorithmic thinking to PK, we now make a difference between a transformation
that is executed through a programming language or other technological tool versus
without the use of any programming language or technological tool. As such the PK
sublabel teaching algorithmic thinking is now split up in a TECH and non-TECH variant.
PK subcategory A, B, E and F are now placed under algorithmic thinking (their umbrella
term)

PK subcategory C is merged with subcategory F with an updated description

PK subcategory E is renamed to 'PK_CT_REUSEMIX.

PK subcategory G is now placed under 'PK_CT_DEBUG’ with an updated description,
i.e. more examples.

The subcategory of learner knowledge for algorithmic thinking was updated to be more
universal applicable.

An implication was established for pedagogical knowledge (PK), i.e. a teacher that is
capable of explicating PK for a certain CT subcategory it also means this teacher has
the content knowledge (CK) for this particular subcategory. Please note that the reverse
is not necessary true!

61

Final coding scheme

This coding scheme includes all categories, subcategories and labels associated with the orig-
inal TPACK model. Please note the table captions.

Table D.1: Content Knowledge (CK) for computational thinking and its subcategories
includes knowledge and understanding about..

LABEL/CODE

DESCRIPTION

CK_CT_ALGO

CK_CT_DEBUG

the skills’lknowledge of abstraction (including modeling), gener-
alization, decomposition and several computational thinking con-
cepts, such as, data, processing, information, sequencing, loops,
parallel processing, events, conditions, operators, variables, and
dataflow of control.

the skills of and attitude necessary for debugging (i.e. under-
standing that there is not one best solution when it comes to cre-
ating working code, understanding that it is about trial and error)

Table D.2: Learner Knowledge (LK) for computational thinking and its subcategories
includes knowledge about learners’ characteristics, preconceptions and difficulties

n..

LABEL/CODE

DESCRIPTION

w| #*

[K_CT_GEN

LK_CT_ALGO

LK_CT_DEBUG

aspects connected to programming languages that impede CT
learning i.e. the linguistic aspect.

developing abstractions (that are beyond of any particular pro-
gramming language or tool), generalizing from one solution to
another by identifying common patterns, decomposing complex
problems to simpler ones, thinking algorithmically to solve a
problem (including difficulties in understanding relevant concepts,
such as sequencing, loops, flow of control, conditions, etc.)

skills and attitude necessary for debugging

63

64

D. Final coding scheme

Table D.3: General pedagogical knowledge (PK) and PK for computational thinking
(PK_CT) and its subcategories

#

LABEL/CODE

DESCRIPTION

10

11

12

13

PK_NON_CT

PK_CT_ACTIVITY

PK_CT_ALGO_TECH

PK_CT_ALGO

PK_CT_DEBUG

PK_CT_GOALS

PK_CT_ASSESS

PK_CT_REUSEMIX

didactics not necessarily connected to CT such as effective
management of student learning i.e. differentiated instruction,a
student-centered / teacher-centered approach, project-based
learning, group work, collaboration,the use of questions to pro-
mote understanding,use of examples, use of explanations and
use of demonstrations

unplugged, pair programming, live coding etc.

by the use of a programming language or technological tool teach
the skills’lknowledge about A. abstraction by modeling how to
problem solve or think about a problem in iterative and incremen-
tal ways, B. generalizing from one solution to another by showing
how to identify common patterns i.e. through the use of functions
and parameters, C. complex problems to simpler ones and show
how to develop a solution in increments, D. showing how to de-
sign a model and decision making with conditions (e.g. through
the use of flowcharts) before writing a program for solving the
problem and E. showing how to solve a problem by presenting or
explaining the solution to a problem in terms of a series of steps
(by using relevant concepts, such as sequencing, loops, flow of
control, conditions, etc).

outside the use of a programming language or technological tool
teach the skills/lknowledge about A. abstraction by showing how
complex situations can be simplified or broken down into the most
important elements as a way to get to the core of a problem, B.
generalizing from one solution to another by showing how to iden-
tify common patterns (e.g. by showing how certain smaller prob-
lems apply to a larger scale in everyday life around you), C. de-
composing a problem or task into smaller problems or subtasks
to handle complexity and maintain a clear overview by visualiz-
ing it for students and taking them through each step, D. showing
how to design a model and decision making with conditions (e.g.
through the use of flowcharts) before writing a program for solving
the problem and E. showing how to solve a problem by present-
ing or explaining the solution to a problem in terms of a series
of steps by using relevant concepts, such as sequencing, loops,
flow of control, conditions, etc.

teaching the skills and attitude necessary for debugging by build-
ing confidence and working towards correct code i.e. try things
out as you go and make revisions based on what happens

working/planning based on a collection of CT learning goals or an
established CT-curriculum and thinking about the order of intro-
ducing each aspect of CT

sufficient means of CT-assessment
show how to do something based on (and expanding) what others

or you have done (e.g. improve code by making it more modular
and/or well structured)

65

Table D.4: Technology knowledge (TK) for computational thinking and its subcategories
includes the teachers knowledge and skills about how to ...

LABEL/CODE DESCRIPTION

14. TK_CT_OPERATE operate/use a variety of technologies

15. TK_CT_CREATE invent/create new technologies/tools

16. TK_CT_SOLVE solve a task using technical processes, methods, tools and rec-
ognize when information technology can assist or impede the
achievement of a goal

17. TK_CT_ADAPT learn and adapt to new technologies.

Table D.5: Context knowledge (CX) for computational thinking is defined from the point
of view explicated by Porras-Hernandez and Salinas-Amescua [62] who proposed to
regard context knowledge along two dimensions, i.e. scope (macro, mezzo, and
micro level context) and actor (students’ and teachers’ inner and external context).

The following subcategories can be identified:

LABEL/CODE

DESCRIPTION

19.

20.

21.

22.

23.

24.

CX_CT_SCOPE_MACRO

CX_CT_SCOPE_MEZZO

CX_CT_SCOPE_MICRO

CX_CT_TEACH_INT

CX_CT_TEACH_EXT

CX_CT_PUPIL_INT

CX_CT_PUPIL_EXT

defined by social, political, technological, and economic condi-
tions at a global level that influence the value and worth of adding
computer science / CT to the school curriculum

defined by the social, cultural, political, organizational, and eco-
nomic conditions settled in the local community and the educa-
tional institution about the value of computational thinking in chil-
dren’s lives.

the level that deals with in-class conditions for learning (e.g., avail-
able resources for computational thinking, available technologies,
norms and policies, beliefs, expectations, teachers’ and students’
goals about computational thinking).

teachers needs, preferences, misconceptions, learning difficul-
ties, prior knowledge, self-efficacy and pedagogical beliefs.

teacher ethnicity, culture, community, and socioeconomic back-
ground

students needs, preferences, misconceptions, learning difficulties
beyond programming and prior knowledge on CT

students ethnicity, culture, community, and socioeconomic back-
ground

67

Survey

Toetsing & programmeren

Welkom bij deze enquéte!
Mijn naam is Julian de Groot en ik ben master student aan de TU Delft en VO-docent informatica.

Door de toename in populariteit van digitale geletterdheid in het onderwijs zijn veel scholen begonnen aan
curriculumvernieuwing onder andere met onderdelen van computational thinking.

Computational thinking richt zich op het zodanig formuleren van problemen en het uitdrukken van
bijpoehorende oplossingen dat een computer het uit kan voeren. Dergelijke zaken komen bijvoorbeeld aan
bod bij programmeren.

Deze enquéte richt zich op alle docenten die dergelijke lessen geven, dat binnenkort van plan zijn te gaan
doen of er in geinteresseerd zijn.

Als u bijvoorbeeld nu programmeerlessen geeft, van plan bent te gaan geven of er in geinteresseerd bent
dan is deze enquéte iets voor u!

Het invullen van de enquéte duurt ongeveer 15 tot 20 minuten. Alle gegevens worden geanonimiseerd als
onderdeel van een wetenschappelijke studie en zullen niet worden gedeeld met derde partijen.

Niet volledig ingevulde enquétes worden niet opgeslagen en kunnen niet worden gebruikt voor het
onderzoek.

*Vereist

Over uzelf

Om een idee te krijgen wat de achtergrond is van onze deelnemers stellen wij u een aantal vragen over
uzelf.

1. Wat is uw geslacht? *
Markeer slechts één ovaal.

Man
Vrouw
Anders

Wil ik niet zeggen

2. Wat is uw geboortejaar? *

Docent bevoegdheid en ervaring

3. Wat is uw hoogste docentbevoegdheid? *
Markeer slechts één ovaal.

Basisonderwijs (Pabo)
1e Graads
2e Graads

Geen

4. Voor welk(e) vak/vakken heeft u deze hoogste
docentbevoegdheid of bent u nog voor in
opleiding? *

5. Hoeveel jaar ervaring heeft u met het geven van lessen programmeren? *
Markeer slechts één ovaal per rij.

geen minderdan 1jaar 1 2 3 4 5 meerdan 5 jaar

PO
VO onderbouw
VO bovenbouw

Algemene toelichting

In de volgende delen van de enquéte wordt u een aantal vragen gesteld aangaande uw attitude omtrent
toetsing.

U krijgt drie keer dezelfde vragen te zien binnen de volgende contexten: algemeen/uw vak en programmeer
lessen.

Wij zijn daarbij geinteresseerd naar uw attitude met betrekking tot toetsing. Onder toetsing verstaan we alle
manieren die u kunt gebruiken om de voortgang van het leerproces te meten.

Wij laten u een lijst met stellingen zien. Elke vraag kan worden beantwoord door op een schaal van 1 tot 5
aan te geven in welke mate u het eens of oneens bent met deze stelling.
Probeer daarbij alle vragen zo snel en nauwkeurig mogelijk te beantwoorden.

6. Voorbeeldvraag
Markeer slechts één ovaal.

Zeer oneens Zeer eens

HET ONDERWIJS IN HET ALGEMEEN

Denk voor de volgende delen van de enquéte aan het onderwijs in het algemeen. Hierbij moet u voorbij het
vak denken dat u lesgeeft. Denk hierbij aan alle vakken op school.

HET ONDERWIJS IN HET ALGEMEEN

7. Geef voor ieder van de volgende stellingen aan in hoeverre u het eens bent voor HET
ONDERWWS IN HET ALGEMEEN. *

Markeer slechts één ovaal per rij.

1 (Zeeroneens) 2 3 4 5 (Zeereens)

De prestaties van leerlingen horen
te worden gemeten aan de hand
van de voortgang

Toetsing hoort plaats te vinden
gedurende een serie
leeractiviteiten

Toetsing hoort continu plaats te
vinden om voortgang te evalueren
Toetsing hoort informatie te bieden
om het leren en onderwijzen aan
te passen

Toetsing hoort gebruikt te worden
om het leerproces van leerlingen
te volgen en te sturen door middel
van feedback

HET ONDERWIJS IN HET ALGEMEEN

8. Geef voor ieder van de volgende stellingen aan in hoeverre u het eens bent voor HET
ONDERWIJS IN HET ALGEMEEN. *

Markeer slechts één ovaal per rij.

1 (Zeer oneens) 2 3 4 5(Zeereens)

OOO
OOO
OOO

De prestaties van leerlingen horen
te worden gemeten aan de hand
van cijfers

Toetsing hoort plaats te vinden
aan het einde van een serie
leeractiviteiten

Toetsing hoort op een uitgekozen
moment plaats te vinden om te
bepalen wat een leerling dan weet
Toetsing hoort informatie te bieden
om leerlingen in een andere

stroom of op een ander niveau te D QQQ
plaatsen

Toetsing hoort gebruikt te worden

om het leerproces van leerlingen

te evalueren door te vergelijken @ QQO

met een benchmark of norm

000
J 0 000

HET ONDERWIJS IN HET ALGEMEEN

9. Geef voor ieder van de volgende toetsvormen aan in hoeverre u deze geschikt vindt voor HET
ONDERWIWJS IN HET ALGEMEEN. *

Markeer slechts één ovaal per rij.

1 (Zeer ongeschikt) 2 3 4 5 (Zeer geschikt)

OOO
OOO
OOO

OO

OO
OO

Een (niet-digitale) schriftelijke
toets met open en / of gesloten
vragen

Een digitale toets met open en / of
gesloten vragen

Een reeks kleine, niet op de
computer uit te voeren, praktische
opdrachten

Een reeks kleine, op de computer
uit te voeren, praktische
opdrachten

Een grote praktische opdracht
(project)

Een mondeling

J0 0 000
J0 0 000

UW VAK

Denk voor de volgende delen aan uw vak of vakken die u het prettigst vindt om te onderwijzen.

UW VAK

10. Geef voor ieder van de volgende stellingen aan in hoeverre u het eens bent voor UW VAK. *
Markeer slechts één ovaal per rij.

1 (Zeeroneens) 2 3 4 5(Zeereens)

OO

OOO
OOO
OOO

De prestaties van leerlingen horen
te worden gemeten aan de hand
van de voortgang

Toetsing hoort plaats te vinden
gedurende een serie
leeractiviteiten

Toetsing hoort continu plaats te
vinden om voortgang te evalueren
Toetsing hoort informatie te bieden
om het leren en onderwijzen aan
te passen

Toetsing hoort gebruikt te worden
om het leerproces van leerlingen
te volgen en te sturen door middel
van feedback

0 000 0
0 000 0

OOO

UW VAK

11. Geef voor ieder van de volgende stellingen aan in hoeverre u het eens bent voor UW VAK. *
Markeer slechts één ovaal per rij.

1 (Zeeroneens) 2 3 4 5(Zeereens)

OO
OOO
OOO

De prestaties van leerlingen horen
te worden gemeten aan de hand
van cijfers

Toetsing hoort plaats te vinden
aan het einde van een serie
leeractiviteiten

Toetsing hoort op een uitgekozen
moment plaats te vinden om te
bepalen wat een leerling dan weet
Toetsing hoort informatie te bieden
om leerlingen in een andere
stroom of op een ander niveau te
plaatsen

Toetsing hoort gebruikt te worden
om het leerproces van leerlingen
te evalueren door te vergelijken
met een benchmark of norm

OOO

0 0 000
0 0 000

OOO

UW VAK

12. Geef voor ieder van de volgende toetsvormen aan in hoeverre u deze geschikt vindt voor UW
VAK. *

Markeer slechts één ovaal per rij.

1 (Zeer ongeschikt) 2 3 4 5 (Zeer geschikt)

OOO
OO0
OOO

OO

OO
OO

Een (niet-digitale) schriftelijke
toets met open en / of gesloten
vragen

Een digitale toets met open en / of
gesloten vragen

Een reeks kleine, niet op de
computer uit te voeren, praktische
opdrachten

Een reeks kleine, op de computer
uit te voeren, praktische
opdrachten

Een grote praktische opdracht
(project)

Een mondeling

Jo 0 000
J0 0 000

LESSEN PROGRAMMEREN

Denk voor de volgende delen aan lessen waarbij u leerlingen leert problemen zodanig te formuleren en de
bijpoehorende oplossingen uit te drukken zodat een computer het uit kan voeren. Dergelijke zaken komen
bijvoorbeeld aan bod bij programmeren.

LESSEN PROGRAMMEREN

13. Geef voor ieder van de volgende stellingen aan in hoeverre u het eens bent voor LESSEN
PROGRAMMEREN. *

Markeer slechts één ovaal per rij.

1 (Zeer oneens) 2 3 4 5(Zeereens)

OO

OO
OO
OO

De prestaties van leerlingen horen
te worden gemeten aan de hand
van de voortgang

Toetsing hoort plaats te vinden
gedurende een serie
leeractiviteiten

Toetsing hoort continu plaats te
vinden om voortgang te evalueren
Toetsing hoort informatie te bieden
om het leren en onderwijzen aan
te passen

Toetsing hoort gebruikt te worden
om het leerproces van leerlingen
te volgen en te sturen door middel
van feedback

010000
010000

OO

LESSEN PROGRAMMEREN

14. Geef voor ieder van de volgende stellingen aan in hoeverre u het eens bent voor LESSEN
PROGRAMMEREN. *

Markeer slechts één ovaal per rij.

1 (Zeeroneens) 2 3 4 5 (Zeereens)

OO
OO
OO

De prestaties van leerlingen horen
te worden gemeten aan de hand
van cijfers

Toetsing hoort plaats te vinden
aan het einde van een serie
leeractiviteiten

Toetsing hoort op een uitgekozen
moment plaats te vinden om te
bepalen wat een leerling dan weet
Toetsing hoort informatie te bieden
om leerlingen in een andere
stroom of op een ander niveau te
plaatsen

Toetsing hoort gebruikt te worden
om het leerproces van leerlingen
te evalueren door te vergelijken
met een benchmark of norm

OO

J 0000
J 0000

LESSEN PROGRAMMEREN

15. Geef voor ieder van de volgende toetsvormen aan in hoeverre u deze geschikt vindt voor
LESSEN PROGRAMMEREN. *

Markeer slechts één ovaal per rij.

1 (Zeer ongeschikt) 2 3 4 5 (Zeer geschikt)

Een (niet-digitale) schriftelijke
toets met open en / of gesloten
vragen

Een digitale toets met open en / of
gesloten vragen

Een reeks kleine, niet op de
computer uit te voeren, praktische
opdrachten

Een reeks kleine, op de computer
uit te voeren, praktische
opdrachten

Een grote praktische opdracht
(project)

Een mondeling

OO

OO
OO

J0 0000
00 0000

PROGRAMMEER TOETSEN

Denk voor de volgende delen aan de frequentie en de toetsvormen die u gebruikt voor toetsing bij lessen
programmeren.

PROGRAMMEER TOETSVORMEN

16. Geef voor ieder van de volgende toetsvormen aan hoe frequent u deze gebruikt voor LESSEN
PROGRAMMEREN. *

Markeer slechts één ovaal per rij.

0 (Nooity 1(Weinig) 2 3 4 5 (Veel)
OO O
OO O
OO O

OO O

OO O
OO O

Een (niet-digitale) schriftelijke

toets met open en / of gesloten C)
vragen

Een digitale toets met open en / of
gesloten vragen Q
Een reeks kleine, niet op de

computer uit te voeren, praktische Q
opdrachten

Een reeks kleine, op de computer

uit te voeren, praktische

opdrachten

Een grote praktische opdracht

(project) Q

Een mondeling C

Ga naar vraag 17.

J0 0000

Afronding

17. Maak de volgende zin af: lets dat zou helpen
omtrent toetsing bij lessen programmeren is ...

*

Survey results open question

Maak de volgende zin af: Iets dat zou helpen omtrent toetsing bij lessen programmeren
is ...

Contact met collega’s. Een kader met daarin gewenste niveau’s per leerjaar

Korte opdrachten met feedback

Kleine praktische opdrachten

(eigen) standaardisering van de toetscriteria

Slimmere educatieve compilers / interpreters bovenop de standaard compiler/interpreter.
Meer tijd

Effective Questioning

Duidelijke normen i.c.m. een leerlijn

Differentiatie en een grote hoeveelheid voorbeeld opdrachten/toetsen.

Een duidelijk idee van wat je wilt bereiken

Meer geautomatiseerde feedback

Leren door doen, leren structureel een probleem op te lossen.

Kleine opdrachten die leerlingen in een centraal toetsmoment kunnen maken als bewijs van
hun vaardigheden

Minder cijfers/toetsen

Een context die de leerling aanspreekt

Voorbeeldtoetsen

Google Forms/quizzes met meer toetsingmogelijkheden

Goede toetsen

Een nulmeting om te kunnen beoordelen waar ieder kind individueel staat.

Een instrument dat frequentie / doorwerken kan meten.

(computer)tijd

Een digtaal werkboek

Een grote variatie aan opdrachten

Veel voorbeelden

Het ontwikkelen van grote(re) PO’S.

Goede opdrachten, uitwerkingen en normeringen voor de betreffende ’taal’.

Meer kennis over het kunnen toetsen van programmeren.

Zelftoetsend lesmateriaal, gevarieerde envoudige opdrachten om ontwikkelen van vaardigheid
(meer dan kennis)

Een programma, dat ervoor zorgt dat voortgang op individueel niveau wordt gemeten en waar
bij de docent directe ondersteuning kan aanbieden

Niet toetsen maar praktijkopdrachten

Meer praktijkgerichte opdrachten, samen met andere scholen.

Het praktisch te houden

Voorbeeld toetsen, kant en klare toetsen, lijst met aan te vinken vragen, nakijkmodel, ervar-
ing van andere docenten bij een afgegeven toets.

75

76 F. Survey results open question

Een database met voorbeeldvragen waaruit je je eigen toets kunt maken.

Een programmeeropdracht

Programmeeropdrachten laten maken b.v. een spelletje

Niet nodig

Automatische controle van (delen van) de code

Een duidelijke rubric

Creativiteit

Een benchmark

Een set opdracht waarbij extreme differentiatie mogelijk is.

Voorbeeld toetsen

Een voorbeeldtoets of module voor programmeren in mijn vakgebied.

Is een goede formatieve opdracht, waar leerlingen zelf leren wat ze nog niet juist doen
Het bepalen van complexititeit, gekoppeld aan onderwijsniveau. Ook zouden eindtermen per
niveau gunstig zijn.

Het kunnen volgen van het denkproces

Puntenverdeling in de code kunnen typen

Discussion: Programming and CT

If we ask someone to think about CT, what is it exactly we expect them to think about? If
we look at the definition from Wing [80] and the definitions used in literature based on her
work [4, 11], there seems to be no definitive answer on what CT truly is beyond its generic
component: problem solving.

Such a generic component could be interpreted in a way that every person, even someone
who says they are thoroughly planning a vacation, is practicing computational thinking. If
we are to believe that CT is unique because it requires us to formulate and solve problems
in such a way that they can be solved by the computer we can argue that it is no different
than the same thinking processes that take place in programming education.

This brings us to the following questions:

Can you teach CT without teaching anything on programming?

Some could argue you can if you look at CT as ‘problem solving’ which is subject specific. In
this scenario one could reason that this type of thinking already existed before the actual cre-
ation of the computer, where solutions to problems were described mathematically forming
algorithms on paper. Thus if we look at CT as ’problem solving by thinking how a computer
can do this for us in a computerized world’, it inevitably means we cannot teach CT without
also teaching parts of programming. If we then want to teach programming we would have
also practice the same steps of thinking, abstraction, generalization and decomposition that
is currently being labeled as CT.

If programming did not exist, would there still be any computational thinking?

We could argue that without the existence of programming (e.g. during the time computers
did not exist) CT would inevitably be reduced to ’problem solving’ and is therefore too generic.
This could imply that the term computational thinking should not be used, but instead its
vessel (e.g. programming) should be given a more prominent position as discussed in 2.3.3.
It is possible to visualize this in a Venn diagram with an implication based on the idea that
CT (C) is problem solving in a computerized world (thinking about how a computer can solve
a problem) as a subset of Programming (P).

77

78

G. Discussion: Programming and CT

PON-®

W=

Programming (P)

Computational thinking (C)

Table G.1: A possible implication for CT and programming

Implication Result
We teach CT ->We teach P TRUE
We teach CT ->We don’t teach P FALSE
We don’t teach CT ->We teach P TRUE
We don’t teach CT ->We don’'tteach P TRUE

If we teach CT we are also teaching a part of programming; hence TRUE.

If we teach CT it is impossible to not be teaching any part of programming; hence FALSE.
If we don’t teach CT we can still be teaching parts of programming; testing/debugging,
reuse/remix, syntax. (coding), expressing yourself with code.. ; hence TRUE.

If we don’t teach CT we can also not be teaching any parts of programming; hence TRUE.

	Preface
	Summary
	Introduction
	Background
	Study goals
	Research Question

	Theoretical Framework
	A brief history of digital literacy
	Digital literacy in the Netherlands
	Computational Thinking
	Computational Thinking concepts and dispositions
	Computational Thinking as digital competence
	Computational Thinking and programming

	Teaching computational thinking
	Educational activities
	Contexts
	Collaborative strategies
	Tracing
	Assessment
	Tools and CT rich environments

	Teaching CT: the challenges and unresolved issues
	Professional development: back to the teachers

	Research Method
	Relevance and objectives
	Research design
	Ethics

	Qualitative methods and data
	Exploratory interviews
	Professional development course
	CT TPACK coding scheme and interview format
	Semi-structured interview results
	Participants TPACK
	TPACK gaps

	Conclusion

	Quantitative methods and data
	Respondents
	Survey design
	Survey results
	Conclusion

	Research integrity
	Research proposal
	Theoretical Framework
	Exploratory interviews
	Professional development course design
	Course observations
	Semi-structured interviews and survey design

	Conclusion
	Answering the research question
	Qualitative results: identifying the main challenge
	Quantitative results: generalizing findings
	Final conclusion

	Limitations and future work

	Bibliography
	Appendices
	Semistructured Interview Format
	Intercoder reliability SPSS output
	Coding scheme updates
	Final coding scheme
	Survey
	Survey results open question
	Discussion: Programming and CT

