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ABSTRACT | Digitalization is one of the key drivers for energy

system transformation. The advances in communication tech-

nologies and measurement devices render available a large

amount of operational data and enable the centralization of

such data storage and processing. The greater access to data

opens up new opportunities for a more efficient and decen-

tralized management of the energy system. At the distribution

level of the energy system, local electricity markets (LEMs)

provide new degrees of flexibility by trading and balancing

the energy locally and offering ancillary services to the wider

transmission and distribution system operators. Maximizing

the grid impact from this flexibility calls for novel data analytics

and artificial intelligence techniques to enhance the system’s

security and reduce the energy costs of local prosumers.

At the same time, however, relying on data-based approaches
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increases the risk of cyberattacks, and robust countermea-

sures are, therefore, needed as an integral aspect of digital-

ization efforts. This article discusses the key role of centralized

data analytics to fully benefit from the advantages of LEMs

in terms of system’s security enhancement and energy costs’

reduction. Data-driven paradigms are investigated that allow

for flexibility from decentralized markets, mitigate the physical

security risks, and devise defensive strategies shielding the

system from cyber threats.

KEYWORDS | Artificial intelligence (AI); cybersecurity; digital-

ization; local electricity markets (LEMs); system security.

I. I N T R O D U C T I O N
Power systems are undergoing a fundamental transi-
tion from the conventional fossil-fuel-based paradigm to
a decentralized and digitalized paradigm based on the
massive integration of renewable energy sources (RESs),
distributed energy sources (DERs), and advanced commu-
nication and information technologies (ICTs). This transi-
tion is massively changing the way energy is transmitted,
distributed, and managed [1]. In the past, the system iner-
tia from fossil-fuel generators provided imminent flexibility
to stabilize operations following disturbances. As DERs
and RES are connected through power inverters, they do
not provide inertia; instead, they introduce very fast cou-
pling dynamics that are rather challenging for the system’s
security management [2], [3]. The current strategy to
address these emerging challenges follows the centralized
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paradigms from the past. To consider the new dynamics in
the timescale of electromagnetic transients, the centralized
strategy is to operate with very large static margins and
invest in redundant grid infrastructure.

More efficient management of the system can be
achieved by the integration of new digital technologies
that are more powerful and interconnected and allow
for the centralization of the large amount of data com-
ing from phasor measurement units (PMUs). This data
centralization enables the use of more advanced process-
ing techniques, such as artificial intelligence (AI) and
machine learning (ML), to fully exploit the new flexibil-
ity provided by the DERs at the local distribution level.
There, novel data-driven paradigms for local electricity
markets (LEMs) can benefit: 1) local prosumers by bal-
ancing and trading the energy locally and 2) network
operators by offering ancillary services (ASs) to alleviate
the RES uncertainty and cost-efficiently manage network
congestions. The real-time provision of ASs from LEMs
would allow operators to include corrective and distrib-
uted control approaches in their centralized operating
tools and expand the normal physical and cyber-operating
limits [4], [5]. However, the risk of relying on such
data-driven approaches is cyberattacks by malicious third-
party actors. As the extent of digitalization is enhanced,
these attacks have increasingly detrimental consequences.
Therefore, new defensive measures are needed to protect
the cyber–physical system (CPS) [6].

Securely managing congestion when system operations
experience physical disturbances and cyberattacks in a
decentralized CPS is challenging. Models of the full CPS
are only available at centralized operators and face several
issues. These models become too complex through the
large number of DERs with diverse operating character-
istics that change frequently, and these models are easily
exposed to targeted, centralized cyberattacks. The high
degree of digitalization of the grid and a large amount
of data available enable the investigation of decentral-
ized paradigms for secure CPS operation with LEMs that
would be infeasible using purely model-driven approaches.
Learning decentralized models from locally observed data
is promising to address some of the aforementioned
issues. These models learn localized actions that support
system-important objectives, such as resilience, reliability,
security assessment, controlled response to disturbances,
cyber robustness, energy balancing, and flexibility trading
in LEMs. For instance, ML algorithms can learn effec-
tive strategies for real-time dynamic security assessment
(DSA) [7], reinforcement learning (RL) models can learn
the sequence of trading decisions in LEMs, and defense
strategies can mitigate the cyber vulnerabilities from such
data-driven models [8]–[10].

This work reviews the key role of digitalization in
the shift toward decentralized paradigms for secure and
cost-efficient CPS operation with LEMs. The contribution
is threefold: 1) a comprehensive data-driven model for
dynamically secure system operation and control that con-
siders LEMs; 2) a novel LEM paradigm that enables coor-

dinated local energy trading and provision of ASs to the
wider system while adopting a model-free decision-making
approach through multiagent RL (MARL); and 3) a layered
detection mechanism to identify stealth cyberattacks with
high confidence. The rest of this article is structured as
follows. In Section II, the data-driven model for security
assessment and control is described. Section III introduces
the proposed LEM paradigm. In Section IV, the detec-
tion algorithm against cyberattacks is presented. Finally,
the case study is presented in Section V. Conclusions are
drawn in Section VI.

II. S Y S T E M ’ S S E C U R I T Y A S S E S S M E N T
A N D C O N T R O L
A decentralized system still requires continuous monitor-
ing and assessment of system’s security as the high shares
of RES and flexible loads expose the grid to many kinds
of new faults and faster dynamics [11], [12]. To maintain
secure operations, operators can use new real-time oper-
ating tools that consider more flexibility, decentralization,
and corrective control or to harden their system infrastruc-
ture, which is expensive. New operating approaches that
consider these new dynamics allow for decentralization
with lowered inertia. Most of the software tools that oper-
ators currently use in day-to-day operations only assess the
static security of the system for a short list of potential
faults, which refers to whether the system subjected to a
disturbance fulfills all physical constraints in the postfault
steady state [13]. However, the assessment of static secu-
rity with N−1 criteria does not include whether the system
survives the transition from prefault to postfault that is
considered in DSA. To assess if the system is dynamically
secure, a set of typical dynamical phenomena is studied,
mainly relating to the stability in rotor angles, i.e., tran-
sient stability, frequency, and voltages [14]. Each of these
phenomena needs to be analyzed separately, and these
conventional analyses require very long computational
times as time-domain simulations are computed using
numerical integration (e.g., forward Euler or Runge–Kutta
methods). Therefore, assessing the dynamic security in
real-time operation, which would require computations of
few milliseconds (according to the timescale of interest),
is infeasible using the conventional, analytical techniques.

Beyond the assessment of security, the low-inertia sys-
tem requires fast corrective control operating tools that
can be applied in real time to control the system’s security
following potential disrupting faults. When considering
dynamic security as reliability criteria, relying only on
preventive control is infeasible to consider all eventualities
following the N − 1 criterion in the future, which would
be too conservative. Holding manual activation of correc-
tive strategies as a backup strategy as in the past is not
sufficient anymore as it is too slow. Promising is combining
preventive control tools [e.g., modeled within ac optimal
power flow (OPF)] with new corrective control measures
in such a way that can optimally balance operating costs
and security. However, optimizing this balance may require
implementing the system’s dynamic response within an ac

2 PROCEEDINGS OF THE IEEE

Authorized licensed use limited to: TU Delft Library. Downloaded on April 29,2022 at 03:24:01 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Bellizio et al.: Transition to Digitalized Paradigms for Security Control and Decentralized Electricity Market

OPF. This implementation is very challenging and takes
long computational times when conventional approaches
are used, e.g., forward Euler or Runge–Kutta methods [4],
[5]. Therefore, with conventional approaches, corrective
control cannot be used to actively maintain the system sta-
bility in real time as only a few milliseconds are available
to respond to faults, which is the same conclusion as the
previous paragraph on DSA.

ML is promising for real-time DSA and control as
predicted security or control actions are instantly avail-
able [7], [15]. The idea is that an off-line trained ML
model can be used to assess (dynamic) security of many
possible fault scenarios and control the operating condition
in real time. However, as the ML predictions could be inac-
curate, probabilistic security standards are best suitable
to use these ML-based real-time DSA approaches. With
probabilistic security standards, the risk of inaccuracy can
be quantified and considered within probabilistic security
assessments in [16].

A. Machine Learning-Based Approaches

The assessment and control of the system’s secu-
rity can be described as statistical classification and
regression problems, respectively, from ML. Let x(t) =

[xL(t), xG(t), xV (t)] be the state variables describing the
loads (active/reactive loads), generation (active/reactive
injected powers), and voltages with xL ∈ R

L ⊆ R
n, xG ∈

R
G ⊆ R

n, and xV ∈ R
V ⊆ R

n at time step t and n the
number of buses. However, the time dependence is omitted
to make the notation clearer. εNET is the network’s physical
interconnectivity, and εLEM is the trading energy network,
which are defined as follows:

εNET,ij =

�
1, if i, j adjacent

0, otherwise

εLEM,pk =

�
1, if p, k direct trading

0, otherwise
(1)

where i, j ∈ [1, . . . , n] are two different buses and p, k are
two different sets of buses that represent the prosumers’
DERs described in Section III-A participating in the kth and
pth LEMs with p, k ∈ [1, . . . , m] [17]. xk = [xL

k , xG
k , xV

k ] is
the subset of state variables for the kth LEM.

The system’s security can be expressed as a function
fa(x, εNET, εLEM) where

fa: (x, εNET, εLEM) −→ ya =

�
1, insecure

0, secure,
(2)

Similarly, the optimal controller for system’s security is a
function fc(xL, εNET, εLEM) that

fc:
�

xL, εNET, εLEM

�
−→

�
xG
opt, xV

opt

�
(3)

where (xG
opt, xV

opt) are the cost-optimal generator settings
fulfilling all power system constraints and security criteria.
For large systems, the assessment and control functions
fa and fc are often highly nonlinear and nonconvex, and
hence, it is very challenging to find (and evaluate) these
functions.

The approach of ML is to learn approximating functions

f̃a: (x, εNET, εLEM) −→ ỹa

f̃c:
�

xL, εNET, εLEM

�
−→ ỹc =

�
x̃G
opt, x̃V

opt

�
(4)

such that

||ya − ỹa||p, ||yc − ỹc||p are minimized. (5)

Learning these functions with supervised learning requires
creating, as a first step, a database (X, Y ) that includes OCs
x (or xL for security control) from historical observations
and synthetically generated data, including their respective
security labels ya (or optimal generator settings yc). The
synthetic data can be generated by randomly sampling
the loads from multivariate Gaussian or C-Vine pair-copula
decomposition schemes to generate more representative
OCs [18].

The supervised learning of the functions f̃a and
f̃c involves splitting the database (X, Y ) into train-
ing (Xtrain, Ytrain) and testing dataset (Xtest, Ytest) with
Xtrain, Xtest ⊆ X and Ytrain, Ytest ⊆ Y such that Xtrain ∩
Xtest = ∅ and Ytrain ∩ Ytest = ∅. An ML-algorithm learns
the function f̃train from the training set

f̃train: xtrain −→ ỹtrain (6)

with xtrain ∈ Xtrain such that

|ytest − f̃train (xtest) | is minimized (7)

with xtest ∈ Xtest, ytest ∈ Ytest.
Some choices on the candidate function f̃train

(e.g., parametrisation) need to be made before applying
the ML training algorithm. One typical choice is to consider
“rules” organized hierarchically and sequentially to predict
the label/value [19]. For instance, many researchers
have used decision trees (DTs) to learn these rules; a
popular algorithm is CART (more example algorithms
can be found in [20]) or neural networks (NNs). There,
let Ω+ = {x ∈ R

n: f(x, ε) = 1} with ε = [εNET, εLEM]

and approximate it as the union of N convex polytopes
Ω̃+ = ∪N

i=1Pi with Pi = ∩Mi
j=1Hij of Mi half-spaces

Hij = {x ∈ R
n: hij(x, ε) > 0}. hij is the indicator function

defined as follows:

hij (x, ε) =

�
1,

�n
k=1 ωij,kxk + bij ≥ 0

0, otherwise
(8)
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where ωij,k and bij are the weights and the bias term,
respectively. Hence, the approximation function f̃a in (4)
can be written as a disjunction of conjunctions, also known
as disjunctive form

f̃a (x, ε) =

N�
i=1

�
N	

j=1

hij (x, ε)



(9)

such that Ω̃+ = {x ∈ R
n: f̃a(x, ε) = 1} and Ω̃+ is an

approximation of Ω+. In a similar way, f̃c can be also
written as a disjunctive form as follows:

f̃c

�
xL, ε

�
=

N�
i=1

�
N	

j=1

hij

�
xL, ε

�

(10)

with Ω̃+ = {x ∈ R
L: f̃c(x, ε) = 1} and n1 = |Ω̃+|. In this

case, the predicted values are calculated as follows:

ỹc =

�n1
k=1 ωij,kxL

k + bij

n1
. (11)

Different indicator functions hij(x, ε) correspond to dif-
ferent ML models; for example, an NN can be defined using
indicators in (8), but the same indicators, without the bias
terms bij , can be used to represent a DT model as a set
of split functions [21]. The two approximation functions
f̃a and f̃c can be also integrated into a single multitask
learning (MTL) model, for example, an NN in which the
total loss J(α) is the weighted sum of the loss function of
the two tasks [22]

J (α) = α1|ya − ỹa| + α2|yc − ỹc| (12)

with α = [α1, α2] being the set of the loss weights for the
two tasks.

Not only maximizing predicting accuracy is important
but also the interpretability and generalization capability
to other network reconfigurations. Although NNs generally
provide high accurate predictions, DTs or ensemble of DTs
have been mostly adopted for power system applications,
above all for DSA, as they are more interpretable than
NNs. Interpretability is important to build up the trust of
operators in these methods. High model interpretability
supports operators to understand how a model predicts
and maintains the security with little inspection allowing
operators to be still involved in the control loop [23].
However, even the most accurate and interpretable model
may not be function anymore when the system configura-
tion is different from the training configuration. As shown
in (4), completely different ML models are suitable for
different εNET’s and εLEM’s, and this, low generalizability,
is a key barrier for their applications to power systems. For
instance, the ML-based model trained offline for settings
εpre prior to a change may not work anymore for the new

Fig. 1. Data-driven workflow for DSA to deal with topology

changes [30].

system’s configurations or trading network εpost. There-
fore, the ML models for system’s security and control must
have a high level of generalization capability to different
system’s configurations and trading networks [24]. This
becomes important as system’s operators use more fre-
quent reconfigurations of the system for maintenance and
control purposes in real-time operations, e.g., disconnect-
ing lines, switching ON/OFF generators, shunt components,
or merging the substations. To improve the generalization
capability of ML models, several approaches were investi-
gated, such as considering different settings in the training
databases as in [25] or periodically updating the ML model
and the training database as in [26] and [27].

B. Physics-Informed Machine Learning

Informing ML approaches for system approaches with
the known physics of the network is highly promising
as it increases their generalization, robustness, and inter-
pretability [28]. Known physics can either be induced or
learned when training the model. For models predicting
the security, the known physics relate to the swing equa-
tions and other dynamics, which can be learned through
regularizing the loss functions, as in physics-informed NNs
(PINNs) [29]. For models predicting control actions, the
known physics relate to the power flow equations (e.g.,
Kirchhoff’s law), which can verify the feasibility of control
strategies.

An example for inducing physical knowledge for
ML-based DSA is that the network topology εNET can
be used in the correlation structure between the input
features and the dynamic security [31]. According to the
correlation structure ρεNET , features that are most relevant
to security are selected [24]. Then, a metric quantifies
the impact of a system’s (topology) change and accord-
ingly triggers retraining of the model when the model
is expected at low generalizability in [24] (see Fig. 1).
By capturing the physical interconnectivity of the network,
the ML model is effectively trained and updated very close
to real time, which ultimately improves the accuracy.
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An example for learning the known physical knowledge
in DSA is to consider training losses describing the dif-
ferences between learned and known physical equations.
Misyris et al. [29] consider the power system differential
and algebraic equations in the loss function when training
a PINN that predicts the system dynamics. This approach
reduces the data needed for training. In the training
approach, the NN predicts the state variables x̃V from
inputs xL, and then, the first-order derivatives of the
predicted variables are evaluated using automatic differen-
tiation (AD). These derivatives allow including the physical
regularization in the training loss function as follows:

J = a1

���xV − x̃V
���+ a2

���f̃ �x̃V
�
− ˙̃xV

��� (13)

where the first term is the error between predicted and
actual values of the state variable xV and the second is the
loss from physical regularization. a1 and a2 are the loss
weights that need to be tuned during the training. PINNs
are also used to predict the dynamics of a power system
subjected to a fault in [29] and to estimate the nonlinear
parameters of power system dynamics in [32]. However,
PINNs do not yet scale for larger power systems, and
more work is needed to develop them for real-time DSA
applicability. A scientific gap is developing ML methods
that induce (and learn) system knowledge as bias and
adopt such methods for DSA and dynamic controls.

Another example of learning the known physics for
the control of dynamics is to consider stability theory.
Lyapunov stability with energy functions is mostly used
for security assessment [33]. There, Lyapunov functions
are very hard to find [34], especially in large systems.
However, recent research focused on scalable approaches
to identify these functions. The idea is that NNs model
the Lyapunov function for large power systems and predict
the transient stability of power systems [35]. Moving this
approach one step further, the Lyapunov stability allows
expressing the system’s transient response as linear con-
straints within the ACOPF that can be solved very quickly
in real time to compute preventive and corrective control
actions. This idea is similar to the one in Fig. 2 [36] where
disjunctive security rules were learned by a DT and con-
sidered as linear constraints within an OPF formulation to
compute optimal preventive control actions. The ML-based
security rules can be also used to derive the optimal
corrective control strategy when preventive control fails,
as in [37]. Here, the security of the optimized prefault OCs
is assessed using a DT. When the OC is insecure, corrective
control reduces the difference in generation between this
prefault OC and the closest secure one in terms of the
Euclidean distance.

III. L O C A L E L E C T R I C I T Y M A R K E T S
A. Context and Motivation

As discussed in Section I, the exploitation of the
significant flexibility of DER owned and operated by

Fig. 2. Data-driven workflows for classification (dashed lines) and

the control purpose (straight lines) [36].

small-scale prosumers constitutes a critical factor in
achieving cost-effective electricity system decarbonization.
Nevertheless, beyond setting ambitious decarbonization
targets, governments in most parts of the world are
committed to follow a deregulated electricity industry
framework, where operation and investment decisions are
not driven by vertically integrated monopoly utilities but
rather by open and competitive electricity markets, encap-
sulating the economic objectives and technical require-
ments of multiple independent market participants. This
implies that the DER flexibility potential needs to be real-
ized through a suitable integration and active participation
of prosumers in the electricity market.

However, the current, largely centralized, structure of
electricity markets exhibits fundamental limitations in
achieving such integration and active participation [38].
From the market operators’ perspective, the retrieval
of technoeconomic information from a vast number of
small-scale and diverse prosumers and the calculation of
the market-clearing solution become intractable due to
communication and computational scalability challenges.
From the prosumers’ perspective, such centralized market
mechanisms raise privacy concerns and unmanageable
price variability risks. As a result, instead of directly partic-
ipating in the electricity market, prosumers are implicitly
represented by: 1) contracted electricity retailers in the
energy segment of the market and 2) by aggregators in
ASs markets (although it should be noted that new market
entrants, serving the dual role of retailer and aggregators,
have been recently witnessed).

Concerning the former, retailers absorb the wholesale
price risks on behalf of the prosumers and sell energy to
them based on less variable and more predictable retail
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tariffs. However, most retailers still offer completely “flat”
retail tariffs that do not reflect the time-specific value of
energy in the system or fixed time-of-use (ToU) tariffs
with limited time variability [38]. As a result, prosumers
are prevented from mobilizing their DER flexibility toward
consuming energy during periods of abundant renewable
generation and low demand, and avoiding consumption
during periods of low renewable generation and high
demand. This challenge is gradually resolved with the
introduction of highly dynamic retail tariffs, linked to
the wholesale energy prices by new competitive retail-
ers. Furthermore, the offered import tariffs (for buying
energy from the grid) are significantly higher than the
offered export tariffs (for selling energy to the grid), which,
beyond factoring in the required network costs, is driven by
the retailers’ strategic, profit maximization objectives [39].

In AS markets, and especially balancing markets that
become crucial as the penetration of renewable generation
in electricity systems is increased, the majority of markets
impose excessively strict limits on the minimum size and
minimum temporal availability of the participants [38].
Therefore, in a similar fashion with energy markets dis-
cussed above, small prosumers are represented by aggre-
gators that operate DER portfolios with critical volumes
and diversity to access such markets and distribute the
obtained revenues to their contracted prosumers accord-
ingly. However, this aggregation requirement entails sig-
nificant economic (in terms of sacrificing part of the value
of DER in AS to compensate the aggregators’ activities)
and regulatory (in terms of aggregating DER of prosumers
settled by different retailers in the energy market) chal-
lenges. Furthermore, the largest proportion of balancing
services (BSs) is currently procured by system operators
over long horizons (even months-ahead) with “flat” prices
that do not reflect the time-specific value of BSs (depend-
ing, for example, on the demand levels, renewable output
levels, and system inertia). This prevents the mobilization
of DER flexibility in balancing markets (considering the
prosumers’ uncertainties over such long horizons) and
results in risks of overprocurement (with cost implications)
or underprocurement (with security implications) of BSs.

In this context, the attention of the research community
has recently shifted to decentralized, LEMs [40], as a new
framework toward enabling the market-based realization
of the DER flexibility potential while addressing the above
scalability, privacy, and economic efficiency challenges.
Instead of merely relying on a centralized electricity mar-
ket with limited access and complex intermediary (i.e.,
retailers and aggregators) arrangements, the LEM con-
cept introduces localized electricity marketplaces, enabling
more direct access for local prosumers and breaking down
the system-wide market coordination to the coordination
of smaller, more manageable DER clusters. Furthermore,
LEMs enable direct energy trading among the participating
prosumers, which promises a reduction of their net energy
costs. This is because the import–export tariff differential
creates an economic motivation for self-consumption of

any excess energy through the suitable management of
flexible DERs. Local energy trading enhances the overall
extent of self-consumption by harnessing the excess gen-
eration and flexibility of all participating prosumers’ DER
compared to a case where each prosumer relies solely
on its own excess generation and flexible DERs, consid-
ering the natural diversity of different prosumers [39].
Finally, LEMs can implicitly serve the role of aggregating
DER portfolios for accessing balancing markets, without
the above-discussed economic and regulatory challenges
associated with external aggregators.

B. Previous Work and Relevant Contributions

The rich and fast-developing literature on the coordi-
nation of LEMs can be concretely reviewed against three
distinct criteria. The first one lies in the coordination archi-
tecture of the LEMs, based on which the existing literature
can be broadly classified in: 1) system-centric coordina-
tion architectures [41]–[44], resembling the architecture
of national markets and involving a central coordinator
responsible for DERs’ information collection and dispatch
(based on a central optimization function); despite their
solution optimality in theoretical terms, such architectures
are characterized by scalability, privacy, and reliability
challenges and 2) prosumer-centric coordination architec-
tures [45]–[51] where the prosumers do not share infor-
mation with the central coordinator and are responsible for
their DERs’ dispatch; although such architectures cannot
generally guarantee solution optimality, they address the
above practical challenges.

The second criterion lies in the decision-making
approach, based on which the existing literature can
be broadly classified in: 1) model-based optimization
approaches [41]–[46], [50], [51] that require knowledge
of the complex DER operating models and accurate fore-
casts of uncertain parameters; such requirements involve
massive monitoring, computational, and forecasting costs
and 2) model-free, data-driven approaches [47]–[49],
with deep RL (DRL) receiving particular attention recently;
the decision-making entities are modeled as agents grad-
ually learning effective dispatch policies based on data
and experiences from the repeating interactions with their
environment, without explicit knowledge of the latter or
external forecasts.

The last criterion lies in the market functionalities of the
LEMs, based on which the existing literature can be clas-
sified in: 1) LEMs focusing on local energy trading [41],
[42], [45]–[49]; 2) LEMs focusing on the provision of AS
to the national transmission system and/or to the local
distribution network [43], [44]; and 3) LEMs combining
local energy trading and provision of AS [50], [51], which
constitutes a major challenge toward maximizing the eco-
nomic value of LEMs.

Based on the above review, no previous work has
adopted a prosumer-centric architecture and a model-
free decision-making approach, while, at the same time,
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exploring LEMs enabling both local energy trading and
AS provision; addressing this gap constitutes the relevant
contribution of this work.

C. Problem Setting

The focus lies in the coordination of an LEM consist-
ing of a group of residential prosumers, each of which
owns and operates a diverse DER portfolio, generally
including a PV generator, inflexible demand, an elec-
tric vehicle (EV) with smart charging and discharging
flexibility, and an energy storage (ES) system, as illus-
trated in Fig. 3. A standard set of EV and ES operating
constraints is considered in this work, including energy
balance constraints, minimum/maximum energy limits,
maximum charging/discharging power limits, and avoid-
ance of simultaneous charging and discharging (for both
EV and ES), as well as traveling times and energy require-
ments for traveling (for EV alone). An LEM platform con-
stitutes the interface between the participating prosumers
and external market entities.

This LEM allows local energy trading among the partic-
ipating prosumers, enabling the latter to maximize their
collective self-consumption and reduce their net energy
costs (see Section IV-A). Any residual demand or excess
generation is traded with the retailer according to the
latter’s import or export tariffs, respectively. The LEM
platform sets the local energy prices and coordinates the
residual trading with the retailer. Concerning the former
task, the mid-market rate (MMR) mechanism is employed
due to its comparative advantages against alternative
mechanisms [48], [49].

Beyond local energy trading, this LEM allows provision
of AS to external system operators (which may generally
include the national ESO, the local DSO, or both) by the
flexible subset of the considered DER (namely EV and
ES). In order to capture the general principles of AS, two
generic types of AS are considered: 1) upward AS (increas-
ing generation/reducing demand of DER with respect to
their baseline energy generation/demand) and 2) down-
ward AS (reducing generation/increasing demand of DER
with respect to their baseline energy generation/demand).
The LEM platform aggregates and sells the upward and
downward ASs to the external system operators. The
upward and downward AS prices constitute exogenous
input parameters, determined by the system operators.

The overall objective of the LEM lies in minimizing the
net cost of the group of participating prosumers, involving
the difference between the import energy cost (cost of
buying residual demand from the retailer), the export
energy revenue (revenues of selling excess generation to
the retailer), and the AS revenue.

D. Markov Game Formulation of LEM
Coordination Problem

Since the focus lies in a combination of a
prosumer-centric coordination architecture along with a

Fig. 3. Illustration of examined problem setting.

model-free decision-making approach, the examined LEM
coordination problem is formulated as a finite Markov
game (MG) with discrete time periods. The MG is defined
by N agents (which correspond to the participating
prosumers) with a set of states S describing the global
state, a collection of private observations {O1:N},
a collection of action sets {A1:N}, a collection of reward
functions {R1:N}, and a state transition function T . The
time interval between two consecutive periods is Δt.

Instead of possessing explicit knowledge of their
DER operating models (as in model-based optimization
approaches), the agents determine their actions in an
agnostic environment and the operating constraints of
their DER are imposed ex post. Specifically, at each
period t, each agent n selects an action an,t, and the
environment moves to the next state according to the
state transition function and all agents’ actions. The agent
receives a reward rn,t and a private observation for the
next period on,t+1 and aims at maximizing a cumulative
discounted reward Rn =

�T
t=0 γtrn,t, where γ ∈ [0, 1) is

the discount factor. A more detailed discussion of the MG
components is provided in the following.

1) Observation: The observation on,t of each agent n at
period t is defined as on,t = [t, P id

n,t, P pv
n,t, Eev

n,t−1, Ees
n,t−1,

Aev
n,t, λb

t , λs
t , λA,u

t , λA,d
t ], where P id

n,t and P pv
n,t denote the

inflexible demand and PV generation of prosumer n at
period t; Eev

n,t−1 and Ees
n,t−1 denote energy in EV and ES

of prosumer n at the end of period t − 1; Aev
n,t is a binary

parameter indicating whether the EV of prosumer n is con-
nected to the grid at period t (Aev

n,t = 1) or not (Aev
n,t = 0);

λb
t , λ

s
t , λ

A,u
t , and λA,d

t denote the retail import and export
energy tariffs and upward and downward AS prices at
period t. The global state of the LEM environment st is
derived as the concatenation of all agents’ observations at
period t, i.e., st = (o1,t, o2,t, . . . , oN,t).

2) Action: The action an,t of each agent n at period t

is defined by its energy and AS provision decisions
with respect to its flexible DER (EV and ES). Actions
aev

n,t ∈ [−1, 1] represent the size of the charging (positive)
and discharging (negative) power of the EV as a ratio
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of its maximum power limit P
ev
n . The actual charging

(P evc
n,t )/discharging (P evd

n,t ) power of the EV is imposed ex
post by the environment according to (14)/(15), where the
first terms in the min operator impose its power limits and
the second terms impose its energy limits

P evc
n,t = min

�
aev

n,tA
ev
n,tP

ev
n ,

E
ev
n − Eev

n,t−1

Δtηevc
n



(14)

P evd
n,t = min

�
−aev

n,tA
ev
n,tP

ev
n ,

�
Eev

n,t−1 − Eev
n


ηevd

n

Δt



(15)

where Eev
n , E

ev
n denote the minimum and maximum

energy limits of the EV battery of prosumer n, respectively;
ηevc

n and ηevd
n denote the charging and discharging efficien-

cies of the EV of prosumer n, respectively.
Based on P evc

n,t and P evd
n,t , and according to the energy

balance constraint of EV, the transition of Eev
n,t is imposed

ex post by the environment as

Eev
n,t = Eev

n,t−1 + P evc
n,t ηevc

n Δt − P evd
n,t Δt/ηevd

n − Etr
n,t (16)

where Etr
n,t denotes the energy requirement of the EV of

prosumer n for traveling purposes at period t.
The net power of the EV is subsequently defined as

P ev
n,t = P evc

n,t − P evd
n,t and actions aev,au

n,t and aev,ad
n,t ∈ [0, 1],

which represent the size of the upward and downward AS
provisions of the EV as a ratio of its maximum power lim-
its. The actual upward AS (AUev

n,t)/downward AS (ADev
n,t)

provision is imposed ex post according to (17)/(18), where
the first terms in the min operator impose its power limits
and the second terms impose its energy limits

AUev
n,t = min

�
aev,au

n,t Aev
n,t

�
P

ev
n + P ev

n,t


,

�
Eev

n,t−Eev
n


ηevd

n

Δt




(17)

ADev
n,t = min

�
aev,ad

n,t Aev
n,t

�
P

ev
n − P ev

n,t


,
E

ev
n − Eev

n,t

Δtηevc
n



. (18)

The respective quantities of the ES of each agent n, i.e.,
P esc

n,t , P esd
n,t , Ees

n,t, AUes
n,t, and ADes

n,t, are derived in a similar
fashion with (14)–(18) but neglecting the grid connection
parameter Aev

n,t and the traveling energy requirement Etr
n,t.

3) Reward: The reward rn,t of agent n at period t is
defined as its net cost, which includes the cost/revenue
associated with buying/selling energy at the local energy
prices and the revenue associated with providing upward
and downward ASs

rn,t = λL,b
t [ln,t]

++λL,s
t [ln,t]

−−
�
λA,u

t AUpro
n,t +λA,d

t ADpro
n,t

�
(19)

ln,t = P id
n,t − P pv

n,t + P evc
n,t − P evd

n,t + P esc
n,t − P esd

n,t (20)

Table 1 Summary of State-of-the-Art MADRL Approaches

where ln,t, AUpro
n,t = AUev

n,t + AUes
n,t, and ADpro

n,t = ADev
n,t +

ADes
n,t represent the net demand, total upward AS pro-

vision, and total downward AS provision of prosumer n

at period t, respectively; λL,b
t and λL,s

t denote the local
energy buy and sell prices of the LEM, which are derived
based on the MMR mechanism (see Section IV-C).

E. Multiagent Deep Reinforcement Learning

The existing literature has proposed four different
MADRL approaches for driving coordinated learning of
multiple prosumer agents, the main features of which are
summarized in Table 1.

Centralized learning seeks for a joint model for the
actions and observations of all agents and constructs a
centralized policy, connecting the joint observation of all
agents to joint action. A major limitation of this approach
lies in the fact that both training and execution phases are
performed in a centralized fashion, leading to an exponen-
tial expansion in the observation and action spaces with
the number of agents, which quickly becomes intractable
in real-world applications. Furthermore, the implemen-
tation of this approach may raise prosumers’ opposition
since they are generally unwilling to disclose their private
information and exchange such information with others.

In concurrent learning, each agent learns independently
its individual policy, mapping its private observation to
its own action. An advantage of this approach is that
it enables exploring agents with distinct policies, which
may promise benefits in applications where agents take
on different roles and feature different reward structures.
However, as many agents are learning and adapting their
policies independently, the frequent change in these poli-
cies yields environmental nonstationarity, which may lead
to instability. Furthermore, learning unique policies does
not scale to large numbers of agents. Since each agent
needs to train its own policy, significant computational
and memory burdens arise when the policies are repre-
sented by complex models, such as deep NNs. Finally, this
approach suffers from low sampling and learning efficiency
since no experience is shared between the agents.

Finally, the centralized training and decentralized train-
ing (CTDE) framework provides an effective remedy
to eliminate environmental nonstationarity. Specifically,
a centralized critic network guides the optimization of
individual agents’ policies during training. The critic takes
as input the actions and states from all agents to estimate
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the joint action-value function (or Q value function). Since
the critic is learned separately, agents can have arbitrary
reward structures, similar to concurrent learning. Dur-
ing test time, the critic is not needed, and policy exe-
cution is fully decentralized through each agent’s actor
network, which only takes as input its own observa-
tion. Nevertheless, as in centralized learning, CTDE is
not privacy-preserving and suffers from a similar curse of
dimensionality in training the central critic, which is prob-
lematic in practical large-scale multiagent applications.

In order to overcome the above privacy, nonstationarity,
and computational complexity limitations of previous
MADRL approaches, this work adopts the multiactor-
attention-critic (MAAC) approach, which has been recently
proposed by Ye et al. [49]. This approach still falls within
the CTDE paradigm, effectively eliminating environmental
nonstationarity. However, in contrast to centralized learn-
ing that incorporates the observations and actions of all
agents in training their critics (including physical private
information), MAAC enables joint learning of all agents’
critics by sharing a set of learnable nonphysical parameters
(i.e., critics’ weights) among the agents. Furthermore,
it employs an attention mechanism that allows selectively
“paying attention” to the relevant information of other
agents during training; therefore, the input dimension of
the critic can be compressed significantly, improving the
scalability in large-scale applications.

IV. A D V E R S A R I A L AT TA C K A N D
D E T E C T I O N I N P O W E R S Y S T E M
A. Vulnerabilities in Cyber–Physical Power System

The broad application of ICTs has transformed the tradi-
tional power system into a CPS that integrates computing
and physical processes to deliver flexible operations and
reliable services. At the transmission level, the supervisory
control and data acquisition (SCADA) has been broadly
used to collect the measurements from substations, and the
energy management system (EMS) can analyze the grid
operation state, which is crucial to the decision making
of the system operators [52]. At the distribution level,
the advanced metering infrastructure (AMI) already shows
its power on demand response and outage management
system (OMS) [53]. Furthermore, the research on data-
driven decision-making, such as ML methods, provides
more flexibility on grid operation and control. However,
this new trend also raises new CPS vulnerabilities that are
not seen before [8]–[10].

In the conventional power system, electricity gener-
ation, transmission, and distribution are settled by the
same company. Therefore, encrypted communication can
be easily established and verified. Traditionally, com-
munications between field devices (e.g., RTUs, relays,
and transformers) are established via individual copper
cable [53]. In contrast, a digital communication channel
allows several signals to be simultaneously transmitted.
Moreover, the occurrence of DERs hastens the local energy

market (LEM) where the prosumers can participate in
the electricity auctions [39]. DERs can also participate in
power system auxiliary activities, such as voltage regula-
tion by digital controls on the smart inverters [54]. The
decentralized and digitalized activities of new stakehold-
ers challenge the existing intranet communication. In the
meantime, most of the power system facilities were estab-
lished before the flourishing digitization age, leaving them
vulnerable to cyberattacks. For instance, the intruder can
break through the MODBUS and DNP3 that are commonly
used in SCADA [55].

B. Data Integrity Attacks

With the development of advanced data-driven tech-
niques, the intruder has become more intelligent and
purposive. For example, intelligent intruders are shown to
conduct persistent reconnaissance and learn useful grid
information, such as the cyberattack on the Ukrainian
power grid in December 2015 where the intruders installed
the malware several months prior to the attack while
hijacking telephone and communication networks to hin-
der the restoration operation [56].

Referring to different impacts, the attacks can be clas-
sified into integrity attacks by injecting or modifying the
system data, confidentiality attacks by violating the privacy
of various stakeholders, and availability attacks by crashing
the grid devices [57]. Due to its high practicability and
severe consequences, this article narrows the discussion on
integrity attacks from a technical perspective. Specifically,
we classify the integrity attacks as attacks targeting the ML
algorithms (e.g., adversarial attack), attacks targeting on
the state estimation (e.g., false data injection (FDI) attack),
and attacks not targeting the state estimation (e.g., market
attack).

1) Adversarial Attacks: Despite the great performance of
the data-driven algorithms on optimal grid operation and
control, their robustness and vulnerability on adversarial
perturbation are not fully aware by the community. One
prerequisite for any data-driven algorithm is the legit
training and testing datasets. Using the voltage assessment
problem as an example, it should be assumed that the data
that are used to train the model are legit and accurate.
In the meantime, the testing data should follow the same
(or similar) distribution as the training dataset. However,
as the cyber–physical power system is prone to malicious
activities, those prerequisites on legit datasets may be
violated. For instance, the data source of grid operation
algorithms can be corrupted (data poisoning attack), while
the trained model can be exposed to or learned by the
attackers (exploratory or evasion attack). In the literature,
the corruption of ML algorithms is referred to as an adver-
sarial attack [58]. Unlike the adversarial attack targeted
to computer science applications, power system activities
follow unique physical rules and, therefore, need different
treatments.
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Specifically, we use the security assessment problem
mentioned in Section II as an example. The effectiveness
of voltage stability assessment relies on the accurate state
estimation, e.g., the voltage magnitude xV , which is prone
to attack. Indeed, the attacker’s goal is to change the
classification result. To achieve the attack purpose, a per-
turbation signal on the test set can be constructed

c: fa (x + c, εNET, εLEM) −→ yadv
a =

�
1, ya = 0

0, ya = 1
(21)

where c is a perturbation signal on the state variable
and ya is the decision made by the contaminated state
data. To avoid being easily detected, c should be designed
small enough to bypass the filtering method. In voltage
stability assessment, a wrongly classified operation sample
can lead to catastrophic failure. On the one hand, a false
negative, which represents classifying insecure sample into
a secure sample, can lead to erroneous fault detection and
isolation. On the other, a false positive, which represents
classifying a secure sample as an insecure sample, can
cause unnecessary reactions, such as load-shedding [59].

2) False Data Injection Attacks: In this section, we discuss
an organized integrity attack on the power system state
estimation, which is referred as FDI attack in the literature.
For the convenience, the power system is modeled as a
graph G(N , E) with |N | = n + 1 buses and |E| = m

branches in this section. The notation in Section II is
changed into the standard state estimation settings and
denotes the measurement equation as z = h(x) + e, where
h ∈ R

p is the vector of measurement equations consisting
of balanced power injections and flows; x ∈ R

2n is the
system state consisting of voltage magnitude and phase
angle at all nonreference buses; and e ∼ N (0, R) is the
sensor noise vector with covariance matrix R.

Power system state estimation finds the voltage magni-
tude and phase angle at each bus by solving the following
weighted least-squares problem [60]:

x̂ = arg min
x

���R− 1
2 (z − h (x))

���2

2
(22)

and the residual γ of z is written as

γ =
���R− 1

2 (z − h (x̂))
���2

2
(23)

which approximately follows χ2 distribution with degree of
freedom p − 2n, e.g., γ ∼ χ2

p−2n. A detection threshold τα

can then be determined by the system operator according
to the confidence level α, which implies that the FPR of
χ2 detector is Pr(γ ≥ τα) = α.

To avoid being detected, the attacker designs the per-
turbation signal c following the physical constraint of
the power system. In particular, an FDI attack can be

construed as [61]

a = h (x̂ + c) − h (x̂) (24)

where c ∈ R
2n is the injection vector to the estimated state.

Denoting the state and the measurement after attack as
za = z + a and x̂a = x̂ + c, respectively, the residual on
attack vector za is unchanged as (23)

γa = ‖R− 1
2 (za − h (x̂a)) ‖2

2

= ‖R− 1
2 (z + h (x̂ + c) − h (x̂) − h (x̂ + c)) ‖2

2

= γ. (25)

Consequently, the χ2 BDD cannot raise an alarm on the
FDI attack formulated by (24). To successfully hide the
attack, the attack shall know the exact system topology and
parameters. The assumptions on the attackers’ ability are
summarized according to various studies.

1) Assumption One: To formulate the structured
attack (24), the attackers should know grid topology
and parameters to form measurement equation h(·).

2) Assumption Two: The attacker can have access to any
measurement in z but can only modify the measure-
ment with a nonzero value. Meanwhile, the strength
of the state injection c should be limited.

As the attack strength ‖c‖2
2 is small, the injection vector

can be approximated by the first-order Taylor expansion
on (24) [62]

a = h (x̂) + Jc − h (x̂)

= Jc (26)

where J = [ ∂hi
∂xj

]x=x̂ is the Jacobian matrix of h(x) with
respect to the estimated state vector.

Let I0 = {i|zi = 0, i = 1, 2, . . . , p} and Ia = {i|ci = 0,

i = 1, 2, . . . , 2n} represent the index set of the bus with
constant zero power injection and the index set of the tar-
get bus under attack. As attacking on the power injections
in set I0 leads an immediate detection, the attack vector
can be formulated as the following optimization problem:

min
c

1

2
‖Jc‖2

2

s.t.
�
DT

a , JT DT
0

�T

� �� �
A

c =
�
cT

a , 0T
�T

� �� �
b

(27)

where ca ∈ R
|Ia| is the nonzero attack vector; Da ∈

R
|Ia|×2n is the attack incidence matrix with Da(i, j) = 1 if

the ith attack is on state j and 0 otherwise; 0a ∈ R
|I0|

is a zero vector representing the zero-entries of a; and
D0 ∈ R

|I0|×p is the zero-measurement incidence matrix
with D0(i, j) = 1 if the ith zero measurement is on
measurement j and 0 otherwise. The cost of (27) is to
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minimize the attack strength. In the simulation, it is shown
that τ can be specifically designed to bypass the BDD while
significantly changing the classification result of voltage
stability assessment.

The optimization problem (27) is an equality con-
strained convex quadratic minimization whose optimum
(c∗, v∗) can be found as the solution of the KKT system [63]

�
JT J AT

A 0

�
� �� �

K

�
c∗

v∗

�
=

�
0
b

�
(28)

where K is called as KKT matrix. If K is nonsingular,
then (28) has unique solution, and (27) has unique
primal-dual optimum (c∗, v∗).

In the case study, we simulate FDI attacks (27) on
voltage magnitude to explicitly show the impact on voltage
stability assessment algorithms.

3) Local Market Attacks: Apart from the FDI attacks
on the state estimation, attackers tend to intrude the
economic system for chasing profit. The promising LEM is
vulnerable to cyberattackers due to two reasons. First, the
power grids span a wide area, and the growing amount
of DERs is geometrically sensitive, which exposes the risk
of attacking both the public and private communication
links [53]. For instance, the smart PV inverters allow the
operators to set different active power limits. To gain
the maximum profit, the maximum power point tracking
technique is usually adopted. However, as demonstrated
by Dafalla et al. [64], the set point of PV inverter under
IEC-61850 protocol can be compromised by the man-in-
the-middle attacks, causing PV curtailment and economic
loss. Second, the participant of prosumers in the LEM
requires two-way communications [65]. Attack through
communication channels can cause individual financial
loss, privacy leakage, risk of robbery, and disturbance of
normal market operation [66]. As we will show in the case
study, by randomly contaminating the price information
sent by the unprotected downstream channels, the pro-
sumers’ actions are misled, and the market efficiency is
reduced.

C. Detection Algorithms of Integrity Attacks

In the literature, the detection algorithms of integrity
attacks can be broadly classified into model-based and
data-driven methods.

1) Model-Based Detection: Traditional BDD involves solv-
ing the static state estimation problem and calculating the
deviation between the real time and reconstructed mea-
surements [60]. However, as the static model cannot cap-
ture the dynamics of the power system, it is not effective in
detecting structured attacks, such as FDI attacks [67]. As a
result, dynamic state estimation is applied to capture the
temporal correlations in load and generation patterns, and
alerts the system operator when this “trend” is violated.

Dynamic state estimation based on the Kalman filter (KF)
is one of this kind [68].

The model-based detectors fully use the knowledge of
the system model and dynamics, which can be easily
interpreted and adopted by the system operator. Although
the static model is reliable for decision-making, it can be
easily targeted by reconnaissance attacks. As already dis-
cussed in Section IV-B, grid topology and parameters can
be retrieved by deliberate attackers using topology iden-
tification algorithms. Once the grid knowledge is learned,
the attacker can formulate the attack vector to bypass the
model-based detector.

To break the static nature of the model-based
approaches, moving target defense (MTD) is proposed to
actively detect FDI attacks. With the help of the distributed
flexible ac transmission system (D-FACTS) devices, the
power system operator can change the branch reactances,
which is unknown to the attacker. Therefore, the defender
can take advantage of the new system topology to detect
the attack. Examples of using the MTD approach to detect
FDI attacks include random D-FACTS device placement
and perturbation [69], specific D-FACTS device placement
by minimizing the attack space [70], and the robust
D-FACTS device perturbation by explicitly considering the
measurement noise [71]. Recently, hidden MTD is also
researched to avoid the grid parameters changes being
noticed by the attacker [72].

As the cyberattack is rare in real-time power grid oper-
ation, the cost of frequently changes on grid parameters
can be hardly accepted by the system operator. Therefore,
Lakshminarayana and Yau [73] propose to combine the
detection performance of MTD with the OPF problem to
simultaneously minimize the generator cost. However, the
MTD is still triggered periodically to be synchronized with
state estimation; the inevitable cost is still significant when
considering the small chance of the grid being attacked by
the FDI attacks. How to balance the detection performance
and extra operational cost remains an open question.

2) Data-Driven Detection: As the improvement of the
number and resolution of the grid measurements, the
data-driven method is armed to model the complex grid
dynamics and uncertainties. Broadly speaking, learning
algorithms for detecting attacks can be classified into
supervised learning and unsupervised learning. In the
supervised setting, the detection is directly achieved by
learning a mapping from the input (feature) space xi ∈ X
to the binary classification yi ∈ Y = {0, 1}, e.g., fθ:
X −→ Y. The model fit on the training dataset can be
directly used to classify the legitimacy of the test set. The
support vector machine (SVM) [74], the naive Bayesian
classifier (NBC) [75], and DTs [76] generally belong to this
category.

To enrich a balanced dataset for supervised learn-
ing, attack samples are synthetically generated in the
literature [77]. However, the synthetic attack data may
not be representative of the actual attack attempts,
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leveraging the detection performance of the supervised
classifier. To overcome the problem, unsupervised and
semisupervised methods are considered to detect FDI
attacks by learning the latent representation of the legit
measurements. Let X be the input (feature) space and
Z be the latent space. The unsupervised learning can be
represented by fθ: X −→ Z where the latent represen-
tation can be used for clustering or dimension reduction.
Unlike the supervised detector, an implicit classifier should
be built on the latent space Z to detect the attack. The
unsupervised/semisupervised learning approach includes
isolation forest [78], semisupervised SVM [79], autoen-
coder [80], and the prediction-based algorithm, where a
predictor is built on normal data, and the attack is detected
by violating the distribution of the prediction errors [81].
Despite the high detection rate of unsupervised detectors,
they suffer from high FPR on a legit measurement under
the test set and roundabout training target during the
training. For example, in [82], up to 20% FPR is committed
to achieve 90% TPR.

D. Data-Triggered Moving Target Defense
Due to the rarity of attacks, the system operator may

be not willing to adopt costly detection mechanisms to
overcome the attacks. To overcome the high FPR of unsu-
pervised learning detectors, a novel attack verification
algorithm using MTD is proposed. As FPR under each
D-FACTS set point is unchanged and controllable, the
decision made by the MTD can be willingly accepted by
the system operator.

To show the advances of the proposed two-stage
method, an autoencoder FDI attack detector is applied
as the trigger to the MTD. Let Z = {z1, z2, . . . , zN} be
the training dataset composed of legit measurements from
the power grid. The autoencoder learns a map fθ: Z −→
X −→ Z, where X represents the implicitly learned latent
feature. Note that the meanings of Z and X are exchanged
to conform to the power system convention. Due to the
nonlinear activation functions and bottleneck model struc-
ture, the hidden representation of legit measurements is
embedded by the encoder Z −→ X and decoder X −→ Z
pairs using the following mean squared empirical loss:

Lθ (Zi) =
1

|Zi|

|Zi|�
j=1

‖zj − fθ (zj)‖2
2 (29)

where Zi represents the ith training batch. Once the
autoencoder is trained as f∗

θ , a threshold can be deter-
mined by ranking the reconstruction errors of the vali-
dation set. Let αAE be the confidence level (FPR) on the
validation data; the threshold τAE(αAE) can be found as
the reconstruction error at the upper α-quantile. Therefore,
the autoencoder-based detector can be summarized as

D (Zi) =

�
1, if L (Zi) ≥ τAE

0, otherwise.
(30)

After the AE-detector raises an alarm, an MTD can
be implemented by randomly changing the set points of
D-FACTS devices or other more advanced implementation
of MTD [71]. As the branch reactances are changed, a new
measurement equation is set up

hB (·) MTD−−−→ hB′ (·) (31)

where subscript B represents the dependence of mea-
surement equations on the susceptance matrix and B′

represents the susceptance matrix after the MTD.
Let x̂′

a be the estimated state based on the post-MTD
measurement equation under attack

x̂′
a = arg min

x

���R− 1
2
�
z′

a − hB′ (x)
���2

2
(32)

by Gauss–Newton iterations. z′
a, which represents the

attacked measurement after MTD, can be written as

z′
a = hB′

�
x′ + e + hB

�
x̂′ + c


− hB

�
x̂′ (33)

with x̂′ solved by the attacker based on the pre-MTD
model.

First, as the system parameter changes, the weighted
least square (32) cannot converge to the desired contami-
nated state x̂′ + c by the attacker. Second, the residual on
the measurement under attack after MTD becomes

γ′
a =

���R− 1
2
�
z′

a − hB′
�
x̂′

a

���2

2

=
���R− 1

2
�
z′ + hB

�
x̂′ + c


− hB

�
x̂′ − hB′

�
x̂′

a

���2

2

(34)

which no longer equals to γ any more. Consequently,
the MTD can be used to reject the false alarm made
by the data-driven detector without significantly influenc-
ing the detection rate.

The proposed two-stage algorithm on FDI attacks target-
ing the voltage stability assessment will be applied in the
simulation.

E. Prediction-Based Attack Detection

In this section, a prediction-based detection algorithm
to detect the attack on the retail electricity prices in LEM is
proposed.

At each time step t, a sequence of past T ≥ 2 prices
Xt = {xt−T , xt−T+1, . . . , xt−1} can be constructed to pre-
dict the current price xt. Specifically, two market prices,
the energy import and export, are considered. In practice,
these two prices are determined by the retailer and sent
to each household through communications, such as smart
meters, which are vulnerable to attack. In the meantime,
we also feed in the time stamp represented periodically by
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the coordinate on the unit cycle for each element in the
sequence. It gives that xi ∈ R

4, and yi ∈ R
2 represents

the target price vector. To learn the temporal correlations
in Xts, a fold of long short-term memory (LSTM) [83] cells
is applied to construct the NN followed by a feedforward
layer. Indeed, we train the LSTM network by minimizing
the following empirical loss:

Lθ =
1

N − T

N−1�
t=T

��yt+1 − fθ (Xt)
��2

2
(35)

where N is the number of data in the training set. After the
model is trained, a confidence interval can be determined
by ranking the prediction errors, and any prediction that is
outside this interval is marked as attack.

V. C A S E S T U D Y
This case study focuses on the application of centralized
data analytics to the security of decentralized systems with
LEMs considering both physical disturbances and cyberat-
tacks. After stating the test system and the key assump-
tions, the first study is on the physical, dynamic security;
the second study is on the detection of cyberattacks; and
the third study is on the economic value of decentralized
systems with LEMs. Within each case study, cyberattacks
were simulated according to settings in Section IV.

A. Test System and Assumptions

A modified version of the IEEE nine-bus system
from [84] was considered in this case study. The modi-
fication included integrated DERs, EV fleets acted as ES
capacity of 20 MWh at each generator bus, and 25% of
fossil fuel generation replaced by wind power. 1000 load
scenarios were sampled from a Latin hypercube with uni-
form distribution around ±50% of the nominal value for
the active power and ±20% for the reactive power. The
relaxed SDP ACOPF was then solved to get the cost-optimal
OCs corresponding to the sampled loads [85]. A short
circuit at bus 8 at time 0.1 s was considered as a fault
to assess the system’s security. The fault was then cleared
at 0.25 s by opening the line between buses 8 and 9.
The total simulation time was T = 10 s. The OCs were
assessed as dynamic secure if the integral square gen-
erator angle (ISGA) index was ≤ 0.47, otherwise inse-
cure [86]. The resulting training database considered the
cost-optimal OCs and their corresponding security labels.

To simulate the integrity attacks on voltage assessment,
FDI attacks were generated from (27) by solving (28).
First, the system state (bus voltage magnitude and
phase angle) was calculated through the Gauss–Newton
method [60]. Then, randomly one to five buses were
picked out of the eight available buses, and their voltage
magnitude was changed by −1.5%. After determining
the voltage perturbation, the corresponding attack vec-
tor a was calculated by (26) and injected into the legit
measurement. Finally, the “contaminated” measurement

(load and generation) was fed into the trained security
classifier.

To simulate the ML-based security assessment, the clas-
sifier evaluated security on a false (attacked, contami-
nated) prefault OC, which was different to the real OC.
As neither the operator nor the classifier identifies the
attack, inaccurate security labels and control actions may
be the result, which is what this case study further inves-
tigates. For all the generated attacks, 1000 attack vectors
were sampled with the largest element smaller than 0.05.
To study the dynamic system’s security, four different con-
trol approaches were compared: i) no control approach;
ii) centralized corrective control approach; iii) centralized
corrective control approach under a cyberattack; and iv)
decentralized corrective control approach under a cyberat-
tack. In ii)–iv), the corrective control approach described
in [37] was applied only once the fault was cleared. For
this, a DT classifier was trained “offline” using the gen-
erated training database. The classifier predicted security
and accordingly selected the corrective control action.

Finally, an open-source, large-scale dataset produced
by the Australian distribution company Ausgrid [87] was
used to simulate a realistic setting of the LEM, including
demand and PV generation data for 300 real residential
prosumers, over a yearly horizon with a half-hourly reso-
lution. To factor the prosumers’ natural heterogeneity in
terms of their flexible DERs, 300 prosumers were divided
into four different classes: 1) 75 prosumers without flexible
DERs (EV or ES); 2) 75 prosumers with an EV with smart
charging and discharging flexibility; 3) 75 prosumers with
an ES unit; and 4) 75 prosumers with both a flexible EV
and an ES unit. Furthermore, the values of the operating
parameters of these flexible DERs were diversified among
the different prosumers of each class, within realistic value
ranges derived from [88]; for EV, in particular, two trips
per day and a home-charging scenario (implying that the
EV were connected to the grid before the first and after the
second trip) were assumed. As discussed in Section IV-E,
the recently proposed MAAC approach was adopted for
training the prosumer agents, which has been imple-
mented in Python with PyTorch [89]. One day from each of
the 53 weeks of the original dataset was randomly selected
for the testing dataset, which was used for performance
evaluations, while the remaining days were included in the
training dataset.

B. Security of Decentralized CPS Operation

This study investigated the system’s security in a decen-
tralized CPS operation with LEMs. The benefits of LEMs
in terms of system’s security were first investigated in
ii) where the provision of AS from LEMs made central-
ized corrective control tools available. However, in the
simulated real-time operation, such corrective control
approaches can be attacked: attacks in iii) may attack
centrally with a large and high-magnitude attack. Con-
versely, in the decentralized approach iv), a low-magnitude
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Table 2 Security of Four Control Approaches With ��� Renewable

Integration

attack across all decentralized buses was assumed as the
additional information from LEMs allows to better contain
and restrict the attack. In all i)–iv), then the classifier
assessed the system’s security of the (attacked) prefault
OCs in “real time.” When the (attacked) OC was predicted
as insecure, in response, the corrective control was trig-
gered. This corrective control action was then applied to
(and tested on) the real OC. The results in Table 2 for all
studied OCs showed that: 1) centralized corrective control
ii) reduced the number of insecure OCs by 90% compared
to i); 2) attacks in iii) and iv) resulted in increases of
insecure OCs compared to ii); and 3) attacked centralized
control resulted in an increase of insecure OCs by 38%

compared to the attacked decentralized control. This led to
the conclusion that cyberattacks generally have impacts on
system’s security. In particular, in a centralized operating
approach, such attacks had a much higher impact than
in a decentralized approach as no additional information
from LEMs was available. Therefore, decentralized CPS
operating approaches can enhance the system’s security,
while a more robust attack detection is needed in cen-
tralized operating paradigms with high-impact attacks.
All the corrective control approaches ii)–iv) significantly
improved the system’s security compared with approach
i) where no control was applied. This highlighted the need
for corrective control in future power systems with a high
share of renewables and DERs and the key role of LEMs in
providing such services.

C. Performance of Layered Detection Framework

This study investigated the detection of the FDI attacks
(see Section IV-B) by applying the data-driven MTD algo-
rithm proposed in Section IV-D. 4000 new load scenar-
ios were augmented on the original 1000 load scenarios
using the Dirichlet distribution [90]. Second, the ACOPF
was solved, and the measurements of each scenario were
recorded. The standard deviation of the Gaussian mea-
surement noise was set as 0.01 p.u., and the FPR of BDD
was set at 0.01. It was assumed that the attack is on
the voltage magnitude, and the legit measurement z =

[QT
I , QT

F , VT ]T ∈ R
27 is fed into the autoencoder NN,

where QI , QF , and V are the vector of reactive power
injection, reactive power flow, and voltage magnitude,
respectively. Min–max normalization was used on z, and
250 out of 5000 samples were used as validation. Upon
the trained autoencoder network, the detection threshold
was determined by finding the 5% upper quantile of the
reconstruction error on the validation set.

Once the autoencoder detector raised an alarm, the
MTD was triggered where the branch susceptance was
randomly altered by ±(10%–40%) of the nominal value
to verify the positive decision made by the autoencoder.
A new residual based on the new system parameters was
calculated by (34). The simulation results were summa-
rized in Table 3 where AE represented the detection result
of an autoencoder and the AE-MTD represented the detec-
tion result of χ2 detector after the event-triggered MTD.
First, recall that the detection threshold of AE was set at
upper 5.0% quantile, and the higher FPR 7.1% implied
that the trained model was overfitted. Once the MTD was
triggered by the positive alarms, a new hypothesis test
can be made by the χ2 detector with around 1% FPR by
sacrificing 1% TPR.

To sum up, the data verification on the voltage security
assessment can be fulfilled by the event-triggered MTD
where the physics information is added to reduce the false
positive rate.

D. Economic Value of Proposed LEM

This study investigated the economic value of LEM.
Four different scenarios regarding the involved prosumers’
coordination were implemented and compared. In all these
scenarios, following the discussion in Section IV-A, it was
assumed that the import energy tariff followed the whole-
sale energy prices (in particular, the U.K. wholesale prices,
which were derived from [91]), while the export energy
tariff was assumed to be 50% of the import tariff at each
half-hourly period.

1) STATUS-QUO: Following the conventional paradigm,
no LEM was established, and each of the 300 pro-
sumers traded energy independently with the con-
tracted retailer.

2) LEM-EN: An LEM was established, and it only enabled
local energy trading among the 300 prosumers (but
not AS provision to external system operators).

3) LEM-BSF: An LEM was established, enabling both
local energy trading and AS provision. Specifically,
the focus was on BSs (due to their significance for
emerging electricity systems; see Section IV-A) and
particularly on the upward direction (as downward
balancing is generally less critical due to the ability
to curtail renewable generation). In this scenario,
the ESO was assumed to procure such BS with a
“flat” price throughout the examined horizon, equal
to 5.67 £/MW/h, reflecting the current pricing regime
in most balancing markets (see Section IV-A).

4) LEM-BSV: This scenario was similar to the previous
one, with the difference that the pricing regime for

Table 3 Detection Performance of the Proposed Algorithm
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Fig. 4. Aggregate energy dispatch of flexible DER (EV and ES) of

300 prosumers under the examined scenarios (averaged over the

53 test days).

BS was variable, better reflecting their time-specific
value (see Section IV-A). Specifically, this price was
assumed to equal to 17 £/MW/h for the off-peak
hours 23:00–7:00 (considering that the combination
of lower demand and higher wind generation during
these hours reduced system inertia and increased
the balancing requirements of the system) and equal
to 0 for the remaining hours of the day (for com-
parison consistency reasons, the average BS price
throughout the day is the same in scenarios LEM-BSF
and LEM-BSV).

For each of these four scenarios, Fig. 4 presented the
aggregate energy dispatch of the flexible DER (EV and
ES) of the 300 prosumers (with positive values indicat-
ing charging and negative values indicating discharging),
while Fig. 5 presented the net energy demand (positive for
importing energy from the retailer and negative for export-
ing energy to the retailer) of the 300 prosumers (including
for comparison purposes the inflexible net demand, given
by the difference between inflexible demand and PV gen-
eration). Fig. 6 presented the aggregate amount of upward
BS provided by the flexible DER of the prosumers in sce-
narios LEM-BSF and LEM-BSV (which is zero by definition
for the first two scenarios). Finally, Table 4 summarized
the daily net cost of the 300 prosumers under each of
the examined scenarios, including its components (import
energy cost, export energy revenue, and BS revenue).

Fig. 5. Net demand of 300 prosumers under the examined

scenarios (averaged over the 53 test days).

Table 4 Daily Net Cost of 300 Prosumers and Its Components Under the

Examined Scenarios (Averaged Over the 53 Test Days)

Figs. 4 and 5 demonstrated that the four examined
scenarios involved some similarities in terms of the energy
dispatch of the flexible DER. First, these flexible DER were
charging during midday periods (see Fig. 4) in order to
locally consume as much of the excess PV generation
as possible (i.e., the self-consumption effect discussed in
Section IV-A) and, thus, reduce the excess generation sold
to the retailer (see Fig. 5). Furthermore, flexible DERs were
charging during the off-peak morning periods that are
characterized by a lower import energy tariff (see Fig. 4).
Finally, flexible DERs were discharging during the peak
evening periods that are characterized by a high import
energy tariff (see Fig. 4).

Nevertheless, the four scenarios involved important
differences that were driven by the effects of local
energy trading and BS provision. When comparing the
STATUS-QUO against the LEM-EN scenario, both the extent
of PV self-consumption during midday periods and the
extent of net demand reduction during evening peri-
ods were enhanced in the LEM-EN scenario, rendering
a flatter net demand profile compared to the STATUS-
QUO scenario. As discussed in Section IV-A, this trend
was driven by the fact that local energy trading allowed
more comprehensive self-balancing for the 300 prosumers
as a whole, considering the natural diversity of these
prosumers. As a consequence, both the import energy cost
and the export energy revenue were lower in the LEM-EN
scenario compared to the STATUS-QUO scenario, implying
that the extent of trading with the contracted retailer was
reduced. Going further, the reduction of the import energy
cost was more significant than the reduction of the export
energy revenue (as the import tariffs were higher than
the export tariffs), overall resulting in a reduced net cost
(see Table 4).

Moving to the LEM-BSF scenario, the extent of PV
self-consumption during midday periods and the extent of
net demand reduction during evening periods were still
higher compared to the STATUS-QUO scenario but lower
compared to the LEM-EN scenario. This trend emerged as
part of the available flexibility of EV and ES was preserved
for the provision of BS to the external ESO, limiting the
flexibility dedicated to local self-balancing. In other words,
in this more advanced LEM design, the LEM aimed at
optimizing the tradeoff between local energy balancing
and provision of flexibility to the wider electricity system.
As a consequence, both the import energy cost and the
export energy revenue were higher in the LEM-BSF sce-
nario compared to the LEM-EN scenario with the former’s
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Fig. 6. Aggregate upward BS provision of flexible DER (EV and ES)

of 300 prosumers under the examined scenarios (averaged over the

53 test days).

increase dominating (as the import tariffs are higher than
the export tariffs). However, the additional BS provision
revenue generated in the LEM-BSF was much higher than
this import energy cost increase, overall resulting in a very
low net cost (see Table 4).

Finally, when comparing the LEM-BSF against the LEM-
BSV scenario, the former exhibited a higher extent of
EV and ES charging during midday periods and a lower
extent of EV and ES discharging during evening periods,
in order to increase their upward BS provisions, driven
by the fact that these periods exhibited a higher BS
price in the LEM-BSF scenario (5.67 £/MW/h) compared
to the LEM-BSV scenario (0). On the other hand, the
LEM-BSV scenario exhibited a higher extent of EV and
ES charging during morning periods, in order to increase
their upward BS provisions, driven by the fact that these
periods exhibited a higher BS price in the LEM-BSV sce-
nario (17 £/MW/h) compared to the LEM-BSF scenario
(5.67 £/MW/h). Interestingly enough, although the total
amount of provided BS was significantly higher in the
LEM-BSF scenario (since the respective amount in the
LEM-BSV scenario was zero during midday and evening
periods due to the 0 BS price; see Fig. 6) and the average
BS price was the same in the two scenarios, the overall BS
revenue was significantly higher in the LEM-BSV scenario,
overall resulting in a lower net cost (which is actually
negative; see Table 4). This effect was driven by the fact
that the amount of provided BS in the LEM-BSF scenario
during midday and evening periods was not as high as
the one during morning periods since: 1) the majority
of EV was not connected to the grid (and, thus, cannot
provide BS) during midday periods (due to the home-
charging assumption) and 2) EV and ES were discharging

Fig. 7. Mean and standard deviation of daily retail import prices

for real market and under attack (over the 53 test days).

Table 5 Daily Net Cost of 300 Prosumers for Real Market Prices and

Attacked Prices Under LEM-BSV Scenario (Aggregated Over the 53 Test

Days)

during evening periods (in order to avoid a high import
energy tariff), implying that the amount of upward BS that
they can provide was lower. Overall, this result implied
that variable pricing of BS does not only reflect the bal-
ancing requirements of the system more accurately (see
Section IV-A), but it is also more profitable for flexible
prosumers.

To further investigate the impact of cyberattacks on
LEMs, we performed the following steps based on the
previous setting.

1) Random noises to the original retail import price
signals for two typical periods (morning from 4:00
to 8:00 and night from 18:00 to 22:00) were added.
These noises can be assumed as the attacked retail
import price signals observed by prosumers in the
LEM.

2) Prosumers observing these attacked retail import
price made energy and AS provision decisions based
on their learned control policies from the MARL
method.

3) In the real market, the prosumers’ net costs were
calculated by the product of their made energy and
AS provision decisions (under the attacked prices)
and the real market retail import prices. The net costs
calculated above were assumed as the attacked costs.

4) The difference between the real costs (making deci-
sions and calculating costs are both based on real
prices) and the attacked costs (making decisions
based on attacked prices and calculating costs based
on real prices) was finally compared.

Fig. 7 illustrates the daily retail import prices (mean ±
std) over the 53 test days before (blue) and after (red)
cyberattacks. Table 5 compares the aggregated daily net
cost over the 53 test days of 300 prosumers for these two
scenarios. It can be observed from Table 5 that the net
cost of 300 prosumers under attacked prices was much
lower than the cost under real market prices, showing
the impacts of cyberattacks on LEMs. The prediction-based
detector described in Section IV-E was adopted with
sequence length T = 6 to detect such attacks at each
household. By setting a 5.0% FPR, the detection rate on
the above attacks was reported as 95.16%. Subsequently,
mitigation actions can be made to correct the agent actions
in the following step.

VI. C O N C L U S I O N
Digitalization can enhance the reliability and cost-
efficiency of power systems operation. This work discusses
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how centralized data analytics allow to fully benefit from
the advantages of LEMs in terms of system’s security
and energy costs’ reduction. The digitalized, decentralized
paradigm for secure CPS operation with LEMs not only
benefits local prosumers but also enhances the security of
supply. The key contribution of this work is to holistically
analyze the impact of ML on security corrective-control,
cyberattack detection, and the economic value of LEMs.
Case studies have demonstrated that considering novel
ML-based LEM paradigms in the system operation can
reduce the impact of physical and cyberattacks by 38% and
improve the detection of varying attack strengths. At the

same time, such data-driven LEM models not only can
substantially enhance self-consumption effects and reduce
the energy costs of flexible prosumers but also generate
significant revenues from the provision of ASs to wider
system operators. This article recommends considering
novel LEM paradigms in the system operation, which
can still be secure through advanced ML approaches for
the detection of cyberattacks and security assessments.
Then, as this article demonstrated, a significant step for-
ward could be made toward reducing energy costs of
prosumers and simultaneously enhancing the system’s
security.
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