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Optimal pitching axis location of flapping wings for

efficient hovering flight

Q. Wang, J.F.L. Goosen & F. van Keulen

Department of Precision and Microsystems Engineering, Structural Optimization and

Mechanics Section, Delft University of Technology, Mekelweg 2, 2628CD, Delft, The

Netherlands

E-mail: q.wang-3@tudelft.nl

Abstract. Flapping wings can pitch passively about their pitching axes due to their

flexibility, inertia, and aerodynamic loads. A shift in the pitching axis location can

dynamically alter the aerodynamic loads, which in turn changes the passive pitching

motion and the flight efficiency. Therefore, it is of great interest to investigate the

optimal pitching axis for flapping wings to maximize the power efficiency during

hovering flight. In this study, flapping wings are modeled as rigid plates with non-

uniform mass distribution. The wing flexibility is represented by a linearly torsional

spring at the wing root. A predictive quasi-steady aerodynamic model is used to

evaluate the lift generated by such wings. Two extreme power consumption scenarios

are modeled for hovering flight, i.e., the power consumed by a drive system with and

without the capacity of kinetic energy recovery. For wings with different shapes, the

optimal pitching axis location is found such that the cycle-averaged power consumption

during hovering flight is minimized. Optimization results show that the optimal

pitching axis is located between the leading edge and the mid-chord line, which shows

close resemblance to insect wings. An optimal pitching axis can save up to 33% of power

during hovering flight when compared to traditional wings used by most of flapping

wing micro air vehicles (FWMAVs). Traditional wings typically use the straight leading

edge as the pitching axis. With the optimized pitching axis, flapping wings show

higher pitching amplitudes and start the pitching reversals in advance of the sweeping

reversals. These phenomena lead to higher lift-to-drag ratios and, thus, explain the

lower power consumption. In addition, the optimized pitching axis provides the drive

system higher potential to recycle energy during the deceleration phases as compared

to their counterparts. This observation underlines the particular importance of the

wing pitching axis location for energy-efficient FWMAVs when using kinetic energy

recovery drive systems.

Keywords: flapping wings, hovering flight, passive pitching, pitching axis location,

efficiency

Submitted to: Bioinspir. Biomim.



Optimal pitching axis location of flapping wings 2

Abbreviations

AOA angle of attack

BPDF Beta probability density function

CFD computational fluid dynamics

CWAD chordwise area distribution

CWMD chordwise mass distribution

FWMAV flapping wing micro air vehicle

HM-wing hawkmoth wing

KERS kinetic energy recovery drive system

LE leading edge

PA pitching axis

QE-wing quarter-ellipsoidal wing

Rect-wing rectangular wing

SWAD spanwise area distribution

SWMD spanwise mass distribution

TE trailing edge

Tri-wing triangular wing

1. Introduction

There exists a great diversity of wing morphology among insects, especially from the

wing shape perspective. Compared to the wing outlines of various winged-insects, the

wings of most flapping wing micro air vehicles (FWMAVs) (de Croon et al., 2009;

Bolsman et al., 2009; Keennon et al., 2012; Ma et al., 2013; Nguyen et al., 2015) have

much simpler shapes (e.g., quarter-ellipse, polygon). Although this simplification helps

to decrease the design complexity and fabrication difficulty, the effect of wing shape

on the flapping flight performance, particularly on the energy-efficiency, can not be

completely ignored.

Wing shape determines the area distribution which can be further decomposed into

distributions in the span and chord directions. Aerodynamic loads on flapping wings

roughly increase quadratically with the velocity and, thus, are sensitive to the spanwise

area distribution (SWAD). As a result, its influence on flapping wing performance has

been extensively studied in the past. For instance, Ansari et al. (2008) investigated the

influence of the spanwise wing area distribution and aspect ratio on the lift generation

and power efficiency using an unsteady aerodynamic model (Ansari, 2004). Recently,

Shahzad et al. (2016) conducted similar investigations using a computational fluid

dynamics (CFD) method. They both showed that wings with more outboard area and

higher aspect ratio generate higher lift but also consume more power. This is because the

lift and power scale with the square and cube of flapping velocity, respectively. Optimal

wing shapes have also been studied in literature using quasi-steady aerodynamic models.

Typically, the total lift force is constrained in these studies. By keeping the wing aspect

ratio constant, Wang et al. (2013) showed that flapping wings with more outboard area
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can have better performance, i.e., higher lift generation or less power consumption.

Stewart et al. (2013) found that the optimal wing shape which provides maximal thrust

for forward flight tends to push much of the planform away from the wing root. Wang

et al. (2014) investigated the optimal wing shape for energy-efficient hovering flight in

passive pitching motion while keeping the total wing area constant. A wing planform

with a low aspect ratio, similar to butterfly wings, was obtained.

In contrast, the influence of chordwise area distribution (CWAD) on flapping flight

performance has been less studied. CWAD determines the inertia and aerodynamic

loads a wing needs to overcome when pitching about its pitching axis. Particularly

when the wing pitches passively due to its flexibility and the inertial and aerodynamic

loads CWAD directly determines the passive pitching behavior, including the amplitude,

the phase lag from sweeping motion, and its deviation from a harmonic motion. Passive

pitching can be found for both insects (Ennos, 1989; Combes and Daniel, 2003; Bergou

et al., 2007; Ishihara et al., 2009) and FWMAVs (Wood, 2008; de Croon et al., 2009;

Keennon et al., 2012; Ma et al., 2013). Particularly for FWMAVs, the passive pitching

motion is preferred in order to simplify the drive mechanism. Consequently, the location

of the pitching axis becomes an important design aspect for artificial wings in order to

achieve energy-efficient flight for FWMAVs.

This work aims to find the optimal pitching axis location for flapping wings with

passive pitching motion. Flapping wings are modeled as rigid plates with non-uniform

mass distribution. The wing flexibility is represented by a linearly torsional spring at

the wing root, which is commonly used for the wing design (Whitney and Wood, 2010;

Wang et al., 2014). A predictive quasi-steady aerodynamic model (Wang et al., 2016)

is used to evaluate the lift generated by such wings. A short description of this model

is provided in Appendix A. Two extreme power consumption scenarios are modeled for

hovering flight, i.e., the power consumed by a drive system with or without the capacity

of kinetic energy recovery. In this study, hovering flight is considered not only because

it is generally more energy-consuming compared to forward flight (Dudley, 2002), but

also it is a required and an important capability for FWMAVs.

The following sections start with the flapping wing modeling in Sec. 2 which consists

of the wing area and mass distribution models as well as the kinematics model. In Sec. 3,

the aerodynamic model and the power consumption model are introduced. Based on the

optimization model described in Sec. 4, we investigate the optimal location of pitching

axis for different wings and analyse its influences on the power efficiency during hovering

flight in Sec. 5. Conclusions are presented in Sec. 6.

2. Flapping wing modeling

2.1. Area distribution

Wing area distribution is decomposed into spanwise area distribution (SWAD) and

chordwise area distribution (CWAD).
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Ellington (1984) proposed that the SWAD of insect wings can be approximately

described by Beta probability density function (BPDF). The mean and standard

variance of the BPDF are represented by the dimensionless radii of the first and second

spanwise moment of area, which are denoted as r̂s1 and r̂s2 , respectively. They are

defined as

r̂s1 =
1

SR

∫ R

0

crdr and r̂s2 =

√
1

SR2

∫ R

0

cr2dr, (1)

where R, c and S are the wing span, chord length and the total area, respectively.

Furthermore, r̂s1 was correlated with r̂s2 by the relation r̂s2 = 0.929r̂0.732s2
by Ellington

(1984). In contrast, for wings of FWMAVs, the SWAD is often simplified to reduce

the modelling and fabrication complexity. For instance, flapping wings with rectangular

(Seshadri et al., 2013), quarter-ellipsoidal (Keennon et al., 2012), triangular (Chaudhuri

et al., 2013) and polygonal (de Croon et al., 2009) shapes have been adopted.

Compared to the SWAD, the CWAD was less studied for two reasons. First,

successful take-off and stable flight are still the research objectives of most FWMAVs.

Thus, people are more interested in the lift and thrust generation which are more

sensitive to the wing SWAD. Second, the influence of the CWAD on flight performance

is more pronounced for wings that pitch passively when compared to wings with fully

prescribed kinematics, and the latter is more frequently used. In order to model the

CWAD, we introduce a dimensionless parameter d̂ which is defined as the local-chord-

normalized distance from the leading edge (LE) to the pitching axis (PA). The parameter

d̂ is formulated as a linear function of the spanwise radius r, i.e.,

d̂(r) =
r

R
(d̂t − d̂r) + d̂r, 0 6 r 6 R, (2)

where d̂r and d̂t represent the values of d̂ at the wing root and the tip, respectively. When

d̂r = d̂t = 0, the wing takes its straight LE as the pitching axis, which has been widely

adopted for most FMWAVs (de Croon et al., 2009; Bolsman et al., 2009; Keennon et al.,

2012; Ma et al., 2013; Nguyen et al., 2015). When d̂r = d̂t = 0.5, the wing planform is

symmetric about its PA, which has been used as a simplified wing model for studying

the optimal kinematics by Berman and Wang (2007). In contrast, the PA of insect

wings is generally located between the LE and the mid-chord line. The difference of the

PA location between artificial and insect wings inspired us to investigate the influence

of the PA on the flight efficiency and find the optimal PA location for artificial wings.

In this work, four commonly used wing shapes with straight leading edges (i.e.,

d̂r = d̂t = 0) but different spanwise area distributions (SWADs) are studied. As shown

in Figs. 1 (a) - (d), the SWADs of these wings are identical to the rectangular wing (Rect-

wing), the hawkmoth wing (HM-wing), the quarter-ellipsoidal wing (QE-wing) and the

triangular wing (Tri-wing), respectively. However, the shapes of these wings can vary

significantly if the CWAD is changed. The resulting effect on the flight performance is

still unclear and will be studied in this work. To facilitate the comparison, all wings

have the same wing span and surface area S.
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root tip
LE

TE

(a) Rect-wing (b) HM-wing (c) QE-wing (d) Tri-wing

Figure 1: Four traditional wings with the same straight leading edge (LE) but different

trailing edges (TEs). The shape of the TE is determined by the spanwise area

distributions (SWADs). The SWADs of these wings correspond to the rectangular

wing (Rect-wing), the hawkmoth wing (HM-wing), the quarter-ellipsoidal wing

(QE-wing) and the triangular wing (Tri-wing). The values of r̂s1 are 0.5, 0.45, 0.42

and 0.33 for wings from left to right.

LE TEtm tmLE TE

(a) kite profile (b) uniform profile

Figure 2: Schematic diagram of two cross-sectional profiles that are used to describe the

chordwise mass distribution. The maximal thickness of the cross-section is denoted

as tm. LE and TE represent the leading edge and trailing edge, respectively.

2.2. Mass distribution

Similar to the wing area distribution, the wing mass distribution is also characterized by

the spanwise mass distribution (SWMD) and the chordwise mass distribution (CWMD).

Span wise, the dimensionless radii of the first and second moment of inertia,

which are denoted as r̂m1 and r̂m2 , respectively, are generally used to reflect the mass

distribution. According to studies on different species of insects (Ellington, 1984; Betts

and Wootton, 1988; Dudley and Ellington, 1990; Willmott and Ellington, 1997b), r̂m1

typically ranges from 0.2 to 0.5, and r̂m2 from 0.3 to 0.6. Combes and Daniel (2003)

measured the spanwise bending stiffness variation from the root to the tip of a hawkmoth

wing (Manduca sexta) and a dragonfly wing (Aeshna), and found that the variation can

be approximated by an exponential decline. The spanwise stiffness is related to the

cross-sectional profile in chordwise direction and proportional to the term c(r)t3m(r),

where c and tm are the chord length and the maximal thickness of the cross-section.

Therefore, if the variation of the chord length is ignored, the change of tm along the

span can be approximately described by an exponential function

tm(r) = λ1e
λ2r, 0 6 r 6 R, (3)

where λ1 and λ2 are two parameters to be determined. In this work, we assume that

the wing is made of the same material with a density ρw, which implies that the mass

distribution is equivalent to the wing thickness variation. Therefore, the function of tm
can reflect the SWMD if the wing has the same cross-sectional profile along the span.
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Table 1: Comparison of the calculated and measured values of r̂m1 for different insect wings.

The value of r̂m1 of the hawkmoth wing was measured by Willmott and Ellington

(1997b). The values of r̂m1 of the other three wings were measured by Ellington

(1984). The measurement errors are not taken into account. The model error is

defined as
∣∣r̂calm1

− r̂measm1

∣∣ /r̂measm1
.

insect wing mass measured r̂m2 measured r̂m1 calculated r̂m1 model error

species [mg] [-] [-] [-] (%)

hawkmoth 44.79 0.38 0.29 0.31 6.90

hoverfly 0.21 0.44 0.36 0.37 2.78

dronefly 0.53 0.40 0.32 0.33 3.13

bumblebee 0.54 0.44 0.36 0.37 2.78

The CWMD is also important since it determines the pitching inertia and, thus, the

passive pitching motion. Due to the lack of knowledge on the CWMD of insect wings,

we assume two different cross-sectional profiles, as shown in Fig. 2. The first is a kite

profile, i.e., the thickness (or mass) of an arbitrary cross-section increases linearly from

zero at both the leading and trailing edges to the maximal value tm at the pitching axis

location. The second is a uniform thickness along the chord.

Based on the proposed SWMD and CWMD models, the mass distribution of an

arbitrary wing can be quantified. When the wing mass mw and the moment of inertia

are known, the unknown parameters λ1 and λ2 in Eq. 3 can be determined by solving

following system of equations∫ R

0

ρwγλ1e
λ2rcdr −mw = 0, (4a)∫ R

0

ρwγλ1e
λ2rcr2dr −mwr̂2m2

= 0, (4b)

where the value of γ depends on the CWMD (γ = 1/2 for the kite profile and γ = 1 for

the uniform profile). It should be noted that the spanwise radii of the first and second

moment of inertia (i.e., r̂m1 and r̂m2) do not change with the value of γ.

To validate the proposed mass distribution model, we use it to describe the wing

mass distribution of four insects, including a hawkmoth, a hoverfly, a bumblebee and a

dronefly. The wing mass and the dimensionless spanwise radii of the first and second

moment of inertia (i.e., r̂m1 and r̂m2) of these insects have been measured in literature

(Ellington, 1984; Willmott and Ellington, 1997b). The values of λ1 and λ2 for each

insect wing are determined using Eqs. 4. Thus, the mass distribution over the entire

wing is known. Then, the values of r̂m1 are calculated and compared with the measured

values, as shown in Table 1. The comparison shows that the calculated r̂m1 deviates

from the measured value by less than 6.9% for all four wings, which implies that the

proposed model provides a good representation of the SWMD of insects wings.
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2.3. Kinematics

Two frames are introduced to describe the flapping kinematics of a rigid wing, i.e., the

inertial frame xiyizi and the co-rotating frame xcyczc, as shown in Fig. 3. The inertial

frame is fixed at the wing joint. The xi axis coincides with the projection of the leading

edge on the horizontal stroke plane while the wing is at rest at the middle stroke. The

zi axis is perpendicular to the stroke plane, and the yi axis is defined by the right-hand-

rule. The co-rotating frame rotates with the wing, whose xc axis coincides with the

PA, and the yc and zc axes are perpendicular and parallel to the wing platform. The

sweeping angle φ and pitching angle η can be described by these two frames, as shown

in Fig. 3.

A harmonic function

φ(t) = φm sin(2πft) (5)

is used to prescribe the sweeping motion with an amplitude of φm and a drive frequency

f . The passive pitching motion is determined by the wing inertia, the rotational stiffness

of the linear torsional spring and the aerodynamic torque about the PA (i.e., the xc axis

in Fig. 3). Based on Euler’s second law of motion for a rigid body, the equation of

motion for the pitching motion can be derived from

τ appliedxc + τ inerxc = 0, (6)

where τ appliedxc includes the elastic torque τ elasxc due to the resistance from deformed spring

and the aerodynamic torque τ aeroxc that will be discussed in next section. The inertial

torque τ iner can be given in the co-rotating frame by

τ iner = −Iαc − ωc × (Iωc) , (7)

where I is the inertia matrix, and ωc and αc are the wing angular velocity and

acceleration in the co-rotating frame, respectively. ωc and αc can be obtained by

ωc = [η̇, φ̇ sin η, φ̇ cos η]T, (8)

αc = [η̈, φ̇η̇ cos η + φ̈ sin η, φ̈ cos η − φ̇η̇ sin η]T. (9)

The inertia matrix I can be calculated by

I =

Ixcxc Ixcyc Ixczc
Iycxc Iycyc Iyczc
Izcxc Izcyc Izczc

 =


∫
M
z2cdm 0 −

∫
M
xczcdm

0
∫
M

(x2c + z2c )dm 0

−
∫
M
xczcdm 0

∫
M
x2cdm

 , (10)

where the cross term Ixczc results from the asymmetry of the wing mass distribution

about the PA. The inertia matrix expressed in the co-rotating frame does not change

with the flapping motion, and this facilitates the easy derivation of the equation of

motion. The inertial terms related to the wing thickness are ignored since the thickness

is negligible when compared to the span and average chord length.
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xc

yc

zc

xi

yi

zi

LE

TE

ϕ

η

Figure 3: Two frames used for describing the motion of flapping wings. The inertial frame

xiyizi is fixed to the wing joint, while the co-rotating frame xcyczc co-rotates with

the wing. φ and η represent the sweeping and pitching angles, respectively.

Substituting the xc component of τ iner and the formula of the elastic torque (i.e.,

τ elasxc = −kηη) into Eq. 6, the equation of motion can be rewritten as

Ixcxc η̈ + kηη = τ aeroxc +
1

2
Ixcxcφ̇

2 sin(2η)− Ixczcφ̈ cos η, (11)

where the last two inertial terms represent the centrifugal force and Euler force induced

by the sweeping motion, respectively. It can be seen that both the aerodynamic

and inertial terms introduce nonlinearity to the system. The influence of the inertial

nonlinearity to the pitching motion depends on Ixcxc , Ixczc and φ(t). The values of Ixcxc
and Ixczc depend on the PA location, while φ(t) depends on the flapping frequency.

In this study, the influence of the PA location and flapping frequency on the pitching

motion will be studied, and the optimal wing design will be investigated to maximize

the energy-efficiency during hovering flight.

3. Aerodynamic and power consumption modelling

3.1. A quasi-steady aerodynamic model

The aerodynamic term τ aeroxc in the equation of motion (Eq. 11) is calculated by a

predictive quasi-steady aerodynamic model as proposed by Wang et al. (2016) (see also

Appendix A). The quasi-steady assumption means that the transient aerodynamic loads

on a flapping wing are equivalent to that on the wing undergoing a steady motion at the

same transient velocity and angle of attack. The viscous drag at the thin boundary layer

and the suction load at the leading edge are ignored since they are negligible compared

to the load resulting from the pressure difference between two sides of flapping wings

(Sane, 2003). Consequently, the resultant aerodynamic force can be assumed to be
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perpendicular to the wing platform, i.e., aligned to the yc axis in the co-rotating frame,

over the entire stroke. Therefore, it is convenient to formulate the aerodynamic loads

in the co-rotating frame. The resultant aerodynamic force and torque are calculated by

F aero
yc = F trans

yc + F rot
yc + F coupl

yc + F am
yc , (12a)

τ aeroxc = τ transxc + τ rotxc + τ couplxc + τ amxc , (12b)

τ aerozc = τ transzc + τ rotzc + τ couplzc + τ amzc , (12c)

where the four loading terms at the right-hand side of each equation originate from the

wing translation, the rotation, the couping between them and the added mass effect.

The translation-induced loading terms (i.e., F trans
yc , τ transxc and τ transzc ) represent the loads

when a wing undergoes pure translation at a certain angle of attack. The rotation-

induced loading terms (i.e., F rot
yc , τ rotxc and τ rotzc ) reflect the aerodynamic damping loads

on the wing that purely rotates about its PA. The coupling terms (i.e., F coupl
yc , τ couplxc

and τ couplzc ) represent the loads due to the coupling effect between the wing translation

and rotation. The terms F am
yc , τ amxc and τ amzc reflect the loads due the added-mass effect

as a result of the accelerated or decelerated fluid surrounding the wing. More details on

the formulations of each term can be found in Appendix A. The lift L, which is in the

direction of the zi axis, can be calculated by transforming F aero
yc from the co-rotating

frame to the inertial frame.

The model is used in this paper for its advantages over other quasi-steady models in

terms of two aspects. First, in addition to the aerodynamic forces, the model provides

a good prediction for the aerodynamic torque about the pitching axis, which is essential

for calculating the passive pitching motion of flapping wings. Second, the model does

not rely on any empirical parameters, which provides more freedom to set the dimension

of flapping wings.

3.2. Power consumption

Due to the limited on-board power supply, the flight endurance of existing FWMAVs is

generally less than 20 minutes (Floreano and Wood, 2015). This issue motivates us to

improve the power efficiency of flapping wing designs.

For flapping wings with passive pitching, the total power consumption consists

of three components: (1) aerodynamic power P aero used to overcome the aerodynamic

drag, (2) inertial power P iner to accelerate the wing and surrounding fluid, and (3) elastic

power P elas due to the resistance from the elastic spring. These can be formulated as

P aero(t) = −τ aeroxc ωxc − τ aerozc ωzc , (13a)

P iner(t) = −τ inerxc ωxc − τ ineryc ωyc − τ inerzc ωzc , (13b)

P elas(t) = kηηωxc , (13c)

respectively. Due to aerodynamic drag, P aero > 0 during most parts of a flapping

cycle. During wing reversals, the aerodynamic drag can be in the same direction as
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the sweeping motion due to the wing rotational effect. For such cases, P aero < 0. The

kinetic energy of the wing increases during the accelerating phase of each half-stroke

and, thus, P iner > 0. During deceleration, the wing starts to lose its kinetic energy,

which implies P iner < 0. The lost kinetic energy can be dissipated, used to compensate

the energy consumed by the drag, or stored in the kinetic energy recovery drive system

(KERS). The KERS can be in different forms, e.g., insect thoraxes (Dudley, 2002) and

elastic structures of FWMAVs (Bolsman et al., 2009; Lau et al., 2014).

The uncertainty of the kinetic energy transformation complicates the modelling of

the exact power consumed by flapping wings. Instead, two extreme power consumption

scenarios are modeled. First, a KERS is used, thus, the cycle-averaged elastic and

inertia power will be zero. Therefore, the total average power consumption P̄ total
KERS is

equal to the average aerodynamic power, i.e.,

P̄ total
KERS =

1

T

∫
T

P aerodt, (14)

where T is the period of a flapping cycle. Second, a drive system which can not recover

kinetic energy is used. In this case, the kinetic energy and the elastic energy will be first

used to compensate the energy consumed by drag. The extra energy will be dissipated.

For convenience, this type of drive system will be referred to as non-KERS in this work.

The total average power consumption P̄ total
non-KERS for this extreme case can be calculated

by

P̄ total
non-KERS =

1

T

∫
T

Ξ
(
P aero + P iner + P elas

)
dt, (15)

where Ξ(•) is an operator to set negative values (excess stored energy) to zero and keep

positive values the same.

The power consumption by flapping wings should lie between P̄ total
KERS and P̄ total

non-KERS.

To facilitate the comparison of energy-efficiency between different wing designs, the

average power is normalized by the mass that can be lifted by the corresponding wing

design and denoted by adding a cap (e.g., ˆ̄P total
KERS and ˆ̄P total

non-KERS).

4. Optimization model

To investigate the influence of the pitching axis (PA) location on the power efficiency,

d̂r and d̂t are optimized. Meanwhile, the kinematics is also optimized by setting

the sweeping frequency f and the rotational stiffness kη as design variables. The

minimization of the cycle-averaged power consumption ˆ̄P total
KERS and ˆ̄P total

non-KERS are set

as the optimization objective for KERS and non-KERS, respectively. The lift generated

by optimized wings needs to be equal to the required lift (e.g., half of the body weight

for two-winged FWMAVs).

It is interesting to compare the energy efficiency between wings with an optimal PA

location and traditional wing designs which have a straight LE as the PA (see Fig. 1).

For a fair comparison, the kinematics, i.e. the values of f and kη, are also optimized for

traditional wings subjected to the same objective and constraint.
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For a fair comparison of the power consumption, all the wings studied in this work

share the same span R, aspect ratio A, wing mass mw, spanwise radius of the second

moment of inertia r̂m2 , sweeping amplitude φm and the lift generation requirement L̄req.

These parameters are prescribed by referring to an adult female hawkmoth (HMF2)

studied by Willmott and Ellington (1997b), as listed in Table 2.

Table 2: Prescribed parameters of flapping wings. A is the aspect ratio of a single wing and

defined as R2/S. L̄req is the lift generation required for a single wing.

parameters R A mw r̂m2 φm L̄req

units [×10−3m] [-] [×10−6Kg] [-] [degrees] [×10−3N]

HMF2 51.00 2.77 46.01 0.38 61.64 9.21

model wings 50.00 2.50 50.00 0.38 60.00 9.80

Due to the nonlinearity existing in the equation of motion for the passive pitching

motion, both the lift and power are non-convex functions in the design domain

expanded by four design variables (i.e., d̂r, d̂t, f and kη). Therefore, a stochastic

global optimization method (Li and Au, 2010) is used to obtain the rough optima.

Then, the rough solution is taken as the initial value for a gradient-based optimization

method (fmincon from MATLAB R©) which uses the sequential quadratic programming

algorithm.

In this work, we study the optimal PA for eight wings resulting from the

combination of four spanwise area distributions (SWADs) (see Fig. 1) and two chordwise

mass distributions (CWMDs) (see Fig. 2). For each wing, both the two extreme

power consumption cases are considered as the optimization objective. Therefore, 16

optimization cases are studied in total.

5. Results and analysis

5.1. Optimal pitching axis location

For different wings, the shapes with the optimal PA location are compared to traditional

wings which use a straight LE as the PA in Fig. 4. To facilitate the comparison, all the

optimal pitching axes coincide with the straight LE of corresponding traditional wings.

It can be seen that the pitching axes of all the optimized wings are located behind the

LE. These optimized wings are quite different from traditional wings but can be very

close to insect wings, as shown by the comparison between optimized HM-wings with

the real hawkmoth wing in Fig. 4 (b).

Optimized wings with different CWMDs and subjected to different power

consumption scenarios show close PA locations. However, there are recognizable

differences between optimized wing shapes. First, when the same CWMD is used, the

PA of optimized wings for KERS is further behind the LE as compared to the optimal

PA for non-KERS. The difference is more prominent at the wing root than at the wing
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Figure 4: Optimal pitching axis locations for different types of wings. Gray areas represent

traditional wings with a straight leading edge (LE) as the PA. To facilitate the

comparison, all the optimal PAs coincide with the straight LE of corresponding

traditional wings.

tip. Second, the optimal location of PA is more sensitive to the objective function than

CWMD. It should be noted that aforementioned observations hold for all the four types

of wings.

In order to interpret the optimal PA location, we plot the corresponding power

consumption, pitching amplitudes, flapping frequency and the rotational stiffness for

all the cases. Here, the pitching amplitude is defined as the maximum pitching angle

during the stroke. Inter-comparisons are used to help the analysis.

5.2. Analysis

Figure 5 compares the power consumed by different optimized wings. It is clearly seen

that the wings with optimal PA location show a dramatical reduction of the power

consumption as compared to traditional wings. For KERS, up to 33% of power can be

saved by the HM-wing with the optimized PA when compared to the traditional HM-

wing. The minimum amount of power that can be saved by the wing with optimized

PA location is still more than 21%, as shown by the QE-wings for non-KERS.

It can be also observed that, for traditional wings, the use of KERS does not reduce

the power consumption significantly as compared to non-KERS. In contrast, when the

PA is at the optimal location, the power consumption shows a considerable drop for

KERS. For instance, more than 13% of energy has been saved via recovering kinetic

energy by the HM-wing with the optimal PA. The influence of PA location on the

usefulness of kinetic energy recovery capacity can be better understood from the power

plot in Fig. 6. The study of power history of the HM-wings with a kite profile CWMD

is taken as an example. It can be seen that the aerodynamic power before pitching

reversals is negligible for the HM-wings with optimal PA. Thus, the negative power
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due to the wing deceleration can not be completely offset by the aerodynamic power.

Such a significant amount of unnecessary power consumption can be avoided by using

KERS. In contrast, the traditional HM-wing still experiences a significant amount of

aerodynamic power consumption before reversals which is almost equal to the negative

inertial power. Thus, the remainder of the kinetic energy that can be stored is very

limited.

From Fig. 5, we can also see that the Tri-wings show the lowest power efficiency.

This is due to the fact that the Tri-wings have a smaller r̂s1 as compared to other wings

(see Fig. 1), which implies that the area of the Tri-wings is closer to the root on average.

As a consequence, the aerodynamic efficiency of Tri-wings is lower due to the lower

average flapping velocity.

The pitching amplitudes ηm corresponding to different optimized wings are

compared in Figs. 7 (a) and (b). The plots show that the pitching amplitudes of wings

with a straight LE are lower than wings with an optimal PA, and the pitching amplitudes

of Tri-wings are lower than other wings. By comparing these results with the power

plots in Fig. 5, it can be concluded that a higher pitching amplitude leads to lower

power consumption. The conclusion can be explained by the relation between the

aerodynamic power and the pitching amplitude. This is because, for KERS and non-

KERS, the power consumption is equal to or dominated by the aerodynamic power,

respectively. We know that the aerodynamic power is proportional to the average drag,

while the average drag is inversely proportional to the average lift-to-drag ratio since

all the wings need to generate the same average lift. Furthermore, the value of the lift-
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Figure 5: Comparison of power consumption of different wings for both KERS and non-

KERS. The horizontal axis ticks Rect-wing, HM-wing, Rect-wing and Tri-wing

represent the wings with the chordwise area distribution of the rectangular wing,

the hawkmoth wing, the quarter-ellipsoidal wing and the triangular wing as shown

in Fig.1, respectively.
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Figure 6: Comparison of the power histories for the HM-wings with a kite profile CWMD.

(a) The wing has a optimal PA location. (b) The straight LE is taken as the

PA. Filled areas between the curves for P̂ total
KERS and P̂ total

non-KERS indicate the kinetic

energy that can be potentially recovered by drive system.

to-drag ratio is inversely proportional the angle of attack based on the condition that

the resultant aerodynamic force is perpendicular to the chord. We also know that the

average angle of attack is inversely proportional to the pitching amplitude. Therefore,

the aerodynamic power is inversely proportional to the pitching amplitude.

The lift generation is related to both the angle of attack and the flapping velocity.

According the aerodynamic model proposed by Wang et al. (2016), the lift coefficient

of a translational wing reaches its maximal value at the angle of attack (AOA) of

45◦. In practice, due to the wing rotational and added-mass effects, a flapping wing

reaches the highest lift coefficient at an AOA that slightly deviates from 45◦. The

corresponding AOA will be referred to as lift-maximizing AOA for convenience. The

maximal cycle-averaged lift coefficient is attainable when the cycle-averaged absolute

deviation of the AOA from the lift-maximizing AOA is minimized. The deviation can

be partly reflected by the pitching amplitude. For example, if the pitching motion is

assumed to be harmonic and the lift-maximizing AOA is 45◦, the pitching motion has

the minimal deviation when the pitching amplitude is 55◦. Therefore, for the wing

with a pitching amplitude much higher than the lift-maximizing AOA, the average

lift coefficient is inversely proportional to the pitching amplitude. We can see from

Fig. 7 (a) to Fig. 7 (d) that, for the wing with a higher pitching amplitude (i.e., a smaller

average lift coefficient), a higher flapping frequency is required to increase the flapping

velocity such that the lift constraint can be satisfied. The frequencies with respect

to the optimized HM-wings with a optimal PA location (see Fig. 7 (c)) are 27.04 Hz

and 26.46 Hz for KERS and non-KERS, respectively. In contrast, the average flapping

frequency of the reference hawkmoth (Willmott and Ellington, 1997a) is 25.40 Hz. The



Optimal pitching axis location of flapping wings 15

Rect-wings HM-wings QE-wings Tri-wings

40

50

60

70

80

90

η m
[d
eg
re
es
]

(a) CWMD: kite

Rect-wings HM-wings QE-wings Tri-wings

40

50

60

70

80

90

η m
[d
eg
re
es
]

(b) CWMD: uniform

optimized wing,
KERS

traditional wing,
KERS

optimized wing,
non-KERS

traditional wing,
non-KERS

Rect-wings HM-wings QE-wings Tri-wings

24

26

28

30

o
p
ti
m
al

f
[H

z]

(c) CWMD: kite

Rect-wings HM-wings QE-wings Tri-wings

24

26

28

30

o
p
ti
m
al

f
[H

z]

(d) CWMD: uniform

Rect-wings HM-wings QE-wings Tri-wings
10−5

10−4

10−3

wing types

op
ti
m
al

k
η
[N

m
/R

ad
] (d) CWMD: kite

Rect-wings HM-wings QE-wings Tri-wings
10−5

10−4

10−3

wing types

op
ti
m
al

k
η
[N

m
/R

ad
] (f) CWMD: uniform

Figure 7: Comparison of optimal results for four types of wings with two different chordwise

mass distribution (CWMD) for both KERS and non-KERS.

slightly overestimated frequency can be attributed to the smaller span and the higher

required lift production of the model wing as compared the hawkmoth wing (see Table 2).

When the PA moves from the LE to the optimal location, the wing pitching inertia

decreases. Meanwhile, the PA gets closer to the center of pressure (CP) which is

normally located between the 1/4 chord to the mid-chord (Zhao et al., 2010; Wang

et al., 2016). Both the change of the pitching inertia and the distance between the

CP and PA tends to reduce the external torque applied on the PA. Therefore, in order

to maintain the expected pitching amplitude, the wing rotational stiffness kη needs to

decrease simultaneously. This is why the optimal stiffness used by wings with a straight

LE is much larger than that for the wings with a optimal PA location, as shown in

Figs. 7 (e) and (f). This also provides an explanation to the wing shape and flexibility

of insect wings. With a properly located PA, an insect wing can generate sufficient lift

in the most efficient way. Meanwhile, the wing can be very flexible which implies that
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the structure can be light-weight. The light-weight wing design is also preferred for

flapping wings of FWMAVs.
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Figure 8: Phase portrait of optimal kinematics. The cross-line with a positive/negative slope

means that the corresponding pitching motion is ahead/behind of the sweeping

motion.

To gain more insight into the pitching motion of wings with the optimal PA,

Figure. 8 shows the phase portraits of their kinematics and the comparison of the optimal

kinematics between optimized and traditional wings. It can be seen that the reversals of

pitching motion with respect to the wing with a optimal PA always take place in advance

to the sweeping reversals. In contrast, the pitching reversals of traditional wings are

generally delayed compared to sweeping reversals. The advanced pitching reversal can

enhance the lift generation during the reversal phases (Dickinson et al., 1999; Nakata

and Liu, 2012), and it has also been observed on the hovering hawkmoth (Nakata and

Liu, 2012). The PA location might be also one of the explanations to the advanced

pitching reversals observed for insect flight.

In Figs 5, 7 and 8, we showed the optimal power consumption, design variables

and kinematics for wings with both the kite and uniform profile CWMDs. It can be
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observed that the performance difference between the wings with these two CWMDs

is marginal. This implies that the optimal PA location is not sensitive to the CWMD.

For convenience, the analysis presented in this section was primarily based on the wings

with the kite profile CWMD.

5.3. Influence of lift constraints
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Figure 9: Comparison of wing shapes with optimal location of pitching axes for the HM-wing

with the kite profile CWMD when subjected to different lift constraints (L̄req). The

gray areas correspond to the lift constraint of 1 g.

In order to investigate the dependence of the optimal PA location on the lift

constraint, we further optimize the PA location for different lift productions, including

50%, 75%, 125% and 150% of the original value (1 g). Taking the HM-wing with a kite

profile CWMD as an example, the optimal shapes for different lift constraints are quite

close to the original optimal wing shape, as shown in Fig. 9.

Figure. 10 plots the optimal frequency and torsional stiffness as well as the

corresponding power consumption and pitching amplitudes with respect to different lift

constraints. The power plots in Fig. 10 (a) confirm that the wings with the optimal PA

location are more energy-efficient than traditional wings regardless of the lift constraint.

The optimal pitching amplitudes as shown in Fig. 10 (b) are approximately equal to the

amplitude of the original optimal wing. In order to satisfy different lift constraints, the

optimal frequency increases with the required lift production, as shown in Fig. 10 (c).

Figure. 10 (d) shows that the optimal rotational stiffness for both the wings with the

optimal PA location and traditional wings increases with the required lift production

approximately at the same rate. However, the absolute change for wings with the

optimal PA location is one order smaller than traditional wings.

Combining the results in Figs. 9 and 10, we can see that the wing with a properly

located PA can generate different lift while maintaining a high power efficiency. This

can be realized by changing the flapping frequency and a fine tuning of the wing

stiffness. For insects, there are several ways to achieve minor stiffness changes, including

the vein blood circulation (Hou et al., 2014), wing warping (Ristroph and Childress,

2014). For FWMAVs, there also exist many approaches to tune the wing stiffness,
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Figure 10: Comparison of optimal designs of the HM-wings with the kite profile CWMD

for different lift constraints. The HM-wings are optimized for both KERS and

non-KERS.

e.g., piezoelectric polymers, electrorheological fluids, and electrostatic softening (Peters

et al., 2015; Peters, 2016).

6. Conclusions

This paper studied the optimal pitching axis (PA) location for different flapping wings

to maximize the energy efficiency during hovering flight. We found that the optimal

PA is located between the leading edge (LE) and the mid-chord line, which can result

in shapes very similar to insect wings. In contrast, traditional wings used by most

flapping wing micro air vehicles (FWMAVs) simply pitch about their straight LEs. The

comparison of power consumption shows that wings with optimal PA can save up to 33%

of power as compared to traditional wings with optimized kinematics. The PA location

also influences the usefulness of the kinetic energy recovery capacity of a drive system.

More than 13% of the power consumption can be saved via recovering kinetic energy

for wings with an optimal PA while the saved power is negligible for traditional wings.

Furthermore, the wing with a properly located PA can generate different lift levels while

maintaining a high energy efficiency. This can be realized by simultaneously changing
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the flapping frequency and fine tuning of the wing stiffness.

It is nontrivial to give a general optimal PA location for flapping wings considering

the diversity of flight conditions and the nonlinear relation between the PA location and

the flight performance. However, for flapping wings pitching passively, the PA location

should be carefully designed.
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Appendix A. Quasi-steady aerodynamic model

As a consequence of the wing flapping motion, the translational velocity varies from the

wing root to tip and from the LE to TE. Hence, the blade element method (Osborne,

1951) is applied for discretizing the wing planform in both chordwise and spanwise

directions. The resultant aerodynamic load can be formulated as a superposition of four

loading terms: translation-induced load, rotation-induced load, coupling load between

wing translation and rotation as well as added-mass load. More specifically, the resultant

translation-induced force in yc direction and corresponding torques about the xc and zc
axes can be formulated as

F trans
yc =− sgn(ωzc)

1

2
ρf(ω

2
yc + ω2

zc)C
trans
Fyc

∫ R

0

x2ccdxc, (A.1)

τ transxc =

 −sgn (ωzc)
1
2
ρf
(
ω2
yc + ω2

zc

)
Ctrans
Fyc

(
ẑtranscp − d̂

) ∫ R
0
x2cc

2dxc, ωyc ≤ 0

−sgn (ωzc)
1
2
ρf
(
ω2
yc + ω2

zc

)
Ctrans
Fyc

(
1− ẑtranscp − d̂

) ∫ R
0
x2cc

2dxc, ωyc > 0

(A.2)

and

τ transzc = −sgn (ωzc)
1

2
ρf
(
ω2
yc + ω2

zc

)
Ctrans
Fyc

∫ R

0

x3ccdxc, (A.3)

where sgn(·) is the signum function, ρf is the fluid density. Ctrans
Fyc

is the translational force

coefficient which is formulated as a function of the angle of attack (α̃) and wing aspect

ratio (A) (Taha et al., 2014), i.e., 2πA sin (α̃)
(
2 +
√
A2 + 4

)−1
. ẑtranscp is the center

of pressure due to the wing translation. It is calculated with the formula (2π)−1 |α̃|,
which is an analytical approximation of data from experimental measurements (Wang

et al., 2016). The negative and positive values of ωyc mean that the translational velocity

component vzc (= −xcωyc) points at the LE and TE, respectively. Generally, ωyc changes

signs during wing reversal phases. For instance, ωyc becomes positive before the sweeping

reversal if the pitching reversal happens earlier.

The resultant rotation-induced force and corresponding torques can be formulated
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as

F rot
yc =

1

2
ρfωxc|ωxc |Crot

D

∫ R

0

∫ d̂c

d̂c−c
zc |zc| dzcdxc, (A.4)

τ rotxc =− 1

2
ρfωxc|ωxc |Crot

D

∫ R

0

∫ d̂c

d̂c−c
|zc|3 dzcdxc, (A.5)

and

τ rotzc =
1

2
ρfωxc|ωxc |Crot

D

∫ R

0

∫ d̂c

d̂c−c
zc |zc|xcdzcdxc, (A.6)

where Crot
D is the rotational damping coefficient. The value of Ctrans

D when the AOA is

equal to 90◦ is adopted as the rotational damping coefficient.

The resultant coupling force between the wing translation and rotation and

corresponding torques are determined by

F coup
yc =

 πρfωxcωyc

[∫ R
0

(
3
4
− d̂
)
c2xcdxc +

∫ R
0

1
4
c2xcdxc

]
, ωyc ≤ 0

πρfωxcωyc

[∫ R
0

(
d̂− 1

4

)
c2xcdxc +

∫ R
0

1
4
c2xcdxc

]
, ωyc > 0.

(A.7)
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 πρfωxcωyc
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3
4
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)(

1
4
− d̂
)
c3xcdxc +

∫ R
0

1
4

(
3
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4
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(A.8)

and

τ coupzc =

 πρfωxcωyc

[∫ R
0

(
3
4
− d̂
)
c2x2cdxc +

∫ R
0

1
4
c2x2cdxc

]
, ωyc ≤ 0

πρfωxcωyc

[∫ R
0

(
d̂− 1

4

)
c2x2cdxc +

∫ R
0

1
4
c2x2cdxc

]
, ωyc > 0.

(A.9)

Finally, the resultant force and torques due to the added-mass effect are formulated

as

F am
yc =−

∫ R

0

m22aycdxc − αxc
∫ R

0

m24dxc (A.10)

τ amxc =−
∫ R

0

m42axcdxc − αxc
∫ R

0

m44dxc, (A.11)

and

τ amzc = −
∫ R

0

m22aycxcdxc − αxc
∫ R

0

m24xcdxc. (A.12)

Here we denote the directions of translational motions along axes yc and zc of a wing strip

as the “2” and “3” directions and the rotation about the xc axis as the “4” direction.

The parameter mij is used to represent the load induced by the added-mass effect in the

i direction due to a unit acceleration in the j direction. axc and ayc are the translational

acceleration in the xc and yc direction, respectively.
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With the resultant aerodynamic force in the co-rotating frame, the lift L and drag

D, which are defined as the resultant force components with respect to zi and yi axes

in the inertial frame, can be calculated by

L = (F trans
yc + F rot

yc + F coupl
yc + F am

yc ) sin η (A.13)

and

D = (F trans
yc + F rot

yc + F coupl
yc + F am

yc ) cos η, (A.14)

respectively. For the harmonic sweeping motion as defined in Eq. 5, the average lift

force L̄ is perpendicular to the stroke plan (i.e., xiyi plane), and the average drag force

D̄ is zero. Full details of this model can be found in Wang et al. (2016).
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