ARCHITECTURE AND SAFETY

safe social housing for the inhabitants of the periphery of São Paulo

final presentation master thesis Huub Fenten, 06-07-2023

CONTENT

safety catalog

comparative analysis

contextual analysis

design Parque Cocaía

building technology

managerial strategy

synthesis

goal: determine what problem the thesis is going to research, why, and how

<u>research plan</u> safety catalog comparative analysis contextual analysis design Parque Cocaía building technology managerial strategy synthesis

INTRODUCTION

click <u>here</u> to access the problem statement video

sources videos without copyright or not of own production:

- 1. https://www.youtube.com/watch?v=kkGSeXydMD4
- 2. https://www.youtube.com/watch?v=IYVkFcWqclo
- 3. https://www.youtube.com/watch?v=8ii5lfTXh_g
- 4. https://www.youtube.com/watch?v=efHZP_yvOI0
- 5. https://www.youtube.com/watch?v=foT1ol4VCII6. United Nations, https://sdgs.un.org/goals
- 7. https://www.youtube.com/watch?v=xCsu_Hlj1gE
- 8. https://www.youtube.com/watch?v=tUg5XyVzWCQ
- 9. https://www.youtube.com/watch?v=2WGPvWPpey8
- 10. https://www.youtube.com/watch?v=mhlqC3gPrg4
- 11. https://www.youtube.com/watch?v=k3pFTIZvdh0
- 12. https://www.youtube.com/watch?v=GnwgrmLyWIs
- 13. https://www.youtube.com/watch?v=ymgwaU-M-G4

sources text video:

- 1. United Nations. (2022). The Sustainable Development Goals Report 2022.
- 2. Central Intelligence Agency. (n.d.). Brazil The World Factbook. The World Factbook. Retrieved November 11, 2022, from https://www.cia.gov/the-world-factbook/countries/brazil/
- 3. United Nations Population Fund (UNFPA). (n.d.). Brazil. World Population Dashboard. Retrieved November 9, 2022, from https://www.unfpa.org/data/world-population/BR
- 4. Marques, E., & Saraiva, C. (2017). Urban integration or reconfigured inequalities? analyzing housing precarity in São Paulo, Brazil. Habitat International, 69, 18–26. https://doi.org/10.1016/j.habitatint.2017.08.004
- 5. Worldbank https://data.worldbank.org/indicator/VC.IHR.PSRC.P5?locations=BR-1W
- 6. Prefeitura de São Paulo. (2017, April 26). Habitação. habitaSAMPA. Retrieved November 16, 2022, from http://www.habitasampa.inf.br/habitacao/
- 7. Fix, M., & Arantes, P. F. (2021). On urban studies in Brazil: The favela, uneven urbanisation and beyond. Urban Studies, 59(5), 893–916. https://doi.org/10.1177/0042098021993360
- 8. Pimentel Walker, A. P., & Arquero de Alarcón, M. (2018). The competing social and environmental functions of private urban land: The case of an informal land occupation in São Paulo's south periphery. Sustainability, 10(11), 4160–4184. https://doi.org/10.3390/su10114160
- 9. Serapião, F. (2016). Linking the Formal and Informal: Favela urbanisation and Social Housing in São Paulo. Architectural Design, 86(3), 70–79. https://doi.org/10.1002/ad.2048
- 10. Pinheiro, R. (2021, January 20). Human Development Index by Neighborhood in Sao Paulo City. Medium. com/@r_pinheiro/human-development-index-by-neighborhood-in-sao-paulo-city-3320eba2ab81
- 11. São Paulo Data-Driven EnviroLab. Urban Environment & Social Inclusion Index. (n.d.). Retrieved November 11, 2022, from https://datadrivenlab.org/urban/cities/sao-paulo/
- 12. Lara, F. L. (2019). Boldarini Arquitetos. Nhamerica.
- 13. Ribeiro, S. C., Daniel, M. N., & Abiko, A. (2016). Zeis maps: Comparing areas to be earmarked exclusively for social housing in São Paulo City. Land Use Policy, 58, 445–455. https://doi.org/10.1016/j.landusepol.2016.08.010
- 14. Murray, J., de Castro Cerqueira, D. R., & Kahn, T. (2013). Crime and violence in Brazil: Systematic review of time trends, prevalence rates and risk factors. Aggression and Violent Behavior, 18(5), 471–483. https://doi.org/10.1016/j.avb.2013.07.003
- 15. Coy, M. (2006). Gated communities and urban fragmentation in Latin America: The Brazilian experience. GeoJournal, 66(1-2), 121–132. https://doi.org/10.1007/s10708-006-9011-6
- 16. Caldeira, T. P. R. (1996). Fortified Enclaves: The New Urban Segregation. Public Culture, 8(2), 303–328. https://doi.org/10.1215/08992363-8-2-303
- 17. Andrade, L. H., Wang, Y.-P., Andreoni, S., Silveira, C. M., Alexandrino-Silva, C., Siu, E. R., Nishimura, R., Anthony, J. C., Gattaz, W. F., Kessler, R. C., & Viana, M. C. (2012). Mental disorders in megacities: Findings from the São Paulo Megacity Mental Health Survey, Brazil. PLoS ONE, 7(2). https://doi.org/10.1371/journal.pone.0031879
- 18. Gawryszewski, V. P., & Rodrigues, E. M. (2006). The burden of injury in Brazil, 2003. Sao Paulo Medical Journal, 124(4), 208–213. https://doi.org/10.1590/s1516-31802006000400007

RESEARCH PLAN

research question:

how can architectural design positively influence safety in the development of social housing in the periphery of São Paulo, taking into account socioeconomic segregation, local building practices, and social equity?

subquestions:

- which architectural interventions have proven to positively influence urban safety?
- what lessons can be learned from the development of housing in São Paulo and the Netherlands on dealing with safety, segregation, and local building practices?
- how does the context of the project site operate and which factors should be taken into account when designing?

research plan <u>safety catalog</u> comparative analysis contextual analysis design Parque Cocaía building technology managerial strategy synthesis

SAFETY INTERVENTIONS CATALOG

introduction

- design of shelter as old as humanity
- Deutinger in the Handbook of Tyrrany (2018, p. 85): "Defensive measures adopted by today's cities mainly target the enemy within. Besides the threat of terrorist attacks, there is a much less violent 'enemy' to the city: the ordinary citizen."

introduction

- design of shelter as old as humanity
- Deutinger in the Handbook of Tyrrany (2018, p. 85): "Defensive measures adopted by today's cities mainly target the enemy within. Besides the threat of terrorist attacks, there is a much less violent 'enemy' to the city: the ordinary citizen."
- unsafety rooted in São Paulo
- alternative for 'enclavement' sought
- infinite number of factors influencing the occuring of crime + crime is heterogeneous (Souza Neto, 2019)

introduction and methodology

- design of shelter as old as humanity
- Deutinger in the Handbook of Tyrrany (2018, p. 85): "Defensive measures adopted by today's cities mainly target the enemy within. Besides the threat of terrorist attacks, there is a much less violent 'enemy' to the city: the ordinary citizen."
- unsafety rooted in São Paulo
- alternative for 'enclavement' sought
- infinite number of factors influencing the occuring of crime + crime is heterogeneous (Souza Neto, 2019)

literature review on relationship architectural design and safety

compilation of a catalog of design interventions for safety

research by design - implementation interventions in Parque Cocaía

research plan <u>safety catalog</u> comparative analysis contextual analysis design Parque Cocaía building technology managerial strategy synthesis

SAFETY INTERVENTIONS CATALOG

surveillance public sphere from private sphere

surveillance public sphere from public sphere

territoriality created within a community

territoriality perceived by an intruder

physical barriers

COMPARATIVE ANAISS goal: analyse how precedents design for safety and the lifestyle of the user groups

gated communities various architects

Amsterdam-Zuid Hendrik Petrus Berlage

Houten various architects

safety + design

safety

Grajaú auto-constructed

Chácara do Conde JAA Arquitetos

Parque Novo Santo Amaro V Vigliecca & Associados

Gleba A Heliópolis Vigliecca & Associados

design

Comuna Dom Helder Câmara *Grupo Usina*

Jardim Vicentina Vigliecca & Associados

Conjunto Heliópolis Gleba G Vigliecca & Associados

shared staircases and elevated walkways for eyes on the street

KEY TAKE-AWAYS SAFETY

avoid use fences - segregation

ontains active functions

match dimensions buildings and dimensions public space

unity in design but no mass repetition

KEY TAKE-AWAYS DESIGN

CONTEXTUAL ANALYSIS goal: determine how the context affects the safety and design

GEOGRAPHICAL

Brazil

- housing shortage of 7.2m in 20131b homicides between 1980 and 2010

research plan safety catalog comparative analysis <u>contextual analysis</u> design Parque Cocaía building technology managerial strategy synthesis

GEOGRAPHICAL

São Paulo

- economic center Brazil at 22.4m inhabitants
- severe housing shortage and enormous inequality, 400,000 slum households
- water supplied by two major reservoirs: Billings and Guarapiranga

research plan safety catalog comparative analysis <u>contextual analysis</u> design Parque Cocaía building technology managerial strategy synthesis

GEOGRAPHICAL

Grajaú

- high-density
- low socioeconomic values
- many settlements
- little public space and urban amenities

PROJECT SITE

Parque Cocaía

- site mostly greenfield, apart from an elementary school
- protected area
- settlements along river banks and on the site

PROJECT SITE

Parque Cocaía

- former farm within dense neigborhood
- steep slope towards stream (33m over 370m) site forms a hole in urban tissue

research plan safety catalog comparative analysis <u>contextual analysis</u> design Parque Cocaía building technology managerial strategy synthesis

PROJECT SITE

Parque Cocaía

- well-connected by car and bus
- settlements around site have turned their backs towards the site

OWN EXPERIENCES UNSAFETY

closed facades no eyes on the street

comparative analysis

no place for pedestrians no sidewalks or cross-overs

unwatched corners

absence public space, green & amenities

disconnection public and private on GF garages, walls, iron rasters

long, desolate streets little side entrances, little escape routes

poor maintenance broken window theory

goals: (1) explore how architectural design can make the unsafest spaces of SP more safe and (2) design a new living area for the inhabitants of Grajaú

FOCUS DESIGN EXPLORATIONS

building types on urban scale

creating max. healthy dwelling density

mixing functions and user groups

a safe streetscape with an identity

floor plans providing eyes on the street

FOCUS DESIGN EXPLORATIONS

building types on urban scale

creating max. healthy dwelling density

prevent blind-eyed corners juxtaposition living spaces and public realm urban greenery lively sidewalks permeability facades welcoming pedest. routes demarcation public and private realm adequate street lighting

a safe streetscape with an identity

floor plans providing eyes on the street

research plan safety catalog comparative analysis contextual analysis <u>design Parque Cocaía</u> building technology managerial strategy synthesis

PROGRAM OF REQUIREMENTS

design brief

- social housing in Grajaú, São Paulo
- ZEIS 4 area, environmental restrictions
- take into account social, economic, and environmental factors

research plan safety catalog comparative analysis contextual analysis <u>design Parque Cocaía</u> building technology managerial strategy synthesis

PROGRAM OF REQUIREMENTS

design brief

- social housing in Grajaú, São Paulo
- ZEIS 4 area, environmental restrictions
- take into account social, economic, and environmental factors

zoning law

- FSI<2, 1 standard
- >60% HIS 1 dwellings, <20% HMP
- GF+4 allowed without elevator

PROGRAM OF REQUIREMENTS

design brief

- social housing in Grajaú, São Paulo
- ZEIS 4 area, environmental restrictions
- take into account social, economic, and environmental factors

zoning law

- FSI<2, 1 standard
- >60% HIS 1 dwellings, <20% HMP
- GF+4 allowed without elevator

vision

design a neighborhood which is: safe, fostering, affordable, and has an identity

PROGRAM OF REQUIREMENTS

design brief

- social housing in Grajaú, São Paulo
- ZEIS 4 area, environmental restrictions
- take into account social, economic, and environmental factors

zoning law

- FSI<2, 1 standard
- >60% HIS 1 dwellings, <20% HMP
- GF+4 allowed without elevator

vision

design a neighborhood which is: safe, fostering, affordable, and has an identity

research plan safety catalog comparative analysis contextual analysis <u>design Parque Cocaía</u> building technology managerial strategy synthesis

DESIGN CONCEPTS

Parque Cocaía: safe, affordable, and amenity-rich

section existing settlements - courtyard - courtyard type

section courtyard type - street - slab type

ment

cause of privacy

reuse roofing tiles in ceramics

reuse timber beams for pergola and urban furniture

impression design concepts green axis

COURTYARD BLOCK DESIGN

ground floor - elderly living + businesses

qualities courtyard (20x47m)

- place for leisure and meeting
- car-free, safe, green, livily

qualities car side block

- place to access and commute
- parking spots, pedestrian crossings, illuminated at night

COURTYARD BLOCK DESIGN

first floor - living

COURTYARD BLOCK DESIGN

second floor - living

research plan safety catalog comparative analysis contextual analysis <u>design Parque Cocaía</u> building technology managerial strategy synthesis

DESIGN CONCEPTS

Parque Cocaía: safe, affordable, and amenity-rich cross-ventilation block individual appropriation facade unit (3) site Ø) adapts to surroundings, user group, sun, and privacy level cross-ventilation **4** - - • eyes on public space both sides

BUILDING TYPES

slab type

tower/corner type

sobrado type

COURTYARD TYPE

1F-4F, HIS 1, two bedrooms, 52 m²

COURTYARD TYPE

1F-4F, HIS 1, two bedrooms, 52 m²

adapts to solar orientation

COURTYARD TYPE

1F-4F, HIS 1, four bedrooms, 71 m²

COURTYARD TYPE

1F-4F, HIS 2, two bedrooms, 80 m²

- larger rooms
- fully-equipped kitchen
- two bathrooms, separate toilet
- double walls

COURTYARD TYPE

GF, HIS 1, one bedroom, high accessibility, 45 m²

COURTYARD TYPE (SIDES) 1F-4F, HIS 1, three bedrooms, 56 m²

third bedroom optional

SLAB TYPE

1F-4F, HIS 1, two bedrooms, 54 m²

- enter via elevated walkways on 2F and 3F
- GF mixed-use: housing, businesses, shops, and canteens

SLAB TYPE

1F-4F, HIS 2, three bedrooms, 90 m²

TOWER TYPE

1F-8F, HIS 2, two bedrooms, 100m²

- looking out over the linear park and stream
- equipped with elevator and stairs

SOBRADO TYPE

GF, HIS 2, two bedrooms, 114 m²

- along green axis
- split-level raises backside dwelling above ground level green axis
- expansion possibilities

research p	olan safety catalog	comparative analysis	contextual analysis	design Parque Cocaía	building technology manage	erial strategy synthesis
	courtyard type		slab type		tower type	sobrado type
HIS 1						
HIS 2						

BUILDING TECHNOLOGY goal: determine how it can be built in a efficient and sustainable way

STRUCTURAL DESIGN

courtyard type

- parallel load-bearing walls stability provided by perpendicular walls

BUILDING PHYSICS

temperature - average min. and max. per day

- yearly fluctuation limited, daily fluctation large
 - little insulation needed
 - cool down building at night by ventilation during summer
 - sufficient shading crucial

BUILDING PHYSICS

precipitation levels

- yearly fluctuation limited, daily fluctation large
- quite some rain all around the year with large peaks
 - buffer rainwater, stimulate drainage subsoil, and flood-proof construction

BUILDING PHYSICS

wind speeds

- yearly fluctuation limited, daily fluctation large
- quite some rain all around the year with large peaks
- ongoing wind from the ocean (south-east)
 - improves efficiency cross-ventilation
 - trees clean incoming air and provide shading

BUILDING PHYSICS

humidity - chance of being muggy

- yearly fluctuation limited, daily fluctation large
- quite some rain all around the year with large peaks
- ongoing wind from the ocean (south-east)
- large fluctuation humidity levels, muggy during summer
 - ventilation possibilities crucial

BUILDING PHYSICS

integration in floor plan

- permeable facade on both sides for cross-ventilation
- balcony and washing space buffer heat gains

pouring foundation

pouring floor GF

waterproof layer applied between foundation and walls

load-bearing walls

stacking blocos verdes

stacking blocos verdes

placing prefab concrete columns balconies

comparative analysis

CONSTRUCTION PROCESS

placing formwork floor beams

temporary lintels support above openings

placing prefab column slabs

• the floor is later poured on these

laying EPS slabs inbetween these

insulation slabs

installing rebars

• to connect the floors, walls, columns, beams, and both sides of the floor slabs to each other

pouring floor 1F

stacking CEB for non-loadbearing walls

filling up openings: windows, doors, and Cobogó

applying finishes

repeat for the floors above

• construction of the next level can start as soon as the structural floor of the level below has been placed

stacking CEB for parapet

walls around technical area roof

comparative analysis

CONSTRUCTION PROCESS

purlins with EPS in between

• timber beams or CEB support the purlins

CONSTRUCTION PROCESS rafters and roofing tiles

place water cisterns on roof

• a hatch in the shared staircase gives access to the technical area of the roof

WATER MANAGEMENT

harvesting, flood prevention, and secure supply

- rainwater harvesting
 - collected per shared staircase
 - irrigation crops, flushing toilets, washing
- flood prevention
 - slow down rainwater streaming downhill using ditches
- water security
 - cistern per dwelling for outage

MANAGERIALSTRAGE goal: draw up a planning for time, money, and materials

STAKEHOLDERS

power-interest matrix

key stakeholders and expectations:

- inhabitants Cocaía, represented by management council
 - gain dwelling ownership
 - receive access to urban facilities and opportunities
 - maintain (and expand) social network
- municipality (developer)
 - reduce housing shortage
 - improve the life of inhabitants of São Paulo
- corporate developer
 - make profit
 - fulfill corporate social responsibility

STAKEHOLDERS

relations diagram

- the HIS 1 dwellings of the project are funded and developed by the municipality (SEHAB)
 - economies of scale
 - control (price, tenant, maintenance)
- development HMP dwellings put up for sale
 - profit used for cross-subsidization HIS 1 dwellings
 - rules put in place for user groups, dimensions, and design characteristics

businessespublic instancescivilians

size indicates power, distance to center indicates interest

FINANCES

cash flow diagram

- Cities Alliance UN can be used for technical support
- current average construction cost for social housing:
 R\$ 1298/m²
- social housing rent-to-own, ~20 years of payments
- part rental/emergency housing

PHASING

overview

- first complete building blocks
- ease logistics and minimize nuisance

PHASING

distribution routes

- first from the west, then south
- green axis as supply route
- two storage points

starting situation

favelas marked in light grey

phase 0 - prepare construction site

entrances created

phase 1 - complete building block

phase 2 - construct opposite side street

eviction most precarious settlements

phase 3 - complete urban infrastructure

phase 4 - sports facilities installed last

dwellers evicted to create new roads

phase 5 - construction continues in two streets

storage building materials has switched from location

phase 6

community center is built

phase 7 - eviction completed

goal: answer the research question and reflect on the work done

SYNTHESIS

research question:

how can architectural design positively influence safety in the development of social housing in the periphery of São Paulo, taking into account socioeconomic segregation, local building practices, and social equity?

- catalog of design interventions influencing safety
- overview best-practices social housing São Paulo
- descriptive summary context São Paulo
- elaboration Parque Cocaía
 - urban strategy
 - four types
 - building technical and managerial strategy

DEVELOPMENT PARQUE COCAÍA

thank you for your attention!

