

abstract

Every development roll-out, there needs to be certainty everything works. Especially when it
comes to the banking domain. People care about their money and want it to be handled with care.
Currently this means some tests, including making a payment using a Maestro debit card, need to be
performedmanually. In order to further testing, this project aims to automate theseMaestro payments.
This has been achieved by constructing a robotic device to perform the physical actions associated
with creating a payment request, and create a piece of software to verify if the payment was accepted.
The main software is based around the public API bunq B.V. offers. Using the API it is possible to
retrieve information related to your bank accounts, including payments made. The robotic device is
consists of a combination of solenoids and servos to operate the keypad and to present a bunq Mae-
stro debit card. Additionally the system has extra functionality such as self assessment if the Maestro
workflow is still functioning. As a result there should no longer be a need to physically take a terminal
home and complete payments. Even though the delivered system does not have functionality to work
with a phone’s NFC, the system should be easily upgraded to support this functionality.

iii

Preface
This report documents our bachelor project, at bunq B.V. working on a solution for testing of physical
MasterCard payments. It has been written in order to receive a bachelors degree in Computer Science
at the Delft University of Technology. The project and report have been written and completed from
April 24 to July 3 2017.

The project has been undertaken at the request of bunq B.V and would not have been possible
without the following people, for this we would like to thank:

RangaRao Venkatesha Prasad as our supervisor from Delft University of Technology, guiding us dur-
ing the project.

Wessel Van for being our manager and helping us find our way at bunq B.V.

Ali Niknam for having projects available and hiring us as interns to complete the project.

Furthermore we would also like to thank all of the colleagues at bunq B.V. who have helped us in any
way.

We have enjoyed our time at bunq B.V. and it has been an interesting and wonderful new experience.

A.J. de Graaff
W. Zirkzee

Delft, June 2017

v

Contents

1 Introduction 1

2 Problem 3
2.1 Description . 3
2.2 Analysis . 3

2.2.1 Requirements (MoSCoW) . 3
2.2.2 Must Have(s) . 3
2.2.3 Should Have(s) . 4
2.2.4 Could Have(s) . 4

3 Background 5
3.1 Payment Terminal . 5
3.2 Payment Methods . 5

3.2.1 EMV . 6
3.2.2 NFC . 6

3.3 Transaction . 6
3.4 Commercial off-the-shelf . 6

4 Design 7
4.1 Concept . 7

4.1.1 Budget . 7
4.2 Hardware . 7

4.2.1 Direct control . 7
4.2.2 Pre-built robotic arms. 8
4.2.3 Controllers . 8
4.2.4 Actuators . 9

4.3 Software . 10
4.3.1 States . 10
4.3.2 Operating System . 10
4.3.3 Web server . 10
4.3.4 High-level-design . 10
4.3.5 Programming languages . 10

4.4 Final Design . 12

5 Development 13
5.1 Development Process . 13
5.2 Sprint 1: minimal viable product . 13

5.2.1 Web Interface and Database. 13
5.2.2 Database . 13
5.2.3 Payment Verification . 14
5.2.4 Structural Components. 14
5.2.5 Electronic hardware . 15
5.2.6 Pi control . 15

5.3 Sprint 2: extra functionality. 16
5.3.1 Configuration File. 16
5.3.2 Styling . 16
5.3.3 Real time Testing . 16
5.3.4 Refactor bunq API classes . 19
5.3.5 Structural Components. 19
5.3.6 Circuit testing . 19
5.3.7 Floating gate issue . 20

vii

viii Contents

5.3.8 Pi control . 20
5.4 Sprint 3: extra functionality. 23

5.4.1 Global settings . 23
5.4.2 SIG code feedback processed . 23
5.4.3 API . 23
5.4.4 Authentication . 24
5.4.5 Production account . 24
5.4.6 Structural Components. 24
5.4.7 Removing MOSFETs . 25
5.4.8 Voltage regulators . 25
5.4.9 Pi control . 25

6 Conclusions 29
6.1 Evaluation. 29
6.2 Conclusion . 29

7 Discussion 31
7.1 Recommendations . 31
7.2 Ethical Issues . 31

Bibliography 33

A Original Project Description 35
A.1 Project Description . 35
A.2 Company Description . 35

B Info Sheet 37
B.1 General Information . 37
B.2 Description . 37
B.3 Members of the project team . 37
B.4 Client . 37
B.5 Coach . 37
B.6 Contact . 37

C Tech sheets 39

D final circuit drawing 57

E Structure drawings 59

F Software Improvement Group 65
F.1 First analysis (Dutch) . 65
F.2 Second analysis (Dutch) . 65

1
Introduction

Everyone uses it and there is no way around it, but many are not satisfied with the current system. We
are talking about banking. Ali Niknam is one of those people, but his new mission is to fix the flaws
in banking.[5] Bunq is Ali’s new project, a new online bank, or as they like to say themselves an IT
company with a banking license. [11]

As part of the bachelor project bunq has employedWouter Zirkzee and Arend Jan de Graaff in order
to complete a project they would like to see realized. The project is to develop an automated card
payment testing system. Currently after each new development rollout, that happens every tuesday
night, a DevOps employee has to take a payment terminal home and manually complete a transaction
in order to make sure the system still functions correctly. By automating this payment cycle it can easily
be tested at any moment, from anywhere.

Within this report, you will find how we have achieved our goal. Chapter 2 starts with describing
the problem and an analysis of what the client expects. The third chapter will provide an overview of
technologies that can be used. Followed by a chapter that will provide a description of the design that
has been created for the final product. Chapter 5 documents the result of the three development sprints
during the project, documenting what has been completed during the sprints. Finally we will conclude
our thesis by evaluating what we have achieved, looking back at set goals and results, give recom-
mendations for future work, and talk about ethical issues we have encountered during our project.

1

2
Problem

2.1. Description
Every development rollout, usually Tuesday night, bunq manually checks if card payments with a bunq
card still work. In the current situation this is done by having a DevOps employee take a pin terminal
home, and make 4 payments of €0,01 to confirm that the payments are still processed.

The goal of this project is to develop a system that relieves the DevOps employees from the need to
take the pin terminal home and complete the transactions. Not having to transport the device means the
chance of breaking or losing the machine is reduced. As specified in the companies project description
(appendix A), this project consists of both a software and hardware part as a physical payment has to
be made.

2.2. Analysis
In order to understand the problem from the clients perspective, a list of requirements that have to be
completed in order for to achieve a satisfactory result at the end of this project was composed.

2.2.1. Requirements (MoSCoW)
This section lists the requirements for the final product. Using the MoSCoW method the requirements
are separated based on their priority. Must haves are the Minimum Usable Subset of functionality.
Should haves are included if possible with regard to time. Could haves are requirements that are nice
to have (i.e. increased user experience), but not necessary.

2.2.2. Must Have(s)
• Control Touch Screen
The system must be able to control the touch screen as this is required to set up a payment on
the terminal.

• Control Numeric Pad
The system must be able to press the buttons on the terminal’s numeric pad in order to set an
amount, confirm and enter the PIN code.

• Use Contact EMV Card
The system must be able to insert and retract a PIN card with EMV chip to continue with the
payment.

• Verify Payment
The system must be able to verify the payment has been successfully completed by reading and
confirming the payment in the back-end after the payment is accepted on the terminal.

• Start on demand
The system must be able to start a testing cycle on the demand of bunq.

3

4 2. Problem

• Web Interface
The machine should be run a server and display a website. This website must give information
about the status and the ability to start a new test.

2.2.3. Should Have(s)
• Use Wireless EMV Card
The system should have the ability to make payments using a wireless EMV card by presenting
it to the terminal’s NFC reader, in addition to contact EMV.

• Self start
The system should be able to detect when the Maestro payments might not function correctly, if
this occurs the system should autonomously start a new test.

2.2.4. Could Have(s)
• Counter
For team spirit and confidence in the system it would be nice to have a counter, keeping track of
sequentially successful completed payments made.

• Optical Feedback
The system could have optical feedback (e.g. webcam pointed at the terminal) to monitor if any
errors might occur.

• Individual Control
The system should allow to control the terminal with each keypress. For example, only press one
number on the keypad instead of run the pre-designed test.

3
Background

This chapter describes the equipment and techniques that will be used during the project and play a
role in designing the solution. Finally in section 3.4 an overview is presented of similar solutions that
are already commercially available.

3.1. Payment Terminal
At bunq B.V. a VX 680 GPRS payment terminal [20] equipped with CVV software is provided. This
is a portable battery powered point of sale terminal which has an integrated numeric pad, multi-color
touchscreen, triple-stack magnetic stripe card readers, EMV smart card reader, contactless payment
features, internal thermal printer, one port for supporting different peripherals, and a connector for
docked charging. The device is also equipped with a SIM Card for GPRS communication to allow
payment without limitations of its location. To connect peripherals the following cables and adapters
are available:

• USB Host Cable

• Multi-port Adapter

• Modem Dongle

• Serial Dongle

• USB Serial Dongle

• Full Featured Base with multiple ports

The multi-port adapter provides connections for power, USB, mini USB, RJ45, and COM1. This cable
is designed for development and deployment purposes. However as the device already is a few years
old, most support has been dropped making further documentation and resale of these items very hard
to find.

3.2. Payment Methods
In order to conduct a sales transaction on the VX 680 the following actions need to be executed: first
’payment’ has to be selected on the touch screen of the payment terminal. A new screen is shown and
the amount should be entered using the numeric pad, in an appending manner. End the payment setup
by pressing ’OK’, and start the transaction. The payment terminal will show the amount requested and
ask to insert a card.

Using the VX 680 payment terminal multiple payment methods are accepted: Europay, MasterCard
and Visa (EMV), Near Field Communication (NFC), or magnetic stripe cards. However since magnetic
stripe cards are deprecated, this technique will not be taken into account.

5

6 3. Background

3.2.1. EMV
Transactions using EMV are the global standard for chip payments using chip technology. Currently
the EMV specifications are managed by EMVCo, an organization which consists of American Express,
JCB, Discover, MasterCard, UnionPay and Visa. The most recent statistics report that in Q2 of 2016
42.4% of the transactions were completed using EMV technologies. Up from the previous years 2015
and 2014, 35.8% and 23.9% respectively. Onemajor exception is The United States with only increased
with 0.26% from Q3 2014 to Q2 2015 and 7.20% from Q3 2015 to Q2 2016. [1]

EMV transactions can be split up into two categories, contact and contactless. Contact transactions
require to physically insert the card into the reader, often these transactions are referred to as Chip and
PIN, because verification that the chip belongs to the cardholder is done using a PIN entry. Contactless
uses the ISO 14443-3 communication protocol and only requires the card to be in short range (approx.
4cm).

3.2.2. NFC
NFC is a technology enabling short-range wireless communication between an initiator and a target. It
builds on High Frequency (HF) radio-frequency identification (RFID) using mainly the same standards:
ISO 14443 Type A&B and ISO 18000-3 [13]. The initiator is always considered active generating a
radio-frequency field (RF). The target can be either passive or active. Passive targets have to be
powered by the initiator, which makes it simple to create unpowered stickers, cards, etc. Active targets
create their own RF which makes it possible to have peer-to peer-communication. In order to function
the initiator sends out a signal to the target at 13.56MHz. Targets within 4cm can receive and respond
with the requested information. For more sensitive information, such as payments, a secure channel
is established and information send encrypted.

3.3. Transaction
As mentioned before the terminal has two categories, contact and contactless. Although they both
use the EMV protocol only the contact-payment has a ’secure’ transfer. Contact payment in this case
uses the cryptogram key on the chip in combination with the payment details -amount, random number,
currency, date- to generate a cryptographic key, and sends this as an authorization request. The issuer
(terminal) then follows the same steps to create its own cryptographic key. If all the data was correct
on both sides, the key should be the same. The issuer now uses these data elements, combined with
the cryptogram key of the bankcard and a response code, to generate a new cryptogram. The new
cryptogram and the response code are send back to the chip. The chip then uses its information to
cryptogram key, response code and the cryptogram code it sent to the issuer to generate a cryptogram
key which should be equal to the key it just received from the terminal.

When the terminal receives a contact payment it will perform both a chip validation and sends the
cryptogram to the backend, where the backend will respond with an issuer validation. However when it
receives a contactless paymement it will also send a chip validation, however when the backend sends
back the issuer validation, the bankcard will no longer be in contact.

3.4. Commercial off-the-shelf
There are multiple point of sale testing devices already commercially available. Commercial solutions
include, but are not limited to:

• UL Terminal test station

• Rhiscom

• GETECSA Robot PinPAD

• GrupoHDI

• Abrantix AG

While all of these would be more than sufficient to solve the client’s need, there is a common flaw
rendering all of these unavailable. These solutions are very expensive, not all of the devices have a
listed resale price, but after seeking contact with quotes of an ’excess of €100k for this type of solution’
have been received.

4
Design

This chapter will describe the requirements of the final system and the choices that are made during
the process of getting the final design.

4.1. Concept
In this section a high level design is described based on the background information in section 3 that
fulfill the requirements listed in the previous section 2.2.1.

The first part of the requirements is to setup the transaction for which there are two possibilities,
electronic or physically. To set up a payment electronically there should be a way to send a signal to
the device, either using an adapter or a new terminal that has additional connectivity. However due to
limited availability of the required adapters and related documentation there was not enough confidence
in this option. The second way is to build a robotic system that physically presses the right buttons to
set up a payment.

In order to complete the transaction a card or device has to be physically presented by either in-
serting or kept near wireless connectivity, and in case of contact EMV a PIN code has to be entered.

When evaluating two options of the design concept, the physical approach has been chosen as there
already was a need for robotics to complete the transaction using a card and entering a PIN code. Once
the payment has been made on the terminal, the transactions should be monitored in the back-end and
make sure the transaction is processed as expected.

4.1.1. Budget
As bunq B.V. could still be considered a start-up company, they do not have a large budget. While the
client did not give us a specific budget, they want a decent solution while keeping the cost down as
much as possible.

4.2. Hardware
In this section an overview is provided of the available hardware to build the physical system, deciding
between pre-built options or the components that would be used for a self built solution.

4.2.1. Direct control
Controlling the terminal could be done directly by removing the buttons of the keypad from the terminal.
This way it is possible to attach cables directly to the contacts of the keypad. Then there will be no need
to use a robot to press buttons since a simple 5V signal can imitate the button presses. However, the
terminal has tampering protection. This means that when tampering is detected the terminal becomes
useless. One can assume that the keypad has this kind of protection on it, since some people might
otherwise want to use it to find PINs from the customers. Because it is likely that removing the keypad
and soldering wires on it will block the terminal, it is a bad idea to remove the keypad.

7

8 4. Design

4.2.2. Pre-built robotic arms
Initially pre-built robotic arms were considered. Prices of these arms can range from as low as €30 to
well over €10.000. Deciding which one would fit the project is based on two main criteria: accuracy,
repeatability, duty cycle and torque. Accuracy is the minimum amount of degrees the motor has to turn.
Repeatability is how accurate it can perform the same task repeatedly. Duty cycle is the amount of time
the signal is active during an on-off cycle, usually expressed as a percentage. This percentage also
relates to the time it can be turned on before overheating. Torque specifies the amount of pressure the
arm is able to exert fully extended, when it is at its lowest. Robotic arms with minimal specifications for
this system were priced above €400.

4.2.3. Controllers
The following solutions will not work with software input, but just by purely using the terminal and using
robotics and micro-controllers to do the same.

• Mindstorms
The Lego Mindstorms series are kits containing software and hardware to create Lego robots with
educational intentions. The strong point about these kits is that Lego has a proven track record
for being very durable and that it is very easily assembled and expanded. The Mindstorms series
uses its specially designed sensors and motors. While in other designs the amount of motors
and sensors can be easily ordered extra from any kind electronics shop, with Lego it is limited
to the continuation of the (Mindstorms) series and the amount of motors and sensors in the box.
However, spare and extra parts can be ordered from certain dedicated stores. But at the moment
of this report these motors and sensors are in the range of 25—40€a piece. Compared to normal
motors the costs of these are very high. Furthermore the starter kit starts at 350€. The combined
costs of the motors and the kit will therefore be too high compared to the other alternatives dis-
cussed below.

• Arduino
As micro controller board an Arduino can be used, its strength lays in controlling electronics that
themachine uses to input the card and press the buttons on the keypad. The Arduino does require
another extra shield to be connected to the internet. A couple of Arduinos could be suitable for
this project:

– Arduino UNO (AVR(16MHz), 8bit, 5V, 20€)
– Arduino Yun (WiFi, Ethernet, AVR(16MHz), MIPS(400MHz), Linux, 8bit, 5V, 65€)
– Arduino TIAN (WiFi, Ethernet, ARM(48MHz), MIPS(533MHz), Linux, 32bit, 3.3V, Bluetooth,
85€)

The Arduino micro controller boards are in general used for non-complex projects like giving a
start signal to a dc-motor. Because the robot has to be connected to the internet or it should
represent its data in a more complex way—like an user interface—, Which is possible, but may
make it unnecessarily tougher with an Arduino. Not to mention that the Arduino models that have
internet and video output are rather expensive compared to their Raspberry PI equivalent.

• Raspberry PI
Another possibility for a micro controller is the Raspberry PI. Its main strength lays in the connec-
tion to monitors, servers, peripherals and its higher processing speed. Since the Raspberry PI is
basically a mini computer connected to the internet it can use many tools designed for PC’s and
web browsers. Possible uses could be a remote desktop tool. Making the sharing of video and
data a lot easier since this could just shared with a desktop sharing tool instead of being send via
a custom made live stream. Possible Raspberry PI models could be used, these are:

– Raspberry PI A+ (ARM(0.7GHz), 32bit, 256MB RAM, 30€)
– Raspberry PI 2 (Ethernet, ARM(0.9GHz, 32bit), 1GB RAM, 35€)
– Raspberry PI 3 (WiFi, Ethernet, Bluetooth, ARM(1.2GHz, 64bit), 1GB RAM, 35€)

From this list it is quite clear that with multiple internet and wireless connections, a higher clock speed
and a 64-bits system that the Raspberry PI-3 is the clear winner.

4.2. Hardware 9

4.2.4. Actuators
To physically press the buttons on the payment terminal something is needed that can touch and let go
of a button, can be used for a long time, can be controlled by a Raspberry Pi and needs to be precise.
Possible solutions are: servo’s, solenoids and linear actuators.

• Servos have a low energy use and are very precise. The disadvantage of servos is that they are
quite large and require another large area to turn their arm. Servos have a low cost

• Solenoids use an electromagnet to quickly push or pull a slug of metal in or out a casing. Fur-
thermore it can be placed fully vertical, meaning it will just require vertical space. Solenoids also
have a low cost.

• Linear actuators use a small motor to turn a gear that will move a rod in and out. They are also
small and move vertically. However they are relatively expensive.

There could be two possibilities for testing payments via the payment terminal. The least complex,
cheapest and most reliable way would be to cover three buttons on the keypad (1, OK and Cancel), the
’start payment’ button and a mechanism to hold the card over the NFC antenna. This however does
not match the wishes of the client, and therefore not requirements set for the project. The final product
however will implement all 15 buttons on the keypad, ’start payment’, insert card (chip) and ’insert’ card
(NFC). These different movements for product would need their own kind of motor.

Start payment
To start the payment, the screen needs to be pressed by something. It would make sense to imme-
diately jump to the solenoid. However, during testing it turned out that this approach would lead very
probable to damage to the screen. Another problem is that extra support would be needed to keep the
strength of the solenoid in check. It is therefore decided that it would be most useful to go for another
option. The next choice is the servo. A servo would be able to use a rod to push the screen at a low
speed, therefore it would not damage the screen that easily. Another advantage is that the servo can
be placed further away from the terminal. This allows for more space above the screen which makes
sure that NFC payments can be performed as well.

Enter Amount/PIN
When the payment is started it is required to enter the amount to pay and providing the PIN after the
card has been inserted. To do this, it is required to push the buttons on the keypad. There could be
multiple ways to push these buttons. The most reliable way is to have a matrix of solenoids on top of
the keypad. A matrix of servos would be rather difficult due to the size of the servos.

Insert/Remove Card
During and after the payment the card will have to be inserted and removed. Considering the servo and
solenoid possibility the solenoid would jump out since it is very good in pushing or pulling. However
that is also its weakness. The solenoids tested here have a spring to put them back in position. This
spring would then have to pull the card out afterwards. If the spring were to be powerful enough to
pull out the the card that would mean that this the solenoid should have twice the power of this spring.
Those solenoids will likely become very powerful, and therefore very expensive. Servo’s on the other
hand are precise, and have a lot of torque to push a bankcard into the slot. Since in this case only the
chip is required in the payment, a hole could be drilled into the bankcard to attach it to the servo.

NFC Payment
The main difference with the NFC payment over the chip payment is the lack of a PIN requirement.
In this transaction the card only needs to be held over the screen. Tests pointed out that at very
certain locations the card could be put perpendicular to the screen, however keeping it horizontal made
payments a lot easier. The NFC antenna’s has more range than expected, about 3cm from the edge
of the screen payments could still be made, so a machine that has a relatively long range would be
needed here. The best and easiest solution should therefore be a servo with an arm connected to it
with on the end the bankcard. This card should either be glued or put in some sort of clamping device
to prevent damage to the antenna.

10 4. Design

4.3. Software
The following section discusses the reasoning behind the elemental software choices that will be im-
plemented over the course of the project.

4.3.1. States
The payment terminal follows a certain pattern. The tests should follow this pattern to perform a suc-
cessful transaction. Therefore the machine should be programmed in the way of the state diagram
shown in figure 4.1. The machine should start in its start state 𝑆 . Then it will press the display of
the terminal 𝑆 . This will then allow the amount to be input using the numpad. The machine should
input a small amount to be paid. So it should always be able to make a transaction. This amount will
have to be confirmed by pressing the ”OK” button 𝑆 . At this moment the card should be inserted 𝑆 .
The terminal will ask for the PIN of the card, which the machine will input and confirm with OK 𝑆 . If
everything went properly, the payment has been done and the machine will wait for the back-end to
confirm the payment 𝑆 . This means the machine has successfully completed the test and will reset
itself to prepare for the next test. If the confirm did not come for a certain amount of time the machine
will return that the test failed and will reset itself.

4.3.2. Operating System
There are multiple operating systems available for the Raspberry PI. The most discussed are Raspbian
and Ubuntu Mate. Raspbian is a dedicated OS for the Raspberry PI. Raspbian includes all libraries
supported by the Raspberry PI community[3]. And Raspbian is the Pi Foundation’s official supported
Operating System[2]. Ubuntu Mate is an Ubuntu version —a Linux distribution— specialized on being
used on devices with limited processing power[19]. Ubuntu Mate is compiled in a way to specifically
work on the Raspberry PIs one and two, this means that it will be just this bit faster than Raspbian. But
it also means that it will not work on any other Raspberry PI. Ubuntu Mate does not support all of the
libraries from the Raspberry yet[19]. This could make the project unnecessarily harder, since speed is
not a real hard requirement. Therefore the project will be running with the Raspbian OS. The Raspbian
OS has two versions, one with a desktop environment and one without. The advantage of not having
a desktop environment is the amount of space saved (300 MB compared 1.3 GB). The advantage with
a desktop environment is that every application is just shown on the desktop.

The Raspberry PI’s native language is Python, a widely used high-level programming language for
general-purpose programming. Furthermore Python has a lot of libraries and online support for a lot of
applications, like hardware and server control[3].

4.3.3. Web server
The Raspberry PI should house a web server and run a web interface on this. As the Raspberry PI will
run using a Linux distribution, there is a wide range of available options where Apache and Nginx are
the two most popular. [14] [15] Apache has been chosen due to native ability to process PHP and the
extensive amount of first- and third-party documentation as a result of being a popular option for a long
time, over 20 years.

4.3.4. High-level-design
The software to be run should have of a controller for the hardware, a connection to the back-end,
a web interface and a way to create tests inputted by the user from the web interface. An high level
description is shown in figure 4.2. A mainController object will be created, which will connect to the
back-end, the web-interface creates an hardwareController object. The main controller has the ability
to extract data from the back-end, send/receive data to the web-interface and give/take the data for the
hardware controller.

4.3.5. Programming languages
As this is considered a side project by the client, the code base can be written in any programming
language it deems fit. The team has previous experience with numerous languages, but mostly Java.
However the client’s back-end of is written in objective oriented PHP. Due to this using PHP has a big
advantage if any core dependency might be needed. A downside is that neither of the team members
have previous experience with PHP. The team agrees the two pro’s outweigh the lack of experience,

4.3. Software 11

𝑆

𝑆 𝑆 𝑆

𝑆𝑆

𝑆

𝑡𝑜𝑢𝑐ℎ 𝑠𝑐𝑟𝑒𝑒𝑛

𝑎𝑚𝑜𝑢𝑛𝑡 − 𝑖𝑛 + 𝑜𝑘 𝑐𝑎𝑟𝑑 − 𝑖𝑛

𝑝𝑖𝑛 − 𝑖𝑛 + 𝑜𝑘

𝑤𝑎𝑖𝑡 − 𝑐𝑜𝑛𝑓𝑖𝑟𝑚

𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑒𝑑

𝑡𝑖𝑚𝑒 − 𝑜𝑢𝑡

𝑟𝑒𝑠𝑒𝑡

𝑟𝑒𝑠𝑒𝑡

Figure 4.1: Payment terminal state diagram

Figure 4.2: High level software design

12 4. Design

as the team feels they will be able to learn PHP quite fast.

4.4. Final Design
The research on both the hard- and software have lead to the following design. For hardware a rigid
base will be created around the payment terminal, with a solenoid mounted above each button on the
numeric pad and the screen. The solenoids will be controlled by a Raspberry Pi to achieve the desired
states according to the state diagram (figure 4.1). The Raspberry Pi will run Raspbian with an Apache
web server which will serve as the interface and input of the system, as it should display the current
status and statistics, and allow to manually start a test when desired.

5
Development

This chapter documents the project’s development throughout the assignment. First the desired devel-
opment process is described in section 5.1, all following sections will document the progress that has
been made per sprint.

5.1. Development Process
During the development of this project, an agile software development methodology is used. Agile
software development is a way of project management that allows software developers to quickly adapt
when requirements and solutions change over the course of the project. This project has been divided
into three sprints of two weeks. During each sprint new features need to be implemented and deployed
keeping a functioning version available at all times. For this project sprints will last two weeks, too
have enough time to get familiar with new techniques, implement and test. The first goal is to create
an minimal viable product, once this has been achieved extra functionality will be added to improve the
system during the following two sprints.

5.2. Sprint 1: minimal viable product
The first sprint of the development is focused on getting a minimal viable product running to get most
of the hardware issues out of the way. This means the robot has to be build, and be able to complete
the actions to make a payment. This payment has to be verified and displayed on a web interface.
During this first sprint the team will split up the hardware and software to have a minimal viable product
running as soon as possible.

5.2.1. Web Interface and Database
The web server is hosted on a Raspberry Pi 3, running an Apache 2 server. A web interface has been
created using HTML, PHP, jQuery and AJAX. The interface contains a single button and a placeholder to
display the history of results. The button will send an AJAX request to start a new test. The placeholder
will be periodically refreshed by continuous AJAX calls injecting a table with an entry for each result in
the database. They are ordered on descending date, showing the newest, most important results first.

5.2.2. Database
The results gathered from the tests will be stored in a database. The client already has a MySQL
database in production. Further as there are no special requirements for the database in this system,
any general-purpose database management system will suffice. For those reasons this system will
also use a MySQL database.

The preliminary design only contains one table, with two columns. One column for the result of the
test (type VARCHAR 250), and one for with the date (type DATETIME) and time to identify the results.

13

14 5. Development

5.2.3. Payment Verification
Whether a payment is accepted or denied for any number of reasons (e.g. insufficient balance), pro-
cessed in the back-end and stored in the database. A company such as bunq. B.V. is quite protective
of their database, and would prefer to have as little interactions with the database as possible. After
looking in to alternative ways this could be done have chosen for a safe approach using the public
API. In order to use bunq’s public API, first there are a few setup requests needed before being able to
request any actual data.

The payment verification using bunq’s public API[6] consists of a total of 5 API calls. The first 3 calls
are part of a setup to open a session. After this two calls are required to retrieve the actual information
we need to verify the payment.

Setup
In order to receive any meaningful API response a few steps are required. First a public and private
key need to be generated. The public key needs to be shared with the server using

POST /installation

endpoint. The server will respond with a token and the server’s public key to be used to verify future
responses are from the bunq API. All following requests need to be signed using the private key and
all the correct headers using the SHA256 algorithm.

All calls need to be made from a registered device. The endpoint

POST /device-server

registers to the IP from which it is send, or any others provided in the body. The body also has to
contain the API key associated with the account you want to use, and a name to identify the device.
The API key will be bound to the IP address of the newly registered device, so it is important the IP
address does not change.

Finally a session needs to be opened at the following endpoint.

POST /session-server

The session response will contain another token, required for all requests send over the session. Once
this session has been established it will stay available for an amount of time set by the auto logout time
in the user account, with a maximum of one week.

Requests
Now that a session has been opened requests can be send to fully control the account linked to the
API. Every IBAN number is linked to a monetary account. So by using the endpoint

GET /monetary-account

a list of all monetary accounts belonging to the user is returned. By scanning through the accounts
until the the correct IBAN number is matched the MonetaryAccountId can be found.

Finally a request can be made a list of all MasterCardActions from that account with

GET /monetary-account/id/mastercard-action

These MasterCardAction responses will contain information such as the decision if the payment has
been accepted or denied. If it is denied a textual explanation of why it was denied. This decision is
stored in the database, with the current date and time in order to keep track of when each result was
obtained.

5.2.4. Structural Components
The structure needs to hold the solenoids, servos and payment terminal. The first iteration will test the
ability of the structure to hold the terminal and the solenoids. While keeping a manual button press for
the start of the payment. This way less parts need to be cut which will save money on the amount of
objects to be cut. Since there is very little space between the solenoids the structure will have to be cut
out very precisely. The cheapest way for very precise cutting is laser cutting. Laser cutting will therefore
be used to obtain the parts. Appendix E.1 shows how this is cut out of 1𝑚𝑚 acrylate, and the second

5.2. Sprint 1: minimal viable product 15

drawing, which is 50% it’s original size, is cut out of 3𝑚𝑚 acrylate. In the drawings of the first design
the structure is made up of two length elements which are connected by multiple width elements. The
terminal will be put in between. The structure will elevate the pin terminal so that the terminal’s keyapd
is horizontal under the solenoid assembly. This will also make sure that the structure will not be pushed
up instead that the button will be pushed down. As mentioned the material chosen for the structure
was acrylate, because it is a see through material this would add to simplifying construction, making it
easier to spot issues and make the structure more aesthetically pleasing.

5.2.5. Electronic hardware
To control the electrical flow to the solenoids a control circuit is required. As this is just a switch sprint
one will create a circuit that drives the solenoids. Because the Raspberry Pi GPIO (general purpose
input output) pins can only safely provide 3.3𝑉, 16𝑚𝐴[4] while the solenoids run on higher power 19𝑉, 1𝐴
they can not be directly controlled by the Pi. Therefore they have to be controlled by an external power
source and switched on and off with a switch. The Pi will send the up signal for the switch. This makes
the switch conduct current through it. A transistor (appendix C.2) will be used as a switch. In the control
circuit (figure 5.1a) a flyback diode is shown parallel to the solenoid. Flyback diodes are used to protect
the circuit from sudden power surges. Because the solenoids create a power surge upon activation
this diode is needed to catch this peak. A simplified version of the design of the full circuit can be found
in figure 5.1b.

5.2.6. Pi control
The control of the solenoids via their transistors should be the easiest to do. Therefore the focus of
the Pi control in sprint one is to get the solenoids working via their transistors. Python has the ability to
easily import all the libraries required to control the GPIO pins of the Pi. The control of the transistors
is relatively easy. All the Pi has to do is send out an high or low signal to the designated pin. This
makes the transistor switches to respectively ’on’ or ’off’. When switched on, the transistor will let the
current flow to the solenoid making it extend the metal rod. When switched off, the transistor will block
the current flow, allowing the solenoid to retract. The following code is part of the Solenoid class. This
method instructs to send an high or low signal —where self.piPin is the pin on the Pi of this solenoid
object—

GPIO.output(self.piPin, GPIO.HIGH)
GPIO.output(self.piPin, GPIO.LOW)

The control function of the solenoid is contained in the solenoid’s own class, this function gives either
a high or low signal.

5.3. Sprint 2: extra functionality 17

(a) The basic design for the solenoid control, the
red wire indicates the connection with the Pi

(b) Simplification of the circuit, the red wire indicates
the connection with the Pi

Figure 5.1: circuits of sprint 1

Figure 5.2: Snapshot of web page after styling

18 5. Development

Figure 5.3: Payment history of one full day

Figure 5.4: Hourly average payments over 2 weeks

20 5. Development

MOSFET transistors (appendix C.3) have the ability to switch really fast, which would be useful if one
would want to apply PWM to the solenoids.

Pi problems
During the installation of the Pi and its GPIO software the Pi often lost its connection to the network
and had some other unexpected glitches. To test how the Pi would handle itself over a longer period of
time —since it should be on 24/7— the Pi was left on over the weekend. Unexpectedly, at a Monday
morning the Pi was no longer working. A reboot did not help the problem, which made sense, since
no indicator LED was blinking anymore. It has been concluded that the Pi may had burned out due
to some static electricity or that some cables or another conducting object caused a short circuit.The
reason for the problems of the Pi were a lot harder to pin-point because it had ’just’ stopped working
over the weekend. The office in which the electronics are build has a large tendency to charge people
statically, electric static discharges(ESDs) are quite common. Another possibility may be the wires that
were connected to 5V and ground. Overly enthousiastic cleaners might have helped us by removing
the dust, but may also have burned-out the Pi. To prevent this possibility in the future, diodes from the
Pi ports to the circuit will be added in the next design.

A simple version of the revisioned circuit is shown in figure 5.5

5.3.7. Floating gate issue
The circuit designed in sprint 2.0 did not work, for unknown reasons. Testing the MOSFET transistor
with LEDs did show an ability to switch, however switching off happened slowly and when tested with
multiple switches the LEDs had different levels of brightness. When tested with the solenoids they
would either immediately switch on and switch off after a while or would not switch on at all. After
meeting with dr. Verhoeven[24] showed that the problem here would be a so called ”floating gate”.
This means that the electric flow can not dissipate when the signal switches from high to low. Another
issue is that when the software of the Pi initiates the pin as a GPIO output it already sends a low value
signal, thereby opening the gate. Furthermore, the diode does have actual resistance and which lowers
the current of the GPIO port. The floating gate problem could easily be solved by placing a high value
resistor in front of the gate. This would allow the current to flow back to ground. According to this
information a new circuit has been designed (figure 5.6)

5.3.8. Pi control
With the solenoid software working, the control software for the servo could be designed. Even although
the servo has not yet been included within the circuit, the software for its control could already be
designed. The control of a servo is a bit more complicated than that of the solenoid. The servo uses
an analog signal to turn to a given the position. If it is not yet in that position it will move to it. When
it is already in that position it will stay there. Since the Pi is not able of sending analog signals it will
imitate an analog signal via a special method. Using a certain amount of high and low digital signals
the Pi can simulate an analog signal. This way of controlling is called pulse width modulation (PWM).
In figure 5.7 an example of a PWM signal is shown. Our servo runs at 50𝐻𝑧 and has a center position
of 1520𝜇𝑠 this means that at its center position it receives a high signal 1520𝜇𝑠 long every 20𝑚𝑠. The
servo has a range of 180∘ with a difference of 400𝜇𝑠. The Pi GPIO library translates this domain to run
from 2.5 to 12.5. The Pi has a certain order to run a servo. First it needs to make an object on which it
set a pin to use a PWM signal.

p = GPIO.PWM(self.piPin, 50)

Followed by setting this object’s pin as an output signal.

GPIO.setup(self.piPin, GPIO.OUT)

From there it needs to know at what signal length it needs to start. In other words, the start position of
the servo. Let’s say it starts at its mininum value.

p.start(2.5)

Since it needs some time to reach this position the execution of the code should wait for let’s say 1 sec.

time.sleep(1)

5.3. Sprint 2: extra functionality 21

Figure 5.5: Second revision of circuit

Figure 5.6: Third revision of circuit

22 5. Development

From there it can be set to a different position, and the code will have to wait again.

p.ChangeDutyCycle(12.5)
time.sleep(1)

Finally the connection needs to be closed and the object be terminated. When doing this the servo will
remain in its last set position.

p.stop()

5.4. Sprint 3: extra functionality 23

5.4. Sprint 3: extra functionality
The third and final sprint was again focused on extra functionality, but as the deadline was closing
in there was also some attention for preparing to deliver the system and real world integration test-
ing. During the previous sprint the hardware had made some advances, leading to this sprint pulling
everything together to create a working device.

5.4.1. Global settings
PHP does not keep state, therefore every request is unique. However as there is only one payment
terminal testing setup, only one test can be running at a time. In order to accomplish not being able
to start a new test while one is already running, one extra table is created in the database, containing
global settings. This table contains a single row that can only be updated. Besides only keeping track of
when a test is running, there are multiple API calls to setup the connection and get the right information
(i.e. private/public keys, session token) that currently get repeated for every test. By saving these
values it is sufficient to only run the setup calls once initially and renew the values when they have
expired. This will decrease the amount of API calls on average from 5 to 1, increasing the speed, load,
and reducing the cost associated with API calls.

While there already is a configuration file, the database is used to store these global settings. The
key difference between the configuration and global settings is that the configuration values are required
to be set before starting, while everything in the the global settings can be set dynamically by the
program.

5.4.2. SIG code feedback processed
During this sprint our code has been submitted to the Software Improvement Group (SIG) for feedback.
In the feedback the code received an average rating of 3 out of 5 stars, due to lower scores for Unit
Interfacing and Module Coupling. The reason for the lower Unit Interfacing score is because of too
many parameters on the bunq API request classes, suggesting to introduce a datatype to store related
parameters together. A former refactor (see section 5.3.4) already reduced these parameters on aver-
age from 5 to 3. The reduced amount of parameters and the fact that all parameters belong together,
instead of part of the parameters, made the team feel the current implementation would be sufficiently
maintainable.

The low Module Coupling was also related to the bunq API Request class. The class was invoked
on 36 different occasions, it was likely the class carried too much logic. Removing the execute method
and moving this to a new class RequestExcutor abstracted this logic from the original class, according
to the ’low coupling, high cohesion’ principle.

5.4.3. API
To interact with the system besides through the web interface, a simple RESTful API will be imple-
mented. The provisional design of the API only has two endpoints. One to retrieve the results and one
to start a new test.

GET /results
POST /test

This allows the monitoring environment that is currently in place to retrieve previous results in JSON
form. Additionally it is possible to start a test without having to press the button, giving the option to
automatically run a test each development roll-out.

There are several popular frameworks available, including: Slim[17], Silex[16] and Lumen[12].
While the documentation looks very promising, Laravel has its own syntax which will take some time
to learn and the framework is quite difficult to integrate into an already existing project. Slim is a mi-
croframework, where some might say it is too minimal, but has very thorough documentation and is
very lightweight. Silex based on the Symfony2[18] framework, which makes it extensible and easy to
test. The downside is that the documentation is less extensive, compared to Slim. As the design only
plans for a few endpoints and the lightweight Slim framework is more favorable.

24 5. Development

5.4.4. Authentication
To restrict access from all employees to the ones who will need it, authentication will be required to
interact with both the web interface and the API.

Basic authentication transits the credentials as ”𝑢𝑠𝑒𝑟𝑛𝑎𝑚𝑒 ∶ 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑” in base64 encoding in
a standard field of the HTTP header. This can be retrieved on the server to validate the submitted
username and password[23]. The downside of this approach is leaving it vulnerable to attacks such as
packet sniffing. For this reason many dismiss basic authentication, however this can be easily disputed
by combining basic authentication by securing the connection with a secured tunnel, such as HTTPS.
Given proper ciphers and server certificate are used HTTPS will ensure protection against man-in-the-
middle attacks, solving the weakness of basic access authentication.

Oauth2.0[21] is an often used authorization protocol, with 4 separate models. The protocol relies
on a separate authorization server and resource server. A third-party application (e.g. Facebook) as
authorization servers to grant access to a service. The user credentials are only presented to the
authorization server which will be exchanged for an access token, that will only be send over SSL. The
resource server will use the token to authenticate and properly authorize the user, without learning the
user credentials as these have effectively been replaced with a token.

The main difference between the two is that in basic authentication the resource server and authen-
tication server are combined into one, asking the credentials directly from the user.

This system will be run internally, accessible over the clients VPN. This decreases the need for
strong security as only employees will have access, which led us to use basic authentication without
the use of a secure tunnel. However this could be implemented if there should be a wish to increase
the security later on. The submitted username and password combination will be checked against a
username and hashed version of the password stored in the database table.

5.4.5. Production account
Until this point testing has been done using the API sandbox and mocked responses. Since MasterCar-
dActions are only generated for transactions where MasterCard is involved, and no pin cards are linked
to the sandbox a real world setting has not been tested yet. To make this possible a live production
account and pin card have to be used, which will involve costs. The cost of this system will be funded
by one of the internal accounts of the client. However this will create fake revenue, to prevent this from
being measured by analytics in finance the following has been agreed upon. The finance department
will provide the card with an amount of money, that can be used for transactions, the system owner
will be responsible for this amount. If the system owner leaves bunq B.V. the used money needs to be
refunded, to refund the start amount in full to finance. The system owners successor will take over and
repeat this process.

Once the financial aspect was in order, the system was tested with a production account. The first
test failed as the bunq’s public API documentation seemed to be incomplete, returning a different re-
sponse than stated. After adjusting the code for the different response, everything worked as expected.
Multiple tests have been run, returning both true positives and true negatives.

5.4.6. Structural Components
Upon arrival of the second iteration of the laser cut structure a major flaw was discovered. As laser
cutting is very precise, the structure had been made to fit very precise. While this was no problem
in the structure designed in sprint one, the new laser cut structure’s material thickness deviated by
10% on one side compared the other. Making one side around 3, 5𝑚𝑚 while the other side was the
required 3𝑚𝑚. Since the cut areas were exactly 3𝑚𝑚 because of the laser cut the structure did not fit
as expected. When still trying to assemble the structure it broke several parts. Filing out large parts of
the structure was required which took a lot of valuable time. Another problem that arose was that two
redundant parts were forgotten to be added on the drawing. Although these parts were redundant they
were required because of the damage from the forced construction.

A problem that arose during testing was themovement of the solenoids. Some parts of the solenoids
got stuck in the assembly. The solution to this was drilling the holes larger by hand.

Finally the redundant parts and the servo holder were replaced by sawing out a redesigned piece
(appendix E.4). Due to time constraints a quick fix needed to be found for the elements that need
to press the screen, hold the card and push the card in and out. These were cut out of very strong
cardboard and reinforced with steel bolts. And finally screwed onto their servo. Due to their difference

5.4. Sprint 3: extra functionality 25

in style compared to the rest of the robot the marketing colours of our client will be used to make the
cardboard more aesthetically pleasing and giving it a more personal flavour for the company. The final
design of the laser cut structure can be found in the final drawing of appendix E.5.

5.4.7. Removing MOSFETs
With the diode added to the circuit it unfortunately still did not work as expected. Measuring the circuit
showed that all voltage levels were correct throughout the circuit. Yet the MOSFET did not switch as
expected, when given an high signal the measurements showed a closed circuit. This was noticed due
to the voltage dropping from 43𝑉 (open circuit voltage) to a closed circuit voltage of 19𝑉 as given on
the specs on the side of the voltage source. However the voltage measured over the solenoid was 0𝑉.

The MOSFET kept giving trouble in the circuit. In the first sprint it turned out that the NPN-transistors
were effective but just not sturdy enough. The MOSFETs were removed from the design and the design
(figure 5.1b) from the first sprint was used again but this time with new transistors. The focus of these
transistors was that they were the type of transistor used in sprint 1, but that they would have higher
specifications. The chosen BD139 transistors (appendix C.4) are rated for 80𝑉, 1500𝑚𝐴 and allow
short peaks up to to 3000𝑚𝐴. The reason the MOSFET transistors were chosen first was because
the MOSFETs are rated for 16000𝑚𝐴 and were considered safer for long time use. Another option
would have been using a driver circuit for the MOSFETs[22] as seen in figure 5.8b. Due to the extra
complexity and time constraints this solution will not be implemented. The option chosen is using the
circuit from sprint 1 found in figure 5.1b.

5.4.8. Voltage regulators
With the solenoid circuit operational the servo circuit could be created. Some of the group members
had experience with servo’s and connecting them required just a 5𝑉 supply and the control signal could
be directly connected to the Pi. The way to connect the servo into the circuit can be found in figure5.8a.
The only issue with connecting the servo into the circuit is that the servo runs on 5𝑉 while the rest of the
circuit runs on 19𝑉. The voltage can be brought down to 5𝑉 by using a voltage controller. An issue with
voltage controllers is that they reduce the excess power into heat. for example, if a 15𝑉 circuit uses a
voltage regulator to run something at 5𝑉 − 2𝐴 the excess 10𝑉 (at 2𝐴) will be released as heat. In this
case that would mean that 5𝑉 ∗ 2𝐴 = 10𝑊 would need to be dissipated. For a small voltage controller
without a very large heat-sink this would be impossible. Fortunately the servo’s run at a much smaller
current. According to their spec sheet (found in appendix C.5) the servo’s run in the order of magnitude
of about 10𝑚𝐴. The amount of heat that would need to be dissipated is 14𝑉 ∗0.01𝐴 = 0.14𝑊. Not only
is 0.14𝑊 a small amount, the maximum amount of time that a servo will be actually running is in the
order of 10 seconds. This way the circuit is fully functioning. The final circuit design can be found in
appendix D.1.

5.4.9. Pi control
With the electronics finished all that remains is controlling them to create tests. The pins of the Pi are
’hard-coded’ to match with the object that they are connected to. The Pi control will turn this list into
a list containing servo and solenoid objects. Each of them have their name and their designated pin
as attribute so that their name can be called to find their pin. To know which pin needs to give what
kind of signal we need to follow the state diagram 4.1 from the design chapter. The Pi control needs to
make a sequence in which all actions will be performed. These actions depend on the given input of
payment type, PIN number and amount to be debited. Furthermore the sequence needs to be able to
get the PIN-terminal into the start position. For the tests to pass it is essential that the PIN-terminal is
in the begin state. Although it seems not very scientific, the best and safest way to do this is to press
the OK and Cancel buttons twice. Therefore the first part of the sequence will be set to do just that.

self.seq.append(”cancel”)
self.seq.append(”ok”)
self.seq.append(”cancel”)
self.seq.append(”ok”)

Then the robot has to press the screen to start the payment.

self.seq.append(”servscreen”)

26 5. Development

The PIN-terminal will now request the amount to be debited. This is more complex, because the se-
quence list requires a string value, while the argument is a double. To solve this the double will be
multiplied by 100 and parsed to an integer follwed by a parse to a string. From this string the sequence
will take the first to last character and add these to the sequence.

xs = []
strNum = str(int(self.payAmount * 100))
for i in range(0, len(strNum), 1):

xs.append(strNum[i])
return xs

If the payment type is a chip payment, the card will need to be inserted, the PIN entered, OK pressed
and the card extracted. The way to get the PIN follows the same way as the one from the amount to
be debited, just without the multiplication by 100 and the parse to an integer. Leading to the following
code:

self.seq.append(”servchipon”)
self.seq.extend(self.pinSequence())
self.seq.append(”ok”)
self.seq.append(”servchipoff”)

In case of an nfc payment, the command is a lot easier. Because there is no need for a PIN number all
the robot has to do is move the card towards the screen, wait a bit and pull it back. For the sequence
this just means:

self.seq.append(”servnfc”)

The PIN-terminal will now confirm the successful payment, or report a payment failure. To continue
from this state OK will need to be pressed.

self.seq.append(”ok”)

The PIN-terminal used has a receipt printer. This printer is not used because of the mess that it would
create by printing a receipt with every test. Not to mention that it would need to be replaced multiple
times. Therefore the receipt paper has been removed. The terminal will give an error on this however,
this error can be dismissed by pressing cancel. Followed by a confirmation that the terminal can be
given back to the owner. This screen is passed by pressing the ”OK” button. This would give the final
addition to the sequence will be:

self.seq.append(”cancel”)
self.seq.append(”ok”)

The controller will use this sequence to send a ’pulse’ to the object with its matching icon on the keypad.
So ”OK” is a solenoid, which means it will make a push movement on the ”OK” button. The servo’s will
perform their own action when given a pulse. By creating a sequence for the names linked to the GPIO
pin numbers a test sequence can be run.

It turns out that the solenoids become very hot when running at 19𝑉. This means that the solenoids
will have to run on at low duty cycle. The solenoids need about 20𝑠 to cool when they have been on for
1𝑠. So they have a duty cycle of ≈ 5%. Experimentation showed that the solenoid only needed
to be on for just 0, 1𝑠 to press the button. Then the solenoid will only have to cool down for 2𝑠. As
the heating of the solenoid is a large issue in this project also another way is applied to reduce heat.
By using PWM, like with the servos, the energy requirement can be brought down even further. The
solenoids seem to work best at a frequency of 1000𝐻𝑧 with a pulse length of 0, 05𝑚𝑠. This way the
solenoids seem to be on for 0, 1𝑠 while they are actually just on for 0, 05𝑠. Combined with the previously
mentioned cooldown, the solenoids now have a duty cycle of ,

, ≈ 2, 5%.

5.4. Sprint 3: extra functionality 27

Figure 5.7: example of an PWM signal

28 5. Development

(a) Servo connect in the circuit, the red wire
leads towards the Pi

(b) Driver circuit for the MOSFET, the left
wire leads towards the Pi

(c) Final circuit design, the red wires lead towards the Pi

Figure 5.8: circuits of sprint 3

6
Conclusions

This chapter will conclude the project giving an evaluation of the final product and measure it based
on the requirements set at the start of the project (see section 2.2.1) and mention the achievements
during the projects, but also the mistakes and how these could have been prevented.

6.1. Evaluation
The final product satisfies many of the requirements. The robotic solution is capable of running and
completing test sequence using both contact and wireless EMV. This test can be started and verified
using a web interface or by using, an unplanned additional feature, a RESTful API. Sadly not all of the
requirements have been fulfilled. The system can start a payment cycle, however the pin robot is not yet
able to push the 4,5,6,*,0 and # buttons. This means that tests will need to be run without PIN numbers
containing these numbers. As main additional feature the system is also able to autonomously asses
if the Maestro workflow is still operational, and run a test if it is not.

Due to unforeseen time delays within the hardware part of the project (floating gates, deviating
material thickness, etc), hardware related requirements like: A counter, optical feedback, and individual
control of the keypad have unfortunately not been met. However these were classified as could haves,
to improve the overall user experience not having these features is not a critical issue.

Even though not all of the must have requirements are fully implemented, the client is still satisfied
as the system is capable of performing PIN transactions without being able to press every single button.
As the unsuccessful requirements concern the structure of the robotics, further work on the structure
would help meet all the requirements.

To ensure that all developed features work as is expected, there has been made sure there is a full
test coverage for all features.

6.2. Conclusion
In conclusion, the project was a success. A solution that can test payments has been delivered to the
client. The project did come with some unfortunate setbacks. The first setback was met quite soon into
the project, one of the original three team members was conditionally allowed into work on the project.
However, his conditions to continue with the project were not met and he was forced to resign from
the team. Having just two team members left the workload of the project needed to be rescheduled
to two people, reducing the amount of features that would be implemented during the project. Due to
the project consisting of hardware and software, the group split up at the start to maximize the team’s
efficiency and create a minimum viable product. This led to a point where it was hard to fully understand
what the other person was working on. This became a apparent when one of the group members fell
ill close to the deadline. Better communication would have prevented this problem. For the hardware
part there was not a lot of experience yet, but this was thought to be good enough to be able to get
a working product. The product was eventually realized, but went over budget and took longer than
expected. Looking back it can be concluded that it would have been useful to request assistance in the
time. To conclude, the project successfully implemented a product that is capable of testing payments

29

30 6. Conclusions

remotely. Although the project planning could have been improved it allowed us to complete a working
prototype in time.

7
Discussion

Finally this chapter will give some recommendations for future work if one might want to improve the
current system. It will also discuss ethical issues that have been encountered during the project.

7.1. Recommendations
To improve the system in the future, this section will discuss some recommendations.

First of all the software, as mentioned in section5.3.3 the current implementation is likely not very
future proof. As bunq B.V. has plans to expand internationally, this will almost certainly change patterns
that have been noticed in the current datasets of accepted Maestro payments. Due to the limitations
of the stored data in Graphite and not enough time to gather and save this data during the time of this
project, adjustments have been made and created a time sensitive model. A recommendation would
be to create a time invariant model that would be more likely to persist as the patterns change.

Future work on the hardware side would be an improvement of the frame and a more elegant way to
operate the solenoids. It would also recommendable to let some of the extra implementations be added.
As the basic hardware (i.e. basic electronics, structure) has been completed the extra features can be
added. Other work could be improvements of the structure to handle more features. The raspberry Pi
provides libraries to easily support camera functions. Another recommendation would be to implement
PWM on the solenoids to decrease the amount of energy required and the amount of heat produced. At
this area, a more solid frame could be connected to the solenoids to immediately provide an heatsink
to them. As the electronics are at the moment placed on a breadboard it would be more elegant to
solder these to a PCB making them sturdier and giving the whole board a cleaner look.

7.2. Ethical Issues
Our project’s ethical issue relates to the safety of the tests. It is important that the tests are performed
thoroughly. If the tests are not performed thoroughly, or shortcuts are taken, it is possible that flaws in
a software update are not discovered. Since there is a lot of private bank account data it is essential
that these remain a secret. Our client’s business plan is providing a service that other banks do not.
Our client promises to keep all data secret, and never sell it to any third-party.[7]. To work within this
promise it has been important to use as much anonymized data as possible during this project.

In case our system malfunctions by returning a false positive it is possible that a flawed update
might be rolled out. This could cause inconvenience for the clients customers, resulting in bad PR and
even losing costumers. This meant testing had to have a high overall priority, as such mistakes can
not be permitted.

31

Bibliography
[1] Emvco. URL https://www.emvco.com/about_emvco.aspx?id=202. [Online; accessed

2-May-2017].

[2] Pi download page. URL https://www.raspberrypi.org/downloads/. [Online; accessed
26-June-2017].

[3] Pios. URL https://www.raspbian.org/. [Online; accessed 26-June-2017].

[4] Power supply. URL https://www.raspberrypi.org/documentation/hardware/
raspberrypi/power/README.md. [Online; accessed 21-June-2017].

[5] ‘banken maken dingen die de klanten niet willen’. URL https://fd.nl/ondernemen/
1120680/banken-maken-dingen-die-de-klanten-niet-willen. [Online; accessed
15-June-2017].

[6] bunq api documentation, . URL https://doc.bunq.com. [Online; accessed 12-May-2017].

[7] Questions, questions, questions, . URL https://www.bunq.com/en/news/
questions-questions-questions. [Online; accessed 21-June-2017].

[8] Graphite documentation, . URL http://graphite.readthedocs.io/en/latest/. [Online;
accessed 5-June-2017].

[9] The render url api, . URL http://graphite.readthedocs.io/en/latest/render_api.
html. [Online; accessed 5-June-2017].

[10] Guzzle, php http client. URL http://guzzle.readthedocs.io/en/stable/. [Online; ac-
cessed 7-June-2017].

[11] De bankier van de toekomst is een it-nerd. URL http://nos.nl/nieuwsuur/artikel/
2075991-de-bankier-van-de-toekomst-is-een-it-nerd.html. [Online; accessed
15-June-2017].

[12] Lumen. URL https://lumen.laravel.com/docs/5.4/configuration. [Online; ac-
cessed 10-June-2017].

[13] Tag type technical specifications. URL http://nfc-forum.org/our-work/
specifications-and-application-documents/specifications/
tag-type-technical-specifications/. [Online; accessed 2-May-2017].

[14] Usage of web servers broken down by ranking, . URL https://w3techs.com/
technologies/cross/web_server/ranking. [Online; accessed 4-May-2017].

[15] October 2015 web server survey, . URL https://news.netcraft.com/archives/2015/
10/16/october-2015-web-server-survey.html. [Online, accessed 4-May-2017].

[16] Documentation - silex. URL https://silex.sensiolabs.org/doc/2.0/. [Online; ac-
cessed 10-June-2017].

[17] Slim framework. URL https://www.slimframework.com. [Online; accessed 10-June-2017].

[18] Symfony. URL https://symfony.com. [Online; accessed 10-June-2017].

[19] Pi download page. URL https://www.raspberrypi.org/downloads/. [Online; accessed
26-June-2017].

33

34 Bibliography

[20] User Manual VX680. CCV. CID088A/03012013.

[21] D. Hardt. The oauth 2.0 authorization framework. RFC 6749, RFC Editor, October 2012.
URL http://www.rfc-editor.org/rfc/rfc6749.txt. http://www.rfc-editor.
org/rfc/rfc6749.txt.

[22] RangaRao Venkatesha Prasad. personal communication.

[23] J. Reschke. The ’basic’ http authentication scheme. RFC 7617, RFC Editor, September 2015.

[24] Chris Verhoeven. personal communication.

A
Original Project Description

A.1. Project Description
Although we are a mobile bank, debit cards and subsequently card payments are still very important
for us and our users. Every time something changes in our backend, we need to test if our debit card
service is still up and running. We currently do this by making an actual card transaction using a debit
card and card terminal. This means we’re dependent on our terminal and its location. Wouldn’t it be
great if we could test card payments and make card transactions from any place we want?!

We would like to have a permanent setup with a card terminal in our office that can be accessed
online. This would allow us to test card payments from any distance using an internet connection. How
this setup would look like is up to you! For example, it could include a ‘robot arm’ that pushes the
buttons on the card terminal and a camera that records the results on the terminal’s screen.

A.2. Company Description
bunq is not an ordinary bank. Instead of making more money, we want to reinvent money itself with
mobile technology. That’s why we built our own banking system from scratch, including an app that
fits your entire bank in your pocket. And that’s just the beginning! We’re working non-stop on futuristic
payment methods and other innovations to make money and banking as easy, transparent, and fun as
possible.

35

B
Info Sheet

B.1. General Information
Title of the project: Card Payment Testing
Name of the client organization: bunq B.V.
Date of the final presentation: July 3d, 2017

B.2. Description
Every development roll-out, there needs to be certainty everything works. Especially when it comes
to the banking domain. People care about their money and want it to be handled with care. Currently
this means some tests, including making a payment using a Maestro debit card, need to be performed
manually. In order to further testing, this project aims to automate these Maestro payments. This
has been achieved by constructing a robotic device to perform the physical actions associated with
creating a payment request, and create a piece of software to verify if the payment was accepted. The
main software is based around the public API bunq B.V. offers. Using the API it is possible to retrieve
information related to your bank accounts, including payments made. The robotic device is consists
of a combination of solenoids and servos to operate the keypad and to present a bunq Maestro debit
card. Additionally the system has extra functionality such as self assessment if the Maestro workflow
is still functioning. As a result there should no longer be a need to physically take a terminal home
and complete payments. Even though the delivered system does not have functionality to work with a
phone’s NFC, the system should be easily upgraded to support this functionality.

B.3. Members of the project team
Name: Arend Jan de Graaff
Interests: Gaming, Traveling, Watching Shows, Low-level programming
Contribution and role: Hardware, embedded software

Name: Wouter Zirkzee
Interests: Computer Science, Music, Finance, Sports
Contribution and role: front-end & back-end developer and tester

B.4. Client
Name: Wessel Van
Affiliation: bunq B.V.

B.5. Coach
Name: RangaRao Venkatesha Prasad
Affiliation: Embedded Software

B.6. Contact
Otto Visser
Huijuian Wang
bep-ewi@tudelft.nl

The final report for this project can be found at: http://repository.tudelft.nl/.

37

C
Tech sheets

39

IRF530
IRF530FI

N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTOR

■ TYPICAL RDS(on) = 0.12 Ω
■ AVALANCHERUGGED TECHNOLOGY
■ 100% AVALANCHE TESTED
■ REPETITIVE AVALANCHE DATA AT 100oC
■ LOW GATE CHARGE
■ HIGH CURRENT CAPABILITY
■ 175oC OPERATING TEMPERATURE
■ APPLICATION ORIENTED

CHARACTERIZATION

APPLICATIONS
■ HIGH CURRENT, HIGH SPEED SWITCHING
■ SOLENOID AND RELAY DRIVERS
■ DC-DC & DC-AC CONVERTER
■ AUTOMOTIVE ENVIRONMENT (INJECTION,

ABS, AIR-BAG, LAMP DRIVERS Etc.)

INTERNAL SCHEMATIC DIAGRAM

March 1998

TO-220 TO-220FI

1
2

3

1
2

3

ABSOLUTE MAXIMUM RATINGS

Symbol Parameter Value Uni t

IRF530 IRF530FI

VDS Drain-source Voltage (VGS = 0) 100 V

VDGR Drain- gate Voltage (RGS = 20 kΩ) 100 V

VGS Gate-source Voltage ± 20 V

ID Drain Current (continuous) at Tc = 25 oC 16 11 A

ID Drain Current (continuous) at Tc = 100 oC 11 7.8 A

IDM(•) Drain Current (pulsed) 64 64 A

Ptot Total Dissipation at Tc = 25 oC 90 40 W

Derating Factor 0.6 0.27 W/oC

Viso Insulat ion Withstand Voltage (DC) - 2000 V

Tstg Storage Temperature -65 to 175 oC

Tj Max. Operating Junction Temperature 175 oC
(•) Pulse width limited by safe operating area (1) ISD ≤11 Α, di/dt ≤ 200 A/µs, VDD ≤ V(BR)DSS, Tj ≤ TJMAX

TYPE VDSS RDS(on) ID

IRF530
IRF530FI

100 V
100 V

< 0.16 Ω
< 0.16 Ω

16 A
11 A

1/6

Figure C.3: IRF530 MOSFET-Transistor technical data sheet

THERMAL DATA

TO-220 TO220-FI

Rthj-ca se Thermal Resistance Junction-case Max 1 3.75 oC/W

Rthj- amb

Rthc-si nk

Tl

Thermal Resistance Junction-ambient Max
Thermal Resistance Case-sink Typ
Maximum Lead Temperature For Soldering Purpose

62.5
0.5
300

oC/W
oC/W

oC

AVALANCHE CHARACTERISTICS

Symbol Parameter Max Value Unit

IAR Avalanche Current, Repetitive or Not-Repet itive
(pulse width limited by Tj max, δ < 1%)

16 A

EAS Single Pulse Avalanche Energy
(starting Tj = 25 oC, ID = IAR, VDD = 50 V)

100 mJ

ELECTRICAL CHARACTERISTICS (Tcase = 25 oC unless otherwise specified)
OFF

Symbol Parameter Test Conditions Min. Typ. Max. Unit

V(BR)DSS Drain-source
Breakdown Voltage

ID = 250 µA VGS = 0 900 V

IDSS Zero Gate Voltage
Drain Current (VGS = 0)

VDS = Max Rating
VDS = Max Rating Tc = 125 oC

1
10

µA
µA

IGSS Gate-body Leakage
Current (VDS = 0)

VGS = ± 20 V ± 100 nA

ON (∗)

Symbol Parameter Test Conditions Min. Typ. Max. Unit

VGS(th) Gate Threshold
Voltage

VDS = VGS ID = 250 µA 2 3 4 V

RDS(on) Static Drain-source On
Resistance

VGS = 10V ID = 8 A 0.12 0.16 Ω

ID(o n) On State Drain Current VDS > ID(on) x RDS(on)max

VGS = 10 V
16 A

DYNAMIC

Symbol Parameter Test Conditions Min. Typ. Max. Unit

gfs (∗) Forward
Transconductance

VDS > ID(on) x RDS(on)max ID = 8 A 5 8 S

Ciss

Coss

Crss

Input Capacitance
Output Capacitance
Reverse Transfer
Capacitance

VDS = 25 V f = 1 MHz VGS = 0 950
150
50

1300
270
70

pF
pF
pF

IRF530/IRF530FI

2/6

Figure C.3: IRF530 MOSFET-Transistor technical data sheet

ELECTRICAL CHARACTERISTICS (continued)
SWITCHING ON

Symbol Parameter Test Conditions Min. Typ. Max. Unit

td(on)

tr

Turn-on Time
Rise Time

VDD = 50 V ID = 8 A
RG = 4.7 Ω VGS = 10 V

12
20

16
28

ns
ns

Qg

Qgs

Qgd

Total Gate Charge
Gate-Source Charge
Gate-Drain Charge

VDD =80 V ID =16 A VGS = 10 V 32
9

13

44 nC
nC
nC

SWITCHING OFF

Symbol Parameter Test Conditions Min. Typ. Max. Unit

tr(Vof f)

tf
tc

Off-voltage Rise Time
Fall Time
Cross-over Time

VDD = 80 V ID =16 A
RG = 4.7 Ω VGS = 10 V

11
12
25

15
17
35

ns
ns
ns

SOURCE DRAIN DIODE

Symbol Parameter Test Conditions Min. Typ. Max. Unit

ISD

ISDM(•)
Source-drain Current
Source-drain Current
(pulsed)

16
64

A
A

VSD (∗) Forward On Voltage ISD = 16 A VGS = 0 1.6 V

trr

Qrr

IRRM

Reverse Recovery
Time
Reverse Recovery
Charge
Reverse Recovery
Current

ISD =16 A di/dt = 100 A/µs
VDD = 30 V Tj = 150 oC

150

0.8

10

ns

µC

A

(∗) Pulsed: Pulse duration = 300 µs, duty cycle 1.5 %
(•) Pulse width limited by safe operating area

IRF530/IRF530FI

3/6

Figure C.3: IRF530 MOSFET-Transistor technical data sheet

DIM.
mm inch

MIN. TYP. MAX. MIN. TYP. MAX.

A 4.40 4.60 0.173 0.181

C 1.23 1.32 0.048 0.051

D 2.40 2.72 0.094 0.107

D1 1.27 0.050

E 0.49 0.70 0.019 0.027

F 0.61 0.88 0.024 0.034

F1 1.14 1.70 0.044 0.067

F2 1.14 1.70 0.044 0.067

G 4.95 5.15 0.194 0.203

G1 2.4 2.7 0.094 0.106

H2 10.0 10.40 0.393 0.409

L2 16.4 0.645

L4 13.0 14.0 0.511 0.551

L5 2.65 2.95 0.104 0.116

L6 15.25 15.75 0.600 0.620

L7 6.2 6.6 0.244 0.260

L9 3.5 3.93 0.137 0.154

DIA. 3.75 3.85 0.147 0.151

L6

A

C D

E

D
1

F

G

L7

L2

Dia.

F
1

L5

L4

H
2

L9

F
2

G
1

TO-220 MECHANICAL DATA

P011C

IRF530/IRF530FI

4/6

Figure C.3: IRF530 MOSFET-Transistor technical data sheet

DIM.
mm inch

MIN. TYP. MAX. MIN. TYP. MAX.

A 4.4 4.6 0.173 0.181

B 2.5 2.7 0.098 0.106

D 2.5 2.75 0.098 0.108

E 0.4 0.7 0.015 0.027

F 0.75 1 0.030 0.039

F1 1.15 1.7 0.045 0.067

F2 1.15 1.7 0.045 0.067

G 4.95 5.2 0.195 0.204

G1 2.4 2.7 0.094 0.106

H 10 10.4 0.393 0.409

L2 16 0.630

L3 28.6 30.6 1.126 1.204

L4 9.8 10.6 0.385 0.417

L6 15.9 16.4 0.626 0.645

L7 9 9.3 0.354 0.366

Ø 3 3.2 0.118 0.126

L2

A

B

D

E

H G

L6

¯ F

L3

G
1

1 2 3

F
2

F1

L7

L4

ISOWATT220 MECHANICAL DATA

P011G

IRF530/IRF530FI

5/6

Figure C.3: IRF530 MOSFET-Transistor technical data sheet

D
final circuit drawing

57

58 D. final circuit drawing

Figure D.1: final design of the electrical circuit

E
Structure drawings

59

60 E. Structure drawings

Figure E.1: drawing for 1st iteration 1mm thick parts, scale 1:2

61

Figure E.2: drawing for 1st iteration 3mm thick parts, scale 1:2

62 E. Structure drawings

Figure E.3: drawing for 2nd iteration 3mm thick parts, scale 1:2

63

Figure E.4: drawing for the servo holder, scale 1:2

64 E. Structure drawings

Figure E.5: scale isometric view, scale 1:5 reduced to 1:8

F
Software Improvement Group

During the project there have been two upload moments to submit our code to the Software Improve-
ment Group. The feedback we received from the first upload has been taken into account when im-
proving the code for the second submission. You can read about this in section 4.2

F.1. First analysis (Dutch)
De code van het systeem scoort 3 sterren op ons onderhoudbaarheidsmodel, wat betekent dat de code
gemiddeld onderhoudbaar is. De hoogste score is niet behaald door lagere scores voor Unit Interfacing
en Module Coupling.

Voor Unit Interfacing wordt er gekeken naar het percentage code in units met een bovengemiddeld
aantal parameters. Doorgaans duidt een bovengemiddeld aantal parameters op een gebrek aan ab-
stractie. Daarnaast leidt een groot aantal parameters nogal eens tot verwarring in het aanroepen van
de methode en in de meeste gevallen ook tot langere en complexere methoden.

Jullie hebben een aantal contructors die dezelfde parameters gebruiken (API key, token, private
key). Als deze parameters logischerwijs bij elkaar horen is het beter om er een apart datatype voor te
introduceren. Op die manier verhoog je ook het abstractieniveau van de code, waardoor deze beter
leesbaar blijft als in de toekomst de hoeveelheid functionaliteit gaat groeien.

Voor Module Coupling wordt er gekeken naar het percentage van de code wat relatief vaak wordt
aangeroepen. Normaal gesproken zorgt code die vaak aangeroepen wordt voor een minder stabiel
systeem omdat veranderingen binnen dit type code kan leiden tot aanpassingen op veel verschillende
plaatsen.

In dit systeem wordt de class ’Request’ op 36 verschillende plaatsen aangeroepen. Daarnaast is
deze class vrij fors. Je zou dit kunnen verbeteren door de datastructuur van request van het uitvoeren
van het request te splitsen. Met andere woorden: de methode execute kan in een andere class Re-
questExecutor (of iets dergelijks). Op die manier voorkom je dat alle kernlogica centraliseerd wordt in
één class.

De aanwezigheid van test-code is in ieder geval veelbelovend, hopelijk zal het volume van de test-
code ook groeien op het moment dat er nieuwe functionaliteit toegevoegd wordt.

Over het algemeen scoort de code dus gemiddeld, hopelijk lukt het om dit niveau nog wat te laten
stijgen tijdens de rest van de ontwikkelfase.

F.2. Second analysis (Dutch)
In de tweede upload zien we dat zowel de omvang van het systeem als de score voor onderhoud-
baarheid is gestegen. Van alle groepjes zien we bij jullie de grootste verbetering tussen de eerste en
de tweede upload. Jullie zijn gestegen naar 4 sterren, wat echt een presentatie is in zo’n korte tijd. De
eerder genoemde verbeterpunten, Unit Interfacing en Module Coupling, zijn ook de grootste stijgers
op het niveau van de deelscores.

Ook is het goed om te zien dat jullie naast nieuwe productiecode ook aandacht hebben besteed
aan het schrijven van nieuwe testcode.

65

66 F. Software Improvement Group

Uit deze observaties kunnen we concluderen dat de aanbevelingen van de vorige evaluatie zijn
meegenomen in het ontwikkeltraject.

