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Log determinant of large correlation matrices under infinite fourth
moment

Johannes Heinya and Nestor Parolyab

aDepartment of Mathematics, Ruhr University Bochum, E-mail: johannes.heiny@rub.de
bDelft Institute of Applied Mathematics, Delft Universtity of Technology. E-mail: n.parolya@tudelft.nl

Abstract. In this paper, we show the central limit theorem for the logarithmic determinant of the sample correlation matrix R con-
structed from the (p × n)-dimensional data matrix X containing independent and identically distributed random entries with mean
zero, variance one and infinite fourth moments. Precisely, we show that for p/n→ γ ∈ (0,1) as n,p→∞ the logarithmic law

log detR− (p− n+ 1
2
) log(1− p/n) + p− p/n√

−2 log(1− p/n)− 2p/n

d→N(0,1)

is still valid if the entries of the data matrix X follow a symmetric distribution with a regularly varying tail of index α ∈ (3,4). The
latter assumptions seem to be crucial, which is justified by the simulations: if the entries of X have the infinite absolute third moment
and/or their distribution is not symmetric, the logarithmic law is not valid anymore. The derived results highlight that the logarithmic
determinant of the sample correlation matrix is a very stable and flexible statistic for heavy-tailed big data and open a novel way of
analysis of high-dimensional random matrices with self-normalized entries.

Résumé. Dans cet article nous démontrons le théorème de la limite centrale pour le déterminant logarithmique d’une matrice de corré-
lation R construite d’une matrice de données X de taille (p×n) contenante les entrées avec l’espérance 0, la variance 1 et le quatrième
moment infini. Plus précisément, nous démontrons que dans le régime p/n→ γ ∈ (0,1) quand n,p→∞ la loi logarithmique

log detR− (p− n+ 1
2
) log(1− p/n) + p− p/n√

−2 log(1− p/n)− 2p/n

d→N(0,1)

est toujours valable si les entrées de la matrice de données X suivent une distribution symétrique avec une queue à variation régulière
d’indice α ∈ (3,4). Ces dernières conditions semblent être cruciales, ce qui est justifié par les simulations : si les entrées de X n’ont
pas de troisième moment et/ou si leur distribution n’est pas symétrique, la loi logarithmique n’est plus valable. Les résultats obtenus
mettent en évidence que le déterminant logarithmique d’une matrice de corrélation est une statistique très stable et flexible pour les
données massives à queue lourde et ouvrent une nouvelle voie pour analyser les grandes matrices aléatoires d’entrées auto-normalisées.

MSC2020 subject classifications: Primary 60B20; secondary 60F05 60G10 60G57 60G70
Keywords: sample correlation matrix, logarithmic determinant, random matrix theory, heavy tails, infinite fourth moment

1. Introduction

The analysis of the logarithmic determinant has always been of considerable interest in the large dimensional random
matrix theory. The investigations of the moments of random determinants trace back to the 1950s (see, Dembo [11] and
references therein). The central limit theorems (CLTs) for the logarithmic determinant of random Gaussian matrices,
Wigner matrices and matrices with real independent and identically distributed (i.i.d.) entries with sub-exponential tails
were proved by Goodman [21], Tao and Vu [37] and Nguyen and Vu [33], respectively. Girko [19] was the first to state that
the result of Goodman [21] holds for general random matrices under the additional assumption that the fourth moment
of the entries is equal to three (normal-like moments of order four). This CLT was named as Girko’s logarithmic law
or simply logarithmic law. Moreover, twenty years later Girko [20] using an elegant method of perpendiculars partially
proved that the CLT for the logarithmic determinant holds in a very generic case under the existence of the 4+ε moments
for some small ε > 0. Nguyen and Vu [33] provided a refined and more transparent proof of this claim assuming a much
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stronger condition of sub-exponential tails for the random matrix entries, analyzing additionally the rate of convergence
of the logarithmic determinant of the sample covariance matrix. Both papers [20] and [33] rely on Girko’s method of
perpendiculars, whose starting point is the elementary fact that the magnitude of the determinant of a Gram matrix built
of real vectors is equal to the volume of the parallelepiped spanned by those vectors. That is why by a simple “base
times height” formula one can represent the determinant as a product of perpendiculars (see Bao et al. [8, p. 1602 ff.]
for details). In cases where the determinant can be written as a product of independent random variables, for example
independent beta distributions in the case of Gaussian matrix entries, the large/moderate deviation results are proved in
[22], whereas fast Berry–Esseen bounds were recently provided by [25].

Consider a random sample x1 . . . ,xn from a p-dimensional distribution collected into a p× n random data matrix X.
For statistical applications the logarithmic determinants of the sample covariance matrix S= n−1XX⊤ and the sample
correlation matrix R = {diag(S)}−1/2S{diag(S)}−1/2 are of vital importance. They allow efficient inferential proce-
dures on the structure of the true covariance/correlation matrices (see, the monographs of Anderson [3] and Yao, Zheng
and Bai [42]). In particular, the determinant of the sample correlation matrix has numerous applications in stochastic
geometry as it is proportional to the volume of the hyperellipsoid constructed from standardized vectors, see [34]. Fur-
thermore, the determinant of R is the well-known likelihood ratio statistic for testing the independence of the elements
of the random vector in case of multivariate normality of the columns of the data matrix, see, e.g., [10, 12, 13, 29] and
references therein.

A wide variety of results have been obtained for the large dimensional sample covariance matrix S, e.g., Marčenko–
Pastur law/equation in [30, 36], CLT for linear spectral statistics in [6] and Tracy-Widom law in [14], to mention a few.
For the sample correlation matrix R, the situation gets more complicated because of the specific nonlinear dependence
structure caused by the normalization {diag(S)}−1/2, which makes the analysis of this random matrix quite challenging.
In case the elements of the data matrix X are i.i.d. with zero mean, variance equal to one and finite fourth moment it is
shown by Jiang [28] (see, also [5],[15] and [26]) that the Marčenko–Pastur law is still valid for the sample correlation
matrix R. The asymptotic distribution of the largest eigenvalue of R is proved by [7] to obey the Tracy-Widom law.
Moreover, the largest and smallest eigenvalues of R converge to the edges of the Marčenko–Pastur density almost surely
[26]. Thus, the “first order” properties (almost sure convergence) of the eigenvalues of the sample covariance matrix S
and sample correlation matrix R coincide in case the entries of the data matrix X possess at least finite second moments
(see [27]). This observation changes if “second order” properties (such as CLTs) are of interest. To illustrate this fact, we
compare the CLTs for the logarithmic determinants of S and R under finite fourth moment assumption.

The logarithmic law of the large sample covariance matrices can be deduced from the work of Bai and Silverstein
[6] for the linear spectral statistics tr(f(S)) with a test function f(x) = log(x) in case p the number of columns of the
data matrix is smaller than n the number of its rows and both tend to infinity such that their ratio tends to a constant,
i.e., p/n→ γ ∈ (0,1), as n→∞. More precisely, Wang and Yao [38] showed that if the i.i.d. entries of the data matrix
X = (Xij)1≤i≤p;1≤j≤n satisfy E(X11) = 0, Var(X11) = 1 and E(X4

11) < ∞, the following logarithmic law for its
corresponding sample covariance matrix S is valid

log detS− (p− n+ 1/2) log(1− p/n) + p− 1
2

[
E(X4

11)− 3
]
p/n√

−2 log(1− p/n) + [E(X4
11)− 3]p/n

d→N(0,1) , as n→∞ . (1.1)

Later on, Bao, Pan and Wang [8] and Wang, Han and Pan [39] proved a similar CLT for the logarithmic determinant of
the sample covariance matrices in case p/n→ 1 and p≤ n under finite fourth moments.

For the sample correlation matrix R the situation is more involved. The first generic result for the linear spectral
statistics of tr(f(R)) for some test function f(·) was proved in [18] under existence of the fourth moment and it states
that taking f(x) = log(x) for p/n→ γ < 1 one gets

log detR− (p− n+ 1
2 ) log(1− p/n) + p− p/n√

−2 log(1− p/n)− 2p/n

d→N(0,1) , as n→∞ . (1.2)

Surprisingly, the latter logarithmic law is quite different from (1.1), especially the dependence on the fourth moment is
not present in (1.2), which indicates that the fourth moment assumption can be eventually weakened (see also [35] and
[41]).

In this paper, we contribute to the existing literature by showing that the logarithmic law (1.2) is valid for the sample
correlation matrix even if the fourth moment of the entries of the data matrix X is infinite. To the best of our knowledge,
this is the first result of this kind. We assume that the i.i.d. elements Xij of X possess regularly varying tails with index

α ∈ (3,4) and Xij
d
= −Xij (symmetry). In particular, this implies that EX4

11 =∞ and E|X11|3 <∞. Our proof relies
on Girko’s method of perpendiculars and a CLT for martingale differences together with the exact computation and
asymptotics of the moments of the products of self-normalized variables.
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The paper has the following structure: Section 2 contains notations, assumptions and the main result. In Section 3,
more precisely in Theorem 3.3, we derive an exact formula for the fourth moment of a weighted sum of the components
a random vector on the unit sphere. The latter result is of independent interest and can be considered as a first step to gen-
eralization of the key lemma for quadratic forms for correlated random vectors of unit length in case of an infinite fourth
moment (c.f. [18, Lemma 5] and [32, Lemma 1]). Asymptotic formulas for the moments of self-normalized variables and
the proof of the main theorem are presented in Section 4, while the appendix contains some additional auxiliary results.

2. Main result

Consider a p-dimensional population x= (X1, . . . ,Xp) ∈ Rp where the coordinates Xi are i.i.d. non-degenerated ran-
dom variables with mean zero. For a sample x1, . . . ,xn from the population we construct the data matrix X = Xn =
(x1, . . . ,xn) = (Xij)1≤i≤p;1≤j≤n, the sample covariance matrix S= Sn = n−1XX⊤ and the sample correlation matrix
R,

R=Rn = {diag(Sn)}−1/2Sn{diag(Sn)}−1/2 =YY⊤ . (2.1)

Here the standardized matrix Y =Yn = (Yij)1≤i≤p;1≤j≤n for the sample correlation matrix has entries

Yij = Y
(n)
ij =

Xij√
X2

i1 + · · ·+X2
in

, (2.2)

which depend on n. Throughout the paper, we often suppress the dependence on n in our notation. We consider the
asymptotic regime

p= pn →∞ and
p

n
→ γ ∈ (0,1) , as n→∞ . (Cγ)

We assume that |X11| has a regularly varying tail with index α> 0, that is

P(|X11|> x) = L(x)x−α , x > 0 , (2.3)

for a function L that is slowly varying at infinity. Thus, regularly varying distributions possess power-law tails and
moments of |X11| of higher order than α are infinite. Typical examples include the Pareto distribution with parameter α
and the t-distribution with α degrees of freedom.

Now we state the CLT for the logarithmic determinant of the sample correlation matrix R under infinite fourth moment
which is the main result of this paper.

Theorem 2.1. Assume (Cγ) and that the distribution of X11 is symmetric and regularly varying with index α ∈ (3,4).
Then, as n→∞, we have

log detR− (p− n+ 1
2 ) log(1−

p
n ) + p− p

n√
−2 log(1− p/n)− 2p/n

d→N(0,1) . (2.4)

Theorem 2.1 is proved in Section 4. To numerically illustrate the role of the tail index parameter α and the effect of
symmetry of X11, we provide a small simulation in Figure 1 and Figure 2. First, we simulate the entries of the data matrix
Xij independently from a t-distribution with different degrees of freedom smaller than four (infinite fourth moment). We
observe a perfect fit of both the histogram and kernel density to the density of the standard normal distribution for all
degrees of freedom except 2.5. Thus, the logarithmic law seems not to be valid in case the third absolute moment of the
t-distribution is infinite, which is inline with our assumption α > 3. In the latter case the kernel density still resembles
the normal density but has a significantly larger variance, which indicates that the case α ∈ (2,3) should be investigated
separately in the future. The effect of a larger variance becomes more pronounced if we decrease the tail parameter of the
observations Xij even further.

Next, we generate the entries Xij from a non-symmetric distribution, namely inverse gamma with scale parameter
2 and varying shape parameter. Note that this distribution has a regularly varying tail with index α equal to the shape
parameter and the function L(x) from (2.3) behaving like a constant as x→∞. Thus, the shape parameter for inverse
gamma distribution plays the same role as the degrees of freedom for t-distribution, namely if the shape coefficient is
smaller than four then the moment of order four does not exist. Hence, the top row in Figure 2 represents the results when
the fourth moment exists, while the pictures in the bottom row represent the case of an infinite fourth moment. One can
clearly see that symmetry is vital for logarithmic law to be valid. Indeed, by a careful examination of the proof one can
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p = 500, n = 1000, t−distribution with 3.9 degrees of freedom
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FIG 1. Logarithmic law for t distribution with different degrees of freedom and p= 500, n= 1000 with 1000 repetitions.

see that asymmetric distribution of Xij as well as a tail parameter α < 3 could possibly create additional terms in the
asymptotic variance and, thus, the CLT in (2.4) might not be true anymore.

As a consequence, if our assumptions are violated, the limiting distribution of the logarithmic determinant of the
sample correlation matrix still resembles the normal one but with a considerably larger variance. The asymmetry effects
seem, however, to have a larger impact on the limiting distribution of log detR in the case of heavy tailed data. In case
the distribution of heavy-tailed data is not symmetric, it might be beneficial to take an appropriate power transform of the
data before using the derived logarithmic law for any testing procedures, for example, testing the uncorrelatedness.

Finally, we briefly comment on the extension of our result to p-dimensional observations with population covariance
Σ ̸= I, which amounts to replacing the data matrix X with Σ1/2X, where Σ1/2 is the Hermitian square root of Σ. In the
sample covariance case, since

log det(Σ1/2SΣ1/2) = logdetS+ logdetΣ ,

it is straightforward to obtain a CLT for log det(Σ1/2SΣ1/2) from (1.1). Unfortunately, there seems to be no such simple
relation for the logarithmic determinant of the sample correlation matrix

R̃= {diag(Σ1/2SΣ1/2)}−1/2Σ1/2SΣ1/2{diag(Σ1/2SΣ1/2)}−1/2 .
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p = 500, n = 1000, invgamma distribution with shape= 5 and scale = 2
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p = 500, n = 1000, invgamma distribution with shape= 4.5 and scale = 2
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p = 500, n = 1000, invgamma distribution with shape= 3.9 and scale = 2
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p = 500, n = 1000, invgamma distribution with shape= 3.5 and scale = 2

logdet

D
en

si
ty

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

FIG 2. Logarithmic law for inverse gamma distribution with scale β = 2 and shape α ∈ {5,4.5,3.9,3.5} for p = 500 and n = 1000 with 1000
repetitions.

Recently, [35] used the identity

log det R̃ = logdet(Γ1/2SΓ1/2)− log det(diag(Γ1/2SΓ1/2)) ,

where Γ= {diag(Σ)}−1/2Σ{diag(Σ)}−1/2 is the associated population correlation matrix, to derive a CLT in the case
of a finite fourth moment. It is an interesting topic for future research to figure out the dependence on Γ in the heavy-tailed
case of infinite fourth moment.

2.1. Outline of the proof

The proof of Theorem 2.1 relies on novel identities and bounds for moments of quadratic forms in random vectors on
the unit sphere. As the proof is quite long and technical, it will be split into several parts. First, using the method of
perpendiculars from [39] we represent the log determinant of the sample correlation matrix R=YY⊤ as

log detR= cn +

p−1∑
i=0

log(1 + Z̃i+1) with cn =−p logn+ log(n(n− 1) · · · (n− p+ 1)) , (2.5)
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where, for i= 0, . . . , p− 1, Z̃i+1 = y⊤
i+1Qiyi+1 − 1 and yi+1 = (Yi+1,1, . . . , Yi+1,n)

⊤ denotes the (i+ 1)st row of the
matrix Y. Here Yij are given in (2.2), and Qi is an n× n projection matrix normalized by its trace and only depends on
the vectors y1, . . . ,yi. Thus, Qi and the unit vector yi+1 are independent.

Writing offdiag(Qi) for Qi − diag(Qi), the (centered) quadratic form Z̃i+1 is decomposed into diagonal and off-
diagonal parts as follows

Z̃i+1 =
[
y⊤
i+1 diag(Qi)yi+1 − 1

]
+
[
y⊤
i+1 offdiag(Qi)yi+1

]
, 0≤ i≤ p− 1.

The exact formula for the fourth moment of the diagonal part is derived in Section 3 (Corollary 3.4), while the off-
diagonal part is studied in Appendix A. In fact the key results in Section 3, Lemma 3.2 and Theorem 3.3 in particular, are
applicable to more general vectors than the yi+1 and therefore might be of independent interest.

In the next step, we perform a Taylor series expansion of the logarithms log(1 + Z̃i+1). Using the results on the
diagonal and off-diagonal parts of Z̃i+1, we deduce that under (Cγ) it holds

p−1∑
i=0

log(1 + Z̃i+1) =

p−1∑
i=0

Z̃i+1 −
p−1∑
i=0

Z̃2
i+1

2
+ remainder , (2.6)

where the remainder term converges to zero in probability. A combination of (2.5) and (2.6) yields that, as n→∞,

log detR+ oP(1) =

(
p−1∑
i=0

Z̃i+1

)
+

(
cn −

p−1∑
i=0

Z̃2
i+1

2

)
=: T1 + T2 .

Finally, the statement of Theorem 2.1 can be deduced from T1
d→N(0,−2 log(1− γ)− 2γ), which is proven via martin-

gale techniques, and T2 − µn → 0, as n→∞, where µn = (p− n+ 1
2 ) log(1−

p
n )− p+ p

n .
The results about the diagonal and off-diagonal parts of Z̃i+1 are fundamental in analyzing T1 and T2, and in proving

that the remainder term is oP(1) as n→∞. For example, they allow obtaining the key Lemma 4.7, from which both the
formula for the asymptotic variance and mean of T1 can be deduced. Moreover, Proposition 4.3, which is important for
justification of the Taylor series expansion of the logarithm, follows from both Proposition A.1 (fourth moment bound
for off-diagonal part) and Corollary 3.4 (exact fourth moment for diagonal part). The latter result explains the necessity
of the assumption α> 3. At the same time Lemma 4.7 and Proposition 4.3 rely a lot on the technical results presented in
Appendix B, which establish the rates for the moments of the diagonal entries of the normalized projection matrices Qi.

The main challenge in proving the result of Theorem 2.1 lies in the non-applicability of the lemmas on the moments
of centered quadratic forms; see, for example, Bai and Silverstein [4, Lemma B.26 and Lemma 9.1] or Gao et al. [18,
Lemma 5 (supplement)]. Morales et al. [32] recently provided version of these lemmas suitable for sample correlation
matrices which we state for the reader’s convenience.

Lemma 2.2. [32, Lemma 6] Let B be an n×n non-random symmetric matrix, x, y ∈Rn random vectors of i.i.d. entries
with mean zero, variance one, E|xi|l,E|yi|l ≤ νl and E[xiyi] = ρ. Then, for any s≥ 1,

E
∣∣∣∣ x⊤By

∥x∥2∥y∥2
− ρ

n
trB

∣∣∣∣s ≤Cs

[
n−s

(
ν2s trB

s + (ν4 trB
2)s/2

)
+ ∥B∥s

(
n−s/2ν

s/2
4 + n−s+1ν2s

)]
, (2.7)

where ∥ · ∥2 denotes the Euclidean norm on Rn and Cs is a constant depending only on s.

Note that the right-hand side in (2.7) is infinite whenever the fourth moment is infinite (α < 4). Lemma 2.2 is proved
by first replacing ∥x∥2,∥y∥2 by their expectations and then applying the Bai Silverstein lemma. It is well-known that the
replacement of ∥x∥2,∥y∥2 is possible if and only if the fourth moment of the data is finite; see [24] for details.

Therefore, in the case of infinite fourth moment a more sophisticated approach is required. Our remedy lies in conside-
ration of the entries Yij directly. Even if the original entries of the data matrix Xij do not obey a finite fourth moment, the
self-normalized Yij in contrast are bounded in absolute value by 1 since Y 2

i1+ · · ·Y 2
in = 1. Thus, to find the desired central

limit theorem one needs to establish the exact limiting behavior of the moments of sums, which involve self-normalized
random variables Y 2

ij (diagonal part) and their mixed products YikYil (off-diagonal part). This requires a very delicate
treatment of their convergence rates, which is achieved by providing exact formulas for those moments. Our rates are
quite precise, such that one can clearly see where specific assumptions on the tail index α are important and where they
can be weakened. We believe that the method used in this paper can be further extended to data matrices whose entries
Xij are non-symmetric and/or obey infinite third moments. The result of the main theorem, however, will change and the
desired CLT could be entirely different in that case. In Section 4, we provide a detailed proof of Theorem 2.1.
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3. Diagonal part: Exact formula

In this section, we will derive an exact formula for the fourth moment of
∑n

k=1 ak(nZ
2
k − 1), where a1, . . . , an are

constants and Z1, . . . ,Zn are (essentially) exchangeable random variables satisfying Z2
1 + · · ·+ Z2

n = 1. We start with
the following lemma.

Lemma 3.1. Let Z1, . . . ,Zn be random variables such that, for all positive integers m1, . . . ,mr with m1+ · · ·+mr ≤ 4,
β2m1,...,2mr

:= E[Z2m1
i1

Z2m2
i2

· · ·Z2m4
i4

] is finite and invariant under permutations of the indices. Then we have for any
numbers a1, . . . , an with a1 + · · ·+ an = 1 that

E
[( n∑

k=1

ak(Z
2
k −E[Z2

k ])
)4]

= S4β8 + 4(S3 − S4)β6,2 − 4S3β2β6 + 3(S2
2 − S4)β4,4

+ 6(S2 − S2
2 − 2S3 + 2S4)β4,2,2 + 12(−S2 + S3)β2β4,2 + 4(3S2 − 2S3 − 1)β2β2,2,2

+ (−6S2 + 3S2
2 + 8S3 − 6S4 + 1)β2,2,2,2 + 6(1− S2)β

2
2β2,2 + 6S2β

2
2β4 − 3β4

2 ,

(3.1)

where for j ≥ 1, we define Sj = aj1 + · · ·+ ajn. Moreover, we have

E
[( n∑

k=1

akZ
2
k

)4]
= S4β8 + 4(S3 − S4)β6,2 + 6(S2 − S2

2 − 2S3 + 2S4)β4,2,2

+ 3(S2
2 − S4)β4,4 + (1− 6S2 + 3S2

2 + 8S3 − 6S4)β2,2,2,2 .

(3.2)

Proof. We note that all sums in this proof run from 1 to n. Using a1 + · · ·+ an = 1, it is easy to check that∑
k ̸=ℓ

akaℓ = 1− S2 ,
∑
k ̸=ℓ

a2kaℓ = S2 − S3 ,
∑
k ̸=ℓ

a3kaℓ = S3 − S4 , (3.3)

∑
k ̸=ℓ

a2ka
2
ℓ = S2

2 − S4 ,
∑

k ̸=ℓ ̸=j

a2kaℓaj = S2 − S2
2 − 2S3 + 2S4 , (3.4)

∑
k ̸=ℓ̸=j

akaℓaj = 1− 3S2 + 2S3 ,
∑

k ̸=ℓ ̸=j ̸=h

akaℓajah = 1− 6S2 + 3S2
2 + 8S3 − 6S4 . (3.5)

For example, we shall show the second relation in (3.4),∑
k ̸=ℓ̸=j

a2kaℓaj =
∑
k ̸=ℓ

a2kaℓ(1− ak − aℓ) =
∑
k ̸=ℓ

a2kaℓ −
∑
k ̸=ℓ

a3kaℓ −
∑
k ̸=ℓ

a2ka
2
ℓ = S2 − S2

2 − 2S3 + 2S4 .

We have the decomposition

E
[( n∑

k=1

akZ
2
k

)4]
= E

[( n∑
k=1

a2kZ
4
k

)2]
+ 2E

[ n∑
j=1

a2jZ
4
j

∑
k ̸=ℓ

akaℓZ
2
kZ

2
ℓ

]
+E

[(∑
k ̸=ℓ

akaℓZ
2
kZ

2
ℓ

)2]
=: I + II + III .

(3.6)

For the first term, we get

I = β8

n∑
k=1

a4k + β4,4

∑
k ̸=ℓ

a2ka
2
ℓ = β8S4 + β4,4(S

2
2 − S4) ,

where (3.3) was used for the last equality. In view of (3.3) and (3.4), we have

II = 2β6,2

∑
k ̸=ℓ

akaℓ(a
2
k + a2ℓ) + 2β4,2,2

∑
k ̸=ℓ

akaℓ(S2 − a2k − a2ℓ)

= β6,2(4S3 − 4S4) + β4,2,2(2S2 − 2S2
2 − 4S3 + 4S4) .
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Using (3.3)–(3.5) for the third equality, we find for the third term that

III = β4,4 2
∑
k ̸=ℓ

a2ka
2
ℓ + β4,2,2

∑
k ̸=ℓ,j ̸=h

#{k,ℓ,j,h}=3

akaℓajah + β2,2,2,2

∑
k ̸=ℓ ̸=j ̸=h

akaℓajah

= β4,4 2
∑
k ̸=ℓ

a2ka
2
ℓ + β4,2,2 4

∑
k ̸=ℓ̸=j

a2kaℓaj + β2,2,2,2

∑
k ̸=ℓ̸=j ̸=h

akaℓajah

= 2β4,4(S
2
2 − S4) + 4β4,2,2(S2 − S2

2 − 2S3 + 2S4) + β2,2,2,2(1− 6S2 + 3S2
2 + 8S3 − 6S4) .

Simplifying I + II + III establishes (3.2) by virtue of (3.6).
Next, we turn to (3.1). To this end, let A be the n×n diagonal matrix with diagonal entries a1, . . . , an. By Lemma B.4,

we have

E
[( n∑

k=1

akZ
2
k

)3]
= β2,2,2[(trA)3 + 6trA tr(A2) + 8tr(A3)] + (β6 − 15β4,2 + 30β2,2,2) tr(A ◦A ◦A)

+ (β4,2 − 3β2,2,2)[3 trA tr(A ◦A) + 12 tr(A ◦A2)]

= β2,2,2[1 + 6S2 + 8S3] + (β6 − 15β4,2 + 30β2,2,2)S3 + (β4,2 − 3β2,2,2)[3S2 + 12S3] , (3.7)

where ◦ denotes the Hadamard product. A simple calculation using a1 + · · ·+ an = 1 yields

E
[( n∑

k=1

akZ
2
k

)2]
= β4S2 + β2,2(1− S2) . (3.8)

By the binomial theorem, we have

E
[( n∑

k=1

akZ
2
k − β2)

)4]
=

4∑
t=0

(
4

t

)
E
[( n∑

k=1

akZ
2
k

)t]
(−β2)

4−t . (3.9)

Plugging (3.8), (3.7) and (3.2) into (3.9) and then simplifying establishes (3.1). We omit details of this lengthy computa-
tion.

Additionally assuming Z2
1 + · · ·+Z2

n = 1, the relation between the β’s is captured by the following crucial lemma.

Lemma 3.2. Let Z1, . . . ,Zn be random variables such that Z2
1 + · · ·+Z2

n = 1 and, for all positive integers m1, . . . ,mr

with m1 + · · ·+mr ≤ 4, β2m1,...,2mr
:= E[Z2m1

i1
Z2m2
i2

· · ·Z2m4
i4

] is invariant under permutations of the indices. Then it
holds that β2 = 1/n and

β4 =
1

n
− (n− 1)β2,2 , β4,2 =

1

2
β2,2 −

n− 2

2
β2,2,2 , (3.10)

β6 =
1

n
− 3(n− 1)

2
β2,2 +

(n− 1)(n− 2)

2
β2,2,2 , (3.11)

β6,2 =
1

2
β2,2 −

5(n− 2)

6
β2,2,2 +

(n− 2)(n− 3)

3
β2,2,2,2 − β4,4 , (3.12)

β4,2,2 =
1

3
β2,2,2 +

3− n

3
β2,2,2,2 , (3.13)

β8 =
1

n
+ 2(1− n)β2,2 +

(4n2

3
− 4n+

8

3

)
β2,2,2

+
(−n3

3
+ 2n2 − 11n

3
+ 2
)
β2,2,2,2 + (n− 1)β4,4. (3.14)

Proof. Since Z2
1 + · · ·+Z2

n = 1, an application of the multinomial theorem shows that for k ≥ 1,

1 = (Z2
1 + · · ·+Z2

n)
k =

k∑
r=1

∑
m1+···+mr=k

mj≥1

(
n

r

)(
k

m1, . . . ,mr

)
β2m1,...,2mr .
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In particular, for k = 2,3,4, one obtains

1 = nβ4 + n(n− 1)β2,2 , (3.15)

1 = nβ6 + 3n(n− 1)β4,2 + n(n− 1)(n− 2)β2,2,2 , (3.16)

1 = nβ8 + 4n(n− 1)β6,2 + 3n(n− 1)β4,4 + 6n(n− 1)(n− 2)β4,2,2 (3.17)

+ n(n− 1)(n− 2)(n− 3)β2,2,2,2 .

Since Z2
1 + · · ·+Z2

2 = 1, it holds Z2k
1 = Z2k

1 (Z2
1 + · · ·+Z2

n). Taking expectation one obtains

β2k = β2k+2 + (n− 1)β2k,2 , k = 1,2,3 . (3.18)

Using Z2k
1 Z2

2 = Z2k
1 Z2

2 (Z
2
1 + · · ·+Z2

n), one analogously gets

β2k,2 = β2k+2,2 + β2k,4 + (n− 2)β2k,2,2 , k = 1,2 , (3.19)

and

β2,2,2 = 3β4,2,2 + (n− 3)β2,2,2,2 . (3.20)

The lemma now follows from equations (3.15)–(3.20) and some tedious but straightforward computations.

We now state the main result of this section.

Theorem 3.3. Let Z1, . . . ,Zn be random variables such that Z2
1 + · · ·+Z2

n = 1 and, for all positive integers m1, . . . ,mr

with m1 + · · ·+mr ≤ 4, β2m1,...,2mr
:= E[Z2m1

i1
Z2m2
i2

· · ·Z2m4
i4

] is invariant under permutations of the indices. Then we
have for any numbers a1, . . . , an with a1 + · · ·+ an = 1 that

E
[( n∑

k=1

ak(nZ
2
k − 1)

)4]
=K4,4n

4β4,4 +K2,2n
2β2,2 +K2,2,2n

3β2,2,2 +K2,2,2,2n
4β2,2,2,2 +K , (3.21)

where Sj = aj1 + · · ·+ ajn, j ≥ 1 and

K4,4 = 3S2
2 − 4S3 + nS4 , K = 6nS2 − 4n2S3 + n3S4 − 3 ,

K2,2 =−12nS2 + 8n2S3 − 2n3S4 + 6 ,

K2,2,2 = 8nS2 − 2nS2
2 +

8n(1− 2n)

3
S3 +

2n2(2n− 1)

3
S4 − 4 ,

K2,2,2,2 =−2nS2 + (2n− 3)S2
2 +

4(n2 − 2n+ 3)

3
S3 −

n(n2 − 2n+ 3)

3
S4 + 1 .

In particular, we have

K +K4,4 +K2,2 +K2,2,2 +K2,2,2,2 = 0 . (3.22)

Proof. We have

E
[( n∑

k=1

ak(nZ
2
k − 1)

)4]
= n4E

[( n∑
k=1

ak(Z
2
k − 1/n)

)4]
.

The right-hand side can be explicitly computed using Lemma 3.1. Plugging in the formulas from Lemma 3.2, one can
check, for example with mathematical software, that (3.21) holds.

Even though, equation (3.22) follows from the defintions of K,K4,4,K2,2,K2,2,2,K2,2,2,2. We will provide an addi-
tional proof which is more insightful. To this end, set Z1 = · · · = Zn = n−1/2 which implies that the left-hand side in
(3.21) is zero and that the right-hand side is K +K4,4 +K2,2 +K2,2,2 +K2,2,2,2.

While the main focus of this paper is on the sample correlation matrix R = YY⊤ (see (2.1)), Theorem 3.3 might
be of independent interest. We will apply Theorem 3.3 to the rows of Y. Since Y11, . . . , Y1n are exchangeable random
variables satisfying Y 2

11 + · · ·+ Y 2
1n = 1, one obtains the following corollary.
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Corollary 3.4. Let Y11, . . . , Y1n be defined in (2.2) and for all positive integers m1, . . . ,mr with m1 + · · ·+mr ≤ 4 set
β2m1,...,2mr

:= E[Y 2m1
11 Y 2m2

12 · · ·Y 2m4
1r ]. Then we have for any numbers a1, . . . , an with a1 + · · ·+ an = 1 that

E
[( n∑

k=1

ak(nY
2
1k − 1)

)4]
=K4,4n

4β4,4 +K2,2n
2β2,2 +K2,2,2n

3β2,2,2 +K2,2,2,2n
4β2,2,2,2 +K , (3.23)

where Sj = aj1 + · · ·+ ajn, j ≥ 1, and K4,4,K2,2,K2,2,2,K2,2,2,2,K are defined in Theorem 3.3.

4. Proof of the main result

4.1. Preliminaries

Throughout this section, for integers k1, . . . , kr , we will use the notation

β2k1,...,2kr
:= E[Y 2k1

11 · · ·Y 2kr
1r ] ,

where we recall the definition of Yij from (2.2). Since β2k1,...,2kr
= β2kπ(1),...,2kπ(r)

for any permutation π on {1, . . . , r}
we will typically write the indices in decreasing order. For example, instead of β2,4 we prefer writing β4,2. Now we
compute the precise asymptotic behavior of β2k1,...,2kr .

Lemma 4.1. Let α ∈ (2,4) and assume that E[X2
11] = 1 and P(|X11| > x) = x−αL(x) for x > 0 where L is a slowly

varying function. Define the Ykn’s as in (2.2) and consider integers k1, . . . , kr ≥ 1. Then it holds

lim
n→∞

nN1(1−α/2)+rα/2

Lr−N1(n1/2)
β2k1,...,2kr

=
(α/2)r−N1Γ(N1(1− α/2) + rα/2)

∏
i:ki≥2 Γ(ki − α/2)

Γ(k1 + · · ·+ kr)
, (4.1)

where N1 =#{1≤ i≤ r : ki = 1}. In particular, we have

lim
n→∞

nα/2

L(n1/2)
β2k =

αΓ(α/2)Γ(k− α/2)

2Γ(k)
, k ≥ 1 . (4.2)

Proof. We remark that (4.1) was proved in [1] for N1 = 0, that is ki ≥ 2. For the general case let β = α/2, X d
=X11 and

consider r ≥ 1, k1 + · · ·+ kr = k ≥ 1 with ki ≥ 1. From Albrecher and Teugels [1], page 7, we have

E[Y 2k1
11 · · ·Y 2kr

1r ] =
(−1)k

nΓ(k)

∫ ∞

0

(
t
n

)k−1

φn−r
(

t
n

) r∏
i=1

φ(ki)
(

t
n

)
dt , (4.3)

where φ(s) = E[e−sX2

], s > 0, and φ(m)(s) = dm

dsmφ(s). By [1], we have

lim
n→∞

φn−r
(

t
n

)
= e−t , t > 0 , (4.4)

and that the asymptotic behavior of φ(m)(s), m ∈N, at the origin is given by

(−1)mφ(m)(s)∼
{
βΓ(m− β)sβ−mL(s−1/2) , if m>β,
E[X2m] , if m≤ β,

s ↓ 0 . (4.5)
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By (4.3), Potter’s theorem and the dominated convergence theorem (for more details see [1] or [17]), we obtain in view
of (4.4) and (4.5) that, as n→∞,

E[Y 2k1
11 · · ·Y 2kr

1r ] =
(−1)k

nΓ(k)

∫ ∞

0

(
t
n

)k−1

φn−r
(

t
n

)(
φ(1)

(
t
n

))N1 ∏
i:k1≥2

φ(ki)
(

t
n

)
dt

∼ 1

nΓ(k)

∫ ∞

0

(
t
n

)k−1

e−t
(
E[X2]

)N1 ∏
i:ki≥2

βΓ(ki − β)
(
t
n

)β−ki
L
((

t
n

)−1/2
)

︸ ︷︷ ︸
∼L(n1/2)

dt

∼
( ∏

i:ki≥2

Γ(ki − β)
)βr−N1Lr−N1(n1/2)

nN1(1−β)+βrΓ(k)

∫ ∞

0

e−t tN1(1−β)+βr−1 dt

=
Lr−N1(n1/2)

nN1(1−β)+βr

βr−N1Γ(N1(1− β) + βr)
∏

i:ki≥2 Γ(ki − β)

Γ(k)
.

Rearranging yields (4.1).

Remark 4.2. We mention that (4.1) per se does not tell us the speed of convergence of the left-hand side to the limit. For
example, by (4.1) we (only) know that n(n− 1)β2,2 ∼ 1, as n→∞. Using the first identity in (3.10), we deduce that

1− n(n− 1)β2,2 = nβ4 ∼ n1−α/2L(n1/2)(α/2)Γ(α/2)Γ(2− α/2) , n→∞ ,

where (4.2) was used in the last step. Thus, for certain cases, Lemma 4.1 in conjunction with Lemma 3.2 reveal the speed
of convergence in (4.1).

4.2. Proof of Theorem 2.1

With some matrix algebra, Wang et al. [39, p. 85-86] derived for the log determinant of the sample covariance matrix
S= n−1XX⊤ that

log detS=−p logn+ log((n(n− 1) · · · (n− p+ 1)) +

p−1∑
i=0

log(1 +Zi+1) , (4.6)

where

Zi+1 =
b⊤i+1Pibi+1 − (n− i)

n− i
and Pi = In −B⊤

(i)(B(i)B
⊤
(i))

−1B(i) .

Here P0 = In, B(i) = (b1, . . . , bi)
⊤, and bi = (xi1, . . . , xin)

⊤ denotes the ith row of the matrix X, i= 1, . . . , p− 1.
Analogously to (4.6), we get for the log determinant of the sample correlation matrix R=YY⊤ that

log detR=−p logn+ log(n(n− 1) · · · (n− p+ 1)) +

p−1∑
i=0

log(1 + Z̃i+1) , (4.7)

where

Z̃i+1 =
n b̃⊤i+1P̃ib̃i+1 − (n− i)

n− i
and P̃i = In − B̃⊤

(i)(B̃(i)B̃
⊤
(i))

−1B̃(i) .

Here P̃0 = In, B̃(i) = (̃b1, . . . , b̃i)
⊤, and b̃i = (Yi1, . . . , Yin)

⊤ denotes the ith row of the matrix Y. An important obser-
vation is that

P̃i = Pi = In −B⊤
(i)(B(i)B

⊤
(i))

−1B(i)

is the same projection matrix as in the sample covariance case. Moreover, due to [39, Proposition 2.1] all matrices B(i)B
⊤
(i)

are invertible with overwhelming probability.
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We note that Pi = P 2
i and tr(Pi) = n− i, and define

Qi = (qi,kl) = Pi/(n− i) , 0≤ i≤ p− 1 .

By [31, Lemma 2.1] and [31, Lemma 3.1], we have for 0≤ i≤ p− 1 and 1≤ k, l≤ n that

0≤ qi,kk ≤
1

n− i
and − 1

2(n− i)
≤ qi,kl ≤

1

2(n− i)
. (4.8)

In what follows we will need the notation

µn := (p− n+ 1
2 ) log(1−

p
n )− p+ p

n ,

cn :=−p logn+ log(n(n− 1) · · · (n− p+ 1)) ,

Ỹi+1 :=
1
2 (Z̃

2
i+1 −E[Z̃2

i+1|Fi]) , 0≤ i≤ p− 1 ,

where Fi =F (n)
i denotes the sigma algebra generated by the first i rows of X.

It is convenient to decompose Z̃i+1 as follows,

Z̃i+1 =
n∑

j=1

qi,jj(nY
2
i+1,j − 1) +

∑
k ̸=l

qi,kl nYi+1,kYi+1,l =: Ui+1 + Vi+1 , 0≤ i≤ p− 1. (4.9)

The next result is the key ingredient; it will be proved in Section 4.7.

Proposition 4.3. In the setting of Theorem 2.1, if α ∈ (2,4)1, we have for any ε ∈ (0, α/2− 1) that

lim
n→∞

nε

p−1∑
i=0

E[V 4
i+1] = 0 . (4.10)

Moreover, if α ∈ (3,4), there exists an ε > 0 such that

lim
n→∞

nε

p−1∑
i=0

E[U4
i+1] = 0 . (4.11)

By Taylor’s theorem, we get

p−1∑
i=0

log(1 + Z̃i+1) =

p−1∑
i=0

(Z̃i+1 −
Z̃2
i+1

2
) +

p−1∑
i=0

Ri+1 , (4.12)

where the remainder in Lagrange form is given by

Ri+1 =
1

3

( Z̃i+1

1 + θZ̃i+1

)3
for some θ = θ(Z̃i+1) ∈ (0,1) . (4.13)

This expansion is justified by

max
i=0,...,p−1

|Z̃i+1|
P→ 0 , n→∞ , (4.14)

which is an immediate consequence of the following lemma.

Lemma 4.4. Under the conditions of Theorem 2.1, we have for any ε > 0 that

lim
n→∞

p−1∑
i=0

P(|Z̃i+1|> ε) = 0 .

1We emphasize that some parts of our proof also work for α > 2, which is the widest range of the tail parameter α for which the CLT for the
log-determinant might hold. This is due to fact that for α ∈ (0,2) the limiting spectral distribution of the sample correlation matrix R is no longer the
classical Marčenko–Pastur law but the so-called α-heavy Marčenko–Pastur law; see [27] for details.
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Proof. Using Markov’s inequality, |a+ b|4 ≤ 23(|a|4 + |b|4) for a, b ∈R, and Proposition 4.3, we get for ε > 0,

p−1∑
i=0

P(|Z̃i+1|> ε)≤
p−1∑
i=0

E[Z̃4
i+1]

ε
≤ 8

ε

p−1∑
i=0

(E[U4
i+1] +E[U4

i+1])→ 0 , n→∞ . (4.15)

Recalling the definition of Ỹi+1, we have

p−1∑
i=0

(Z̃i+1 −
Z̃2
i+1

2
) =

p−1∑
i=0

Z̃i+1 −
p−1∑
i=0

Ỹi+1 −
p−1∑
i=0

1
2E[Z̃

2
i+1|Fi] . (4.16)

In view of (4.7) and (4.12), one gets

log detR− µn =

p−1∑
i=0

Z̃i+1 −
p−1∑
i=0

Ỹi+1 +

p−1∑
i=0

Ri+1 −
p−1∑
i=0

1
2E[Z̃

2
i+1|Fi] + cn − µn . (4.17)

By virtue of (4.17) and noting that −2 log(1− p/n)− 2p/n→−2 log(1− γ)− 2γ, Theorem 2.1 follows from the next
four limit relations by an application of the Slutsky lemma,

1√
−2 log(1− p/n)− 2p/n

p−1∑
i=0

Z̃i+1
d→N(0,1) , (4.18)

p−1∑
i=0

Ỹi+1
P→ 0 , (4.19)

p−1∑
i=0

Ri+1
P→ 0 , (4.20)

p−1∑
i=0

1
2E[Z̃

2
i+1|Fi]− cn + µn

P→ 0 . (4.21)

Equations (4.18), (4.19), (4.20), (4.21) are proved in Sections 4.3, 4.4, 4.5 and 4.6, respectively. This completes the proof
of Theorem 2.1.

4.3. Proof of (4.18)

We will use the following CLT for martingale differences.

Lemma 4.5 (e.g. Hall and Heyde [23]). Let {Sni,Fni,1≤ i≤ kn, n≥ 1} be a zero-mean, square integrable martingale
array with differences Zni. Suppose that E[maxiZ

2
ni] is bounded in n and that

max
i

|Zni|
P→ 0 and

∑
i

Z2
ni

P→ 1 .

Then we have Snkn

d→N(0,1).

In view of E[Z̃i+1|Fi] = 0, we observe that (Z̃i+1)i is a martingale difference sequence with respect to the filtration
(Fi). We apply Lemma 4.5 to the martingale differences σnZ̃i+1 with σn = (−2 log(1 − p/n) − 2p/n)−1/2. From
(4.14), we have maxi=0,...,p−1 |σn Z̃i+1|

P→ 0 as n→∞. In order to check the other conditions in Lemma 4.5, we need
the following lemmas. The notation S

(i)
j := qji,11 + · · ·+ qji,nn, j ≥ 1 will be useful.

Lemma 4.6. Assume that the distribution of X11 is symmetric, i.e., X11
d
=−X11. Then it holds for 0≤ i≤ p− 1 that

E[U2
i+1] =

1− nE[S(i)
2 ]

n− 1
(1− n2β4) , (4.22)
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E[V 2
i+1] = 2n2β2,2

( 1

n− i
−E[S(i)

2 ]
)
. (4.23)

Proof. Let 0≤ i≤ p− 1. By the binomial theorem, we have for s≥ 1,

E
[(

n

n∑
k=1

qi,kkY
2
i+1,k − 1

)s ∣∣∣Fi

]
= (−1)s + s(−1)s−1 +

s∑
t=2

(
s

t

)
(−1)s−tntE

[( n∑
k=1

qi,kkY
2
i+1,k

)t ∣∣∣Fi

]
.

(4.24)

A simple calculation using tr(Qi) = 1 yields

n2E
[( n∑

k=1

qi,kkY
2
i+1,k

)2 ∣∣∣Fi

]
= n2β4S

(i)
2 + n2β2,2(1− S

(i)
2 ) . (4.25)

Combining (3.10) from Lemma 3.2 and (4.25), we obtain

n2E
[( n∑

k=1

qi,kkY
2
i+1,k

)2 ∣∣∣Fi

]
= n2β4

(
S
(i)
2

(
1 +

1

n− 1

)
− 1

n− 1

)
+

n

n− 1
(1− S

(i)
2 ) .

In view of (4.24), this establishes (4.22).
By conditioning on Fi and using that qi,kl = qi,lk , one gets that

E[V 2
i+1] = 2n2β2,2E

∑
k ̸=l

q2i,kl = 2n2β2,2

( 1

n− i
−E[S(i)

2 ]
)
,

where we used
∑

k,l q
2
i,kl = (n− i)−1 in the last step.

Lemma 4.7. Under the assumptions of Theorem 2.1, it holds that, as n→∞,

p−1∑
i=0

E[U2
i+1] =O

(
n(3−α)/2+ε

)
and

p−1∑
i=0

E[V 2
i+1]∼−2 log(1− p

n )− 2 p
n

for any ε > 0.

Proof. From Lemma 4.6, equation (4.2) and an application of Lemma B.2, we get for any ε > 0,

p−1∑
i=0

E[U2
i+1] =

p−1∑
i=0

1− nE[S(i)
2 ]

n− 1
(1− n2β4)≤ n2β4

p−1∑
i=0

nE[S(i)
2 ]− 1

n− 1

= n2β4

(
−p

n− 1
+

n

n− 1

( p−1∑
i=0

E[S(i)
2 ]− p

n

)
+

p

n− 1

)
= n2−α/2+εO(n−1/2) =O

(
n(3−α)/2+ε

)
.

Again from Lemma 4.6 and Lemma B.2, we get, as n→∞,

p−1∑
i=0

E[V 2
i+1] = 2n2β2,2

(
p−1∑
i=0

1

n− i
−
( p−1∑

i=0

E[S(i)
2 ]− p

n

)
− p

n

)

= 2n2β2,2︸ ︷︷ ︸
∼1

(
p−1∑
i=0

1

n− i
−O(n−1/2)− p

n

)

∼−2 log(1− p/n)− 2p/n

since
∑p−1

i=0
1

n−i ∼− log(1− p/n).
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Recalling the definition of σ2
n and using Lemma 4.7, we see that

σ2
nE
[

max
i=0,...,p−1

Z̃2
i+1

]
≤ σ2

n

p−1∑
i=0

E[Z̃2
i+1] = σ2

n

p−1∑
i=0

(
E[U2

i+1] +E[V 2
i+1]

)
= 1+ o(1) . (4.26)

Due to σ2
n

∑p−1
i=0 E[Z̃2

i+1] = 1 + o(1), the condition σ2
n

∑p−1
i=0 Z̃2

i+1
P→ 1 is implied by

p−1∑
i=0

(Z̃2
i+1 −E[Z̃2

i+1 |Fi])
P→ 0 , n→∞ , (4.27)

and

p−1∑
i=0

(E[Z̃2
i+1 |Fi]−E[Z̃2

i+1])
P→ 0 , n→∞ . (4.28)

Observe that (4.27) is equivalent to (4.19). Hence, it remains to show (4.28). To this end, recall that in Lemma 4.6 and its
proof it was calculated that

p−1∑
i=0

(
E[Z̃2

i+1 |Fi]−E[Z̃2
i+1]

)
=

p−1∑
i=0

(
E[U2

i+1 + V 2
i+1|Fi]−E[U2

i+1 + V 2
i+1]

)

=

p−1∑
i=0

n(S
(i)
2 −E[S(i)

2 ])

n− 1
(1− n2β4) + 2n2β2,2

(
S
(i)
2 −E[S(i)

2 ]
)

∼ (3− n2β4)

p−1∑
i=0

(
S
(i)
2 −E[S(i)

2 ]
) P→ 0 , n→∞ ,

where we used n2β4 = o
(
n2−α/2+ε

)
for any ε > 0 by Lemma 4.1, and Lemma B.2 in the last step. Indeed, using

Lemma B.2 for k = 2 we obtain
p−1∑
i=0

(
S
(i)
2 −E[S(i)

2 ]
)
=

p−1∑
i=0

(
S
(i)
2 − 1

n

)
−

p−1∑
i=0

(
E[S(i)

2 ]− 1

n

)
=

p−1∑
i=0

n∑
ℓ=1

(
q2i,ℓℓ −

1

n2

)
︸ ︷︷ ︸

=OP(n−1/2), Markov and Lemma B.2

−
p−1∑
i=0

n∑
ℓ=1

(
E[q2i,ℓℓ]−

1

n2

)
︸ ︷︷ ︸

=O(n−1/2), Lemma B.2

=OP(n
−1/2) ,

where for the first sum we have also used the fact that 0≤
∑n

ℓ=1

(
q2i,ℓℓ − 1

n2

)
by (B.2).

Thus, we have verified the conditions of Lemma 4.5 which now yields (4.18) and finishes the proof.

4.4. Proof of (4.19)

By Markov’s inequality, one has for ε > 0,

P
(∣∣∣ p−1∑

i=0

Ỹi+1

∣∣∣> ε
)
≤ ε−1E

[( p−1∑
i=0

Ỹi+1

)2]
. (4.29)



16

If j ̸= i one can show by conditioning on Fmax(i,j) that E[Ỹi+1Ỹj+1] = 0. This in conjunction with the inequality (a+
b)2 ≤ 2(a2 + b2) gives

E
[( p−1∑

i=0

Ỹi+1

)2]
=

p−1∑
i=0

E[Ỹ 2
i+1] =

1

4

p−1∑
i=0

E
[
(Z̃2

i+1 −E[Z̃2
i+1|Fi])

2
]

≤ 1

2

p−1∑
i=0

E[Z̃4
i+1]︸ ︷︷ ︸

=o(1) by (4.15)

+
1

2

p−1∑
i=0

E[(E[Z̃2
i+1|Fi])

2]
)

= o(1) +
1

2

p−1∑
i=0

E
[{1− nS

(i)
2

n− 1
(1− n2β4) + 2n2β2,2

( 1

n− i
− S

(i)
2︸ ︷︷ ︸

≤cn−1 for some c>0

)}2]

≤ o(1) + (1− n2β4)
2

p−1∑
i=0

E
[{1− nS

(i)
2

n− 1

}2]
≤ o(1) +O

(
n3−α+2ε

)
,

where we used Lemma 4.6 to obtain the third line, and Lemma 4.1 in the last step.
In view of (4.29) and since α> 3, we have proved (4.19).

4.5. Proof of (4.20)

We need the following lemma.

Lemma 4.8. [8, Lemma 4.1] For Ri+1 defined in (4.13) and a > 0, if Z̃i+1 ≥−1 + (logn)−a one has

|Ri+1| ≤C(U2
i+1 + |Vi+1|2+δ) log logn

for any 0≤ δ ≤ 1. Here C =C(a, δ) is a positive constant that only depends on a and δ.

A combination of Lemmas 4.4 and 4.8 yields that, with probability 1− o(1), one has

p−1∑
i=0

|Ri+1| ≤C

p−1∑
i=0

(U2
i+1 + |Vi+1|2+δ) log logn , 0≤ δ ≤ 1 . (4.30)

By (4.30) and Markov’s inequality,
∑p−1

i=0 Ri+1
P→ 0 follows from

lim
n→∞

log logn

p−1∑
i=0

(
E[U2

i+1] +E[|Vi+1|2+δ]
)
= 0 ,

which in view of Lyapunov’s inequality is implied by

lim
n→∞

log logn

p−1∑
i=0

(
E[U2

i+1] + (E[V 4
i+1])

(2+δ)/4
)
= 0 , (4.31)

The U -part in (4.31) follows from Lemma 4.7.
Finally by Proposition A.1, we have, for any ε > 0 and n sufficiently large, that E[V 4

i+1]≤C n−α/2+ε, 0≤ i≤ p− 1,
where the constant C > 0 does not depend on n and i. Therefore,

p−1∑
i=0

(E[V 4
i+1])

(2+δ)/4 ≤C(2+δ)/4 pn(−α/2+ε)(2+δ)/4

With δ = 1 and using p/n→ γ ∈ (0,1), the right-hand side is

C3/4 p

n
n1− 3α

8 + 3ε
4 → 0 , n→∞ ,
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for ε > 0 sufficiently small since α> 8/3. This shows the V -part in (4.31) and completes the proof of (4.20).

4.6. Proof of (4.21)

In view of (4.28), equation (4.21) follows from

p−1∑
i=0

1
2E[Z̃

2
i+1]− cn + µn → 0 , n→∞ . (4.32)

From Lemma 4.7, we have

p−1∑
i=0

1
2E[Z̃

2
i+1] =

p−1∑
i=0

E[U2
i+1]

2 +

p−1∑
i=0

E[V 2
i+1]

2 ∼− log(1− p/n)− p/n .

Recalling the definitions µn = (p−n+ 1
2 ) log(1−

p
n )− p+ p

n and cn =−p logn+ log(n(n− 1) · · · (n− p+1)), (4.32)
is thus equivalent to

(p− n− 1

2
) log(1− p/n)− p−

p−1∑
i=1

log(1− i/n)→ 0 , n→∞ . (4.33)

Taking the logarithm on both sides of the identity
p−1∏
i=1

(
1− i

n

)
=

n!(1− (p− 1)/n)

(n− p+ 1)!np−1
=

n!(n− p+ 1)

n(n− p+ 1)!np−1
=

(n− 1)!

(n− p)!np−1
,

we get
p∑

i=1

log(1− i/n) = log(n− 1)!− (p− 1) logn− log(n− p)! .

We approximate these terms using Stirling’s formula log(n!) = n logn− n+ 1
2 log(2πn) +O(n−1) and obtain

(p− 1) logn− log(n− 1)! + log(n− p)! = (p− 1) logn− (n− 1) log(n− 1) + (n− 1)

− log(2π(n− 1))

2
+ (n− p) log(n− p)− (n− p) +

log(2π(n− p))

2
+O(n−1)

= p− 1 + (p− 1) logn− (n− 1
2 ) log(n− 1) + (n− p+ 1

2 ) log(n− p) +O(n−1)

= p− 1 + (n− 1
2 ) log(

n
n−1 ) + (n− p+ 1

2 ) log(1−
p
n ) +O(n−1) .

Therefore, the left-hand side in (4.33) is −1 + (n− 1
2 ) log(

n
n−1 ) +O(n−1) which converges to zero as n→∞.

This establishes (4.33) and thus finishes the proof of (4.21).

4.7. Proof of Proposition 4.3

First, we prove (4.10). Let α ∈ (2,4) and ε ∈ (0, α/2− 1). By Proposition A.1 we have, for any δ > 0 and n sufficiently
large, that E[V 4

i+1]≤C n−α/2+δ , 0≤ i≤ p− 1, where the constant C > 0 does not depend on n. Therefore,

nε

p−1∑
i=0

E[V 4
i+1]≤C pn−α/2+δ+ε

and using p/n→ γ ∈ (0,1), the right-hand side converges to zero for sufficiently small δ > 0. This proves (4.10).
Next, we turn to the proof of (4.11). Let α ∈ (3,4) and ε ∈ (0, α− 3). From Corollary 3.4, we know that for 0≤ i≤

p− 1,

E[U4
i+1] = EE

[( n∑
k=1

qi,kk(nY
2
i+1,k − 1)

)4 ∣∣∣Fi

]
= E[K(i)

4,4]n
4β4,4 +E[K(i)

2,2]n
2β2,2 +E[K(i)

2,2,2]n
3β2,2,2 +E[K(i)

2,2,2,2]n
4β2,2,2,2 +E[K(i)] , (4.34)
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where S
(i)
j = qji,11 + · · ·+ qji,nn, j ≥ 1, and

K
(i)
4,4 = 3(S

(i)
2 )2 − 4S

(i)
3 + nS

(i)
4 , K(i) = 6nS

(i)
2 − 4n2S

(i)
3 + n3S

(i)
4 − 3 ,

K
(i)
2,2 =−12nS

(i)
2 + 8n2S

(i)
3 − 2n3S

(i)
4 + 6 , (4.35)

K
(i)
2,2,2 = 8nS

(i)
2 − 2n(S

(i)
2 )2 +

8n(1− 2n)

3
S
(i)
3 +

2n2(2n− 1)

3
S
(i)
4 − 4 , (4.36)

K
(i)
2,2,2,2 =−2nS

(i)
2 + (2n− 3)(S

(i)
2 )2 +

4(n2 − 2n+ 3)

3
S
(i)
3 − n(n2 − 2n+ 3)

3
S
(i)
4 + 1 . (4.37)

By (3.22), we have

K(i) +K
(i)
4,4 +K

(i)
2,2 +K

(i)
2,2,2 +K

(i)
2,2,2,2 = 0 . (4.38)

Plugging (4.38) into (4.34) gives

E[U4
i+1] = E[K(i)

44 ](n
4β4,4 − 1) +E[K(i)

2,2](n
2β2,2 − 1)

+E[K(i)
2,2,2](n

3β2,2,2 − 1) +E[K(i)
2,2,2,2](n

4β2,2,2,2 − 1). (4.39)

We will bound the right-hand side term by term.
Due to p/n → γ ∈ (0,1) it holds (1 − γ)n ∼ n − p ≤ n − i ≤ n, so that n − i is of order n for all 0 ≤ i ≤ p − 1.

A combination of this fact with (4.8) yields that for sufficiently large n there exists a constant c > 1 such that |S(i)
j | ≤

c1/2n1−j . Thus we get

|K(i)
4,4|= |3(S(i)

2 )2 − 4S
(i)
3 + nS

(i)
4 | ≤ 3c

n2
+

4c

n2
+

c

n2
=

8c

n2
. (4.40)

Using (4.40), for any ε > 0 and n sufficiently large the first term is bounded by∣∣∣ p−1∑
i=0

E[K(i)
44 ](n

4β4,4 − 1)
∣∣∣≤ |(n4β4,4 − 1)|︸ ︷︷ ︸

≤n4−α+ε

p−1∑
i=0

E[|K(i)
44 |] =O(n3−α+ε) .

Note that 1− n2β2,2,1− n3β2,2,2,1− n4β2,2,2,2 are nonnegative. Thus,

p−1∑
i=0

E[U4
i+1]≤O(n3−α+ε) + (1− n2β2,2)

∣∣∣ p−1∑
i=0

E[K(i)
2,2]
∣∣∣

+ (1− n3β2,2,2)
∣∣∣ p−1∑
i=0

E[K(i)
2,2,2]

∣∣∣+ (1− n4β2,2,2,2)
∣∣∣ p−1∑
i=0

E[K(i)
2,2,2,2]

∣∣∣ .
Next, we turn to the remaining terms. Since

n2β2,2 ∼ n3β2,2,2 ∼ n4β2,2,2,2 ∼ 1 , n→∞ ,

it holds for any ε > 0,

1− n2β2,2 = 1− n(n− 1)β2,2 +O(n−1) = nβ4 +O(n−1) =O(n1−α/2+ε) ,

where also (3.15) was used. Analogously, applying (3.16), (3.17) and Lemma 4.1, we get for any ε > 0 that

1− n3β2,2,2 =O(n1−α/2+ε) and 1− n4β2,2,2,2 =O(n1−α/2+ε) .

Hence, (4.11) is proved if we can show that there exists an ε > 0 such that, as n→∞,

n1−α/2+ε
∣∣∣ p−1∑
i=0

E[K(i)
2,2]
∣∣∣→ 0 , n1−α/2+ε

∣∣∣ p−1∑
i=0

E[K(i)
2,2,2]

∣∣∣→ 0 , n1−α/2+ε
∣∣∣ p−1∑
i=0

E[K(i)
2,2,2,2]

∣∣∣→ 0 .

Fortunately, Lemma B.1 verifies the latter. The proof is complete.
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Appendix A: Off-diagonal part of a quadratic form

Proposition A.1. Let α ∈ (2,4). Under the assumptions of Theorem 2.1 we have for ε > 0 and n sufficiently large,

n4E
[(∑

k ̸=l

qi,klYi+1,kYi+1,l

)4]
≤C n−α/2+ε , i= 0,1, . . . , p− 1 , (A.1)

where the constant C > 0 does not depend on n and i.

Proof. Let 0≤ i≤ p−1 and s= 4. Throughout this proof, in the notation βm1,...,mr
we always assume m1+ · · ·+mr =

s. Using that Yi+1,j
d
=−Yi+1,j , we have

E
[( ∑

k1 ̸=k2

qi,k1k2
Yi+1,k1

Yi+1,k2

)s∣∣∣Fi

]
=

∑
k1 ̸=k2,...,k2s−1 ̸=k2s:∑2s
t=1 δkjkt is even ∀1≤j≤2s

qi,k1k2
· · · qi,k2s−1k2s

E[Yi+1,k1
· · ·Yi+1,k2s

]

=

s∑
r=2

∑
k∈Kr,s

qi,kβk

≤
s∑

r=2

max
k∈Kr,s

βk

∣∣∣ ∑
k∈Kr,s

qi,k

∣∣∣ ,
where βk = E[Yi+1,k1

· · ·Yi+1,k2s
] and qi,k = qi,k1k2

· · · qi,k2s−1k2s
for k= (k1, . . . , k2s), and

Kr,s =
{
(k1, . . . , k2s) ∈ {1, . . . , n}2s :

#{k1,...,k2s}=r; k1 ̸=k2,...,k2s−1 ̸=k2s;∑2s
t=1 δkjkt is even ∀1≤j≤2s

}
.

Here δkjkt is the Kronecker-delta, i.e., δkjkt = 1{kj=kt}. We will bound maxk∈Kr,s βk and |
∑

k∈Kr,s
qi,k|.

We start with the first term. By Lemma 4.1, we have for integers k1, . . . , kr ≥ 1 that

lim
n→∞

nN1(1−α/2)+rα/2

Lr−N1(n1/2)
β2k1,...,2kr ∼C(k1, . . . , kr) , (A.2)

where N1 :=N1(k1, . . . , kr) := #{1≤ j ≤ r : kj = 1} and

C(k1, . . . , kr) :=
(α/2)r−N1Γ(N1(1− α/2) + rα/2)

∏
i:ki≥2 Γ(ki − α/2)

Γ(k1 + · · ·+ kr)
.

Since (
∏

j Γ(aj))/Γ(
∑

j aj)≤ 1 for aj ≥ 0 we observe that

C(k1, . . . , kr)≤ (α/2)r−N1 ≤ 2r−N1 . (A.3)

We recall the Potter bounds on the regularly varying function L≥ 0. For any ε > 0 and sufficiently large n it holds

n−ε ≤ L((n1/2))≤ nε . (A.4)

Choose ε ∈ (0, α/2− 1). In view of (A.2)-(A.4), we have for sufficiently large n that

β2k1,...,2kr ≤ nα/2(N1−r)−N1Lr−N1(n1/2)2r−N1 ≤ n−(α/2−ε)(r−N1)−N1 . (A.5)

Therefore, we obtain

max
k∈Kr,s

βk ≤ max
k1,...,kr≥1:
k1+···+kr=s

β2k1,...,2kr ≤ n−r(α/2−ε) max
k1,...,kr≥1:
k1+···+kr=s

nN1(α/2−1−ε) .

Since N1 ≤ r− 1{r<s}, we conclude that for large n,

max
k∈Kr,s

βk ≤ n−r−(α/2−1−ε)1{r<s} . (A.6)
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This establishes a bound on maxk∈Kr,s
βk. For later reference, we note that α/2− 1− ε > 0.

Next, we turn to the bound of |
∑

k∈Kr,s
qi,k|. Let (Xj)j≥1 be an i.i.d. sequence (which is also independent of X) with

distribution P(Xj = 1) = P(Xj =−1) = 1/2. Using that E[Xt
j ] = 1 if t is even and zero otherwise, we have as above

E
[∣∣∣ ∑

k1 ̸=k2

qi,k1k2
Xk1

Xk2

∣∣∣s∣∣∣Fi

]
=

s∑
r=2

∑
k∈Kr,s

qi,k . (A.7)

Applying Lemma B.3 with the sequence (Xj), we get

E
[∣∣∣ ∑

k1 ̸=k2

qi,k1k2
Xk1

Xk2

∣∣∣s∣∣∣Fi

]
≤ (Cs)s

(∑
k ̸=l

q2i,kl

)s/2
In view of (A.7), we see that

s∑
r=2

∑
k∈Kr,s

qi,k ≤
s∑

r=2

∑
k∈Kr,s

|qi,k| ≤ (Cs)s
(∑

k ̸=l

q2i,kl

)s/2
, (A.8)

where the last inequality follows from the fact that the right-hand side in (B.17) remains the same if we replace aij with
|aij |. Here C is an absolute constant that does not depend on s.

Since the right-hand side in (A.6) depends on r, it is important find an upper bound on |
∑

k∈Kr,s
qi,k| that uses the

value of r = 2, . . . , s as well. If r = s we conclude from (A.8) and
∑

k,l q
2
i,kl = (n− i)−1 that∣∣∣ ∑

k∈Ks,s

qi,k

∣∣∣≤ (Cs)s
(∑

k ̸=l

q2i,kl

)s/2
≤ (Cs)s

( 1

n− i

)s/2
. (A.9)

Note that the term (
∑

k ̸=l q
2
i,kl)

s/2 actually appears in
∑

k∈Ks,s
qi,k. Indeed, this follows directly from the definition of

the latter sum by setting k1 = k3, k2 = k4, . . . , k2s−2 = k2s. Hence, the maximum number of distict indices kj in qi,k and
the maximum number of distinct indices in (

∑
k ̸=l q

2
i,kl)

s/2 are both equal to r. From the definition of Kr,s, recall that
#{k1, . . . , k2s}= r if (k1, . . . , k2s) ∈Kr,s.

If r = s− 1, we may thus restrict ourselves to s− 1 distinct indices. Due to qkl = qlk , this yields the bound∣∣∣ ∑
k∈Ks−1,s

qi,k

∣∣∣≤ (Cs)s
(∑

k ̸=l

q2i,kl

)s/2−2 ∑
k1 ̸=k2

q2i,k1k2

n∑
k3=1;k3 ̸=k1

q2i,k1k3
≤ (Cs)s

( 1

n− i

)s/2+1

, (A.10)

where the last inequality holds since Q2
i =Qi/(n− i) and (4.8) imply

n∑
l=1

q2i,kl =
qi,kk
n− i

≤
( 1

n− i

)2
.

From the definition of Kr,s and (4.8) it follows for r = 2 that∣∣∣ ∑
k∈K2,s

qi,k

∣∣∣= 2s
∣∣∣∑
k<l

qsi,kl

∣∣∣≤ 2

(n− i)s−2

∑
k ̸=l

q2i,kl ≤ 2
( 1

n− i

)s−1

.

In combination with (A.9) and (A.10), this yields that∣∣∣ ∑
k∈Ks−t,s

qi,k

∣∣∣≤ (Cs)s
( 1

n− i

)s/2+⌈t/2⌉
, t= 0, . . . , s− 2 , (A.11)

where ⌈t/2⌉ is the smallest integer greater or equal to t/2 and C > 0 is a constant.
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Finally, we complete the proof of the proposition. In view of (A.6) and (A.11), we get for s= 4 and sufficiently large
n,

ns
∣∣∣E[( ∑

k1 ̸=k2

qi,k1k2
Yi+1,k1

Yi+1,k2

)s]∣∣∣= ns
∣∣∣EE[( ∑

k1 ̸=k2

qi,k1k2
Yi+1,k1

Yi+1,k2

)s∣∣∣Fi

]∣∣∣
≤ nsE

s∑
r=2

max
k∈Kr,s

βk

∣∣∣ ∑
k∈Kr,s

qi,k

∣∣∣
≤ ns

s∑
r=2

n−r−(α/2−1−ε)1{r<s} · (Cs)s
( 1

n− i

)s/2+⌈(s−r)/2⌉

≤ (C̃s)s
(
n−s/2 +

s−1∑
r=2

ns−r−(α/2−1−ε)−s/2−⌈(s−r)/2⌉
)

= (C̃s)s
(
n−s/2 + ns/2−(α/2−1−ε)

s−1∑
r=2

n−r−⌈(s−r)/2⌉
)

≤ (C̃s)s
(
n−s/2 + ns/2−(α/2−1−ε)sn−1−⌈s/2⌉

)
≤ C̃sss+1 n−1−(α/2−1−ε)

with some constant C̃ > 0 that does not depend on n or s.

Appendix B: Additional technical lemmas

The following lemmas are needed in the proof of our main result. Recall the matrix Qi = {qi,kl}nk,l=1 = Pi/(n − i),
where the projection matrix Pi = In −B⊤

(i)(B(i)B
⊤
(i))

−1B(i) for 0≤ i≤ p− 1 and P0 = In.

Lemma B.1. Let α ∈ (3,4). Under the conditions of Theorem 2.1, there exists an ε > 0 such that, as n→∞,

n1−α/2+ε
∣∣∣ p−1∑
i=0

E[K(i)
2,2]
∣∣∣→ 0 , n1−α/2+ε

∣∣∣ p−1∑
i=0

E[K(i)
2,2,2]

∣∣∣→ 0 , n1−α/2+ε
∣∣∣ p−1∑
i=0

E[K(i)
2,2,2,2]

∣∣∣→ 0 ,

where S
(i)
j = qji,11 + · · ·+ qji,nn, j ≥ 1, and K

(i)
2,2,K

(i)
2,2,2,K

(i)
2,2,2,2 are defined in (4.35), (4.36) and (4.37), respectively.

Proof. Let’s rewrite E[K(i)
2,2], E[K

(i)
2,2,2] and E[K(i)

2,2,2,2] in the following way

E[K(i)
2,2] =−12n

n∑
ℓ=1

(
E[q2i,ℓℓ]−

1

n2

)
+ 8n2

n∑
ℓ=1

(
E[q3i,ℓℓ]−

1

n3

)
− 2n3

n∑
ℓ=1

(
E[q4i,ℓℓ]−

1

n4

)
,

E[K(i)
2,2,2] = 8n

n∑
ℓ=1

(
E[q2i,ℓℓ]−

1

n2

)
− 16n2

3

n∑
ℓ=1

(
E[q3i,ℓℓ]−

1

n3

)
+

4n3

3

n∑
ℓ=1

(
E[q4i,ℓℓ]−

1

n4

)
+O(n−1),

E[K(i)
2,2,2,2] =−2n

n∑
ℓ=1

(
E[q2i,ℓℓ]−

1

n2

)
+

4n2

3

n∑
ℓ=1

(
E[q3i,ℓℓ]−

1

n3

)
− n3

3

n∑
ℓ=1

(
E[q4i,ℓℓ]−

1

n4

)
+O(n−1) ,

where we have used the fact that |S(i)
2 | ≤ Cn−1 for some constant C > 1. The application of Lemma B.2 for k = 2,3,4

leads to

n1−α/2+ε
∣∣∣ p−1∑
i=0

E[K(i)
2,2]
∣∣∣ ≤ O

(
n1−α/2+εn1/2

)
=O

(
n(3−α)/2+ε

)
.



22

Similarly, we get

n1−α/2+ε
∣∣∣ p−1∑
i=0

E[K(i)
2,2,2]

∣∣∣ = O
(
n(3−α)/2+ε

)
,

n1−α/2+ε
∣∣∣ p−1∑
i=0

E[K(i)
2,2,2,2]

∣∣∣ = O
(
n(3−α)/2+ε

)
,

which verifies the statement of the lemma by noting that α> 3.

Lemma B.2. Under the conditions of Theorem 2.1, it holds for all k ≥ 2 that

0≤ nk−2

p−1∑
i=0

n∑
ℓ=1

(
E[qki,ℓℓ]−

1

nk

)
≤O(n−1/2) , n→∞ . (B.1)

Proof. First, using Jensen’s inequality and the fact that
∑n

ℓ=1 qi,ℓℓ = 1 with qi,ll ≥ 0 we observe that

1

nk
=

(
1

n

n∑
ℓ=1

qi,ℓℓ

)k

≤ 1

n

n∑
ℓ=1

qki,ℓℓ ,

which implies that

1

nk−1
≤

n∑
ℓ=1

qki,ℓℓ . (B.2)

Then, using this lower bound it follows that

p

nk−1
≤

p−1∑
i=0

n∑
ℓ=1

(
qi,ℓℓ −

1

n
+

1

n

)k

=
p

nk−1
+

p−1∑
i=0

n∑
ℓ=1

k−1∑
j=0

(
k

j

)(
qi,ℓℓ −

1

n

)k−j
1

nj

and, thus, taking expectations yields

0 ≤
p−1∑
i=0

n∑
ℓ=1

E[qki,ℓℓ]−
p

nk−1
=

p−1∑
i=0

n∑
ℓ=1

k−2∑
j=0

(
k

j

)
E
(
qi,ℓℓ −

1

n

)k−j
1

nj

=

k−2∑
j=0

p−1∑
i=0

n∑
l=1

(
k

j

)
E
(
qi,ℓℓ −

1

n

)k−j
1

nj
,

where we have used for j = k− 1 the property
∑n

ℓ=1E
(
qi,ℓℓ − 1

n

)
= 0. Next we will show that for any k ≥ 2

p−1∑
i=0

n∑
ℓ=1

E
(
qi,ℓℓ −

1

n

)k

=O
(
n2−k−1/2

)
, (B.3)

which will in fact imply that every term
p−1∑
i=0

n∑
ℓ=1

(
k
j

)
E
(
qi,ℓℓ − 1

n

)k−j 1
nj will have the same order as the first one, i.e., for

j = 0, and, thus, because k is fixed, we will get

nk−2
k−2∑
j=0

p−1∑
i=0

n∑
ℓ=1

(
k

j

)
E
(
qi,ℓℓ −

1

n

)k−j
1

nj
=O

(
n−1/2

)
.
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We define for any k ≥ 2

δn := δn,k :=

p−1∑
i=0

n∑
ℓ=1

E (qi,ℓℓ −E(qi,ℓℓ))k ,

where E(qi,ℓℓ) = 1
n , which follows from the fact that qi,ℓℓ are identically distributed over ℓ and qi,11 + · · ·+ qi,nn = 1.

Hence, it is enough to show that δn = O
(
n2−k−1/2

)
. Denote for ℓ = 1, . . . , n the vector vℓ,i as the ℓ-th column of the

matrix B(i). First, we note that for all ℓ= 1, . . . , n it holds

pi,ℓℓ = 1− v⊤ℓ,i(B(i)B
⊤
(i))

−1vℓ,i .

Denote now p̃i,ℓℓ = 1− pi,ℓℓ and use Minkowski’s inequality to get

δn =

p−1∑
i=0

n

(n− i)k
E (pi,11 −E(pi,11))k ≤

p−1∑
i=0

n

(n− i)k
E |p̃i,11 −E(p̃i,11)|k

=

p−1∑
i=0

n

(n− i)k
E
∣∣∣v⊤1,i(B(i)B

⊤
(i))

−1v1,i −E(v⊤1,i(B(i)B
⊤
(i))

−1v1,i)
∣∣∣k Minkowski

≤ C
(
δ(1)n + δ(2)n + δ(3)n

)
with some constant C > 0 possibly depending on k, whose value is not important and may change from line to line, and

δ(1)n =

p−1∑
i=0

n

(n− i)k
E
∣∣∣v⊤1,i(B(i)B

⊤
(i))

−1v1,i − v⊤1,i(B(i)B
⊤
(i) + ϵnnIi)

−1v1,i

∣∣∣k ,
δ(2)n =

p−1∑
i=0

n

(n− i)k
E

∣∣∣∣∣v⊤1,i(B(i)B
⊤
(i) + ϵnnIi)

−1v1,i −
E tr(B(i,1)B

⊤
(i,1) + ϵnnIi)

−1

1 +E tr(B(i,1)B
⊤
(i,1) + ϵnnIi)−1

∣∣∣∣∣
k

,

δ(3)n =

p−1∑
i=0

n

(n− i)k

∣∣∣∣∣ E tr(B(i,1)B
⊤
(i,1) + ϵnnIi)

−1

1 +E tr(B(i,1)B
⊤
(i,1) + ϵnnIi)−1

−E(v⊤1,i(B(i)B
⊤
(i))

−1v1,i)

∣∣∣∣∣
k

,

where ϵn is a sequence tending to zero arbitrarily slower than 1/n and B(i,1) denotes the matrix obtained from B(i) by
deleting the 1st column v1,i. Let’s consider δ(1)n first. It holds∣∣∣v⊤1,i(B(i)B

⊤
(i))

−1v1,i − v⊤1 (B(i)B
⊤
(i) + ϵnnIi)

−1v1,i

∣∣∣= ϵnn · v⊤1,i(B(i)B
⊤
(i))

−1(B(i)B
⊤
(i) + ϵnnIi)

−1v1,i

≤ ϵnn

λmin(B(i)B
⊤
(i) + ϵnnIi)

v⊤1,i(B(i)B
⊤
(i))

−1v1,i︸ ︷︷ ︸
=p̃i,11≤1

≤ ϵnn

λmin(B(i)B
⊤
(i))

∼ ϵn

(1−
√

i
n )

2
≤ ϵn

(1−
√

p
n )

2
≤Cϵn . (B.4)

Thus, for δ(1)n and sufficiently large n, we have

δ(1)n ≤Ck

p−1∑
i=0

n

(n− i)k
ϵkn ≤ np

(n− p+ 1)2︸ ︷︷ ︸
=O(1)

O(ϵknn
−k+2) =O(ϵknn

−(k−2)) .

Now we proceed to δ
(2)
n . Let’s consider the following expression

E

∣∣∣∣∣v⊤1,i(B(i)B
⊤
(i) + ϵnnIi)

−1v1,i −
E tr(B(i,1)B

⊤
(i,1) + ϵnnIi)

−1

1 +E tr(B(i,1)B
⊤
(i,1) + ϵnnIi)−1

∣∣∣∣∣
k
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= E

∣∣∣∣∣ v⊤1,i(B(i,1)B
⊤
(i,1) + ϵnnIi)

−1v1,i

1 + v⊤1,i(B(i,1)B
⊤
(i,1) + ϵnnIi)−1v1,i

−
E tr(B(i,1)B

⊤
(i,1) + ϵnnIi)

−1

1 +E tr(B(i,1)B
⊤
(i,1) + ϵnnIi)−1

∣∣∣∣∣
k

= E

∣∣∣v⊤1,i(B(i,1)B
⊤
(i,1) + ϵnnIi)

−1v1,i −E tr(B(i,1)B
⊤
(i,1) + ϵnnIi)

−1
∣∣∣k

(1 +E tr(B(i,1)B
⊤
(i,1) + ϵnnIi)−1)k(1 + v⊤1,i(B(i,1)B

⊤
(i,1) + ϵnnIi)−1v1,i)k

≤ E
∣∣∣v⊤1,i(B(i,1)B

⊤
(i,1) + ϵnnIi)

−1v1,i −E tr(B(i,1)B
⊤
(i,1) + ϵnnIi)

−1
∣∣∣k

≤ C

(
E
∣∣∣v⊤1,i(B(i,1)B

⊤
(i,1) + ϵnnIi)

−1v1,i − tr(B(i,1)B
⊤
(i,1) + ϵnnIi)

−1
∣∣∣k (B.5)

+ E
∣∣∣tr(B(i,1)B

⊤
(i,1) + ϵnnIi)

−1 −E tr(B(i,1)B
⊤
(i,1) + ϵnnIi)

−1
∣∣∣k) . (B.6)

First, we analyze the term in (B.6) and define Eℓ := E(·|vℓ,i, . . . , vn,i) for ℓ= 1, . . . , n and En+1 := E. It holds

tr(B(i,1)B
⊤
(i,1) + ϵnnIi)

−1 −E tr(B(i,1)B
⊤
(i,1) + ϵnnIi)

−1

=
n∑

ℓ=2

(Eℓ −Eℓ+1) tr(B(i,1)B
⊤
(i,1) + ϵnnIi)

−1

=

n∑
ℓ=2

(Eℓ −Eℓ+1)
(
tr(B(i,1)B

⊤
(i,1) + ϵnnIi)

−1 − tr(B(i,1)B
⊤
(i,1) − vℓ,iv

⊤
ℓ,i + ϵnnIi)

−1
)
, (B.7)

where the properties Eℓ(tr(B(i,1)B
⊤
(i,1) − vℓ,iv

⊤
ℓ,i + ϵnnIi)

−1) = Eℓ+1(tr(B(i,1)B
⊤
(i,1) − vℓ,iv

⊤
ℓ,i + ϵnnIi)

−1) and
E2(tr(B(i,1)B

⊤
(i,1) + ϵnnIi)

−1) = tr(B(i,1)B
⊤
(i,1) + ϵnnIi)

−1 were used. Together with the definition of the martingale
differences sequence and Sherman-Morrison formula it implies

E
∣∣∣tr(B(i,1)B

⊤
(i,1) + ϵnnIi)

−1 −E tr(B(i,1)B
⊤
(i,1) + ϵnnIi)

−1
∣∣∣k

≤ C

n∑
ℓ=2

E
∣∣∣(Eℓ −Eℓ+1)

(
tr(B(i,1)B

⊤
(i,1) + ϵnnIi)

−1 − tr(B(i,1)B
⊤
(i,1) − vℓ,iv

⊤
ℓ,i + ϵnnIi)

−1
)∣∣∣k

= C

n∑
ℓ=2

E

∣∣∣∣∣(Eℓ −Eℓ+1)
v⊤ℓ,i(B(i,1)B

⊤
(i,1) − vℓ,iv

⊤
ℓ,i + ϵnnIi)

−2vℓ,i

1 + v⊤ℓ,i(B(i,1)B
⊤
(i,1) − vℓ,iv⊤ℓ,i + ϵnnIi)−1vℓ,i

∣∣∣∣∣
k

≤ C

ϵknn
k

n∑
ℓ=2

E

∣∣∣∣∣(Eℓ −Eℓ+1)
v⊤ℓ,i(B(i,1)B

⊤
(i,1) − vℓ,iv

⊤
ℓ,i + ϵnnIi)

−1vℓ,i

1 + v⊤ℓ,i(B(i,1)B
⊤
(i,1) − vℓ,iv⊤ℓ,i + ϵnnIi)−1vℓ,i︸ ︷︷ ︸

≤1

∣∣∣∣∣
k

≤ C(n− 1)2k

ϵknn
k

=O(ϵ−k
n n−(k−1)) . (B.8)

Next, we turn to (B.5). To this end, we show that v⊤1,i(B(i,1)B
⊤
(i,1) + ϵnnIi)

−1v1,i is bounded. Using the Sherman-
Morrison formula we get

v⊤1,i(B(i,1)B
⊤
(i,1) + ϵnnIi)

−1v1,i = v⊤1,i(B(i)B
⊤
(i) + ϵnnIi)

−1v1,i +
(v⊤1,i(B(i)B

⊤
(i) + ϵnnIi)

−1v1,i)
2

1− v⊤1,i(B(i)B
⊤
(i) + ϵnnIi)−1v1,i

=
v⊤1,i(B(i)B

⊤
(i) + ϵnnIi)

−1v1,i

1− v⊤1,i(B(i)B
⊤
(i) + ϵnnIi)−1v1,i

≤ 1

1− κ
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because v⊤1,i(B(i)B
⊤
(i) + ϵnnIi)

−1v1,i ≤ κ for some κ < 1, for which Lemma A.1 in the Appendix of [2] was used. Thus
0≤ v⊤1,i(B(i,1)B

⊤
(i,1) + ϵnnIi)

−1v1,i ≤C , so it is enough to consider the case k = 2. Indeed, let k ≥ 3, then we get

E
∣∣∣v⊤1,i(B(i,1)B

⊤
(i,1) + ϵnnIi)

−1v1,i − tr(B(i,1)B
⊤
(i,1) + ϵnnIi)

−1
∣∣∣k

= E
∣∣∣v⊤1,i(B(i,1)B

⊤
(i,1) + ϵnnIi)

−1v1,i −E2v
⊤
1,i(B(i,1)B

⊤
(i,1) + ϵnnIi)

−1v1,i

∣∣∣2
×
∣∣∣v⊤1,i(B(i,1)B

⊤
(i,1) + ϵnnIi)

−1v1,i −E2v
⊤
1,i(B(i,1)B

⊤
(i,1) + ϵnnIi)

−1v1,i

∣∣∣k−2

≤ C ·E
∣∣∣v⊤1,i(B(i,1)B

⊤
(i,1) + ϵnnIi)

−1v1,i −E2v
⊤
1,i(B(i,1)B

⊤
(i,1) + ϵnnIi)

−1v1,i

∣∣∣2 . (B.9)

Further we truncate the elements of the vector v1,i at the level ζn
√
n, i.e., denote v̂1j,i = v1j,i · 1{|v1j,i| ≤ ζn

√
n} with

ζn arbitrarily slow converging to zero but no faster than n−1/2, i.e., ζn
√
n→+∞. Note that v̂1j,i has mean zero since

v1j,i is symmetrically distributed. Because the third absolute moment of v1j,i is finite it holds

lim
n→∞

E|v1j,i|31{|v1j,i|> ζn
√
n}

ζ3n
= 0 .

Moreover, one can also check that the second moment of v̂1j,i converges to 1, indeed let Var(v̂11,i) = σ2
n then

|σ2
n − 1| ≤CE(|v11,i|21{|v11,i|> ζn

√
n})≤Cζ2nn

E(|v11,i|31{|v11,i|> ζn
√
n})

ζ3nn
3/2

= o
(
n−1/2

)
. (B.10)

Then the difference between the truncated and original quadratic forms is given by

E
∣∣∣v⊤1,i(B(i,1)B

⊤
(i,1) + ϵnnIi)

−1v1,i − v̂⊤1,i(B(i,1)B
⊤
(i,1) + ϵnnIi)

−1v̂1,i

∣∣∣2
= E

∣∣∣(v1,i − v̂1,i)
⊤(B(i,1)B

⊤
(i,1) + ϵnnIi)

−1(v1,i + v̂1,i)
∣∣∣2

CS
≤ CE(v1,i − v̂1,i)

⊤(B(i,1)B
⊤
(i,1) + ϵnnIi)

−1(v1,i − v̂1,i) · (v1,i + v̂1,i)
⊤(B(i,1)B

⊤
(i,1) + ϵnnIi)

−1(v1,i + v̂1,i)

≤ CE(v1,i − v̂1,i)
⊤(B(i,1)B

⊤
(i,1) + ϵnnIi)

−1(v1,i − v̂1,i)≤CE
(v1,i − v̂1,i)

⊤(v1,i − v̂1,i)

λmin(B(i,1)B
⊤
(i,1) + ϵnnIi)

≤ C

n
E

 n∑
j=1

v21j,i1{|v1j,i|> ζn
√
n}

=CE
(
|v11,i|21{|v11,i|> ζn

√
n}
)

≤ Cζ2nn
E
(
|v11,i|31{|v11,i|> ζn

√
n}
)

ζ3nn
3/2

= o(n−1/2) . (B.11)

Thus, we can safely replace v1,i by v̂1,i in (B.9). We recall that X11 is regularly varying with index α ∈ (3,4), i.e.,
P(|X11 > x) = x−αL(x) for a slowly varying function L. The following formula for truncated moments of X11 is well–
known (see, for instance, [9])

ν̂4 := E[|X11|41{|X11|> ζn
√
n}]∼ α

4− α
ζ4−α
n n(4−α)/2L(ζn

√
n) , n→∞ .

Consider now (B.9)

E
∣∣∣v⊤1,i(B(i,1)B

⊤
(i,1) + ϵnnIi)

−1v1,i −E2v
⊤
1,i(B(i,1)B

⊤
(i,1) + ϵnnIi)

−1v1,i

∣∣∣2
≤ C E

∣∣∣v⊤1,i(B(i,1)B
⊤
(i,1) + ϵnnIi)

−1v1,i − v̂⊤1,i(B(i,1)B
⊤
(i,1) + ϵnnIi)

−1v̂1,i

∣∣∣2︸ ︷︷ ︸
o(n−1/2) by (B.11)
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+ C E
∣∣∣E2v

⊤
1,i(B(i,1)B

⊤
(i,1) + ϵnnIi)

−1v1,i −E2v̂
⊤
1,i(B(i,1)B

⊤
(i,1) + ϵnnIi)

−1v̂1,i

∣∣∣2︸ ︷︷ ︸
o(n−1) by (B.10)

+ CE
∣∣∣v̂⊤1,i(B(i,1)B

⊤
(i,1) + ϵnnIi)

−1v̂1,i −E2v̂
⊤
1,i(B(i,1)B

⊤
(i,1) + ϵnnIi)

−1v̂1,i

∣∣∣2 (B.12)

and apply Lemma B.26 from [4] on the last summand in (B.12)

E
∣∣∣v̂⊤1,i(B(i,1)B

⊤
(i,1) + ϵnnIi)

−1v̂1,i −E2v̂
⊤
1,i(B(i,1)B

⊤
(i,1) + ϵnnIi)

−1v̂1,i

∣∣∣2
≤ Cν̂4E tr(B(i,1)B

⊤
(i,1) + ϵnnIi)

−2 ≤ C

n
ν̂4

∼ C

n
ζ4−α
n n(4−α)/2L(ζn

√
n) = o(n−1/2) , n→∞ ,

where in the last step we used the Potter bounds for the slowly varying function L.
Thus, similarly as for δ(1)n we get

nk−2δ(2)n =O(ϵ−k
n n−(k−1)) + o(n−1/2) . (B.13)

Concerning δ
(3)
n , we observe the following∣∣∣∣∣ E tr(B(i,1)B

⊤
(i,1) + ϵnnIi)

−1

1 +E tr(B(i,1)B
⊤
(i,1) + ϵnnIi)−1

−E(v⊤1,i(B(i)B
⊤
(i))

−1v1,i)

∣∣∣∣∣
k

≤ C

∣∣∣∣∣E(v⊤1,i(B(i)B
⊤
(i) + ϵnnIi)

−1v1,i −
E tr(B(i,1)B

⊤
(i,1) + ϵnnIi)

−1

1 +E tr(B(i,1)B
⊤
(i,1) + ϵnnIi)−1

)

∣∣∣∣∣
k

+ C |E(v⊤1,i(B(i)B
⊤
(i))

−1v1,i −E(v⊤1,i(B(i)B
⊤
(i) + ϵnnIi)

−1v1,i|k︸ ︷︷ ︸
=O(ϵkn) due to (B.4)

Jensen
≤ C E

∣∣∣∣∣(v⊤1,i(B(i)B
⊤
(i) + ϵnnIi)

−1v1,i −
E tr(B(i,1)B

⊤
(i,1) + ϵnnIi)

−1

1 +E tr(B(i,1)B
⊤
(i,1) + ϵnnIi)−1

)

∣∣∣∣∣
k

︸ ︷︷ ︸
=O(ϵ−k

n n−(k−1))+o(n−1/2) due to (B.13)

+O(ϵkn)

and, as a result, we have

nk−2δ(3)n =O(ϵkn) +O(ϵ−k
n n−(k−1)) + o(n−1/2) (B.14)

and altogether we receive the following rate for δn

nk−2δn =O(ϵkn) +O(ϵ−k
n n−(k−1)) + o(n−1/2) . (B.15)

Now we need to specify the sequence ϵn such that δn converges to zero as fast as possible. Because ϵn can not vanish
faster than 1/n we assume w.l.o.g. that ϵn = n−ε for some 0< ε< 1, plug it into (B.15) and get

nk−2δn =O(n−kε) +O(nk(ε−1)+1) + o(n−1/2) . (B.16)

Choosing ε= 1
2k finishes the proof of the lemma.

Lemma B.3. [16, Lemma 7.10] Let X1, . . . ,XN be independent centered random variables and assume that

(E[|Xi|s])1/s ≤ µs , 1≤ i≤N ;s= 2,3, . . .
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for some fixed constants µs. Then we have for any deterministic complex numbers aij ,1≤ i, j ≤N that

(
E
[∣∣∣ N∑

i̸=j=1

aijXiXj

∣∣∣s])1/s ≤C sµ2
s

( N∑
i ̸=j=1

|aij |2
)1/2

, s= 2,3, . . . , (B.17)

where the constant C does not depend on s.

Lemma B.4. [40, Theorem b) and d)] Let z= (Z1, . . . ,Zn)
⊤ be a random vector such that, for all nonnegative integers

m1, . . . ,m6 with m1+ · · ·+m6 ≤ 6, E[Zm1
i1

Zm2
i2

· · ·Zm6
i6

] is (i) finite; (ii) zero if any mi is odd; and (iii) invariant under
permutations of the indices. Let β2 = E[Z2

1 ], β2,2 = E[Z2
1Z

2
2 ], β4 = E[Z4

1 ], β4,2 = E[Z4
1Z

2
2 ] and β6 = E[Z6

1 ]. Then we
have for any real-valued and symmetric n× n nonrandom matrix A that

E[(z⊤Az−E[z⊤Az])3] = 8β2,2,2 tr(A
3) + (β2,2,2 + 2β3

2 − 3β2β2,2)(trA)3

+ 6(β2,2,2 − β2β2,2) trA tr(A2) + 3(β4,2 − β4β2 + 3β2,2β2 − 3β2,2,2) trA tr(A ◦A)

+ 12(β4,2 − 3β2,2,2) tr(A ◦A2) + (β6 − 15β4,2 + 30β2,2,2) tr(A ◦A ◦A) ,

where ◦ denotes the Hadamard product. Moreover,

E[(z⊤Az)3] = β2,2,2[(trA)3 + 6trA tr(A2) + 8tr(A3)] + (β6 − 15β4,2 + 30β2,2,2) tr(A ◦A ◦A)

+ (β4,2 − 3β2,2,2)[3 trA tr(A ◦A) + 12 tr(A ◦A2)] .

If B is another real-valued and symmetric n× n nonrandom matrix, one has

E[z⊤Azz⊤Bz] = β2,2[trA trB+ 2tr(AB)] + (β4 − 3β2,2) tr(A ◦B) .
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