
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Multi-server
Asynchronous
Federated Learning
Master's Thesis
Yuncong Zuo

Multi-server
Asynchronous

Federated Learning
by

Yuncong Zuo
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Wednesday August 23rd, 2023 at 10:00 AM.

Student number: 5443857
Programme: Embedded Systems
Faculty: Faculty of Electrical Engineering, Mathematics

and Computer Science
Project duration: November 11th, 2022 – August 23rd, 2023
Thesis committee: Dr. Lydia Chen, TU Delft, Supervisor

Dr. Jérémie Decouchant, TU Delft, Supervisor
Dr. Qing Wang, TU Delft

Preface

In recent years, federated learning (FL) has gained paramount importance, finding applications
across diverse fields such as mobile applications, healthcare, and autonomous vehicles. It
harnesses the strengths of machine learning by capitalizing on the expansive distributed data
residing on clients’ devices while safeguarding the privacy of clients’ raw data from external
entities.

Privacy, performance, and efficiency are three pivotal domains commanding researchers’
attention. In this study, our primary focus revolves around enhancing the efficiency of FL sys-
tems, balancing the delicate trade-off between diminished performance and reduced execution
time. The evolutionary journey of FL, extending beyond the conventional FedAvg algorithm,
encompasses a spectrum of solutions including asynchronous FL and multi-server FL.

The practical deployment of algorithms is intricately intertwined with the substantial im-
pact of network and computation delays on system efficiency. Many applications of FL are
set in a landscape characterized by disparate client-server computing power and geographical
distribution, underscoring the significance of network communication latencies and varying
local training times. While asynchronous strategies liberate the system from waiting for tardy
clients, they are relatively less tolerant to extended geographical communication due to their
non-geographically replicable nature compared to multi-server alternatives.

In this paper, we introduce MultiAsync, a novel methodology that bridges the benefits
of geo-replication in multi-server systems with the conventional asynchronous FL paradigm.
By strategically assigning clients to servers based on their geographical locations, MultiAsync
orchestrates asynchronous updates aggregation while enabling model exchanges among servers.
This server-to-server interaction eliminates synchronization latency and accentuates global
asynchronism. Furthermore, for scenarios of minimal internet delays among servers, a syn-
chronous server model exchange approach is offered, providing an alternative that judiciously
balances synchronization gains against marginal accuracy loss.

In the evaluation, we compared our algorithm against three canonical benchmarks—FedAvg
as a synchronous solution, FedAsync as an asynchronous contender, and HierFAVG as a multi-
server exemplar. Through meticulous emulation of network and computation delays based
on empirical measurements and real-world network characteristics, MultiAsync emerged as the
swiftest converging algorithm. Notably, its performance demonstrated commendable proximity
to the baseline methods concerning the cumulative update count, affirming the algorithm’s
compelling efficiency gains even in light of the negligible trade-off in accuracy.

Thanks to the insightful guidance and attentive supervision from Prof. Jérémie Decouchant
and Prof. Lydia Chen, and PhD candidate Bart Cox. Their collective expertise in the field
has imbued this article with greater depth and substance. Thanks to my boyfriend Han who
supports me throughout the endeavour.

Yuncong Zuo
Delft, August 2023

i

Contents

Preface i

1 Research Paper 1

2 Extended Related Work 14
2.1 Federated Learning . 14
2.2 Data Heterogeneity and Resource Heterogeneity 15

2.2.1 Synchronous FL . 16
2.2.2 Asynchronous FL . 18
2.2.3 Multi-server FL . 19

3 Additional Experiments 21
3.1 Datasets . 21
3.2 The Impact of Network and Computing Power on Server 21
3.3 Experiments on IID Data . 23

3.3.1 Impact of the number of servers . 24

4 Conclusion 26

ii

1
Research Paper

1

Multi-Server Asynchronous Federated Learning

Abstract—In federated learning (FL) systems, a server main-
tains a global model trained by a set of clients based on their
local datasets. Conventional synchronous FL systems are very
sensitive to system heterogeneity since the server needs to wait
for the slowest clients in each round. Asynchronous FL partially
addresses this bottleneck by dealing with updates once they
are received. But with a single server, the system performance
would be influenced if the clients are located far from the server
and require very high communication costs. Another issue in
single-server settings is that the client scale is limited since
the server can be overloaded with heavy communication and
computation workload. Moreover, a crash on the central server
is fatal to the single-server system. Multi-server FL reduces
the average communication cost by decreasing the distance
between servers and clients. However, the bottleneck brought
by the slowest clients still exists in multi-server systems that
preserve synchrony, such as Hierarchical FL. The approach
we follow in this paper consists in replicating the server in a
way that the global training process remains asynchronous.
We propose MultiAsync, a novel asynchronous multi-server
FL framework that aims to address the single-server and
synchronous-system bottleneck.

Nomenclature

D The total dataset
Dk The sub-dataset on Clientk
d The number of data in D
dk The number of data in Dk

m The number of clients
n The number of servers
W t The weight vector of the model
τ tk The staleness of W t

k
ηk The learning rate of Clientk
xk The number of local updates contributed by Clientk
P The period of synchronization among servers
T The number of global rounds
Tk The number of local epoch on Clientk
cprocess The estimated duration of process

I. Introduction
FL is a decentralized approach to machine learning

proposed by McMahan et al. in 2017 [1]. It aims to make
good use of the vast amount of data distributed among
a large number of users to train a model in a privacy-
preserving way. It was initially introduced to improve
privacy preservation in machine learning that requires
data from edge devices [2]–[6]. Now it is also developed
to train a shared model among some large organizations
such as finance companies and health care centers [7]–
[9]. The two corresponding scenarios are termed cross-
device and cross-silo FL [10]. FL can also be categorized
as horizontal and vertical FL. In vertical FL, clients don’t
share the same feature space and have unique features.
They collaboratively train the predictor to have a more
comprehensive knowledge of all the features. In this paper,
we focus on cross-device and horizontal FL.

Different from conventional machine learning where the
training is completed on a single machine with a single
dataset, FL requires local training happening in different
machines in parallel and with different local datasets. The
most commonly used framework is the centralized and
synchronous FL framework [1]. In each round, a set of
clients are selected to receive the current global model
from the server, train the model with their local dataset,
and send the update back to the server. The server collects
all the updates and computes a new model according to
the aggregation rule of the FL system and applies the
new aggregated model to its global state. The process
is repeated in rounds until the global model converges.
Figure 1 gives a general view of FL applications.

Tekst

Asynchronous Federated Learning

Processing time on the server

Client

Updates based

on different data

distributions

10 ms

300 ms

Figure 1: An FL round over heterogeneous devices and
networks.

FL is a significant improvement over conventional
machine learning because it does not require collecting
all data onto a single centralized server, which provides
stronger privacy guarantees for users who contribute their
data. As shown in Figure 1, only the trained models
are sent to the server without revealing clients’ local
data. As a similar counterpart, distributed learning also
requires a set of clients to participate in training one
model without collecting all data on the server. But it
focuses on distributing the training workload to decen-
tralized clients and is developed towards the benefit of
parallel training. It has the assumption of independent
and identically distributed (IID) datasets. The advantage
of FL over distributed learning, as we illustrate in Figure 1,
is that different data distributions can exist in clients,
e.g. different types of images stored in different people’s
smartphones, which is a more realistic setting in real-
life applications. In other words, FL can train a model
with non-IID data distributed to different clients. Dealing

1

with non-IID data is more difficult, especially in the
context of distributed and private datasets. Two main
goals of developing FL are achieving higher efficiency in
the training process and higher accuracy of the resulting
model.

Except for statistical heterogeneity in clients, resource
heterogeneity is another challenge in FL. Multiple devices
conduct local training and contribute to one global model,
and they have varying computing power and communica-
tion delays. In a synchronous FL framework, the duration
of each round is bounded by the slowest client whose
update is the last to be received by the server. A larger
heterogeneity in devices’ computing power leads to a larger
amount of idle time on both the server and fast clients
in terms of the training process. Asynchronous FL [11]–
[13] and aim at addressing this performance bottleneck.
Asynchronous FL improves the system to deal with local
updates without waiting for all the selected clients and
thus greatly reduces the idle time on the server. However,
long-distance communication now exposes as a major
influence on overall performance. Moreover, the limited
computational power on a single server may cause queuing
of the updates of clients.

To address the remaining problems, Hierarchical
FL [14]–[16], introduces multiple servers and assigns each
with a set of clients. It can reduce the average communi-
cation costs since clients upload the model to its nearest
server. Also, with more computational power on the server
side, fewer updates from clients will be pending. However,
due to its synchronous execution, the time of each round
is still bounded by the slowest clients.

FL is applied in many applications, including mobile
keyboard prediction [17], spoken language understand-
ing [18], healthcare [19], and so on. These applications
require a large amount of user or patient data. In
applications such as next-word prediction and spoken
language understanding tasks, vast data from users over
the world can be utilized well. In this case, where clients
are distributed on a large scale physically, the network
heterogeneity introduces a bottleneck to the conventional
synchronous FL systems. In synchronous cloud-based FL,
one centralized cloud server is connected to all the clients
in the system. With a large number of clients in the
system, the server needs to handle a heavy load of model
computing and frequent communications, which makes the
system more sensitive to the number of clients and the
computing power of the server. The limitation of a single
centralized cloud server also reflects on the low tolerance
of a single point of failure on the server. Hierarchical
FL addresses the bottleneck led by the server’s heavy
computing and communication load and improves the
scalability of the number of clients. However, existing
hierarchical FL frameworks client_edge_cloud , [15] have
not addressed the bottleneck brought by synchronous
algorithms and cannot tolerate the crash on the central
server.

In this paper, we introduce MultiAsync, a novel frame-
work for multi-server Asynchronous FL systems. The aver-
age staleness led by asynchrony is reduced by distributing
the local updates to multiple servers so that high training
accuracy can be maintained. Efficiency is also obtained
thanks to parallel computing in servers.

The remaining sections are organized as follows:
1) In section II, we provide background and related

work, including the most commonly used syn-
chronous frameworks, asynchronous FL algorithms,
and hierarchical FL algorithms.

2) In section III, we describe the system model of our
method as well as the centralized system and multi-
server system.

3) In section IV, we introduce our method MultiAsync
in detail, including the local update and global
model exchange strategies. MultiSync provides a
synchronous version of global model exchange, while
MultiAsync moves to a fully asynchronous system.

4) In section V, we provide our performance evaluation.
We compared our method with baselines: FedAvg,
FedAsync, and HierFAVG. We also explored the
impact of the number of clients and servers in the
system.

5) In section VI, the conclusion and future work are
given.

II. Related Work
In this section, we discuss the related background and

previous works. We first introduce the readers to the
conventional and most commonly known federated system
frameworks and move to asynchronous and hierarchical FL
systems.
A. Synchronous Federated Learning

FL was first proposed by McMahan et al. in 2017 [1].
The topology includes one central server and many clients
that connect with the server. They proposed the first syn-
chronous single-server FL algorithms FedAvg and FedSgd.
In each round, a group of clients is selected to receive the
global model from the server and perform local training.
After Client k receives a global model W t, it conducts
local training on their local dataset Dk as follows:

W t+1
k = W t

k − ηk
∂F (W t, Dk)

∂W t
, (1)

where F is the loss function of the classification, and
ηk is the learning rate.

At the end of the round, the server collects the local
updates and aggregates them according to the following
equation:

W t+1 =
K∑

k=1

nk

N
W t

k, (2)

where nk

N is its fraction of data points included in this
aggregation since the influence of a model greatly relies

2

on the data it is trained on. W t+1 is then broadcast
to the selected group of clients in the next round and
the process is repeated until the global model converges.
These fundamental algorithms converge eventually but
may suffer from the high delay of the slowest clients.

Chai et al. proposed TiFL, a tier-based FL frame-
work to reduce the influence of resource heterogeneity in
clients [20]. In TiFL, the selection of clients is adaptive to
their computing power. Initially, the central server runs
a profiling algorithm to collect the latency metrics of all
the available clients based on which the clients are divided
into groups called tiers. Different from the conventional
FL systems where clients are randomly selected, TiFL
randomly selects the clients from one tier in each round.
The stragglers’ negative effect on the training efficiency
of a single round is significantly reduced. However, the
algorithm still needs to wait for the slowest tier to
complete its round in order to proceed.

Mobile edge computing is a practical scenario for FL.
For smartphone clients, except for computing power,
resource heterogeneity often appears as different wireless
channel conditions. If some clients lose connection in the
middle of a round, it is unpredictable how long the system
has to wait. Li et al. proposed a hierarchical pace control
FL framework SmartPC which focuses on production FL
in real-time settings [16]. They consider the cross-device
FL and conduct experiments with Android smartphones.
SmartPC aims to balance the model accuracy, training
time, and energy consumption of clients’ devices. Similar
to another client selection solution called FedCS [21], its
main idea is to assign deadlines to bound the waiting
time. In SmartPC, before every round, the central server
evaluates the status of the selected devices and determines
a global deadline. Then the local layer running on each
device will adjust the system configuration of the device
to meet the deadline with the least energy consumption.
The global deadline is determined based on a feedback
mechanism that ensures a specific percentage of clients
are able to meet the deadline. This method ensures a
round to terminate on time, but some important training
results from certain clients might be discarded during the
system configuration adjustment.

Cox et al. proposed Aergia, an FL framework that
leverages model offloading to enhance the training ef-
ficiency [22]. The federator evaluates and profiles the
performance of selected clients and matches the weak with
the strong ones. The matching algorithm also considers
the feasibility of offloading by computing the pair-wise
similarity of the two clients’ data inside a trusted execution
environment (TEE). Once the schedule is decided by the
federator and known by the related clients, the weak ones
freeze part of the model and send it to their matched
strong clients. The heterogeneity of training phases is also
measured and discussed in their work. The most time-
consuming phase is chosen to be frozen and offloaded.

B. Asynchronous Federated Learning
Asynchronous systems could provide faster convergence.

With the heterogeneity in clients’ computing power and
communication delay, the interval time between the server
sending out the new global model and receiving the
model from each client varies. In synchronous FL systems,
large heterogeneity would profoundly reduce the efficiency
of the training process, since both the server and the
fast clients need to wait for the slow client updates to
come before entering the aggregation phase. Asynchronous
systems allow clients to follow their own speed when
participating in the training. The server does not wait for
the slow clients but aggregates the arrived client updates
immediately. In this section, we introduce some existing
solutions in asynchronous FL.

In conventional FL systems, the resource heterogeneity
can significantly prolong the time in each round while the
data heterogeneity brings an upper bound for the result
accuracy. As FL is broadly used by edge device training,
global synchronization encounters a great challenge due to
the varying computing power and infrequent communica-
tion. Asynchronous FL overcomes the impact of resource
heterogeneity by aggregating an update immediately when
it is received by the server. The asynchronous version of
FedAvg can be described as

W t+1 = W t − s(τ)
nk

N
(W t

k −W t+1
k) (3)

where W t is the global model with timestamp t, W k
t

is the local update of client k with timestamp t, nk

N is
the data proportion of the update, and s(τ) is a staleness
parameter which we describe in the following section.

Chen et al. proposed ASO-Fed, an asynchronous online
FL framework that enables wait-free computation and
communication [13]. ASO-Fed allows client updates to
stream into the federator in different rounds and each
local training is based on the newly streamed-in data. A
decay coefficient is introduced to adjust the training result
according to the last model trained on previous data. And
a central feature representation learning is used to reduce
the influence of asynchronous aggregation. To address the
staleness problem, ASO-Fed scales the learning step size
by the client’s communication delays. Since clients with
long delays lose their impact on the intermediate models,
a larger step size is assigned to compensate for the loss.

Xie et al. proposed FedAsync, an asynchronous opti-
mization algorithm for FL [11]. They guarantee a near-
linear convergence and address the staleness problem in
the asynchronous setting. Each time an update arrives,
the weighted averaging is applied for the current global
model and the update. The weight of the client decreases
when its staleness increases. The global model is updated
by the equation

W t+1 = W t − nk

N
rtk(W

t
k −W t+1

k), (4)

3

where rtk = max{1, log d̄kt }, and d̄kt = 1
t

∑t
τ=1 d

τ
k is the

average computing time of client k in past rounds.
Wang et al. proposed AsyncFedED, an adaptive asyn-

chronous aggregation based on Euclidean distance [12]. If
the global model is updated before a client sends back its
update, the learning rate of the server should be adjusted
based on the staleness of the current update. AsyncFedED
evaluates the staleness of an update by its Euclidean
distance from the server. A larger staleness leads to a
smaller learning rate for its aggregation. The staleness of
update wt+1

k is defined as

γt+1
k =

∥W t
k −W t+1

k ∥
∥△iW

t+1
k ∥

(5)

The global learning rate of the current update is
calculated by

ηtk+1 =
λ

γt+1
k + ϵ,

(6)

where λ and ϵ are hyperparameters to be tuned.
In asynchronous FL, the number of updates each client

contributes depends on its computing power and on its
network conditions. Due to the asynchrony, each update’s
influence on the global model should be adjusted. From
the previous asynchronous FL algorithms, we see that
staleness is one of the most important elements to consider
when aggregating asynchronous updates. Staleness is the
number of interval updates between the current model and
the last model that a client has received. The number of
updates received and aggregated by a server is defined
as the age of the server, which is also sent along as a
timestamp when global model delivery occurs.

Staleness is calculated by τ = t − tk, where t is
the current age of the server, and tk is the timestamp
indicating when Client k received the global model for the
current local training. In the interval of the model delivery
and receiving of Client k, other clients have updated
the global model W tk to the new stage W t. When the
server receives the update Wk from Client k upon the
previous model W t−τ , the influence adjustment should be
based on the number of intervals updates τ . Different
strategies of staleness-weighted aggregation have been
proposed. FedAsync [11] introduces a staleness strategy
where the influence of a client’s update decreases when its
staleness grows. Different weighting functions are proposed
to calculate the weight s(τ). In this paper, we only refer
to the following polynomial weighting function

s(τ) = (τ + 1)−α, (7)

where α is an adaptive parameter that decides the
influence of staleness. A larger α indicates the more the
influence of stale updates should be reduced.

FedAsync performs best when the staleness is small,
and it can converge faster than FedAvg. In the paper, a
max staleness of 4 and 16 is tested. However, the average

staleness is decided by the number of clients in the system.
When there are N clients in the system, each update would
contribute to N−1 staleness in total since every update is
pushing the model to another stage. The average staleness
of each aggregation is N − 1. In a larger system such
as one with 100 clients, the system has to tolerate the
average staleness of 99. By leveraging multiple servers in
the system, we can reduce the average staleness of local
updates and improve training efficiency. When staleness
becomes extremely large, the influence of these ancient
updates would be greatly reduced according to Equation 7.
Additionally, with a single server in the system, high
communication latency that is caused by clients far away
from the server can dramatically slow down the training
process.

C. Multi-server Federated Learning

Another scheme to address resource heterogeneity is
to spread the computation and communication burdens
instead of bearing them all on a single server. And the
distinguished global models maintained at multiple servers
also facilitate scenarios where personalized models are
required. Existing methods [14], [15], [23]–[25] add some
edge servers or assign proxy clients to undertake part of
the workload. In addition, clustering techniques become
very valuable in multi-server contexts as they help orga-
nize data more efficiently and identify inherent patterns,
promoting better collaboration among servers. Clustering
is frequently used in multi-task and unsupervised FL [26]–
[28]. We put it into future work to incorporate clustering
algorithms in our framework for potential refinement.

Xie et al. proposed a multi-center FL algorithm, Fe-
SEM [29], to address the challenge of data heterogeneity.
The main idea is to cluster the updates and assign them
to their closest global model (i.e. center). They showed in
experiments that the clusters of local updates characterize
clients’ data distribution thus models generated from
similar data distributions are gathered on the same center
and aggregated.

Hierarchical FL represents a novel approach that im-
proves the capabilities of multi-server FL [14]–[16], [25].
In hierarchical FL, there is a leader server and multiple
edge servers. Two levels of aggregations happen in each
round. The first level happens at the edge server which
aggregates a group of clients and sends the update to the
leader. The leader executes the second-level aggregation
and generates the global mode for the new round.

L. Liu introduced the client-edge-cloud hierarchical
framework, HierFAVG, which can be considered as a
multi-server version of the FedAvg algorithm. Each edge
server employs averaging aggregation for its clients. After
every certain number of rounds, the cloud server applies
averaging strategy to the edge servers. The introduction
of the hierarchical structure reduces the communication
burden on servers and improves the capability of the

4

single-server FedAvg algorithm while maintaining the
stability of synchronous systems.

Despite the advantages, current multi-server and
hierarchical-server algorithms do not directly address the
commonly existing drawback of synchronous systems,
which is their sensitivity to large system heterogeneity.
This gives the motivation to our MultiAsync method: a
combination of multi-server and asynchronous FL that
deals with all heterogeneity at the same time.

III. System Model
We consider a system with multiple servers and a

group of clients. Compared to a hierarchical system,
it is a decentralized system without a central cloud
server. Figure 2 illustrates the topology of centralized,
hierarchical, and multi-server systems. The centralized
system contains one server which is connected to all
the clients in the network. In hierarchical systems, a
centralized server at the highest level is connected to
the second-level servers, which are connected to separate
clusters of clients in the system. In the multi-server system
which is used in our algorithm, each server is the center
of a star network, with a group of clients connecting
to it. And servers are able to communicate with each
other. With m clients in the system, one round of local
updates costs at least O(m) communication contributed
by model receiving and delivery. In multi-server settings,
this communication workload is spread to n servers. The
system could bear (m−1)nmax more clients if nmax is the
maximum number of clients a server could tolerate.

IV. MultiAsync
This section introduces our method MultiAsync. The

multiple servers are distributed in a flat instead of
hierarchical structure, thus no central cloud server is
required. Each server is assigned a group of clients
based on geographical proximity, which is a key feature
for reducing communication overhead. Locally, clients
continuously retrieve the latest global model from the
server, train it on its local dataset, and send back the
update to the server. Globally, the exchange of server
models is essential in harnessing the power of distributed
data and computing resources across multiple servers. In
our main algorithm MultiAsync, global model exchange
happens in an asynchronous fashion. We introduce a
token-based strategy to allow servers to exchange their
models asynchronously. The model exchange can only be
initiated by the server that holds the token, which prevents
concurrent and redundant broadcasting. Model aggrega-
tion happens peer to peer and asynchronously, which
leads to different global model states after exchanging. We
also introduce a synchronous version, MultiSync, where
global synchronization is initiated by time and happens
periodically. Servers wait for each others’ global model
and obtain the same global model state after averaging.
It provides better system consistency, reducing potential

discrepancies in the model state but its effectiveness may
be impacted by network heterogeneity.

In multi-server settings, the strategy of exchanging mod-
els among servers significantly influences the performance
of the system for two reasons: (a) Data heterogeneity: each
server wants to prevent its model from being biased toward
its own group of clients. The exchange of global models
gets good use of the vast data distributed to different
clients. (b) Resource heterogeneity: due to the difference
in clients’ computing power and network conditions, the
number of updates each server has handled can vary a
lot. The model exchange allows advanced models cast
their influence on others. In other words, in multi-server
settings, a global model is not only updated by the clients
of the server but it should also be improved by other
servers’ global models from time to time.

In the following sections, we will explain MultiAsync
from a top-down view, and give a synchronous alternative,
MultiSync, in the end.

A. Server-Server Aggregation
The server-server aggregation of MultiAsync consists

of two main algorithms: a token-based algorithm for
asynchronous server model exchange and an aggregation
algorithm to merge two server models.

1) Model Exchange Process: Algorithm 1 is the pseudo-
code of the model exchange procedure in MultiAsync.
Parameter hinter is the threshold for the largest age
difference between different servers. hintra is the threshold
for the age difference between a server’s current age and
the age after its last completed aggregation. Either excess
of the two thresholds will initialize the model exchange.

Lines 1-8 describe how the token is distributed and trig-
gers the model exchange process. The token is initialized
with an empty hash map and a broadcast ID of 0. It starts
in one server and travels to each server in a ring-based
topology. Upon the arrival of the token, Server i updates
its current age onto the hash map. It then checks the
current largest age difference between servers and the age
difference between its current age and its age after the
last broadcast phase. If the inter-server age difference is
over the threshold hinter, or the intra-server age difference
is over hintra, it triggers Server i to initialize the server
model exchange process by broadcasting its current model
W t

i , age Ai, and broadcast ID bidt to all the other servers.
Lines 9-22 describe how models are exchanged among

servers and how the token is redistributed by the server
that initiated the exchange. Upon receiving a broadcast,
Server j compares the bidt with its own broadcast ID
bidj . In line 12, if bidt ≥ bidj , the broadcast is the latest
in Server j’s knowledge so it should be disposed of and
Server j should update its own broadcast ID bidj as bid−t.
Server j, in line 15, would then execute a server-server
aggregation algorithm serverAgg. This algorithm will be
explained in the next subsection. When Server j that
initializes the algorithm has collected and aggregated all

5

…

(a) Centralized system (b) Hierarchical system (c) Multi-server system

Figure 2: Layout of 3 different FL system models

the other servers’ models, it increases the token broadcast
ID bidt by one, re-initializes the hash map, records its
current age, and passes it to the next server. In line 10,
bidt < bidj happens when the broadcast bidt takes too long
to arrive due to a network delay, and it should be ignored
since Server j has been updated by newer broadcasts.
Concurrent initialization is avoided since the initializer
server keeps the token during the algorithm running.

2) Model Aggregation: The aggregation algorithm 2
between servers consists of two parts: calculating the
aggregation weights and updating the server models.

When deciding the weights, the number of data points
on servers should be taken into consideration. The age
of a server is defined by the number of local updates it
has applied. When comparing a server’s age with others
at the same time, the number of data points these server
covers are compared indirectly. Thus, we use the following
weighted aggregation strategy to calculate the weights of
W t

j according to their relative age difference. The Sigmoid
function is used to measure the difference in age taking
the relative age difference as the variable.

wt
i =

1

e−ka+1
, where a =

Aj −Ai

Ai
(8)

The age difference Aj − Ai indicates how is W t
j more

mature than W t
i in terms of the number of updates they

are trained on, and the influence of W t
j should increase

when the difference grows. Denominator Ai makes the
absolute weight relative to the current age of Server i.
As the age increases, the model is in a more stable and
mature phase of training and the learning ratio towards
other servers should be influenced less by the absolute
age difference. The Sigmoid function ensures the weight
is between the range of 0 and 1. The derivative becomes
0 and results in a weight of 1 when the relative difference
is too large. Parameter k indicates in which range the
Sigmoid function is active. A larger k leads to a smaller
active range, leaving a larger area for the weight of 0 and
1.

Algorithm 1 Token-based global model broadcast in Mul-
tiAsync
Require: Age difference threshold between servers hinter,

Age difference threshold within servers hintra, Server
i age Ai

1: Server i Procedure Token Loop
2: Initialization: agest ← {}, bidt ← 0, bidi ←

0, cnti ← {}, Ai,pre ← Ai

3: Token arrives at Server i
4: ages[i]← Ai

5: if max(ages) − min(ages) >= hinter or Ai −
Ai,pre >= hintra then

6: Broadcast(W t
i , bidt, senderid)

7: else
8: Pass the token to the next server
9: Server j Procedure Receive Broadcast(W t

i , bidt)
10: if bidt < bidj then ▷ the broadcast is stale
11: Return
12: if bidt ≥ bidj then ▷ Latest broadcast arrives
13: bidj ← bidt
14: Broadcast(W t

j , bidt)
15: Aj ,W

t+1
j = serverAgg(W t

i , Ai)
16: cnt[bidt]← cnt[bidt] + 1
17: if cnt[bidt] == #servers − 1 and Server j is

initializer then
18: bidt ← bidt + 1 ▷ Prepare the next broadcast

id
19: ages← {}
20: ages[j]← Aj

21: Aj,pre ← Aj ▷ Record age of last broadcast
22: Pass the token to the next server

The aggregation rate ηa scales the influence of other
servers in peer-peer aggregation. When the aggregation
with Server i happens locally at Server j, a large ηa
indicates that Server i could influence Server j’s model
greatly, and ηa = 1 means it could replace Server j’s
model when their ages are equal. ηa needs to be carefully

6

Algorithm 2 Server-server aggregation in MultiAsync
Require: Aggregation rate ηa, active rate k

1: Server i Procedure ServerAgg(W t
j , A

t
j)

2: a =
Aj−Ai

Ai

3: wj =
1

eka+1

4: W t+1
i ←W t

i + ηawj(W
t
j −W t

i)
5: Ai ← (1− ηawj)Ai + ηawjAj

tuned to ensure the exchange of models is efficient. If ηa
is too large, the influence of the server itself is eliminated;
if ηa is too small, the server learns too little from its
peers thus its model could be biased to its clients’ data
distribution.

The server age should also change after model exchange
and aggregation with other servers. According to the
weight wj that has been applied to the model aggregation,
Server i updates its age locally as shown in the last line
of Algorithm 2. Server-server aggregation contains more
than one update’s complexity, thus we apply the weighting
strategy to age, indicating how many ages a server grows
after considering another server’s model.

B. Client-server Aggregation
In an asynchronous context where there is one server

and a group of clients, the aggregation process is described
in Algorithm 3. Line 1-8 describes the perspective of
the client, it waits for the global model, trains it upon
its local dataset, sends the trained model back to the
server, and repeats the process. The Decay(·) in line 4
represents a decay function that will be explained in detail
in section IV-C. Line 9-13 describes the perspective of the
server, it receives an update from the client, aggregates it
immediately, sends the updated model back to the client,
and repeats the process. In MultiAsync and MultiSync,
local learning rate decay is applied to limit the clients
with more frequent updates. In our experimental study, it
shows that the decay of the local learning rate reduces the
distance of servers’ global models indicated by a smaller
standard deviation in the resulting accuracy.

C. Client Local Training
Due to the resource and network heterogeneity in

clients, clients send their updates to the server at different
paces. Fast clients are active contributors, consistently
sending their updates at smaller intervals. In contrast, slow
clients contribute infrequently, offering fewer updates. As
a result of this disparity in the number of updates, the
server faces challenges in handling the data distributions
of all clients, primarily because of the flooding updates
received from the fast clients. To address the difficulty of
maintaining a balanced data distribution, adaptive strate-
gies are needed to manage client updates. We introduce
a customized local learning rate to avoid potential biases
in the global model caused by clients’ data heterogeneity.
The main idea is to limit fast clients’ influence on the

Algorithm 3 Client-server update in MultiAsync
Require: Client Learning rate η, server learning rate ηi,

the number of local updates xk

1: Client Procedure Local Training
2: Receive global model W t

i from Server i
3: Initialization: W t

k ←W t
i

4: ηk ← Decay(ηk)
5: for epoch e ∈ [E] do
6: Update W t

k with learning rate ηk

7: W t+1
K ←W t

k

8: Send the W t+1
k to Server i

9: Server Procedure Aggregation
10: Receive model W t+1

k from Client k
11: wt

k ← GetWeight(ak, ai)
12: W t

i ←W t−1
i + ηiw

t
k

13: Send W t
i to Client k

server while finding a balance in the trade-off of the
advantage of their high computing power.

Before local training, client k adjusts its local learning
rate according to the following function:

ηk =

{
ηk, x < λ

max (ηmin, ηk − β(x− λ)), x ≥ λ
(9)

where ηk is the learning rate without decay, ηmin is
the lower bound of the decayed learning rate, β is the
decaying rate, and λ determines when the decay function
is activated for each client. λ should be tuned according
to the average number of updates each client should
contribute. If λ is set to an excessively small value, the
learning process may slow down too much, which can
hinder the model’s ability to explore and learn from the
data of fast clients effectively. On the other hand, when λ
is too large, the learning rate might not decrease enough
to mitigate the impact of fast clients.

When greater data heterogeneity exists in clients, the
system is more sensitive to resource heterogeneity in
clients since the local optimums vary more and over-
approaching any optimum affects the performance more
seriously. With the implementation of the local learning
rate decay, all clients have a more equitable opportunity to
shape the global model, leading to a more comprehensive
and accurate representation of the entire dataset.

D. Multisync
As a synchronous alternative for MultiAsync, MultiSync

shares the same client-server aggregation and client-local
training procedures. MultiSync is preferred in the situation
where server-server communication latencies are compen-
sated with better performance and stability. The server-
server aggregation for MultiSync is a synchronization
process, which is the main difference from MultiAsync. We
introduce a periodic synchronous aggregation mechanism

7

Algorithm 4 Periodic global synchronization in MultiSync
Require: Period p

1: Server Procedure Aggregation
2: Broadcast W t

i and Ai with a period of p
3: Receive models {W t} from all the servers
4: for W t

j ∈ {W t} do
5: wt

k ←
Aj∑
A

6: W t+1 ←
∑ Ak

A W t
j

for the global models’ aggregation. The time-based syn-
chronization has the advantage of simple initiation since
it reduces unnecessary messages for the servers to reach
a consensus. Algorithm 4 shows the procedure of global
synchronization. Periodically, the servers broadcast their
model and age and wait for others’ messages to arrive.
As long as a server receives all the models from its peer,
aggregation happens. A weight function of wt

k =
Aj∑
A is

used to decide a server’s influence in the synchronization,
which is evaluated by the age of the servers. The server
with a larger age will have a greater impact during the
synchronization. By the end of the algorithm, each server
should reach the same model.

In MultiSync, when the server synchronization algo-
rithm is started, servers stop accepting local updates from
clients but wait for all the other servers’ models to arrive
and synchronize. This introduces a common bottleneck
of synchronous systems that they are more sensitive to
network heterogeneity since the synchronization duration
is strictly limited by the worst communication delay.

V. Performance Evaluation
In this section, we introduce the experimental settings

and evaluation matrices. We conduct experiments on
the MNIST, CIFAR-10, and WikiText2 datasets. In the
experimental study, we explore the impact of the number
of clients per server when the number of servers is
stable as well as when the total number of clients is
stable. We simulated the training delays on clients and
the aggregation delays on the servers. We compared our
methods with fedAvg [1] and fedAsync [11].

A. General Experiment Settings
The dataset is split into equal sizes and assigned to every

client. To address clients’ data heterogeneity, we assign l
labels to each client. A smaller l indicates a more non-
IID data distribution and thus larger data heterogeneity
in clients. l is set to 2 in non-IID data experiments. To
simulate the time, we consider the following delays:

In addition, we set the communication delays between
clients and servers to 10 ms. Since servers might be
located far from each other (e.g. Amsterdam and Sydney),
we consider the communication delays among servers
according to the Amazon Web Service network latency
[30] as shown in table II.

Table I: Simulated computation delays
Local Training 200 ms

Global Synchronization in MultiSync 2 ms
Peer-to-peer Aggregation in MultiAsync 2 ms

FedAvg Aggregation 15 ms
HierFAVG Cloud Aggregation 15 ms

Aggregation in FedAsync 2 ms

Table II: Communication delays
Delays(ms) Hongkong Paris Sydney California
Hongkong 1.41 194.9 132.28 155.13

Paris 197.91 0.9 278.83 142.25
Sydney 132.06 280.11 2.56 138.47

California 154.96 142.79 138.57 2.14

To simulate the resource heterogeneity in clients, we
sample each client’s training delay from a Gaussian distri-
bution: X ∼ N(µ, σ2), where µ = 100 and σ = 0.4µ = 40.
To avoid extra randomness in clients, all trials in the
experiment share the same clients.

For the neural network models, we use a CNN model
with two convolutional layers and two fully connected
layers to perform MNIST classification. For CIFAR-10,
a CNN model with three convolutional layers and two
fully connected layers is used. For the text dataset Wiki-
Text2, we use the next character long short-term memory
(LSTM) neural network model, designed for character-
level text generation tasks. The language model consists
of an embedding layer that is used to capture the semantic
and syntactic properties of characters, an LSTM layer that
captures dependencies between characters and generates
coherent text, and a fully connected layer that transforms
the LSTM’s hidden states into a probability distribution
over all possible characters in the vocabulary. The initial
local learning rate of clients ηk is 0.05. In Asynchronous
settings, we use α = 0.5 for the staleness weighting
function 7 and a global learning rate of η = 0.6 for the
client-server update 3.

B. Performance Comparison of 5 FL Algorithms
In this experiment, each FL system consists of 100

clients. Figure 3 shows the results of experiments on
datasets MNIST, CIFAR-10, and WikiText-2. In terms of
time, for each dataset, MultiAsync converges the fastest
in terms of time, MultiSync has the same efficiency
as FedAsync that together they are only slower than
MultiAsync. In terms of the needed number of updates,
our algorithms show very similar performance towards
FedAsync and FedAvg.

Except for the horizontal comparison of the five algo-
rithms’ run-time accuracy, we also conducted a vertical
comparison of them in terms of client scalability. In this
set of experiments, we changed the client number from
the original 100 to 200 and then 300 and evaluate each

8

20 40 60 80 100 120
Running Time (s)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

MultiAsync
MultiSync
FedAsync
HierFAVG
FedAvg

(a) MNIST time vs. accuracy

20 40 60 80 100 120
Running Time (s)

0

20

40

60

80

Ac
cu

ra
cy

 (%
)

MultiAsync
MultiSync
FedAsync
HierFAVG
FedAvg

(b) CIFAR-10 time vs. accuracy

10 20 30 40
Running Time (s)

0

5000

10000

15000

20000

Pe
rp

le
xi

ty

MultiAsync
MultiSync
FedAsync
HierFAVG
FedAvg

(c) WikiText2 time vs. perplexity

0 10 20 30 40
Number of Total Updates (K)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

MultiAsync
MultiSync
FedAsync
HierFAVG
FedAvg

(d) MNIST updates vs. accuracy

0 10 20 30 40
Number of Total Updates (K)

0

20

40

60

80
Ac

cu
ra

cy
 (%

)

MultiAsync
MultiSync
FedAsync
HierFAVG
FedAvg

(e) CIFAR-10 updates vs. accuracy

0 5 10 15 20
Number of Total Updates (K)

0

5000

10000

15000

20000

Pe
rp

le
xi

ty

MultiAsync
MultiSync
FedAsync
HierFAVG
FedAvg

(f) WikiText2 updates vs. perplexity

Figure 3: Accuracy curves of 5 FL algorithms on MNIST, CIFAR-10, and WikiText2 datasets with 100 clients in the
system.

Table III: The ratios of required time and update number
for 90% accuracy compared with 100-client statistics. Each
value subtracted by 1 is the increased ratio relative to the
100-client value.

200 clients 300 clients
Time Updates Time Updates

MultiAsync 1.21 2.43 1.43 4.34
MultiSync 1.61 2.68 1.90 4.87
FedAsync 2.42 3.63 5.99 9.01
FedAvg 1.98 4.05 2.44 7.26

HierFAVG 1.64 3.18 1.75 8.19

algorithm by the needed time and number of updates to
reach 90% accuracy. The experimental result is shown in
Tab III.

From table III we can see that with the increasing
number of clients in the system, the convergence time and
update amount of the methods increase in different trends.
MultiAsync has a trend that is closest to the linear one.
For every additional 100 clients, the time ratio approxi-
mately increases by a factor of 0.21 while the update’s
increasing ratio rises slightly from 1.43 to 1.91. These
two statistics also show the smallest absolute amount of
increase among all. On the other hand, FedAsync displays
the most divergent increasing trend in both time and
update amounts. The increase of time at 200 clients is 1.42
while in the interval of 200 to 300 clients, the increasing
ratio escalates to 3.57. For the number of updates, it
experiences a similar trend from 2.63 to 5.38.

From the above analysis, we can expect a more stable

trend of increasing time and updates in MultiAsync when
the system engages a larger scale of clients. To conclude,
MultiAsync not only exhibits the fastest convergence
according to previous discussions, but it also demonstrates
the best client scalability compared with the three base-
lines.
C. Impact of Multiple Servers in Asynchronous FL

To further illustrate the benefits of introducing a multi-
server system to an asynchronous FL framework.

In asynchronous FL systems, aggregation happens im-
mediately after the update is received by the server. The
time spent on each aggregation becomes an issue that
can cause a queue of updates that await. Thus, we first
conduct experiments to explore this queuing phenomenon
on the server.

The experiment is conducted on MultiAsync and
FedAsync, where they both possess 200 clients, while
MultiAsync has 4 servers and FedAsync with only 1.
The local training delays of clients are generated from
Gaussian distribution with a mean of 150 ms and a
standard deviation of 60 ms. We set the computation
delays according to table II.

From figure 4 we observe that, after the training starts,
the queue length of FedAsync constantly rises to nearly
80 updates from 300ms to 600ms and stays at a level
above 20 during the rest of the experimental period. This
illustrates the fact that many updates are not processed on
time due to the lack of computational power of the single
server, which could be optimized by introducing more

9

Table IV: The improvement of efficiency of MultiAsync on
the MNIST dataset. The top 3 rows are the results when
simulating network latency while the bottom 3 rows are
those without. In each experiment, the time is measured
for either FedAsync or MultiAsync to stably reach an
accuracy of 90% or 95% in milliseconds. The boost is
the percentage of time decreased in MultiAsync compared
with FedAsync.

Network Method Time 90% Time 95%

lat.
FedAsync 59s 125s

MultiAsync 22s 51s
boost 61% 58%

No lat.
FedAsync 40s 75s

MultiAsync 25s 56s
boost 38% 25%

servers in parallel to process the updates. On the other
hand, MultiAsync despite having queues, never exceeds
the length of 20 during the whole experimental period,
which illustrates the improvement in the efficiency in
processing client updates of introducing multiple servers.
In real-life applications, MultiAsync can always provide
freedom of choice in the number of servers to cope with the
actual computational power needed to handle the offload
of clients.

0 500 1000 1500 2000 2500 3000
Running Time (ms)

0

20

40

60

80

100

120

Qu
eu

e
Le

ng
th

MultiAsync
FedAsync

Figure 4: The number of queuing updates at server

To illustrate the efficiency gain in having smaller queues,
we further conducted a group of experiments to test the
time needed for FedAsync and MultiAsync to stably reach
90% and 95% accuracy on an MNISt dataset. In this group
of experiments, only the time difference caused by resource
heterogeneity is simulated. The results are shown in the
bottom three rows of table IV.

We see that MultiAsync gained a 38% boost in speed
to reach 90% accuracy, and a 25% boost to reach 95%
accuracy.

To further demonstrate the fact that MultiAsync also
mitigates the impact of high communication delays, we
conducted a similar group of experiments that, in addition,

introduces network latency according to table II. The
results are shown in the top three rows of table IV.

Compared with the bottom three rows where no net-
work latencies are considered, the top three rows show
a larger difference between MultiAsync and FedAsync,
where MultiAsync gained a 61% boost to reach 90%
accuracy, and a 58% boost to reach 95%. In the system,
the communication complexity mainly consists of a large
amount of update sending and global model delivering,
which makes it of vital importance to reduce the latencies
of these client-server communications. In MultiAsync,
the distance between clients and their assigned server is
ensured to be small (within 5 ms), showing the benefit
of geo-replication. This enlarged gap compared with non-
communication results indicates that MultiAsync not only
addresses the limitation of server computing power, it
also overcomes the inefficiency brought by long-distance
communication.
D. Impact of Learning Rate Decay

To explore the impact of having a client learning
rate decay strategy on MultiAsync, we conducted two
experiments.

In the first experiment, we used MultiAsync and
FedAsync each with 112 clients to perform the classifica-
tion task on the MNIST dataset. For these two algorithms
that represent the single-server and multi-server case, we
gathered statistics on the number of updates of every
client and plotted a kernel density estimate (KDE) plot
to show its distribution. A KDE plot could be considered
as a continuous version of a histogram to reveal the
distribution of a statistic. The most desirable result of
a KDE plot for a FL should be a single concentrated
peak, representing that all clients have a similar amount of
contribution. The KDE plots of MultiAsync and FedAsync
are shown in figure 5.

0 500 1000 1500 2000
Number of Updates

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

de
ns

ity

MultiAsync
FedAsync

Figure 5: The distribution of client updates in FedAsync
and MultiAsync

10

From the plot, we observe that FedAsync has a more
centralized distribution of updates with a steep peak at
around 200 updates compared with a gentler peak of
MultiAsync at around 300 updates. This is because the
major source of delay in FedAsync is communication,
and the distribution of communication delay is relatively
concentrated. On the other hand, by introducing multiple
servers to handle updates from clients in different areas,
the communication delay of MultiAsync is significantly
shrunk. This makes the difference in clients’ training time
the major source of heterogeneity in MultiAsync. More-
over, this difference has a less concentrated distribution
than communication delay, thus we acquired worse results
from MultiAsync than FedAsync. We also observe a small
peak at around 1400 updates for MultiAsync and 1700
for FedAsync. This is caused by a coincidence of having
clients that train fast and near a server at the same time,
which could cause a biased global model due to its high
influence.

Based on the analysis above, we consider it necessary
of having a client learning rate decay mechanism that
customizes the learning rate of clients according to the
number of updates they contribute. This would lead to
less impact per update for the more active clients to
balance the overall contribution of clients. Moreover, as we
configured in the decay function, the decay ratio should
increase as the number of updates rises to cope with the
”lucky” clients that are fast in all aspects.

In the second experiment, we tested the convergence
speed of MultiAsync with and without the learning rate
decay mechanism.

0 10 20 30 40
Number of Total Updates (K)

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

MultiAsync_decayed
MultiAsync

Figure 6: The impact of learning rate decay

From figure 6 we observe that by introducing the
learning rate decay mechanism, the overall convergence
speed of MultiAsync increased. This proves that this
mechanism balances the impact of resource heterogeneity
among clients and leads to faster convergence of the
system.

VI. Conclusion
In this paper, we proposed a novel asynchronous multi-

server algorithm, MultiAsync. As we discussed in the
introduction section, multi-server settings are more prac-
tical in real-life scenarios where clients are distributed
over the world. And asynchronous improvement addresses
the bottleneck brought by the slowest client in either
communication or computation. We introduce multi-server
settings while keeping local updates in an asynchronous
fashion. The experimental results show that our method
performs better than the three previous significant al-
gorithms FedAsync, HierFAVG, and FedAvg in terms
of convergence speed. The design of our token-based
broadcast algorithm ensures that we don’t sacrifice much
accuracy for the trade-off of faster convergence.

We put into future work to investigate the optimal
client-server ratio in different configurations to enhance
the effectiveness of MultiAsync. We also aim to explore the
potential of integrating clustering algorithms in MultiSync
to enable servers to group clients based on similarities
in their data distributions. In addition, improving the
system’s robustness towards Byzantine behaviors is also
a crucial aspect of our future work.

References
[1] B. McMahan, E. Moore, D. Ramage, S. Hampson,

and B. A. y Arcas, “Communication-Efficient Learn-
ing of Deep Networks from Decentralized Data,” in
Proceedings of the 20th International Conference on
Artificial Intelligence and Statistics, A. Singh and
J. Zhu, Eds., ser. Proceedings of Machine Learning
Research, vol. 54, PMLR, 2017, pp. 1273–1282.

[2] T. Yang, G. Andrew, H. Eichner, et al., “Applied
federated learning: Improving google keyboard query
suggestions,” CoRR, vol. abs/1812.02903, 2018.

[3] S. Ramaswamy, R. Mathews, K. Rao, and F. Bea-
ufays, “Federated learning for emoji prediction in a
mobile keyboard,” CoRR, vol. abs/1906.04329, 2019.

[4] A. Hard, K. Rao, R. Mathews, et al., “Federated
learning for mobile keyboard prediction,” CoRR,
vol. abs/1811.03604, 2018.

[5] M. Chen, A. T. Suresh, R. Mathews, et al., “Fed-
erated learning of n-gram language models,” CoRR,
vol. abs/1910.03432, 2019.

[6] B. Yuan, S. Ge, and W. Xing, “A federated learn-
ing framework for healthcare iot devices,” CoRR,
vol. abs/2005.05083, 2020.

[7] J. Xu, B. S. Glicksberg, C. Su, P. Walker, J. Bian,
and F. Wang, Federated learning for healthcare
informatics, 2019. doi: 10 . 48550 / ARXIV . 1911 .
06270. [Online]. Available: https://arxiv.org/abs/
1911.06270.

11

[8] T. S. Brisimi, R. Chen, T. Mela, A. Olshevsky,
I. C. Paschalidis, and W. Shi, “Federated learning
of predictive models from federated electronic health
records,” International Journal of Medical Informat-
ics, vol. 112, pp. 59–67, 2018, issn: 1386-5056. doi:
https://doi .org/10.1016/j . ijmedinf .2018.01.007.
[Online]. Available: https://www.sciencedirect.com/
science/article/pii/S138650561830008X.

[9] N. Rieke, J. Hancox, W. Li, et al., “The future
of digital health with federated learning,” CoRR,
vol. abs/2003.08119, 2020.

[10] P. Kairouz, H. B. McMahan, B. Avent, et al., Ad-
vances and Open Problems in Federated Learning.
2021.

[11] C. Xie, S. Koyejo, and I. Gupta, “Asynchronous fed-
erated optimization,” CoRR, vol. abs/1903.03934,
2019.

[12] Q. Wang, Q. Yang, S. He, Z. Shi, and J. Chen,
Asyncfeded: Asynchronous federated learning with
euclidean distance based adaptive weight aggrega-
tion, 2022. doi: 10 . 48550 / ARXIV . 2205 . 13797.
[Online]. Available: https : //arxiv . org/abs/2205 .
13797.

[13] Y. Chen, Y. Ning, M. Slawski, and H. Rangwala,
“Asynchronous online federated learning for edge de-
vices with non-iid data,” in 2020 IEEE International
Conference on Big Data (Big Data), 2020, pp. 15–24.
doi: 10.1109/BigData50022.2020.9378161.

[14] L. Liu, J. Zhang, S. Song, and K. B. Letaief,
“Client-edge-cloud hierarchical federated learning,”
in ICC 2020 - 2020 IEEE International Conference
on Communications (ICC), 2020, pp. 1–6. doi: 10.
1109/ICC40277.2020.9148862.

[15] M. S. H. Abad, E. Ozfatura, D. GUndUz, and
O. Ercetin, “Hierarchical federated learning across
heterogeneous cellular networks,” in ICASSP 2020
- 2020 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), 2020,
pp. 8866–8870. doi: 10 .1109/ICASSP40776 .2020 .
9054634.

[16] L. Li, H. Xiong, Z. Guo, J. Wang, and C.-Z. Xu,
“Smartpc: Hierarchical pace control in real-time
federated learning system,” in 2019 IEEE Real-Time
Systems Symposium (RTSS), 2019, pp. 406–418. doi:
10.1109/RTSS46320.2019.00043.

[17] A. Hard, K. Rao, R. Mathews, et al., “Federated
learning for mobile keyboard prediction,” CoRR,
vol. abs/1811.03604, 2018. arXiv: 1811.03604. [On-
line]. Available: http://arxiv.org/abs/1811.03604.

[18] Z. Huang, F. Liu, and Y. Zou, “Federated learning
for spoken language understanding,” in Proceedings
of the 28th International Conference on Computa-
tional Linguistics, Barcelona, Spain (Online): Inter-
national Committee on Computational Linguistics,
Dec. 2020, pp. 3467–3478. doi: 10.18653/v1/2020.

coling - main . 310. [Online]. Available: https : / /
aclanthology.org/2020.coling-main.310.

[19] X. Li, Y. Gu, N. C. Dvornek, L. H. Staib,
P. Ventola, and J. S. Duncan, “Multi-site fmri
analysis using privacy-preserving federated learning
and domain adaptation: ABIDE results,” CoRR,
vol. abs/2001.05647, 2020. arXiv: 2001.05647. [On-
line]. Available: https://arxiv.org/abs/2001.05647.

[20] Z. Chai, A. Ali, S. Zawad, et al., “Tifl: A tier-
based federated learning system,” ser. HPDC ’20,
Stockholm, Sweden: Association for Computing Ma-
chinery, 2020, pp. 125–136, isbn: 9781450370523.
doi: 10.1145/3369583.3392686. [Online]. Available:
https://doi.org/10.1145/3369583.3392686.

[21] T. Nishio and R. Yonetani, “Client selection for
federated learning with heterogeneous resources in
mobile edge,” in ICC 2019 - 2019 IEEE International
Conference on Communications (ICC), 2019, pp. 1–
7. doi: 10.1109/ICC.2019.8761315.

[22] B. Cox, L. Y. Chen, and J. Decouchant, Aergia:
Leveraging heterogeneity in federated learning sys-
tems, 2022. doi: 10 . 48550 / ARXIV . 2210 . 06154.
[Online]. Available: https : //arxiv . org/abs/2210 .
06154.

[23] S. M. Azimi-Abarghouyi and V. Fodor, Multi-server
over-the-air federated learning, 2022. doi: 10.48550/
ARXIV.2211 .16162. [Online]. Available: https : //
arxiv.org/abs/2211.16162.

[24] A. K. Sahu, T. Li, M. Sanjabi, M. Zaheer, A. Tal-
walkar, and V. Smith, CoRR, vol. abs/1812.06127,
2018.

[25] X. Wang and Y. Wang, Asynchronous hierarchical
federated learning, 2022. doi: 10 . 48550 / ARXIV .
2206.00054. [Online]. Available: https://arxiv.org/
abs/2206.00054.

[26] A. Adolfsson, M. Ackerman, and N. C. Brownstein,
“To cluster, or not to cluster: An analysis of clus-
terability methods,” Pattern Recognition, vol. 88,
pp. 13–26, Apr. 2019. doi: 10.1016/j.patcog.2018.10.
026. [Online]. Available: https://doi.org/10.1016%
2Fj.patcog.2018.10.026.

[27] V. Smith, C. Chiang, M. Sanjabi, and A. Tal-
walkar, “Federated multi-task learning,” CoRR,
vol. abs/1705.10467, 2017. arXiv: 1705.10467. [On-
line]. Available: http://arxiv.org/abs/1705.10467.

[28] D. K. Dennis, T. Li, and V. Smith, “Heterogeneity
for the win: One-shot federated clustering,” CoRR,
vol. abs/2103.00697, 2021. arXiv: 2103.00697. [On-
line]. Available: https://arxiv.org/abs/2103.00697.

[29] M. Xie, G. Long, T. Shen, T. Zhou, X. Wang, and
J. Jiang, “Multi-center federated learning,” CoRR,
vol. abs/2005.01026, 2020.

[30] Latency between different regions of amazon web
services, https://cloudping.co/grid, Accessed: 2023-
07-12.

12

2
Extended Related Work

This chapter serves as an essential complement to the first chapter, offering an in-depth explo-
ration of the related work. The basics of FL are given, and more background on multi-server
FL and asynchronous FL is provided.

2.1. Federated Learning
FL is a decentralized approach to machine learning proposed by Google in 2017 [1]. It aims
to make good use of the vast data distributed to a large number of users and overcome the
challenge of privacy preservation at the same time. It was initially introduced to improve
machine learning on mobile and edge devices [2]–[6]. Now it is also developed to train a shared
model among some large organizations such as finance companies and health care centers [7]–
[9]. The two scenarios are termed cross-device and cross-silo FL [10]. In this paper, we only
focus on cross-device FL.

Different from conventional machine learning where the training is completed on a single
machine with the full dataset, FL requires local training happening in different machines simul-
taneously and with different datasets. The most commonly used topology is the centralized
and synchronous FL framework. As shown in Figure 2.1, in each round, a set of clients are
selected to receive the current global model from the server, train the model with their local
dataset, and send the update back to the server. The server collects all the updates and com-
putes a new model according to the aggregation rule (AGR) of the FL system and applies the
new aggregated model to its global state. The process is repeated in rounds until the global
model converges.

Brendan McMahan et al. proposed the first AGR named Federated Averaging (FedAvg)
[1]. It is the distributed version of traditional stochastic gradient descent (SGD) and it is
provably communication-efficient and convergent. Each round a fraction of clients are selected
to update their training results to the server. The server aggregates the updates according to
the following equation:

W t =
1

K

K∑
i=1

ni

N
W t−1

i

W t is the resulting global model on the server at time t, W t−1
i is Client i’s updated model

based on the last global model W t, K is the number of selected clients, ni is the number of
datapoints upon which Client i trains the model, and N is the total number of datapoints. The
key idea is to average the model updates from different clients. The global model benefits from

14

2.2. Data Heterogeneity and Resource Heterogeneity 15
Tekst

Asynchronous Federated Learning

Processing time on the server

Client

Updates based

on different data

distributions

10 ms

300 ms

Figure 2.1: The framework of FL

the diverse dataset of clients while mitigating the privacy concerns associated with sharing raw
data.

The emphasis on privacy preservation is the driving force behind the considerable attention
that FL has gained from numerous researchers. To further enhance privacy in FL, researchers
have introduced advanced techniques such as differential privacy [11], [12] and secure aggrega-
tion [13], [14]. Differential privacy defends the system against inference attacks that aim to
learn sensitive information in data points, while secure aggregation protects the system against
attacks that attempt to compromise the integrity of model updates. In this paper, we do not
focus on privacy preservation in FL, instead, we focus on the performance and efficiency of the
FL systems.

2.2. Data Heterogeneity and Resource Heterogeneity
FL presents a common yet challenging scenario where the dataset distributed across individual
devices exhibits notable variations in features, quantity, and label distribution [15]. This
diversity in data distribution is visualized in Figure 2.1, wherein clients are depicted with
different colors, highlighting their distinct datasets.

The distribution of local data within a dataset is profoundly shaped by the methodologies
employed during data collection. Data that originate from varying timeframes, geographical
locations, and diverse devices introduce a significant degree of heterogeneity to the dataset.
For instance, consider the scenario of gathering data to investigate the correlation between
individuals’ sleeping habits and their occupations. Should a substantial proportion of the data
originate from a specific age bracket (such as 20 to 30 years old), any conclusions drawn from
this dataset could potentially distort the relationship between individuals’ bedtime and their
age. Consequently, this engenders a form of data heterogeneity that can be classified as non-
identical, as the data have been sourced from disparate probability distributions owing to the
uneven collection process.

Aside from data heterogeneity, another substantial challenge in FL is resource heterogene-
ity. FL has gained extensive adoption across diverse fields, with instances such as Apple’s
employment of FL to enhance Siri’s functionality and Google’s utilization of FL in predictive
text suggestions and emoji recommendations within the Gboard keyboard application. The
participating client devices exhibit a wide spectrum, spanning various smartphone models to

2.2. Data Heterogeneity and Resource Heterogeneity 16

full-fledged computers. Moreover, resource disparities come to the forefront during local model
training. Some clients may execute parallel processes, while others might have idle process-
ing units. These variations underscore the existence of resource heterogeneity within the FL
ecosystem. It is evident that clients equipped with limited resources often experience prolonged
training durations, inadvertently impeding training efficiency.

Also, during the local training, some clients have other processes running in parallel while
other clients have some idle kernels. The above possibilities address the existence of resource
heterogeneity. Clients with fewer resources often prolong the training time thus binding the
training efficiency. Various discussions and solutions have been proposed to address resource
heterogeneity. We will introduce synchronous and asynchronous solutions in later sections.

2.2.1. Synchronous FL
Most conventional FL systems are synchronous. Clients and servers are working under the
global clock. An exemplar instance of this is observable in the FedAvg framework[1], wherein
the progression of local training on clients is governed by global round synchronization. After
every selected client uploads its model to the server, the FedAvg aggregation algorithm can be
performed. Fast clients who finish the training and transfer earlier should wait for the slow ones
so that they could synchronously move to the next round. On the other hand, the synchronous
nature of these FL systems introduces notable advantages. One key advantage lies in the
establishment of synchronized model updates. By ensuring that all clients contribute their
updates at the same point, the global model can be updated coherently, fostering convergence
towards a consensus model. Additionally, this synchronization simplifies the implementation
of aggregation strategies, enabling efficient and accurate integration of client contributions.
Synchronous systems also simplify equitably distributing the contributions of each client, which
could avoid potential bias that could arise from an uneven allocation of updates originating
from any individual client. In this section, we introduce some synchronous federated solutions
that aim to improve the efficiency of training.

Chai et al. proposed a tier-based FL frame TiFL to reduce the influence of resource hetero-
geneity in clients [16]. In TiFL, the selection of clients is adaptive to their dynamically adapted
to their individual computational capabilities. The initiation of the process involves the cen-
tral server executing a profiling algorithm, which systematically accumulates latency metrics
across all available clients. Based on these metrics, the clients are subsequently stratified into
distinct groups known as ”tiers.” Different from the conventional FL systems where clients
are randomly selected, TiFL randomly selects the clients from one tier in each round. The
stragglers’ negative effect on the training efficiency of a single round is significantly reduced.

Mobile edge computing presents a pragmatic use case for FL, particularly concerning smart-
phone clients where resource heterogeneity extends beyond computing power to encompass
disparities in wireless channel conditions. Within this context, the occurrence of interrupted
connections during rounds introduces unpredictability to the waiting period. In response,
Nishio et. al. have introduced a hierarchical pace control FL framework SmartPC which
focuses on production FL in real-time settings [17]. They consider the cross-device FL and
conduct experiments with Android smartphones. SmartPC aims to balance the model accu-
racy, training time, and energy consumption of clients’ devices. Analogous to the federated
client selection (FedCS) approach [18], SmartPC introduces the concept of imposing deadlines
to regulate waiting times. In the SmartPC framework, this process is initiated by the central
server, which evaluates the status of selected devices prior to each round. A global deadline
is determined according to the evaluation result. Subsequently, the local layer operating on
each device undertakes system configuration adjustments to adhere to the imposed deadline
while minimizing energy expenditure. Crucially, the global deadline is determined based on

2.2. Data Heterogeneity and Resource Heterogeneity 17

a feedback mechanism that ensures a predefined proportion of clients are able to meet the
deadline.

The aforementioned study primarily directs its attention toward addressing resource hetero-
geneity. However, while emphasizing resource disparities, the work may inadvertently overlook
the pivotal aspect that the resultant model’s quality remains intricately linked to the balance
and equality of clients’ contributions. Cox et al. proposed an FL framework Aergia that lever-
ages model offloading to enhance the training efficiency while managing the intrinsic challenges
of data heterogeneity across diverse client devices [19]. The federator evaluates and profiles
the performance of selected clients and matches the weak with the strong ones. The match-
ing algorithm also considers the feasibility of offloading by computing the pair-wise similarity
of the two clients’ data inside a trusted execution environment (TEE). Once the schedule is
decided by the federator and known by the related clients, the weak ones freeze part of the
model and send it to their matched strong clients. The heterogeneity of training phases is also
measured and discussed in their work. The most time-consuming phase is chosen to be frozen
and offloaded.

Aergia is an FL framework that leverages the heterogeneity in its clients [19]. Aergia aims
at reducing the delay brought by clients with less computing power. In Aergia, the central
server is assigned the task of estimating clients’ performance, distinguishing the slow and fast
clients, and deciding on a schedule where the weak clients offload part of their training to the
strong ones.

Figure 2.2 illustrates the system architecture of Aergia. The same as the conventional FL
system, clients are distributed and able to communicate with the central server ”federator”.
The latest global model is constantly updated and broadcast to all the clients. And a set of
selected clients train the global model upon their local private data for a customized number
of epochs, send their update back to the federator, and wait for the next round’s global model.
With the aggregation running at the federator, the updated global model gathers the training
result of enormous data without leaking any of the raw private data to the central federator.

Below we list the differences between Aergia and the conventional FL framework.2.2.

1. Clients are equipped with clocks to evaluate their local training time and communication
delay. In each round, the performance is reported to the federator after the first local
epoch.

2. During the round, the federator is tracing the performance of the selected clients while
running a scheduling algorithm. It evaluates the current computing power of each client
and identifies the strong and weak ones. It indicates a schedule where slow clients should
offload part of the training job to the fast ones. The schedule also takes the data similarity
into consideration which is elaborated in the following.

3. The federator is equipped with a TEE to evaluate the data similarity between two
matched clients. It ensures code integrity and data security. The resulting similarity
matrix is then used by the federation to evaluate if the match is appropriate. A high
data similarity indicates that offloading training tasks between these two datasets are
more reasonable.

4. Clients are able to directly communicate with each other. Once a slow client is matched
with a fast one, she will be informed of the IP address of the fast client so that the
offloaded model can be sent via the link.

2.2. Data Heterogeneity and Resource Heterogeneity 18

Figure 2.2: The system model of Aergia

2.2.2. Asynchronous FL
Within synchronous FL systems, the presence of resource heterogeneity introduces the po-
tential for considerable round-duration extensions. Particularly in the context of edge device
training, where FL finds widespread application, the notion of global synchronization confronts
formidable challenges arising from divergent computing capacities and intermittent communi-
cation. Addressing this, asynchronous FL emerges as a remedy, deftly surmounting the impact
of resource disparities through immediate update aggregation upon server reception. This
asynchronous variant of the conventional FedAvg algorithm can be encapsulated as follows:

wt+1 = wt − α
nk

N
(wt

k − wt+1
k) (2.1)

where wt is the global model with timestamp t, wk
t is the local update of Client k with

timestamp t, nk
N is the data proportion of the update, and α is a staleness parameter. In this

section, we introduce previous work in asynchronous FL.
Chen et al. proposed ASO-Fed, an asynchronous online FL framework that enables wait-

free computation and communication [20]. ASO-Fed introduces a paradigm where clients’
updates seamlessly flow into the federator across different rounds, facilitating an uninterrupted
progression. This distinct approach orchestrates local training rooted in freshly streamed-
in data, thereby enhancing model adaptability. ASO-Fed introduces a decay coefficient to
adjust the training result according to the last model trained on previous data. Augmenting
this, a pivotal central feature representation learning mechanism is employed to attenuate the
influence of asynchronous aggregation, further refining the training process. To address the
staleness problem, ASO-Fed scales the learning step size by the client’s communication delays.
Since clients with long delays lose their impact on the intermediate models, a larger step size
is assigned to compensate for the loss. The global model is updated as

wt+1 = wt − nk

N
rtk(w

t
k − wt+1

k), (2.2)

where rtk = max{1, log d̄kt }, and d̄kt = 1
t

∑t
τ=1 d

τ
k is the average computing time of Client k

in past rounds.

2.2. Data Heterogeneity and Resource Heterogeneity 19

Xie et al. proposed FedAsync, an asynchronous optimization algorithm for FL [21]. They
guarantee a near-linear convergence and address the staleness problem in the asynchronous
setting. Each time an update arrives, the weighted averaging is applied for the current global
model and the update. The weight of the client decreases when its staleness increases. The
global model is updated by the equation

wt+1 = wt − nk

N
rtk(w

t
k − wt+1

k), (2.3)

where rtk = max{1, log d̄kt }, and d̄kt = 1
t

∑t
τ=1 d

τ
k is the average computing time of client k

in past rounds.
Wang et al. proposed AsyncFedED, an adaptive asynchronous FL aggregation based on

Euclidean distance [22]. If the global model is updated before a client sends back its update,
the learning rate of the server should be adjusted based on the staleness of the current update.
AsyncFedED evaluates the staleness of an update by its Euclidean distance from the server.
A larger staleness leads to a smaller learning rate for its aggregation. The staleness of update
wt+1
k is defined as

γt+1
k =

∥wt
k − wt+1

k ∥
∥△iw

t+1
k ∥

(2.4)

The global learning rate of the current update is calculated by

ηtk+1 =
λ

γt+1
k + ϵ,

(2.5)

where λ and ϵ are hyperparameters to be tuned.

2.2.3. Multi-server FL
Another scheme to address resource heterogeneity is to spread the computation and communi-
cation burdens instead of bearing them all on a single server. In addition, distinguished global
models maintained at multiple servers facilitate scenarios where personalized models are re-
quired. Existing methods [23]–[26] add some edge servers or assign proxy clients to undertake
part of the workload. And clustering can be applied to characterize data distributions. Most
existing multi-server federated frameworks are hierarchical, where servers of multiple levels ex-
ist. Figure 2.3 illustrates the scenario and settings in classical hierarchical FL. In hierarchical
FL [25], [26], there is a leader server and multiple edge servers. Two levels of aggregations
happen in each round. The first level happens at the edge server which aggregates a group of
clients and sends the update to the leader. The leader executes the second-level aggregation
and generates the global mode for the new round.

One of the most classical hierarchical FL frameworks, HFL, was proposed by Abad et
al. [25]. In the HFL system, there are two levels of aggregators and a group of mobile users.
The clients are clustered according to their location and assigned to the nearest station, which
can be considered as an edge server. Inter-cluster aggregation happens synchronously at each
iteration. And the global synchronization occurs at the central station in every predefined
period of time. The servers’ computation burden is greatly reduced by collaboratively ag-
gregating and communication overheads between clients and their directly-connected servers
shrink effectively through geographic clustering. However, the synchronous nature of both
levels brings a bottleneck to the efficiency of the system.

HierFedAsync is an asynchronous hierarchical FL framework proposed by Wang et al. [24].
A central cloud server and a group of ”aggregators” spread the workload of communication
and aggregation. A clustering algorithm is run at the central server, and in each cluster, one

2.2. Data Heterogeneity and Resource Heterogeneity 20

client is selected as an ”aggregator” to be responsible for aggregating the updates within the
cluster and transferring models to and from the central server. In this asynchronous system,
the delivery of the global model and aggregation on both ”aggregators” and the central server
happens periodically. The staleness is evaluated to adjust the learning rate of each client and
”aggregator”.

Asynchronous Federated Learning

Client

Updates based on

different data distributions

…

Central Server

Edge Server

Figure 2.3: The framework of hierarchical FL

Apart from the hierarchical structure, the approach of single-level multi-server FL also
flourishes. To address the challenge of data heterogeneity, Xie et al. proposed a multi-center
FL algorithm, FeSEM [27]. The main idea is to cluster the updates and assign them to their
closest global model (i.e. center). They showed in experiments that the clusters of local updates
characterize clients’ data distribution thus models generated from similar data distributions
are gathered on the same center and aggregated. The integration of the clustering algorithm
addresses the difficulty in dealing with non-independent and identically distributed (IID) data
distributed among clients. But the lack of consideration for the system’s communication effi-
ciency makes it less practical for real-world application.

To conclude, multi-server FL overcomes the heavy burden brought by frequent aggregations
on one server and gains the potential of integrating clustering algorithms for more efficient ag-
gregation. However, existing multi-server FL systems either bear the disadvantage of synchro-
nization or lack the ability to address long-distance communication. Moreover, hierarchical Fl
introduces additional communication overheads involved between levels, which prolongs the
whole training process.

3
Additional Experiments

In this chapter, we provide details of used datasets, models, and additional experiments to
demonstrate a more comprehensive evaluation of MultiAsync.

3.1. Datasets
Three datasets are used for experimental analysis: MNIST, CIFAR-10, and WikiText-2. MNIST
and CIFAR-10 are both image datasets, while WikiText-2 is a text dataset. MNIST stands
for ”Modified National Institute of Standards and Technology”. It contains a collection of
grayscale handwritten digit images. Every image is a 28x28-pixel square, representing a num-
ber from 0 to 9. There are 60,000 training images and 10,000 test images in MNIST. MNIST
is often used as an introductory dataset in the research of image classification algorithms since
it is relatively simple. On the other hand, CIFAR-10 provides a more challenging scenario.
It stands for ”Canadian Institute for Advanced Research - 10”, which consists of 60,000 color
images of 32x32 pixels that are labelled with 10 different classes. Both MNIST and CIFAR-10
are renowned for their extensive usage in pioneering research within the field of FL. They play
an indispensable role in evaluating the potential of novel models, architectures, and techniques.
These datasets serve as essential tools to assess the prowess of innovative approaches, providing
a foundation upon which the advancements in FL are built and tested.

WikiText-2 is a commonly-used text dataset in FL. It is derived from the content of
Wikipedia articles and is often used for language modeling and text prediction tasks. It con-
tains a wide array of words and phrases, covering a rich vocabulary.

3.2. The Impact of Network and Computing Power on Server
Before taking network conditions into consideration, we conducted a set of experiments without
network delays but only computation delays which are shown in Table 3.1. The values are the
average running time of each process measured using Python time package.

Table 3.1: Simulated computation delays

Local Training 200 ms
Global Synchronization in MultiSync 2 ms

Peer-to-peer Aggregation in MultiAsync 2 ms
FedAvg Aggregation 15 ms

HierFAVG Cloud Aggregation 15 ms
Aggregation in FedAsync 2 ms

21

3.2. The Impact of Network and Computing Power on Server 22

In Figure 3.1, we show the experiment results without considering network delays. In
Fig 3.1a, MultiAsync displays the fastest convergence among all the algorithms. More specifi-
cally, MultiAsync and MultiSync both show a quicker rise in the beginning phase of training.
This boost in convergence time is mainly due to the advantage of MultiAsync and MultiSync
dispatching needed computing power to multiple servers instead of bearing them on one. As
we analyzed, there is more amount of time in FedAsync that a queue of updates is waiting to
be aggregated.

In addition, from 3.1a, we see MultiSync replaces MultiAsync to be the best-performing
method. This provides a practical scenario where MultiSync becomes an alternative for Mul-
tiAsync - when the communication latencies between servers are extremely small. Without
the network bottleneck, MultiSync exhibits the advantage of synchronization among servers,
which provides a more stable rise compared to MultiAsync.

10 20 30 40 50
Running Time (s)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

MultiAsync
MultiSync
FedAsync
FedAvg
HierFAVG

(a) Time

0 10 20 30 40
Number of Total Updates (K)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

MultiAsync
MultiSync
FedAsync
FedAvg
HierFAVG

(b) Updates

Figure 3.1: Accuracy curves of 5 algorithms on dataset MNIST without network delays.

20 40 60 80 100 120
Running Time (s)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

MultiAsync
MultiSync
FedAsync
HierFAVG
FedAvg

(a) Time

0 10 20 30 40
Number of Total Updates (K)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

MultiAsync
MultiSync
FedAsync
HierFAVG
FedAvg

(b) Updates

Figure 3.2: Accuracy curves of 5 algorithms on dataset MNIST with network delays.

For further exploration of the impact of network latencies, we conduct experiments that
put servers into four different areas (Paris, Hongkong, Sydney, and California) in order to
simulate real-life network delays. Clients are distributed equally in each area. For single-server
algorithms FedAvg and FedAsync, the server is set in Paris. Communication delays among
areas are shown in Table 3.2 and the resulting accuracy curves are plotted and shown in Fig 3.2.

3.3. Experiments on IID Data 23

Table 3.2: Communication delays

Delays(ms) Hongkong Paris Sydney California
Hongkong 1.41 194.9 132.28 155.13

Paris 197.91 0.9 278.83 142.25
Sydney 132.06 280.11 2.56 138.47

California 154.96 142.79 138.57 2.14

Compared with Fig 3.1 where no network latencies are considered, Fig 3.2 shows a larger
difference between MultiAsync and other algorithms. In the system, the communication com-
plexity mainly consists of a large amount of update sending and global model delivering, which
makes it of vital importance to reduce the latencies of these client-server communications. In
MultiAsync, the distance between clients and their assigned server is ensured to be small
(within 5 ms), showing the benefit of geo-replication. This enlarged gap compared with non-
communication results indicates that MultiAsync not only addresses the limitation of server
computing power, it also overcomes the inefficiency brought by long-distance communication.

3.3. Experiments on IID Data
With IID settings, each client is relatively similar in terms of its statistical properties. It
simplifies the training process since the local optimums of clients are close to each other so
updates from different clients are more likely to drive the global model in a similar direction.
We conducted experiments on IID data using datasets MNIST and CIFAR-10. The results of
non-IID data are displayed for the convenience of comparison.

5 10 15 20 25 30
Running Time (s)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

MultiAsync
MultiSync
FedAsync
FedAvg
HierFAVG

(a) Time

0 2 4 6 8 10
Number of Total Updates (K)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

MultiAsync
MultiSync
FedAsync
FedAvg
HierFAVG

(b) Updates

Figure 3.3: Accuracy curves of the five algorithms on IID CIFAR-10 Dataset. a) With the x-axis to be the
running time. b) With the x-axis to be the number of updates.

3.3. Experiments on IID Data 24

20 40 60 80 100 120
Running Time (s)

0

20

40

60

80

Ac
cu

ra
cy

 (%
)

MultiAsync
MultiSync
FedAsync
HierFAVG
FedAvg

(a) Time

0 10 20 30 40
Number of Total Updates (K)

0

20

40

60

80

Ac
cu

ra
cy

 (%
)

MultiAsync
MultiSync
FedAsync
HierFAVG
FedAvg

(b) Updates

Figure 3.4: Accuracy curves of the five algorithms on Non-IID CIFAR-10 Dataset. a) With the x-axis to be
the running time. b) With the x-axis to be the number of updates.

Comparing figure 3.3a and figure 3.4a, we find that the difference between MultiAsync
and the baselines is larger with non-IID data, especially the difference of the gap between
MultiAsync and FedAsync. Though the difference is smaller with IID data, MultiAsync still
exhibits the best performance.

3.3.1. Impact of the number of servers
In this experiment, we explore the impact of the number of clients each server has in MultiSync.
Results are evaluated through metrics including average accuracy, standard deviation, and the
time needed for the MultiSync to reach 55% accuracy. The average accuracy is the average
resulting accuracy of all servers, indicating the overall performance of each setting, while the
standard deviation explores the disparity among servers. A large disparity in servers’ resulting
model displays the instability of the training system. The time needed to reach an average
accuracy of 55% is a metric to test the algorithm’s convergence speed since we assume the
increase in servers may cause the system to slow down. The choice of the threshold at 55% is
due to the consideration of the lowest average accuracy in this experiment.

The reason we conduct this experiment with MultiSync instead of MultiAsync is for the
uniformity of experiments. In MultiAsync, with the varying number of servers, the age thresh-
old for activating the model broadcast needs to be fine-tuned since it is the ratio related to the
number of clients per server. However, in MultiSync, we could simply set the synchronization
period to ensure uniformity.

There are 64 clients in total and every server maintains the same number of clients from
2 to 32, which leads to the number of servers decreasing from 32 to 2. We use the dataset
MNIST and assign every client l = 2 labels of data to simulate the non-IID distribution. We
control the number of total updates to be 30000.

Table 3.3: The impact of the number of clients per server

Clients per Server 2 4 8 16 32
Average Accuracy (%) 55.95 81.35 88.60 93.28 93.20

Standard Deviation (%) 11.00 7.32 2.30 0.15 0.03
Time to Reach 55% (ms) 35620 11880 10286 26506 77950

The results in table 3.3 show that when the total number of clients in the system is the
same, the configuration with more clients on each server achieves better average accuracy in

3.3. Experiments on IID Data 25

general, until from 16 to 32 clients per server we see that the average accuracy is saturated
at around 93.20%. The standard deviation shows a more consistent trend of decline. Since
every server has a committed group of clients, the server model’s optimum largely depends on
the local optimums of the clients’ data. The case of fewer clients on a server leads to a more
biased model since the clients’ data are less comprehensive and thus makes it harder for the
server model to move closer to the global optimum based on its own clients. And the difference
among server models also increases because it is less possible for them to achieve similar data
distributions with a fewer number of clients.

The time consumed to reach 55%, however, is not monotonically increasing or decreasing.
This is because if the number of servers is too high, as mentioned before, it is harder for the
global model to reach the global optima due to the more biased models among servers. On the
other hand, if the number of servers is too low, meaning that the system architecture tends to
FedAsync, computational power will be insufficient to handle clients’ updates and cause the
queuing phenomenon. Thus, it is very important to choose the appropriate number of servers
in the system to achieve a balance in performance and converging time.

4
Conclusion

In this paper, we proposed a novel multi-server asynchronous federated learning approach. Our
primary innovation involves integrating wait-free asynchronous mechanisms within a multi-
server framework.

As we discussed in previous chapters, the prominence of the multi-server setup lies in its
capacity for geo-replication, leading to substantial reductions in long-distance communication
and the equitable distribution of computational loads across multiple servers. Furthermore,
multi-server frameworks exhibit great scalability, accommodating varying client scales by al-
lowing the dynamic adjustment of server numbers. Additionally, the presence of multiple
servers in the system effectively mitigates the risk of single-point failures. On the other hand,
asynchronous solutions also improve the efficiency of FL systems by circumventing the bottle-
necks posed by synchronous communication. Leveraging the immediate aggregation strategy,
asynchronous systems cleverly avoid long idle time on servers that is caused by network het-
erogeneity in clients.

Our proposed method, named MultiAsync, harnesses the pivotal advantages of both multi-
server architectures and asynchronous systems. It involves two levels of asynchrony: client-
server update and server-server model exchange. Client-server communication is markedly
enhanced as clients are assigned to servers according to their locations. Simultaneously, asyn-
chronous server-server aggregation provides the lowest time cost for servers reaching global
consensus.

We undertake an extensive evaluation of our approach through both vertical and horizon-
tal comparisons with three prominent baselines: FedAsync, HierFAVG, and FedAvg. This
evaluation is carried out across three classical datasets: MNIST, CIFAR-10, and WikiText-2.
The results garnered from our experimental analyses distinctly illustrate the impressive perfor-
mance of our method in comparison to these baselines. In terms of horizontal comparison, our
method outperforms all algorithms in convergence speed, demonstrating the swiftest rate of
convergence among them. Furthermore, in the vertical comparison, our method also showcases
top client scalability.

In conclusion, MultiAsync distinctly demonstrates its capability to elevate performance
across diverse dimensions when evaluated against established benchmarks. Looking ahead,
enhancing the system’s robustness emerges as a practical avenue for further development. Ad-
ditionally, we have earmarked the integration of clustering algorithms as a focal point for future
endeavors, aiming to augment training effectiveness even further.

26

Bibliography

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-
Efficient Learning of Deep Networks from Decentralized Data,” in Proceedings of the 20th
International Conference on Artificial Intelligence and Statistics, A. Singh and J. Zhu,
Eds., ser. Proceedings of Machine Learning Research, vol. 54, PMLR, 2017, pp. 1273–
1282.

[2] T. Yang, G. Andrew, H. Eichner, et al., “Applied federated learning: Improving google
keyboard query suggestions,” CoRR, vol. abs/1812.02903, 2018.

[3] S. Ramaswamy, R. Mathews, K. Rao, and F. Beaufays, “Federated learning for emoji
prediction in a mobile keyboard,” CoRR, vol. abs/1906.04329, 2019.

[4] A. Hard, K. Rao, R. Mathews, et al., “Federated learning for mobile keyboard prediction,”
CoRR, vol. abs/1811.03604, 2018.

[5] M. Chen, A. T. Suresh, R. Mathews, et al., “Federated learning of n-gram language
models,” CoRR, vol. abs/1910.03432, 2019.

[6] B. Yuan, S. Ge, and W. Xing, “A federated learning framework for healthcare iot devices,”
CoRR, vol. abs/2005.05083, 2020.

[7] J. Xu, B. S. Glicksberg, C. Su, P. Walker, J. Bian, and F. Wang, Federated learning
for healthcare informatics, 2019. doi: 10.48550/ARXIV.1911.06270. [Online]. Available:
https://arxiv.org/abs/1911.06270.

[8] T. S. Brisimi, R. Chen, T. Mela, A. Olshevsky, I. C. Paschalidis, and W. Shi, “Federated
learning of predictive models from federated electronic health records,” International
Journal of Medical Informatics, vol. 112, pp. 59–67, 2018, issn: 1386-5056. doi: https:
//doi.org/10.1016/j.ijmedinf.2018.01.007. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S138650561830008X.

[9] N. Rieke, J. Hancox, W. Li, et al., “The future of digital health with federated learning,”
CoRR, vol. abs/2003.08119, 2020.

[10] P. Kairouz, H. B. McMahan, B. Avent, et al., Advances and Open Problems in Federated
Learning. 2021.

[11] M. Naseri, J. Hayes, and E. De Cristofaro, “Local and central differential privacy for
robustness and privacy in federated learning,” arXiv preprint arXiv:2009.03561, 2020.

[12] R. C. Geyer, T. Klein, and M. Nabi, “Differentially private federated learning: A client
level perspective,” arXiv preprint arXiv:1712.07557, 2017.

[13] K. Bonawitz, V. Ivanov, B. Kreuter, et al., Practical secure aggregation for federated
learning on user-held data, 2016. arXiv: 1611.04482 [cs.CR].

[14] D. Byrd and A. Polychroniadou, “Differentially private secure multi-party computation
for federated learning in financial applications,” in Proceedings of the First ACM Inter-
national Conference on AI in Finance, 2020, pp. 1–9.

[15] H. Zhu, J. Xu, S. Liu, and Y. Jin, “Federated learning on non-iid data: A survey,” CoRR,
vol. abs/2106.06843, 2021.

27

https://doi.org/10.48550/ARXIV.1911.06270
https://arxiv.org/abs/1911.06270
https://doi.org/https://doi.org/10.1016/j.ijmedinf.2018.01.007
https://doi.org/https://doi.org/10.1016/j.ijmedinf.2018.01.007
https://www.sciencedirect.com/science/article/pii/S138650561830008X
https://www.sciencedirect.com/science/article/pii/S138650561830008X
https://arxiv.org/abs/1611.04482

Bibliography 28

[16] Z. Chai, A. Ali, S. Zawad, et al., “Tifl: A tier-based federated learning system,” ser. HPDC
’20, Stockholm, Sweden: Association for Computing Machinery, 2020, pp. 125–136, isbn:
9781450370523. doi: 10.1145/3369583.3392686. [Online]. Available: https://doi.
org/10.1145/3369583.3392686.

[17] L. Li, H. Xiong, Z. Guo, J. Wang, and C.-Z. Xu, “Smartpc: Hierarchical pace control
in real-time federated learning system,” in 2019 IEEE Real-Time Systems Symposium
(RTSS), 2019, pp. 406–418. doi: 10.1109/RTSS46320.2019.00043.

[18] T. Nishio and R. Yonetani, “Client selection for federated learning with heterogeneous
resources in mobile edge,” in ICC 2019 - 2019 IEEE International Conference on Com-
munications (ICC), 2019, pp. 1–7. doi: 10.1109/ICC.2019.8761315.

[19] B. Cox, L. Y. Chen, and J. Decouchant, Aergia: Leveraging heterogeneity in federated
learning systems, 2022. doi: 10.48550/ARXIV.2210.06154. [Online]. Available: https:
//arxiv.org/abs/2210.06154.

[20] Y. Chen, Y. Ning, M. Slawski, and H. Rangwala, “Asynchronous online federated learning
for edge devices with non-iid data,” in 2020 IEEE International Conference on Big Data
(Big Data), 2020, pp. 15–24. doi: 10.1109/BigData50022.2020.9378161.

[21] C. Xie, S. Koyejo, and I. Gupta, “Asynchronous federated optimization,” CoRR, vol. abs/1903.03934,
2019.

[22] Q. Wang, Q. Yang, S. He, Z. Shi, and J. Chen, Asyncfeded: Asynchronous federated
learning with euclidean distance based adaptive weight aggregation, 2022. doi: 10.48550/
ARXIV.2205.13797. [Online]. Available: https://arxiv.org/abs/2205.13797.

[23] A. K. Sahu, T. Li, M. Sanjabi, M. Zaheer, A. Talwalkar, and V. Smith, “On the conver-
gence of federated optimization in heterogeneous networks,” CoRR, vol. abs/1812.06127,
2018.

[24] X. Wang and Y. Wang, Asynchronous hierarchical federated learning, The network topol-
ogy is a star graph, both between edge servers and the cloud server, and each edge server
and the its client.
1. The server runs a clustering algorithm (BASED ON?) to
assign clients to their edge servers.
2. The server sends out the the global model
periodically with timestamps TO EDGE SERVERS.
3. The edge server is elected
from each client cluster, called aggregator.
4. The aggregator is the parent node
of each cluser, forwarding the information of center server to its children.
, 2022.
doi: 10.48550/ARXIV.2206.00054. [Online]. Available: https://arxiv.org/abs/2206.
00054.

[25] M. S. H. Abad, E. Ozfatura, D. GUndUz, and O. Ercetin, “Hierarchical federated learning
across heterogeneous cellular networks,” in ICASSP 2020 - 2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020, pp. 8866–8870.
doi: 10.1109/ICASSP40776.2020.9054634.

[26] L. Liu, J. Zhang, S. Song, and K. B. Letaief, “Client-edge-cloud hierarchical federated
learning,” in ICC 2020 - 2020 IEEE International Conference on Communications (ICC),
2020, pp. 1–6. doi: 10.1109/ICC40277.2020.9148862.

[27] M. Xie, G. Long, T. Shen, T. Zhou, X. Wang, and J. Jiang, “Multi-center federated
learning,” CoRR, vol. abs/2005.01026, 2020.

https://doi.org/10.1145/3369583.3392686
https://doi.org/10.1145/3369583.3392686
https://doi.org/10.1145/3369583.3392686
https://doi.org/10.1109/RTSS46320.2019.00043
https://doi.org/10.1109/ICC.2019.8761315
https://doi.org/10.48550/ARXIV.2210.06154
https://arxiv.org/abs/2210.06154
https://arxiv.org/abs/2210.06154
https://doi.org/10.1109/BigData50022.2020.9378161
https://doi.org/10.48550/ARXIV.2205.13797
https://doi.org/10.48550/ARXIV.2205.13797
https://arxiv.org/abs/2205.13797
https://doi.org/10.48550/ARXIV.2206.00054
https://arxiv.org/abs/2206.00054
https://arxiv.org/abs/2206.00054
https://doi.org/10.1109/ICASSP40776.2020.9054634
https://doi.org/10.1109/ICC40277.2020.9148862

