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Introduction

The demand for air transportation at Schiphol Airport has experienced a substantial increase over the past
three decades. From 1992 to 2019, the number of passengers grew from approximately 19 million to over 70
million [1]. However, the COVID-19 pandemic in 2019 caused a significant decline in passenger numbers to
20 million in 2020 and 25 million in 2021. Since 2022, there has been a rapid recovery in air travel demand,
with passenger numbers approaching pre-pandemic levels in 2023. Nevertheless, this surge in passenger vol-
ume presents a capacity challenge for Schiphol Airport, particularly during the months of March to Septem-
ber, which coincide with the summer and holiday seasons. The challenges primarily arise for outbound flights
due to the complexity of baggage handling processes. The increase in passengers with checked baggage can
lead to longer queues at check-in desks and customs checkpoints. Additionally, the sorting system in the bag-
gage handling system, the capacity in the baggage halls, workforce capacity, and available resources may be
insufficient if the quantity of baggage items during specific time periods is unknown. Moreover, the COVID-
19 pandemic and the introduction or increase of baggage fees have influenced passenger behaviour regarding
the decision to bring checked baggage.

Accurate forecasting of checked baggage quantities is crucial for optimising the entire baggage handling
process. To achieve this, scientifically supported forecasting and optimisation models will be utilised. The
objective of this study is to develop a forecast model that predicts baggage factors for individual flights over
time spans of 7, 30, and 60 days. Subsequently, a baseline model will be constructed using the forecasting
outputs to optimise baggage handling processes and allocate resources effectively, with a focus on the Make-
Up Areas (MUAs) in the baggage halls. MUAs are the areas where laterals and carousels are located, along with
corresponding Loading Units (LUs) where checked baggage items are loaded and transferred to the aircraft.
The data used for the models includes outbound flight information from January 2022 to March 2023.

This research is conducted in collaboration with Schiphol Airport, specifically the Forecasting, Analysis,
and Capacity Management (FACT) department. The need for a baggage factor forecast tool has increased
in recent years due to rising demand and changing patterns. Previously, baggage demand was lower, pat-
terns were relatively easy to identify, and a high-level forecast could be created using Excel and expert knowl-
edge. Existing literature on this subject is limited, with a focus on passenger demand forecasting rather than
checked baggage forecasting. From a societal standpoint, a positive outcome of this research could also con-
tribute to improving the customer experience. An improved baggage handling process resulting from accu-
rate forecasting and optimisation contributes to customer satisfaction by minimising wait times, reducing
disruptions, ensuring reliability, and enhancing convenience throughout the journey.

This report is divided into three distinct parts. The first part consists of a scientific paper that details
the methodology employed in the models, presents the obtained results, and draws conclusions based on
the findings. The second part encompasses an extensive literature review conducted at the beginning of the
research, which includes a description of the problem, the primary research question along with its sub-
questions, and an exploration of the current state-of-the-art research based on qualitative sources readily
available. Additionally, this part outlines various solution approaches for the identified problems. Lastly, the
third part comprises supplementary work conducted as part of this study.

xiii
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Enhancing Baggage Handling Operations at Hub Airports
through Sequential Forecasting and Resource Allocation

Keĳzer, M.T. de
Delft University of Technology, Delft, The Netherlands

Abstract
Baggage handling operations in airports have become substantially more challenging due to
the surge in air transportation demand witnessed in the last three decades combined with an
even higher pressure on the operations following the COVID-19 pandemic. The intricate nature
of checked baggage requirements, impacting resource allocation and personnel scheduling,
necessitates an integrated approach for problem-solving. This research paper aims to enhance
baggage handling operations by predicting the baggage factor (BF) for individual outbound
flights. The BF represents the ratio of checked baggage items to the number of passengers
aboard an aircraft. The objective of this study is to create a forecast model that predicts
baggage factors for individual outbound flights over a time span of 7, 30, and 60 days, and
subsequently construct a baseline model that leverages the forecasting outputs to optimise
baggage handling processes and allocate resources effectively. A novel approach is proposed
that employs historical flight data within gradient boosting models to forecast the baggage factor
for future flights. Additionally, a case study is conducted by developing a Mixed Integer Linear
Programming (MILP) model to minimise space utilisation within a baggage handling facility
during the busiest period of the day, employing as few Make-Up Areas (MUAs) as possible. The
results indicate that LightGBM, a gradient boosting technique, outperforms other gradient
boosting techniques in terms of performance and computation time, achieving an accuracy
score for the BF prediction ranging between 78-83% for the three forecast periods. Leveraging
these predictions, the MILP model demonstrates that only 3 to 5 MUAs are required in an ideal
situation in the baggage handling facility during the busiest period on various days.

Keywords: Gradient Boosting, MILP, Baggage Factor, Baggage Handling, Airport Operations,
Forecasting, Optimisation, Schiphol Airport

I. Introduction
The demand for air transportation has soared in the last
decades. Using Schiphol Airport (AMS) as an example,
AMS has experienced a significant growth over the past
three decades. In 1992, the airport catered to approximately
19 million passengers, a figure that escalated to over 40
million passengers in 2002. The trend continued, reach-
ing a record high of over 70 million passengers in 2019
[Royal Schiphol Group, 2019]. However, the outbreak of
the COVID-19 pandemic in 2019 disrupted this trajectory,
resulting in a sharp decline in passenger numbers to 20
million in 2020 and 25 million in 2021. Nonetheless, there

has been a rapid resurgence in air travel demand since 2022,
and this upward trajectory continues into 2023, with passen-
ger numbers approaching pre-pandemic levels. However,
this surge in passenger volume poses a capacity challenge
for AMS, exerting heightened pressure on logistics and
operations, particularly during the months of March to
September, coinciding with the summer and holiday sea-
sons. These capacity challenges during this period result in
longer queues at check-in desks and customs checkpoints.

Furthermore, the airport has faced challenges related to
staffing. With the resumption of international travel, AMS



has encountered issues with staff shortages [le Clerq, 2022],
which were exacerbated by a strike involving KLM baggage
handlers in April 2022 [NOS, 2022]. Dissatisfaction among
employees has been fuelled by the heavy workload and inad-
equate staffing levels. While resolving the staffing shortage
is a crucial aspect of the solution, optimising services,
operations, and logistics could also contribute to mitigating
such situations to some extent. Accurate demand forecast-
ing plays a pivotal role in addressing operational challenges
and improving efficiency across various domains. Numer-
ous studies have been conducted on this topic for airports
around the world, including research on demand forecasting
for air traffic passenger demand [Xu et al., 2019]. Within
AMS, demand forecasting models have been developed and
successfully utilised to anticipate passenger demand for
many years. These models have also enabled an informed
estimation of baggage demand based on historical data.
However, the introduction of baggage fees by airlines in
2008 led to changes in consumer behaviour [Johnston, 2013,
Seaney, 2017]. A subsequent increase in baggage fees by
major European airlines in 2017 further altered behaviour
[Baldanza, 2020, BBT, 2016]. Due to the emergence of
the COVID-19 pandemic, forecasting baggage load factors
based on historical data has become more challenging and
uncertain. This is due to the non-representative nature of
data from the years 2020 and 2021, as well as the unknown
changes in consumer behaviour following a two-year hiatus
in air travel. These changes have introduced complexities
that render the current forecasting approach inadequate for
accurately predicting baggage demand. Consequently, a
novel forecasting model is required to effectively anticipate
this specific type of demand. It is worth noting that while
previous research on airport operations has predominantly
focused on passengers, facilities, and aircraft, there has
been relatively limited emphasis on baggage [Ma et al.,
2021]. Further investigation and analysis in this area are
warranted.

Baggage encompasses three distinct categories: checked
baggage, hand luggage, and personal items. To ensure
passenger safety, all baggage items undergo screening pro-
cedures. While hand luggage and personal items are carried
by passengers into the aircraft without requiring additional
logistical processing by AMS, checked baggage undergoes
a complex operation behind the scenes. In 2019, the total

number of checked baggage items at AMS reached 53 mil-
lion, with a daily range of 120,000 to 180,000 pieces [Royal
Schiphol Group, 2018]. This process becomes intricate
due to the high volume. Alongside the checked baggage
processed through the departure halls, a significant pro-
portion is contributed by transfer passengers, accounting
for nearly 40% of all checked baggage. AMS serves as a
hub for its home carrier, KLM, and the SkyTeam partners,
which is a reason for the contribution to the substantial
amount of transfer baggage [Royal Schiphol Group, 2018].

Accurate forecasting of the quantity of checked baggage
is vital for optimising the entire baggage handling process.
This optimisation can be achieved through the utilisation
of scientifically supported forecasting and optimisation
models. Therefore, the objective of this study is to create a
forecast model that predicts baggage factors for individual
outbound flights over a time span of 7, 30, and 60 days, and
subsequently construct a baseline model that leverages the
forecasting outputs to optimise baggage handling processes
and allocate resources effectively. This paper is believed
to be the first study to sequentially employ a Gradient
Boosting model for forecasting the baggage factors of out-
bound flights of a hub airport and utilise the prediction
to allocate resources accordingly. The resource allocation
strategy primarily aims to optimise the utilisation of space
within baggage facilities, specifically by minimising the
number of active carousels and laterals during peak time
periods on a given day. It is important to note that, in this
context, carousels refer to the conveyor belts within the
baggage facilities where baggage items are placed after
they have exited the baggage handling system, and not the
belts found in the reclaim hall where passengers retrieve
their bags. Laterals serve a similar purpose as carousels
but are distinct in that they are straight conveyors without
a belt. These laterals and carousels are utilised by bag-
gage handlers to efficiently process and transfer baggage
items onto trailers for transportation to the aircraft. The
dataset utilised for the models comprise information from
all departing flights between January 2022 and March
2023. Moreover, it is important to note that this research
is conducted in collaboration with AMS, in particular, in
partnership with its department Forecasting, Analysis, and
Capacity Management (FACT).

The paper’s structure is organised as follows: in section II, a
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concise overview of the current academic literature pertain-
ing to both forecasting and resource allocation is provided.
Subsequently, a comprehensive explanation of the problem
is presented in section III. Following that, section IV
describes the forecast model’s methodology and the precise
formulation of the Mixed Integer Linear Programming
(MILP) model. These elements culminate in the presen-
tation and analysis of the results in section V. Lastly,
section VI offers the research’s conclusive remarks and
identifies potential areas for future research.

II. Literature Review
The task of achieving an optimal approach for forecasting
checked baggage items and efficiently allocating resources
based on the prediction results is a multifaceted under-
taking. Despite extensive research conducted on each of
these individual topics, no comprehensive studies have
been conducted to investigate their combined application.
Nevertheless, numerous studies exist that focus on each
of these subjects independently. This section provides a
detailed examination of the most significant works avail-
able in the literature concerning these respective areas of
interest.

II.A. Forecast Methods
There are may different forecast methods available. How-
ever, not all of them are able to predict accurately due to
the complexity of the data. Looking from a high level per-
spective, there are three basic types of forecasting, namely
qualitative techniques, time-series analysis & projection,
and causal models. Qualitative forecasting involves pre-
dicting future outcomes based on subjective assessments
and expert judgement using qualitative data. Time-series
& projection forecasting predicts future values based on
past values and current trends using regression analysis
with existing data for estimation. It’s useful for long-term
trend analysis and variable forecasting. Time-series models
don’t focus on explaining relationships. Causal models
use statistical methods to identify relationships between
variables and predict outcomes. They rely on past data
and variables to forecast event outcomes. [Chambers et al.,
1971]

As mentioned before, most airport operations research in

the literature primarily focuses on passengers, facilities, or
aircraft, with limited studies specifically addressing bag-
gage [Xu et al., 2019]. One notable study by Cheng et al.
[2014] examines forecasting methods for departure flight
baggage demand, highlighting the importance of establish-
ing a scientific foundation for efficient resource allocation in
the checked baggage stage. The study compares a Multiple
Linear Regression (MLR) model and a Back-Propagation
(BP) neural network, finding that the MLR model yields a
lower average relative error. Moreover, modifying the input
data from all flights to solely single airline flights or flights
with the same destination reduces the average relative error.
Another study conducted by Ma et al. [2021] proposes
a Seasonal Auto-regressive Integrated Moving Average
(SARIMA) model to predict checked baggage demand
for departure flights, aiming to optimise efficiency during
the check-in process. The model demonstrates accurate
long-term demand forecasting, enabling proactive resource
allocation.

Next to these studies on predicting checked baggage, nu-
merous studies were conducted on forecasting passenger
demand. The forecast methods are varying from simpler
methods to more complex ones. An example is the study
of Chen et al. [2012], where a modified moving average
(MA) method was employed to forecast airline passenger
numbers. The MA method yielded a notable error in its
output, necessitating the adoption of a neuro-fuzzy model
to mitigate the error. The neuro-fuzzy model demonstrated
a substantial reduction in error, indicating that the MA
method can be utilised for non-linear forecasting when
appropriate data is employed. Another widely used method
that can be seen as a simple forecast method is Exponential
Smoothing (ES). ES can be extended by adding trend or
seasonality, which are called Holt’s method and Winter’s
method, respectively. Rusyana et al. [2016] conducted a
comparative study between Holt’s and Winters’ method
for forecasting the number of domestic passengers arriving
and departing from Sultan Iskandar Muda International
Airport in Indonesia. The findings revealed that the optimal
model for this forecast was Winters’ exponential smoothing
method. However, upon examining the results of both
methods and evaluating their accuracy using appropriate
criteria, it was observed that both methods performed ex-
ceedingly well to excellent when the appropriate smoothing
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parameters were employed.

A more advanced and widely used method for time-series
analysis and forecasting is Box-Jenkins [Box and Jenkins,
1976], which applies Auto-Regressive Integrated Moving
Average (ARIMA). ARIMA can also be extended with
seasonality and is also able to add exogenous factors, lead-
ing to a SARIMAX model. Tsui et al. [2014] employed
a SARIMA model to predict airport passenger traffic for
Hong Kong and projected its growth trend up to 2015,
utilising monthly time-series data from January 1993 to
November 2010. The empirical analysis demonstrated
that the SARIMA model provided precise and dependable
forecasting outcomes, as evidenced by its lower values
of Mean Absolute Percentage Error (MAPE) and Root
Mean Squared Error (RMSE). Furthermore, a comparison
between the actual and predicted values indicated that the
model yielded acceptable forecast errors. In another study
conducted by some of the same authors, Tsui and Balli
[2017] assert that external variables such as destination
marketing and tourism marketing play a crucial role in in-
fluencing the demand for international arrivals from foreign
countries, thereby impacting air passenger demand. They
utilised a SARIMAX model incorporating variables such as
GDP per capita, tourism marketing expenditure, flight seats,
fuel prices, and exchange rates. The selected SARIMAX
model outperformed the SARIMA model, demonstrating
strong forecasting performance with low Mean Absolute
Error (MAE), MAPE, and RMSE values.

Entering the more complex methods, supervised machine
learning such as MLR is also often used for forecasting.
The study of Srisaeng et al. [2015] aimed to develop predic-
tion models for estimating domestic passenger demand for
Australia’s low-cost carriers, utilising enplaned passengers
and revenue passenger kilometers as indicators of airline
traffic demand. Two approaches were compared: classical
MLR modelling and Artificial Neural Network (ANN)
modelling. The study involved developing econometric
models based on linear regression to analyse the statistical
relationship between key factors influencing demand and
the corresponding level of passenger traffic for low-cost
carriers in Australia. Both models exhibited favourable
performance in terms of model quality metrics. However,
the comparison of modelling results indicated that the ANN
approach outperformed classical MLR models, offering

superior estimation capabilities.

In addition to MLR, decision tree-based methods like Ran-
dom Forest (RF) and Gradient Boosting (GB) have been
utilized in various tasks, including forecasting. While
Gradient Boosting is commonly employed in literature for
flight delay prediction, Random Forest has been applied in
some instances for demand forecasting purposes. Given the
numerous uncertainties and limited data available for pre-
dicting passenger volume in civil aviation, the research of
Yang and Liu [2018] utilised daily passenger data from the
Beĳing to Sanya airline between 2010 and 2017. The study
employed a RF prediction model, support vector regression
(SVR) model, and neural network model to fit the airline
data. The random forest algorithm demonstrated high
precision, stability, and interpretability, making it widely
utilised in supervised learning. It effectively addresses
non-linearity issues and is robust to multicollinearity, as
well as handling missing values and unbalanced data. In
comparison, SVR excels in handling small samples, non-
linearity, and high-dimensional recognition. In practical
applications, random forest regression generally outper-
forms SVR. However, the neural network model in this
study exhibited inferior predictive performance, primarily
due to its suitability for larger datasets. Since this paper
employed a smaller dataset, the neural network model dis-
played limited predictive capability. The study of Manna
et al. [2017] explores the effectiveness of the GB paradigm
for predicting air traffic delays. By employing a regression
model based on this paradigm, an accurate and robust
prediction model has been developed, allowing for detailed
analysis of patterns in air traffic delays. The Gradient
Boosted Decision Tree method demonstrated high accu-
racy in modelling sequential data, making it suitable for
predicting day-to-day sequences of departure and arrival
flight delays at specific airports. In their research, the model
has been implemented using the Passenger Flight On-time
Performance data obtained from the U.S. Department of
Transportation to forecast flight arrival and departure de-
lays. The results indicate superior accuracy compared to
alternative methods.

Lastly, the use of neural networks is also more and more
upcoming for forecast models. Several different types of
neural networks can be used for forecasting like a Multilayer
Perceptron (MLP), Recurrent Neural Networks (RNN), and
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Convolutional Neural Networks (CNN). Also Long Short-
Term Memory (LSTM) and Gated Recurrent Units (GRU)
are a type of RNN and often used for forecasting.

Choi and Kim [2021] introduced MLP, RNN, LSTM mod-
els for predicting airport capacity. The experimental results
indicated favourable performance for all three models, with
RNN and LSTM surpassing the MLP model. However, it
is noteworthy that the models were trained and validated
using data from Hartsfield-Jackson Atlanta International
Airport. When considering the generalisation to another
airport, the MLP model exhibited robust transferability
without the need for additional techniques. On the other
hand, the RNN and LSTM models demonstrated accurate
capacity predictions for another airport after undergoing
fine-tuning procedures. While neural networks can offer
powerful forecasting capabilities, they have limitations such
as overfitting, computational demands, interpretability chal-
lenges, and potential difficulties in handling non-stationary
data patterns [Tu, 1996].

In summary, based on the existing literature, it is evident
that incorporating exogenous factors is crucial for enhanc-
ing the accuracy of forecasting the quantity of checked-
baggage items for outbound flights from AMS. Additionally,
considering the requirement for interpretability by AMS
employees, it is imperative to select appropriate method-
ologies. Hence, this study has opted to employ machine
learning techniques, specifically gradient boosting models,
primarily due to their ability to address these concerns
effectively.

II.B. Resource Allocation
Resource allocation or scheduling personnel commonly
involves the utilisation of various optimisation methods
and algorithms. In this context, two distinct categories of
optimisation methods are typically considered: exact solu-
tion methods and meta-heuristic methods. Exact solution
methods are optimisation techniques that, given sufficient
computational resources and time, guarantee the identifica-
tion of the globally optimal solution for a given problem.
These methods are generally characterised by their high
accuracy and reliability. However, they can be computation-
ally demanding and may struggle to find solutions within
reasonable time frames for large or complex problems. On

the other hand, meta-heuristic methods are optimisation
techniques that do not provide a guarantee of finding the
globally optimal solution but are capable of generating
good solutions within relatively short time periods. These
methods draw inspiration from natural processes, imitat-
ing phenomena such as evolution, physics, and chemistry.
While meta-heuristic methods are generally less accurate
than exact solution methods, they excel in swiftly finding
solutions for large or complex problems. Additionally, they
are applicable to scenarios where mathematical models
may be poorly defined or unknown.

The research of Emde et al. [2020] focuses on the optimisa-
tion of unit load devices (ULDs) preparation at an air cargo
terminal. Airlines often encounter challenges in planning
this process, as they need to allocate a limited number of
workers to a restricted number of workspaces, while adher-
ing to the requirements of an existing flight schedule. The
objectives during ULD preparation include meeting the
flight schedule, utilising terminal space efficiently, and min-
imising the maximum workforce employed over time. To
enhance the efficiency of ULD preparation processes, the
study proposes a MILP model and presents a generalised
set partitioning reformulation for this complex problem.
Utilising the latter formulation, various heuristic strategies
are developed, some of which demonstrate near-optimal
solutions to this NP-hard problem within a short time span
of approximately 10 seconds. These strategies significantly
outperform a commonly used rule of thumb in practice.

Kiermaier [2015] conducted a study focusing on the optimi-
sation of baggage handling and ground handling processes
at airports. The researcher provided a systematic overview
of the baggage handling process, specifically examining
the four main baggage streams: check-in, outbound, trans-
fer, and inbound baggage. Through rigorous analysis,
Kiermaier demonstrated the inherent complexity of these
processes, establishing their NP-complete nature. To build
upon existing knowledge in the field, the researchers con-
ducted a comprehensive survey, organising previous re-
search efforts and categorising relevant solution methods
employed in baggage handling. Additionally, a novel and
generic model formulation called the Generic Assignment
and Scheduling Problem (GASP) was introduced, which
captured the fundamental mathematical structure of each
main baggage process. The main objective of the study
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was to establish a unified foundation for future research in
baggage handling, allowing for a holistic perspective on
the subject and facilitating the development of integrated
solution methods. The presented model formulations serve
as valuable tools for researchers and practitioners, provid-
ing a starting point for obtaining initial results and insights
when examining baggage handling operations at airports.

In summary, drawing upon the existing body of literature,
it is evident that employing a MILP model serves as a
favourable initial step for establishing a baseline model to
assess the correct implementation of a minimisation prob-
lem. Acknowledging the NP-hard nature of this problem,
it is imperative to subject the model to targeted dataset sub-
sets during testing, while also considering the evaluation
of heuristic strategies in subsequent iterations.

III. Problem Description
This section presents an overview of the airport baggage
prediction and handling problem, outlining the factors
that must be considered when forecasting the number of
checked baggage items for each individual flight. Further-
more, it highlights the crucial considerations for utilising
the prediction results in resource allocation. The research
objective is clearly stated, along with the problem’s specific
setting, encompassing the input and output requirements,
as well as the underlying assumptions and constraints.

III.A. Airport Baggage Prediction & Handling
The "load factor" is a crucial concept in predicting the
volumes of passengers and baggage on board of an aircraft.
At AMS, there is an existing successful forecasting model
for passenger load factor, which is the relative amount of
passengers given the maximum number of passenger seats.
However, accurately forecasting the number of checked bag-
gage items per flight remains challenging. In the past, this
was achieved through data analysis and expert judgement,
but changes in consumer behaviour resulting from baggage
fees introduced by specific airlines and the impact of the
COVID-19 pandemic have increased the uncertainty of this
method. Because passenger numbers might vary, directly
predicting the number of baggage items might be off signif-
icantly when comparing it to the actual data. Therefore it is
interesting to find the baggage load factor, which can later

be multiplied with the forecast of the number of passengers
to find the number of checked baggage items on a flight.
The baggage load factor, hereafter described as "baggage
factor" (BF) is defined as the number of checked baggage
items divided by the number of passengers on board. The
unknown shifts in consumer behaviour following the pan-
demic make it difficult to only use the expert judgement
approach with historical data for accurate BF forecasts.
Therefore a model needs to be built that is able to capture
complex correlations between exogenous factors and can
more accurately predict the BF.

The BF plays a crucial role in multiple aspects of air-
port operations and management as it provides valuable
insights into the expected volume of checked baggage
items per passenger. It is of significant importance when
considering capacity management, resource allocation, em-
ployee scheduling, airline planning, security screening,
and enhancing the overall passenger experience. Capacity
management in airports relies on effectively utilising re-
sources such as check-in lines, baggage handling systems,
and baggage halls. This information allows airports to
allocate appropriate resources, optimise capacity, and de-
sign efficient processes for check-in and baggage handling,
ensuring smooth operations and minimising bottlenecks.
Resource allocation and employee scheduling go hand in
hand with capacity management and are vital for maintain-
ing efficient airport operations. By understanding the BF,
airport authorities can accurately determine the number
of baggage handlers and other staff required to handle the
expected volume of checked baggage items. The ability to
make effective staffing decisions to manage baggage-related
tasks will ultimately result in the prevention of delays or
inefficiencies. Security screening is a critical aspect of
airport operations, and the BF plays a role in assessing
security measures. By considering the ratio of checked
baggage items to passengers, authorities can evaluate the
effectiveness and capacity requirements of baggage screen-
ing systems. This helps in ensuring appropriate security
measures are in place to maintain safety standards. Passen-
ger experience is greatly influenced by efficient baggage
handling processes. By understanding the BF, airports can
optimise the layout and capacity of baggage claim areas,
minimising wait times and congestion. This contributes to
a smooth and pleasant travel experience for passengers, en-
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hancing their overall satisfaction. In order to maximise the
benefits of utilising the BF, obtaining accurate predictions
of the BF for each outbound flight becomes crucial. This
detailed prediction enables a comprehensive examination
of various aspects related to baggage handling on both
macro and micro levels.

For outbound baggage handling, the airport operators need
to make assignment and scheduling decisions. Each de-
parting flight is assigned to at least one handling facility,
and the start time for baggage handling is determined.
The baggage handling process begins with the introduc-
tion of baggage items into the Baggage Handling System
(BHS). This can be done through checked-in baggage,
where passengers bring their bags to the airport and have
them labelled at the check-in desk, or through incoming
transfer baggage, which is offloaded from another flight
by a handling company. The BHS scans the baggage label
to obtain relevant information such as the flight number,
performs security screening, and determines the terminal to
which the baggage needs to be transported. The BHS also
determines whether robots or manual methods using later-
als and carousels should be used for loading the baggage
onto the aircraft. Bags that arrive earlier than the moment
a lateral or carousel opens for a specific flight, are moved
into the storage system, i.e. the buffer. Bags stored in the
buffer can only be removed once the baggage handling for
the respective flight has commenced. In some cases, the
airport operator also decides on the storage location, such
as the buffer lane, for early baggage. The number of stored
bags at any given time is limited by the storage capacity.
Work groups are assigned to handling facilities in order
to load the bags onto the trailers (referred to as LUs) of
the car that transports them to the aircraft. The assign-
ment of flights to handling facilities and the scheduling
of baggage handling aim to avoid peak workloads at the
facilities. An objective of outbound baggage handling is to
optimise the layout of baggage carousels and laterals in a
handling facility, taking into account the workload of the
workers. This can be achieved by minimising the number
of carousels and laterals required during peak hours while
considering the corresponding allocation of workers. In
subsequent sections of this paper, the designated region
where a lateral or carousel is situated in conjunction with
the associated area where the LUs are positioned is referred

to as a Make-Up Area (MUA).

III.B. Research Objective
The research objective of this study is to enhance the effi-
ciency of baggage handling operations at a hub airport, in
this case study AMS, through the utilisation of predicted
BFs for resource allocation. To achieve this objective, two
distinct models are developed.

The first model focuses on forecasting and utilises a his-
torical dataset comprising various features. The data is
prepared by performing necessary preprocessing steps, such
as feature selection based on correlation analysis. These
selected features are then incorporated into the model. The
model is trained using suitable forecasting methods, and
hyperparameters are tuned to optimise its performance.
Result validation is conducted by comparing the forecasted
values with actual values, and the importance of each
feature is assessed.

Forecasts are generated for individual outbound flights,
encompassing forecasting intervals of 7, 30, and 60 days.
These particular forecast periods originate from the fore-
casting process conducted by FACT. The 60 day forecast
provides an overarching depiction of the baggage factor for
the subsequent two months, which is critical information
for effective communication with security personnel, aid-
ing them in their planning activities. On the other hand,
the remaining two forecasts serve to offer a more intricate
understanding of the baggage demand within a shorter
time frame. This nuanced insight facilitates the fine-tuning
of security planning protocols and also informs various
aspects of resource allocation and personnel scheduling in
operational contexts.

The second model aims to optimise the allocation of batches
of bags and workers to MUAs at different time periods.
This model considers the output of the first model, which
predicts the number of incoming baggage items to the
BHS. A certain time interval is made regarding the first
possible arrival time of bags at the MUAs and the depar-
ture time of the flight. Based on this interval, batches of
bags can be assigned to LUs within specific MUAs, with a
specified number of workers at a specific time within the
interval. The model identifies the busiest time period and
seeks to minimise the number of used MUAs during that
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period. This optimisation allows for optimal utilisation of
the available space within the handling facility.

III.C. Problem Setting
This subsection provides a comprehensive overview of
the problem setting, the expected output, the underlying
assumptions, and the constraints utilised throughout the
models.

Input
The input data for this both models is derived from four
primary sources:

• Baggage analysis data: this dataset encompasses all bag-
gage items entering the BHS and includes comprehensive
labels associated with each baggage item. These labels
contain various information, such as the baggage item’s
unique identifier (ID), the date and time of processing,
the scheduled departure date and time, punctuality status
(on-time or delayed), baggage type (check-in or transfer),
outbound flight airline code, outbound flight designator,
destination airport, and flight classification (European or
intercontinental). This data enables the determination of
the number of checked baggage items for each flight on
a daily basis.

• Flight schedule data: this dataset comprises information
regarding the direction (arrival or departure) of all flights,
the service type, flight designator, scheduled departure
time, destination airport, the number of passengers on
board (both transfer and Origin & Destination (O&D)
passengers), aircraft type, the total number of seats
available, and the country of destination. This dataset
represents a fixed schedule containing historical data of
flights that have actually departed, providing accurate
and comprehensive information.

• Passengers on board (pax) prediction data: at AMS,
an existing forecast model is implemented to predict
the number of passengers for both transfer and O&D
flights. This dataset shares similarities with the flight
schedule data, with the only difference being that the
flight schedule represents future schedules, not all of
which will necessarily depart at the specified time, and
the passenger numbers are predictions rather than actual
figures.

• Additional data of baggage handling facilities: some

data on the general layout of the AMS baggage handling
facilities, such as the number of laterals and carousels.

Output
Each model has its own outputs. The forecast model output
is twofold:

• BF per flight: the main objective of the forecast model is
to produce the BFs for each flight for 7, 30, and 60 days.
This output contains the BF for all predicted passengers
on board, meaning both transfer and O&D passengers.

• Checked baggage items on board (bax) per flight: the
reason why the BF needs to be determined is to finally
make an estimation of the amount of checked bags a flight
will take with it. With the passenger forecast and the BF
forecast, the amount of baggage items is calculated per
flight.

The resource allocation model output is fourfold:

• Minimum number of MUAs at peak period: the main
solution of the resource allocation problem is to find the
minimum number of MUAs in use at the peak period
during a day. The problem is defined in one baggage
handling facility with a number of MUAs, where all the
batches of baggage items of specified flights need to be
processed during a day.

• Number of MUAs in use: simultaneously with the previ-
ous output, also for the non-peak periods the number of
MUAs is determined for a day.

• Number of assigned workers: the resource allocation
problem can only be solved optimally by assigning a
number of workers to the MUAs. Whilst it is not done for
this research, it is possible to also minimise the amount
of workers assigned to the MUAs to also find an optimal
schedule for a smaller workforce and to try to reduce the
workload by finding an optimum between the number of
used MUAs and the number of bags to process at each
MUA per worker.

• Flights assigned to MUA: the allocation problem also
allocates the flights to specific MUAs at specific times.
Each flight needs to be processed before it departures.
The solution shows what flights are assigned to which
MUA and at what time the processing starts.
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Assumptions
In this study, several assumptions and simplifications have
been made to facilitate the analysis, forecast, and resource
allocation for baggage handling. Firstly, it is assumed
that all predicted baggage items are on-time and this as-
sumption is reflected in the preprocessed data. Even if a
baggage item arrives late, it is still considered part of the
flight’s baggage count, even if it is flown with the next
flight. The reason for this is to identify patterns related to
the amount of checked baggage passengers tend to carry
on different days, times, and destinations for each unique
flight. Secondly, the analysis focuses on passenger baggage
and excludes baggage items carried by the crew. The in-
tention is to understand the behaviour of passengers when
it comes to checked baggage, excluding the influence of
the crew. Similar to the first assumption, this analysis
aims to identify patterns related to the amount of checked
baggage passengers tend to carry on different days, times,
and destinations. Thirdly, the baggage handling facilities
are assumed to have an infinite buffer capacity. This means
that there are no constraints on the maximum number of
baggage items that can be in the storage system at any given
time. To further simplify the resource allocation model,
it is assumed that all baggage items for a flight arrive at
the MUA location simultaneously. Although, in reality,
baggage items may arrive over a certain time period, the
model considers that once the baggage handling for a flight
begins, all items can be processed at once. Moreover, there
are no limitations on the number of LUs or the availability
of vehicles for transferring baggage items to the aircraft.
Sufficient resources are assumed to be available to handle
the transfer process. Concerning the time windows for a
flight to have its baggage items processed, it is assumed that
the MUA for European flights opens two hours before the
scheduled departure, while the MUA for intercontinental
flights opens three hours before the scheduled departure.
Baggage items must be processed 30 minutes prior to the
scheduled departure to account for the transfer time from
the baggage handling facility to the aircraft. Once an MUA
opens for a flight, it is assumed that the aircraft is ready to
receive the baggage items for loading. Flights are already
assigned to specific baggage facilities that are typically
located near the stand or gate of the aircraft. Therefore,
the assignment is not based on distance considerations but
rather on the standard handling practices for these flights. In

addition, it is assumed that workers assigned to the MUAs
have a constant productivity. Lastly, the analysis does not
take into account the sub-sorting of baggage types, such
as economy O&D, transfer baggage, and priority/business
class baggage. The prediction model used in the study does
not distinguish between these types, making it impossible
to sub-sort them in the resource allocation problem. In
reality, different types of baggage items are loaded into
separate LUs to ensure correct sorting, prioritisation, and
accurate loading onto the aircraft.

Constraints
The resource allocation model is governed by various con-
straints to ensure its feasibility and practicality. These
constraints can be classified into three primary categories:
flight batch constraints, worker constraints, and MUA con-
straints. Flight batch constraints are in place to ensure
that each batch of baggage items for a specific flight is
processed exactly once. These constraints also guarantee
that the flight batches are processed within the designated
time window, aligning with the opening time of the cor-
responding MUA and the deadline for transferring the
baggage items to the aircraft. Additionally, if a flight is
assigned to a particular MUA, it is mandatory that the
MUA is operational during that time. Worker constraints
restrict the number of workers available for processing
baggage items within a given time period to the maximum
number of workers present. Furthermore, the allocation of
workers to an MUA, along with their productivity, must be
sufficient to process at least the required number of baggage
items within the specified time period. MUA constraints
ensure that the number of assigned MUAs in each time
period does not exceed the total number of available MUAs.
Moreover, each MUA can only be utilised once during a
given time period. These constraints also ensure that the
space capacity of an MUA is never exceeded, meaning that
the number of LUs to be filled within a time period does
not exceed the available space. By incorporating these
constraints, the resource allocation model is designed to
effectively manage the allocation of workers, MUAs, and
time periods, while adhering to the limitations imposed by
flight batches, worker availability, and MUA capacity.
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IV. Methodology
This section describes the methodology employed in the
forecast model and the MILP model. Initially, the proce-
dures for data analysis and preprocessing are expounded
upon. Subsequently, the forecast techniques are introduced
and explained, followed by the introduction of supplemen-
tary simplistic forecast approaches and a description of
feature selection methods. Furthermore, the metrics em-
ployed to assess the quality of the model are explained.
Finally, the formulation of the MILP model is presented.

IV.A. Data Analysis & Preprocessing
As outlined in section III, the data for training the forecast
model is obtained from multiple sources. Specifically,
two sources are utilised: baggage analysis data and flight
schedule data. The time range for this data spans from
January 1, 2022 to March 31, 2023. These two datasets are
combined to create a unified flight schedule dataset that
includes historical information on the number of checked
baggage items for each individual flight. This allows for
the inclusion of the BF in the data by calculating the ra-
tio of baggage items to passengers. To facilitate model
training and evaluation, the data is divided into a training
set and a test set. The training set comprises the initial
80% of the data (January 1, 2022 to December 31, 2022).
This training set is further partitioned into K equally sized
subsets, referred to as validation sets, without shuffling.
These validation sets are used for K-fold cross-validation, a
technique employed to optimise model parameters during
the selection process, which will be elaborated upon in
subsection IV.B. The test set consists of the remaining 20%
of the data (January 1, 2023 to March 31, 2023). This test
set is exclusively employed for evaluating and comparing
the final models.

The combined dataset encompasses various features that
hold significance for the model. These features can be
categorised into destination, date & time, airline, aircraft,
and passengers. Within the destination category, essential
features include the destination airport and country. Addi-
tionally, a distinction is made between destinations within
Europe and those categorised as intercontinental, which
will be referred to as "outbound range" hereafter. The date
& time features represent the scheduled departure dates and
times for the flights. Airline features consist of the airline’s

IATA code and the flight designator. Aircraft features
pertain to the aircraft’s configuration, including its type and
seating capacity. Lastly, passenger features encompass the
number of passengers on board, along with the breakdown
between O&D passengers and transfer passengers, as indi-
cated in the data. In addition to the initial set of features,
it is possible to engage in feature engineering to enhance
the forecast model’s performance. Feature engineering
involves creating additional predictors. In the case of the
present dataset, feature engineering primarily focuses on
the date & time features. By leveraging the scheduled
departure date-time, various supplementary features can
be generated. These additional features encompass the
year, month, week, and weekday on which the flight de-
parted. Furthermore, Dutch holidays are incorporated as
supplementary features, encompassing information about
the holiday type and its duration.

Various types of features are present in the dataset, ranging
from integers to date-time values to categorical types. In the
context of the Gradient Boosting model, which utilises a re-
gression approach (as will be described in subsection IV.B),
the target variable being a numerical value necessitates
encoding categorical features that cannot be directly used
in the regression model. To accomplish this, the Target
Encoder from the scikit-learn library is employed. Target
Encoder is a feature encoding technique that transforms
categorical target variables into numerical representations.
It assigns a numerical value to each category by considering
statistical measures such as the mean of the corresponding
target variable. This encoding method captures the relation-
ship between categories and the target variable, resulting
in a more informative representation for machine learning
models to facilitate predictions.

Feature Correlation
Prior to incorporating the features into the model, it is cru-
cial to assess the interrelationships between these features
and their connection to the target variable, the BF. This
examination is accomplished by constructing a correla-
tion matrix employing the Pearson’s correlation coefficient
formula. The resulting correlation matrix reveals the as-
sociations among the variables, providing insights into
their magnitude and direction of correlation. The Pear-
son’s correlation coefficient ranges between -1 and 1. The
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closer the coefficient is to these extremes, the stronger the
correlation. Conversely, a coefficient close to 0 indicates
a weak correlation between the variables. These findings
aid in the identification of interdependent features and the
determination of influential factors for prediction.

IV.B. Gradient Boosting
Gradient boosting is a machine learning technique that
utilises a combination of multiple small Decision Tree
models to make predictions. These decision trees are made
distinct from each other through a process known as boost-
ing, which is an iterative procedure. Boosting involves
intelligently adding more weak learners to the ensemble
model. At each step of the process, the individual data
points are assigned weights, giving less importance to the
ones that have already been well predicted. The new weak
learners then focus on learning the aspects of the data
that have not yet been understood, thereby enhancing the
ensemble. The iterative nature of this process is termed
"gradient boosting" due to the incorporation of gradients.
In mathematics, a gradient represents a vector field of par-
tial derivatives that indicates the direction of the steepest
slope. When adding additional trees to the model, the
objective is to introduce a tree that effectively explains
the remaining variation not accounted for by the previous
trees. Therefore, the target for the new tree is defined as
the difference between the true values 𝑦 and the predicted
values ŷ. This can be expressed as the negative partial
derivative of the loss function with respect to the predicted
values: y - ŷ = - 𝛿𝐿

𝛿ŷ . By setting this difference as the target
for the new tree, it is ensured that the tree explains a maxi-
mum amount of additional variation in the overall gradient
boosting model. This rationale behind the name "gradient
boosting" arises from the utilisation of gradients to guide
the addition of trees to the model. For a more detailed
description of gradient boosting, see Bentéjac et al. [2021],
Hastie et al. [2001]. A visual representation of gradient
boosting is presented in figure 1. Gradient boosting can
both be used for classification and regression problems,
where categorical forecasting deals with discrete categories,
while regression focuses on continuous numerical values.
There are several gradient boosting algorithms that perform
slightly different, of which three are considered for this
forecast problem: XGBoost, LightGBM, and CatBoost.

XGBoost
XGBoost [Chen and Guestrin, 2016] emerged as an early
and widely embraced gradient boosting framework, sustain-
ing its popularity owing to its commendable performance
and scalability. It employs a level-wise approach to con-
struct decision trees, wherein each tree is incrementally
developed in layers. Nonetheless, this methodology may
present inefficiencies when confronted with imbalanced
data or datasets with numerous missing values. XGBoost
encompasses regularisation techniques, namely L1 and
L2 regularisation and tree pruning, to address the con-
cern of overfitting. Additionally, it offers provisions for
parallel processing and distributed computing, facilitating
expedited training and prediction on extensive datasets.
XGBoost also incorporates diverse hyperparameter tun-
ing options, allowing for fine-tuning of the model. The
hyperparameters that will enter the search space used for
XGBoost are presented in the Appendix with explanation
and reasoning.

LightGBM
LightGBM [Ke et al., 2017], a gradient boosting framework
developed by Microsoft, has been designed to emphasise
efficiency and speed. In comparison to the level-wise
approach of XGBoost, it embraces a leaf-wise growth strat-
egy for constructing decision trees, which prioritises the
nodes that yield substantial reduction in loss. This strategy
exhibits greater efficiency in terms of memory and compu-
tation; however, it necessitates careful control to prevent
overfitting. LightGBM incorporates a technique known
as Gradient-based One-Side Sampling (GOSS), which di-
minishes the number of data instances used for calculating
gradients during the training process, thereby further en-
hancing efficiency. Additionally, it inherently supports
categorical features, enabling users to input categorical
data directly without the requirement for one-hot encoding.
LightGBM also encompasses integrated mechanisms for
handling missing values and facilitates parallel training.
The hyperparameters that will enter the search space for
this algorithm are similar to the ones of XGBoost and can
be found in the Appendix.

CatBoost
CatBoost [Prokhorenkova et al., 2017], a gradient boosting
framework developed by Yandex, has been specifically
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Fig. 1 Gradient boosting process [Korstanje, 2021]

designed to address the effective handling of categorical
features. After the introductions of XGBoost and Light-
GBM, it introduced a novel approach termed Ordered
Boosting, which integrates the inherent ordering of cate-
gorical features into the boosting procedure. This approach
exhibits the potential to enhance model performance when
confronted with categorical data. Similar to LightGBM,
CatBoost automatically manages categorical features by
internally performing one-hot encoding during the training
phase, thereby eliminating the necessity for manual prepro-
cessing. It incorporates advanced techniques, including
gradient-based pre-sorting, to expedite the training process
and minimise memory usage. CatBoost encompasses inte-
grated methodologies for handling missing values and offers
robust tools for hyperparameter tuning. CatBoostRegres-
sor, a specific implementation of the CatBoost algorithm,
has been tailored for regression tasks and capitalises on the
diverse capabilities provided by the CatBoost framework.
The hyperparameters that will enter the search space for
this algorithm are also similar to the ones of XGBoost and
are presented in the Appendix.

Bayesian Optimisation Search
For each gradient boosting algorithm a search space is
mentioned. This refers to a set of possible values that can
be explored during the process of hyperparameter tuning
or optimisation. It represents the entire space of potential
values that can be assigned to each hyperparameter in a
machine learning model. The process is in fact an optimisa-
tion problem: to minimise the validation errors. There are
several approaches to do this, the most common is a grid

search. A grid search exhaustively explores a predefined
set of hyperparameter values by creating a grid or mesh of
all possible combinations. It systematically evaluates each
combination, covering the entire search space. This is a rel-
atively simple and straightforward approach, however, can
be computationally expensive and time-consuming, espe-
cially when dealing with a large number of hyperparameters
or a large search space. Therefore, a Bayesian search is
opted. Bayesian search, specifically Bayesian optimisa-
tion, intelligently explores the search space by leveraging
probabilistic models and informed decision-making. It
iteratively selects hyperparameter settings based on the
current knowledge of the objective function, using an ac-
quisition function to balance exploration and exploitation.
Bayesian search dynamically adjusts the search based on
previous evaluations, focusing on promising areas of the
search space. This approach is more efficient in terms of the
number of objective function evaluations required to find
good hyperparameter settings. It uses an informed search
strategy that adapts to the observed results, concentrating
on areas likely to yield better performance. Bayesian search
tends to be more efficient and effective in finding good
hyperparameter settings, especially when the search space
is large or complex, or when the objective function evalua-
tions are expensive. For a more exhaustive description, see
[Pelikan et al., 1999] and [Dewancker et al., 2017]. The
search will utilise a 3-fold cross-validation technique to
train the training dataset.
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IV.C. Hybrid Forecast Approaches
Next to the features from the dataset that enter the gradient
boosting models, another way of improving the final results
of the forecast is by making predictions by simpler forecast
methods. The reasoning behind this is that if that outcome
of such a model can steer the prediction of the gradient
boosting model in the right direction by utilising the out-
come as another feature. In this paper, three methods are
introduced: Previous Flight model, Hierarchical model,
and a Time Series model. In figure 2 the structure of the
total forecast model is presented if all of these models were
to be utilised.

Fig. 2 Forecast model structure

Previous Flight Forecast Model
The previous flight forecast model employs a relatively
straightforward approach that requires two inputs: the
flight designator and the scheduled date-time. Using his-
torical data, the model identifies the first occurrence of a
similar flight designator and utilises this information to
predict the BF, see figure 3. The rationale behind this
prediction model is based on the observation that flights
with the same flight designator often exhibit similarities in
terms of destination, departure day and time, and passenger
volume. However, by selecting the most recent similar
flight, the model disregards potential long-term trends in
the data. Moreover, a limitation of this model arises from
the possibility of flight designators changing over time or
new flight designators being introduced. These situations
may result in a comparison with a completely different type
of flight or lead to the inability to find a suitable value for

prediction.

Fig. 3 Previous Flight model approach example

Fig. 4 Structure of the hierarchy model

Hierarchical Model Forecast Model
The hierarchical model, as an advancement over the previ-
ous flight model, incorporates a more extensive historical
perspective. It employs a hierarchical structure, depicted
in figure 4, to identify the most comparable flights within
the dataset and compute the average BF based on these
findings. When fitting and predicting, the model initially
seeks flights in the training dataset that possess identical
features as those in the topmost row of the hierarchy. If an
exact match is not found, it proceeds to search for flights
with matching features in the subsequent rows, and so on.
The features defined within this structure serve as the sole
inputs for this model. A key advantage of this approach, in
contrast to the previous flight model, lies in its immunity
to variations or alterations in flight numbers. Instead, it
seeks flights with comparable characteristics and calculates
the average BF based on those flights. One drawback of
the hierarchical model is the potential for a relatively large
error in the predicted value due to the averaging of multiple
flights. This discrepancy can be attributed to several factors.
Firstly, the comparable flight selected from the past may
belong to a season or time period that does not adequately
represent the current date, leading to a mismatch in relevant
conditions. Secondly, the model does not consider other
features that may have an impact on the prediction, thereby
limiting its accuracy. Lastly, as the prediction descends fur-
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ther down the hierarchy, its precision diminishes, resulting
in less accurate estimations.

Time Series Forecast Model
Predictions are commonly based on time series data, where
the data points are equally spaced in time. However, the
flight schedule data used to forecast individual flights does
not adhere to this pattern. In this study, a time series model
was developed to fit the training data by calculating the
average BF per day for each airline and destination airport.
A classical MLR model was then employed, using this
average BF, to predict the forecast period in days for each
airline and destination. The input variables required for
this prediction are the airline code, airport code, and sched-
uled departure date-time. The MLR model incorporates
additional exogenous factors, and feature engineering was
performed by including week, weekday, and month vari-
ables. The test set is combined with the forecasted values
from this model to generate predictions, as can be seen
in figure 5. One advantage of this model is its relatively
high accuracy in forecasting time series data, resulting in
reasonably good predictions. Furthermore, by considering
the combination of airlines and destinations, which exhibit
similar BFs over time, taking the average daily value and
projecting it onto future days yields accurate results. How-
ever, a limitation of this model is that not all airlines operate
daily flights from AMS, and not all destinations are served
by every airline. To address this issue, any gaps in the
data are filled using the average BF from all days on which
flights departed. Only when there are very few data points
available is the prediction likely to align closely with the
overall average, which may lead to reduced accuracy.

Fig. 5 Time series approach example

IV.D. Feature Selection
Finally, the resulting accuracy might not exhibit optimal
performance. Especially if all features were used in the
model, where one might have more influence than the
other. To tackle this, feature selection approaches can
be applied. Feature selection is a process that chooses a
subset of features from the original features so that the
feature space is optimally reduced according to a certain
criterion. Several approaches are used to select features
of this problem: the filter method, the wrapper method,
and the embedded method. Note that these methods do not
always instantly provide the best feature selection; it is an
iterative process where more methods can be used to find
the best subset(s).

Filter Method
Filter methods are preprocessing techniques used to se-
lect features from a dataset without considering specific
machine learning algorithms. They efficiently remove du-
plicated, correlated, and redundant features. However, they
do not address multicollinearity issues and can make it
challenging to determine the individual effects of predictor
variables on the response variable. Feature selection is eval-
uated individually, which is advantageous for independent
features but may lag for feature combinations that improve
model performance. Pearson’s correlation coefficient can
identify subsets of independent features or those strongly
correlated with the target variable, helping assess their
impact on model accuracy.

Wrapper & Embedded Method
Wrapper methods involve iteratively training an algorithm
using a subset of features. Features are added or removed
based on insights gained during prior training. The best
subset is determined by predefined stopping criteria, such
as decreased model performance or reaching a specific
number of features. Wrapper methods provide an optimal
feature set for higher model accuracy compared to filter
methods, but they are computationally expensive. Selection
can be done exhaustively, forward (adding features incre-
mentally), or backward (removing features iteratively) until
no further improvement is observed. Embedded methods
incorporate feature selection algorithms into the learning
algorithm itself, making them faster and more accurate.
Gradient boosting, for example, provides feature impor-
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tance to select impactful features. This study combines
backward elimination and embedded feature importance for
feature selection, aiming to achieve high model accuracy
by iteratively evaluating the impact of features on the target
variable.

IV.E. Model Quality Metrics
To assess the quality of the model’s predictions, it is essen-
tial to examine the results in detail. Various error metrics
are available to evaluate accuracy, although their interpre-
tation may not always provide deep insights. In addition to
understanding the error metrics, it is important to gain a
comprehensive understanding of the model’s predictions
and delve further into their implications. To achieve this,
certain model statistics will be explored and analysed.

Error Metrics
In order to compare the predictive performance of the dif-
ferent selected features and model algorithms, the forecast
performance is measured by five different metrics: the R2

score, Mean Absolute Error (MAE), Mean Absolute Per-
centage Error (MAPE), Median Absolute Error (MdAE),
and the Root Mean Squared Error (RMSE). The R2 score,
equation 1, is used to assess the goodness of fit of a re-
gression model in forecasting. It indicates how well the
model’s predictions explain the variability observed in the
actual data. It ranges from 0 to 1, with a higher value
indicating a better fit of the model to the data.

𝑅2 = 1 −
∑ (𝑦𝑖 − �̂�𝑖)2∑ (𝑦𝑖 − �̄�𝑖)2 (1)

The MAE, equation 2, provides a straightforward indication
of the magnitude of the forecasting errors, which makes it
easy to interpret. It is less sensitive to outliers compared
to other error metrics.

𝑀𝐴𝐸 =
1
𝑛

∑︁
|𝑦𝑖 − �̂�𝑖 | (2)

The MAPE, equation 3, is useful to assess the accuracy
of the forecast relative to the magnitude of the actual val-
ues. The R2 score and the complement of the MAPE are
expected to yield similar values. Thus it is a good check to

calculate both errors.

𝑀𝐴𝑃𝐸 =
1
𝑛

∑︁���� 𝑦𝑖 − �̂�𝑖𝑦𝑖

���� (3)

The MdAE, equation 4, is similar to MAE but uses the me-
dian instead of the mean. It is less influenced by extreme
outliers compared to MAE and provides a more robust
measure of error.

𝑀𝑑𝐴𝐸 = median ( |𝑦𝑖 − �̂�𝑖 |) (4)

The RMSE, equation 5, is a widely used error metric that
penalises larger errors more than the MAE, as it squares
the differences. It is a popular choice for assessing the
overall accuracy of a forecasting model.

𝑅𝑀𝑆𝐸 =

√︂
1
𝑛

∑︁
(𝑦𝑖 − �̂�𝑖)2 (5)

Model Statistics
To gain deeper insights into the forecast results, more com-
prehensive statistical measures can be employed. While
error metrics such as MAE and MdAE provide valuable
information, understanding the nature of large errors and
the overall distribution of errors is crucial. Visualisations
like boxplots and histograms can be utilised to assess the
disparities between predicted and actual values, which can
vary in both positive and negative directions. Boxplots
offer a graphical summary of the error distribution, with the
box representing the middle 50% of the errors. A smaller
distance of the box from zero signifies better results. Addi-
tionally, boxplots facilitate the identification of distribution
skewness and the presence of outliers. However, it can
be challenging to discern whether the errors are concen-
trated around the box or evenly spread within the boxplot’s
whiskers. To address this, boxplots can be complemented
with violin plots or histograms that incorporate the absolute
errors. The combination of these visualisations aids in
gaining a more comprehensive understanding of the error
patterns. Moreover, it is informative to examine a his-
togram where the bins represent ranges of the actual BFs,
and the bars indicate the average forecast error within each
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range. This histogram is expected to exhibit lower error
margins for lower actual values and ideally demonstrate
consistently low error margins across all actual values.

In addition to the statistical review using boxplots, violin
plots, and histograms, conducting error analysis for differ-
ent flight features is valuable. Examining the average error
per airline, per weekday, per destination, and the conversion
of BF to baggage items provides insights into the prediction
performance in relation to these specific features. These
statistics enable the assessment of prediction results in
different contexts and facilitate the identification of areas
where the model excels or exhibits relatively larger errors.

IV.F. Mixed Integer Linear Programming Model
The resource allocation or scheduling model is formulated
as a MILP model. The input data is one day of the predic-
tion of the forecast model. Furthermore, there are some
assumptions that have been made based on interviews with
AMS employees. Inspired by the problem description
and mathematical formulation of Emde et al. [2020], this
paper introduces the problem of scheduling the build-up of
Make-Up Areas at a baggage handling facility under Space
and Personnel constraints (MUASP). Given a set of MUAs
and outbound flights to be handled within a certain time
window, where each MUA must be built-up for a given
amount of flight batches that contain different numbers of
baggage items. The processing time depends on the number
of workers that are assigned to the flight and MUAs. The
goal is to keep the demand for workers just about level at
all times and simultaneously reduce the number of MUAs
that need to be used at the peak period throughout a day.
The mathematical formulation is set up in such a way that
it assumes an ideal situation, where building the MUAs
up with the number of required workers is always possible.
The sets, parameters, and decision variables can be found in
table 1, table 2, and table 3. The mathematical formulation
of the MILP model is shown next.

The objective function, equation 6, minimises the number
of MUAs in use in the busiest period throughout the day.
This objective function is subject to fourteen constraints
in total. Constraint (7) in conjunction with constraint (8)
and (9) limits the number of MUAs in use to the maximum
amount of MUAs present each time period and sets the

decision variable 𝛼 to the maximum value over time. The
model will then try to find a solution where this maximum
number during a specific time (the peak period) is the low-
est. Within this model there is no real changes between the
number of MUAs that are available per period. However,
considering that an MUA might not be available due to
malfunctioning, maintenance or other reasons or intentions,
this value might change per time period when making the
model more realistic. Constraint (10) enforces that each
flight is handled exactly once. Constraints (11) and (12)
makes any time window violation impossible, taking into
account the process time needed depending on the amount
of workers are assigned to the flight. Constraint (13) pre-
vents that the total workspace of all MUAs in use per time
period is exceeded. If that is the case an it is inevitable,
another MUA must be opened. Within this constraint for
each time period the decision variable 𝑥 will be checked
for all periods that are needed to handle the flight batch by
setting 𝑡′ such that 𝑡 ≥ 𝑡′ ≥ 𝑡 − 𝑃 𝑓 𝑘 + 5. This ensures that
for each time periods all assigned flights, both done within
one time period and over multiple time periods are taken
into account in the summation. From here onward, the
constraints have this 𝑡′ for the same reasoning. Constraint
(14) limits the total number of workers assigned to all in
use MUAs to the total worker capacity in a certain time
period. Constraint (15) ensures that an MUA can only
be in use once per time period. If the MUA in use is a
lateral instead of a carousel, next to the fact that only a
maximum of five LUs can be assigned per period, that
means that there is no possibility to stack up the flights.
Thus constraint (16) ensures that per time period only one
flight can be assigned to a lateral. Constraint (17) prevents
the build-up of more LUs in a time period than the MUA
capacity can provide. In a similar way, constraint (18)
prevents that the number of baggage items on the MUA in a
certain time period exceeds the capacity of the MUA, taken
into account that the workers remove baggage items during
that time period. It is assumed that for each handled bag,
instantly a new one can appear on the MUA. Constraint
(19) checks on the left-hand side how many baggage items
the assigned number of workers can handle at an MUA.
This cannot be exceeded by the number of baggage items
that are assigned to the same MUA of multiple flights
divided by the number of periods it takes to process the
whole batch, which is formulated on the right-hand side of

16



Table 1 Overview of the sets in the MILP model.

Sets
𝐹 Set of flights, index 𝑓 ∈ 𝐹
𝑇 Number of periods, index 𝑡 ∈ 0, 5, . . . , 𝑇 . Time interval is 5 as flight departure times are separated by 5 minutes
𝑀 Set of MUAs, index 𝑚 ∈ 𝑀
𝐾 Set of workers, index 𝑘 ∈ 𝐾

Table 2 Overview of parameters in the MILP model.

Parameters
𝑆𝑚 The number of workspaces (number of LUs) at MUA 𝑚

𝑀𝑡 Maximum number of MUAs available in period 𝑡
𝑆 𝑓 Workspace (number of LUs) required by flight 𝑓
𝐵 𝑓 The batch size (number of baggage items) of flight 𝑓
𝐴 𝑓 Release datetime of flight 𝑓 , when the batch is ready to be processed
𝐷 𝑓 Deadline of flight 𝑓 , which is 30 minutes before departure
𝑃 𝑓 𝑘 Processing time of the batch of flight 𝑓 if 𝑘 workers are assigned
𝑀𝑈𝐴𝑚 Workspace available at MUA 𝑚 (number of LUs)
𝐶𝐴𝑃𝑚 Space available at MUA 𝑚 (number of baggage items)
𝑃𝑘 Productivity of 𝑘 workers; the number of baggage items 𝑘 workers can process per time period

the constraint equation. Constraint (20) prevents the total
number of workers assigned to the flights that are assigned
to an MUA in a certain time period to exceed the number
of workers present at that MUA. Constraint (21) makes
sure that if there are no flights assigned to a specific MUA
in a certain time period, the MUA cannot be in use. Lastly,
similar to the previous constraint, constraint (22) makes
sure that is a flight in a certain time period can only be
assigned to a specific MUA, if that MUA is in use.

min𝛼 (6)

s.t.

∑︁
𝑚∈𝑀

∑︁
𝑘∈𝐾

𝑘 · 𝑦𝑚𝑡𝑘 ≤ 𝛼𝑡 ∀𝑡 = 0, . . . , 𝑇 (7)

𝛼𝑡 ≤ 𝑀𝑡 ∀𝑡 = 0, . . . , 𝑇 (8)

𝛼 ≥ 𝛼𝑡 ∀𝑡 = 0, . . . , 𝑇 (9)

∑︁
𝑚∈𝑀

𝑇∑︁
𝑡=0

∑︁
𝑘∈𝐾

𝑥 𝑓 𝑚𝑡𝑘 = 1 ∀ 𝑓 ∈ 𝐹 (10)

∑︁
𝑚∈𝑀

𝑇∑︁
𝑡=0

∑︁
𝑘∈𝐾

𝑡 · 𝑥 𝑓 𝑚𝑡𝑘 ≥ 𝐴 𝑓 ∀ 𝑓 ∈ 𝐹 (11)

∑︁
𝑚∈𝑀

𝑇∑︁
𝑡=0

∑︁
𝑘∈𝐾

(
𝑡 + 𝑃 𝑓 𝑘

)
· 𝑥 𝑓 𝑚𝑡𝑘 ≤ 𝐷 𝑓 ∀ 𝑓 ∈ 𝐹 (12)

∑︁
𝑚∈𝑀

∑︁
𝑘∈𝐾

𝑀𝑈𝐴𝑚 · 𝑦𝑚𝑡𝑘 ≥

∑︁
𝑓 ∈𝐹

∑︁
𝑚∈𝑀

∑︁
𝑘∈𝐾

𝑡∑︁
𝑡 ′=max{0;𝑡−𝑃 𝑓 𝑘+5}

𝑆 𝑓 · 𝑥 𝑓 𝑚𝑡 ′𝑘

∀𝑡 = 0, . . . , 𝑇

(13)

∑︁
𝑚∈𝑀

∑︁
𝑘∈𝐾

𝑘 · 𝑦𝑚𝑡𝑘 ≤ 𝐾𝑡 ∀𝑡 = 0, . . . , 𝑇 (14)
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Table 3 Overview of the decision variables in the MILP model.

Decision Variables
𝑥 𝑓 𝑚𝑡𝑘 Binary variable: 1, if flight 𝑓 is assigned to MUA 𝑚, processed in period 𝑡 by 𝑘 workers; 0, otherwise
𝑦𝑚𝑡𝑘 Binary variable: 1, if MUA 𝑚 is used in period 𝑡 with 𝑘 workers to process the flight batches; 0, otherwise
𝛼𝑡 Continuous variable: number of MUAs used in period 𝑡
𝛼 Integer variable: the maximum 𝛼𝑡 value in period 𝑡 ∈ 0, 5, . . . 𝑇

∑︁
𝑘∈𝐾

𝑦𝑚𝑡𝑘 ≤ 1 ∀𝑚 ∈ 𝑀 ∧ 𝑡 = 0, . . . , 𝑇 (15)

if 𝑀𝑈𝐴𝑚 = 5 :∑︁
𝑓 ∈𝐹

∑︁
𝑘∈𝐾

𝑡∑︁
𝑡 ′=max{0;𝑡−𝑃 𝑓 𝑘+5}

𝑥 𝑓 𝑚𝑡 ′𝑘 ≤ 1

∀𝑡 = 0, . . . , 𝑇 ∧ 𝑚 ∈ 𝑀

(16)

∑︁
𝑓 ∈𝐹

∑︁
𝑘∈𝐾

𝑡∑︁
𝑡 ′=max{0;𝑡−𝑃 𝑓 𝑘+5}

𝑆 𝑓 · 𝑥 𝑓 𝑚𝑡 ′𝑘 ≤ 𝑀𝑈𝐴𝑚

∀𝑡 = 0, . . . , 𝑇 ∧ 𝑚 ∈ 𝑀

(17)

∑︁
𝑓 ∈𝐹

∑︁
𝑘∈𝐾

𝑡∑︁
𝑡 ′=max{0;𝑡−𝑃 𝑓 𝑘+5}

𝐵 𝑓 · 𝑥 𝑓 𝑚𝑡 ′𝑘 ≤∑︁
𝑘∈𝐾

𝐶𝐴𝑃𝑚 + 𝑃𝑘 · 𝑦𝑚𝑡𝑘

∀𝑡 = 0, . . . , 𝑇 ∧ 𝑚 ∈ 𝑀

(18)

∑︁
𝑘∈𝐾

𝑃𝑘 · 𝑦𝑚𝑡𝑘 ≥

∑︁
𝑓 ∈𝐹

∑︁
𝑘∈𝐾

𝑡∑︁
𝑡 ′=max{0;𝑡−𝑃 𝑓 𝑘+5}

⌈𝐵 𝑓 /𝑃 𝑓 𝑘⌉ · 𝑥 𝑓 𝑚𝑡 ′𝑘

∀𝑡 = 0, . . . , 𝑇 ∧ 𝑚 ∈ 𝑀

(19)

∑︁
𝑓 ∈𝐹

∑︁
𝑘∈𝐾

𝑡∑︁
𝑡 ′=max{0;𝑡−𝑃 𝑓 𝑘+5}

𝑘 · 𝑥 𝑓 𝑚𝑡 ′𝑘 ≤
∑︁
𝑘∈𝐾

𝑘 · 𝑦𝑚𝑡𝑘

∀𝑡 = 0, . . . , 𝑇 ∧ 𝑚 ∈ 𝑀

(20)

∑︁
𝑓 ∈𝐹

∑︁
𝑘∈𝐾

𝑡∑︁
𝑡 ′=max{0;𝑡−𝑃 𝑓 𝑘+5}

𝑥 𝑓 𝑚𝑡 ′𝑘 ≥
∑︁
𝑘∈𝐾

𝑦𝑚𝑡𝑘

∀𝑡 = 0, . . . , 𝑇 ∧ 𝑚 ∈ 𝑀

(21)

∑︁
𝑘∈𝐾

𝑡∑︁
𝑡 ′=max{0;𝑡−𝑃 𝑓 𝑘+5}

𝑥 𝑓 𝑚𝑡 ′𝑘 ≤
∑︁
𝑘∈𝐾

𝑦𝑚𝑡𝑘

∀𝑡 = 0, . . . , 𝑇 ∧ 𝑚 ∈ 𝑀 ∧ 𝑓 ∈ 𝐹

(22)

Computational Experiments
The computational experiments were conducted using the
Python programming language and solved utilising the
open-source solver PuLP Coin-or Branch and Cut, version
2.7.0, in conjunction with Python 3.9. The experiments
were executed on a Dell Latitude 5430 laptop equipped
with an Intel(R) Core(TM) i5 processor and 16 GB of
RAM. However, it was observed that running the experi-
ments on this laptop occasionally failed to generate feasible
solutions within the designated computational time for
larger instances. To overcome this limitation, a Databricks
server with enhanced computational power was employed.
The server offered 16 cores and 112 GB of RAM. The
maximum computational time allocated for all experiments
was set at 18,000 seconds, equivalent to four hours.

The computational experiments were focused on a single
baggage facility responsible for handling flights associated
with a specific airline, particularly European flights. The
objective was to determine the minimum number of MUAs
required during the busiest period of the day. Several test
instances were utilised to evaluate the model’s performance.
These instances were selected to ensure diversity in three
aspects: the number of flights during a day (achieved by
choosing different days), the capacity of LU, and the time
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windows allocated for processing individual flights. The
variation in the number of flights is expected to impact both
the computation time and the model’s objective value, as a
larger number of flights generally leads to higher objective
values and longer computation times. While LU capacity
may not significantly influence computation time, it does
affect the model’s outcomes, with lower LU capacities
resulting in higher objective values. The time window
variability primarily affects the model’s outcomes, with
narrower time windows typically leading to higher objec-
tive values. Table 4 provides details of the test instances,
including their specific characteristics. The first instance
serves as the baseline, while the remaining three instances
differ in terms of the aforementioned factors.

Table 4 Names, definitions, and characteristics of the
different test instances.

Instance Day
LU

capacity
Time window

MUASP_t_35_n Tue 35 1H30M

MUASP_t_25_n Tue 25 1H30M

MUASP_s_35_n Sat 35 1H30M

MUASP_t_35_l Tue 35 1H

V. Results
This section shows the results that were obtained by the two
models. First the feature selection of the forecast model
will be addressed in detail. Secondly, the results of the
forecast model will be presented with a deepdive into what
these results entail. Finally, the computational set-up of the
MILP model will be explained and its results are presented.

V.A. Feature Selection
In table 11, in the Appendix, the correlation matrix can be
found which provides information about the relationships
among all possible features. It reveals the extent of correla-
tion between each feature and both other features and the
target feature. Notably, the flight number, airport, airline,
aircraft, number of transfer passengers, and outbound range
exhibit the strongest correlations with the target feature.
This constitutes the first subset of features as it is worth
exploring the impact on the model when including the

strongest correlated features.

First and foremost, the flight number stands out in terms
of correlation strength compared to other features. This
is not surprising, as airlines commonly assign the same
flight number to flights with similar characteristics (e.g.,
destination, time, aircraft). Consequently, the flight number
exhibits a strong correlation with numerous other features.
Although incorporating this feature into the model seems
logical, it carries certain risks. The high correlation with
other features may lead to overfitting, resulting in reduced
accuracy scores for actual predictions. By solely consid-
ering the flight number in conjunction with features that
are weakly correlated to it, important predictive aspects
could be overlooked. Additionally, airlines may employ
distinct approaches when assigning flight numbers, leading
to potential changes over time or the introduction of new
numbers. Consequently, it is anticipated that accuracy
scores would be lower for such a subset. To investigate
this, two subsets are constructed, accounting for intercorre-
lations: 1) an isolation subset containing the flight number
while excluding strongly correlated features, and 2) an
isolation subset excluding the flight number.

To further delineate the isolated subset that excludes the
flight number, an examination of the remaining features
was conducted. Within the time category, the year, month,
week, weekday, and holiday features displayed negligible
correlations with both the other feature types and the target
feature. However, they exhibited strong correlations with
one another. This suggests that these features contribute
minimally to the final prediction and could be omitted.
Conversely, the scheduled departure time and date demon-
strated relatively strong correlations with the target feature
and certain other features. Hence, retaining them in the
model during this phase is of interest. The airline feature
exhibited strong correlations with a subset of features, pri-
marily the flight number. Nonetheless, it displayed a highly
robust correlation with the target feature, as anticipated,
given the airline’s substantial influence on the number of
checked baggage items carried by passengers. Shifting
focus to the destination category, the airport, outbound
range, and aircraft features exhibited strong correlations
with each other, rendering their simultaneous inclusion
in the model unnecessary. Specifically, the airport and
aircraft features displayed strong correlations with nearly
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all features, except for the time features. Lastly, the fea-
tures within the passenger category demonstrated moderate
correlations, although not excessively strong. The corre-
lation of these features with the target feature aligns with
expectations, as transfer passengers typically transport a
checked baggage item, while O&D passengers often do not.
Consequently, these features prove relevant for inclusion
in the model. Naturally, predicting the exact number of
passengers in advance is unfeasible; nevertheless, incorpo-
rating the passenger forecast in the model is expected to
positively impact the final BF prediction. To summarise
the composition of the second isolated subset, based on the
aforementioned rationale, certain destination features and
most time features were excluded.

Determining the precise impact of each feature on the
model’s accuracy and discerning whether strongly corre-
lated features are redundant or collectively contribute to a
stronger positive impact pose challenges. Consequently, a
fourth subset akin to the first subset was generated, omitting
the flight number feature. Lastly, the embedded backward
elimination method was employed, wherein the model
selects features by iteratively eliminating the least signifi-
cant feature until no further improvement is observed. To
summarise, the subsets are as follows:

• Subset 1: all strong correlated features:
[flight number, airport, airline, aircraft,
transfer pax, outbound range, country,

scheduled time, seats, scheduled date, O&D

pax]
• Subset 2: isolated subset incl. flight number:

[flight number, outbound range, transfer
pax, O&D pax, scheduled time, scheduled

date, weekday]
• Subset 3: isolated subset excl. flight number: [airport,
airline, country, seats, scheduled time,

scheduled date, transfer pax, O&D pax]
• Subset 4: subset with many strong correlated fea-

tures excl. flight number: [airport, airline,
aircraft, transfer pax, country, O&D pax,

scheduled time, seats, weekday]
• Subset 5: Embedded backwards elimination, contains

all features and narrows it down for each algorithm.

As mentioned previously, subset 5 comprised all the features

except for a few eliminated ones. Through the application
of embedded backward elimination tests for XGBoost, only
the features "holiday region" and "holiday type" were elim-
inated. For LightGBM, only the feature "outbound range"
was removed, while for CatBoost, both "outbound range"
and "holiday region" were eliminated.

All five subsets were subjected to testing, and the results
are presented in table 12 in the Appendix. Initial results
revealed that optimal forecast accuracy across all three
models was achieved when the train set encompassed as
much data as possible for each forecast period. Specif-
ically, this entailed restricting the test set size solely to
the flights on the days targeted for forecasting, while the
train set incorporated the remaining data. Looking at these
results for the subsets, it is evident that subset 5 yielded the
best results across all three algorithms. This suggests that
the correlated features collectively contribute positively to
the accuracy. To verify this, additional test rounds were
conducted where some features were removed from the sub-
set. However, the results did not improve. Consequently,
subsets 5 will be used for the next step, which involves
incorporating additional model features.

To accomplish this, an exhaustive search was performed
to explore all possible combinations of additional model
features for each of the three algorithms. The results of this
exhaustive search revealed that incorporating the time series
model led to the highest increase in accuracy, ranging from
1-2% for all three gradient boosting algorithms. Although
the predictions for 7 days remained similar, the predictions
for 30 and particularly 60 days became more accurate with
the inclusion of the time series model. The differences in
accuracy between using the time series model, the previous
flight model, or both were very small. However, in general,
incorporating only the time series model generated slightly
superior results. Therefore, the time series model is incor-
porated in the final forecast model. It is worth noting that
adding the hierarchical model to the feature combinations
resulted in decreased accuracy. Although incorporating
the hierarchical model output as a feature yielded a higher
train score, indicating slight overfitting, it was decided to
exclude this model.

All three algorithms exhibited sufficiently high scores to
enable relatively accurate predictions. Among them, Light-
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GBM had slightly better accuracy compared to the other
two, and it boasted an average computation time of 80
seconds, whereas CatBoost took an average of 108 sec-
onds and XGBoost required 150 seconds. Consequently,
LightGBM emerged as the most favourable algorithm and
will be further examined in the subsequent phase. Table 5
presents the results of the LightGBM model, including the
time series model output as a feature. It can be observed
that the train and test scores for all forecast periods were
marginally better than the results without the time series
model output, as shown in table 12 in the Appendix with
subset 5. Furthermore, the train and test scores were highly
similar, indicating the absence of overfitting or underfitting.
The MAE indicates that, on average, the model’s estimation
of the BF deviates by 0.09-0.1. The MAPE suggests that
the average percentage error between the predicted and
actual values is approximately 18-21%, confirming the test
score, as this value should be similar to the complement of
the MAPE. The MdAE has a lower value than the MAE,
which is a positive indication, as it implies that most values
are closer to zero error rather than exceeding the MAE
values. Similarly to the MAE, the RMSE provides an
interpretable measure of error. However, the RMSE is
significantly higher than the MAE, indicating that there is
greater variability and dispersion in the errors.

V.B. LightGBM Model Forecast Results
To elucidate the underlying basis of the results obtained
from the LightGBM model, the feature importance of each
variable is depicted in figure 8. Evidently, the week, flight
number, airport, and scheduled departure time emerge as
the most influential features that underpin the predictions.
Conversely, the year feature exhibits significantly lower
importance relative to the other variables. While it may be
argued that eliminating this feature could be a viable option,
such an exclusion leads to slightly diminished prediction
accuracy. One plausible explanation for this outcome is the
subtle discrepancy in average BF between 2023 and 2022,
considering that the 2023 dataset encompasses substan-
tially fewer flights than the 2022 dataset. Consequently, in
future forecasts with augmented information, it is plausible
that the year feature might be eliminated from the feature
subset.

Upon delving deeper into the results of this model, a box-

violin plot (figure 6) and a histogram (figure 7) were utilised
to gain further insights. The boxplot illustrates that the
interquartile range, representing the middle 50% of errors,
falls within the range of -0.06 to 0.08. The violin plot
and histogram reveal that a significant portion of the data,
beyond the middle 50%, concentrates near the edges of the
box, while relatively fewer data points are observed around
the whiskers. Outliers are present on both the upper and
lower ends of the distribution. Specifically, for the 7-day
forecast, there are 130 outliers out of a total 3877 flights,
accounting for approximately 3% of the forecasted data.
Furthermore, the majority of predictions exhibit absolute
errors in the range of 0.0 to 0.04, indicating a high level
of accuracy and providing an accurate depiction of the
expected BFs within the forecasted time period.

Fig. 6 Box-Violinplot of the model errors

Fig. 7 Histogram of absolute model errors

To identify the regions where the majority of errors occur,
figure 9 presents an overview of the average error relative to
the actual BF, with the number of data points falling within
each specific range displayed atop the bars. It is evident that
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Table 5 LightGBM final results for the different forecast periods including time series model output as a feature.

Train score Test score MAE MAPE MdAE RMSE
7 days 0.833 0.833 0.089 0.183 0.068 0.120
30 days 0.846 0.819 0.092 0.189 0.071 0.123
60 days 0.808 0.792 0.101 0.214 0.079 0.134

Fig. 8 Feature importance LightGBM

the bins with the highest concentration of data points gen-
erally exhibit the lowest average error, approximately 0.1.
As the actual BF increases, the error also tends to increase.
However, this trend is partly attributed to the decreasing
number of data points available as the BF rises, leading to
a reduced basis for prediction. In addition to examining
BF errors, it is also valuable to consider the distribution of
these factors in relation to the number of passengers and
the actual count of checked baggage items. Figure 10 in the
Appendix presents a similar relative representation as for
the BF, but focusing on the quantity of baggage items. The
figure illustrates that, for lower baggage item counts, the
average error hovers around 10-20 baggage items per flight.
As the actual baggage item count increases, the average
error also rises. This phenomenon, akin to the BF, can be
attributed to the reduced number of data points available
for higher values, resulting in less accurate predictions.
Moreover, since the quantities are higher, a BF error of 0.1
leads to a greater error in baggage item count compared to
lower values.

Table 6 Average BF error per weekday for LightGBM
prediction.

Average Absolute BF Error

Weekday 7-day 30-day 60-day

Monday 0.082 0.095 0.103

Tuesday 0.103 0.098 0.105

Wednesday 0.106 0.096 0.105

Thursday 0.086 0.091 0.100

Friday 0.086 0.093 0.100

Saturday 0.100 0.101 0.105

Sunday 0.091 0.097 0.108

Moreover, to dive deeper into the results, in table 6 the
average BF error can be found for each weekday. It can be
seen that the error is consistent for each day and thus the
results respond well to different days in the week. This is
of significant importance as the BF typically demonstrates
elevated values on Saturdays in contrast to the remaining
weekdays. Consequently, this outcome serves as evidence
that the forecast model effectively captures the temporal
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Fig. 9 Average BF error relative to the actual BF

pattern of BF throughout the course of the week.

Table 7 Average BF error per weekday for LightGBM
prediction.

Average Absolute BF Error

Time Period 7-day 30-day 60-day

00:00-04:00 - - -

04:00-08:00 0.094 0.107 0.114

08:00-12:00 0.096 0.102 0.107

12:00-16:00 0.097 0.094 0.102

16:00-20:00 0.078 0.083 0.092

20:00-24:00 0.079 0.085 0.105

In addition, this is also checked for the scheduled departure
time and outbound range, which can be found in table 7 and
table 8, respectively. In the analysis of scheduled departure
times and outbound ranges, no significant outliers were
observed. However, it is evident that as the day progresses,
the accuracy of the results improves for the scheduled time.
This can be attributed to the presence of numerous similar
flights departing to the same destination during later hours.
Consequently, the model finds it easier to identify patterns
within these time periods, leading to enhanced predictive
outcomes. Additionally, a similar approach was employed

for airlines and destination airports where certain outliers
were identified. Among the 70 airlines analysed, four air-
lines exhibited an average error exceeding 0.15. Similarly,
out of the 220 airports examined, 24 airports displayed
an average error surpassing 0.15, and among them, eight
airports had an error exceeding 0.20. Notably, all these
outliers were characterised by their infrequent occurrence,
accounting for only a few instances among all the flights
examined.

Table 8 Average BF error per outbound range for
LightGBM prediction.

Average Absolute BF Error

Outbound range 7-day 30-day 60-day

Europe 0.090 0.094 0.102

Intercontinental 0.096 0.101 0.112

Finally, it is of interest to assess the outcomes at a broader
level by examining the total volume of forecasted departing
baggage items from AMS. These findings are presented in
9. Notably, the error margins for all forecast periods ex-
hibit exceptionally low values, albeit with a slightly higher
error observed in the 60-day forecast, which aligns with
expectations. Intriguingly, the 7-day and 30-day forecasts
demonstrate a slight underestimation, whereas the 60-day
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forecast displays a slight overestimation. This divergence
in predictions may arise from the nature of the currently
utilised data, implying that alternative data sources could
yield different outcomes. Nevertheless, it is evident that the
collective overestimations and underestimations pertaining
to individual flights offset each other, culminating in an
exceptionally accurate prediction at a higher level.

Table 9 Average BF error per outbound range for
LightGBM prediction.

Total bax 7-day 30-day 60-day

Actual 359,967 1,375,243 2,565,020

Predicted 354,669 1,354,961 2,610,156

Difference -5,298 -20,282 45,136

Error % -1.47% -1.47% 1.76%

V.C. Resource Allocation & Scheduling Results
This subsection presents the findings pertaining to the
MUASP alongside operational perspectives to provide
valuable insights.

Computational Results
Table 10 presents the computational results obtained from
the conducted experiments, showcasing the outcomes for
different instances. Notably, the computation time for all
four instances was relatively high, as anticipated since
the MILP model aimed to find an exact solution. The
computational time required for each instance to complete
a full day’s workload was excessively long, necessitating
the division of days into multiple shifts. The shifts were
designated as follows: 00:00-09:00, 09:00-13:00, 13:00-
16:00, and 16:00-24:00. The initial and final shifts were
chosen to encompass the majority of the daytime hours, as
they typically experience lower flight volumes and conse-
quently handle fewer baggage items. However, an inherent
limitation of this approach is the failure to account for
potential overlap between shifts. To address this concern, a
compensatory adjustment was made by adding a value of 1
to the output result of each shift. Among the instances, the
baseline instance demonstrated the shortest computation
time compared to the others, while the third instance exhib-
ited significantly longer computation time. The second and
fourth instances displayed relatively similar computation

times, although slightly higher than the third instance, as
anticipated. Taking into account the compensation for
the overlap, the baseline instance exhibited an objective
value of 3, indicating that during the busiest period(s) of
the day a maximum of three MUAs were required. In
the second and third instances, the objective values were
both 5. This outcome aligns with expectations since in the
second instance, the LU capacity experienced a significant
reduction. Consequently, the capacity per time period at an
MUA decreased, rendering the baseline three MUAs insuf-
ficient for the busiest period of the day. Lastly, the fourth
instance yielded a higher objective value compared to the
baseline instance due to flight batches having a shorter
processing period, thereby limiting the model’s ability to
find a solution with the lowest possible objective value.

Table 10 Results computational experiments for the
MILP model with test instances.

Instance # MUAs Computation time [s]

MUASP_t_35_n 3 10,483

MUASP_t_25_n 5 12,296

MUASP_s_35_n 5 16,129

MUASP_t_35_l 4 11,914

Operational Insights
From an operational standpoint, ensuring sufficient capacity
in baggage handling facilities is crucial to avoid bottlenecks
and maintain smooth operations, particularly during peak
seasons. Insufficient capacity to handle the incoming de-
mand can severely impede the overall operation. Therefore,
the insights gained from this study are highly valuable, as
they reveal that in an ideal scenario, only a limited number
of MUAs are required to handle the workload effectively.
However, it is important to acknowledge that the model has
certain limitations due to the assumptions made. For in-
stance, it is not always feasible to direct all baggage items of
a flight to a single MUA. Various sub-sorting requirements
exist, such as segregating transfer and O&D baggage into
different LUs, allocating economy and priority/business
class baggage to separate LUs, and accommodating odd-
sized bags in different locations. Furthermore, baggage
items do not arrive simultaneously in the system, leading
to potential challenges in processing an entire flight within
a single time period or requiring division across multiple
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time periods or MUAs. These examples illustrate why
the model is not yet ready for implementation. Neverthe-
less, the predictive model’s outcomes provide intriguing
insights that can be leveraged to optimise baggage handling
facilities further.

VI. Conclusion & Recommendations
This paper presents an approach to enhance baggage han-
dling operations at hub airports through sequential fore-
casting and resource allocation. The proposed method
concerns an exact MILP model whilst utilising the data
from a forecast made by a gradient boosting method. The
objective of the study was to create a forecast model that
predicts BFs for individual flights over a time span of 7, 30,
and 60 days, and subsequently construct a baseline model
that leverages the forecasting outputs to optimise baggage
handling processes and allocate resources effectively.

When comparing the different gradient boosting forecast
models, XGBoost, LightGBM, and CatBoost, it is clear
that the LightGBM model produces the best results with
the selected subset of features where the prediction has
an accuracy of up to 83%. Nevertheless, the alternative
two models also yield satisfactory outcomes, with dis-
crepancies of merely 1-2% from the desired or expected
results. When including features in the model, implemen-
tation of intercorrelated features contribute to a positive
effect on the performance compared to only implementing
independent features. Furthermore, the incorporation of
additional feature models yields intriguing insights into en-
hancing the forecast model’s performance. The utilisation
of the time series model output as a feature demonstrates
the most substantial improvement in prediction accuracy.
While the observed performance enhancement may not
be significant, the inclusion of the aforementioned feature
ultimately yields a superior prediction outcome compared
to its exclusion.

Upon evaluating the alignment between the forecasted and
predicted quantities of checked baggage items, the pro-
posed forecast model exhibits remarkable accuracy. A
substantial proportion of individual flights demonstrate
an error margin of approximately 10 checked baggage
items in relation to the actual count of checked baggage
items present on board. It is noteworthy that this error

can be both overestimated or underestimated, contributing
to the cancellation of such discrepancies at a higher level,
ultimately presenting a representative perspective on the
overall anticipated total number of checked baggage items.
The resultant errors amount to a mere 1.5% deviation for
the 7 and 30 day predictions, and a 1.8% deviation for
the 60 day projections when compared against the actual
figures.

The main limitations of the forecast model are the com-
plexity and randomness of the problem, and the fact that
the data that was used still has some errors. As the BF
has to do with how passengers behave and external factors,
it is impossible to reach a prediction accuracy of 100%.
However, with data that is correct and clean of errors where
for each flight each feature has the correct values, it is
believed that even better predictions can be made.

The resource allocation and personnel scheduling model
provides evidence of the advantages of integrating the BF
prediction in examining the MUASP problem from an ideal
standpoint. This approach yields a significant reduction in
the spatial requirements for baggage handling. The model
illustrates that on low-demand days such as Tuesday, or dur-
ing high-demand periods like Saturday, a minimal number
of MUAs were required, specifically 3 and 5 MUAs respec-
tively. This output is contingent on the actual workforce’s
ability to manage the projected demands effectively. How-
ever, real-life scenarios deviate from this ideal situation.
Practical cases entail various additional factors that must be
taken into account, including the segregation of economy,
priority, and business class baggage, the handling of odd-
sized baggage items, the occurrence of last-minute baggage
arrivals, the variability in employee productivity, potential
system malfunctions, and other related considerations. To
implement a model like this successfully, it is essential
to address these real-life complexities and integrate the
assumptions made in this study into the model. Moreover,
the current model is computationally demanding due to
its NP-hard nature. To make the model applicable for
real-world operations, it becomes imperative to incorporate
either a heuristic-based approach for assignment selection
or utilise an alternative solver.

In future work, there are a number of things that can be
looked at and improved. First of all, as is often the case
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with forecasting models, it is crucial to emphasise that
utilising a dataset of superior quality would yield more
precise predictions. Additionally, employing such a dataset
has the potential to enable separate prediction of the BF
for transfer and O&D flights. This segregation of predic-
tions could enhance the final forecast further, presenting
an intriguing prospect for integration into the resource allo-
cation model. Notably, this implementation facilitates the
feasibility of subsorting, a valuable feature in optimising
baggage handling operations. Secondly, it is interesting to
consider more subjective features from passenger factors
like purpose of the trip, general income level of passengers
that fly with certain airlines, character traits, and average
trip duration. These features are harder to interpret, but
might make a positive impact on the forecast model. More-
over, incorporating data regarding the checked baggage
fees specific to each airline and flight can provide valuable
insights for predicting passengers’ likelihood of availing
checked baggage services.

When it comes to the additional feature models, there is
potential room for improvement for the hierarchical model
and the time series model. The current hierarchical model
is constructed to generate predictions by considering the
average BF of all comparable flights, which encompasses
flights from previous time periods, including flights that
departed longer ago. To enhance the accuracy of BF
forecasts, implementing an exponential moving average
technique that assigns greater weightage to more recent
data would likely be beneficial. Regarding the time series
model, a potential enhancement could involve developing a
methodology to address missing data gaps by either imput-
ing the missing values or exploring techniques to mitigate
the impact of these gaps, subsequently evaluating if such
measures improve the model’s performance. Lastly, for the
forecast model, which is primarily driven by managerial
and operational considerations, it is imperative to recog-
nise that the forecast itself should not be perceived as an
infallible source of information. As previously indicated,
forecasts are inherently subject to a degree of uncertainty
and are not entirely precise. Therefore, it is crucial to
incorporate a secondary verification step, such as involving
a market analyst, to provide an additional review and ensure
the accuracy and reliability of the forecasted information.

Finally, in addition to the current method employed for

leveraging BF predictions, there exist alternative avenues
for exploration. For instance, initiating the utilisation of
BF at the initial stage of baggage handling, namely at the
check-in phase, allows for more precise forecasting of pas-
senger show-up profiles, thereby enhancing the accuracy
of predicting baggage item arrival times within the BHS.
Furthermore, optimising resource allocation and personnel
scheduling within various airport operations involved in
baggage handling, such as check-in, security, and other
relevant areas, can be achieved by leveraging the insights
derived from BF predictions. This optimisation potential
encompasses streamlining operations, improving efficiency,
and enhancing overall operational performance.

References
Royal Schiphol Group, “Schiphol | Traffic and transport figures

per month,” https://www.schiphol.nl/en/schiphol-
group/page/transport-and-traffic-statistics/,
2019. (Accessed on 25/10/2022).

le Clerq, P., “Jacht op nieuw personeel voor Schiphol verloopt nog
moeizaam | RTL Nieuws,” https://www.rtlnieuws.nl/
economie/bedrijven/artikel/5319477/schiphol-

banenmarkt-personeelstekort-beveiligers-

bagage, 7 2022. (Accessed on 01/20/2023).

NOS, “Chaos op Schiphol door KLM-staking: reizigers
opgeroepen niet meer te komen,” https://nos.nl/

artikel/2426169-chaos-op-schiphol-door-klm-

staking-reizigers-opgeroepen-niet-meer-te-

komen, 4 2022. (Accessed on 01/27/2023).

Xu, S., Chan, H. K., and Zhang, T., “Forecasting the demand
of the aviation industry using hybrid time series SARIMA-
SVR approach,” Transportation Research Part E: Logistics
and Transportation Review, Vol. 122, 2019, pp. 169–180.
https://doi.org/10.1016/j.tre.2018.12.005.

Johnston, K., “Hate airline baggage fees? Needham
man is to blame - The Boston Globe,” https://www.
bostonglobe.com/business/2013/04/27/the-man-behind-
bag-fees/JHLvuMZhXLOgBZgGzWKCbJ/story.html, 2013.
(Accessed on 01/25/2023).

Seaney, R., “History of Airline Fees: Bags, Food & More |
FareCompare,” https://www.farecompare.com/travel-advice/
airline-fees-bags-history/, 2017. (Accessed on 01/25/2023).

Baldanza, B., “Once Derided, Airline Fees For
Large Carry-On Bags Now Becoming Mainstream,”

26



https://www.forbes.com/sites/benbaldanza/2020/12/07/once-
derided-airline-fees-for-large-carry-on-bags-now-
mainstream/?sh=343d400476a6, 2020. (Accessed on
01/25/2023).

BBT, “Air France-KLM baggage fee rises on Eu-
ropean flights | Business Travel News Europe,”
https://www.businesstravelnewseurope.com/Air-Travel/Air-
France-KLM-baggage-fee-rises-on-European-flights, 2016.
(Accessed on 01/25/2023).

Ma, Q., Bi, J., Sai, Q., and Li, Z., “Research on Predic-
tion of Checked-baggage Departed from Airport Termi-
nal Based on Time Series Analysis,” Institute of Electri-
cal and Electronics Engineers Inc., 2021, pp. 264–269.
https://doi.org/10.1109/ICNISC54316.2021.00055.

Royal Schiphol Group, “Baggage at Schiphol,” https://assets.
ctfassets.net/biom0eqyyi6b/1LFrmaEaaI2Kgsw0G8IYgC/
48c4c91d2b45712d1bb32b4501ad34a8/Baggage_at_
Schiphol.pdf, 2018. (Accessed on 28/10/2022).

Chambers, J. C., Mullick, S. K., and Smith, D. D., “How to
Choose the Right Forecasting Technique,” Harvard Business
Review, 1971. URL https://hbr.org/1971/07/how-to-choose-
the-right-forecasting-technique.

Cheng, S., Gao, Q., and Zhang, Y., “Comparative Study on
Forecasting Method of Departure Flight Baggage Demand,”
2014.

Chen, C.-J., Yang, S.-M., and Wang, Z.-C., “Development of a
Neuro-Fuzzy Model for Airline Passenger Forecasting *,” As-
tronautics and Aviation. Series A, Vol. 44, 2012, pp. 169–176.
https://doi.org/10.6125/JoAAA.201209_44(3).04.

Rusyana, A., Hasan, A., Oktaviana, M., Statistika, P. S., and
Matematika, J., Forecasting Passenger by Using Holt’s Expo-
nential Smoothing and Winter’s Exponential Smoothing, 2016.
URL https://www.researchgate.net/publication/316349640.

Box, G., and Jenkins, G., Time series analysis, forecasting and
control, San Francisco, Holden Day, 1976.

Tsui, W. H. K., Balli, H. O., Gilbey, A., and Gow, H., “Forecast-
ing of Hong kong airport’s passenger throughput,” Tourism
Management, 2014. https://doi.org/10.1016/j.tourman.2013.
10.008.

Tsui, W. H. K., and Balli, F., “International arrivals forecasting
for Australian airports and the impact of tourism marketing
expenditure,” Tourism Economics, Vol. 23, 2017, pp. 403–428.
https://doi.org/10.5367/te.2015.0507.

Srisaeng, P., Baxter, G. S., and Wild, G., “Forecasting demand
for low cost carriers in Australia using an artificial neural
network approach,” Aviation, Vol. 19, 2015, pp. 90–103.
https://doi.org/10.3846/16487788.2015.1054157.

Yang, H. T., and Liu, X., “Predictive simulation of airline passen-
ger volume based on three models,” Springer Verlag, 2018, pp.
350–358. https://doi.org/10.1007/978-981-13-2206-8_29.

Manna, S., Biswas, S., Kundu, R., Rakshit, S., Gupta, P., and
Barman, S., “A Statistical Approach to Predict Flight Delay
Using Gradient Boosted Decision Tree,” IEEE, 2017.

Choi, S., and Kim, Y. J., “Artificial neural network models for
airport capacity prediction,” Journal of Air Transport Manage-
ment, Vol. 97, 2021. https://doi.org/10.1016/j.jairtraman.2021.
102146.

Tu, J. V., “Advantages and Disadvantages of Using Artificial
Neural Networks versus Logistic Regression for Predicting
Medical Outcomes,” 1996, pp. 1225–1231.

Emde, S., Abedinnia, H., Lange, A., and Glock, C. H., “Schedul-
ing personnel for the build-up of unit load devices at an air cargo
terminal with limited space,” OR Spectrum, Vol. 42, 2020, pp.
397–426. https://doi.org/10.1007/s00291-020-00580-2.

Kiermaier, F., “Models and Methods for Optimizing Baggage
and Ground Handling at Airports,” Tech. rep., Technische
Universität München, 2015.

Bentéjac, C., Csörgö, A., and noz, G. M.-M., “A compara-
tive analysis of gradient boosting algorithms,” Artificial In-
telligence Review, Vol. 54, 2021, pp. 1937–1967. https:
//doi.org/10.1007/s10462-020-09896-5.

Hastie, T., Friedman, J., and Tibshirani, R., “The Elements of
Statistical Learning,” Springer, 2001, pp. 299–345.

Korstanje, J., Advanced Forecasting with Python, Apress, 2021.
https://doi.org/10.1007/978-1-4842-7150-6.

Chen, T., and Guestrin, C., “XGBoost: A Scalable Tree Boosting
System,” 2016. https://doi.org/10.1145/2939672.2939785.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye,
Q., and Liu, T.-Y., “LightGBM: A Highly Efficient Gradient
Boosting Decision Tree,” 2017.

Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V.,
and Gulin, A., “CatBoost: unbiased boosting with categorical
features,” 2017. URL http://arxiv.org/abs/1706.09516.

27



Pelikan, M., Goldberg, D. E., and Cantú-Paz, E., “BOA: The
Bayesian Optimization Algorithm,” Tech. rep., University of
Illinois at Urbana-Champaign, 1999.

Dewancker, I., McCourt, M., and Clark, S., “Bayesian Optimiza-
tion Primer,” , 2017.

28



VII. Appendix
Table 11 Correlation matrix of all features.

Flight

number
Airline

Scheduled

date

Scheduled

time

Holiday

type

Holiday

region
Year Month Week Weekday Airport

Outbound

range
Country Aircraft Seats

TRF

pax

O&D

pax
BF

Flight number 1.00 0.77 0.05 0.43 0.01 0.00 -0.02 0.03 0.03 0.04 0.85 0.63 0.75 0.75 0.43 0.64 -0.16 0.84

Airline 0.77 1.00 0.05 0.33 0.00 0.00 -0.01 0.03 0.03 0.03 0.57 0.40 0.45 0.65 0.17 0.47 -0.28 0.65

Scheduled date 0.05 0.05 1.00 0.06 0.37 0.14 0.08 0.59 0.66 0.48 0.03 0.01 0.02 0.03 0.01 0.02 -0.12 0.22

Scheduled time 0.43 0.33 0.06 1.00 0.03 -0.01 -0.04 0.05 0.05 0.03 0.34 0.29 0.31 0.33 0.22 0.33 -0.07 0.38

Holiday type 0.01 0.00 0.37 0.03 1.00 0.31 -0.20 0.48 0.54 0.04 0.01 0.00 0.00 0.00 0.00 0.00 -0.05 0.08

Holiday region 0.00 0.00 0.14 -0.01 0.31 1.00 0.08 0.15 0.19 0.04 0.00 0.00 0.00 0.00 0.00 -0.01 0.01 0.03

Year -0.02 -0.01 0.08 -0.04 -0.20 0.08 1.00 -0.45 -0.39 0.01 -0.02 -0.01 -0.02 -0.01 -0.01 -0.02 0.02 0.02

Month 0.03 0.03 0.59 0.05 0.48 0.15 -0.45 1.00 0.90 0.00 0.02 0.00 0.01 0.02 0.00 0.00 -0.11 0.13

Week 0.03 0.03 0.66 0.05 0.54 0.19 -0.39 0.90 1.00 0.00 0.02 0.00 0.01 0.02 0.00 0.01 -0.10 0.14

Weekday 0.04 0.03 0.48 0.03 0.04 0.04 0.01 0.00 0.00 1.00 0.02 0.02 0.02 0.03 0.02 0.04 -0.01 0.11

Airport 0.85 0.57 0.03 0.34 0.01 0.00 -0.02 0.02 0.02 0.02 1.00 0.74 0.88 0.71 0.53 0.56 0.00 0.72

Outbound range 0.63 0.40 0.01 0.29 0.00 0.00 -0.01 0.00 0.00 0.02 0.74 1.00 0.84 0.67 0.74 0.45 0.33 0.53

Country 0.75 0.45 0.02 0.31 0.00 0.00 -0.02 0.01 0.01 0.02 0.88 0.84 1.00 0.70 0.64 0.55 0.13 0.63

Aircraft 0.75 0.65 0.03 0.33 0.00 0.00 -0.01 0.02 0.02 0.03 0.71 0.67 0.70 1.00 0.57 0.64 -0.01 0.63

Seats 0.43 0.17 0.01 0.22 0.00 0.00 -0.01 0.00 0.00 0.02 0.53 0.74 0.64 0.57 1.00 0.48 0.54 0.35

TRF pax 0.64 0.47 0.02 0.33 0.00 -0.01 -0.02 0.00 0.01 0.04 0.56 0.45 0.55 0.64 0.48 1.00 -0.33 0.56

O&D pax -0.16 -0.28 -0.12 -0.07 -0.05 0.01 0.02 -0.11 -0.10 -0.01 0.00 0.33 0.13 -0.01 0.54 -0.33 1.00 -0.19

BF 0.84 0.65 0.22 0.38 0.08 0.03 0.02 0.13 0.14 0.11 0.72 0.53 0.63 0.63 0.35 0.56 -0.19 1.00

Hyperparameters XGBoost
The hyperparameters that enter the search space for XGBoost are:

• max_depth: The maximum depth of a tree, increasing this value will make the model more complex and prone to
overfitting.

• learning_rate: Determines the step size at each boosting iteration.
• subsample: The subsample ratio of the training instances, which randomly samples the training data prior to growing

trees. It is used to minimise overfitting.
• colsample_bytree: Determines the fraction of columns (features) to be randomly sampled or subsampled when

constructing each individual tree. It ranges between 0 and 1, where 1 represents the use of all features and 0 represents
none. A value less than 1 enables random column subsampling, introducing additional randomness to prevent
overfitting and improve generalisation.

• colsample_bylevel: Specifies the fraction of columns to be subsampled at each level of a tree. It controls the
feature subsampling within a level (depth) of the tree, which can provide regularisation by reducing the correlation
between trees. This parameter also ranges between 0 and 1.

• colsample_bynode: determines the fraction of columns to be randomly sampled when splitting each node of a tree.
It applies only to the current node being split and not to the entire level or tree. Similar to the previous two parameters,
it ranges between 0 and 1.

• reg_alpha: This parameter controls L1 regularisation, also known as Lasso regularisation. L1 regularisation adds a
penalty term to the loss function that encourages the model to reduce the absolute magnitude of the weights. It helps
to drive less important features’ weights towards zero, effectively performing feature selection by shrinking the less
informative features. A higher value increases the strength of L1 regularisation, resulting in more aggressive feature
selection. This parameter helps preventing overfitting, improve the model’s generalisation performance, and enhance
its ability to handle noisy or correlated features.

• reg_lambda: Similar to the previous parameter, this parameter controls L2 regularisation, also referred to as Ridge
regularisation. The difference is that the penalty given to the loss function reduces the squared magnitude of the
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weights. Also this parameter helps control the overall complexity of the model and thus prevention of overfitting.
• gamma: Minimum loss reduction required to make a further partition on a leaf node of the tree. The larger the value,

the more conservative the algorithm will be.

Hyperparameters LightGBM
The hyperparameters that enter the search space of the LightGBM model are similar to the ones in XGBoost, only
colsample_bylevel is not part of the LightGBM parameters. New parameters are num_leaves and max_bin.

• max_depth
• learning_rate
• subsample
• colsample_bytree
• reg_alpha
• reg_lambda
• num_leaves: Specifies the maximum number of leaves (terminal nodes) that can be present in a tree. It controls

the complexity and depth of each tree in the ensemble. A higher value allows the tree to capture more fine-grained
patterns but may also lead to overfitting. Conversely, a lower value constrains the tree to have fewer leaves, which can
help prevent overfitting but may result in underfitting or insufficient model capacity to capture complex relationships
in the data.

• max_bin: Determines the maximum number of bins used for discretizing continuous features in the data. Binning is
a process of dividing continuous values into discrete intervals or bins, which helps in handling numerical data and
reducing the memory footprint.

Hyperparameters CatBoost
In CatBoost, regularisation is primarily achieved through L2 and does not have a dedicated L1 regularisation parameter.
Also max_depth is different from the other two techniques. Furthermore, the parameters colsample_bytree,
colsample_bynode, and gamma are not present in the search space of CatBoost. An addition to the search space are
iterations and bagging_temperature.

• max_depth: the same definition as XGBoost and LightGBM, however, instead of an infinite maximum the maximum
depth is only 10.

• learning_rate
• subsample
• colsample_bytree
• iterations: each boosting iteration adds a new decision tree to the ensemble, whereas in other gradient boosting

algorithms, these decision trees are often referred to as "trees" or "estimators". Therefore, the iterations hyperparameter
determines the number of decision trees to be trained in the CatBoostRegressor model.

• bagging_temperature: Determines the temperature value used in the Softmax function applied during the bagging
process. It ranges from 0 to positive infinity. A higher value increases the probability of selecting the most confident
predictions during bagging, effectively reducing the randomness and making the algorithm more deterministic.
Conversely, a lower value introduces more randomness, leading to a broader range of predictions being selected
during bagging.
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Table 12 Feature subset results for all three algorithms and forecast time windows.

XGBoost LightGBM CatBoost

Train

score

Test

score
MAE MAPE MdAE RMSE

Train

score

Test

score
MAE MAPE MdAE RMSE

Train

score

Test

score
MAE MAPE MdAE RMSE

7 days

S1 0.776 0.770 0.110 0.256 0.091 0.141 0.814 0.794 0.104 0.233 0.084 0.134 0.795 0.788 0.106 0.241 0.087 0.136

S2 0.751 0.754 0.115 0.270 0.095 0.146 0.778 0.773 0.109 0.256 0.090 0.140 0.782 0.774 0.109 0.254 0.089 0.140

S3 0.758 0.744 0.116 0.276 0.097 0.149 0.806 0.791 0.105 0.239 0.086 0.135 0.780 0.781 0.107 0.248 0.087 0.138

S4 0.747 0.772 0.109 0.252 0.090 0.140 0.793 0.814 0.097 0.213 0.076 0.127 0.768 0.797 0.102 0.230 0.083 0.133

S5 0.786 0.811 0.097 0.209 0.077 0.128 0.820 0.823 0.091 0.189 0.071 0.122 0.803 0.817 0.094 0.196 0.073 0.126

30 days

S1 0.774 0.750 0.113 0.260 0.093 0.145 0.793 0.766 0.109 0.249 0.089 0.140 0.789 0.763 0.110 0.249 0.091 0.141

S2 0.749 0.728 0.118 0.275 0.097 0.151 0.777 0.749 0.113 0.263 0.093 0.145 0.764 0.736 0.115 0.268 0.094 0.149

S3 0.759 0.729 0.118 0.274 0.097 0.151 0.776 0.751 0.113 0.262 0.093 0.144 0.780 0.765 0.109 0.248 0.089 0.140

S4 0.745 0.754 0.111 0.257 0.090 0.144 0.765 0.778 0.105 0.241 0.086 0.136 0.766 0.780 0.105 0.236 0.084 0.136

S5 0.785 0.795 0.100 0.215 0.079 0.131 0.820 0.807 0.095 0.200 0.074 0.127 0.803 0.804 0.097 0.205 0.076 0.128

60 days

S1 0.779 0.743 0.116 0.268 0.094 0.149 0.792 0.757 0.112 0.258 0.093 0.145 0.792 0.754 0.113 0.258 0.094 0.146

S2 0.769 0.731 0.118 0.276 0.097 0.152 0.776 0.740 0.116 0.272 0.095 0.150 0.780 0.737 0.117 0.273 0.096 0.151

S3 0.759 0.720 0.121 0.285 0.100 0.155 0.772 0.743 0.116 0.271 0.095 0.149 0.778 0.748 0.114 0.265 0.094 0.147

S4 0.744 0.746 0.114 0.266 0.093 0.148 0.792 0.786 0.104 0.234 0.084 0.136 0.764 0.768 0.109 0.248 0.088 0.142

S5 0.779 0.771 0.107 0.234 0.085 0.140 0.789 0.776 0.106 0.237 0.085 0.139 0.784 0.776 0.106 0.234 0.085 0.139
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Fig. 10 Average bax error relative to the actual bax
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1
Introduction

Over the last three decades, the demand at Schiphol increased significantly. From a total demand of
19 million passengers in 1992 to a total of over 40 million passengers in 2002 to a record number of
passengers in 2019 of over 70 million [95]. However, in the years from 2019 onward this changed dras-
tically due to the COVID-19 pandemic that hit the world. In the years 2020 and 2021 the total number
of passengers decreased to 20 million and 25 million, respectively. After these two years, in 2022 the
demand for flights is increasing rapidly again towards the old capacity.

The general increase of passengers results in a challenge for Schiphol Airport in terms of capacity.
The higher the amount of passengers present at the airport at the same moment, the higher the pres-
sure on the logistics and operations. The capacity in the departure halls causes longer queues at the
check-in desks and at the customs checkpoint. Especially in the period between March and Septem-
ber. Schiphol had issues with staff shortage [23]. Moreover, in April 2022 baggage handlers of KLM
were on a strike [81]. The high workload and staff shortage causes dissatisfaction for these employees.
Next to the fact that solving the staff shortage problem would make things a lot better, the Forecasting,
Analysis and Capacity managemenT (FACT) department at Schiphol believes that more optimised ser-
vices, operations, and logistics could also prevent these kind of situations in some way.

In order to solve these problems and make operations more efficient, knowing the demand is of utmost
importance. Many studies have been conducted over the years for demand forecasting in many areas
[111], including air traffic passenger demand. Schiphol Airport has also been forecasting passenger
demand for years and with great success, for the models are working well and are improved over the
years. However, the FACT department is noticing a change in human behaviour when it comes to
the amount of checked baggage passengers take with them. Therefore, a novel forecasting model is
needed to be able to forecast this. At present, the majority of research on airport operations primarily
focuses on passengers, facilities, or aircraft. However, relatively few studies have been conducted
specifically on baggage [65]. Thus a research project on this topic came to light.

There are three types of baggage: checked baggage, hand luggage, and a personal item. All of these
baggage items need to be checked for everyone’s safety. The hand luggage and personal item will
be taken with the passenger into the aircraft, are checked by security when entering the airside, and
does not require any further operations from Schiphol. However, the checked baggage is not taken by
the passenger, but goes through a whole operation behind the scenes. One can imagine that with 53
million baggage items in the year 2019 - varying between 120.000 and 180.000 pieces per day - this
is can become quite a complex operation [39].

Moreover, next to the checked baggage coming in via the departure halls, the checked baggage items
from transfer passengers is also coming in. Almost 40% of all checked baggage is transfer baggage.
This is mainly due to the fact that Schiphol functions as a hub in the network of the home carrier KLM
and the SkyTeam partners [39]. Being able to forecast the amount of checked baggage items can
pave new studies for optimising the entire baggage (handling) process. In this study methods are in-
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vestigated for forecasting the amount of checked baggage items that can be scientifically supported.
Additionally, research will be conducted for an optimisation model that uses the output of the forecast-
ing model as its own input and makes decisions based on optimising baggage (handling) processes
and the associated resource allocation. Therefore the objective of this research is:

Find a scientifically supported means of determining 'Baggage Factors' in civil aviation,
and advise on the practical implementation of a method for periodic forecasting of

baggage items.

The goal of this literature study is to give an overview of the currently available literature on existing
forecasting methods and resource allocation optimisation methods. This is done in order to provide
more in-depth analysis on the research topic before answering the final research question. The outline
of the report is as follows. First, the research outline is stated in chapter 2, where the research problem,
objective, questions, and planning is described. Next, a general overview of the baggage handling
process is given in chapter 3. Then the currently available literature on forecasting methods is studied
in chapter 4. Also a general definition of baggage load factors is described and forecasting approached
and variables are argued. Lastly, chapter 5 provides an overview of the literature on exact solution
methods and meta-heuristic methods for resource allocation scheduling optimisation.



2
Research Outline

This chapter describes the outline of the research on the determination and practical use of civil aviation
baggage-factors for passenger flight. In section 2.1 the research problem is first defined. The objective
that arises from the problem statement is then described in section 2.2. Following from these first two
sections, in section 2.3 the research question and sub-questions are formulated. Finally, section 2.4
gives a general planning of the thesis project.

2.1. Research Problem
The Forecasting, Analysis andCapacityManagement department of AmsterdamAirport Schiphol (FACT
in short) is responsible for creating a forecast of Aircraft movements and Passenger and Baggage
counts per movement, which is used in the planning of operational processes for amongst others bag-
gage handling.

Schiphol collects huge amounts of data from sensors, air movements, camera footage, and informa-
tion systems. All this data is being processed by data analysts. One of the purposes of collecting
and analysing this data is to make forecasts. Having good working forecasting models is essential to
optimise the logistics and operations at Schiphol. For example, being able to forecast the amount of
passengers at a certain date within a certain time frame, enables the possibility to prepare all logistical
and operational systems at Schiphol.

Central to the forecasts is the concept of the ”load factor”: the relative amount of passengers or bag-
gage items given the potential maximum. Being able to predict how many passengers will be on board
of an aircraft gives many advantages as explained before. As of this moment, a forecasting model
is already present for the passenger load factor at Schiphol and is proven to work well. An impor-
tant item in forecasting Baggage items per flight is the ”Baggage load factor” (of ”Baggage factor” in
short): the relative amount of baggage items given the number of passengers on board of an aircraft.
However, predicting how many baggage items these passengers take with them, focused on checked
baggage, is still a challenge. Currently, the best way of predicting this amount of baggage items, is by
analysing available historical data and based on that make an expert guess. This method was effec-
tive due to relatively stable numerical factors and minimal time investment. However, the introduction
of baggage fees by airlines in 2008 led to changes in consumer behaviour [56, 96]. A subsequent
increase in baggage fees by major European airlines in 2017 further altered behaviour [6, 8]. These
variations were apparent within the operations of the organisation, yet still manageable. The emer-
gence of the COVID-19 pandemic resulted in a substantial decline in commercial air travel, leading to
a cessation of individual flights. Despite the apparent control of the virus in 2022, forecasting baggage
load factors based on historical data has become more challenging and uncertain. This is due to the
non-representative nature of data from the years 2020 and 2021, as well as the unknown changes in
consumer behaviour following a two-year hiatus in air travel. Moreover, employees of FACT argue that
it is important to provide a scientific basis for the determination of baggage load factors for resource
allocation.

3
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The baggage factor is thought to be influenced by factors as flight destination type (vacation of busi-
ness), season, operating airline, passenger demographic, and more. An opportunity with this baggage
factor is to look at possible decision-making tools to tackle the problems and opportunities that were
stated above. Not being able to predict the amount of baggage items sufficient enough can lead to
some problems, or otherwise stated: being able to predict these amounts of baggage items can lead to
interesting opportunities. Many studies have been performed to optimise baggage handling. It would
be very interesting to see what the impact of knowing the amount of baggage items coming in will have
on the logistics, systems, and operations of baggage handling.

2.2. Research Objective
In section 2.1 the problem of the research was stated and why this is a problem and arises opportu-
nities. Having this in mind, the objective of the research is to find a scientifically supported means of
determining ’Baggage Factors’ in civil aviation and advise on the practical implementation of a method
for periodic forecasting of baggage items. Moreover, to use this forecasting of baggage items for a
decision-making tool to optimise the logistics within Schiphol by looking at the planning for the resource
allocation for Baggage Handling Systems (BHS).

To reach this objective, first all variables that are affecting the amount of baggage items need to be iden-
tified in order to find the inputs for a forecast model. Secondly, a forecasting method will be used which
formulates the baggage factor as output. This baggage factor will benchmark for a decision-making
optimisation tool for the resource allocation within Schiphol.

The contribution of this research to Schiphol is a scientifically supported means to predict the amount of
baggage items given the number of passengers on board of an aircraft which can be used to optimise
the BHS planning. With this baggage factor, Schiphol will be able to further optimise its planning and
certain operations coming with those logistics.

2.3. Research Question
The main research question has been defined as follows:

How can a decision-making tool that sequentially forecasts baggage load factors and
utilises the prediction to allocate resources accordingly improve the baggage handling

operations at a hub airport?

The main focus thus lies on the determination of baggage factors by the means of a forecasting model
for the reason that this is currently not present at Schiphol. The second focus point is to discover ways
to implement these baggage factors by developing a decision-making tool to optimise certain logistics
or operations within Schiphol, mainly focused on resource allocation for the BHS. In order to answer
this, the main research question is divided into and supported by several sub-questions. By answering
these sub-questions, the answer to the main research question will be provided. The sub-questions
are:

1. What variables, constraints, and assumptions need to be taken into account when deter-
mining baggage factors?
The baggage factor is influenced by different factors. The corresponding variables and constraints
must be identified and for some of these assumptions need to be made. If possible, the assump-
tions must be aligned with policy requirements such that the output of the model is based on valid
and pragmatic choices to ensure customer satisfaction.

2. What type of forecasting method is needed to determine baggage factors and what are the
bias factors?
There are numerous methods for making forecasts, each with its distinctive approach. The task
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can be accomplished either by conducting a basic data analysis or by constructing a neural net-
work, depending on the approach preferred and complexity of the forecasting problem.

3. Is it necessary to look at the number of passengers or is it possible to predict the amount
of baggage items on itself considering other features and what would the effect be?
The prediction of the amount of passengers is prone to errors and bias and therefore not always
100% correct. Using this prediction to predict the baggage factors, is a prediction on a prediction
to find the number of baggage items.

4. What are the risks of using a forecasting model for predicting baggage factors?
A forecasting model is almost never 100% right. There is always some bias and a certain error
in the output. It is therefore important to look at the risks that come with making decisions based
on the outcome of a forecasting model.

5. How can forecasting Baggage Factors improve customer satisfaction?
In the core, Schiphol is a service provider for both airlines and passengers. Customer satisfaction
is a very important part of the service criteria. Therefore, examining in what ways the forecast of
baggage factors can improve this is an interesting study.

6. What are the opportunities when it comes to optimising the BHS knowing the amount of
baggage items beforehand?
The operation of baggage handling is quite complex. Many optimisation studies have been per-
formed on this topic. It is therefore interesting how knowing the baggage factors might influence
this system and what optimisation opportunities this presents.

7. What is the impact of incorporating periodic forecasting and baggage factor analysis on
the logistical and operational implementation of BHS
Assuming the availability of an efficient forecasting model that is user-friendly, what are the po-
tential impacts on the department of FACT, as well as on the micro and macro operational and
logistical levels of Schiphol Airport, for Schiphol employees from different other departments, ex-
ternal handlers, and airlines?

8. What other operational and/or logistics business at Schiphol can be positively influenced
by knowing the baggage factors?
Other logistical and operational business might also be influenced by forecasting the baggage
factors. Schiphol is a large organisation with many logistical challenges. Identifying which parts
can be influenced positively is therefore interesting.

2.4. Research Planning
The research project consists of four phases. Each phase represents a moment in time where a cer-
tain part of the project will be performed. In Figure 2.1, this planning can be seen. A more detailed
explanation of each phase is given below.

Phase 1: Literature Study Phase
In this phase, a literature study will be performed and a research plan will be created. The goal
of this phase is to come up with a research plan with supporting literature to tackle the research
question and afterwards being able to dive deeper into different methods. Deliverables that come
with this phase are a literature study report and a research plan report.

Phase 2: Initial Thesis Project Phase
Once phase one is finished, the second phase starts with a kick-off meeting. Here, the findings
of the literature study will be discussed and the project will officially start. This part will focus on
sub-questions 1, 2, 3, and 6. Additionally, data obtained from Schiphol Airport will be analysed,
forecasting models will be established, and initial evaluations will be conducted. The optimal
solution for a decision-making tool will be determined through this process. At the end of this
phase, the mid-term meeting will take place. This meeting is meant as a go / no go meeting
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where the progress will be reviewed. A no-go will require a revision of the work done up till then.
The performance will be evaluated and feedback will be given by experts.

Phase 3: Final Thesis Project Phase
In this phase, the thesis final parts of the thesis project will be performed. This part will focus
on sub-questions 4, 5, 7, and 8. At the beginning, a selection of the most promising forecasting
methods will be made, and the most suitable ones will be finalised. Concurrently, methods for
decision-making tools will be developed and thoroughly evaluated. The process will includemodel
verification, validation, examination of results, and drawing of conclusions to ultimately arrive
at a final product. This phase ends with the Green Light meeting, which is the final meeting
before the graduation phase. A draft of the final thesis report will be handed in beforehand and
a presentation will be given during the meeting. This will be evaluated and final feedback will be
given to incorporate in the final version.

Phase 4: Graduation Phase
The final phase is the graduation phase, where the last feedback will be processed and the last
required improvements will be made. No new developments of the model will be made during this
phase. This phase ends with handing in the final report and paper and the graduation presentation.
After which a defence will be hold which will give the final go or no go for graduating.

Figure 2.1: General thesis project planning



3
Baggage Handling Process at Schiphol

The handling of passengers’ baggage items is one of the major aspects of the operational business
of an airport. Throughout time, due to some (major) historical events, the security at an airport has
become more and more urgent. Therefore, airport and especially baggage security have become a
major part of this operational business. For these security reasons, all baggage at Schiphol that is
checked in, must undergo extensive security checks behind the scenes. Moreover, due to the growing
number of passengers and thus increase of baggage items, handling baggage is becoming a bigger
challenge than before logistical and operational. This chapter is divided into two sections, section 3.1
provides an overview of the step by step process of baggage handling in general and at Schiphol
and section 3.2 lays out some key performance indicators for forecasting checked baggage items and
optimising the BHS.

3.1. Step by Step Overview of Baggage Handling at Schiphol
There are three types of baggage: checked baggage, hand luggage, and a personal item. The latter
two are to be taken with the passenger into the aircraft. The first, checked baggage, is to be left behind
at one of the check-in desks and will eventually be loaded into the assigned aircraft. The passenger
has to collect this checked baggage at arrival at one of the baggage belts just before the arrival hall.
There are two ways for baggage to enter into the system: checked-in baggage and incoming transfer
baggage.

In Figure 3.1 an overview of the baggage handling process can be found. The baggage handling
process begins with the input of baggage items into the system, which can be done via checked-in
baggage or incoming transfer baggage. Checked-in baggage is brought to the airport by the passenger
and labelled at the check-in desk before being entered into the BHS, which can be done manually or
through automated check-in desks. Incoming transfer baggage is offloaded from an incoming flight by
another handling company and then entered into the BHS. The BHS scans the baggage label to read all
its information, including the flight number, screens the baggage for security purposes, and determines
to which terminal the baggage needs to be transported and whether the flight is to be loaded via robots
or manually. If the baggage is to be loaded via robots, it is transported to a buffer, where it is stored
and batched by an automated buffer robot until a batch is complete. The weight and volume of each
baggage item is measured and stored, and used by intelligent algorithms to calculate when a batch
is ready to be loaded. Once a batch is complete, the baggage is retrieved and delivered back to the
BHS, where it is loaded into a baggage cart via robots or manually by employees. The system also
checks whether the baggage is on-time or too late, and handles it accordingly. Late-arriving baggage
is dumped on a carousel and may be delivered to an airplane through a process called ”milkrun” if the
flight is still parked at the aircraft stand. If a baggage item is dumped at the carousel after the flight has
already departed, it is labelled as ”mishandled bag” and typically sent on the next flight with the same
destination.

7
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Figure 3.1: General baggage handling process

In the baggage handling process, there is potential for operational improvement. By accurately fore-
casting the number of baggage items, it is possible to identify which airlines and terminals have the
highest volume of checked baggage. This information can be used to optimise the utilisation of check-in
counters and reduce queues. Additionally, forecasts of transfer flight baggage can be used to optimise
the scheduling of handlers, which is both cost and operationally efficient. Once the baggage items
enter the BHS, the forecasted number can be taken into account to optimise the system’s performance.
Research has been conducted on optimising BHS, and further studies could examine the impact of
these optimisations on baggage volume. Additionally, by analysing the maximum capacity of buffers
and the overall layout of the airport, an interesting research is to improve the scheduling and layout of
the BHS. For robots used in baggage handling, knowing the volume of checked baggage can be used to
improve the time-efficiency of the process. Lastly, by optimising human resource allocation for the load-
ing of baggage onto airplanes, the overall efficiency of the baggage handling process can be improved.

In addition to the operational improvements described above, scheduling of service teams, such as
those provided by companies like Viggo or Vanderlande, can also be optimised. These service teams
are essential during peak periods when the BHS experiences malfunctions or failures. Identifying the
peak times when the BHS experiences high demand can aid in the scheduling of these teams. Fur-
thermore, maintenance can be more efficiently planned by identifying periods of low baggage demand,
during which certain parts of the system may not be needed.
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3.2. Key Performance Indicators
The previous section outlined the general baggage handling process at Schiphol airport. It is crucial to
ensure that the specific baggage handling process at the airport aligns with and optimises this general
process. In order to perform any optimisation, it is necessary to be able to evaluate the performance
of the baggage handling process. The performance of the process is assessed by evaluating key per-
formance indicators (KPIs). The KPIs are divided into two categories: one for the forecasting part and
one for the BHS optimisation.

KPI’s for forecasting the checked baggage items are:

1. Amount of passengers on board: this KPI gives an overview of the amount of passengers there
are on a flight, which is always connected to the number of checked baggage items there are in
total per day.

2. Passenger Factors: this KPI focuses on the behavioural patterns of passengers, i.e. what are
the trip purposes, character traits, etc.

3. Flight factors: this KPI focuses on the objective variables of a flight, i.e. when the flight depar-
tures, where the destination is, the duration of the flight, what type of airline and aircraft is being
flown.

KPI’s for BHS operations optimisation are:

1. Amount of Baggage Items: to optimise a part of the operations around the BHS, knowing the
forecasted amount of baggage items is an important KPI.

2. Airport On-Time Performance: this metric is a key indicator of the efficiency of the baggage
handling process. It is expressed as the percentage of flights that are handled within the specified
time frame. A high OTP is crucial to minimise the number of delayed flights. A target timestamp
is established, before which all baggage for a flight must be loaded and prepared for transport
to the aircraft. If all baggage is loaded prior to this timestamp, the flight is considered ”on-time”;
otherwise, it is considered ”too late.”

3. Employees: the number of employees required to execute the baggage handling process is a
crucial metric to consider. The cost of employees can have a significant impact on expenses,
and thus efforts should be made to minimise the number of employees required to perform the
process.

4. Employee Productivity: the productivity of employees can be measured by determining the per-
centage of time that they are engaged in productive work. This metric is calculated by recording
the amount of time that employees are occupied, and comparing it to the total time they are avail-
able. This will help to understand how much time they are spending on working and how much
is wasted on non-productive activities. With that knowledge, a more optimised schedule can be
made

5. Time on Lateral: a lateral is a transfer station for baggage handling where baggage is transferred
between different conveyor systems or areas of an airport. The dwell time of a piece of baggage
on the lateral or conveyor belt before it is loaded into a baggage cart is an important metric to
measure. This can be calculated by determining the difference between the timestamp when the
baggage is deposited on the lateral by the BHS and the timestamp when it is loaded into the
baggage cart. This metric will help to understand how much time is spent by the baggage on the
lateral and how efficient is the system in processing the baggage.

More on these KPIs will be described in the next chapters.



4
Baggage Forecasting and Load Factors

This chapter focuses on the literature on forecasting baggage load factors. section 4.1 describes the
baggage load factor definition and some forecasting approached. Problems within the literature on
baggage forecasting and some solutions are presented in section 4.2. Lastly, section 4.3 describes
different forecasting methods with examples of usage within different industries.

4.1. Baggage Load Factor in General
As described in section 2.1, the Baggage Load Factor is defined as the relative amount of baggage
items given the number of passengers on board of an aircraft. The ultimate purpose of the baggage
factors is to predict the number of baggage items per flight and thus per day or time period. However,
reaching this goal can be done in multiple ways. The first approach is to look at historical data of
passengers and the number of checked baggage items, basically the historical baggage factors. From
these two data streams, a pattern might be found and a prediction can be done for in the future. A
second approach is to look at the baggage items as a separate and independent items of passengers.
Here the prediction of number of baggage items might be predicted by looking at different variables
that determine the amount of baggage items. A third approach could be a combination of the first two
approaches. By looking at variables that determine both the behaviour of passengers and baggage
items. Using the current forecasting model of Schiphol to predict the number of passengers and using
that to predict the amount of baggage items. In the subsections below, each approach will be further
explained.

• Forecast based on historical data of baggage factors
This methodology represents a straightforward approach and is relatively uncomplicated. By
analysing historical data on a per-airline, per-time slot, and per-season basis, a forecast of bag-
gage load factors can be generated for future periods. This approach is similar to the current
methodology, but utilises a forecasting model instead of relying on expert estimates. If feasi-
ble for the chosen forecasting technique, incorporating external variables such as holidays and
conferences can potentially enhance the accuracy of the forecast.

• Forecast baggage items instead of baggage factors
The baggage load factor is a commonly used metric for estimating the number of baggage items.
This alternative approach bypasses the calculation of the baggage load factor and instead aims
to predict the number of baggage items directly through the forecasting model. This methodology
focuses on variables that influence the decision of passengers to travel with checked baggage
at specific times. As this approach incorporates a greater number of variables compared to the
other method, it may result in a more complex forecasting model. However, by considering a
larger number of variables, it is hypothesised that the forecasting model would exhibit improved
accuracy and performance.

• Combination of passenger forecast, baggage item forecast, and historical baggage load
factor data
This methodology builds upon the previous approaches by incorporating both the prediction of

10
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passenger load factor (which can be obtained from Schiphol Airport) and the forecast of the num-
ber of baggage items. The combination of both predictions result in a simple calculation to get
the baggage load factor. The predicted baggage load factor will then be compared to historical
data and adjusted as necessary. While this approach is the most complex among the proposed
methods, it is expected to yield the best performance.

For all three proposed approaches, it is important to consider that as the forecast date approaches,
more information becomes available regarding bookings that have been made, including the number
of tickets booked and the number of checked baggage items that passengers intend to travel with. In-
corporating this information into the forecasting model may aid in improving the accuracy of predictions
for shorter-term forecasts.

4.2. Baggage Forecasting Literature, Problems, and Variables
Asmentioned in chapter 2, at Schiphol there was no necessity in the last few decades to invest time and
energy in developing a model that can forecast the number of checked baggage items. A prediction of
air traffic passenger demand and the passenger load factor was sufficient. At present, the majority of re-
search on airport operations primarily focuses on passengers, facilities, or aircraft. However, relatively
few studies have been conducted specifically on baggage [65]. Cheng et al. [21] conducted a compar-
ative study on forecasting methods for departure flight baggage demand. Similarly to the current report,
Cheng et al. argue that it is crucial to establish a scientific foundation for the allocation of resources
in the checked baggage stage, which enhances the efficiency of service provided at airport passenger
terminals. The results of the study based on a multiple linear regression model and a back propagation
(BP) neural network show that the multiple linear regression method has a lower average relative error
compared to the BP neural network. Moreover, the average relative error decreased when changing
the data for all flights to single flight data to the same destination flight data. In another paper, Ma
et al. [71] conducted research investigating the prediction of checked baggage demand for departure
flights with the aim of optimising efficiency in airport operations during the check-in process. A SARIMA
model was proposed for predicting the baggage volume. The study found that the SARIMA model was
capable of accurately forecasting the checked baggage demand on a long-term basis, which can aid in
the proactive allocation of airport resources. The methods mentioned in both studies will be described
in further detail in section 4.3.

When considering the variables that could be taken into account for forecasting the baggage load
factor of number of checked baggage items as in one of the three approaches that were mentioned
in section 4.1, they can be divided into two categories as can be seen in Figure 4.1: the number of
passengers on board and the number of checked baggage items. For the first category, it can be
assumed that the number of passengers on board is known via the forecast of FACT. However, it is still
interesting to see the difference in the type of passengers. How many origin & destination passengers
and how many transfer passengers are forecasted to be on board of the plane? And does the type
of passengers impact the baggage load factor? These questions are interesting to combine with the
second category, which one layer deeper focuses on passenger variables and flight variables. Most
of the passengers variables are believed to be subjective and it is assumed that data is either not
available or less reliable. Still it is interesting to analyse whether there are certain trends that can be
taken into account. The flight variables on the other hand are all objective and data should be available
for these variables. Important to note is that these variables have not been structured on their impact
on the baggage factor yet. Defining the weights of these variables, is to be done after an extensive
data analysis.
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Figure 4.1: Baggage Factor variables feature tree (not weighted and structured on impact on baggage factor)

4.3. Forecasting Methods
There are multiple different forecasting techniques currently in existence. This section will focus on
some of the existing forecasting techniques and explain whether they are usable for the research that
has to be conducted. There are three different basic forecasting types: qualitative techniques, time-
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series analysis & projection, and causal models. Qualitative forecasting techniques are methods of
predicting future trends and outcomes based on qualitative data. They involve the subjective assess-
ment of a situation and the application of expert judgement to arrive at a forecast. Qualitative forecasting
techniques are typically used in situations where more traditional quantitative methods are not appro-
priate or feasible, such as when forecasting customer demand, new product acceptance, or industry
trends. Examples of qualitative forecasting techniques include scenario analysis, surveys, Delphi tech-
nique, and cause and effect diagrams [19]. time-series forecasting is a method of predicting future
values of a variable based on the past values of the same variable. It is a form of regression analysis
and is typically used to make short-term predictions. The most commonly used time-series models are
moving average, exponential smoothing, Box-Jenkins, and neural networks. Projection is a process
of predicting future outcomes based on the current trends. It is a form of extrapolation, which uses
existing data to estimate future values. It is particularly useful for analysing trends in long-term data or
for predicting future values of a variable. time-series models do not focus on why certain relationships
between variables exist due to for example trends or seasonality. These models use a mathematical
formula on the past and utilise it to make a forecast of the future. Causal models on the other hand are a
type of forecasting that use statistical methods to identify the relationships between variables and how
they impact the future. These models can be used to predict the outcome of a given event based on
past data and variables. Just as for time-series analysis and projection techniques, the past is impor-
tant for these kind of models. Commonly used causal models are regression models and econometric
models. [19]

Zooming in on time-series models, two categories can be defined: uni-variate and multivariate. Uni-
variate time-series models use one variable of which the past data is used, the target variable, to make
a prediction. Multivariate time-series models have the ability to predict multiple related variables at the
same time. These models utilise the correlation between target variables to improve the performance
of the model, given that there is a strong correlation [59]. However, as described above, time-series
models do not look at the causal relationship between the variables. Some forecast problems require
the model to take other independent information into account to find possible relationships. This inde-
pendent information can be called explanatory variables. In these cases, supervised and unsupervised
machine learning can be applied to the model to find the relationships between the target variable(s)
and explanatory variable(s). The main difference between supervised and unsupervised learning is
whether the data has already been classified or labelled, meaning that the model either does have
information about what the correct output should be or not [52]. Thus, unsupervised learning must find
patterns and relationships in the data on its own. Whereas supervised learning can visually detect cor-
relations between the variables. Finally, with considering supervised machine learning, classification
and regression are two types of problems. The main difference is that classification has a categorical
target variable and regression is numerical. Since this research focuses on the prediction of baggage
factors, numerical supervised machine learning should be applied. [52, 59]

This research will primarily focus on the the time-series and causal forecasting types, since qualitative
forecasting techniques are mainly not mathematical methods and more subjective. This is however
a method that Schiphol should consider next to the forecasting model, as a forecast model is almost
never 100% accurate and a qualitative forecasting technique might be a very good solution as a second
opinion. In the subsections below, some of the most common forecasting methods are described with
examples for what they have been used in the past.

4.3.1. Moving Average
Moving average forecasting is a form of time-series forecasting that uses a weighted average of histor-
ical data to make predictions about future values. It is based on the assumption that the future values
of a given series are determined by the average of the past few values. This technique is useful for
predicting the long-term trend of a time-series, as it smooths out short-term fluctuations and empha-
sises the overall direction. It is also useful for making short-term forecasts, as it can provide a quick
indication of how the series is likely to develop in the near future. [32]

There are different kinds of moving average techniques. The first and most simplistic one is the simple
moving average (SMA) technique. The SMA technique is a method of analysing data points by calcu-
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lating the average of a predetermined number of data points. This is done by taking the sum of the data
points and dividing it by the total number of data points. Equation 4.1 [32] shows the formula for the
SMA. The resulting number is the average and this value can be plotted on a chart to identify trends in
the data, such as whether the data is increasing or decreasing over time.

SMA =
A1 +A2 + . . .+An

n
(4.1)

where A is the average in period n and n is the number of time periods.

A second technique is called the exponential moving average (EMA) technique. The EMA technique is
a variation of the SMA which gives more weight to recent data points than to those further in the past.
Due to this design, the weights of data points that are getting older are falling exponentially [70]. This
technique is used to better capture changes in trends over time. The EMA is calculated as can be seen
in Equation 4.2 by taking the previous period’s EMA and adding a percentage of the current period’s
value to it, resulting in a smooth curve that reflects changes in the trend more accurately. [32]

EMAt =

[
Vt ×

(
s

1 + d

)]
+ EMAy ×

[
1−

(
s

1 + d

)]
(4.2)

where EMAt is the EMA today, Vt is the value today, EMAy is the EMA yesterday, s is the smooth-
ing value, and d is the number of days.

According to Ghobbar et al. [35], the (Exponential) (Weighted) Moving Average (EWMA) is mainly
effective as a forecasting tool for time-series data with a linear trend. AweightedMA allows for weighting
to be assigned to the data being averaged. The paper evaluated different forecasting methods for
intermittent parts demand in the field of aviation. In the evaluation of this paper, it became clear that
the WMA is one of the superior methods for forecasting. However, the experiments of Bartezzaghi et
al. [7] showed that the EWMA is applicable only with low level of lumpiness. Chen et al. [20] used a
modified moving average method for airline passenger forecasting, however, the output of the MA had
a significant error and therefore it was necessary to use a neuro-fuzzy model to lower the error. This
model did show that the error was attenuated significantly, meaning that a MA method could be used
for non-linear forecasting with the correct data.

4.3.2. Exponential Smoothing
Exponential smoothing (ES) is a method of forecasting that is based on weighted averages of past
data, and another term for EMA which was explained in subsection 4.3.1. However, compared to the
MA method, it is a type of time-series forecasting that can take into account the trend, seasonality,
and level of a data set to predict future values. Exponential smoothing assigns more weight to recent
data points, which makes it more responsive to recent changes in the data. There are three main
types of exponential smoothing: Simple, double, and triple exponential smoothing. Simple exponential
smoothing (SES) assigns a weight to all past data points, with more weight assigned to more recent
data points. This method is used to forecast data that does not show any seasonal or trend patterns.
Double exponential smoothing (also called Simple Exponential Smoothing + Trend, or TrES) adds a
weight to the trend component of the data, which allows it to better reflect changes in the trend. This
method is often used when the data has a clear trend. Lastly, triple exponential smoothing (also called
Exponential Smoothing + Trend + Seasonality, or TrSeES) adds a weight to the seasonality of the data,
which allows it to better reflect seasonal changes. This method is used when the data has a clear
seasonality pattern. [54]

Ghobbar et al. [35] mentions that SES is mainly effective in circumstances of low and intermittent de-
mand, moreover, for this kind of demand it is in practice the most frequently used method. Furthermore,
it is mentioned that the TrES method is mainly effective for forecasting time-series data with a linear
trend. The results of this study conclude that the WMAmethod is much superior to exponential smooth-
ing. Another study conducted by Adeniran et al. [1] looking into the domestic air passenger demand in
Nigeria for the year 2018 by comparing the simple exponential smoothing to the simple moving average
method using yearly data from 2010 to 2017. The results of the study showed that the moving average
method forecast came closer to the raw data than the exponential smoothing method, meaning that
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the exponential smoothing method gave a less good forecast.

An extension of the SES method is made by Holt [49]. Holt’s method, also known as Holt-Winters, is an
extension of exponential smoothing that incorporates both trend and seasonality in the forecast. The
method uses three equations to model the data: one for the level of the series, one for the trend and
one for the seasonality. The level equation is the same as in simple exponential smoothing, where
the forecast for the next period is a weighted average of the previous forecast and the last observa-
tion, with the weight determined by the smoothing parameter α. The trend equation adds a second
smoothing parameter β, which controls the weight given to the deviation of the last forecast from the
last observation. The seasonality equation adds a third parameter γ, which controls the weight given to
the deviation of the last forecast from the last seasonal index. The method starts with an initial estimate
of the level, trend and seasonality, and then iteratively updates the forecast based on the new data [49,
50, 82]. The SES equation is denoted as follows [50]:

ŷt+h|t = ℓt

ℓt = αyt + (1− α)ℓt−1

(4.3)

where ŷt+h|t is the forecast and ℓt is the smoothing equation. Holt’s first method is similar to the
one used in the SES and is only extended by allowing the forecast of data with a trend and involves
two smoothing equations next to the forecast equation [50]:

Forecast equation: ŷt+h|t = ℓt + hbt

Level equation: ℓt = αyt + (1− α) (ℓt−1 + bt−1)

Trend equation: bt = β∗ (ℓt − ℓt−1) + (1− β∗) bt−1

(4.4)

Extending it even further with seasonality, the Holt-Winters’ method is similar to the equations of Holt’s
method adjusted for the seasonality. It can be represented by the following equations [50]:

Forecast equation: ŷt+h|t = ℓt + hbt + st+h−m(k+1)

Level equation: ℓt = α (yt − st−m) + (1− α) (ℓt−1 + bt−1)

Trend equation: bt = β∗ (ℓt − ℓt−1) + (1− β∗) bt−1

Seasonal equation: st = γ (yt − ℓt−1 − bt−1) + (1− γ)st−m,

(4.5)

where for all equations above ℓt is an estimate of the level of the series at time t, bt is the estimate
for the trend (slope), the smoothing parameters α, β, and γ have a value between 0 and 1, h makes
the forecast function trending (h-step-ahead forecast), st is the seasonal component, k is the integer
part of (h− 1)/m, and m is the frequency of the seasonality. [50]

In the study of Ghobbar et al. [35], the results show a superiority not only of the WMA, but also the Holt
andWinters method. Another interesting study has been performed by Rusyana et al. [89] where Holt’s
method (taking into account trends) was compared to Winters’ method (taking into account seasonality)
for forecasting the number of domestic passengers arrivinig and departing from Sultan Iskandar Muda
International Airport in Indonesia. The results of this study found that the best model for this forecast
is the method of Winters’ exponential smoothing. However, looking at the results of both methods and
the criteria of measuring the accuracy of the methods, both are working very good to excellent with the
right smoothing parameters.

4.3.3. Linear Regression
Linear regression is used to predict the value of a continuous variable (a dependent variable) based
on the values of one or more other independent variables. It is a type of causal model, meaning
that it is used to predict the effect of one variable on another by holding other variables constant; a
predictive modelling technique that establishes a linear relationship between a dependent variable and
one or more independent variables. A linear regression model can be used to predict the value of the
dependent variable based on the values of the independent variables [98]. There are three different
types of linear regression: simple, multiple, andmultivariate linear regression. In the subsections below,
these different types are described in more detail.
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Simple Linear Regression
Simple linear regression is a model that uses one independent variable to predict one dependent vari-
able. It is used to model the relationship between the dependent variable and independent variable
by fitting a linear equation to the observed data. The equation for a simple linear regression model is
expressed as [50]:

yt = β0 + β1xt + εt (4.6)

where yt is the dependent variable or forecast variable, β0 is the coefficient for the intercept, β1 is
the coefficient for the slope of the line, xt is the independent variable or predictor variable, and εt is the
deviation from the underlying straight line model (a Gaussian error term with N(0,σ2). This technique
assumes that the relationship between the dependent and independent variables is linear, and it uses
the least squares method to estimate the parameters of the linear equation [50]. This technique can be
used to forecast time-series data by predicting future values of the dependent variable based on past
values of the independent variable.

To fit a simple linear regression model, the best-fit line that describes the relationship between the
predictor (dependent) variable and the response (independent) variable needs to be determined. This
is done by minimising the sum of the squared errors between the predicted values and the actual values
of the response variable. Once the model is fitted, it is used to make predictions about the future
values of the response variable based on the values of the predictor variable. Simple linear regression
is a useful tool for time-series forecasting because it is simple to implement and can capture linear
relationships between variables. However, it has some limitations, such as the assumption that the
relationship between the predictor variable and the response variable is linear, which may not always
be the case in real-world data. [26]

Multiple Linear Regression
Multiple linear regression is an extension of simple linear regression that allows for the prediction of
one dependent variable based on the values of two or more independent variables. It is used for fore-
casting future values of a response variable based on current or past values of multiple explanatory
variables. When it comes to forecasting short-term and mid-term electric load, this is the most widely
applied technique [84]. The technique involves fitting a linear regression model to a set of data points
that represent a time-series. The linear regression model is then used to predict future values of the
response variable based on the explanatory variables. This technique is useful for forecasting trends
in time-series data such as stock prices, interest rates, or economic indicators. It is also useful for pre-
dicting future values of the response variable given current or past values of the explanatory variables.
It can be represented by the following formula [50]:

yt = β0 +

p∑
i=1

βixi,t + εt (4.7)

where the variables are the same as for simple linear regression with p predictor variables.

Multiple linear regression is a useful tool for time-series forecasting because it allows one to consider the
influence of multiple predictor (independent) variables on the response (dependent) variable. However,
it has some limitations, such as the assumption that the relationship between the predictor variables
and the response variable is linear, which may not always be the case in real-world data. In addition,
multiple linear regression can be sensitive to the inclusion of irrelevant predictor variables, which can
affect the accuracy of the model. [50, 73]

Nearly all real-world regression models are multiple regression models [108]. Vislocky and Fritsch
[106] compared the traditional multiple linear regression technique with Generalised Additive Models
(GAM) for model output statistics forecasts of aviation weather parameters. The study’s results show
that traditional linear regression methods did not perform as well as the Generalised Additive Models
(GAM) technique for the given data set, including variables, lead times, and seasons. This is likely due
to the GAM technique’s ability to automatically estimate the appropriate functional relationship for each
predictor term in an additive model, whereas in linear regression, these relationships must be manually
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identified and computed or assumptions about linearity must bemade. As described in subsection 4.3.4
for the ARIMA model, Li [64] proposed an ARIMA-regression model. To emphasise on the part played
by the regression part, the regression technique used was multiple linear regression. The results show
that the prediction accuracy of the multiple linear regression model is higher than for the ARIMA model.
However, the ARIMA-regression combination shows better results.

Multivariate Linear Regression
Multivariate linear regression is often interchanged with multiple linear regression [45]. However, there
are some differences. Multivariate linear regression is a type of statistical analysis used to predict the
outcome of one or more dependent variables based on the values of multiple independent variables
by fitting a linear equation to the observed data. It looks at the relationships between the different
variables and how they can be used to predict the outcome of the dependent variable. This is then
generalised to handle the prediction of several dependent variables. The independent variables can
be lagged versions of the dependent variable, or other external variables that may have an effect on
the dependent variable [45]. The model has the form of [43]:

yt,k = β0,k +

p∑
i=1

βi,kxi,t + εt,k (4.8)

for t ∈ {1, ..., T} and k ∈ {1, ...,m} where yt,k is the k-th real-valued response for the t-th observa-
tion, β0,k is the intercept for the k-th response, βi,k is the i-the predictor’s slope for the k-th response, xi,t

is the i-th predictor for the t-th observation, and εt,k∞ N(0m,
∑

) is a multivariate Gaussian error vector.

In a multivariate linear regression model, the dependent variable is modelled as a linear combination of
the independent variables, with the coefficients representing the strength of the relationship between
each independent variable and the dependent variable. The model is fit by minimising the residual
sum of squares, which is the difference between the observed values of the dependent variable and
the values predicted by the model. [43]

4.3.4. Box-Jenkins
The Box-Jenkins forecasting method is a statistical technique used to analyse and forecast time-series
data that incorporates prior observations and a priori information. It involves the application of a se-
ries of steps, including model identification, parameter estimation, diagnostic checking and forecasting.
The method is based on an iterative approach, which involves constructing a model for the series and
then using the model to generate forecasts. This process is repeated until the model is refined to pro-
duce the best possible forecast. The Box-Jenkins method is based on the assumption that the data
is generated by an underlying process with a stationary mean, variance and auto-correlation structure.
The model is fitted to the data using least squares estimation and then forecasts are extrapolated from
the fitted model. [80, 4, 14]

The Box-Jenkins method applies ARMA or ARIMA (Auto-Regressive Integrated Moving Average) fore-
cast method is a statistical technique for time-series analysis that attempts to identify and quantify the
underlying patterns within a time-series data set. It is a model-based approach that uses a combination
of auto-regressive (AR) and moving average (MA) components to determine the underlying structure
of the data and make predictions about future values. The ARIMA model is a linear combination of the
AR and MA components, but can also include other components such as a seasonal component. The
ARIMA model is used to forecast future values by taking into account the past values of the time-series
data. The model can also be used to identify the likely sources of any underlying structure or patterns
in the data, as well as to estimate the associated parameters that are needed to accurately forecast
future values. To understand how the ARIMA model works, the model is stripped down and described
below part by part. [80, 4, 14]

AR
The AR model uses a linear combination of past values of a time-series to predict future values. It is
based on the assumption that the current value of a time-series is dependent on its past values. The
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model is denoted by AR(p), where the hyperparameter p represents the number of used lagged values.
The model can be represented by an equation of the form [50]:

yt = β +

p∑
i=1

ϕiyt−i + εt (4.9)

where yt is the current value of the time-series at time t, yt−1,yt−2, ..., yt−p are the past p values
of the time-series, β is a constant, ϵt is a white noise term, and ε1, ε2, ..., εp are the auto-regressive
coefficients. The value of p, which represents the number of past values used to predict the current
value, is known as the order of the model. A higher value of p means that more past values are used,
which can result in a more accurate prediction but also a more complex model.

MA
The MA model uses past forecast errors instead of past values of the forecast. As a result, future
predictions are not based on what happened in the past, instead it is based on the error made in the
past. The current value is estimated through a constant and a moving average of the residuals. The
model, denoted by MA(q) where hyperparameter q represents the number of weighted moving average
values of the past few forecast errors, can be represented by the following equation [50]:

yt = µ+

q∑
j=1

θjεt−j + εt (4.10)

where yt is the target value at time t, µ is a constant, θ1, θ2, ..., θq are the coefficients and εt is
the residual at time t. The values of εt are not known. Unlike AR, MA is not a regression in the usual
sense.

ARMA
ARMA is a direct combination of AR and MA, as explained by Korstanje (2021) [59], which can be
clearly observed in the following equation:

yt = c+

p∑
i=1

ϕiyt−i +

q∑
j=1

θjεt−j + εt (4.11)

where c is a constant, yt is the target value, and εt is the residual at time t. p and q are the same hy-
perparameters as described before, resulting in the following notation: ARMA(p, q). As a combination
of the AR and MA models, the ARMA model predicts future values by both looking at the past values
and the past errors. [59]

Many past studies and researches use ARMA together with another forecasting model and combine
them in the end for a more sophisticated forecast. For example, Yunjian Jia et al. [55] combined a
regular ARMA model with a Grey Model to forecast passenger flow. The results show that ARMA has
a high precision and good performance for short-term predictions. However, for medium and long term
forecast, ARMA is not suitable and the Grey Model is used. The combination of the two showed better
results. Another example is the study of Gong [37]. Gong wrote a paper on forecasting passenger
demand by using a technique where ARMA is combined with a General Regression Neural Network
(GRNN). Arguments for this combination are that the determination of travel demand time-series gen-
erated from (non)linear processes is complex and secondly that it is not possible to accurately predict
future time-series using societal phenomena, making the selection of an appropriate prediction tech-
nique intractable. Therefore, combining methods that can deal with linear or nonlinear processes suc-
cessfully on their own, without being competent with complex reality situations, has become a common
practice for improving performance and accuracy. The results of this paper proves the effectiveness of
the technique.

ARIMA
When extending the ARMA model with an integrating component, it becomes the ARIMA model. This
integrating component stands for automatic differencing of non-stationary time-series. Stationary is
an important concept for time-series, for it has no long-term trend. The integrating component in the
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ARIMA model applies differencing to make a non-stationary time-series stationary by replacing the
actual values by the difference between the actual an previous value. This model can be denoted as
ARIMA(p, d, q), where p and q are the same hyperparameters are described before and hyperparameter
d stands for the order of differencing involved. It can be written as [50]:

y′t = c+

p∑
i=1

ϕiy
′
t−i +

q∑
j=1

θjεt−j + εt (4.12)

where y′t is the differenced series, c is a constant, and the terms on the right side of the equation
include both lagged values of yt and lagged errors. It must be noted that it might be necessary to
difference the time-series twice in order top become stationary and in rare cases where a second or-
der differencing is not sufficient as well, a higher-order differencing is possible. The ARIMA model is
primarily a powerful tool compared to the ARMA model for its ability to make non-stationary time-series
stationary. However, the model is still not taking seasonality into account. Therefore, a seasonal com-
ponent can be added. [50, 59]

In order to simplify Equation 4.12 and the upcoming equations, the lag operator L is introduced. The
lag operator can be referred to as backshift operator and is defined as:

Lnyt = yt−n for t ≥ n (4.13)

The denotation of ARMA in Equation 4.11 can be rewritten to:(
1−

p∑
i=1

ϕiL
i

)
yt = c+

1 +

q∑
j=1

θjL
j

 εt

ϕp(L)yt = c+ θq(L)εt

(4.14)

where ϕp(L) represents the p-order polynomial
(
1−

∑p
i=1 ϕiL

i
)
and θq(L) represents the q-order

polynomial
(
1 +

∑q
j=1 θjL

j
)
. For the ARIMA model, the differencing hyperparameter d is added. To

difference a time-series, the difference between consecutive observations is computed as follows:

y′t = yt − yt−1 for t ≥ 1 (4.15)

In second order differencing, it is mathematically shown as:

y′′t = y′t − y′t−1

= yt − 2yt−1 + yt−2 for t ≥ 2
(4.16)

Rewriting the formula for the ARIMA model as given in Equation 4.12, results in the following:

ϕp(L)(1− L)dyt = c+ θq(L)εt (4.17)

Tang and Deng [99] used the ARIMA model to develop the future trend of civil aviation passenger
transport and to make reasonable predictions. The data that had been used was downloaded from
the Civil Aviation Administration of China and was studied for the monthly data from January 2010 to
august 2015. This data was used to predict the next 6 months in time. The results of this study showed
that the ARIMAmodel was able to accurately predict the volume of passenger transportation per month
with a prediction error maintained at about 1%. Li [64] proposed a combined forecasting method based
on ARIMA-regression with an IOWHA operator concept to forecast civil aviation passenger volume in
China. The findings were that the ARIMA model itself had an absolute percentage error of 3% between
the predicted and actual values, the regression forecasting model obtained an error of 2.3%, and the
combination of the two obtained a higher accuracy with an error of 2.1%. Showing that a combined
forecasting model is, just like with the ARMA model, effective and reasonable.
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SARIMA
As an extension of the ARIMA model, seasonality can be added. A seasonal ARIMA (SARIMA) in-
cludes seasonal terms to the ARIMA model. This makes the model very powerful for many cases of
forecasting. As Korstanje (2021) [59] describes, it is the most complete model within uni-variate time-
series modelling, using AR, MA, integration for modelling trends, and seasonality. Coming from the
simplification as described above, the following equation defines the SARIMA model [59]:

yt = ut + ηt

ϕp(L)Φp (L
s) (1− L)d(1− Ls)Dut = A(t) + θq(L)ΘQ (Ls) ζt

(4.18)

where ηt is only applicable in case of measurement error, ϕp are the coefficients for the regular
AR part, Φp are the coefficients for the seasonal AR part, A(t) is the trend polynomial (including the
intercept) [104], θq are the coefficients for the regular MA part, ΘQ are the coefficients for the seasonal
MA part, d indicates the order for the regular integration part, D indicates the order for the seasonal
integration part, and s is the coefficient of seasonality. Next to the known hyperparameters p, q, and d
there are three more hyperparameters added: P,Q, and D. The seasonal period parameter s is not a
hyperparameter. It is based on logic, where s is the number of observations per year. [59]

The paper of Tsui et al. [102] uses the seasonal ARIMA model to forecast airport passenger traffic for
Hong Kong and projects its future growth trend to 2015 using monthly time-series data between Jan-
uary 1993 and November 2010. Empirical analysis revealed that the SARIMA model yielded accurate
and reliable forecasting results as evidence by its lower Mean Absolute Percentage Error (MAPE) and
Root Mean Squared Error (RMSE) values. Additionally, comparison of the actual and forecasted values
revealed that the model produced acceptable forecast errors. A master’s thesis performed by Bougas
[13] studied the air passenger traffic flows in Canada by comparing multiple time-series forecasting
models, among which the SARIMA model. All tested forecasting models provided accurate forecasts,
however, in a comparison to the other models and in particular the ARIMA model, the results showed
that the SARIMA model dominated in general.

In the study of Xu et al. [111] a SARIMA-SVR model is proposed to forecast the demand of the avia-
tion industry. It is argued that many studies have been performed on forecasting with (S)AR(I)MA(X)
models, however, it should be noted that these models are all based on the assumption of a linear
relationship between the level of the time-series and its preceding data points. Whereas Artificial Intelli-
gence (AI) models have been shown to possess exceptional capacity for identifying nonlinear patterns
within data without the need for data transformation and assumptions on the underlying distributions.
Therefore, a common approach is to construct a hybrid model that separately captures linear and nonlin-
ear patterns and then integrating them to generate the final forecast. Some examples of this approach
were given above of these combinations: Li [64], Yunjian Jia et al. [55], and Gong [37]. In another
approach, previous research has utilised linear models to extract linear patterns and non-linear models
to extract non-linear patterns from residuals, which are the differences between actual values and lin-
ear forecast results. Without going into depth, some examples of these studies are: Ruiz-Aguilar et al.
[88] and Farajzadeh and Alizadeh [31]. Xu et al. propose several SARIMA-SVR models, which uses
the SARIMA model for the inputs of the SVR model which output is the forecast. Additionally, Xu et al.
look at the impact of bringing Gaussian White Noise into the forecasting models. The results show the
SARIMA-SVR models are superior to the model of Ruiz-Aguilar et al., which was taken as benchmark.

SARIMAX
A final extension to the ARIMA model are external variables. By adding the X component (eXogenous
factors) to the SARIMA model [104], this model becomes the most complete version of classical time-
series models [59]. This model is very similar to the SARIMA model and is as follows:

yt = βtxt + ut

ϕp(L)Φp (L
s) (1− L)d(1− Ls)Dut = A(t) + θq(L)ΘQ (Ls) ζt

(4.19)

where β represents the external variable and the other variables are the same as described before.
[59]
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The study of Tsui and Balli [101] argues that external variables like destination marketing and tourism
marketing are important factors in affecting the demand of international arrivals from foreign countries
and thus for air passenger demand. In their study, the authors presented an accurate and reliable
forecast of international passenger traffic for eight key Australian hub airports and conducted a com-
prehensive examination of the impact of external factors on passenger traffic. This study employed
a SARIMAX model that incorporated five key explanatory variables: Gross Domestic Product (GDP)
per capita in Australia, Tourism marketing expenditure by Australia’s State Tourism Commissions, total
scheduled international flight seats to Australian airports, fuel prices, and the exchange rate (AUD vs.
USD). The study found that the selected best-fit SARIMAX model had higher R2 values compared to
the SARIMA model and demonstrated strong forecasting performance as evidenced by low values of
MAPE, MAE, and RMSE. Additionally, all the selected best-fit SARIMAX models’ residual series had
the characteristics of white noise and did not exhibit the problem of serial correlation, indicating that the
selected SARIMAX model was adequate for forecasting the monthly international passenger arrivals
to the eight Australian airports.

Virate et al. [105] studied the effect of external variables on the demand of passengers of TransJakarta
using the SARIMAX model to forecast this number. The external variables in this study are holidays
and Eid holidays, during which usually the number of passengers drop. The forecast results prove that
the SARIMAX model is quite accurate with small errors. A Degree Thesis performed by Salmi [93]
looked at the impact of the COVID-19 pandemic on machine learning models in a commercial aviation
use case. The objective of this thesis was to investigate the feasibility of developing models for forecast-
ing airline passenger counts, to assess the decline in performance over time and to explore potential
methods for improving the models. The forecasting techniques employed in the development of these
models were Prophet and SARIMAX. Although the results were found to be incapable of adapting to
changing circumstances, a comparison could be made between the models until the moment that the
circumstances changed dramatically. It showed that both models are accurate predictors, where the
SARIMAX model performs slightly better.

4.3.5. X-11
The X-11 forecasting method is a statistical technique used to analyse time-series data. It was devel-
oped by the U.S. Census Bureau and is used to identify and adjust for seasonal patterns and trends in
the data. The X-11 method uses an iterative process to decompose the data into its component parts,
including seasonal, trend, and irregular components. It then applies various smoothing techniques to
the data to reduce the effect of outliers and other random variations. Finally, the X-11 method uses
a “final” smoothing algorithm to produce a forecast based on the components. The X-11 method is
a useful tool for analysing and forecasting time-series data sets and is often used in economics and
finance. [50]

4.3.6. Machine Learning Methods
Forecasting the demand for checked baggage items is a crucial task for many airports around the world,
particularly for Schiphol Airport. This is because the passenger demand for these items can vary greatly
depending on the season, the type of traveller, and the weather conditions. Accurate and precise de-
mand forecasting enables airports to better manage their resources, resulting in an improved customer
experience and enhanced profitability. Over the years, Schiphol has experienced that the behaviour of
people has changed when it comes to choosing whether to check in baggage or take it with them on the
plane as hand luggage. Some reasons for this could be the fact that from 2017 on wards more airlines
started charging checked baggage for passengers. Another factor could be the COVID-19 pandemic,
of which the impact on the human behaviour is unknown at this moment.

To meet these forecasting needs, several traditional forecasting methods have been proposed in the
past, such as ARIMA models and ES models as described above. However, these models are limited
in their ability to capture the complex patterns of passenger demand and are unable to adapt to the
changing dynamics of the demand. In recent years, machine learning and deep learning techniques,
such as Neural Networks (NN), have emerged as a powerful tool for forecasting. These techniques
have the ability to capture long-term dependencies in data and their capacity to learn from complex
patterns. [72]
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Artificial Neural Network
It has been shown that Artificial Neural Networks (ANNs) possess the capability to approximate any
continuous function. Furthermore, ANNs have been successfully utilised for forecasting financial data
series. Traditional time-series prediction methods such as Box-Jenkins, ARMA or ARIMA rely on the
assumption of a linear relationship between inputs and outputs. ANNs, on the other hand, possess the
advantage of being able to approximate any nonlinear functions without the need for prior information
about the properties of the data series. [83]

ANNs are a type of machine learning algorithm inspired by the structure and function of the human brain.
They are composed of interconnected units called ”neurons,” which are organised into layers. These
layers are composed of input, hidden, and output layers, and the connections between the neurons
are called ”weights”. In the context of forecasting, ANNs can be used to make predictions about future
values in a series based on historical data. Kanavos et al. [57] made a comparison between the ARIMA
and SARIMA models and a Deep Learning Neural Network (DLNN), which is a specific type of ANN
that is composed of multiple layers of interconnected neurons, for forecasting air passenger demand
for multiple airports in the USA. The results show that, as would be expected, the SARIMA model has
a higher accuracy on seasonal data compared to the ARIMA model and that the DLNN outperforms
the two forecasting models for the particular aviation data. Therefore, a DLNN can be proposed as an
effective method for forecasting aviation demand in comparison to traditional time-series models such
as ARIMA or SARIMA.

Multilayer Perceptron
One type of ANN commonly used for the forecasting task is the multilayer perceptron (MLP). The MLP
is composed of multiple layers of neurons, with the input layer receiving the input data and the output
layer producing the final prediction. The hidden layers between the input and output layers process
and transform the input data through the use of weights, which are adjusted during the training process
to optimise the prediction accuracy of the model. The training process involves feeding the model a set
of input-output pairs, called the training data, and adjusting the weights to minimise the error between
the predicted output and the true output. This process is known as backpropagation and is typically
done using an optimisation algorithm such as stochastic gradient descent. [115, 24]

In general, the use of ANNs, particularly the MLP, for forecasting allows for the modelling of complex
nonlinear relationships in the data and can provide more accurate predictions compared to simpler
methods such as MA or linear regression [115, 24]. In the study of Şahin et al. [91], different ANN
forecasting methods are compared to Croston Based methods [25] for forecasting aviation spare parts
demand. The ANN models used in this study were the MLP, Recurrent Neural Network, Time-Delay
Network, and Radial Basis Function. Different types of demand data was used to test the forecast-
ing performance of the models: intermittent, erratic, and lumpy. The results showed that for the ANN
models, the MLP outperformed the other three models among all demand data types. Compared to
the Croston based methods, the MLP showed superior results for intermittent and lumpy demand type
data. For the erratic demand data type, the Leven & Segerstedt [25] method had the best performance,
however, the performance of the MLP for this type is similar with the Croston method slightly better.
The study shows that the MLP is an effective method for forecasting different types of demand data. In
another study of Blinova [12], a time-lagged feedforward network embodied by MLP is used for fore-
casting passenger traffic flows in Russia. The results present a satisfactory result for the forecast up till
a maximum of three years. The relative forecast error, at the stage of adaptation, for the neural network
generated is less than 5%. The study thus concludes that the model can be proposed for short-term
forecasts. Amal and Ammar [3] presented a paper with an overview of deep learning types for fore-
casting time-series. In the overview, the MLP performance is compared to other models for forecasting
challenges in other industries than the aviation industry and with different types of data. It was shown
that the MLP performes best in the studies of Alhassan et al. [2] and Di Persio and Hornchar [85]. Other
studies that used MLP of Lago J. et al. [62] and Hernández et al. [44] show that the MLP is a good
method for forecasting, however, other methods or adjusted methods have better performance.
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Recurrent Neural Network
Recurrent Neural Networks (RNNs) are a type of ANN that can process sequences of data, such as
time-series. RNNs are typically composed of a set of neurons or nodes that are connected in a loop or
recurrent structure. Each neuron takes an input and produces an output, and the output of one neuron
is fed as input to the next neuron, allowing the network to memorise, or “learn”, information over time.
This recurrent structure enables the network to capture temporal patterns and make predictions about
future values. [38, 86]

RNNs can be used for a variety of tasks, including forecasting. In forecasting, the RNN is trained using
historical data, and then the network is used to make predictions about future values. This is done
by taking the most recent input values and using them to compute the outputs of the neurons in the
network. The outputs are then combined to obtain the predicted value. This process is repeated for
each time step in the, allowing the network to make predictions about future values, in for example
a time-series data set. RNNs have a variety of architectures, with the most popular being the long
short-term memory (LSTM) and gated recurrent unit (GRU) networks. These architectures use gates
to control the flow of information into and out of the memory, allowing the network to selectively retain
or forget information as needed. Like with any other NN, RNNs are trained with a lot of data and good
pre-processing. [86, 34]

Long Short-Term Memory
A type of RNN that are well-suited for modelling data are LSTM networks introduced by Hochreiter
and Schmidhuber [47]. LSTMs are a specific type of RNN that are particularly effective at modelling
long-term dependencies in the data. They do this by using a special type of neuron called a ”mem-
ory cell” that can store information over long periods of time. LSTMs also have three special types of
gates (input, output, and forget gates) that control the flow of information into and out of the memory
cell, allowing them to selectively remember or forget past information as needed. To use an LSTM
for forecasting, the data is typically divided into training and test sets, with the model being trained on
the training set and the forecast performance being evaluated on the test set. The model can then be
fine-tuned by adjusting the hyper-parameters, such as the number of layers in the network or the size
of the hidden state vectors. [47, 38]

One advantage of using an LSTM for forecasting is that it has the capacity to learn from complex
patterns and can handle long-term dependencies and seasonality in data. However, it can be more
computationally intensive to train than some other machine learning algorithms, and it can be difficult
to interpret the internal workings of the model. [47, 38]

Zheng et al. [116] explored the LSTM-based RNN to forecast electric load in smart grids. To guaran-
tee fair comparison of the performance, next to the electric load data set, also an airline passenger
data set was used. The results showed for both data sets that the LSTM, together with a SARIMA
model, was superior to other methods. Concluding that LSTM is capable of forecasting complex uni-
variate time-series or other more complex data sets. Although in this case the SARIMA model did
outperform the LSTM model. The cause for the observed phenomenon is attributed to the presence of
a robust multiplicative seasonal component and a distinct upward trend in the airline passenger data
set. The SARIMA model effectively utilised these consistent seasonal patterns by utilising logarithmic
transformation and seasonal differencing techniques. The utilisation of specialised, data-dependent
pre-processing techniques facilitated the forecasting capabilities of the SARIMA model, however, it
should be noted that the efficacy of these techniques is highly dependent on the specific characteris-
tics of the data set and the LSTM model, which does not require such pre-processing, may be a more
general solution for forecasting. Choi and Kim [22] proposed MLP, RNN, and LSTM for the prediction
of airport capacity. The results showed that all three models showed good performance where the
RNN and LSTM models outperformed the MLP model. However, the models were trained with and val-
idated against Hartsfield-Jackson Atlanta International Airport data. When examining the transferability
to another airport, the MLP model demonstrated strong transferability without the need for additional
techniques, while the RNN and LSTM models were able to accurately predict the capacity of another
airport following fine-tuning. Liu et al. [69] compared the LSTM RNN with other traditional prediction
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models like ARIMA and GRNN. The results of the proposed method based on LSTM exhibits several
advantages over traditional statistical prediction methods. Specifically, the LSTM RNN is capable of
fitting a wider range of data patterns. Additionally, the modelling process utilising LSTM RNNs is less
time-consuming and does not requiremanual steps, such as stability checking, auto-correlation function
checking, and partial auto-correlation function checking. Furthermore, after proper training, the LSTM
RNN model demonstrates a higher level of predictive accuracy. However, traditional statistical-based
models still possess certain advantages such as reduced resource consumption and faster forecasting
speed.

Gated Recurrent Units
Gated Recurrent Units are a type of RNN architecture based on the concept of memory gates. They
are well-suited to forecasting due to their ability to capture important information from the past and use
it to make predictions. They are simpler to train than LSTM networks and often require less training
data. The main advantage of GRUs is that they are more efficient than LSTM networks and can be
trained faster. However, they may not be able to capture long-term dependencies as well as LSTM
networks. [38, 86]

Yu [113] proposed a method for airline passenger flow prediction where first a Deep Belief Network
reduces the dimension of the data, secondly a GRU model extracts features, and finally an attention
mechanism preserves key features for a high-precision prediction. When comparing the MSE to other
models, the proposed GRU model results are significantly better than the other models. In the study
of Wang et al. [109], a Bi-directional GRU model is proposed for traffic flow prediction. In comparison
to GRUs, which are capable of retaining information from previous sequences, this model exhibits the
ability to retain traffic flow information from both previous and subsequent sequences. The Bi-GRU
model is compared to the common GRU and three other benchmark models: ARIMA, LSTM, and Bi-
LSTM. The results show that the performance of both bi-directional models are better compared to the
normal LSTM and GRU, where the Bi-GRU is slightly better than the Bi-LSTM and the GRU is slightly
better than the LSTM. The performance of the ARIMA model is the worst.

Convolutional Neural Network
Convolutional neural networks (CNNs) are a type of NN that are particularly effective at processing data
with a grid-like technology, which are commonly used for image and video processing. CNNs are able
to learn features from the data automatically, which makes them particularly useful for tasks like image
classification and object detection. However, they can also be used for forecasting. CNNs are able to
extract local patterns and trends from data and use them to make predictions. For example, CNNs can
learn to identify patterns in the data that are indicative of future trends, such as seasonal patterns or
changes in the level of the data. To use a CNN for forecasting, the data is typically transformed into
a 2D matrix, with each time step in the series represented as a row in the matrix. The CNN is then
trained to predict the next time step in the series given the past time steps as input. [38, 17]

For example, consider a time-series of temperature data, with one record for each day. The CNNmight
be trained to predict the temperature for the next day given the temperature data for the past week. To
do this, the temperature data for the past week would be transformed into a 2D matrix, with each row
representing one day and the columns representing the different time steps within a day. The CNN
would then be trained to predict the temperature for the next day based on the patterns it learned in the
past week’s temperature data.

An advantage of CNNs is that they are able to handle high-dimensional data and can identify complex
patterns in the data. Another advantage is that CNNs can be trained relatively quickly and require less
training data compared to other NNs. However, they may not be as well-suited to long-term forecasting
as RNNs, because they do not have the ability to maintain internal state over long periods of time. [17]
Mehtab and Sen [74] designed multiple CNN and LSTM models to forecast financial time-series. The
models are evaluated and ranked based on two performance metrics: execution time and the ratio of
the RMSE to the mean open value in the test data set. The results indicate that onf of the CNN models
is the fastest in execution and possesses the highest level of forecasting accuracy. In general, it is
observed that the CNN models exhibit faster execution times compared to their corresponding LSTM
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counterparts. In an earlier study of Mehtab and Sen [75], a CNN model was compared to many other
classification models for stock price prediction. Based on the RMSE, the CNN models were clearly
superior to the other models and proved the capability of short-term forecasting of CNNs.

Random Forest
Random Forests (RF) are a type of ensemble machine learning algorithm that can be used for a vari-
ety of tasks, including forecasting. Ensemble algorithms combine the predictions of multiple individual
models to produce a more accurate and stable prediction. In the case of RF for forecasting, the al-
gorithm works by training a large number of decision trees on different subsets of the data, and then
averaging their predictions to produce a final forecast. It is called ”random” because each decision tree
is trained on a random subset of the data, and the final prediction is made by taking the average of the
predictions of all the trees. [18, 16, 36]

One advantage of using RF for forecasting is that it can handle high-dimensional data and nonlinear
relationships between features and the target variable. It is also resistant to over-fitting, which can be
a problem with some other machine learning algorithms when working with large data sets. Just as for
the other machine learning methods described above, the data for a RF forecast is typically divided into
training and test sets, with the model being trained on the training set and the forecast performance
being evaluated on the test set. The model can then be fine-tuned by adjusting the hyper-parameters,
such as the number of trees in the forest or the maximum depth of the trees. [36, 18]

Lin and Tian [66] used RF, LSTM, and RF and LSTM combined model to predict short-term metro
passenger flow. The combined model utilises RF for a feature importance screening to initially evaluate
the significance of all extracted features. Subsequently, features with lower impact on the prediction
outcome, as determined by the feature importance ranking, are filtered out. Finally, a LSTM model is
utilised for prediction. The results were analysed with the mean absolute error (MAE) and showed that
the combined model has the highest accuracy, followed by the LSTM model, and the lowest accuracy
for the RF model. Tyralis and Papacharalampous [103] conducted an extensive set of computational
experiments in time-series forecasting using RF and other forecasting methods. Empirical evidence
has demonstrated that utilising a limited number of recently lagged predictor variables in RF models
yields superior performance. This phenomenon can be attributed to the reduction in training set length
and subsequently the amount of information extracted from the original time-series during model fitting,
when an increasing number of lagged variables are utilised.

4.3.7. Gradient Boosting
Another decision-tree method is Gradient Boosting. Just as with RF, a gradient boost model uses nu-
merous small decision trees and makes its predictions based on them. This method involves combining
multiple weak predictive models (the trees) into an ensemble that makes a more accurate prediction.
Given a set of input features and a corresponding set of output values, the algorithm first trains a ”weak”
decision tree, to predict the output values from the input features. This model is called the base learner.
The algorithm then calculates the errors or residuals between the predicted values and the actual val-
ues. The next step is to train a second model to predict these errors, rather than the output values
themselves. This second model is also called the base learner, and is trained using the residuals as
the output values and the same input features as the first model. The algorithm then combines the pre-
dictions from the two base learners to produce a more accurate ensemble model. This is an iterative
process that represents that is called boosting. The gradient part represents the part of the method that
involves optimising a loss function by minimising its gradient or slope. In other words, the algorithm
tries to find the direction in which the loss function decreases the fastest, and updates the model in that
direction. The gradient boosting process is iterative with each new model trained to reduce the residual
error of the previous ensemble. [59, 10]

The current passenger forecast model of Schiphol Airport is based on this method. Its ability to produce
highly accurate predictions in a relatively fast way gives advantages over more complex models like
neural networks. Moreover, gradient boosting is able to provide insights into which features are most
important for making predictions, which allows for better interpretability. [10]
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4.3.8. Prophet
The Prophet model, developed by Facebook’s Core Data Science team in 2017, is a powerful and
accurate forecasting tool for time-series data. It is based on a decomposable additive approach, mean-
ing that it uses non-linear trends to capture seasonality, holidays components, and other effects in
the data to produce forecasts. The model utilises a Bayesian structural time-series model to account
for the seasonality in time-series data and to search for the best combination of parameters for the
model that minimise the loss function and maximise the accuracy of the predictions. Additionally, the
Prophet model allows for the inclusion of user-defined holidays and other user-defined regressors. This
approach to forecasting is both automated and highly flexible, allowing users to tailor the forecasting
process to their specific needs. [100]

The Prophet model works by taking into account a variety of factors to make its predictions. Firstly, it
takes into account the trend of the data. It uses a piecewise linear or logistic model to fit non-linear
trends in the data. Additionally, Prophet takes into account seasonality in the data by identifying trends
that repeat over time, such as weekly or monthly patterns. It also allows for the user to incorporate
additional effects such as holidays and user-defined variables. It then combines these factors to build
its prediction model. Finally, Prophet uses an additive regression model to fit the data and forecast
future values. The model includes a baseline adjustment, which is a linear or logistic regression model
that captures the long-term trends in the data. It also includes a seasonal component which captures
the short-term trends. Together, these components capture the patterns in the data and allow for accu-
rate forecasting. The Prophet model has been found to be highly accurate in a variety of forecasting
scenarios, with the capability to accurately predict up to 18 months in advance. Furthermore, the model
is exceptionally fast, with the ability to generate forecasts in less than a second. This makes it an ideal
choice for quick and efficient forecasting of time-series data. [100]

In summary, the Prophet model uses a combination of non-linear trends, seasonality, and user-defined
effects to build an accurate model for forecasting time-series data. Moreover, the Prophet model is a
powerful and accurate forecasting tool for time-series data. It is highly flexible and fast, allowing users
to quickly generate accurate forecasts for a variety of scenarios. Satrio et al. [94] used the Prophet
model for forecasting the coronavirus disease in Indonesia. The evaluation of forecast data generated
by the Prophet model indicates a high degree of accuracy in the initial stages, with minimal deviation
from the actual data. However, as the forecast horizon extends, the discrepancy between the fore-
casted and actual data increases, resulting in a noticeable divergence. In contrast, the ARIMA model
that was used for the same goal demonstrates lower accuracy compared to Prophet throughout the
entire forecast period.

Navratil and Kolkova [79] subjected Prophet to further research and concluded from the results of their
study that the model is relatively simple to interpret and meets the requirements of forecasting accu-
racy. Although, it is proposed that incorporating elements of artificial intelligence or multivariate analysis
within the Prophet model would enhance its versatility and applicability to a broader range of business
entities. An example of incorporating machine learning with the Prophet model is demonstrated by Guo
et al. [40] for product demand forecasting. The proposed hybrid approach combines the Prophet model
for forecasting seasonal fluctuations and identifying input variables for the Support Vector Regression
(SVR) model, with the SVR model utilised to capture non-linear patterns in the data. An evaluation
of eight models revealed that the hybrid Prophet-SVR approach demonstrates superior performance.
Based on various statistical indicators, the Prophet-SVR model consistently produces the most accu-
rate forecasting results in comparison to the other models. Additionally, the Prophet-SVR model is
found to accurately forecast both the trends and fluctuations in the data. When comparing the Prophet
model to the SVR model, it showed better seasonal forecasting of the Prophet model. However, the
MAPE of the SVR model is generally lower than that of the Prophet model, which suggests that SVR
outperforms Prophet in trend prediction. The paper argues that this result may be attributed to the fact
that the Prophet model utilises a traditional time-series analysis modelling strategy, which may result
in underfitting during the model training process and impede the ability to learn complex patterns. The
paper proves the potential of combining machine learning with the Prophet model.



5
Resource Allocation Optimisation

Baggage Handling Systems
There are several optimisation methods and algorithms that are commonly used for resource alloca-
tion optimisation. In this literature study, two different kind of optimisation methods are considered:
exact solution methods and meta-heuristic methods. Exact solution methods, which are described in
section 5.1, are optimisation techniques that are guaranteed to find the global optimal solution to a
problem, given enough computational resources and time. These methods are generally more accu-
rate and reliable than meta-heuristic methods, but they can be computationally expensive and may not
be able to find solutions in a reasonable amount of time for large or complex problems. Meta-heuristic
methods, on the other hand, are optimisation techniques that do not guarantee finding the global opti-
mal solution, but are able to find good solutions in a relatively short amount of time. These methods,
described in section 5.2, are based on the imitation of natural processes and are inspired by natural
phenomena such as evolution, physics, and chemistry. These methods are generally less accurate
than exact solution methods, but they are able to find solutions quickly for large or complex problems,
and also they can be applied to problems where the mathematical models are not well known or hard
to define.

5.1. Exact Solution Methods
There are several exact solution methods that can be used for resource allocation optimisation. The
most common ones are described in this section. Other exact solution methods that can be looked at
when the described methods are not sufficient are: Nonlinear programming, Mixed Integer program-
ming, and Constraint programming.

5.1.1. Linear Programming
Linear programming (LP) is a method for optimisation that can be used to allocate resources in an
efficient manner. It is based on the idea of finding the best solution to a problem by minimising or max-
imising a linear objective function subject to a set of linear constraints [42]. The method involves the
use of a mathematical model that describes the problem, with variables representing the resources to
be allocated and the objective function representing the goal of the optimisation. The constraints are
used to represent the limitations on the resources, such as availability or budget. [27]

Finding the solution is typically done using a technique called simplex algorithm, which is an iterative
method for solving LP problems [15]. The simplex algorithm works by starting with a feasible solution
and then repeatedly moving to adjacent solutions that improve the objective function until an optimal
solution is found. The algorithm terminates when no further improvement can be made, which means
the optimal solution has been found. [27, 42, 110]

LP is a powerful tool for resource allocation scheduling and has many practical applications, including
in operations research, finance, and logistics. Al-Rawi and Mukherjee [87] studies a method for solving

27
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labour scheduling problems encountered in a construction company by applying LP techniques. With
the set up of the right objective function, constraints, and decision variables, the LP model showed a
solution which maximised the fairness of the schedule while considering all constraints of efficient time
and effort management and workload balance. The result provided a more contended and effective
outcome. Another study conducted by Zhang et al. [114] utilised an LP model to minimise costs in a
container oriented job scheduling. It showed good results which lowered the total costs significantly.

5.1.2. Integer Programming
Integer Programming (IP) is an extension of LP that allows for integer variables in the optimisation prob-
lem. IP can be used to solve problems where the resource allocation variables must be integers, such
as scheduling problems with distinct time periods or problems with binary decision variables. LP is a
technique for the optimisation of a linear objective function, subject to constraints represented by linear
equations or inequalities [15]. The variables in LP are continuous, meaning they can take on any real
value. However, in many practical problems, the variables must take on integer values, which makes
LP inapplicable. In IP, the decision variables are restricted to take on integer values. This restriction
can be imposed by adding integrality constraints to the problem, which forces the decision variables to
take on integer values. IP can be used to solve problems where the resource allocation variables must
be integers, such as scheduling problems with distinct time periods or problems with binary decision
variables. [5, 51]

IP can be used to solve a wide range of problems in various fields such as transportation, production,
logistics, and scheduling. For example, in scheduling, IP can be used to solve problems such as crew
scheduling, shift planning, workforce planning, and skill-based routing [15]. In these problems, the de-
cision variables are often binary, indicating whether a certain resource is assigned to a certain task or
not. A disadvantage of IP is that is an NP-hard problem, which makes it computationally expensive to
solve [51].

In the research of Liu et al. [68], a mathematical model based on IP is developed to quantify the overall
baggage handling time in a collaborative work system, utilising piece wise functions for various alloca-
tion strategies. The model incorporates optimisation of the queue system to adhere to passengers’ wait
time expectations, ultimately leading to a significant enhancement in system efficiency. In the study
of Ip et al. [53], an IP approach is proposed for the optimisation of aircraft maintenance planning and
scheduling. The primary objective of this research is to improve the efficiency and effectiveness of the
planning and scheduling processes. Additionally, a set of computational schedules for maintenance
manpower is developed to accommodate all scheduled flights. The proposed methodology utilises a
balance of workloads among groups and fulfilment of constraints through rounding, resulting in an op-
timal solution while maintaining computationally feasible time. Furthermore, the results obtained are
presented in a clear and easily understandable format and the methodology is designed to minimise
complexity and simplify the process.

5.1.3. Mixed Integer Linear Programming
Mixed Integer Linear Programming (MILP) is a type of optimisation problem that combines elements
of both LP and IP. In MILP, some of the variables are restricted to take on integer values, while the
remaining variables are allowed to take on any value within a specified range. The objective function
and constraints are all linear. MILP can be used to solve a wide range of resource allocation problems,
such as production scheduling, project management, and financial planning, where the decision vari-
ables must take on integer values. It can also handle problems that have both discrete and continuous
variables. MILP is considered to be an exact solution method as it can provide an optimal solution that
satisfies all the constraints, and it can handle a wide range of problems. [33]

MILP can be solved using specialised algorithms and software, such as branch-and-bound algorithm,
that is designed specifically for this type of problem [9]. Commercial solvers such as Gurobi, CPLEX,
and Xpress, are popularly used to solve MILP problems. [33]

The paper ofWahyudin et al. [107], presents aMILPmodel for aircraft line maintenance resource alloca-
tion optimisation, focused on the allocation of workforce, material, and tools. It is mentioned that many
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previous studies do not take the relationship of a hub and spokes station in terms of resource transfer
into consideration, which in this case is taken into consideration. The paper shows the capability of the
MILP model to find an optimal solution for allocating workforce, material, and tools. Another example
of a research that utilised MILP is the study of Kuhn and Loth [61]. This study examines algorithms
for scheduling airport service vehicles. A MILP is proposed to minimise fuel costs for service providers
and delays for air carriers. The IP problem is formulated to facilitate solution search strategies. A ge-
netic algorithm heuristic, borrowed from aircraft arrival scheduling, is implemented to find approximate
solutions efficiently, in addition to an exact solution method that utilises branch and bound techniques
specifically tailored for this problem. The results indicate that planning service vehicle routes based on
future demands rather than reacting to them as they occur leads to significant benefits. The proposed
method can reduce both the delay absorbed by aircraft and the distances travelled by service vehicles
by 20% or more.

Branch and Bound
Branch and bound is a method that can be used to solve MILP problems. MILP problems are com-
putationally expensive to find an exact solution. Branch and bound is a technique that can be used
to find an exact solution to MILP problems in a more efficient way than other methods such as an
exhaustive search. The basic idea behind branch and bound is to divide the problem into smaller sub-
problems by introducing new constraints to the problem and then solving each sub-problem separately
[63]. The method starts by relaxing the integrality constraints of the problem, and solving the resulting
LP problem to get an initial solution. Then, the method generates new constraints by branching on
the fractional variables, which are the variables that have fractional values in the LP solution. Each
new constraint creates a new sub-problem, and each sub-problem is solved using LP. The solution of
each sub-problem is then compared to the current best known solution and if it is better, it becomes the
new best solution. The method continues to branch and solve sub-problems until an optimal integer
solution is found. The method also uses a bounding function to prune the search tree by eliminating
sub-problems that are guaranteed not to improve the current best solution. [46]

An example of using Brand and Bound method to solve a MILP problem, is the Parallel Machine
Scheduling (PMS) model [92]. PMS is a type of exact solution model that can be used for resource
allocation optimisation, specifically for scheduling problems involving the use of multiple machines or
resources. The method is based on mathematical models and algorithms that are designed to find the
optimal schedule for a set of jobs or tasks on a set of parallel machines, given a set of constraints and
an objective function. The objective of PMS is to assign the tasks to the machines in such a way that
certain criteria, such as minimising the make-span (the completion time of the last task), minimising the
total completion time, or maximising the total throughput, are met [78]. PMS can be formulated as an
optimisation problem, and several of the methods mentioned above can be used to solve it. For exam-
ple, LP can be used to formulate and solve parallel machine scheduling problems where the objective
function is linear and the constraints are also linear. IP can be used when the number of machines
is restricted to integers. However, also approximate (meta-heuristic) methods can be used for solving
these models. In the context of airport scheduling, the assignment of scheduling planes to gates can be
conceptualised as a PMS problem, where planes represent jobs and gates represent machines. The
feasibility of assigning a particular job (i.e., a plane) to a specific machine (i.e., a gate) is dependent on
the size of the job and the capacity of the machines. Specifically, gates may have a maximum capacity
that cannot accommodate larger-sized jobs (or in the airport case, planes of larger sizes) [92]. In the
case of the current research, this model could be used to optimally allocate human resources from
service companies, e.g. (external) handlers, where the checked baggage on laterals correspond to
jobs and the handlers correspond to machines.

5.1.4. Dynamic programming
Dynamic Programming (DP) is a mathematical optimisation method that is used to solve problems with
a recursive structure and overlapping sub-problems. The method is based on the idea of breaking a
complex problem into smaller sub-problems, and solving each sub-problem separately. The solutions
to the sub-problems are then combined to give a solution to the original problem [46]. The key idea
behind DP is to store the solutions to the sub-problems in a table so that they can be reused, rather than
recomputing them each time they are needed. This approach is called memorisation. DP can be used
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to solve problems with recursive dependencies, such as resource allocation in networks, and problems
with a temporal aspect, such as the scheduling of resources over time. These types of problems can
be modelled as a sequence of states, each state representing the current status of the system. The
problem is then to find the optimal sequence of states that leads to the desired final state. [15, 46]

The paper of Dell’Olmo and Lulli [28] presents a novel approach to addressing the issue of airport
capacity. A DP formulation and a corresponding backward solution algorithm are proposed, which
are simple, robust, and efficient. The performance of the algorithm is evaluated on various realistic
scenarios and compared to a commonly used greedy decision policy. The deviation between the greedy
and DP optimal solutions ranges from 3.98% to 35.64%, indicating a significant improvement in almost
all instances.

5.2. Meta-heuristic Methods
Meta-heuristic methods are a class of optimization methods that use high-level, problem-independent
strategies to find approximate solutions to complex optimization problems. They are called ”meta” be-
cause they work on top of other optimization methods, guiding and enhancing the optimization process.
The most common methods are described in the sub sections below. Other methods are: Tabu Search,
Simplex search, Particle Swarm Optimisation, and Large Neighbourhood search.

5.2.1. Genetic Algorithm
The concept of the Genetic Algorithm (GA) is rooted in the principles of evolution as outlined by Charles
Darwin, and is among a category of computational techniques referred to as evolutionary computation.
The algorithm was first formulated by John Holland in the 1960s [48]. GA is a heuristic optimisation
method that is based on the concepts of natural selection and genetics. It is a meta-heuristic method,
meaning that it is a general-purpose optimisation technique that can be applied to a wide range of opti-
misation problems. GA works by creating a population of potential solutions, called individuals, to the
optimisation problem. Each individual is represented by a set of parameters, called chromosomes, that
define the solution. The chromosomes are usually encoded as a binary string, but other encoding such
as real numbers or permutations can also be used [77]. The GA then iteratively combines, mutates,
and selects the best individuals to create new generations of solutions. The combination of individuals,
called crossover, is performed by selecting two parent individuals and creating two offspring by com-
bining their chromosomes at a randomly selected point. The mutation operator is used to introduce
small random changes to the chromosomes of the individuals. The selection operator is used to select
the individuals that will be used as parents for the next generation. The selection is usually performed
based on the fitness of the individuals, which is a measure of the quality of the solution represented
by the individual. The GA continues to evolve the population for a fixed number of generations or until
a stopping criterion is met, such as reaching a certain level of fitness. The best individual in the final
population is the solution to the optimisation problem. [58, 46]

The research of Shiu and Szeto [97] presents a new type of adaptive evolutionary algorithm that com-
bines two GAs using a mutation matrix, which is based on an adaptive allocation of CPU time. The
algorithm is evaluated on the airport scheduling problem with constraints. The results of the application
to airport scheduling show that the self-adaptive mutation-only GA is able to efficiently produce high-
quality solutions. Liu et al. [67] examined the use of a GA in the scheduling of airport terminal area
traffic. The research combines GA theory with analysis of airport terminal area traffic and focuses on
the design and implementation of a traffic scheduling algorithm module for a GA-based traffic schedul-
ing system. The study found that using the GA to optimise for the shortest total flight landing time alone
is an oversimplified goal, and an adaptive GA was used to address the limitations of the GA such as
instability and prematureness. The study was implemented using the platform support of the national
ATC scenario simulation system and the improved sorting algorithm was applied. The results show
that the improvement of the algorithm is effective and achieves the research objectives. Guo et al. [41]
proposed a novel GA for airport baggage transport vehicle scheduling to improve customer service and
provide efficiency and safety for airport operations. By considering population diversity and population
fitness simultaneously the proposed GA considers both exploitation and exploration abilities. Real data
is used in the proposed algorithm to evaluate its effectiveness and feasibility. The simulation results in-
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dicate that the proposed algorithm is able to achieve competitive performance in addressing the airport
baggage transport vehicle scheduling problem.

5.2.2. Simulated Annealing
Simulated Annealing (SA) is a meta-heuristic optimisation method that is based on the concept of an-
nealing in metallurgy. The method simulates the process of heating and cooling a material to find the
optimal solution [90]. SA is often used to solve complex scheduling and resource allocation problems,
and it can find near-optimal solutions. The basic idea behind SA is to generate a sequence of solutions
to the optimisation problem, where each solution is generated by making a small random change to
the current solution. The new solution is accepted if it improves the objective function, and rejected
otherwise. However, SA also allows for the acceptance of worse solutions with a certain probability,
which is called the acceptance probability. The acceptance probability is determined by a temperature
parameter, which is gradually decreased during the optimisation process. The temperature parameter
controls the randomness of the search and is used to balance the exploration and exploitation of the
search space. At high temperatures, the acceptance probability is high, and the search is more random,
allowing for the exploration of the entire search space. At low temperatures, the acceptance probability
is low, and the search is more deterministic, allowing for the exploitation of the best solutions found so
far. [90, 60]

Themain advantage of SA is its ability to escape from local optima and to find near-optimal solutions [60].
SA can also handle problems with constraints and problems with non-differentiable or non-continuous
objective functions. However, SA also has some limitations, such as the difficulty of specifying the
appropriate parameters for the algorithm, such as the cooling schedule and the initial temperature. [90]

In the study of Yan and Shi [112], an optimisation approach to the operating efficiency of baggage turnta-
bles for arriving passengers is proposed by utilising the SA algorithm in the allocation of baggage claim
carousels. Simulation results demonstrate that the proposed algorithm yields improved performance
compared to the first-come-first-served distribution method. The results indicate that the SA algorithm
is a viable solution for addressing the problem of baggage claim carousel allocation and improving
operational efficiency.

5.2.3. Ant Colony Optimisation
Ant Colony Optimisation (ACO) is a meta-heuristic optimisation method that is also inspired by nature
by observing the behaviour of ant colonies [11]. The algorithm simulates the behaviour of ants as they
search for food, and uses this behaviour to find an optimal solution to a problem. In ACO, a set of virtual
”ants” move through the solution space, each leaving a trail of ”pheromones” behind. The strength of
the pheromone trail represents the quality of a particular solution. As the ants move through the solu-
tion space, they update the pheromone trails based on the quality of the solutions they find. Over time,
the pheromone trails converge on the best solutions, and the ants are able to find the optimal solution
more efficiently. [76]

ACO can be applied to resource allocation optimisation problems by representing each resource as
a node in a graph, and the solution as a path through the graph. The ants move through the graph,
selecting the next node to visit based on the pheromone trails and a probability that is influenced by the
quality of the resource. The pheromone trails are updated based on the quality of the solutions found
by the ants. ACO is a powerful optimisation method that can handle large-scale, real-life problems and
can take into account the dynamic nature of airport operations. It is particularly useful for routing and
scheduling problems, which are common in airport operations.[29]

An improved ACO algorithm is proposed by Du et al. [30] to optimise airport ground service schedul-
ing. In this study, a multi-objective model for vehicle routing problem with tight time windows, short
travel time and re-used vehicles is presented. The model aims to minimise the number of vehicles
used, the total start time of serving flights, and the total flow time of vehicles. An ACO algorithm is pro-
posed as a solution method for this discrete optimisation problem due to its ability to efficiently handle
multi-objective problems. The results of numerical computations demonstrate that the proposed ACO
algorithm is able to construct high-quality solutions in a reasonable time frame.
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1
Forecast Method Testing

In order to test the forecast methods that were identified during the literature study, a dataset was set-up to
find out which methods are able to make an accurate prediction and what the differences are. In this chapter,
section 1.1 explains what the dataset entails and how the forecast methods will be tested against each other.
Subsequently, section 1.2 presents the results of each forecast method and the trade-off that has been made.

1.1. Used Data & Test Set-Up
In order to test the forecast methods based on data that could be real, a dummy dataset has been created by
adjusting a real dataset that contains the average baggage factor (BF) per day of an airline for one year (2022).
Each method will be tested for a forecast period of 7 and 30 days. The test set-up consists of the following
metrics:

• Accuracy score (R-squared score): used to assess the goodness of fit of a regression model in forecasting.
It indicates how well the model’s predictions explain the variability observed in the actual data. It ranges
from 0 to 1, with a higher value indicating a better fit of the model to the data.

• Ability to capture trend and seasonality: it is known that the BF has a certain trend and seasonality over
the years and therefore it is important that the model is able to capture this to improve the performance.

• Use of explanatory variables: some forecast methods base their prediction only on the target variable,
whilst others are able to use explanatory variables to improve the forecast performance by understand-
ing why the target variable has certain values over time.

• Dealing with irregular time intervals: the dataset on which the final model must be able to make pre-
dictions will contain an arbitrary amount of flights on each day and therefore it is not possible to make
predictions for each individual flight by prediction based on a regular time interval.

• Model complexity: the more complex a model is, the better the prediction could become. However,
since employees of FACT at Schiphol must be able to use and most importantly understand it, a trade-
off must be made between performance and model complexity.

• User friendliness: similar to the previous point, employees must be able to understand and use the
tool. Therefore, it must be relatively easy to understand how the model works and how to adjust it if
necessary.

• Computationally expensive: a model that takes some time to make its predictions is okay. However,
since predictions are prone to errors, a model that is not too computationally expensive is required to
be able to do multiple runs during a day if necessary.

• Overfitting: when developing models, there are measures against overfitting. However, it is still impor-
tant to take this into account for each method to see what can be done against it and how sensitive it
is.
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1.2. Forecast Method Results
The forecast methods were subjected to testing by generating forecasts for both 7-day and 30-day periods.
Given the similarity of the results, only the predictions for the 30-day period are depicted in the figures. The
initial methods evaluated included the moving average (MA) and double and triple exponential smoothing
(ES), with their corresponding results presented in Figures Figure 1.1, Figure 1.2, and Figure 1.3. The MA
method exhibits a certain trend in its predictions but fails to capture the majority of the peaks observed in
the data. On the other hand, the Holt ES method manages to capture the trend of a sudden increase in the BF
during the last week, but it does not accurately replicate the underlying pattern. The Holt-Winters method,
another form of ES, exhibits a slight improvement in capturing the pattern when combined with the trend
component, although it still deviates significantly from the actual values.

Moving forward to the Box-Jenkins method, the methodology commences with Autoregression (AR), with
the outcomes shown in Figure Figure 1.4. This particular method demonstrates proficiency in identifying
patterns within the data; however, it struggles to immediately identify abrupt shifts due to insufficient infor-
mation. By incorporating AR with MA and integrating the Integral part, the Autoregressive Integrated Moving
Average (ARIMA) model is formed, as depicted in Figure Figure 1.5. The amalgamation of AR, MA, and the
Integration component grants the model the ability to recognize both the pattern and trend, resulting in im-
proved performance compared to the aforementioned methods. Nonetheless, the ARIMA model remains
unable to capture the initial peak during the winter holiday season. In order to capture this peak and en-
hance model accuracy, the inclusion of Seasonal and exogenous factors becomes imperative, leading to the
development of the SARIMAX model. Figure Figure 1.6 demonstrates that the addition of a holiday feature as
an exogenous factor empowers the model to make highly accurate predictions.

Figure 1.1: 30-day forecast with the MA method Figure 1.2: 30-day forecast with the Holt ES method

Figure 1.3: 30-day forecast with the Holt-Winters ES method Figure 1.4: 30-day forecast with the AR method
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Figure 1.5: 30-day forecast with the ARIMA method Figure 1.6: 30-day forecast with the SARIMAX method

Up to this point, the methods employed were primarily time series methods. However, the subsequent
analysis focuses on supervised machine learning models. First, the results for the Multiple Linear Regression
(MLR) method can be observed in Figure Figure 1.7. MLR models have the capability to incorporate exoge-
nous variables, and the results demonstrate the beneficial impact of this feature. The accuracy achieved by
the MLR model is remarkably high, with nearly perfect replication of the underlying pattern. Similarly, the
decision tree-based methods, namely Random Forest (RF), XGBoost, and LightGBM, exhibit exceptional per-
formance as depicted in Figures Figure 1.8, Figure 1.9, and Figure 1.10, respectively. An advantage of decision
tree methods is that they are not contingent upon regular time intervals, as the decision tree approach does
not rely on such temporal considerations. Conversely, when the MLR method was tested with irregular time
intervals, the results were less accurate.

In addition to the aforementioned models, two advanced machine learning and deep learning models
were developed: Prophet and DeepAR, with their corresponding outcomes presented in Figures Figure 1.11
and Figure 1.12, respectively. The Prophet model exhibits remarkable accuracy in its predictions, while the
DeepAR model deviates significantly from the actual values. Both models have the ability to incorporate
external features for enhanced prediction capabilities. It is worth noting that the lack of accuracy in the
DeepAR model may stem from improperly set parameters for this specific type of data. In summary, the su-
pervised machine learning models, such as MLR, decision tree-based methods (RF, XGBoost, LightGBM), and
advanced models (Prophet, DeepAR), demonstrate varying degrees of accuracy and capability in capturing
patterns. The MLR model and decision tree-based methods prove to be highly accurate and robust, while the
advanced models yield mixed results, with Prophet exhibiting high accuracy and DeepAR falling short.

Figure 1.7: 30-day forecast with the MLR method Figure 1.8: 30-day forecast with the RF method
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Figure 1.9: 30-day forecast with the XGBoost method Figure 1.10: 30-day forecast with the LightGBM method

Figure 1.11: 30-day forecast with the Prophet method Figure 1.12: 30-day forecast with the DeepAR method

In conclusion, it is evident that the inclusion of exogenous factors in the final forecast model is crucial, and
the utilisation of machine learning methods yields significantly higher accuracy compared to the time series
models. Furthermore, all machine learning models demonstrate the ability to capture trend and seasonality,
while also incorporating exogenous variables. Although most of these models can accommodate irregular
time intervals, they generally possess greater complexity and are less user-friendly in comparison to the time
series models. Consequently, the decision has been made to proceed with the utilisation of decision tree
methods, specifically gradient boosting, for the development of the final forecast model. The primary reasons
behind this choice are the models’ capability to generate accurate predictions and their capacity to provide
insights into the decision-making process (such as how trees are constructed and which features contribute
to the highest model gain), thus enhancing user-friendliness. Additionally, the computational time required
for these models is relatively fast when compared to other approaches. It is important to note that overfitting
can be a potential issue with these models. However, this concern can be addressed through hyperparameter
tuning and careful selection of features to ensure optimal model performance.



2
Initial Data Analysis

This chapter presents a preliminary analysis of the data, providing insights into the short-term and long-
term patterns observed throughout the year 2022. Figure 2.1 illustrates the average BF per week. The results
indicate a significant increase in BF during the winter season, compared to other times of the year. Moreover,
a slight rise in the average BF is observed during the summer season. In contrast, Figure 2.2 displays the total
number of checked baggage items per week. The pattern differs significantly from the previous figure. It is
evident that a greater number of baggage items are transported during the summer season in comparison
to other periods. This difference can be attributed to the increased number of flights departing during the
summer season. Notably, the average BF remains relatively constant despite these variations.

Upon closer examination of the weekly data, Table 2.1 presents the average BF per weekday. The weekdays
generally exhibit a relatively stable pattern in terms of BF, except for Saturday, which displays a modest in-
crease of approximately 0.1 in BF compared to other weekdays. Further analysis focusing on daily variations
is provided in Table 2.2, which showcases the disparities in average BF across different time periods. Two
noteworthy observations emerge from the analysis. Firstly, the time period between 08:00 and 16:00 emerges
as the busiest interval of the day, characterised by the highest average BF. Secondly, even though the number
of departing flights decreases after 21:00, the BF remains considerably high in comparison to other time peri-
ods. This phenomenon can be attributed to the prevalence of intercontinental flights during this late period,
which tend to involve a significant number of checked baggage items. Lastly, the analysis in Table 2.3 pro-
vides the average BF for both European flights and intercontinental flights. The results clearly demonstrate
that intercontinental flights exhibit a significantly higher average BF compared to European flights.

Figure 2.1: Average BF per week in 2022 of all flights
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Figure 2.2: Total bax per week in 2022 of all flights

Table 2.1: Average BF per weekday in 2022 of all flights

Weekday Average BF
Monday 0.592
Tuesday 0.615

Wednesday 0.611
Thursday 0.590

Friday 0.587
Saturday 0.692
Sunday 0.613

Table 2.2: Average BF per time period in 2022 of all flights

Time Period Average BF % of all flights
00:00-04:00 0.592 0.1
04:00-05:00 0.495 2.4
05:00-06:00 0.479 5.2
06:00-07:00 0.570 5.6
07:00-08:00 0.627 6.9
08:00-09:00 0.705 7.9
09:00-10:00 0.715 7.4
10:00-11:00 0.729 7.1
11:00-12:00 0.722 5.6
12:00-13:00 0.705 7.8
13:00-14:00 0.694 6.3
14:00-15:00 0.664 5.8
15:00-16:00 0.600 6.5
16:00-17:00 0.443 3.9
17:00-18:00 0.390 3.2
18:00-19:00 0.512 4.8
19:00-20:00 0.579 8.3
20:00-21:00 0.587 4.8
21:00-22:00 0.803 0.3
22:00-23:00 0.852 0.1
23:00-24:00 - 0.0
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Table 2.3: Average BF per outbound range in 2022 of all flights

Outbound Range Average BF
Europe 0.544

Intercontinental 0.971
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