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Abstract

Semantic 3D city models are essential for visualising, analysing, and managing the built
environment. CityGML is an international standard for representing 3D spatial information
with a Unified Modelling Language (UML)-based data model to address data heterogeneity
and facilitate data exchange. Common formats for encoding CityGML data include Extensible
Markup Language (XML), CityJSON, and relational databases, with PostgreSQL preferred for
its spatial data management capabilities enhanced by PostGIS.

Although relational databases like 3D City Database (3DCityDB) support CityGML v.1.0 and
2.0, challenges remain due to complex schemas and the need for advanced Structured
Query Language (SQL) knowledge to access nested features and attributes of the encoded
CityGML data, especially through Geographical Information System (GIS) software like QGIS,
which is widely used by Architecture, Engineering and Construction (AEC) professionals.
To address these issues, the 3DCityDB-Tools plug-in for QGIS (plug-in) developed by the 3D
Geoinformation group at TU Delft [1] simplifies interactions with 3DCityDB-encoded data by
providing a user-friendly QGIS interface, enabling the creation of GIS layers composed of
unique feature geometries and associated with attributes. With the release of CityGML v.3.0
in 2021, 3DCityDB is being updated to version 5.0, requiring corresponding changes to the
plug-in for compatibility.

This thesis investigates the changes in the CityGML spatial concepts and the differences in
3DCityDB encoding. The methods are derived based on the 3DCityDB v.5.0 structure, which
consists of schema-wise scans for checking the existing feature geometries and attributes.
The scan results are then stored in the metadata tables for users to select the desired feature
geometries and attributes for generating GIS layers. In the implementation, feature geometries
are determined by the inherited fixed spatial properties of space or boundary features. In
contrast, the feature attributes are classified into four types: ”Inline-Single”, “Inline-Multiple”,
”Nested-Single” and “"Nested-Multiple” according to the modified 3DCityDB encoding. Each
type requires specific flattening(linearisation) strategies to be joined with the geometries.
Finally, users can generate GIS layers by joining the queried feature geometries and attributes.
Several query time performance tests are conducted to determine the method for storing
query results and creating the layers.

The generated GIS layers demonstrate flexible access to the feature geometries and attributes
with enhanced attribute management. The attribute flattening method facilitates the consump-
tion of complex attributes, making them accessible for batch querying in QGIS. While direct
editing of geometries and attributes in GIS layers is not yet supported, these advancements
increase the usability of CityGML data. Coping with the XML complex feature schema is a
persistent technical challenge in the GIS applications; the proposed approach provides promis-
ing alternatives that align with the ongoing development efforts in the QGIS community,
offering a complementary pathway for handling complex geospatial data.
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1. Introduction

1.1. Motivation

Semantic 3D city models are commonly used for data visualisation and analyses in the built
environment. A 3D City Model is a source of harmonised and integrated information for
various application domains, including urban planning, energy demand assessment, and
environmental management [2]. Storage and management of semantic 3D city model data
can be achieved in CityGML, an international standard adopted by the Open Geospatial
Consortium (0GC) [3].

CityGML represents city objects as a standardised UML-based conceptual data model to
address the challenges of data heterogeneity, which stems from diverse data sources and
storage formats. It caters to various use cases where data interchangeability is required. The
principle of CityGML focuses on accommodating and exchanging spatial and non-spatial
data related to semantic 3D city models while maintaining hierarchical relations between city
objects [3]. For example, buildings can have building parts or other elemental components
such as walls and roofs with their specific attributes.

Several data encodings exist for CityGML data. Two of the most common formats are the
file-based XML [4] and JavaScript Object Notation (JSON), commonly known as City]JSON,
which is a compact subset of the CityGML data model [5]. A third option is the use of
Relational Database Management Systems (RDBMSs). Due to the large size of 3D city models,
relational databases are the most suitable solution for managing a large amount of spatial
data. Relational databases are organised collections of structured data, typically modelled in
rows and columns within tables related to one another using a unique ID called the key [6].
An RDBMS is software that provides an interface between users, applications, and databases,
enabling users to access and manage the data stored in relational databases [7]. Commonly
used RDBMSs include PostgreSQL [8] and Oracle [9]; however, only PostgreSQL is applied in
this research due to its powerful open-source solution for spatial data management when
combined with the PostGIS [10] extension.

For importing CityGML data, users can utilise “cjdb”, an open-source solution for storing
City]JSON files in PostgreSQL [11], or another open-source RDBMS called 3DCityDB [12, 13].
3DCityDB is developed for PostgreSQL, Oracle, and PolarDB/Ganos relational databases.
Its data schema implements the CityGML standard with detailed semantics and multi-
level representations of city objects. In addition to the database schema, the 3DCityDB
is equipped with a suite of tools known as the “3DCityDB Suite” [14], which facilitates
data import from XML-based CityGML and CityJSON files into the database and data
export in Keyhole Markup Language (KML), COLLAborative Design Activity (COLLADA), and
Graphics Language Transmission Format (gITF) formats for visualisation in Google Earth and
Cesium]S [15]. In contrast, while “cjdb” focuses on reducing hard disk space consumption by
minimising the number of relational tables and extensively using JSON blobs, this approach
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limits the use of PostGIS functions in PostgreSQL. Consequently, 3DCityDB is used in this
research due to its comprehensive support for CityGML data.

The current 3DCityDB in use is the version of 4.x, derived from the CityGML v.2.0 conceptual
model. The database imports the CityGML files and converts the city object data and its
associations to predefined tables based on the mapping rules consistent with CityGML2.0
standards. The data encoded in this way has several benefits for data application. Firstly, users
can directly interact with the data stored in 3DCityDB-standardised tables via SQL queries
without the hassle of parsing XML or JSON files [15], and these queries can be improved
in terms of search time efficiency from the embedded indices, e.g. B-Tree, supported in
PostgreSQL to cope with large dataset. Secondly, users can define functions tailored for
specific applications using procedural languages like PL/pgSQL. Lastly, it enhances the
usability of CityGML data by allowing users to define different types of Application Domain
Extension (ADE) according to specific extension rules [13].

Although the 3DCityDB tool was developed to manage the usage of CityGML data, its structure
remains rather complex for users with basic SQL skills. For example, the current 3DCityDB
v.4.x consists of 66 predefined tables for storing the features and their relations. The attributes
related to the same CityObject class (e.g. Building) are scattered across multiple linked tables
with sets of primary and foreign keys to manage their relations. Moreover, CityGML allows
for nested features and complex data type attributes, which are nested feature properties that
contain other elemental attributes to represent data collections [16]. For instance, buildings
can have various geometry LoDs and representations, such as LoD1 solid or LoD2 multi-surface,
etc. Additionally, buildings in LoD2 multi-surface can be further represented by aggregating
their thematic surfaces, i.e. walls, roofs and grounds, which are structured as nested features.
As for the feature attributes, the measured height of the buildings combines two basic types:
the double height values and the measuring unit in strings as complex attributes to express
the height of the building. The query shown in Figure 1.1 offers an example to retrieve
building roofs built since 2015 from the 3DCityDB, showing that all related tables must be
joined and geometries must be collected to achieve the desired output [15].

SELECT
ts.id AS roof_id,
co_ts.gmlid AS roof_gmlid,
b.id AS building_id,
co.gmlid AS building_gmlid,
b.year_of_construction,
7 ST_Collect(sg.geometry) AS roof_geom
s FROM
citydb.thematic_surface AS ts
INNER JOIN citydb.cityobject AS co_ts
ON (co_ts.id = ts.id)
INNER JOIN citydb.surface_geometry AS sg
ON (ts.lod2_multi_surface_id = sg.root_id)
INNER JOIN citydb.building AS b
ON (b.id = ts.building_id)
INNER JOIN citydb.cityobject AS co
ON (co.id = b.id)
WHERE
ts.objectclass_id = 33 AND -- roofsurfaces
b.objectclass_id = 26 AND -- buildings
2 b.year_of_construction >= ’2015-01-01’::date
22 GROUP BY
ts.id,
co_ts.gmlid,

2 b.id, ....'1'P’
6 co.gmlid,
b.year_of_construction
s ORDER BY '

b.id,
ts.id;

Figure 1.1.: Example of the query to extract the roofs of the buildings built since 2015 from
the data stored within 3DCityDB (figure from [15])



1.2. Research Questions and Objectives

Since most users work with spatial data, the AEC practitioners nowadays are most likely
using the application GIS. The complex features of CityGML data stored in 3DCityDB do not
follow the Simple Feature for SQL Model (SFS model)[17], which is a vector representation
adopted by most of the GIS software, for instance, the ArcGIS from the Environmental System
Research Institute (ESRI) and open-source QGIS. The SFS model structures a feature class as a
table that takes different features as an entry with unique identifiers followed by columns of
its geometry and attributes [18]. The factors mentioned above limit the access of CityGML
data stored in 3DCityDB, implying that a user would have to be equipped with advanced
knowledge of both SQL and the 3DCityDB structure for processing the data to consume the
nested features and complex data type attributes following the CityGML model through GIS
software [15].

To tackle the limitations of 3DCityDB, a plugin called “plug-in” [1] has been developed by the
3D Geoinformation group at Technische Universiteit (TU) Delft to alleviate the complexity of
3DCityDB schemas in the background. It provides a user-friendly, Graphical User Interface
(GUI)-based interface directly working within QGIS, which comprehensively takes user inputs,
runs corresponding queries on the server-side to perform operations like spatial and semantic
filters and structures the result as classic GIS layers. The proposed layers-based concept
enables users to interact with the data encoded in 3DCityDB more intuitively, allowing data
editing by QGIS tools or plug-in functions [15].

The main purpose of the plug-in is to encourage the use of CityGML/City]SON data for users
with limited experience with SQL and Spatial-RDBMSs, narrowing the gap between them and
complex 3D city models, as the management of semantic 3D city models can generally be
optimised by spatial databases like 3DCityDB. The user-friendly interface supported by the
plug-in is expected to facilitate further development of open-source 3DCityDB by including
practitioners from heterogeneous backgrounds with their aids, which thus expands the
usability of 3D city model data [15, 19].

In the meanwhile, the OGC published the CityGML v.3.0 standard in September 2021[20],
which introduces improved conceptual data models, a revised space and LoD concepts such
as logical space and physical space to address the spatial characteristics and the support
of time-dependent Internet of things (IoT) data, etc [21]. The 3DCityDB is being updated
to version 5.0 to add full support for CityGML v.3.0. However, the current 3DCityDB-Tools
plug-in for QGIS only supports CityGML v.1.0 and 2.0. Therefore, the goal of this research is
to investigate how the new database structure of the 3DCityDB v.5.0 can be coupled with the
existing 3DCityDB-Tools plug-in for QGIS to enable support not only for the existing version
4.x but also for the upcoming version 5.0.

1.2. Research Questions and Objectives

The main objective of this thesis is to explore methods for enhancing the server-side of
3DCityDB-Tools plug-in for QGIS, adapting functionalities to support 3DCityDB v.5.0 and,
consequently, CityGML v.3.0. To achieve this goal, this thesis aims to answer the main
research question, together with the following specified sub-questions:

How does the new database structure of 3DCityDB v.5.0 affect the current methods of the
plugin to create layers which contain both geometries and attributes for a selected feature
type following the SFS model? In particular,
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1. How do the new CityGML 3.0 concepts of space, and LoD affect the process?
2. Regarding geometries, can the same or a similar approach be reproduced?
e [s it still necessary to rely on the materialized views?
* What alternatives are there?
3. Regarding attributes, can the same or a similar approach be reproduced?
e [s it still necessary to rely on updatable views?
* What alternatives are there?
4. How is the CityGML v.2.0 data mapped to the new schema of 3DCityDB v.5.0?

e Can we deal with CityGML v.2.0 data as CityGML v.3.0 data as long as it is
stored in the 3DCityDB v.5.0?

1.3. Research Scope

According to the specified research questions, this thesis aims to reproduce the layers-
based method implemented by the current plug-in with the new 3DCityDB v.5.0 database
structure. The layers generated by the current plug-in for GIS software consist of two parts:
the retrieval of feature geometries as the entries followed by their corresponding feature
attributes. Therefore, the main focus is on the server-side of the plug-in, providing methods
to collect feature geometries and attributes separately and eventually create GIS layers in
QGIS for the usage of CityGML data encoded with 3DCityDB v.5.0. The client-side aspect
is not entirely outside the scope of this research; suggestions for the client-side, such as
GUI modifications, are discussed, as certain adjustments are expected to adapt the plug-in to
changes on the server side.

The CityGML v.3.0 data model has 15 thematic modules. The research only focuses on
gathering feature geometries and attributes of the classes in the following modules: “Build-

ing”, “Bridge”, “Tunnel”, ”Vegetation”, “CityFurniture”, ”“Generics”, "Relief”, “LandUse”,
“Transportation” and “WaterBody”, which are ten modules in total.

The ”"Construction”, “"Dynamizer”, “Versioning” and “PointCloud” are four newly added
modules in the new CityGML v.3.0 standards. At the time of this research, the 3DCityDB
v.5.0 does not support the “PointCloud” module in the database, and its development is
still in progress. Considering that the four new modules and the ”CityObjectGroup” and
”Appearance” modules are about additional semantics or modules that are not directly related
to urban object types, these six modules are excluded from this research.

The development of this thesis is based on CityGML data encoded by 3DCityDB-Command-
line-tool-0.8.1-beta [22] for PostgreSQL/PostGIS, operated with the aid of an open-source
management tool for PostgreSQL, pgAdmin 4 v.8.12 and QGIS Long Term Release (LTR)
v.3.34.8-Prizren for GIS layers visualisation and operation.
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1.4. Thesis Structure

The research begins by familiarising with the mapping structure of the CityGML data to the
new data schema in 3DCityDB v.5.0. Methods for collecting and processing feature geometries
and attributes are then developed according to the new 3DCityDB encoding. Experiments
on geometry and attribute views, or materialized views, are conducted to test query time
efficiency for decision-making. Finally, with the generated feature geometry and attribute
views, approaches for GIS layer creation are introduced, followed by the discussion on the
results and future adaptations of the plug-in tailored for the 3DCityDB v.5.0.

Following this Introduction section, the rest of the thesis is structured as follows:

Chapter 2 provides the theoretical and technical background of this thesis, including a
brief introduction to CityGML v.2.0, v.3.0 and the fundamental change of the geometry
and LoD concept, followed by the 3DCityDB encoding the structural difference between
3DCityDB v.4.x and 5.0. Furthermore, the structure of the current plug-in is covered to
introduce its structure and the methods implemented to create SFS model layers for 3D
city model data usage in QGIS.

Chapter 3 identifies the potential use cases of the CityGML data stored in 3DCityDB
v.4.x through QGIS, which clarifies the research objectives for adding plug-in server-side
support to the 3DCityDB v.5.0.

Chapter 4 elaborates the methodology for checking existing feature geometries and
attributes in the target dataset and for collecting feature geometries based on available
geometry representations and LoDs. The four attribute classes—"Inline-Single”, ”Inline-
Multiple”, "Nested-Single”, and “Nested-Multiple”—are introduced to facilitate the
collection and flattening (linearisation) of feature attributes encoded within 3DCityDB
v.5.0. Subsequently, the approaches for GIS layer creation are presented, detailing the
methods used for joining feature geometries with their corresponding attributes.

Chapter 5 first provides setup instructions for 3DCityDB v.5.0 and CityGML data import,
then explains the implementation process for checking the existence of feature geome-
tries and attributes, treating them as metadata to be collected and stored in PostgreSQL
views or materialized views. The implementation details for creating feature geometry
and attribute views are presented in SQL templates, demonstrating the dynamic query
generation via the SQL Procedural Language (PL/pgSQL) function developed in this
research.

Chapter 6 proposes three approaches for joining feature geometries and attributes
to create GIS layers that comply with the SFS model. This is followed by a layer query
performance test to determine the most effective approach. The results of the generated
layers using the test datasets are then presented, utilising the chosen approach.

Chapter 7 evaluates the achievable use cases based on the methodology and imple-
mentation presented in this research and identifies areas for future development of the
plug-in.

Chapter 8 reveals the conclusions, discussion, and limitations, followed by the proposal
for future development.






2. Related work

This chapter provides an overall review of the related background relevant to this research.
Firstly, the CityGML data model is introduced (Section 2.1). Secondly, the 3DCityDB structure
is explained with a focus on the feature geometries and attributes of their encoding in the data
schema, which are the pre-defined tables that are queried as the source tables (Section 2.2).
Thirdly, the functionalities of “view” and “materialized view” methods supported by RDBMS
are covered as these functions form the technical base for GIS layer creation provided by
the current plug-in (Section 2.3). Finally, the review of the current plug-in is covered with the
server-side and client-side structures and the tests and limitations, giving the introduction of
the proposed layer methodology (Section 2.4).

2.1. CityGML

The current plug-in built for the usage of CityGML data encoded in 3DCityDB supports both
CityGML v.1.0 and v.2.0. However, the data model version commonly in use nowadays is the
CityGML v.2.0. Thus only this standard version is introduced. Moreover, the CityGML v3.0
standards released by the OGC in 2021 introduced significant changes, particularly in feature
geometry and LoD concepts. The following paragraphs give an overview of the characteristics
of CityGML v.3.0 together with the main difference from CityGML v.2.0 in terms of geometry
and LoD concepts.

CityGML defines the classes and relations for the most relevant topographic objects in cities
and regional models concerning their geometrical, topological, semantic, and appearance
properties. It allows visualisation for 3D models and enables thematic queries, analysis tasks,
or spatial data mining, satisfying the information needs of various application fields [20]. The
principle of the CityGML is to represent reality with all the different types of urban objects
and their relations, which is achieved by grouping different object classes in specific thematic
modules (Figure 2.3). For example, the “Building” module contains all relevant sub-classes
used to model buildings, etc. All thematic modules import the Core module with common
properties, representing how object characteristics and their relations are set in reality.

2.1.1. CityGML v.2.0

CityGML v.2.0 was published in 2012 as an update of the CityGML v.1.0 standard, first
released in 2008. The structure of CityGML v.2.0 follows a core-thematic modular hierarchy,
where all classes in the thematic modules are derived from the Core module, sharing common
attributes.

In CityGML v.2.0, the Core module defines the basic feature class, which is the abstract
class “_CityObject” as all classes in the thematic modules are derived from this starting
point abstract class (Figure 2.1). The spatial properties of city objects are represented by
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objects of Geography Markup Language (GML)3’s geometry model based on the standard
ISO 19107 ”Spatial schema” [23], representing 3D geometry according to the well-known
Boundary Representation (B-Rep, cf.[24])[3]. The feature geometry and LoD concepts are
associated with the thematic modules, for example, the Building module in Figure 2.2,
indicating that the geometry representation of a feature is determined by the degree of its
semantic decomposition [25]. For instance, the geometry of a building can be represented
by a prismatic geometry (Solid) in LoD1 or by an aggregated geometry (MultiSuface) of its
thematic component geometries such as wall, roof and ground surfaces in LoD2 or have more
details in LoD3 [15]. The primitive geometry type in CityGML v.2.0 is planar polygons [26],
implying that the corresponding component polygons need to be collected when referencing
each feature geometry representation.

Moreover, feature geometry representations vary in LoDs according to the specification of
different thematic object classes, limiting the available geometry representations of certain
features. For instance, the Building thematic surface features are only available starting from
LoD2, and the interior Building Room features are only available in LoD4 [25].
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<<Feature>> 4
gml::_FeatureCollection
<<DataType>> <<DataType>> <<DataType>>
gen::stringAttribute gen::intAttribute gen::doubleAttribute
+value : xs::string [1] +value : xs::integer [1] +value : xs::double [1]
<<!=eature>> 0.1
CityModel T <<DataType>> <<DataType>> <<DataType>>
. gen::dateAttribute gen::uriAttribute || _gen::genericAttributeSet
+value : xs::date [1] +value : xs::anyURI [1] +codeSpace : xs:anyURI [0..1]
cityObjectMember
. 0 1 <<DataType>>
<<Feature>> |__gen::measureAttribute |
*\|/ app::appearanceMember CityObject +value : gml:MeasureType [1]
<<Feature>> +creationDate : xs::date [0..1]
— app::Appearance pr::appearancoe +terminationDate : xs::date [0..1] :
+theme : xs::string [0..1] * « |trelativeToTerrain : RelativeToTerrainType [0..1] [~ generalizesTo
+relativeToWater : RelativeToWaterType [0..1]
<<Geometry>>
éﬁ [ gml::_Surface
[ I I T 1 02
<<Feature>> <<Feature>> <<Feature>> <<Feature>> <<Feature>> baseSurface
dem::ReliefFeature luse::LandUse veg::_ VegetationObject frn::CityFurniture wir::_WaterObject 1 T
<<Geometry>>
<<Fea.tur<.e>> . <<Feat.ure>> <<Feature>.> ) <fFeatL.1re>> gml::OrientableSurface
gen::GenericCityObject _Site tran::_TransportationObject grp::CityObjectGroup +orlentation : gmi::SignType [0-1]
[ ? 1 ZF
<<Feature>> <<Feature>> <<Feature>> <<Geometry>>
bldg:: A ildis tun:: A Tunnel brdg:: AbstractBridge tex::TexturedSurface

Figure 2.1.: CityGML v.2.0 Package UML diagram - Core module, part 2
(Figure from [3])
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Figure 2.2.: CityGML v.2.0 Package UML diagram - Building module

(Figure from [3])
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2.1.2. CityGML v.3.0

CityGML v.3.0 was introduced in 2021 by the OGC as a direct evolution of CityGML v.2.0. It
follows a similar structure to CityGML v.2.0, where the thematic modules inherit common
properties from the Core module (Figure 2.3). Notable changes include the introduction of
the “Construction” module, which is imported by the ”"Building
modules for better interoperability with other standards such as International Foundation
Class (IFC) and the addition of three new modules: “Dynamizer”, “PointCloud”, and ”Version-
ing”. These newly added modules are designed to address IoT data, spatial data represented

in point clouds, and changes in a city model, respectively.

7
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Figure 2.3.: CityGML v.3.0 Package UML diagram showing the dependencies of the Core

modules and all the thematic modules (Figure from [20])

The Core module composition of CityGML v.3.0 includes:

¢ City models represent real-world cities and landscapes, which can be represented by
aggregating different types of city objects, appearances, feature objects, etc. All objects
defined in the CityGML v.3.0 standard are featured with lifespans, allowing optional
existence specifications in real-world and database times. City objects are the features
that define thematic concepts in more detail properties like buildings, bridges, land use,

etc. [20].
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* Space concepts are a clear semantic distinction of spatial features, which are newly
introduced in CityGML v.3.0. It differentiates all city objects into spaces and space
boundaries. According to [21], “Spaces are entities of volumetric extent in the real
world”; for example, buildings, trees and traffic space have volumetric extent. “Space
boundaries are entities with the areal extent in the real world”, which can be differenti-
ated into different types of thematic surfaces, such as wall surfaces and roof surfaces.
Spaces can be further classified into physical spaces and logical spaces; physical spaces
are used to represent the volumetric extent bounded by physical objects in space, while
logical spaces are defined according to the thematic consideration, such as a building
unit aggregated by specific rooms to flats as a whole. The space concepts are crucial
characteristics in the CityGML v.3.0 Core module as the feature geometries are associ-
ated with the “AbstractSpace” and “AbstractSpaceBoundary” classes and the deriving
“AbstractThematicSurface” class shown in Figure 2.4.
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«Property»
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+ adeOfAbstract ADEOfAbstract i 0.7
«FeatureType» «FeatureType»
AbstractLogicalSpace AbstractPhysicalSpace 4

«Property» «Property» «FeatureType»

+  adeOfAbstractLogi ADEOfAbstractl [0.7] +  adeOfAbstractPhysi AADEOfAbstractPhysi [0.1] ClosureSurface
ZF «Property»
+ adeOICI ADEOLCI 0.1
«FeatureType» «FeatureType»
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«Property» «Property»
+  adeOfAbstractOccupi ADEOfAbstractO 0.1 +  adeOfAbstractl i ADEOfAbstractl i [0.7]

Figure 2.4.: CityGML v.3.0 Package UML diagram - Core module, Space concepts
(Figure from [20])

* Geometry and LoD concepts define the spatial properties, including the geometry data
types and the geometry LoDs of the CityGML features. The geometry and LoD concepts
are explained in more detail in Section 2.1.1 and Section 2.1.2 as they are highly relevant
to the feature geometry mapping in the 3DCityDB and the feature geometry extraction
of the current plug-in.

* Enumerations are the fixed list of named literal values defined by CityGML standards,
which consists of standardised valid values used for feature attributes.
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«enumeration»
RelativeToTerrain

entirelyAboveTerrain
substantiallyAboveTerrain
substantiallyAboveAndBelowTerrain
substantiallyBelowTerrain
entirelyBelowTerrain

Figure 2.5.: CityGML v.3.0 Package UML diagram Core module - an enumeration example of
“CityObject”’s “RelativeToTerrain” attribute valid values (Figure from [20])

* Codelists are the list of customised-defined values not in line with CityGML standards.
For instance, the “BuildingClassValue” from the OGC CityGML v.3.0 codelist repository
[27]

The CityGML v.3.0 Core module defines Space concepts and the basic abstract class, “Ab-
stractCityObject”, the starting point abstract class of all classes in the thematic modules
(Figure 2.4). The Space concepts are new semantic classes derived from “AbstractCityObject”,
which consists of two abstract classes, “AbstractSpace” and “ AbstractSpaceBoundary”, for vol-
umetric and areal extent, respectively. There are four deriving classes from “AbstractSpace”,
starting from the first derivation of “AbstractPhysicalSpace” and “AbstractLogicalSpace” to
classify physical and logical spaces to the second derivation of “AbstractOccupiedSpace”
and “ AbstractUnoccupiedSpace” to categorise physical space into physically occupied and
unoccupied spaces (Figure 2.4). The concrete classes in thematic modules such as Building,
Vegetation or Transportation inherit the common attributes from these abstract classes. From
the “AbstractSpaceBoundary” class, the “AbstractThematicSurface” class is derived, which is
the abstract class for all concrete surface classes like “ClosureSurface” or thematic surface
classes in the Construction module like “WallSurface”, “"RoofSurface”, etc. [21]

The spatial properties of CityGML v.3.0 features also utilise geometry data types from ISO
19107 [28]. However, the geometry and LoD concepts are specifically associated with the
classes “AbstractSpace” and “AbstractThematicSurface” in the Core module, as shown in
Figure 2.6. These two abstract classes possess geometry representations in different LoDs,
which are inherited by the thematic modules, and the geometries are directly stored without
decomposition. The modified spatial and LoD concept eliminates LoD4 and allows features to
be represented in mixed LoDs. For example, buildings can have their outer shell represented
in LoD2 and inner rooms represented in LoDO floorplans. The mixed-use of different LoDs
supports using 3D city models in applications that require detailed interior representations
but not necessarily the exterior, such as indoor navigation and energy analysis. This new
spatial and LoD concept enhances the flexibility in representing both the interior and exterior
of features and simplifies the geometry representations of all classes in the thematic modules,
as they share identical geometry and LoD concepts with the space and space boundary
abstract classes, except for the Relief module.

Since the Relief module is derived from the “AbstractSpaceBoundary” class, which is the
higher level abstract class of the “AbstractThematicSurface” class, the features in the Relief
module have their specified geometry and LoD concepts (Figure 2.7).
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Figure 2.6.: CityGML v.3.0 Package UML diagram - Core module, Geometry and LoD concept
(Figure from [20])
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Figure 2.7.: CityGML v.3.0 Package UML diagram - Relief module
(Figure from [20])
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The geometry representation of the “AbstractSpace” class includes LoDO “Point”, LoD1-3
“Solid”, LoD0,2-3 “MultiSurface”, LoD0,2-3 “MultiCurve”, LoD1-3 “TerrainIntersectionCurve”,
LoD1-3 “ImplicitRepresentation” and “pointCloud” these 17 geometry types. In the “Abstract-
ThematicSurface” class, the geometry representations include LoDO “MultiCurve”, LoD0-3
“MultiSurface” and “pointCloud” these six geometry types. The listed geometry types follow
the ISO 19170 standards [28]. The “Implicit Representation” is an additional geometry con-
cept that adheres to the ISO 19170 standards. This concept allows for storing prototypical
geometry, which can then be re-used or referenced whenever the corresponding feature
occurs [20].

The association of geometry and LoD concepts to the Core modules reduces the complexity of
features’” geometry representations. In CityGML v.3.0, all features are derived from the core
abstract space and space boundary classes, with limited LoDs and geometry representation
combinations. For example, the buildings can only be represented in the seventeen geometry
types, as the parent classes of the “Building” class are derived from the “AbstractSpace”
class (Figure 2.8). The revised geometry and LoD concepts also make the LoD representations
of the thematic surface classes more flexible, allowing classes like the “WallSurface” and
“GroundSurface” to have geometry in LoD0-1 while window and doors can be represented in
all LoD0-3 [25] as they are all inherit the six geometry types from “AbstractThematicSurface”
class.

For convenience, throughout this research, features derived from the ”AbstractSpace” class
will be referred to as “space features.” In contrast, features derived from the ”AbstractThe-
maticSurface” class will be referred to as “boundary features.”
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Figure 2.8.: CityGML v.3.0 Package UML diagram - Building module (excerpt)
(Figure adapted from [20])

As this research aims to support the new 3DCityDB developed for the CityGML v.3.0 standards,
differentiating the changes in geometry representations is essential. The new Space concepts
provide a clear scope for collecting all possible feature geometry representations as the entries
of GIS layers.

2.2. 3D City Database

The 3DCityDB up to version 4.x is an open-source geo-database suite allowing the import,
management, analysis, visualisation, and export of virtual 3D city models according to the
CityGML standards, supporting both versions 1.0 and 2.0. This data encoding type is based
on the Spatially-extended Relational Database Management System (SDBMS), which supports
all required geometry types and provides proper spatial indexing for both geometric and
topological analyses. It is compatible with most GIS tools [13]. SDBMS is usually deployed on
the servers to handle heavy data transactions made by the access to large 3D spatial data files
like GML and JSON [19].

The 3DCityDB schema is established to accommodate the CityGML model for storage and
processing. However, optimisations are applied for the database design to convert the
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conceptual model into compacted relational tables; otherwise, a one-to-one mapping of the
CityGML data model will result in a vast number of tables and relations in between [19].

This section gives a brief introduction to the database schema of both 3DCityDB v.4.x and
3DCityDB v.5.0, including the data schema tables that are frequently referenced by SQOL queries
for feature geometry and attribute retrieval.

2.2.1. 3DCityDB v.4.x

The latest release of 3DCityDB v.4.4.0 maps classes in CityGML v.2.0 to 66 database relational
tables in a PostgreSQL database schema, generating a default schema named “citydb” when
installed. It also allows creating multiple schemas with different names to accommodate
data regarding different scenarios. Additionally, a package of PL/pgSQL functions named
“citydb_pkg” is installed when the default schema is set up. The functions package offers
frequently used procedures [29] like the delete feature and cleaning the schema to facilitate
the use of 3DCityDB.

After a successful 3DCityDB set-up, spatial data can be imported into the database from a
CityGML or CityJSON file with the “3D City Database Importer/Exporter” tool. Users can
then access and use the data via SQL queries. 3DCityDB provides customised data import,
which allows users to import features within a specific extent or filter attributes based on
specified conditions. Moreover, a database report is made available for users to overview the
existing data in the 3DCityDB. Finally, the 3DCityDB supports the stored data to be exported
into files in the format of GML, Comma-Separated Values (CSV), XML, JSON, KML, COLLADA,
and gITF.

The 3DCityDB v.4.x encodes the city object classes in CityGML data concerning the database
complexity, operating performance and semantic interoperability. According to the mapping
characteristics from [13], the abstract class that holds all attributes and associations will be
inherited by the concrete sub-classes, and each of the sub-classes shall not have any further
attributes or be associated with other classes. The demonstration of converting the conceptual
model of the CityGML data model to the relational tables of the Building class in CityGML
v.2.0 is shown in Figure 2.9 as an example.

The rules above are applied by 3DCityDB to map classes belonging to an inheritance hierarchy
onto one table. For instance, the CITYOBJECT table in the 3DCityDB v.4.x database schema
stores all features and attributes derived from the starting point abstract class in the Core
module, the ”_CityObject” classes. For the abstract classes in different thematic modules (e.g.
Building module), a separate table associated with the CITYOBJECT table is created (e.g.
BUILDING table) to accommodate multiple sub-classes features (e.g. buildings, building
parts) and all the shared attributes since they are derived from the same abstract thematic class,
i.e. ”_AbstractBuilding” class. Moreover, an additional column objectclass_id is added to
distinguish different classes of the features stored in the abstract class tables [13] (Figure 2.10).
There are other tables in 3DCityDB v.4.x, such as the CITYOBJECT_GENERICATTRIB table, to
store the ”_genericAttribute” data type information related to all sub-class features derived
from the ”_CityObject” class (see Figure 2.1). Additionally, there is the ADE table for storing
the meta-information of an ADE, e.g., its name, description, version, etc. ADE information
is stored in separate data tables in 3DCityDB v.4.x. However, it is outside the scope of this
research.
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<<abstract>> B  cvosiecT
it ID : NUMBER <<PK>>
OBJECTCLASS_ID : NUMBER <<FK>>
GML Classes — GMLID : STRING
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Figure 2.9.: 3DCityDB Inheritance of ”"Building” class features mapping in CityGML v.2.0
(Figure from [13])
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OBJECTCLASS |
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*PK ID :NUMBER
«PK»
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Figure 2.10.: Example of mapping multiple classes onto one table in 3DCityDB
(Figure from [13])

In this approach, the sub-classes are logically mapped onto one table in the sat the same
inheritance hierarchy level to avoid multiple joins when retrieving data from-classes. It
also retains the storage efficiency as only the objectclass_id indicating the class names is
required to be added to the table [13]. The commonly used tables and their columns in the
3DCityDB v.4.x for data usage are briefly introduced in this paragraph, which include:

e CITYOBJECT table: It is used as a general registry table for querying the desired
features, containing the ID values of each feature as primary keys for referencing.
The objectclass_id values indicate the specific class names. General attributes like
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gmlid and name are inherited by the thematic features from the super abstract class
”_CityObject”. These general attributes are flattened (linearised) and associated with
each unique feature. The envelope refers to the bounding box geometry of features,
which can be used for extent selection at the data import (Figure 2.11).

Primary keys General attributes names & values
feature_ID T
id - objectclass_id , gmlid , name P description ;o envelope a8 gmaﬂon_date
[PK] bigint integer character varying (256) character varying (1000) character varying (4000) geometry timestamp with time zone
- id_box_building_26 Box building 26 This is a simple, primastic bui..  01030000A0407... 2024-06-19 14:51:28.752189+02
2 2 23 | id_group_1 Ancillary buildings group This group contains all ancill... 2024-06-19 14:51:28.757549+02
3 3 26 | id_building_07 Palapatine’s Residence This is Building 7 01030000A0407... 2024-06-19 14:51:28.759465+02
4 4 26 | id_building_03 Poe’s Hangar This is Building 3 01030000A0407... 2024-06-19 14:51:28.760716+02
5 5 26 | id_building_06 Amidala’s Palace This is Building 6 01030000A0407. 2024-06-19 14:51:28.761227+02

18

OBJECTCLASS_ID
(e.g., 26 stands for the Building class)

Figure 2.11.: Example of the CITYOBJECT table in 3DCityDB v.4.x

e "LINKED” tables: The "LINKED” table here is not an exact schema table name in the
3DCityDB v.4.x but is used to refer to the abstract class tables from the thematic mod-
ules. It contains primary ID keys and objectclass_ids that refer to unique thematic
features and their specific attributes stored in the feature-based approach, which are
already flattened (linearised). The foreign keys to the geometry roots are included
according to the geometry and LoDs representations specifications in different thematic
modules. Examples of "LINKED” tables can be the BUILDING table (Figure 2.12) for
storing features derived from the ”_AbstractBuilding” class such as ”"Building” and
”BuildingPart”.

Building feature_ID Specific attributes names & values
4
id » ijectclses_ld bglldlnq_rooUd P class , function , Igdo_foctpﬂnUd qu1_solld_ld
[PK] bigint integer bigint character varying (256) character varying (1000) bigint bigint
[+ ] (29) , : s
2 3 26 3 | habitation residential building 35 44
3 4 26 4 | traffic hangar 18 2
4 5 26 5 | habitation residential building 4 58
5 26 26 26 145 190
6 30 26 30 | habitation residential building 136 148
7 3 26 31 | habitation residential building—/\-hostel-/\—youth hostel 142 174
8 32 26 32 | healthcare hospital 139 162
9 36 26 36 | habitation residential building-/\-youth hostel 225 234
10 64 26 64 305 314
!

OBJECTCLASS_ID

Foreign keys to geometry roots
(e.g., 26 stands for the Building class) g y g y

Figure 2.12.: Example of the BUILDING table in 3DCityDB v.4.x

e CITYOBJECT_GENERICATTRIB table: It is used to store all generic attributes of the

thematic features, deriving from the ”_CityObject”, the starting point abstract class in
the Core module. Unlike the BUILDING table, where attributes are stored inline and
associated with unique feature_ids (SFS model), the generic attributes of buildings are
stored following the Entity-Attribute-Value Model (EAV model). The EAV model organises
data into three columns: Entity, Attribute, and Value. In this model, an entity represents
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an abstract object of some sort, and a collection of similar entities forms an entity set
which resembles a class of objects (e.g., buildings). An attribute refers to a specific
property of the entities in that set (e.g., building colour), and the value stores the actual
data associated with the attribute (e.g., “yellow”) [30].

The EAV model is designed to handle situations where an entity could potentially have
a huge number of attributes, but these attributes are not pre-defined or fixed in the
schema. Instead, new attributes can be added as needed without modifying the
database structure. Due to this flexibility, the EAV model is referred to as an open schema
or vertical database, as it supports the dynamic vertical storage of attributes [31].

Generic attributes are stored as separate attribute entries with their values in corre-
sponding columns according to their data types. They are associated with the features
(entity set) using foreign keys of feature_ids. This method allows the generic attributes
to be joined with the features as an associated table, displaying all related generic
attributes of each feature (Figure 2.13).

Foreign keys

Generic attribute names Generic attribute values feature_ID
’ root_genattrib_id ’ attrname ’ datatype strval intval ’ urival dateval unit o geomval  surface_geometry_id y cityobject_id
K] bigint bigint character varying (256) integer character var integer character var' timestamp wi character var geometry bigint bigint
33 33 | lod_max 0
3 31 | n_adjacent_buildings 0

16 16 | lod2_volume

75 75 | test_integer_att_group 12345
77 77 | test_real_att_group

63 63 | test_measure_att_group
73 73 | test_uri_att_group https://en.
81 81 | test_string_att_group Thisisat..
79 79 | test_date_att_group

65 65 | lod_max

2020-08-.

L N ORI VR S N

w N NN N NN

2

Figure 2.13.: Example of the CITYOBJECT_GENERICATTRI table in 3DCityDB v.4.x

e THEMATIC_SURFACE table: It stores the boundary feature relations, indicated by

the lod(number) multi_surface_ids. Relations between features driving from the
”_BoundarySurface” abstract class, such as “"WallSurface”, “GroundSurface”, "Roof-
Surface”, and their related “Building” features can then be retained. For example,
the building of feature_id 3 shown in Figure 2.14 can be represented by its related
thematic surfaces, including wall, ground and roof surfaces. Since the LoD concepts are
associated with thematic modules, limiting the availability of geometry representations,
the thematic surfaces of features like buildings are only available from LoD2 onwards.
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Thematic surface
feature_ID

id
[PK] bigint

objectclass_id
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Building feature_ID

building_id
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33 4
34 4

OBJECTCLASS_ID
(e.g., 33 stands for the BuildingRoofSurface class)
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Figure 2.14.: Example of the THEMATIC_SURFACE table in 3DCityDB v.4.x

¢ SURFACE_GEOMETRY table: It stores all the primitive geometries decomposed into
planar 3D polygons and solid geometries identified by the primary key ids. The
root_ids are set to specify the geometry roots for aggregation. The geometries stored in
it are collected for feature geometry representations when the feature spatial properties
are queried (Figure 2.15).

Primary keys
geometry_ID

gmlid
character varying (256)

id_lod0_MultiSurf_26
id_lod0_Polygon_26
id_lod1_Solid_26
id_lod1_CompSurf_26
id_lod1_Polygon_37

id
[PK] bigint

id_lod1_Polygon_38
id_lod1_Polygon_39
id_lod1_Polygon_40

© ® N s N

id_lod1_Polygon_41
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=

id_lod1_Polygon_42

8=
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Geometry root keys

1
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root_id
bigint

is_solid
numeric

7

©o o ©o©o©o©o 0o 0 00 = o o

Foreign keys

geometries feature_ID
t
[ il W Boocorr ST B aton i ] o
[nun) [nun) [null]
[nul] 01030000A04071000...  [null]
010F0000A0407100000...  [null] [null)
[null] [null] [null]
[null) 01030000A04071000...  [null]
[null) 01030000A04071000...  [null)
[null] 01030000A04071000...  [null]
[null) 01030000A04071000...  [null]
[null) 01030000A04071000...  [null]
[nul] 01030000A04071000...  [null]
[null) [nul) [null)
[nul) 01030000A04071000...  [null] 4

Figure 2.15.: Example of the SURFACE_GEOMETRY table in 3DCityDB v.4.x

e IMPLICIT_GEOMETRY table: It is referenced only when features have implicit spa-
tial properties. It stores the id primary keys of the implicit geometry attributes and
the keys named relative_brep_id are used to join with the root_ids from the SUR-
FACE_GEOMETRY table, collecting all the geometric components for aggregating the
prototypical geometries that are further used for implicit representations (Figure 2.16).
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Primary keys Foreign keys to
Implicit_geometry_ID geometry roots
1
id . gmlid . gmlid_codespace . mime_type ; reference_to_library . library_object _ | relative_brep_id ,;
[PK] bigint character varying (256) 7" character varying (1000) 7 character varying (256) character varying (4000) bytea ’ bigint
id_lod1_multisurf_tree L L L L 666
2 2 id_lod2_multisurf_tree 687
3 3 id_lod3_multisurf_tree 696

Figure 2.16.: Example of the IMPLICIT_.GEOMETRY table in 3DCityDB v.4.x

A typical query example used to extract the geometry of features usually involves the tables
above. Listing 2.1 gives an example of retrieving all roofs of buildings in LoD2 Multi-Surface
geometry representation from the CityGML data stored in the default 3DCityDB v.4.x schema
“citydb”. The query steps are explained below:

1. THEMATIC_SURFACE is called first to join with the CITYOBJECT table and filtered by
the objectclass_ids to get all the roofs.

2. BUILDING table is joined to further sort out the roofs that belong to buildings, which
is also achieved using the objectclass_ids.

3. SURFACE_GEOMETRY table is referenced by joining the root_ids with the desired
geometry representation and LoD key values, i.e. LoD2multi_surface_id from THE-
MATIC_SURFACE table to collect all the related polygons for aggregation.

4. The collected geometries are grouped by the cityobject_id for aggregation, showing
the multi-surfaces of roof features for each building.

1 SELECT
2 sg.cityobject_id AS co_id,

st_collect(sg.geometry) ::geometry(MultiPolygonZ ,28992) AS geom
4+ FROM citydb.thematic_surface AS o

INNER JOIN citydb.cityobject AS co

6 ON o.id = co.id AND o.objectclass_id = 33 -- RoofSurface class
7 INNER JOIN citydb.building AS b
8 ON o.building_id = b.id AND b.objectclass_id = 26 -- Building class

INNER JOIN citydb.surface_geometry AS sg
10 ON sg.root_id = o.lod2_multi_surface_id AND sg.geometry IS NOT NULL
11 GROUP BY sg.cityobject_id;

Listing 2.1: Example SQL query to extract all roofs of buildings in LoD2 Multi-Surface from
the data encoded in 3DCityDB v.4.x

2.2.2. 3DCityDB v.5.0

The CityGML v.3.0 introduces fundamental changes (see Section 2.1.2) to the data model. The
3DCityDB of version 0.8.1-beta [22] is used in this research for managing spatial data following
CityGML v.3.0 standards. Since the 3DCityDB has been continuously updated, for convenience
of reference, the 3DCityDB v.5.0 is used to distinguish all the new versions of the 3DCityDB
from the 3DCityDB v.4.x.

The 3DCityDB v.5.0 follows the same mapping rules as the 3DCityDB v.4.x described in Sec-
tion 2.2.1, in which the abstract class shall hold all the attributes and associations for the
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inheritance of the concrete subclasses, and each of the subclasses shall not have any further
attributes or associated with other classes [13]. However, since the geometry and LoD concepts
are elevated to the Core module and are inherited by all thematic classes in CityGML v.3.0 (see
Section 2.1.2), the schema tables of thematic abstract class, the “LINKED” tables mentioned
in Section 2.2.1 are removed, reducing the schema of the 3DCityDB v.5.0 to 17 tables.

The starting point abstract class table in 3DCityDB v.5.0 is renamed to the FEATURE table,
corresponding to the CITYOBJECT table in 3DCityDB v.4.x. All the feature attributes are
integrated and stored in the PROPERTY table following the EAV model, which, from the
structural point of view, bears similarities with the CITYOBJECT_GENERICATTRIB table in
3DCityDB v.4.x. The PROPERTY table has also been modified to accommodate the attributes
of thematic feature classes and the feature boundary relations. The revision of the 3DCityDB
schema reduces the operational complexity when performing queries to use the data stored
within 3DCityDB v.5.0. However, it also results in certain limitations, which are discussed in
Chapter 4.

The commonly referenced tables and their columns in the 3DCityDB v.5.0 for data usage are
briefly introduced in this paragraph, which include:

e FEATURE table: It stores all general information of features from the data stored in
the 3DCityDB v.5.0. It contains the primary key ids as an identifier of features. The
objectclass_id is included for differentiating the class names. The objectid, the
former gmlid in 3DCityDB v.4.x is stored as another identifier of features. Lastly, the
envelope is also included for storing the feature bounding box geometries, which can
be used for extent selection at the data import (Figure 2.17).

Primary keys OBJECTCLASS_ID
feature_ID (e.g., 901 stands for the Building class)
;gK] bigint i‘:xt;:flass_ld ?::fc‘ld 4 text 4 text - 4 l:' geome;ry 8 fi:ae:?anr;\‘:)a:veilh time zone 4
@ id_building_09-10 L 01030000A040710000... 2022-03-02 01:00:00+01
2 2 902 id_buildingpart_09 01030000A040710000.. 2019-11-17 01:00:00+01
3 3 712 id_building_9_roofsurface_1 01030000A040710000.. 2024-05-07 16:25:59.443185+02
4 4 712 id_building_9_roofsurface_2 01030000A040710000..  2024-05-07 16:25:59.445154+02
5 5 710  id_building_9_groundsurface_1 01030000A040710000..  2024-05-07 16:25:59.446458+02
6 6 709  id_building_9_wallsurface_1 01030000A040710000.. 2024-05-07 16:25:59.44691+02
7 7 15  id_building_9_closuresurface_1 01030000A040710000..  2024-05-07 16:25:59.447338+02
8 8 709  id_building_9_wallsurface_2 01030000A040710000...  2024-05-07 16:25:59.447844+02
9 9 709  id_building_9_wallsurface_4 01030000A040710000. 2024-05-07 16:25:59.448243+02
10 10 709  id_building_9_wallsurface_3 01030000A040710000...  2024-05-07 16:25:59.448622+02

Figure 2.17.: Example of the FEATURE table in 3DCityDB v.5.0

* PROPERTY table: It accommodates all feature attributes and relations following the
EAV model. (Figure 2.18). The columns frequently queried from this table are shown as
the following:

o id: It is the primary key, an identifier of attribute records.
o feature_id: It is a foreign key to link the attribute to the corresponding features.

o parent_id: It stores the relation of “Nested attributes”. These interconnected at-
tributes are termed nested attributes in this research. In the 3DCityDB v.5.0 encoding,
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id
[PK] bigint

feature_id | parentid
bigint bigint integer integer

2.2. 3D City Database

each nested attribute is stored across multiple rows, with parent attributes ap-
pearing first, followed by their child attributes linked via parent_id keys. Further
elaboration and examples of nested attributes will be provided in Chapter 4.

o datatype_id: It indicates the available data types in CityGML v.3.0 stored in another

schema table named DATATYPE. It is used to differentiate attribute types such as
integer, string, feature property, geometry or implicit geometry properties.

o namespace_id: It specifies which module of the attributes belong, which can be

linked to another schema table named NAMESPACE to select features from certain
modules.

o name: It stands for the attribute name, which is a vital column for querying the

data based on the feature attributes. For example, the spatial properties of building
features can have the property like “lod1Solid”, specifying buildings represented
as a Solid geometry in LoD1.

o val_: The column name prefix refers to the value columns storing the attribute

values. Based on the attribute data type, values of attributes are stored across dif-
ferent val_(data_type) columns, starting from val_int to val_content_mine_type.
There are 18 different value columns in the PROPERTY table, which are detailed
in Section 4.3.1.3.

Foreign keys

feature_ID All attribute names Al attribute values 18 value columns

datatype_id , namespaceid , name val_double val_string ~ E5 property
inte e

val_int
text T 7 bignt ' double precision # text « [ Columns (25)
description This is multi-part Building 9-10 fid

4 7

name. Jabba's multi-part Palace fi feature_id
lod2_volume 2500 fi parent_id
lod_max 2 fi datatype_id
n_adjacent_buildings o : namespace._id

name

num_residents a5 -
fl val_int
dateOfConstruction f val_double
height fl val_string
value 15 fi val_timestamp

status. measured wee 8 valuri

© o o e ® w w o w = =\

lowReference lowestGroundPoint f val_codespace

® ® @ @

H
®

highReference highestRoofEdge fi val_uom

=

class habitation fl valarray

H

function residential building i val_lod
roofType gabled roof f val_geometry_id
3 fi val_implicitgeom_id

© B

storeysAboveGround
fi valimplicitgeom_refpoint

storeysBelowGround 5
fl val_appearance.id

£

storeyHeightsAboveGround

fi val_address_id

3

buildingPart

fi val_feature_id

R

description This is BuildingPart 9
fl val_relation_type

=

name Jabba's dungeon o
fi val_content

lod_max 2 fi val_content_mime_type

Figure 2.18.: Example of the PROPERTY table in 3DCityDB v.5.0

e GEOMETRY_DATA table: It stores all the geometry representations of existing features
according to the geometry and LoD concept in CityGML v.3.0 standards. The geometry
data in 3DCityDB v.5.0 directly stores the geometries without decomposition following
the geometry and LoD changes specified in CityGML v.3.0 (see Section 2.1.2). It con-
tains primary key ID as geometry identifiers to be joined with val_geometry_ids or
val_implicitgeom_ids from the PROPERTY table to collect feature geometries. The
feature_ids are set as foreign keys to be directly linked with the features (Figure 2.19).
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Primary keys Foreign keys
geometry_ID Geometries feature_ID
L
id geometry implicit_geometry geometry_properties feature_id
[PK] bigint o geometry & 0 geometry é json 4 bigint
1 01060000A0407100000100...  [null] {"type":8,"objectld""id_building_9_footprint_multisurf_1",..
2 2 | 010FO000A0407100000600...  [null] {"type":9,"objectld""id_building_09_lod1_Solid_9",childr...
3 3 | 01060000A0407100000100..  [null] {"type":8,objectld":"id_building_9_roofsurface_1_lod2_g.. 3
4 260 | [null] 01060000800A00000001030000... | {"type"8, objectld""id_lod1_multisurf_tree" ‘children"[{"t.. 264

Figure 2.19.: Example of the GEOMETRY_DATA table in 3DCityDB v.5.0

o IMPLICIT_GEOMETRY table: It is referenced only when features have implicit spa-
tial properties. It stores the ID primary key of the implicit geometry attributes and
the keys named relative _geometry_ids are used to join with the IDs from the GE-

OMETRY_DATA table, retrieving geometries for the feature implicit representations
(Figure 2.20).

Primary keys Foreign keys to
Implicit_geometry_ID geometry roots
id B . objectid . mime_type » mime_type_codespace » reference_to_library » library_object rglgtive_geometry_id »
[PK] bigint text text text text bytea bigint
id_lod1_multisurf_tree  [nul null] [nul null] 260
2 2 id_lod2_multisurf_tree 261
3 3 id_lod3_multisurf_tree 262

Figure 2.20.: Example of the IMPLICIT_ GEOMETRY table in 3DCityDB v.5.0

Listing 2.2 shows the same query to retrieve all building roofs represented in LoD2 “Mul-
tiSurface” from the CityGML data stored in the default 3DCityDB v.5.0 schema “citydb”. It
reflects the data model changes in the CityGML v.3.0 where features’ LoDs and geometry
representations become properties derived from the abstract class in the Core module. The
integrated characteristics of 3DCityDB v.5.0 encoding involve the renamed starting point ab-
stract class table, the FEATURE table, which stores all existing features within the schema
along with their general attributes. Additionally, the PROPERTY table accommodates the
specified thematic feature attributes, feature boundary relations, and generic attributes. The
query steps are explained below:
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. FEATURE table is first joined with the PROPERTY table to select buildings. The

property name is specified as “boundary” since space features such as buildings can
have boundary relation properties associated with boundary features like roofs (see
Figure 2.4). After the first join, all buildings that have boundary feature relations are
filtered.

. FEATURE and PROPERTY tables are referenced again to select roofs that are represented

in “LoD2 MultiSurface” from the boundary features of buildings.

. GEOMETRY_DATA table is referenced by joining the ids of feature geometries with

geometry property ids, specifically the val_geometry_ids from the second joined PROP-
ERTY table, to select the related geometries of building roofs directly.

1 SELECT

f1.id AS f_id,
g.geometry::geometry (MultiPolygonZ ,28992) AS geomn

. FROM citydb.feature AS £

6

8

10
11
12
13
14
15

INNER JOIN citydb.property AS p
ON f.id = p.feature_id
AND p.name = 'boundary'
AND f.objectclass_id = 901 --Building class
INNER JOIN citydb.feature AS f1
ON f1.id = p.val_feature_id
AND f1.objectclass_id = 712 --RoofSurface class
INNER JOIN citydb.property AS pil
ON f1.id = pl.feature_id
AND pl.name = 'lod2MultiSurface'
INNER JOIN geometry_data AS g ON pl.val_geometry_id = g.id;

Listing 2.2: Example SQL query to extract all roofs of buildings in LoD2 Multi-Surface from

the data encoded in 3DCityDB v.5.0

There are three main differences in the schema between 3DCityDB v.4.x, and 3DCityDB v.5.0:

e Renamed starting point abstract class table

The starting point abstract class table in 3DCityDB v.5.0 is the FEATURE table, which
corresponds to the CITYOBJECT table from 3DCityDB v.4.x. The FEATURE table serves
as a registry for the existing city objects stored within the 3DCityDB schema.

Integrated feature attributes table

Since thematic features in CityGML v.3.0 are derived from the starting point abstract
class specified in the Space concepts from the Core module, they can only be space
or boundary features with limited LoDs and geometry representations. Consequently,
spatial properties and boundary feature relations are integrated into a single PROPERTY
table. Spatial properties are encoded as geometry and implicit geometry properties,
respectively, and are no longer stored across different thematic abstract class tables.

This integration drops the "LINKED” tables mentioned in Section 2.2.1, such as the
BUILDING, TUNNEL and THEMATIC_SURFACE tables. Furthermore, boundary
feature relations are included as feature properties, recording the hierarchical relations
between space and boundary features, such as walls and roofs of buildings. Feature
attributes in the PROPERTY table are stored following the EAV model in 3DCityDB v.5.0,
which mirrors the structure of the CITYOBJECT_GENERICATTRIB table in 3DCityDB
v.4.X.
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¢ Geometries storage
The feature geometries are used similarly to those in 3DCityDB v.4.x. However, the main
difference is that the geometries are no longer split into polygons; instead, feature
geometries are stored directly as points, curves, solids or multi-surfaces in 3DCityDB
v.5.0. The aggregation of planar polygons are no longer necessary, as the inherited
spatial properties of space features, boundary features or relief features limit possible
feature geometry representations.

Understanding the differences in the 3DCityDB schema is fundamental to this research since
it significantly affects the SQL queries for accessing the data stored in the new database
encoding. The SQL queries implemented by the current plug-in on the server side will be
updated to support 3DCityDB v.5.0, achieving the desired outputs without exposing the users
with limited RDBMS experience to complex 3DCityDB structure.
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2.3. Views and Materialized Views

The view and materialized view of RDBMS are briefly introduced in this section as they are
relevant to the QGIS layer-based concept proposed by the current plug-in, which is further
described in Section 2.4.1.

Taking PostgreSQL as an example, views refer to named queries stored in the database [32],
representing a saved SQL transformation from a set of base tables to a derived table. Views
are re-computed each time they are referenced or queried. In contrast, materialized views are
cached results of views stored physically in a temporary virtual table [33].

Views can be time-efficient when querying data from a relatively small dataset. However,
when dealing with a large dataset like the 3D city model of a city, materialized views could
be faster since the indices supported in PostgreSQL can be built on the materialized view
to boost the performance when accessed in the database. The query time could be much
faster compared to that of a view. The comparison of view and materialized is shown in
Table 2.1.

Comparison View Materialized View

Definition A saved SQL statement repre- A temporarily stored table
senting queried data from the that contains the cached re-
underlying tables sult of a view

Re-run when accessed Yes No

Support updates to the Yes No

queried data

Need to be refreshed No Yes

Need memory storage No Yes

Query time of large Usually longer Usually shorter

dataset

Table 2.1.: Comparison of the view and materialized view in PostgreSQL
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2.4. 3DCityDB-Tools plug-in for QGIS

The 3DCityDB-Tools plug-in for QGIS is developed to “facilitate management and visualisa-
tion of data stored in the 3D City Database, which currently supports CityGML v.1.0 and 2.0 ”
[15]. Although 3DCityDB provides a powerful SDBMSs for accessing massive semantic 3D city
datasets, it remains difficult for practitioners who lack a deep knowledge of the CityGML
model and the related SDBMSs to interact with the CityGML data encoded in 3DCityDB. Thus,
the plug-in proposes a layer-based concept that allows users to connect to local or remote
3DCityDB instances for PostgreSQL/PostGIS and load the data as “classical” layers into QGIS
[15]. The users can then interact with the data more intuitively as most AEC practitioners
are more familiar with GIS applications like QGIS, considering its prevalence among the
heterogeneous and steadily growing community. CityGML data accessed in layers enhances
the flexibility in data editing, and the QGIS built-in functions can further extend the use of
CityGML data.

This section reveals the structure of the 3DCityDB-Tools plug-in for QGIS, including the
server-side part and the client-side part (Figure 2.21) referenced from the introduction of the
current plug-in [15]. The focus will be on the server side of the plug-in called “QGIS Package”,
which must be installed in the 3DCityDB instance. This research aims to provide more details
about the working principles of the layer-based concept, reproduce the layer creation process
from the 3DCityDB v.5.0 schema, and eventually enhance the capability of the current plug-in
to cope with spatial data following the CityGML v.3.0 standards.

a; 3D City DB Server side (PostgreSQL)

3D City
Database

A \
F \
Explore/edit 8

Request
layer
creation

QGIS

project Database Layer(s)
connection import

Plugin
G\ Client side (QGIS)

Figure 2.21.: Overall structure of the 3DCityDB-Tools Plug-in for QGIS, with a server-side
part for PostgreSQL and a client-side part for QGIS (Figure from [15])
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2.4.1. Server-Side

The server-side part of the plug-in, the “QGIS Package”, is written in PL/pgSQL. It must be
installed on top of a 3DCityDB instance to allow data exchange between 3DCityDB and QGIS.
The main functions offered by the “QGIS Package” are targeted at layer creation and the
management of users and their privileges to access data in the 3DCityDB instances.

For the layer creation, the “QGIS Package” allows the privileged users to define and create a
layer by extracting a specific, selectable geometry according to the LoDs of features together
with the corresponding attributes. Each layer consists of a view from the database that links
all necessary tables containing the feature attributes and a materialized view containing the
feature geometries of the selected LoD [15] geometry type. A simplified example is given
by [15] as shown in Figure 2.22. For instance, the attributes of the "Building” class features
are stored in tables CITYOBJECT and BUILDING in 3DCityDB v.4.x. These two tables are
linked together using the primary/foreign key id of building features. The key id in the
BUILDING table is the identifier of the unique building features, which are then linked to the
respective materialized view of feature geometry in a specified LoD geometry type, then the
layers are generated using the building geometries as entries complying with the SFS model
and become operable in QGIS. For naming conventions, a set of prefixes and suffixes are
defined and applied to identify each layer within the same 3DCityDB instances. After layer
creation, certain triggers and trigger functions are deployed to make each view updatable (as
far as the attributes are concerned).

Layer = Attribute tables + Geometry materialized view

]
BUILDING_LODO

PrpINe-on D o D

[E— CITYOBJECT BUILDING
BUILDING_LOD2

_G_BUILDING_LODO

_G_BUILDING_LOD1

11l
'l _G_BUILDING_LOD2

Figure 2.22.: Simplified representation of how layers are composed for the plug-in in the case
of “Building” class features(Figure from [15])

The materialized view is chosen for the feature geometries considering the complexity of how
geometries are decomposed and stored in the 3DCityDB v.4.x. Its mapping rule is described in
Section 2.2.1. All feature geometries are decomposed and stored as 3D planar polygons; the
hierarchy and aggregation information are preserved in 3DCityDB v.4.x. It has been proven
in the performance test that querying and aggregating the 3D polygons directly from the
3DCityDB v.4.x tables is rather time-consuming [15]. Therefore, the materialized views are
chosen as a compromise to provide a better user experience at the cost of sparing storage space
and the time needed to generate/refresh them while creating the layers. Additionally, another
advantage of using materialized views for feature geometries is that the implicit geometries
can be created and stored temporarily in advance for more efficient querying in terms of time.
Since the implicit geometries in CityGML are represented using the prototypical geometries
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that must be instantiated, roto-translated and scaled by 3D affine transformations, running
this process during the query is time-consuming.

To manage the large number of layers that could result from all possible combinations,
several checks have been introduced and implemented. Firstly, layer creation functions are
categorised according to CityGML modules (Building, Bridge, Vegetation, Transportation,
Terrain, etc.), allowing users to invoke them individually. This means that if a user is only
interested in building data, only the corresponding layers will be generated. Secondly, during
the layer creation process, a check is performed to count the number of existing features for
each layer. For instance, if there is no data regarding “Rooms” or “BuildingInstallations”
class features in the database, those layers will not be generated. The same principle applies
to LoD that layers are only created if the LoD feature geometry representations are available.

Finally, users can specify the area size for which layers will be generated. This is particularly
useful for very large city models, as it allows users to create materialized views for only a
selected, smaller area rather than the entire city model. This approach not only reduces the
storage space required by the materialized views but also significantly decreases the time
needed to refresh them.

2.4.2. Client-Side

The client-side part of the plug-in enables users to interact with the "QGIS Package” on the
server through a set of GUI-based dialogs, and the data in 3DCityDB v.4.x directly within QGIS.
The latest version is plug-in version 0.8.x introduced by [15], the client-side part offers three
GUI-based tools:

* The “QGIS Package Administrator” installs the server-side part of the plug-in, as
well as to set up database user access and user privileges. It can only be used by
the database administrator. In Figure 2.23, certain functions of the “QGIS Package
Administrator” GUI dialog are introduced and indicated by letters. The users first set up
the connection to the PostgreSQL database (a), and then the administrator can perform
different operations. The “QGIS Package” (qgis_pkg for short) must be installed for the
server-side part for the first time (b). Once the server-side part is installed, the user
installation part is activated, enabling users to choose which database users can connect
to the selected 3DCityDB database instance from the plug-in. The user is added to the
specific database user group to have access (c). For each group member, the database
administrator has to set up the server-side configuration by creating the selected user’s
schema, which will be named in the form “qgis_(user name)” (“usr_schema” for short)
by default containing layers and settings of the selected user (d). The privileges (read-
only or read and write) to the database can be granted or revoked for each group user
to the existing 3DCityDB schemas(e). Finally, once the database administrator completes
the setup, the GUI dialog can be closed, and the client-side part plug-in is enabled to
be used by the user based on their privileges. The Connection status console is at the
bottom, showing every action information (f).
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ece QGIS Package Administrator

® Qols Package Installation | @ Installation settings
PostgreSQL connection

Select an existing connection: Define a new one:

(a) citydb_vd ~
Connect to database ‘citydb_vd'

Main installation

(b) @ mstalito citye_va' Uninstall from

User installation

New Connection

2.4. 3DCityDB-Tools plug-in for QGIS

ece QGIS Package Administrator

P QGIs Package Installation | @ Installation settings
PostgreSQL connection
Select an existing connection: Define a new one:
citydb_v4 -
Connect to database 'citydb_w4'
Main installation

tall to citydb_va [ Uninstall from 'citydb_wd'

User installation
1) User selection

Database user(s) (not yet in the QGIS Package user group)
(C 2 postgres - ( Add to group ]
2) User schema installation

QGIS Package user(s):

New Connection

° QGIS Package Administrator

P QGIs Package Installation | @ Installation settings
PostgreSQL connection

Select an existing connection: Define a new one:

citydb_vé -
Connect to database 'citydb_v4"
Main installation

Install to ‘citydb_v4' 5 Uninstall from 'citydb_va'

User installation
1) User selection
Database user(s) (not yet in the QGIS Package user group)
2 qgis_user_ro - Add to group
2) User schema installation

QGIS Package user(s):

New Connection

2 bstsai - Remove

(d)/ 2 bstsai -

(3 Create schema Drop

Remove from group from group

5 Drop schema

chema Create schema

(e) 3) User privileges

Action:

Citydb schema(s):
citydb (rw),rh_va (w) [~ | [ Al

Setply citydb (w)
others_w4 (rw)
V! rh_va4 (rw)

Grant Read & Write  ~

( f)Ccnnecuon status (f)connection status ( f) Connection status.

Connected to database:
PostgreSQL installation: &
User privileges: (V]
3DCityDB installation: &
Main installation:

Connected to database: @ citydb_
PostgreSQL installation: & 15
User privileges: o
30CityDB installation: &
Main installation:

Connected to database: &
PostgreSQL installation: &
User privileges: (V]
3DCityDB installation: @ 4
Main installation: @ Schema 'qgis_pkg' not installed

sc agis_pkg d (v.0.10.4)
© Schema 'qgis_bstsai' not installed

User installation: User installation: User installation: @ sct

Close current connection Close current connection Close current connection

Figure 2.23.: QGIS Package Administrator (v.0.8.9) operations overview

e The “Layer Loader” allows users to import and interact with layers in the 3DCityDB v.4.x

directly within QGIS, its GUI dialog can be loaded by any user. The functions offered
by the Layer Loader are described in Figure 2.24. Once the user connects to a 3DCityDB
instance (a,b), the list of available schemas (or “scenarios”) is shown, giving the access
privileges information (read-only: ro, or read and write: rw) (c). The user can select
the 3DCityDB schemas to work with, and the extent of the whole dataset by default is
first displayed in the map canvas by the black box, indicating the current extent (d).
Users can specify the extent to which the layers will be generated according to their
needs. The specified extent will be displayed in the blue box (e). In addition, the user
can choose whether feature layers have to be created for all CityGML modules or only
the specified part (e.g. Building, Vegetation modules) (f). After the user specifies it,
feature layers can be created. Materialized views and updatable views are needed for
setting up each layer, and the materialized views can be subsequently refreshed (g). If
all the requirements are satisfied, indicated by the Connection status console (h), the
user can move to the Layers tab to load layers into QGIS.
In the Layers tab, users are allowed to specify the extent of data loading again. The
newly specified extent is indicated by the green box (i), or by default, users can import
all data in the layer extent defined before when in the User connection tab, which is
the blue box (j). The layers to be imported are selected and filtered by specifying the
CityGML module (e.g. Building) and the LoDs (k). The toggle list of the available layers
will be updated, showing only the existing layers in the green bounding box (I).
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P User Connection | & Layers
PostgreSQL connection
Select an existing connection
( a) citydb_va
CityGML 3D City Database

Database name:

Connect to database ‘citydb_wd'

Basemap (OpenStreetMap)

Map Canvas Extent

Set to schema 'th_w4

Refresh 'th_v4' extents
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Connected to database: @ city
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3DCityDB installation: & 4.4.0
Main installation:

User installation:
Layers status:
Layers refresh status:
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@ Refresh layers for schema 'rh_v4'
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@ Settings

Define a new connection

> New Connection
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oI
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@ Schema 'qgis.
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resh: 2024-05-19 11:28:21.980000+02:00

Close current connection
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Current database: 'citydb_w4 @ localhost:5433'
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Available layers
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East |233000.0000

Bookmark ~
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Figure 2.24.: 3DCityDB Layer Loader (v.0.8.9) operations overview

e The “Bulk Deleter” can be used to bulk delete features from the 3DCityDB v.4.X, either
all at once or using spatial and feature-related filters, which can only be used by users
with read-and-write privileges. Similar to the Layer loader as shown in Figure 2.25,
once connected to a 3DCityDB instance (a,b), the list of available schemas (or “scenario”)
for which read-and-write privileges are granted is shown. There are two ways to
delete features once users specify the schema (c). One is to clean up the whole schema,
truncating all 3DCityDB schema tables (d). The other is by selecting feature types to
delete, choosing either from a list of available CityGML modules or from a list of
available CityGML top-level features (e). Likely, it is also possible for users to set the
extent of feature deletion; the extent is shown by the red box (f), and the information in
the toggle lists for user specification will be updated dynamically according to existing

features from the extent selection.
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[ ] [ ] 3DCityDB Bulk Deleter [ ] 3DCityDB Bulk Deleter
P User Connection | @ Settings ¥ User Connection | @ Settings
PostgreSQL connection PostgreSQL connection
Select an existing connection Define a new connection Select an existing connection Define a new connection
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CityGML 3D City Database CityGML 3D City Database
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3DCityDB installation: @ 4.4.0 3DCityDB installation: @ 4.4.0
Main installation: g' is installed (v.0.10.4) Main installation: @ Schema 'qgis_pkg' is installed (v.0.10.4)
User installation: bstsai' is installed User installation: @ Schema 'qgis_bstsai' is installed
Close current connection Close current connection

Figure 2.25.: 3DCityDB Bulk Deleter (v.0.8.9) operations overview

2.4.3. Plug-in Test Results and Current Limitations

Once the layers are imported into the QGIS main window, users can interact with them as
“normal” GIS layers and perform the usual operations. A hierarchical Table of Content (ToC)
(Layers tab) is generated and updated with each layer import, providing an overview of
the loaded layers organised by the CityGML modules and LoD. An example is shown
in Figure 2.26. Users can select features and access their attributes via the table view or
customised attribute forms. These forms display the feature’s attributes and include nested
tables of CityGML generic attributes, addresses, external references, etc. If users are permitted
to edit data, the attribute forms conduct various checks to avoid errors during data entry, and
users are visually notified in case of invalid input. For example, error messages are shown in
Figure 2.27 due to the false entry of storeys below ground as the value entered must be a
positive integer. The other error is caused by missing the unit measuring the height value.

According to [15], the plug-in has been successfully tested with several datasets and earned
certain positive feedback from the beta testers. However, several limitations apply to the
current plug-in. Firstly, since raster-based layers are not supported by 3DCityDB, they are also
not supported by the current plug-in, specifically applying to the “RasterRelief” class. Secondly,
the ”"CityObjectGroup” class is not supported by the “Layer Loader” but is supported by
the “Bulk Deleter”. Thirdly, no CityGML appearances are supported, which implies that
neither colours nor textures can be read from the 3DCityDB v.4.x and applied to the loaded
features. Finally, the CityGML ADEs is not supported currently. Despite the limitations, the
current plug-in still contributes to bridging the gap between common GIS practitioners and
complex 3D city models. As the 3DCityDB v.5.0 has been updated to support CityGML v.3.0, it
will be valuable to investigate and integrate support for the current plug-in. Therefore, this
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research delves into the investigation to reproduce the layer creation process achieved by the
server-side “QGIS Package”, providing possible solutions to create loadable layers concerning
the data stored in the 3DCityDB v.5.0.

Layers
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I [ th_va_bdg_lod2._roofsurf
« ]  FeatureType: Vegetation
v/ () SolitaryVegetationObject
v ¥ @ lod3
I [l h_va_veg_sol_veg_obj_led3
~ V] (@ FeatureType: Relief
~ VI @ ReliefFeature
v VI @ lod1
VI 7] th_va_rel_tin_lod1
» [ [ Form detail views
» [ @ Look-up tables
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» @ others_vs
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» 1" Spatial Bookmarks
T projoct Home 7m 305529 NLIMBAG.Pa... NULL Building 490... NULL NuLL 18-01-2024 112, (City)Object ... NULL
» 6] Home e 305526 NLIMBAG.Pa.. NULL Building 490... NULL NULL 18-01-2024 112.. NULL (City)Object ... | NULL
» £ / (Macintosh HD)
@ Geopackage 7713 305382 NLIMBAG.Pa... NULL Building 490... NULL NuLL 18-01-2024 112... NULL (City)Object ...
/ Spatialite o
» @ PostgresaL 74 305352 NLIMBAG.Pa... NULL Building 490... | NULL NULL 18-01-2024 11:2. NULL (City)Object ..
! SAP HANA s 305319 NLIMBAGPa... NULL Building 40... NULL NULL 18-01-2024 112 UL (City)Object
» I MS SQL Server
» @ Oracle e 305226 NLIMBAGPa... NULL Building 490... NULL NuULL 18-01-2024 112.. NULL (City)Object ...
» @ WMSWMTS y
7 305111 NLIMBAG.Pa... NULL Building 490... NULL NuLL 18-01-2024 112.. NULL (City)Object ...
» 7718 305079 NLIMBAG.Pa... NULL Building 490... | NULL NuLL 18-01-2024 112 NULL (City)Object ... NULL
,
79 305036 NLIMBAG.Pa. L Building 490. L 18-01-2024 112, City)Object .
» G WFS/ OGC API - Features o o o ;
+ @ AreciS REST Servors 720 305022 NLIMBAG.Pa... | NULL Building 490... NULL NULL 18-01-2024 112 L (City)Object
7 304997 NLIMBAG.Pa... NULL Building 490... NULL NuLL 18-01-2024 112, L (City)Object ... NULL
- 20407 N ABAG D AL S o 10012021122 a1 tcimdobinns —auict o

= show Al Features

Figure 2.26.: Example of standard attribute table view of the layers loaded in QGIS

\']ml eoe rh_va_bdg_lod2 — Features Total: 14328, Filtered: 1, Selected: 1
Ak N 2@ 8 @& L TESD BEEEE & @8

s Name v|=z| €| [|es ~ || Update Filtered || Update Selected

~ | /I\ Changes to this form will not be saved.1 field doesn't meet ts constraints. [x}

Maininfo | DatabaseInfo | Relation to surface = Extref (Name) | Extref (Uri) = Addresses

Database ID 305382 v Description |NULL
GMLID NL.IMBAG.Pand.1742100000000568 GML codespace NULL
Name |Building 4906-236 a Name codespace NULL

Gen Attrib (String) | Gen Attrib (Integer) | Gen Attrib (Real) | Gen Attrib (Measure) | Gen Attrib (Date) | Gen Attr | »
J =|[E

€
ERIRE DatabaseID 1300216

[ 3doag_tie Attribute name 3dbag_tile
71 buildina tvne v AdL__ .mamnnn fano__rn annn
Class | Function = Usage
Class Non-residential (single function) a

Codespace NULL

¥ Feature-specific attributes

Year of construction | 1983 - Year of demolition | NULL -
Storeys above ground |2 € | - Storeys below ground -5 -]
Height 20.403 a UoM |NULL
Storey height above ground | NULL v UoM [NULL <
Storey height below ground | NULL v UoM [NULL v

Roof type |multiple horizontal a Codespace NULL
171 J e P

5 Show setected Features _

Figure 2.27.: Example of customised attribute form view and the error checking of the layers
loaded in QGIS
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3. Possible Use Cases Analysis of CityGML
Data in QGIS

Before introducing the methodology, it is essential to identify the potential use cases for
how users interact with spatial data. This chapter uses the example of CityGML data stored
in 3DCityDB through QGIS. Identifying possible spatial data use cases clarifies the research
objectives, which aim to enhance server-side support to the 3DCityDB-Tools plug-in for
QGIS (plug-in). Four use cases are articulated in this chapter, ranging from accessing feature
geometries to interacting with geometries and attributes via QGIS GUIs. Each use case is
detailed separately below.

3.1. Case 1: Users Interact Only with Feature Geometries

Inspecting the feature geometries is the basic use of the CityGML data. As introduced in
Section 2.3 and Section 2.4, the SQL statements for querying feature geometries can be saved
as views or materialized views. After setting up the PostgreSQL database connection, users
can drag and drop these available geometry views and load them as GIS layers. Each feature
geometry with its unique cityobject_id(co_id) can then be inspected in 2D (Figure 3.1).
Users can visualise feature geometries in 3D using either the QGIS 3D Map or the plug-in
called “Qgis2threejs” (Figure 3.2).
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Figure 3.1.: Use case 1 example - feature geometries viewed in 2D
(Left) attribute table view. (Right) attribute form view
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Qgis2threes Exporter

L]

Cicked coordinates

232405.18, 480565.57, 22.68
Lajer Q
_g_rh_vé_bdg_lod2

orbit

N

Figure 3.2.: Use case 1 example - feature geometries viewed in 3D (Qgis2threejs plug-in)

3.2. Case 2: Users Interact with Visualised Feature
Geometries and Retrieve the Attributes by Clicking on
Features

Instead of merely visualising feature geometries, users may require the ability to interact
with feature attributes by selecting individual geometries. Users can view or modify the
corresponding attribute tables upon selection, depending on their assigned privileges. This
spatial data interaction is similar to the Web Feature Service (WFS), where users can retrieve,
modify, and exchange spatial data from remote databases using standardised operations over
the Internet [34].

For CityGML data stored in 3DCityDB, accessing the feature attributes by clicking on geome-
tries is possible by establishing relations in QGIS (Figure 3.3). Taking generic attributes as an
example, these attributes can be associated with geometries, following use case 1, by adding
relations in the QGIS project properties. Users can interact with feature generic attributes by
selecting the corresponding feature geometry individually. Two sub-use cases arise based on
the granted user privileges.

3.2.1. Access-only

In this sub-case, users are limited to viewing and inspecting the attributes of individual
features. As shown in Figure 3.4, users can access the generic attributes by clicking on the
geometries (with the selected feature highlighted in yellow), and the corresponding attributes
of the feature are displayed in linked attribute tables.
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3.2. Case 2: Users Interact with Visualised Feature Geometries and Retrieve the Attributes by Clicking on Features

3.2.2. Read and Write

In addition to the access-only sub-case, if the users are granted read and write privileges,
the generic attributes will also become editable in the linked attribute tables (Figure 3.5).
Changes made in QGIS will be updated back to the 3DCityDB, where the CityGML data is
stored.

Project

Name “ Referenced Layer Referenced Field(s) Referencing Layer Referencing Field(s) 1d Strength
S attri_measure —9_rh_v4_bdg_lod2 co_id dv_rh_v4_gen_attrib_measure cityobject_id dv_rh_wv4_g_cityobj... Association
General attri_real _g_rh_v4_bdg_lod2 co_id dv_rh_v4_gen_attrib_real cityobject_id dv_rh_v4_g_cityobj... Association
N attri_string _g_rh_v4_bdg_lod2 co_id dv_rh_v4_gen_attrib_string  cityobject_id dv_rh_v4_g_cityobj... Association
a Metadata attri_uri _g_rh_va_bdg_lod2 co_id dv_rh_v4_gen_attrib_uri cityobject_id dv_rh_v4_g_cityobj... Association
IR view Settings
Add Relation
Id [Generated automatically] |
%z Transformations —
- Name attri_integer ‘
=
& Styles Relationship strength -]
E Data Sources Layer and fields mapping
= Referenced (parent) Referencing (child) & ‘
= i — &7
Relations Layer | C9_g_rh_va_bdg_lod2 - ” [ dv_rh_v4_gen_attrib_integer "I [=]
Variables Field 1) 123 co_id - H 125 cityobject_id -
& Macros
= QGIS Server
@® remporal
B3 Terrain
¢ Sensors — )
f1 Add Relation |j \{!»}:Discover Relations \ \EIRemove Relation
| Help || Aeply | Cancel

Figure 3.3.: Use case 2 - Adding relations of feature attributes in QGIS
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~ © agis_bstsai 10 299313 296062 v attri_real
» " _g_rh_va_bdg_address 05046
» £9 g_rh_v4_bdg_lod0 " 316061 -
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Figure 3.4.: Use case 2 example - attributes viewed by clicking on feature geometry
(Left) attribute table view. (Right) attribute form view

37



3. Possible Use Cases Analysis of CityGML Data in QGIS

s =
7 %

(
%
pINS

pIYS

... (F

_g_rh_wi_bdg_lod2 — Features Total: 477, Filtered: 477,Selected: 1 ®

/|2 =0 - :TESP BERRZRE 2 &F
1 co_id ~ |=| € |12 co_id ~ | update Al || Upaate selectea
£ Expression . B
O] 208246 < co_id 296246 alr
[ 297977 v attri_integer
[0 323652
O soim2 /]|8[@ =
O 322126 £, Expression
[ 303044 [ bag_net_internal_area = 1262074 a
[ 308417 [ 1od_max attrname  |bag_net_internal_area a
O 323080 [ n_adjacent_buildings value [ 000 @ |7
[0 200313
cityobject_id
[ 316061 > s > 0
[ 300031
[ 296062 b attri_measure
[ 295946 » attri_real
[ 323260 v attri_string
[1 20902 ~
a4 4Pb b2 v Cayel 7 =)= £l

= show All Features _|

Figure 3.5.: Use case 2 example - attributes editing in attribute form view

3.3. Case 3: Users Interact with Visualised Feature
Geometries and the "Linked” Attributes

If the feature attributes are joined with different feature geometry representations, then users
can have direct access to the feature attributes and can be processed as regular GIS layers
(Figure 2.22). For CityGML data stored in 3DCityDB, the general and specific attributes can be
directly accessed using the attribute table in QGIS as these attributes follow SFS model.

Joining the flattened attributes with feature geometries as GIS layers has several advantages,
it enhances the attribute accessibility for user interaction, in which grouped selection based
on certain query conditions is made possible using the select by expression function in the
“attribute table view”, users can edit and update attributes of selected featured at once.
Moreover, feature layers following SFS model enable the support of QGIS built-in functions,
allowing analyses such as spatial selection, geo-process operations and basic statistics for
fields (columns), etc. Similar to use case 2, two sub-cases are derived based on the granted
user privileges:

3.3.1. Access-only

In the sub-case of use case 3, CityGML data encoded in 3DCityDB can be accessed as “normal”
GIS layers that are created when importing data from shapefiles [35]. Users can access and
inspect feature geometries and flattened (linearised) attributes, specifically the general and
specific attributes, in both ”attribute table view” (Figure 3.6) and "attribute form view”
(Figure 3.7) in QGIS, enabling advanced queries supported by the expression selection and
the usage of vector data processing tools.
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se case 3 example - flattened (linearised) feature attributes viewed by clicking
on feature geometry (attribute form view)

3.3.2. Read and Write

Batch editing
in use case 3.

of feature attributes is available if users are granted full read and write access
For instance, users can perform conditional queries to select all buildings in

LoD2 where the roof type is slanted, the building has at least 3 storeys above ground, the
height is above 7.5 metres and the function is residential (Figure 3.8 and Figure 3.9). Then the

selected build

ings” attributes can be batch-edited using the field calculator (Figure 3.10). As
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shown in Figure 3.11, the ”“function” values of the selected features are appended by the new
value, "newly added function”. GIS layers created from 3DCityDB in use case 3 facilitate the
application of CityGML data, providing a straightforward platform for users to interact with
3D city models, regardless of the technical expertise for data querying and processing.
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Figure 3.8.: Use case 3 example - conditional query

th_v4_bdg_lod2 — Features Total: 477,Filtered: 477, Selected: 102
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8 ‘2700 http://www.si... Pandingebr.. NULL 1926 NULL slanted NULL 16.482 m 1 NULL|NULL NULL
5 Pandin gebr.. | NULL 1997 NULL slanted nuLL 2521 m 3 o wuie nuLL
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« : > M

Figure 3.9.: Use case 3 example - conditional query result (attribute table view)
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3.4. Case 4: Users Perform Use Case 3 Using GUIs in QGIS
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@ You are editing information on this layer but the layer is currently not in edit mode If you click OK, edit mode will automatically be turned on.

[ hen | [ cancst |[_ox_|

Figure 3.10.: Use case 3 example - field calculator for group-editing
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Figure 3.11.: Use case 3 example - group-edited result (attribute table view)

3.4. Case 4: Users Perform Use Case 3 Using GUIs in QGIS

The last use case is achieved by the front-end structure of the current plug-in, and its introduc-
tion can be seen in Section 2.4. Users can connect to the 3DCityDB v.4.x instances via “QGIS
Package Administrator” (see Figure 2.23) and be granted full read and write access. After
setting up the database connection, the GIS layers can be imported using “Layer Loader” (see
Figure 2.24), and users can select the desired feature and LoD representations. The selected
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GIS layer is imported under a hierarchical table of content together with related generic
attribute views (Figure 3.12) for detail form view and lookup tables for checking the codelist
and enumeration values.

With the loaded GIS feature layers, users can interact with the CityGML data stored in
3DCityDB more intuitively. Batch-edit is enabled via ”attribute table view” while details of
the generic attributes can be inspected and edited when users click on individual feature
geometry in “attribute form view” (see Figure 2.27).
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vawnvi-320 |1_ .' B

» [ uUseCase1&2 .
~ v (@ UseCase3&4
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T
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- Look-up tables e Name B < | [update | upaste
5 th_va_v_codelist_value DabaseD | GMLID | OMLcod Name Doscription | Creation aste Rolaive to water Udating parson [Resson for upate
5 rh_va_v_enumeration_value 1 323810 NL.IMBAG.Pa... NULL Building 490... NULL NULL 18-01-2024 11:28:30 NULL| (City)Object ... | NULL 18-01-2024 11:28:30 bstsai NuLL
7 /¥ osmstandard 2 206246 NLIMBAG.Pa... NULL Building 490... NULL NULL 18-01-2024 11:28:26 NULL| (City)Object ... | NULL 18-01-2024 11:28:26 bstsai NULL
a 207977 NLIMBAGPa.. NULL Building 490... NULL [omn 18-01-2024 112826 NULL (City)Object ... NULL 18-01-2024 112826 bstsai [on [om
4 323662 NLIMBAG.Pa.. NULL Building 490... NULL NULL 18-01-2024 11:28:30 NULL (City)Object ... NULL 18-01-2024 11:28:30 bstsai NULL NULL
5 301112 NLIMBAG.Pa... NULL Building 490... NULL NULL 18-01-2024 11:28:27 NULL (City)Object ... NULL 18-01-2024 11:28:27 bstsai NULL NULL
6 | 322126 NLIMBAGPa.. NULL Building 490... AULL NULL 18-01-2024 1128:30 NULL (City)Object .. NULL 18-01-2024 112830 bstsai NULL NULL
7 | 303044 NLIMBAGPa.. NULL Building 490... AULL L 16-01-2024 112827 NULL|(City)Obect .. NULL 18-01-2024 112827  betsai NuLL NULL
8 308417 NL.IMBAG.Pa.. NULL Building 490... NULL NULL 18-01-2024 11:28:28 NULL (City)Object ... NULL 18-01-2024 11:28:28 bstsai NULL NULL
9 323080 NL.IMBAG.Pa.. NULL Building 490... NULL NULL 18-01-2024 11:28:30 NULL | (City)Object ... | NULL 18-01-2024 11:28:30 bstsai NULL NULL
o 299313 NLIMBAG Pa.. NULL Building 490... NULL L 18-01-202 112827 NULL (City)Oblect .. NULL 18-01-2024 112827  bstsai NULL on
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»
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Figure 3.12.: Use case 4 example - conditional query result (attribute table view)

3.5. Challenges for Possible QGIS Use Cases Using CityGML
Data in the 3DCityDB v.5.0

From the analysis of the use cases, it results that there are two main challenges to be solved
to use the spatial data stored within the 3DCityDB v.5.0:

¢ Feature geometry extraction
This part involves extracting all possible combinations of feature geometry represen-
tations from the CityGML data encoded in 3DCityDB v.5.0, which will be the basis for
joining all corresponding attributes.

¢ Feature attribute flattening
This part focuses on flattening the attributes of CityGML data encoded in the PROPERTY
tables of 3DCityDB v.5.0. This will be the main challenge of this research since all attribute
types (general, specific and generic) need to be flattened, unlike the encoding of 3DCityDB
v.4.x, where the general and specific attributes are already linearised.
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This chapter presents the details of the methodology applied in this research regarding the
reproduction of GIS layers creation from CityGML data stored in 3DCityDB v.5.0. As described
in Section 2.4, the current plug-in server-side functions join feature geometry in materialized
views with feature attributes, these two main parts are stored as views for GIS layer creation.
A similar approach will be applied to generate GIS layers from the 3D models encoded
in3DCityDB schemas v.5.0.

The overall methodology of this research is structured into four main parts as shown in
Figure 4.1:

e Preparation: This initial phase involves installing the QGIS Package (qgis_pkg for short),
which is a set of PL/pgSQL functions developed by this research to perform relevant SQL
queries for GIS layers creation from 3DCityDB v.5.0.

® Feature geometry: It consists of two steps: checking the existence of the available feature
geometry representations within the target schema and updating the feature geometry
metadata table. Users can view the metadata table to create views or materialized views
of their desired feature geometry representations.

¢ Feature attribute: Similar to the feature geometry part, this involves checking the
existence of available feature attributes within the target schema. The information on
the found attributes will be updated in the feature attribute metadata table. Users can
select their desired feature attributes based on the feature geometry and store them as
views or materialized views.

® GIS layers creation: With the views of feature geometries and attributes, users can then
start to generate GIS layers by joining them. This involves different joining approaches,
which will be detailed later in this research.

Section 4.1 introduces the preparation need to meet requirements for GIS layers generation
and explains the necessity of the feature geometry and attribute metadata tables regarding
the 3DCityDB v.5.0 encoding. Section 4.2 describes the working principle to scan and retrieve
all existing geometry representations and LoDs of the features in the target 3DCityDB v.5.0
schema, followed by the query time experiment for the decision of geometry view gener-
ation. Section 4.3 elaborates on the attribute types observed from the mapping of feature
attributes in 3DCityDB v.5.0 and then introduces the methods that are used to collect and flatten
(linearise) the attributes to form the views that will be joined with the feature geometries.
Finally, Section 4.4 discusses different approaches to join the views of feature geometries and
attributes, including a query time experiment to justify the choice for creating GIS layers.
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PREPARATION

Create qgis_pkg schema
Install PL/pgSQL functions

v

Create Metadata Tables

v

Create user schema

v

Insert / Update Extent for
view generation

v \ v

FEATURE GEOMETRY FEATURE ATTRIBUTE
Check existence of LoDs representations Check existence of attributes and types
with OBJECTCLASS_ID with OBJECTCLASS_ID
Fill Geometry Metadata table Fill Attribute Metadata table
Y Y
Create Views or Materialized Views of Create Views or Materialized Views of
Feature Geometry Feature Attribute

—> | Join Geometry views with
Attribute views

Figure 4.1.: Overview of the methodology

4.1. Preparation

The PL/pgSQL functions used for GIS layer creation in this research are included in the QGIS
package. Users are required to install it on top of 3DCityDB v.5.0 instances for data retrieval.
After a successful package installation, a new schema named qgis_pkg will be created under
the connected PostgreSQL database, which contains the following tables:

* USR_SCHEMA: It stores the metadata of the user-defined schemas (Figure 4.2).
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4.1. Preparation

id usr_name usr_schema creation_date ’
[PK] integer character varying character varying timestamp with time zone
1 1 bstsai qois_bstsai 2024-07-12 16:55:54+02

Figure 4.2.: Example of USR_.SCHEMA table created in qgis_pkg

¢ ATTRIBUTE_DATATYPE_LOOKUP: The encoding rules for feature attributes are

detailed in the schema column of the DATATYPE table in 3DCityDB v.5.0. This column
provides information about the data types of feature attributes and how their values
are stored in the PROPERTY table. By examining the DATATYPE table, it can be seen
that attributes are stored as simple or complex attributes.

Listing 4.1 illustrates the explicit storage of the "Integer” attribute data type. The
identifier key specifies the attribute data type and the CityGML modules where this
data type is defined. The table key gives the table name storing the attribute, while
the value key details the column where the attribute values can be found.

Listing 4.2 illustrates the implicit storage of the "Height” attribute data type defined
within the “Construction” module in CityGML v.3.0. Unlike the “Integer” type, the
values of “Height” are represented by multiple related child attributes stored explicitly.
The properties key specifies the mapping details of all the related child attributes,
including their types and the association with their parent attribute. This association
is achieved by joining the parent_ids of the child attributes with the id of the parent
attribute. Feature attributes following the explicit and implicit mapping rules are
categorised as “Inline” and ”"Nested” attributes, respectively, within this research.
Section 4.3.1.1 provides detailed elaboration on the characteristics of ”Inline” and
"Nested” attributes.

The ATTRIBUTE_DATATYPE_LOOKUP table is derived from the DATATYPE table in
3DCityDB v.5.0, serving as an advanced reference as depicted in Figure 4.3. It provides
essential information for the PL/pgSQL functions to distinguish attribute classes and
their corresponding value columns.

"identifier" : "core:Integer",
"table" : "property",
"value": {
"column" : "val_int",
"type": "integer"

Listing 4.1: Mapping example in JSON - Attribute DataType: “Integer”
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Listing 4.2: Mapping example in JSON - Attribute DataType: “"Height”

Undefined

Boolean

B
2

3 Integer
4 Double
5

String

alias
LI

core
core
core
core

core

a

‘schema
json

{identifier”"
{"identifier”."
{identifier”
{identifier”

{'identifier™"
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0
0
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[null] ]
1 {valint}
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1 {val_double}
1

{val_string}

Figure 4.3.: Example of the ATTRIBUTE_DATATYPE_LOOKUP table created in qgis_pkg

* CLASSNAME_LOOKUP: This is the lookup table derived from the OBJECTCLASS
table in 3DCityDB v.5.0 (Figure 4.4). It stores the objectclass_id, the corresponding
class names and the class name aliases defined by this research. The class name aliases
are referenced to name the feature geometry views.
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BuildingPart
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bdg_part Building 0 [rull] 10
bdg_constr_elem Building 0 [null] 10

Figure 4.4.: Example of the CLASSNAME_LOOKUP table created in qgis_pkg



4.1. Preparation

¢ FEATURE_.GEOMETRY_METADATA _TEMPLATE: This is the template table that will
be duplicated to the newly created user schemas. The duplicated table is created under
the user schemas for the users to check and store the metadata of the existing feature
LoDs and geometry representations, which is elaborated in Section 5.3.

e FEATURE_ATTRIBUTE_METADATA _TEMPLATE: This is the template table that will
be duplicated to the newly created user schemas. The duplicated table is created under
the user schemas for the users to check and store the metadata of existing feature
attributes, which is elaborated in Section 5.4.

e EXTENTS_TEMPLATE: This is the template table that will be duplicated to the newly
created user schemas for storing the metadata and geometries of the bounding boxes
for operations. Users can insert or update the bounding boxes to limit the extent of GIS
layers creation (Figure 4.5).

id , cdb_schema bbox_type labe! creation_date s o envelope a
[FK] integer character varying character varying character varying timestamp with time zone (3) geometry

1 citydb db_schema citydb-bbox_extents 2024-07-12 16:57:35.547+02 0103000020407100000100000005...
2 2 rhvs db_schema rh_v5-bbox_extents 2024-07-1216:57:40.125+02 0103000020407100000100000005..
3 3 rhvs m_view rh_vG-mview_bbox_extents  2024-07-12 16:57:40.126+02 0103000020407100000100000005..

Figure 4.5.: Example of the EXTENTS table created in user-created schema

e LAYER_.METADATA _TEMPLATE: This is the template table which will be duplicated
to the newly created user schemas. The duplicated table is created under the user
schemas for storing the metadata of the created GIS layers, allowing users to manage
the GIS layers, which is elaborated in Section 6.3.

The reasons for creating metadata tables of feature geometry and attribute correspond
to the changes in the mapping rule of 3DCityDB v.5.0. In 3DCityDB v.4.x, feature geometry
representations are encoded in different thematic class tables (see Section 2.2.1). The current
plug-in traverses these classes across all thematic modules to collect possible feature geometry
representations as materialized views. However, in 3DCityDB v.5.0, the feature registry and
spatial properties are integrated into the FEATURE and PROPERTY tables (see Section 2.2.2).
Traversing existing classes to collect all available feature geometry representations by cross-
referencing these two tables could be time-consuming. Even with limited combinations of
representation, querying from a massive dataset could still take a long time.

To enhance the query time efficiency given the characteristics of the 3DCityDB v.5.0 encoding,
creating metadata tables to store existing feature geometry representations and attributes
is proposed. The general concept is to perform a schema-wise scan of the target dataset
to obtain the distinct combinations of feature classes and their corresponding geometry
representations, along with attributes. These distinct pairs of records will then be updated
to the feature geometry and attribute metadata tables, serving as menus for users to create
GIS layers. Users can specify the desired feature geometry representation to be joined with
the selected attributes to form the GIS layer and import it into QGIS for interaction. This
approach avoids the repetitive joining of FEATURE and PROPERTY tables, which improves
the query time efficiency and enhances flexibility for GIS layer creation.

With the qgis_pkg installed and the relevant tables set up, users can create the user schema
to store the extents and the views generated by the PL/pgSQL functions. The name of the user
schema is determined by the user’s name prefixed with “qgis_". For example, ”qgis_postgres”
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is the default name of the newly created user schema, and “postgres” is the default user
name in PostgreSQL.

After creating user schemas, users are required to specify the extent. By default, the full
dataset extent is computed and applied in further operations; however, users can specify the
minimum and maximum xy-coordinates of the bounding box based on the Spatial Reference
Identifier (SRID) of the target database. The specified extents will be stored in the EXTENTS
table, duplicated from the EXTENTS_.TEMPLATE table in the qgis_pkg when the user schema
is created. The extent selection improves the query performance of metadata checks and
GIS layer creation, reducing the time needed for feature spatial properties check, generating
views and refreshing materialized views in case of large datasets.

4.2. Feature Geometry

4.2.1. Check Existence of Feature Geometry Representations and LoDs

The first step in the feature geometry process is to check the existence of feature geometry
representations and LoDs within the user-selected extent. Users can perform a schema-wise
scan of the dataset or specify the bounding box for a smaller, faster check. Since features in
CityGML v.3.0 inherit the geometry and LoD concept from the Core module (see Section 2.1.2),
possible feature geometry representations and LoDs only vary depending on the type of
feature, such as space features, boundary features or relief features.

Table 4.1 shows the geometry and LoD concept of the “AbstractSpace” and the “AbstractThe-
maticSurface” classes in CityGML v.3.0 Core module (see Figure 2.6), which defines all the
possible geometry representations and LoDs of space and boundary features.

For the features in the “Relief” module, since they are derived from a higher level abstract
class, the “AbstractSpaceBoundary” class, they have their own spatial properties specifications
(see Figure 2.7). These include:

* Relief Feature: This is derived from the ”"ReliefFeature” class, which is the bounding
box of the relief component features. Its geometry is represented by the envelope stored
in the FEATURE table in 3DCityDB v.5.0 with LoD1-3.

* Relief Component Feature: This is derived from the ”AbstractRelifComponent” class,
which is the abstract class for four different types of relief component features with
LoD0-3. The spatial properties of the relief component features are:

o TINRelief: "tin”.
o MassPointRelief: “reliefPoint”.

o BreaklineRelief: “ridgeOrValleyLines” and “breaklines”

o

RasterRelief: “grid”

Notice that the “RasterRelief” class is excluded by the current plug-in as it is not supported
by 3DCityDB v.4.x. It is also excluded from this research as raster-based features from the
3DCityDB v.5.0 are not supported.
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Class LoD Geometry Class LoD Geometry
Representation Representation
Abstract 0 Point Abstract 0 MultiSurface
Space 0  MultiSurface Thematic 0  MultiCurve
f(esalziiz) 0 MultiCurve (bsolllﬁ;;iy 1 MultiSurface
1 Solid feature) 2 MultiSurface
1 TerrainIntersectionCurve 3 MultiSurface
1 ImplicitRepresentation x  pointCloud
2 Solid x  envelope
2 MultiSurface
2 MultiCurve
2 TerrainIntersectionCurve
2 ImplicitRepresentation
3 Solid
3 MultiSurface
3 MultiCurve
3 TerrainIntersectionCurve
3 ImplicitRepresentation
X pointCloud

x  envelope

I The “x” in the table indicates no specific LoDs of that geometry type.
2 The “envelope” is included in the table for the ‘ReliefFeature” class.

Table 4.1.: Possible geometry representations and LoDs of space and boundary features

After identifying features’ spatial properties in 3DCityDB v.5.0, it can be concluded that 4
feature types determine the possible geometry representations and LoDs: space, boundary,
relief and relief component features. To store the distinct combinations of feature geometry
representations and LoDs from the target 3DCityDB v.5.0 schema, the feature geometry metadata
table should include at least the following columns:

1. Schema Name: Identifier of the target 3DCityDB schemas.

2. Parent Objectclass_id: Identifier of the parent space feature of boundary features, eg.,
the roofs of buildings. For space features, this should be empty or null.

3. Objectclass_id: Identifier of the feature classes.

4. Geometry Name: Represents the spatial properties of features in 3DCityDB v.5.0 PROP-
ERTY table, storing information about the geometry representation and its LoD from
Table 4.1, except relief features. Example value entries could be “lod1Solid” or
”lod2MultiSurface”.

With the extent specifications, users can perform either a complete scan or an optional extent
selection scan on the target dataset. The feature geometry metatable will be populated with
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distinct feature geometry representations and LoDs records. This metadata table serves as a
reference menu for users to create geometry views.

4.2.2. Create Views or Materialized Views for Feature Geometry

With the FEATURE_.GEOMETRY_METADATA table checked and updated, users can retrieve
feature geometries by specifying their desired schema, parent feature class (for boundary
features), feature class, and feature LoDs geometry representations. Feature geometries are
collected using the specified value pairs to cross-reference the relevant tables. An example of
this process is shown in Listing 2.2. The collected feature geometries can be stored as views
or materialized views.

According to Section 2.4, materialized views are chosen for the feature geometries due to the
complexity involved in decomposing and storing feature geometries in 3DCityDB v.4.x. The
choice aims to improve user experience, although it consumes storage space and requires
time to generate and refresh them when creating GIS layers [15]. However, in 3DCityDB v.5.0,
feature geometries are no longer decomposed; they are stored directly in GEOMETRY_DATA
table without decomposition and are associated with spatial properties via geometry or
implicit geometry property keys in the PROPERTY table (see Section 2.2.2). Consequently,
a query time assessment is performed to check the query time from the datasets encoded
within different versions of 3DCityDB to determine the approach for storing feature geometries
extracted from the data stored within 3DCityDB v.5.0.

Table 4.2 and Table 4.3 present the query time comparison for a full dataset extent selection
on feature geometry views and materialized views from the “Rijsen-Holten” and ”Vienna”
datasets, encoded within 3DCityDB versions v.4.x and 5.0. Since the pre-aggregation for query-
ing feature geometries is eliminated in 3DCityDB v.5.0, which theoretically improves the query
speed. However, the integration of FEATURE and PROPERTY tables in 3DCityDB v.5.0 can
result in massive table sizes, potentially undermining the anticipated query speed improve-
ments. Analysing the query times for different feature types reveals specific considerations:

* Space Feature: The query time difference between view types is minimal. However,
for classes such as 'SolitaryVegetationObject” (tree) with implicit representations, using
materialized views is recommended due to the longer time required to query implicit
reference information from a large PROPERTY table.

* Boundary Feature: As the boundary feature relations are stored in the PROPERTY table,
querying the Space-Boundary feature hierarchy involves repetitive cross-referencing
between FEATURE and PROPERTY tables. Materialized views offer significantly faster
query times in this scenario.

* Relief Feature: Views suffice for querying a small number of relief extents efficiently.

* Relief Component Feature: Materialized views are not essential here, as the query
times between view types are comparable.

In conclusion, while 3DCityDB v.5.0 eliminates the need for pre-aggregation when querying
feature geometries, materialized views remain preferable. Although materialized views
consume memory storage space and may take longer to create and refresh, they enhance
the user query experience by avoiding extensive cross-referencing of large tables, thereby
ensuring quick access to desired results.

50



4.2. Feature Geometry

(3oseyep usyjof]-uas(ry)
0'GA pue X'HA dasNDAE Ul SMITA PIZI[eLId)eW pue SMIIA Ajowoad woiy awr Arenb ayy jo uostredwo)) g a[qer,

$'SSIUIW :}TUN W}

6% $'60:00 1'0:00  8'50:00 7100 LT000  £'90:00 u (20S) JOURINIL
i 0°00:00 000:00  0°00:00 1:00:00 10000 1°00:00 adojeaug (005) 2an1e3 13011y
STe'8g 875190 1'60:00  T'FEO LFTT0 TL000  60pi00  uonejussaxday yprdua

G688 8%0:90 §°20:00 G'9L:€0 £€90:00 9°00:00 8'€0:00  uonejussaidey yprduwy (10€1) 92lqouoneiadopLreog
cTe'8g 1°50:90 87000  FITEO £°60:00 800100 07000 uonejussaiday prdun

£06'C 9°00:00 000:00  €00:00 T91:00 1000 €50:00 a0eymg BN (60£) e3mg[repm

1% °00:00 000:00  1°00:00 S10:00 70000 ST0:00 aoeymg BN (1£) e3msyo0y 206)
L0t TO0:00 00000 T'00:00 9°20:00 T00:00 01000 aoems nIMN (012) ejmgpunoss HedBUIPER o
19 °00:00 000:00  T'00:00 6'20:00 20000 TT0:00 aoeymg BN (1) aoE3MGaMSOL)

6p'cse TEL10 9'€0:00  FH0:00 T91:00 11000 €50:00 a0eymg BN (60£) 9oemsIIEM

666 '90:00 L0000 S€0:00 $70:00 700100 ST0:00 aoeymg BN (21£) 2eymgjo0y (106)
11662 7'80:00 £00:00  S€0:00 9°20:00 0000 0°T0:00 aoe3ng BN (012) oemgpunoxny WP
ce8°0¢ 8'60:00 £00:00  S€0:00 6'20:00 T00:00  T'T0:00 aoeymg BN (c1) aoegaNgaNSOLD

£01 1°00:00 000:00  1°00:00 1°00:00 10000 1°00:00 aoeymg BN (206) 3regBurp[INg
6¥h0e 1'50:00 87000  £70°00 1°€0:00 T00:00  0°T0:00 aoeymg BN (106) Surpimg

) A1onQ awny LN

DU U 2w o0 2wh N0 i e uoneiuasaiday (p1 ssePyalqo) ssepd jaseje
paporas MIIA pIZITeHdIRIA MIIA MIIA pIzZI[eHdIeI MIIA Anpwoan pr ssEpRei P a
arnjeay
30 12qUINN

0°¢'a gafimoag

xpa gafndas

s@07 pue suorjejuasarday] A1jpouwroas) arjedg

51



(39se3ep PUULIA)
0'G'A pue XFA AANDAE UL SMIIA PIZI[eLIdjewl pue smata Anppouwoad woiy awr A1onb ayj jo uostredwo)) ¢ a[qer.

S'SSiwua jrun awiry

SIS'T 19210 €'00°T0 $°€0:10 89170 0'82:00 $°10:20 oy
SI8'T 0°8%:00 6°C€:00 9°¢€:00 1°10:€0 €'61:00 ¥°8¢:10 ¢ (20S) JOURINIL
SI8'T 1°€2:00 €€1:00 0%1:00 8'01:20 0"90:00 8'90-10 T
SI8'T 1°00:00 0000 1°00:00 1°00:00 ¥°00-:00 1°00:00 adofpaus ¢
(005) dmyea 3oty
SI8'T 1°00:00 1°00:00 1°00:00 ¢°00:00 ¢°00-:00 1°00:00 adopaue g
09€£8T ¥°91:00 ¥°10:00 ¢'80:00 ¢'LT:00 ¥°10-:00 6'80:00  uonejussaxdey yordwy g (10€1) PRlgOuonEIa8apLIRIOg
BUUDIA

160°680°% 6790:€0 ¥°¢1:00 69110 0°TT:c0 8°60-00 €°6€:00 9By N € (60£) >e3mgirem

) . O . e . e (206)
06588 1'81:¢0 ¢°L0:00 £'90:10 074210 9°20-:00 G'9€:00 epMS BN ¢ (212) 99e3IMGI00Y JegSurpimg
GCT'T8e 6°60:C0 €°€0:00 £'89:00 1°CI:10 91000 §°£T00 9By QN € (01£) @de3MGPUNOID
TST'196 €410 8°90:00 £'S7'10 0°TTc0 8°60-00 €6€:00 eIMS BN ¢ (60£) ejmgirem
€65°00€ 9700 41000 €95:00 0°42T0 9°20-00 G'9¢€:00 rlMS BN ¢ (212) 99e3IMGI00Y wE%%mmw
810°S6 aLET0 9°00-:00 G'9%:00 1°CI1:10 91000 §£T00 orlMS BN ¢ (01£) de3MGPUNOID

awin} ysayay awmy Arond awing A1onQ)  dwn) ysayady dwn Adn() awny Arand uonyeyuasarday _
: ao (pr ssepPa(qo) sse[) jasere
Ppapa[as MBIIA PIZI[eHdICIA MIIA MIIA PIZI[CLDIRA MIIA Apwoan
arnjeay
JO RqUINN
0's'a gafiag xp'a gafias $(07] pue suonjejudsarday A13ouodn) arnjeay

4. Methodology

52



4.3. Feature Attributes

4.3. Feature Attributes

4.3.1. Check Existence of Feature Attributes

The first step in the feature attribute process is to check the existence of feature attributes
within the user-selected extent. Unlike 3DCityDB v.4.x, where general, specific and generic
attributes are stored in different tables (see Section 2.2.1), feature attributes in 3DCityDB v.5.0
are all stored in the PROPERTY table following the EAV model. It reduces the complexity of
the 3DCityDB by eliminating the need for thematic abstract class tables such as BUILDING,
thus simplifying table cross-referencing. However, this also results in the substantially larger
PROPERTY table, which hinders the query performance and results in attribute flattening
(or linearisation) for creating GIS layers. The following subsections outline the key factors to
query and flatten feature attributes regarding the encoding of 3DCityDB v.5.0.

4.3.1.1. "Inline” and " Nested” Attributes

Feature attributes are integrated into the PROPERTY table in 3DCityDB v.5.0, where each
attribute is typically represented as a single row. Each row in the PROPERTY table records
an attribute related to a feature, identified by the feature_id. The datatype_id indicates
the attribute data type, and the attribute value is stored in the corresponding value column
depending on the attribute data type. Attributes stored in this format are termed as the
”Inline” attributes in this research, which can be illustrated with an example such as the
"description” of buildings in Figure 4.6. In this example, each row in the table represents a
building “description”, which is a string-type attribute, with its value stored in the val_string
column.

* FEATURE table

feature_ID
Building
id B pbjectclass_ld , objectid , identifier P identifier_codespace ;0o envelope IgsunodHIcatlodente ’
[PK] bigint integer text text text geometry timestamp with time zone
@ id_building_11 [null) [null] 01030000A0407100000100000...  2024-04-01 16:18:56.091175+02
2 712 id_building_11_roofsurface_1 [null) [null] 01030000A0407100000100000...  2024-04-01 16:18:56.121567+02

* PROPERTY table

Primary keys

attribute_ID Attribute name Attribute value
id - fgature_ld pgrent_ld fiatatype_id lnamespace_ld ’ name[ ’ val_string P
[PK] bigint bigint bigint integer integer text text
[null) 22 1 | description ” This is Building 11
2 22 2 [null) 22 1 description  This is Roofsurface 1 (South) (Building 11)
3 26 3 [null] 22 1 description  This is Roofsurface 2 (North) (Building 11)
4 30 4 [null] 22 1 description  This is GroundSurface 1 (Building 11)
5 34 5 [null] 22 1 description This is WallSurface 2 (West) (Building 11)

Foreign keys
feature_ID

Figure 4.6.: Inline attribute example - “description” of buildings
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Apart from the inline attribute, 3DCityDB v.5.0 applies attribute storage rules that align with
the complex data types introduced by CityGML v.3.0. For example, the "Height” data type
within the "Construction” module specifies properties like the "height” of buildings, bridges
and tunnels, which includes 4 child attributes: “heightReference”, “lowReference”, ”status”
and "“value” (Figure 4.7). In 3DCityDB v.5.0 PROPERTY table, a single entry for a building’s
height consists of a parent row followed by multiple related child attributes, linked by
parent_id as shown in Figure 4.8. The child attribute values are stored across different value
columns based on their attribute types and are associated with a specific feature through the
feature_id. This format of storing feature attributes is referred to as the "Nested” attributes
in this research.

«DataType»
Height

«Property»
highReference: ElevationReferenceValue
lowReference: ElevationReferenceValue
status: HeightStatusValue
value: Length

+ 4+ 4+ +

Figure 4.7.: CityGML v.3.0 Package UML diagram - Construction module, DataTlype “Height”
(Figure from [20])

* FEATURE table

feature_ID
Building
R e e ;o codos gy s g it

@ id_building_11 [null) [null] 01030000A0407100000100000...  2024-04-01 16:18:56.091175+02

2 2 712 id_building_11_roofsurface_1 [null) [null]) 01030000A0407100000100000...  2024-04-01 16:18:56.121567+02
* PROPERTY table

Primary keys Parent Parent
attribute_IDs attribute_ID attribute name
id . fgmurn.ld ’ p.arenUd datatype_id namespace_id ’ name , val_double val_string ’ val_uom ,
[PK] bigint bigint bigint integer integer text double precision text text

1 8 [nufl 702 8 [height | [null]  [null] [null]
9 8 17 8 | value 15 [null] m
10 8 5 8 | status [null] measured [null]
n 8 14 8 | lowReference [null]  lowestGroundPoint  [null]
12 8 14 8 | highReference [null]  highestRoofEdge [null)

6 60 [null) 702 8 height [null]  [null) [nun)

7 61 60 17 8 value 15 [null) m

8 62 60 5 8 status [null]  measyred [null)

9 63 60 14 8 lowRefdrence [null]  lowes{GroundPoint  [null]

10 64 60 14 8 highRefprence [null]  higheqtRoofEdge [null)

Foreign keys Child attribute Child attribute
feature_ID names values

Figure 4.8.: Nested attribute example - "height” of buildings

It is important to note that attributes with the same name may exist but belong to different
types within 3DCityDB v.5.0. For example, the height attribute for buildings is stored as a
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nested attribute, identified by data type number 702 (“Height” type) in the PROPERTY table.
In contrast, the height attribute for solitary vegetation objects (trees) is stored as an inline
attribute, represented by data type number 17 ("Measure” Type).

To differentiate between attribute data types, the ATTRIBUTE_DATATYPE_LOOKUP table
established during the qgis_pkg installation (see Section 4.1) is referenced for checking the
mapping rules. This lookup table provides essential information for identifying attribute
types and determining their respective value columns, which enables the PL/pgSQL functions
to retrieve feature attributes from the database accurately.

4.3.1.2. Multiplicity

The attribute multiplicity is the minimal and maximal number of occurrences of the attribute
per object [3]. This is indicated by the bracketed numbers, ”[0..*]”, following the attribute
names in the CityGML UML diagrams. For example, a building can have no “name” attribute
or multiple “name” attributes as defined in its top-level class, ”AbstractFeature”. Similarly,
the “function” attributes of a building have a zero-to-many multiplicity, meaning a building
can have no entries or multiple entries of building functions according to the specification in
the ”AbstractBuilding” class (Figure 4.9).

«FeatureType»
(FeatureType» AbstractBuilding
AbstractFeature «Property»
+ dass: BuildingClassValue [0..1]
«Property» +  function: BuildingFunctionValue [0..*]
+ featurelD: ID <+ usage:BuildingUsageValue [0.."]
+  identifier: ScopedName [0..1] +  roofType: RoofTypeValue [0..1]
+ name: GenericName [0..*] +  storeysAboveGround: Integer [0..1]
+  description: CharacterString [0..1] +  storeysBelowGround: Integer (0..1] i
+  adeOfAbstractFeature: ADEOfAbstractFeature [0..*] + storeyHe!ghtsAboveGround: MeasureOerﬂReasonL.lst [0..1]
+ storeyHeightsBelowGround: MeasureOrNilReasonList [0..1]
+  adeOfAbstractBuilding: ADEOfAbstractBuilding [0..*]

Figure 4.9.: Example of the attribute multiplicity - ”AbstractBuilding” class
(Figure adapted from [20])

The data encoding of feature attribute multiplicity changes significantly between 3DCityDB
v.4.x and 3DCityDB v.5.0. Figure 4.10 illustrates how the “name” and “function” attributes of a
building feature with the “gmlid” of “id_building 01" are encoded in 3DCityDB v.4.x. In this
version, “name” and “function” are flattened and stored within a single row. The “name”
attribute, with a multiplicity of three, is stored as “Snoke’s Palace—/\-Snoke’s Palace 2—/\-
Snoke’s Palace_3,” separated by the delimiter “~/\-.” Similarly, the “function” attribute, with
a multiplicity of two, is stored as “residential building—/\-youth hostel,” using the same
delimiter. Since attributes are flattened in this way, they can be directly joined with feature
geometry views for GIS layer creation.

id a8 objectclass_id a gmlid a name a function a
bigint integer character varying (256) character varying (1000) character varying (1000)
1 36 26 id_building_01 Snoke's Palace—/\-Snoke's Palace_2-/\--Snoke's Palace.. residential building—/\—youth hostel

Figure 4.10.: Attribute multiplicity encoding example - the “name” and “ function” of a
building in 3DCityDB v.4.x
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In 3DCityDB v.5.0, feature attributes are stored using the EAV model. The “name” and “function”
attributes of the same building are encoded vertically into multiple rows. Each row contains
the attribute data types followed by the attribute names, and the attribute values are stored
in the val_string column according to the data type mapping rules (Figure 4.11). The
attributes stored following the EAV model offer the advantage of direct access to attribute
values, facilitating value editing. However, this method of attribute encoding cannot be
directly joined with feature geometry views. Consequently, additional table operations are
necessary to flatten (or “linearise”) the attributes from the query results.

Id. . Fxhjectclassjd 8 objectid & FIatatypaJd & name 8 val_string a
bigint integer text integer text text
1 30 901 id_building_01 14 name Snoke's Palace
2 30 901 id_building_01 14 name Snoke's Palace_2
3 30 9071 id_building_01 14 name Snoke's Palace_3
4 30 901  id_building_01 14 function residential building
5 30 901 id_building_01 14 function youth hostel

Figure 4.11.: Attribute multiplicity encoding example - the “name” and “ function” of a
building in 3DCityDB v.5.x

4.3.1.3. Attribute Value Columns

Table 4.4 provides an overview of the eighteen attribute value columns in the PROPERTY
table of 3DCityDB v.5.0, as introduced in Section 2.2.2. Based on the attribute data types,
the corresponding mapping rules specify how their values are stored across these eighteen
columns. Feature attributes can have their values stored in multiple columns. For example,
the “function” attributes of buildings are mapped into the val_string column, which shows
the actual functions like “residential building” or “hostel”. Additionally, the reference links of
the codelist for retrieving these function values are mapped into the val_codespace column
as shown in Figure 4.12.

Checking where the attribute values are stored is necessary for the attribute flattening process,
as it determines the target columns that store the actual attribute values and how these values
are aggregated to construct composite types required for flattening (linearising) feature
attributes if the crosstab is in use. The attribute value column information is included in the
ATTRIBUTE_DATATYPE_LOOKUP table for referencing.

id featureid , datatype_id , [Pl veLint val_double val_string W vl val_codespace .
PKlbigint © bigint 4 imeger  * RUSENENEAN bigit  # | double precision ¢ [R ’ IR z

14 1 14 function [uil] [null]  residential building  [null] hitp ig3d. i or. function x..

272 30 14 function [nuil] [nulll  youth hostel [null] http igad i ilding/2.0/ iiding. function.x.

453 64 14 function (i} [null]  hangar [null) hittp://w ig3d. i ildi 0/, ilding_function x...

e oo o

513 72 14 function [uil] [null]  hespital [nutl] hitp ig3d. t of. function x..

Figure 4.12.: Attribute value storage example - the “function” of buildings in 3DCityDB v.5.0
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No Value Column Name Storage Value PostgreSQL
Data Type
1 val.int integer bigint
2 val_double float number double
precision
3  valstring string text
4 val_timestamp date time with
time zone
5  val.uri Uniform Resource Identifier (URI) text
6  val_codespace source links of codelists or text
enumerations
7  val.uom Unit of Measure (UoM) related to the text
numeric attributes
8  val.array numeric array json
9 vallod LoD value in string text
10 val_geometry_id foreign key IDs for joining the bigint
GEOMETRY_DATA table
11  val.implicitgeom_id foreign key IDs for joining the bigint
IMPLICIT_GEOMETRY table
12 val.implicitgeom_refpoint point geometries for feature implicit geometry
representation
13  val.appearance_id foreign key IDs for joining the bigint
APPEARANCE table
14  val_address_id foreign key IDs for joining the bigint
ADDRESS table
15 val_feature_id foreign key IDs for joining FEATURE bigint
table
16  val.relation_type integer representing a specific feature integer
property relation type
17  val_content ADE-related attribute values text
18  val_content_mime_type ADE-related attribute values text

Table 4.4.: Overview of the value columns in 3DCityDB v.5.0 PROPERTY table

After identifying the key factors to query and flatten feature attributes, the distinct feature
attributes of the existing classes within the target 3DCityDB v.5.0 schema can be checked. To
store the distinct attributes of each feature class, the FEATURE_ATTRIBUTE_METADATA
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table should include at least the following columns:

1. Schema Name: Identifier of the target 3DCityDB schemas.
2. Objectclass_id: Identifier of the feature classes.

3. Attribute Name: Represents the available feature attributes in the 3DCityDB v.5.0 PROP-
ERTY table. Example entries could be the “description” or ”“function” of buildings.

4. Attribute Data Type: Identifier of the feature attribute data type implicitly indicates
whether the attribute is inline or nested. Since attributes with the same name could be
mapped to different types in the 3DCityDB v.5.0 encoding, it is necessary to include the
attribute data types within the attribute record.

The attribute multiplicity and value columns are checked and updated in the FEATURE_ATT-
RIBUTE_METADATA table when the users select it. This approach avoids repetitively refer-
encing the PROPERTY table, particularly for large datasets, to enhance query performance
for checking feature attributes.

Similar to the feature geometry process, extent selection is enabled with the bounding box
specifications. Users can either perform a complete scan or an optional extent selection scan
on the target dataset. The FEATURE_ATTRIBUTE_.METADATA table will be populated with
the available distinct feature attributes of the existing classes. This metadata table then serves
as a reference for users to create feature attribute views.

4.3.2. Create Views or Materialized Views for Feature Attributes

Users can select the desired feature attributes within the target database schema via the
FEATURE_GEOMETRY_METADATA table. However, since feature attributes are stored
using the EAV model in 3DCityDB v.5.0, these selected attributes require flattening to join with
feature geometry views for creating GIS layers. Section 4.3.2.1 introduces the crosstab function
supported by PostgreSQL, which is used to flatten feature attributes regarding specific
attribute encoding in 3DCityDB v.5.0.

Section 4.3.2.2 to Section 4.3.2.5 elaborate on the methods applied to flatten (linearise) four
different attribute classes based on the data type and multiplicity of the attribute: “Inline”-
”Single”, “Inline-Multiple”, “Nested-Single”, and “Nested-Multiple”. The PL/pgSQL functions
developed in this research first check the attribute classes by looking up the collect and flatten
the feature attributes according to these four attribute classes and store the flattened results
into views or materialized views.

4.3.2.1. Crosstab Function in PostgreSQL

The crosstab function included in the PostgreSQL tablefunc extension is introduced to
transpose the attributes from rows to columns when each unique feature has its attributes
stored in multiple rows within the PROPERTY table.

According to [36], the crosstab function is used to create “pivot” displays, where data is
horizontally listed across columns rather than vertically down rows. This function requires
SQL statement as a text parameter, which generates a source table with three essential columns:
one for row name, another for category, and the third for values. The column header names

58
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and types of the crosstab function must be defined in the FROM clause of the calling SELECT
statement.

As illustrated in the Listing 4.3 and Figure 4.13, the row names from the source table represent
unique entries. These must be defined as the first column header in the crosstab FROM clause,
with the same data type as in the source table (in this case, a primary key of type big integer).
Following the row name column, the crosstab FROM clause includes several value columns.
The headers for these columns are derived from the category values, and their data type must
match the data type of the value column in the source table (in this case, it is set to the text
type). This ensures that the categorised value columns in the resulting table correctly store
values from the source table based on their data types.

1 SELECT =
> FROM CROSSTAB('
SELECT

4 Row_name ,

Category,
6 Values
7 FROM source_table') -- SHL statement as the source table
8 AS ct(row_name bigint, category_1 text, category_2 text);

Listing 4.3: Crosstab template

Category values from the source table becomes
______________________ ~--._______the column headers in the resulting table

- s,

Row_name (row) ategory (cat) Value (val)
[PK] bigint text text

T

1 icat 1 ! val 1 \
i [ Row_name (row) cat_1 cat_2 !
» — i b [PK] bigint text text ;
i i 1 val_1 val_2
2 icat_1 | val3
: : 2 val_3 val_4
2 icat_2 | val4
Source table Resulting table

Figure 4.13.: Visual reference of the crosstab function

The crosstab function generates one output row for each group of consecutive rows sharing
the same row name value from the source table. It populates the value columns in the
resulting table from left to right with the value fields from these rows. If a group has fewer
rows than the number of output value columns (Listing 4.4), the remaining columns are filled
with nulls. Conversely, if a group has more rows than the output value columns (Listing 4.5),
the extra input rows are ignored (Figure 4.14).

| SELECT * FROM CROSSTAB('source table SQL statement')
AS ct(row_name bigint, category_1 text);

Listing 4.4: Crosstab template with fewer value columns
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SELECT * FROM CROSSTAB('source table SQL statement')
AS ct(row_name bigint, category_1 text, category_2 text, , category_3 text);

Listing 4.5: Crosstab template with more value columns

* More value columns Nulled
Row_name cat_1 cat_2 cat_3
(row) text text text
PK] bigint
Row_name (row) Category (cat) Value (val) [PK] bigin ; .
[PK] bigint text text 1 val_1 val_2 i [nuuy
I cat 1 Nl ) ; X
O i 1 2 ival_3 val_4 i [null]
— - : . i
Wi cat_2 v ival 2 i
S — R
o p— (a3 Fewer value columns lgnored

)
[ [ i
! i ! 7 E Row_name (row) | cat_1
2/ cat_2 , ivald ) [PK] bigint text

________________________________________________ ]

input rows grouped with same row name
2

Source table Resulting table

Figure 4.14.: Visual reference of the crosstab function with more or fewer value columns

4.3.2.2. Inline-Single Attribute Class

The Inline-Single class represents the simplest scenario for flattening feature attributes. Since
this class of attributes is already stored following the SFS model, it only requires renaming the
value column headers using the inline attribute names. The following principles apply based
on the number of value columns:

1. One value column: Rename the single-column header with the attribute name.

2. Multiple value columns: Rename the first value column header with the attribute
name. For the rest of the value column headers, replace the prefix ”val.” with the
attribute name, as these are supplementary columns.

Listing 4.6 and Figure 4.15 provide examples of how to query and flatten the Inline-Single at-
tribute. The “class” of buildings serves as an example of an inline attribute with a multiplicity
of one. This means that each building has a single “class” attribute stored in one row within
the PROPERTY table, with values across val_string and val_codespace columns. According
to the principles, the header of the first column is renamed to “class”, and the prefixes of the
remaining value columns are replaced with the attribute name. The implementation and the
query template for the Inline-Single attributes are provided in Section 5.4.3.1.
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1 SELECT

f.id AS f_id,

-- Rename 1st walue column to the attribute name
p.val_string AS "class",

-- Replace the walue column prefix with the attribute name
p.val_codespace AS "class_codespace"

7 FROM citydb.feature AS f

 PROPERTY table /,ERename Replace the prefix
id feature_id P parent_id datatype_id name ,/l ’ ivaLstring P val_codespace ’
[PK] bigint bigint bigint integer text | i text text

13 1 [null) 14 |class | habitation http://www.sig3d.org/codelists/s...

2
3

INNER JOIN citydb.property AS p ON f.id = p.feature_id
AND f.objectclass_id = 901 -- Building class
AND p.name = 'class'; -- Target attribute

Listing 4.6: Flatten query example of Inline-Single attributes: “class” of buildings

138 20 [null) 14  class habitation http://www.sig3d.org/codelists/s...

197 29 [null] 14 class habitation http://www.sig3d.org/codelists/s...

* Flattened (linearised) attribute (resulting table)

f_id class class_codespace
bigint a text 8 text é
1 habitation http:/www.sig3d.org/codelists/standard/building/2.0/_AbstractBuilding_class.x..

2
3

20 habitation http://www.sig3d.org/codelists/standard/building/2.0/_AbstractBuilding_class.x...
29  habitation http://www.sig3d.org/codelists/standard/building/2.0/_AbstractBuilding_class.x...

Figure 4.15.: Visual reference of flattening Inline-Single attribute: “class” of buildings

4.3.2.3. Inline-Multiple Attribute Class

If a feature inline attribute has a multiplicity greater than one, it falls under the Inline-Multiple
class. In this scenario, the crosstab function is required to flatten the attributes, as a unique
feature can have multiple entries of an attribute stored across rows within the PROPERTY
table. The crosstab function for flattening Inline-Multiple attributes follows two principles
based on the number of value columns:

1. One value column: Listing 4.7 and Figure 4.16 show an example of querying and

flattening an Inline-Multiple attribute with one value column, which is the “name”
of buildings. In the PROPERTY table, the three source columns for the crosstab are
labelled in blue, green, and orange, respectively. The query of these source columns is
used as the SQL text input, enclosed by the $BODY$ tags for the crosstab function.

Note that the maximum multiplicity of the selected attribute determines the number
of value columns in the crosstab FROM clause, as it requires a corresponding number
of columns to hold the transposed values. Therefore, if an Inline-Multiple attribute is
selected by the users, a full scan of the dataset within the user-selected extent should be
performed first to check its maximum multiplicity. The value columns in the resulting
table are then renamed to the attribute name suffixed with the multiplicity count.
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SELECT
f_id AS f_id,
ct.name_1 AS name_1,
ct.name_2 AS name_2,
ct.name_3 AS name_3
FROM CROSSTAB($BODY$

SELECT
f.id AS f_id, -- 1. Tow mname
p.name, -- 2. category
p.val_string -- 3. wvalues

FROM citydb.feature AS f
INNER JOIN citydb.property AS p ON (f.id = p.feature_id
AND f.objectclass_id = 901)
WHERE p.name = 'name'
ORDER BY f_id, p.id ASC $BODY$)
-- Types specified based on the 1 and 3 columns from the source table
AS ct(f_id bigint, "name_1" text,"name_2" text,"name_3" text);

Listing 4.7: Flatten query example of Inline-Multiple attributes with one value column:
“name” of buildings

* PROPERTY table (3 source columns for crosstab)

1. Row name 2.Category 3. Values
P £ b 7 bgm 7 meor 7 e 7 e ’
1 2 1 [null] 14 name Jabba's multi-part Palace
2 127 20 [nul] 14  name Palapatine’s Residence
3 186 29 [null] 14  name Darth Vader's Palace
4 245 30 [nul] 14 | name Snoke's Palace
247 30 [nul] 14 | name Snoke's Palace_3
246 30 [nul] 14 | name Snoke's Palace_2

* Max multiplicity determines the value
column number in crosstab table

* Flattened (linearised) attribute (resulting table)

Value column renamed to attribute name
and suffixed with the multiplicity count

bt ® et b e 8 8
1 1 Jabba's multi-part Palace  [null] [null]
2 20 Palapatine’s Residence [null] [null]
3 29  Darth Vader's Palace [null] [null]
30 Snoke's Palace Snoke's Palace_2  Snoke's Palace_3

Figure 4.16.: Visual reference of flattening Inline-Multiple attributes with one value column:
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multiplicity determines the number of value columns in the crosstab FROM clause.
However, since the crosstab function only accepts one value column from the source
table, it is necessary to combine all columns storing attribute values in the PROPERTY
table into a composite type. This ensures that the attribute values are stored in a single
column for the crosstab function, allowing the actual values to be extracted from the
composite-type tuples after flattening.

In the example shown in Listing 4.8 and Figure 4.17, the composite type named
”citydb_901_function_ct” is defined first, composed of two text values. In the source table
of the crosstab function, the val_string and val_codespace columns are combined and
cast to the composite type, ensuring only one value column for the crosstab function.
The maximum attribute multiplicity, which is two in this case, determines the number
of value columns in the resulting table, all cast to the composite type. Finally, the actual
values are extracted from the resulting table value columns using dot notation, with the
composite type composed of two text values: the first from the val_string column and
the second from the val_codespace column.

The naming convention for composite types in this research follows a specific format:
the target dataset schema name is combined with the objectclass_id, attribute name,
and a “ct” suffix, using underscores as delimiters. Composite types are defined when
users select attributes with a multiplicity greater than one and have values stored across
multiple value columns in the PROPERTY table. When created, the composite type
name is stored in the FEATURE_ATTRIBUTE_METADATA table for management and
reference. The implementation and the query template for the Inline-Multiple attributes
are provided in Section 5.4.3.2.

-- Define composite type for holding value 2n tuples from the source table
DROP TYPE IF EXISTS "citydb_901_function_ct";

3 CREATE TYPE "citydb_901_function_ct" AS (val_string text,val_codespace text);

-- Flattening attributes using composite type

5 SELECT

f_id AS f_id,

-- Eztract walues from composite-type tuples
(function_1).val_string AS "function_1",
(function_1).val_codespace AS "function_codespace_1",
(function_2).val_string AS "function_2",
(function_2).val_codespace AS "function_codespace_2"

FROM CROSSTAB ($BODY$

SELECT
f.id AS f_id, -- 1. row mame
p.name, -- 2. category
(p.val_string,p.val_codespace)::"citydb_901_function_ct" -- 3. walues

FROM citydb.feature AS f
INNER JOIN citydb.property AS p ON (f.id = p.feature_id
AND f.objectclass_id = 901)
WHERE p.name = 'function'
ORDER BY f_id, p.id ASC $BODY$)
-- Maxz multiplicity decides the number of the wvalue column
-- Source walue columns cast to the composite type
AS ct(f_id bigint,
function_1 "citydb_901_function_ct",
function_2 "citydb_901_function_ct");

Listing 4.8: Flatten query example of Inline-Multiple attributes with multiple value columns:

“function” of buildings
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* PROPERTY table (3 source columns for crosstab)

1. Row name 2.Category 3. Values (composite type)
id N fgqureJd ’ pgrpnt_ld flatatype_id ’ name , E val_string val_codespace
[PK] bigint bigint bigint integer text i text text
1 14 1 [null] 14 function residential building  http://www.sig3d.org/codelists/...
2 139 20 [null] 14 function residential building  http://www.sig3d.org/codelists/...
3 198 29 [null] 14 function residential building  http://www.sig3d.org/codelists/...
4 272 30 [null] 14 | function youth hostel http://www.sig3d.org/codelists/...
27N 30 [null] 14 | function 2 residential building  http://www.sig3d.org/codelists/...

* Values columns defined to corr:posite type

* Max multiplicity determines the value column number in crosstab table

* Value columns in the crosstab FROM clause are renamed to the attribute
names, suffixed with multiplicity count and cast to the composite type

* Flattened (linearised) attribute (resulting table)

.

* 1stvalue column renamed to attribute name

* Replace prefixes of other value columns with attribute name
» Suffix all renamed value columns with the multiplicity count
» Extract values from the composite type value tuples

f‘,k" a i function_1 fi i despace_1 function_2 function_codespace_2
bigint | text text text text
1 1 residential building  http://www.sig3d.org/codelists/..  [null] [nul]
2 20 residential building  http:/www.sig3d.org/codelists/...  [null] [null]
3 29  residential building  http:/www.sig3d.org/codelists/...  [null] [null]
30 residential building  http://www.sig3d.org/codelists/..  youth hostel http://www.sig3d.org/codelists/...

Figure 4.17.: Visual reference of flattening Inline-Multiple attribute with multiple value
columns: “function” of buildings

4.3.2.4. Nested-Single Attribute Class

The Nested-Single class stands for the nested attributes with single entries. An entry of
nested attributes consists of one parent inline attribute followed by several inline child
attributes connected via the parent_ids, and the values are usually stored across multiple
value columns in the PROPERTY table. Listing 4.9 and Figure 4.18 provide an example of
querying and flattening a Nested-Single attribute with multiple value columns, specifically
the “height” of buildings. A single “height” attribute entry for buildings consists of four
child attributes, which are queried by repetitively cross-referencing the PROPERTY table.

The first join queries the “Building” class and the “height” attribute, while the second join
sorts out the child attributes of “height”. Since the child attributes are all inline attributes,
their value columns can be identified by referencing the ATTRIBUTE_DATATYPE_LOOKUP
table. The CASE function handles different child attributes by searching for values in the
corresponding value columns, and the column headers in the resulting table are renamed to
the parent-child attribute name combinations.

If a child attribute has multiple value columns, the suffixes starting from the second value
column are retained and added after the rename. For instance, the “value” of “height” has
two value columns: val_double and val_uom. The first column is renamed to “height_value”,
while the second column is renamed to “height_value_UoM” to indicate it is the supplemen-
tary column for “value”, representing the Unit of Measure (UoM).
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Finally, the MAX and GROUP BY functions are applied to filter out NULL values in the resulting
table, ensuring the flattened result is inline. The implementation and the query template for
the Nested-Single attributes are provided in Section 5.4.3.3.

1 SELECT
2 f.id AS f_id,
3 -- MAX, GROUP BY functions are used to filter the [NULL] wvalues

4 MAX(CASE WHEN pl.name = 'status'

5 THEN pl.val_string END) AS "height_status",

6 MAX (CASE WHEN pl.name = 'highReference'

7 THEN pl.val_string END) AS "height_highReference",
8 MAX (CASE WHEN pl.name = 'lowReference'

9 THEN pl.val_string END) AS "height_lowReference",
10 MAX(CASE WHEN pl.name = 'value'

11 THEN pl. val_double END) AS "height_value",

12 MAX (CASE WHEN pl.name = 'value'
13 THEN pl.val_uom END) AS "height_value_UoM"

1+ FROM citydb.feature AS f

15 -—- First PROPERTY table join for the querying the parent attribute
16 INNER JOIN citydb.property AS p ON (f.id = p.feature_id

17 AND f.objectclass_id = 901 AND p.name = 'height')

18 -- Second PROPERTY table join for the querying the child attridbutes
19 INNER JOIN citydb.property AS pl ON p.id = pl.parent_id

20 GROUP BY f.id;

Listing 4.9: Flatten query example of Nested-Single attributes: “height” of buildings

* PROPERTY table > Prefix_Rename (_optional suffix)
id o, fgqurud ’ pgrgnud fmatype_ld ’ name ',"/ ’ val_string ’ val_double ) val_uom ’
[PK] bigint bigint bigint integer text | text double precision text
1 5 1 [null] 702 [null] [null]  [null]
6 1 5 17 |value [null] 215 m
7 1 5 5 |status measured [null]  [null]
8 1 5 14 [lowReference |!1 dPoint frull]  [null]
9 1 5 14 |highReference |[! highestRoofEdge [null]  [null]
6 99 42 [null) 702 height [null] [null]  [null]
7 100 2 99 17 value [null 267 m
8 101 42 99 5 status measured “". [null]  [null]
9 102 42 99 14  lowReference lowestGroundPoint ; [null]  [null]
10 103 42 99 14 highReference  highestRoofEdge /."‘ [null]  [null]

7 4
MAX and GROUP BY functions applied to filter the [NULL] values

* Flattened (linearised) attribute (resulting table)

_» * Value columns renamed to the parent-child attribute names
* If achild attribute has multiple value columns, the original value column
suffix is retained during renaming, except for the 15tvalue column

/

L,Id_ a height_status a height_highReference a height_lowReference a helghLvaIug height_value_UoM ﬁi
bigint text text text double precision text i
1 measured highestRoofEdge lowestGroundPoint 215 m
2 42 measured highestRoofEdge lowestGroundPoint 267 m
3 155 measured highestRoofEdge lowestGroundPoint 124 m

Figure 4.18.: Visual reference of flattening Nested-Single attribute: “height” of buildings
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4.3.2.5. Nested-Multiple Attribute Class

If a unique feature has a nested attribute with a multiplicity greater than one, it belongs
to the Nested-Multiple class. In this scenario, the crosstab function used for flattening
Inline-Multiple attributes (Section 4.3.2.3) is combined with the renaming approach for
Nested-Single attributes (Section 4.3.2.4). Listing 4.10 and Figure 4.19 provide an example of
the “height” of buildings with multiple entries.

The values of a building’s “height” are stored across three columns: val_string, val_double,
and val_uom. A composite type named “citydb_901_height_ct” is created first following the
composite type naming convention to combine these three columns into a single value column
for the crosstab function. The SQL query text used as the input for flattening is identical
to Listing 4.9. The FEATURE table is joined with the PROPERTY table twice to query all
child attributes of the buildings” “height”, selecting only feature_id, name, and the combined
values column in the composite type to satisfy the three elemental columns for the crosstab
function.

Similar to the Inline-Multiple attribute flattening approach, a full scan of the dataset within
the user-selected extent is performed first to check the maximum multiplicity of the target
attribute, which is two in this case. The maximum attribute multiplicity determines the
number of value columns in the crosstab FROM clause. Considering each entry of the building’s
"height” has four child attributes, the value columns in the crosstab FROM clause are set to the
child attribute names suffixed with the multiplicity counts, and all columns are cast to the
composite type.

Finally, in the SELECT clause of the crosstab function, the corresponding child attribute value
columns are checked from the ATTRIBUTE_DATATYPE_LOOKUP table, and the actual values
from the crosstab result are extracted back using dot notation. The value columns holding the
extracted values are renamed by the parent-child attribute name combinations suffixed with
the multiplicity count. The implementation and the query template for the Nested-Multiple
attributes are provided in Section 5.4.3.4.
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4.3. Feature Attributes

1 —-- Define composite type for holding value in tuples from the source tabdble
> DROP TYPE IF EXISTS "citydb_901_height_ct";
3 CREATE TYPE "citydb_901_height_ct"

4 AS (val_string text, val_double double precision,val_uom text) ;

5 —-— Flattening attributes using composite type

¢ SELECT

7 f_id AS f_id,

8 -- Eztract wvalues from composite-type tuples

9 (highReference_1) .val_string AS "height_highReference_1",
10 (lowReference_1).val_string AS "height_lowReferemnce_1",
11 (status_1) .val_string AS "height_status_1",

12 (value_1) . val_double AS "height_value_1",

13 (value_1).val_uom AS "height_value_UoM_1",

14 (highReference_2).val_string AS "height_highReference_2",
15 (lowReference_2).val_string AS "height_lowReference_2",
16 (status_2).val_string AS "height_status_2",

17 (value_2) . val_double AS "height_value_2",

18 (value_2) .val_uom AS "height_value_UoM_2"

v FROM CROSSTAB ($BODY$

20 SELECT

21 f.id AS f_id, -- 1. row mname

2 pl.name, -- 2. category

3 -- 3. wvalues
24 (pl.val_string,pl. val_double ,pl.val_uom)::"citydb_901_height_ct"
25 FROM citydb.feature AS f
26 INNER JOIN citydb.property AS p ON (f.id = p.feature_id
27 AND f.objectclass_id = 901 AND p.name = 'height')
28 INNER JOIN citydb.property AS pl ON p.id = pl.parent_id
29 ORDER BY f.id, p.id, pl.name ASC $BODY$)
30 -- Maxz multiplicity decides the number of the walue column
31 -- Source wvalue columns cast to the composite type

32 AS ct(f_id bigint,

33 highReference_1 "citydb_901_height_ct",
34 lowReference_1 "citydb_901_height_ct",
35 status_1 "citydb_901_height_ct",
36 value_1 "citydb_901_height_ct",
37 highReference_2 "citydb_901_height_ct",
38 lowReference_2 "citydb_901_height_ct",
39 status_2 "citydb_901_height_ct",
10 value_2 "citydb_901 _height_ct");

Listing 4.10: Flatten query example of Nested-Multiple attributes: “height” of buildings

To conclude, four attribute classes: Inline-Single, Inline-Multiple, Nested-Single, and Nested-
Multiple, are defined for flattening (linearising) feature attributes from the data encoded in
3DCityDB v.5.0. The query examples demonstrate the case results of the PL/pgSQL functions
for attribute flattening. The flattened (linearised) attribute can then be joined with the
user-selected feature geometry views to create layers that comply with the SFS model.

Unlike the attribute query approach of 3DCityDB v.4.x, where general and specific attributes are
already flattened and directly stored as views for GIS layer creation, with generic attributes
associated as sub-tables, 3DCityDB v.5.0 flattens all attributes. This allows users to select
desired attributes to join with geometry views individually. Given the complexity of attribute
flattening and the size of the PROPERTY table, it becomes apparent that materialized views
can offer a better user experience, especially when working with large datasets. The decision
regarding attribute view types is further discussed in Section 4.4, as it significantly impacts
the approach to GIS layer creation.
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4.4. GIS Layers Creation

The final step of the methodology is to join feature geometries with selected attributes to
create GIS layers. As indicated in Section 4.3, feature attributes from 3DCityDB v.5.0 require
flattening to comply with SFS model, meaning attribute views are generated individually based
on user selection. Therefore, repetitively joining the attribute views is necessary to interact
with multiple attributes.

The GIS layers consist of user-selected feature geometry materialized views (see Section 4.2.2),
which are joined with one or more attributes using LEFT JOIN to retain feature geometries
while accounting for any missing attributes. The proposed approaches for creating GIS layers
are detailed below and illustrated in Figure 4.20.

1. Geometry Materialized View joined with multiple of Attribute Views:
Each selected attribute is stored as a single view and joined with the target feature
geometry materialized view using LEFT OUTER JOIN on feature_ids. Attribute view
names should include the target schema name, objectclass_id, and attribute name
for unique identification.

2. Geometry Materialized View joined with multiple Attribute Materialized Views:
Each selected attribute is stored as a single materialized view with indices on every
column, then joined with the target feature geometry materialized view using LEFT
OUTER JOIN on feature_ids. The naming convention is the same as in the first approach,
with another label for differentiation.

3. Geometry Materialized View joined with one Attributes table Materialized View:
All selected attributes are combined into a single materialized view using FULL JOIN
on the flattening queries, creating an integrated attribute table with indices on every
column. This table is then joined with the target feature geometry materialized view
using LEFT OUTER JOIN on feature_ids. The naming convention includes the target
schema name, objectclass_id, and geometry materialized view name or another
specifier for unique identification.

Geometry

MView Attribute View_1 Attribute View_2 Attribute View_3
Approach_1 [ ) (e L, [Eer )
View = + < WHERE .. oo+ < WHERE ... j + W WHERE ... ‘/-
multiple left JOINs N /‘ N N J
Geometry . . . .
MView Attribute MView_1 Attribute MView_2 Attribute MView_3
Approach_2 C—) -—) )
Materialized View (MView) = + + +
multiple left JOINs
Geometry . .
MView Integrated Attributes MView

Approach 3 ——) SELECT * SELECT * SELECT *

" —_ + FROM ... FROM ... FROM ...

Materialized View (MView) = WHERE ... WHERE ... WHERE ...
one left JOINs

Figure 4.20.: GIS layer creation approaches
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The initial approach using attribute views may result in longer query times due to the need
to recompute and flatten (linearise) all selected attributes each time the GIS layers are queried.
This issue becomes more pronounced with large datasets, where the recomputation process
can significantly impact performance.

To address this, utilising a materialized view for storing the flattened (linearised) attributes
is preferable. Materialized views precompute and store the flattened data, which improves
query performance by eliminating the need for on-the-fly computation and thereby enhances
query time efficiency, especially with large datasets. A query performance test is conducted
to evaluate the query times for GIS layers generated by these approaches. The results of this
test are discussed in Section 6.2.

The metadata of the generated GIS layer, including the selected approaches, feature geometry
LoDs representations and attributes, are stored within the LAYER_.METADATA table, which is
elaborated in Section 6.3. The GIS layers generated from different CityGML datasets using
the proposed approaches are shown in Section 6.4.
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5. Implementation Part 1: Feature
Geometry and Attribute Metadata
Check and View Creation

This chapter introduces the implementation to set up the qgis_pkg for creating and populating
the FEATURE_.GEOMETRY_METADATA and FEATURE_ATTRIBUTE_METADATA tables for
view creation from the data stored within 3DCityDB v.5.0. The metadata tables are referenced as
menus for users to create GIS layers for further interaction in QGIS. Section 5.1 introduces the
structure of the PL/pgSQL function package, explaining the setup and installation. Section 5.2
briefly introduces the CityGML datasets used in this thesis. Section 5.3 focuses on preparing
the feature geometry metadata table and presents the process and visualisation of the created
feature geometry materialized views. Section 5.4 details preparing the feature attribute
metadata table and shows the result of flattened attributes in views.

5.1. 3DCityDB and the PL/pgSQL Function Package Setup

The initial phase of importing CityGML data into the PostgreSQL database is to set up the
3DCityDB v.5.0 instance. Users can download the latest 3DCityDB tool package from the
open-source repository on GitHub ([22]). The steps to create a 3DCityDB v.5.0 instance are
introduced in Section 5.1.1, while Section 5.1.2 elaborates on the structure of the qgis_pkg
and its installation on 3DCityDB v.5.0 instances.

5.1.1. 3DCityDB v.5.0 Setup

1. Create new user in pgAdmin4
Open the pgAdmin4 application. In the side panel under “Login/Group Roles,” create
a new user. Set privileges for this newly created superuser by granting full access.

71



5. Implementation Part 1: Feature Geometry and Attribute Metadata Check and View Creation

4 Group Role - Login/Group Roles. X Group Role - Login/Group Roles x

General Definition  Privileges Membership Parameters ~ Security ~SQL General Definition Privileges Membership Parameters Security SQL

Name bstsai Canlogin?

Comments This Is the main user for 30CItyDB v.5.0 schemas| Superumer?

Create roles?

Create databases?

48843

Inhert rights from the
parent roles?

Can initiate
streaming repli
and backups?

Bypass RLS?

o 0 X Close | | 4 Reset o 0 X Close £ Reset

Figure 5.1.: Create a new user name and grant superuser privileges in pgAdmin4

2. Create new database and extensions

Create a new database under the PostgreSQL server (version 15). The following
extensions are required to install the 3DCityDB v.5.0 instance, which can be achieved by

executing the SQL queries shown in Listing 5.1.

CREATE EXTENSION IF NOT EXISTS postgis SCHEMA public;
> CREATE EXTENSION IF NOT EXISTS postgis_raster SCHEMA public;
» CREATE EXTENSION IF NOT EXISTS "uuid-ossp" SCHEMA public;
4+ CREATE EXTENSION IF NOT EXISTS pldbgapi SCHEMA public;

Listing 5.1: Create extensions for installing 3DCityDB instances

3. Setup connection details

After creating a new database and setting up the necessary extensions, navigate to the
”connection detail” shell script file in the 3DCityDB tool package. Fill out the connection

details, an example is given in Listing 5.2.

| export PGBIN=/Library/PostgreSQL/16/bin
> export PGHOST=localhost

3 export PGPORT=5433

1 export CITYDB=citydb_vb

5 export PGUSER=bstsaij;

Listing 5.2: Setup connection detail example

4. Create 3DCityDB schema
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Execute the CREATE_DB shell script using the terminal to create the 3DCityDB v.5.0
schema in the same directory as the previous step. A window prompt will appear,
requesting the entry of the SRID and EPSG code for the height system regarding the
dataset. For example, the SRID of the “Rijsen-Holten” dataset [37] is set to 28992, which
is the projected coordinate system for the Netherlands, and the height EPSG code is set
to 5109.

After successfully creating the 3DCityDB v.5.0 schema, two schemas with the default
names “citydb” and ”citydb_pkg” are added under the newly created database. Users
can create additional 3DCityDB v.5.0 schemas by executing the CREATE_.SCHEMA shell
script, where the coordinate settings are duplicated from the default 3DCityDB schema.
The CityGML datasets can then be imported using the pipeline command. More
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information is available from [22]. An example command to import a CityGML file is
provided in Listing 5.3.

£ Unix — -zsh — 183x58

Figure 5.2.: Create 3DCityDB v.5.0 schema

sh citydb import citygml "{directory of CityGML datal}"
--db-host localhost
--db-port {port number}
--db-name {database}
--db-username {user name}
--db-password {password}
--db-schema citydb

Listing 5.3: Example command to import CityGML file using 3DCityDB v.5.0 tool

5.1.2. QGIS Package Structure and Setup

With a successful 3DCityDB schema setup, users can then install the qgis_pkg developed by
this research to create GIS layers from the datasets stored within the 3DCityDB v.5.0 schemas.

The qgis_pkg package consists of seven SQL files, which can only be installed by executing
them via pgAdmin4. The main PL/pgSQL functions includes:

e 010_function: Contains fundamental functions to create the qgis_pkg schema, which
holds all other functions used by the package, such as the upsert_extents function for
extent selection. It also allows users to create a user schema for storing generated views
or materialized views.

* 020_tables: Establishes the necessary tables to store metadata of the extents, feature
geometry, feature attributes, and lookup information.

e 030_.meta_geometry: Contains the update_feature _geometry metadata main function
and other sub-functions for users to check the geometries existence of space, boundary,
relief, relief component and address features.
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* 040_meta_attribute: Contains the update feature attribute metadata main function
and other sub-functions for users to check the existence of geometries related to space,
boundary, relief, relief components, and address features.

* 050_meta_layer: Contains the drop_all_layer main function and other side functions
to drop views or materialized views of the generated layers.

* 060_geometry: Contains the create_geometry_view main function and other side func-
tions to create or drop views or materialized views of space, boundary, relief, relief
components, and address features.

e 070.attribute: Contains the create_attribute_view main function and other side
functions to query, flatten, and create feature attribute views or materialized views.

¢ 080_layers: Contains the create_layer main function and other side functions to create
GIS layers using the approaches mentioned in Section 4.4 and store them in views or
materialized views.

Users can call the create_qgis_usr_schema function (Listing 5.4) after successfully installing
the QGIS package to create their 3DCityDB schema for storing the generated views or GIS
layers. The EXTENTS and LAYER_METADATA tables are instantiated by duplicating the
template tables stored within the qgis_pkg schema.

For identification purposes, starting from this chapter, usr_schema will refer to the 3DCityDB
v.5.0 schemas created by users, whereas cdb_schema will denote the 3DCityDB v.5.0 schemas
that store the target CityGML datasets.

-- (input: user_name)
> SELECT * FROM qgis_pkg.create_qgis_usr_schema('bstsai');

Listing 5.4: Calling the create_qgis_usr_schema function

After creating the user schemas, users are requested to specify the bounding box geometry
for the operation. There are three fixed types for the bounding box: “db_schema,” "m_view,”
and “qgis,” with “db_schema” as the default type. The user-specified extents are classified
as “m_view” type, and the “qgis” type is reserved for future development of the plug-in
to store the extents provided from QGIS GUIs. Listing 5.5 demonstrates two modes to call
the upsert_extents function. Users can either provide the usr_schema and cdb_schema for
specifying the extents, or they can specify the bounding box geometry directly.

In the first mode, a full cdb_schema-wise scan is performed to calculate the bounding
box geometry of the target dataset and populate it into the EXTENTS table labelled as
”db_schema” type. In the second mode, users can specify the bounding box geometry using
the ST _MakeEnvelope function supported in the PostgreSQL, which takes the four vertex
coordinates of the extent regarding the local EPSG code. With the usr_schema created and
the extent specified, users can then proceed to check feature geometries and attributes for
view creation.

-- (inputs: usr_schema, cdb_schema, cdb_bboz_type, cdb_envelope)

> SELECT * FROM qgis_pkg.upsert_extents('qgis_bstsai', 'citydb'); -- Default
3 SELECT * FROM qgis_pkg.upsert_extents('qgis_bstsai', 'rh_v56', 'm_view',
ST_MakeEnvelope (232320, 480620, 232615, 481025, 28992)); -- user-specified

Listing 5.5: Calling the upsert_extents function
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5.2. Test Datasets

The datasets used to test the PL/pgSQL functions developed in this research are listed in
Table 5.1. The Rijsen-Holten and Vienna datasets are primarily used to evaluate the query
performance for collecting and generating views or materialized views of feature geometry
and attributes, as they include commonly used features like buildings, trees and terrain. Due
to the large size of the Vienna dataset, it is specifically used to test query time efficiency in
extreme cases.

Due to the swapped xy-coordinates in the Tokyo CityGML files, additional processing is
required. This is supported by the “3D City Database Importer/Exporter,” a tool of the
3DCityDB v.4.x, which is used to swap the xy-coordinates and export the modified data. The
modified file is then imported by the command line tool of the 3DCityDB v.5.0 to correctly
display the data in QGIS. For testing purposes, only a single tile of the Tokyo CityGML
dataset is imported into the 3DCityDB v.5.0, particularly to verify feature attributes that are
represented in other characters, such as the Kanji in Japanese, can be used as the column
headers in the flattened attribute table.

The FZK-Haus and the transportation datasets are used to test the layer generation of
CityGML v.3.0 data. They contain features such as building construction elements, stories,
and traffic spaces, which are newly introduced in the CityGML v.3.0 standards.

Dataset [source] Feature Schema CityGML Modules LoDs CityGML
Number Size Version
Alderaan ! 273 43 MB Building, Vegetation, 0,1,2 2.0
Relief
Railway [1] 235 3.0 MB Bridge, Building, 3 2.0
CityFurniture,
Generics, Relief,
Transportation,
Tunnel, Vegetation,
WaterBody
Tokyo [38] 39,865 84.0 MB  Building 0,1,2 2.0
Rijsen-Holten 827,105 3.3 GB Building, Vegetation, 2 2.0
[37, 39] Relief
Vienna [40, 41] 7,512,786 38.0 GB  Building, Vegetation, 1,2 2.0
Relief, LandUse,
Generics
FZK-Haus [42] 85 3.7 MB  Building, Construction 2 3.0
Munich 295 1.4 MB Transportation 2 3.0
Transportation [43]
New York City 7,179 19 MB  Transportation 2 3.0

Transportation [43]

! The Alderaan dataset is an artificial CityGML dataset used in the course GEO5014 taught at TU Delft
(https://3d.bk.tudelft.nl/education/#courses).

Table 5.1.: List of test datasets and their main properties
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5.3. Feature Geometry Metadata Check and View Creation

The overall pipeline of checking existing feature geometries and creating feature geometry
views from the data stored within 3DCityDB v.5.0 is shown in Figure 5.3. All features within the
user-specified extent can be classified into four categories: Space, Boundary, Relief and Relief
Component features. The existing feature geometries in the target database schema can be
obtained using a combination of the feature objectclass_id and its LoDs geometry property,
which is stored in the name column of the target schema PROPERTY table. For boundary
features, the parent objectclass_id should also be checked. The envelope geometries stored
in the FEATURE table are needed to reference relief features.

Section 5.3.1 introduces the design of the FEATURE_GEOMETRY_METADATA table, giving
information about the columns and their purposes. Section 5.3.2 elaborates on the structure
of the PL/pgSQL functions used to perform feature geometry metadata check. Section 5.3.3
explains the PL/pgSQL functions that dynamically generate the queries for creating feature
geometry views and demonstrate the result, followed by the summary of this section described
in Section 5.3 .4.

Check Existing Geometries of the Feature Class Types

« Check if the features envelope is within the user-selected extent
« Based on the OBJECTCLASS_ID of features, check:

1. LoDs geometry representations
2. Parent OBJECTCLASS_ID (If it is boundary features)

‘ Space Feature ‘ ‘ Relief Component Feature ‘

‘ Boundary Feature ‘ ‘ Relief Feature ‘

!

Fill the Feature Geometry Metadata Table

1D schema parent_objectclass_id objectclass_id geometry_name

1 citydb 0 am lodOMultiSurface

2 citydb 901 15 lod2MultiSurface
Investigate performance of
resulting queries

Create View / Materialized View of Feature Geometries

Figure 5.3.: Checking feature geometry metadata pipleline
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5.3.1. Geometry Metadata Table Design

As indicated in Section 4.2.1, the FEATURE_GEOMETRY_METADATA table must include
at least the following four columns: schema name (cdb_schema), parent objectclass_id,
objectclass_id, and geometry name. The distinct combinations of these four keys are used
as a constraint in the FEATURE_.GEOMETRY_METADATA table to guarantee the uniqueness
of each row.

Table 5.2 shows the design of the FEATURE_.GEOMETRY_METADATA table. In addi-
tion to the four key columns (schema name, parent_objectclas_id, objectclass_id, and
geometry_name), the table also includes several other columns. These include datatype_id,
which indicates whether the geometry type is represented by normal geometries or implicit
geometries, and postgis_geom_type, which is used for type casting when querying the
feature geometry.

The columns after last modification _date are intended for storing information related to
geometry views or materialized views. These columns are populated when the corresponding
views or materialized views are created, and the values are removed when users drop the
views. The view information helps manage the created views, enabling operations such
as dropping views or refreshing materialized views. Additionally, mv_creation_time and
mv_refresh_time record the times taken to create or refresh geometry materialized views,
respectively, as these operations typically require longer processing times.
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Column Name PostgreSQL  Values
Type

id bigint[PK] Primary key

cdb_schema varchar Target database schema

bbox_type varchar Bounding box type for extent selection

parent_objectclass_id integer Parent class ID of boundary features. 0 as
NULL

parent_classname varchar Name of the parent class

objectclass_id integer class ID of the features

classname varchar Name of the class

datatype_id integer ID indicating the property data type, e.g. 11
for geometry property and 16 for implicit
geometry property

geometry_name text LoD and geometry type, e.g. lod1Solid,
lod2MultiSuface, etc.

lod text LoD value

geometry_type text Geometry type, e.g. Solid, MultiSurface, etc.
For naming the geometry views

postgis_geom_type text PostGIS geometry type, e.g.
PolyhedraSurface for Solid and
Multipolygonz for MultiSurface, etc.

last_modification_date timestamp(3) Last update time of the record

view_name varchar Geometry view name

is_matview boolean Identifier of materialized view creation

mview_name varchar Geomery materialized view name

mv _creation_time time(3) Materialized view creation time

mv_refresh_time time(3) Materialized view refresh time

mv_last_update_time timestamp(3) Last update time of the materialized view

Table 5.2.: FEATURE_GEOMETRY_METADATA table design

5.3.2. Geometry Metadata Check

The PL/pgSQL functions used to check the metadata of feature geometries are stored in the
”030_meta_geometry” SQL file. The pipeline of the update_feature_geometry metadata func-
tion is explained in Algorithm 5.1. The function takes three inputs: usr_schema, cdb_schema
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and cdb_bbox_type. Users can specify the bounding box type for extent selection. The
function populates the FEATURE_GEOMETRY_METADATA table with the check results.

Algorithm 5.1: update_feature_geometry metadata

Input: usr_schema, cdb_schema, cdb_bbox_type
Output: void: Populate the FEATURE_.GEOMETRY_METADATA table from the
result of querying existing feature geometries

1 Delete existing records of the specified cdb_schema ;

2 Let O «+ Array of existing objectclass_ids within the extent ;
3 Let B < Array of Boundary objectclass_ids ;

4 Let R < Relief feature objectclass_id ;

5 for each o € O do
6 if o = R then

7 L Call check_relief_feature function with o;

8 else if 0 € B then

9 L Call check_boundary_feature function with o;
10 else

11 L Call check_space_feature function with o;

The check feature geometry metadata process starts with deleting the existing records in the
FEATURE_GEOMETRY_METADATA table regarding the given cdb_schema, ensuring that the
available feature geometries in the specified cdb_schema are up-to-date.

For checking the boundary features, an array of all boundary class names is declared in the
update_feature_geometry metadata function, which includes the following classes:

e Core module: “"ClosureSurface”.

e Construcntion module: "WallSurface”, ”GroundSurface”, “InteriorWallSurface”, “Roof-
Surface”, “FloorSurface”, "OuterFloorSurface”, “CeilingSurface”, “OuterCeilingSurface”
(eight classes in total). Note that “DoorSurface” and "WindowSurface” are temporarily
classified as space features due to the absence of their parent “Window” and "Door”
classes, which could have occurred when encoding CityGML v.2.0 dataset using the
current 3DCityDB v.5.0 tool.

e Transportation module: "TrafficArea” and ”AuxiliaryTrafficArea”.
e WaterBody module: "WaterSurface”, “WaterGroundSurface”.

The above thirteen boundary class names array is then converted to an array of the corre-
sponding objectclass_ids by looking up the qgis_pkg CLASSNAME_LOOKUP table. The
same look-up applies to the “"ReliefFeature” class.

Starting from this chapter, the prefixes qi_ and gl used before parameters denote the
quote_identifier and quote_literal functions in PostgreSQL, respectively. These functions
dynamically insert input arguments into the query templates for generating SQL statements.

Listing 5.6 shows the query template for checking the existing objectclass_ids from the
cdb_schema within the specified extent. The query returns distinct objectclass_ids as an
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array while excluding classes from the module “Dynamizer”, “Appearance”, “CityObject-
Group” and “Version”, as they are neither related to feature geometries nor are included for
layer creation by the current plug-in.

The sql_where query text shown in Listing 5.6 is added optionally in the check geometry
metadata query to perform the extent selection. The geometry of the extent is stored using
the Well-Known Binary (WKB) representation, which is referenced from the EXTENTS table
under the usr_schema. If the extent selection is enabled, the corresponding geometry will
then be extracted from the EXTENTS table and passed to the cdb_envelope variable declared
in the update_feature_geometry metadata function. The bounding box coordinates of the
extent will then be computed to make the envelope, and a spatial selection will be performed
to test the intersection of the user-defined bounding box and each feature envelope stored
within the cdb_schema FEATURE table.

SELECT ARRAY(
SELECT DISTINCT objectclass_id
FROM ',qi_cdb_schema,'.feature AS f
4 INNER JOIN ',qi_cdb_schema,'.objectclass AS o ON f.objectclass_id = o.id
INNER JOIN ',qi_cdb_schema,'.namespace AS n ON o.namespace_id = n.id
6 WHERE n.alias NOT IN ("dyn", "app", "grp", "vers")', sql_where,')
7 AS oc_ids;

Listing 5.6: Query template for checking existing objectclass_ids within the extent

sql_where := concat(' AND ST_MakeEnvelope (
2 ',S8T_XMin(cdb_envelope),',',ST_YMin(cdb_envelope),"',
',ST_XMax (cdb_envelope),',',ST_YMax(cdb_envelope),',',srid,') && f.

envelope ');

Listing 5.7: Query template for extent selection

The update_feature_geometry metadata function traverses through the array of distinct
objectclass_ids to call corresponding functions for populating the geometry metadata table.
The "ReliefFeatures” class is checked first because it has special geometry representations
(see Section 4.2.1). If relief features are found, the function named check _relief_feature is
invoked to populate the geometry metadata table with the available relief feature LoDs and
geometry representations, as shown in Listing 5.8.

SELECT DISTINCT
f.objectclass_id,
p.datatype_id,
! p.name,
5 p.val_int
¢ FROM ',qi_cdb_schema,'.feature AS f
7 INNER JOIN ',qi_cdb_schema,'.property AS p ON f.id = p.feature_id
8 AND f.objectclass_id = 500 -- ReliefFeature class
9 WHERE p.name = 'lod' ', sql_where, ';

Listing 5.8: Query excerpt for checking relief feature

The boundary classes are checked after the “ReliefFeature” class because they are associated
with their parent classes. Listing 5.9 presents a query excerpt to check the LoDs and geometry
representations of boundary classes in the function named check_boundary_feature. The
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boundary classes” geometry metadata check is achieved by repetitively cross-referencing
the cdb_schema FEATURE and PROPERTY tables. The first join identifies the “boundary”
property of the space features, and the boundary class is specified in the second join. The
datatype_id is set to 11 here since boundary features can only have a geometry property but
no implicit geometry property (see Section 4.2.1). The objectclass_id of "RoofSurface” (712)
is specified here as an example; the boundary objectclass_id is dynamically specified based
on different boundary classes, returning the possible geometry metadata in combinations of
space-boundary classes like Building-RoofSurface or Tunnel-RoofSurface.

1 SELECT DISTINCT
2 fl.objectclass_id AS parent_obejectclass_id,
f2.0bjectclass_id,
4 p2.name,
p2.datatype_id,
6 p2.name,
7 p2.val_lod
s FROM ',qi_cdb_schema,'.feature AS f1
INNER JOIN ',qi_cdb_schema,'.property AS pl ON f1.id = pl.feature_id

10 AND pl.name = 'boundary'

11 INNER JOIN ',qi_cdb_schema,'.feature AS f2 ON f2.id = pl.val_feature_id
12 AND f2.objectclass_id = 712 ',sql_where,' --RoofSurface class

13 INNER JOIN ',qi_cdb_schema,'.property AS p2 ON f2.id = p2.feature_id

14 AND p2.datatype_id = 11; -- geometry property

Listing 5.9: Query excerpt for checking boundary features

Finally, the remaining features are the space and relief component features, which share
the same query concept for checking their LoDs and geometry representations. Listing 5.10
provides a query excerpt from the function named check_space_feature. The space and
relief component geometry metadata check is achieved by cross-referencing the cdb_schema
FEATURE and PROPERTY tables once. Since space features can have both geometry and
implicit geometry properties (see Section 4.2.1), the datatype_id is set to include 11 and
16, representing these two types. The Building class is used as an example specified by the
objectclass_id 901, which can be dynamically specified based on different space or relief
component feature classes, providing the geometry metadata for classes such as “Building”,
”SolitaryVegetationObject”, and “TINRelief”.

1 SELECT DISTINCT

2 f.objectclass_id,
3 p.name,
4 p.datatype_id,
p.name,
6 p.val_lod
7 FROM ',qi_cdb_schema,'.feature AS f
8 INNER JOIN ',qi_cdb_schema,'.property AS p ON f.id = p.feature_id
AND f.objectclass_id = 901 ',sql_where,' --Building class

10 WHERE p.datatype_id IN (11,16) AND p.val_lod IS NOT NULL;

Listing 5.10: Query excerpt for checking space and relief component features

The query excerpts for checking the feature geometry metadata can be extended to process

and return additional information, such as geometry_type and postgis_geometry_type, as
introduced in Table 5.2. An example of the populated FEATURE_.GEOMETRY_METADATA
table is shown in Figure 5.4.
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5.3.3. Geometry View Creation

After performing the geometry metadata scan, users can check the availability of feature
geometry representations and LoDs in the FEATURE_GEOMETRY_METADATA table. The
main function used to create feature geometry views is named create_geometry_view, which
is wrapped with other additional functions in the “050_geometry” SQL file.

Algorithm 5.2 shows the pipeline of the create_geometry_view function. The function allows
users to create views or materialized views of the selected feature geometry representation
and LoD within an extent according to the input geometry metadata parameters. Users can
specify which view types by the boolean parameter, is matview, and the query texts of
view headers are generated by generate_sql_view_header or generate_sql matview header
correspondingly. Additionally, the generate_sql matview_footer function is called only for
the materialized views to add indices on their columns to enhance query time efficiency.
These functions are stored in the “010_functions” SQL file, and the view headers and footers
are then added to the collect feature geometry queries for geometry view creation.

The character varying parameter, cdb_bbox_type, can be specified for extent selection. The
is_matview parameter is set to false by default for views while the cdb_bbox_type is set to
”db_schema” for full dataset extent by default.

Algorithm 5.2: create_geometry_view

Input: usr_schema, cdb_schema, parent_objectclass_id (po), objectclass_id (0),
datatype-id (0y), geometry name, lod, geometry_type, postgis_geom_type,
is_matview, cdb_bbox_type

Output: void: Create feature geometry views or materialized views and store in

usr_schema

Let G < datatype_id of the geometry property ;

Let I <— datatype_id of the implicit geometry property ;

Let R + Relief feature objectclass_id;

Let C <— Array of Relief Component feature objectclass_ids ;
Let sql_header <— generated based on the is matview input;

Let sql_footer <— generated only when the is_matview is TRUE;

7 if 0 = R then
8 L sql_geom <— Call collect_geometry relief_feature function with o;

9 else if 0 € C then
10 L sql_geom <— Call collect_geometry_relief_component function with o;

S Ul R W N =

11 else

12 if po = 0 then

13 if o; € {G, 1} then

14 L sql_geom <— Call collect_geometry_space_feature function with o;

15 else

16 if 0; = G then

17 L sql_geom <— Call collect_geometry boundary_feature function with po
and o;

18 execute (sql_header & sql_geom & sql_footer);
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The function creates geometry views based on the four feature types: space, boundary,
relief, and relief component features. The objectclass_ids differentiate the relief and relief
component features from space and boundary features, while the parent_objectclass_ids
can distinguish space and boundary features, as space features have 0 by default for that.
The datatype_ids for geometry and implicit geometry property are referenced to look up
the geometry root ids for joining the cdb_schema GEOMETRY_DATA table.

Listing 5.11 and Listing 5.12 present the query templates for adding the view and materialized
view headers and materialized view footers. The qgis_pkg CLASSNAME_LOOKUP table
is referenced to get the class name alias for view name creation, such as “bdg” stands for
Building class. The naming convention of the view names concatenates the cdb_schema name,
class name alias, LoD value, and the geometry representation using underscores. For example,
if users choose to create a geometry view of buildings in LoD1 Solid from the “citydb” schema,
the view name will be: “citydb_bdg_lod1_Solid”. In the case of a materialized view, the
”_g_” label is added before the view name for identification. The geometry metadata, which
are the input parameters of the create_geometry_view function, are used to create the view
name dynamically within the function, and the view headers and footers are generated
correspondingly.

-- view header
> DROP VIEW IF EXISTS ',qi_usr_schema,'.',qi_view_name,' CASCADE;
3 CREATE OR REPLACE VIEW ',qi_usr_schema,'.',qi_view_name,' AS
1 -—- materialized view header
5 DROP MATERIALIZED VIEW IF EXISTS ',qi_usr_schema,'.',qi_view_name,' CASCADE;
¢ CREATE MATERIALIZED VIEW ',qi_usr_schema,'.',qi_view_name,' AS

Listing 5.11: Query template for view and materialized view headers

1 -- materialized view footer

> CREATE INDEX ',f_idx_name,' -- index name of feature ID

; ON ',qi_usr_schema,'.',qi_view_name,' (f_id);

. CREATE INDEX ',fo_idx_name,' -- indexz name of feature objectid

5 ON ',qi_usr_schema,'.',qi_view_name,' (f_object_id);

¢ CREATE INDEX ',geom_spx_name,' -- index name of geometry

7 ON ',qi_usr_schema,'.',qi_view_name,' USING gist (geom);

s ALTER TABLE ',qi_usr_schema,'.',qi_view_name,' OWNERTO ',qi_usr_name,';

Listing 5.12: Query template for materialized view footers

The following sub-sections present the query templates to collect geometries of relief, relief
component, space, and boundary features. The geometry metadata gathered from the
FEATURE_GEOMETRY_METADATA table is passed dynamically to these templates by the
create_geometry_view function to collect the feature geometries. The sql_where query can
also be added in the query to perform extent selection.

5.3.3.1. Relief and Relief Component features Geometry Query

Listing 5.13 and Listing 5.14 show the query templates to collect geometries of relief and
relief component features. The feature envelopes stored within the cdb_schema FEATURE
table represent the geometries of relief features, and there are no geometry types for them, as
they are the bounding boxes of the relief component features. The LoDs values are stored in
the val_int column within the cdb_schema PROPERTY table.
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I SELECT
2 f.id::bigint As f_id,
f.objectid::text AS f_object_id,
4 f.envelope::geometry(',ql_post_geom_type,',',srid,"') AS geom

5 FROM ',qi_cdb_schema,'.property p
6 INNER JOIN ',qi_cdb_schema,'.feature f ON (p.feature_id = f.id

7 AND f.objectclass_id = ', oc_id,"' -- Target feature class
8 AND p.val_int = ',ql_lod,' -- LoD walue
9 AND p.name = 'lod'',sql_where,');

Listing 5.13: Query template for collecting geometries of relief features

For the relief component features, the geometry types are specified in the name column of
the cdb_schema PROPERTY table, with their LoDs values stored in the val_lod column. The
geometry root IDs are stored in the val_geometry_id column, which is joined with the ids
within the cdb_schema GEOMETRY_DATA table to access the geometries.

1 SELECT
2 f.id::bigint AS £f_id,
f.objectid: :text AS f_object_id,
1 g.geometry::geometry(',ql_post_geom_type,',',srid,') AS geom

5 FROM ',qi_cdb_schema,'.property AS p
6 INNER JOIN ',qi_cdb_schema,'.feature AS f ON (p.feature_id = f.id

7 AND f.objectclass_id = ', oc_id,' -- Target feature class
8 AND p.name = ',ql_geom_name,' -- geometry type
9 AND p.val_lod = ',ql_lod,'',sql_where,') -- LoD walue

10 INNER JOIN ',qi_cdb_schema,'.geometry_data AS g
11 ON (p.val_geometry_id = g.id AND g.geometry IS NOT NULL);

Listing 5.14: Query template for collecting geometries of relief component features

5.3.3.2. Space feature Geometry Query

Listing 5.15 and Listing 5.16 give the query templates to collect geometries and implicit
geometries of space features. The space feature geometries query is similar to that of the relief
component features. The LoDs and geometry representations of space features geometries are
stored together in the name column of the cdb_schema PROPERTY table, while the geometry
root ids are stored in the val_geometry_id column, associating to the corresponding space
feature geometries in the cdb_schema GEOMETRY_DATA table.

1 SELECT
2 f.id::bigint AS £f_id,
f.objectid: :text AS f_object_id,
1 g.geometry::geometry(',ql_post_geom_type,',',srid,') AS geom

5 FROM ',qi_cdb_schema,'.property AS p

6 INNER JOIN ',qi_cdb_schema,'.feature AS f ON (p.feature_id = f.id
7 AND f.objectclass_id = ',oc_id,' -- Target feature class

8 AND p.name = ',ql_geom_name,' -- LoD and geometry type

9 AND p.val_geometry_id IS NOT NULL ',ksql_where,')

10 INNER JOIN ',qgi_cdb_schema,'.geometry_data AS g

11 ON (p.val_geometry_id = g.id AND g.geometry IS NOT NULL) ;

Listing 5.15: Query template for collecting geometries of space features
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Space features can have implicit representations according to the geometry and LoD concepts
of CityGML v.3.0 (see Figure 2.6 and Table 4.1). A common example of such a space feature
class is the “SolitaryVegetationObject” class for trees. The implicit representation of the space
features is achieved by scaling the template geometry and moving it to the reference points
repetitively. The LoDs and geometry representations of space feature implicit representations
are specified in the name column, while the reference point geometry and scaling coefficients
array are stored in the val_implicitgeom_refpoint and val_array columns, respectively, in
the cdb_schema PROPERTY table.

SELECT
2 f.id::bigint AS f_id,
3 f.objectid: :text AS f_object_id,

f st_setsrid(
st_translate (
6 st_affine (
7 g.implicit_geometry,

8 (val_array->>0) ::double precision,
9 (val_array->>1) ::double precision,
10 (val_array->>2) ::double precision,
1 (val_array->>4) ::double precision,
12 (val_array->>5) ::double precision,
13 (val_array->>6) ::double precision,
14 (val_array->>8) ::double precision,
15 (val_array->>9) ::double precision,
16 (val_array->>10) : :double precision,
17 (val_array->>3) ::double precision,
18 (val_array->>7) ::double precision,

19 (val_array->>11) ::double precision
20 ) 3

2 st_x(p.val_implicitgeom_refpoint),

2 st_y(p.val_implicitgeom_refpoint),

2 st_z(p.val_implicitgeom_refpoint)

24 ),

2 ',srid,"'

26 )::geometry(',ql_postgis_geom_type,',',srid,') AS geom

27 FROM ',qi_cdb_schema,'.property p

28 INNER JOIN ',qi_cdb_schema,'.feature AS f ON (p.feature_id = f.id
29 AND f.objectclass_id = ', oc_id,' -- Target feature class

30 AND p.name = ',ql_geom_name,"' -- LoD walue and geometry type

AND p.val_implicitgeom_id IS NOT NULL',sql_where,')
INNER JOIN ',qi_cdb_schema,'.implicit_geometry AS ig
33 ON (p.val_implicitgeom_id = ig.id
34 AND p.val_implicitgeom_id IS NOT NULL)
INNER JOIN ',qi_cdb_schema,'.geometry_data AS g
36 ON (ig.relative_geometry_id = g.id
37 AND g.implicit_geometry IS NOT NULL);

Listing 5.16: Query template for collecting implicit representations of space features

In Listing 5.16, cdb_schema FEATURE and PROPERTY tables are first cross-referenced to
query the LoD and implicit representation. The implicit geometry roots are referenced by
joining the ID in cdb_schema IMPLICIT . GEOMETRY table on the val_implicitgeom_id,
which then gives the relative_geometry_id to associate with the template geometry stored
within the cdb_schema GEOMETRY_DATA table.

The ST_Affine and ST_Translate functions supported in PostgreSQL are called to perform
the scaling and moving of the implicit geometry template. The scaling coefficients array has
twelve decimal numbers, representing the transformation matrix [44]. The implicit geometry
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template is first affined and then translated to the x, y, and z coordinates of the reference
point regarding the local SRID [45]. After the scaling and translating, the template geometry
is spatially populated to the reference points for the space feature implicit representation.

5.3.3.3. Boundary feature Geometry Query

Listing 5.17 presents the query template for collecting geometries of boundary features. The
query involves cross-referencing the cdb_schema FEATURE and PROPERTY tables twice to
establish the hierarchical relationships between boundary features and their parent space fea-
tures. Similar to the approach used for checking geometry metadata (see Listing 5.9), the first
join identifies the “boundary” property of the space features, specifying the objectclass_id
of the parent space feature. In the second join, the query specifies the boundary feature
class, LoD, geometry representation, and data type, which helps to narrow down the target
boundary feature class and retrieve the geometry root ids. Finally, the id in the cdb_schema
GEOMETRY_DATA table is joined with val_geometry_id to access the boundary feature
geometries.

1 SELECT
f1.id::bigint AS f_id,
fl.objectid: :text AS f_object_id,
1 g.geometry::geometry(',ql_post_geom_type,',',srid,') AS geom
5 FROM ', qi_cdb_schema,'.feature AS f
6 INNER JOIN ',qi_cdb_schema,'.property AS p ON (f.id = p.feature_id
7 AND p.name = 'boundary'
8 AND f.objectclass_id = ', p_oc_id,') -- Parent feature class

INNER JOIN ',qi_cdb_schema,'.feature AS f1 ON f1.id = p.val_feature_id
10 INNER JOIN ',qi_cdb_schema,'.property AS pl ON (f1.id = pl.feature_id

11 AND f1.objectclass_id = ', oc_id,' -- Target feature class
12 AND pl.datatype_id = ',geom_datatype_id,' -- only geometry property
3 AND pl.name = ',ql_geom_name,') -- LoD walue and geometry type

!

INNER JOIN ',qi_cdb_schema,'.geometry_data AS g
ON (pl.val_geometry_id = g.id

1
14 ',sql_where,
1
1
1 AND g.geometry IS NOT NULL);

Listing 5.17: Query template for collecting geometries of boundary features

5.3.3.4. Geometry View Results

The create_geometry_view function uses the geometry metadata retrieved from the FEA-
TURE_.GEOMETRY_METADATA table as inputs (see Algorithm 5.2) to dynamically generate
SQL statements. These statements are executed to create feature geometry views or materi-
alized views based on the templates mentioned above. Listing 5.18 demonstrates examples
of creating a materialized view of buildings in LoD1 Solid from the default “citydb” schema
(Alderaan dataset). The refresh_geometry materialized_view function is called to refresh
the generated feature geometry materialized view, which is designated to be executed sep-
arately as it could take a long time to refresh in case of large datasets. The created results
are stored in the usr_schema named ”qgis_bstsai”, and the view names and other metadata
regarding the views are updated to the geometry metadata table.
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There are three columns in the feature geometry views: f_id, f_object_id and the geometries,
where the first two columns are stored for feature identification. Users can drag these
geometry views in QGIS for visualisation both in 2D and 3D (Figure 5.5 and Figure 5.6).
To create geometry views, users can leave the last input, is_matview, as it is set to false by
default.

-- Materialized View: buildings in LoDl Solid

SELECT qgis_pkg.create_geometry_view('qgis_bstsai', 'citydb',

3 0, 901, 11, 'lodiSolid', '1', 'Solid', 'PolyhedralSurfaceZ', TRUE);
1 -- Refresh the generated materialized view

5 SELECT qgis_pkg.refresh_geometry_materialized_view

6 ('qgis_bstsai', 'citydb', 0, 901, 'lodilSolid');

Listing 5.18: Calling the create_geometry_view function

Additional functions for users to manage the feature geometry views are included in the
”050_geometry” SQL file. For instance, the create_all_geometry_view_in_schema function
allows users to bulk-create views of available feature geometries within an extent from the
selected cdb_schema. Listing 5.19 shows two modes for bulk creation of views. Users can
specify the target class to create geometry views of that class or use the default inputs to
create all available feature geometry views. The refresh_all _geometry materialized view
function is called to refresh bulk-created geometry views correspondingly.

-- Inputs (default wvalue): usr_schema, cdb_schema, parent_oc_id (NULL), oc_<d
(NULL), 4s_matview (FALSE), cdb_bboz_type ('db_schema ')

2 —— All classes

; SELECT qgis_pkg.create_all_geometry_view_in_schema

4 ('qgis_bstsai', 'citydb'); -- wviews

5 SELECT qgis_pkg.create_all_geometry_view_in_schema

6 ('qgis_bstsai', 'citydb', NULL, NULL, TRUE); -- matertalized views
7 SELECT qgis_pkg.refresh_all_geometry_materialized_view

8 ('qgis_bstsai', 'citydb');

9 -- Building class only

10 SELECT qgis_pkg.create_all_geometry_view_in_schema

11 ('qgis_bstsai', 'citydb', 0, 901); -- views

> SELECT qgis_pkg.create_all_geometry_view_in_schema

13 ('qgis_bstsai', 'citydb', 0, 901, TRUE); -- materialized views
1#+ SELECT qgis_pkg.refresh_all_geometry_materialized_view

15 ('qgis_bstsai', 'citydb', 0, 901);

Listing 5.19: Calling the create_all_geometry_view_in_schema function

Finally, the generated geometry views can be dropped individually or jointly by calling the
drop_all_geometry_views function. Listing 5.20 shows two modes to drop the generated
geometry views. The metadata of the view names and the view creation time are removed
from the FEATURE_GEOMETRY_METADATA table.

-- Inputs (default wvalue): usr_schema, cdb_schema, parent_oc_id (NULL), oc_<d

(NULL)
2 -— All classes
s SELECT qgis_pkg.drop_all_geometry_views('qgis_bstsai', 'citydb');
4 -- Building class only
s SELECT qgis_pkg.drop_all_geometry_views('qgis_bstsai', 'citydb', 0, 901);

Listing 5.20: Calling the drop_all_geometry_view function
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Figure 5.5.: Feature geometry materialized views 2D visualisation in QGIS (Alderaan dataset)
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Figure 5.6.: Feature geometry materialized views 3D visualisation in QGIS (Alderaan dataset)

5.3.4. Lessons Learned from the Feature Geometries
The 3DCityDB v.5.0 encoding simplifies feature geometry view creation as geometry roots

are directly associated with geometries, unlike the decomposed storage in 3DCityDB v.4.x.
Compared to 3DCityDB v.4.x, it is not necessary to create materialized views for all feature
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geometry representations (see Section 4.2.2). However, the integrated storage increases the
size of the FEATURE and PROPERTY tables, impacting query performance, especially with
large datasets. Thus, using materialized views is still preferable for faster queries.

The server-side qgis_pkg developed by this research allows users to select specific LoDs and
geometry representations for each class in a CityGML module, offering more flexibility than
the current plug-in, which creates views for all classes in a module. For example, users can
choose to create geometry views of buildings in LoD1 Solid, while the current plug-in creates
views for all LoDs and geometry representations of classes like “Building” and “BuildingPart”
within the “Building” module. This enhances user interaction with feature geometries from
CityGML data stored in 3DCityDB.
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5.4. Feature Attribute Metadata Check and View Creation

The overall pipeline of checking existing feature attributes and creating feature attribute
views from the data stored within 3DCityDB v.5.0 is shown in Figure 5.7. Feature attributes
within the user-specified extent can be classified into two main classes: Inline and Nested
attributes. The existing feature attributes in the target database schema can be obtained by
querying the distinct properties of each objectclass_id. The feature attribute names are
indicated by the name column of the target schema PROPERTY table, with their values stored
across the corresponding columns based on the datatype_ids. The Inline-Nested attribute
classes can then be determined by the datatype_ids and exclude the spatial, address, feature
boundary and appearance properties.

Section 5.4.1 introduces the design of the FEATURE_ATTRIBUTE_.METADATA table, giving
information about the columns and their purposes. Section 5.4.2 elaborates on the structure
of the PL/pgSQL functions used to perform feature attribute metadata checks. Section 5.4.3
explains the PL/pgSQL functions to dynamically generate queries for flattening and creating
feature attribute views, and Section 5.4.4 provides the section summary.

Check Existing Attributes and Types

» Check if the features envelope is within the user-selected extent
« Based on the OBJECTCLASS_ID of features, check existing attributes
« Based on the DATATYPE_ID of attributes, check the attribute classes

Inline Attributes Nested Attributes
(e.g. name, function) (e.g. height)

Y

Fill the Feature Attribute Metadata Table

ID schema objectclass id parent attribute name attribute name is_nested
citydb 901 - description false
2 citydb 901 height value frue

Flatten (linearise) attributes
Investigate the performance of
resulting queries

Create View / Materialized View of Feature Attribute

Figure 5.7.: Checking feature attribute metadata pipleline
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5.4.1. Attribute Metadata Table Design

As indicated in Section 4.3.1, the FEATURE_ATTRIBUTE_METADATA table must include
at least the following four columns: schema name (cdb_schema), objectclass_id, attribute
name and attribute data type. The distinct combinations of these four keys are used as a
constraint in the FEATURE_ATTRIBUTE_METADATA table to guarantee the uniqueness of
each row.

Table 5.3 shows the design of the FEATURE_ATTRIBUTE_METADATA table. In addition to the
four key columns: schema name, objectclass_id, attribute_name and attribute_datatype,
the table also includes several other columns:

¢ is_nested: Identify the attribute classes. It calls the corresponding PL/pgSQL functions
to collect and flatten (linearise) the Inline or Nested attributes.

* is_multiple and max_multiplicity: Identify whether the multiplicity of an attribute is
greater than one and record the number of multiplicity. The multiplicity information is
crucial for using the crosstab function and determining the number of value columns
in the crosstab FROM clause. These two columns are populated when users choose to
create views of the attribute.

* is_multiple_value_columns, value_column and n_value_columns: Identify whether the
attribute values are stored across multiple value columns in the cdb_schema PROPERTY
table. The value_column stores the name of the attribute value column in an array,
while the number of the columns is indicated in the n_value_columns. These three
columns are populated when users choose to create views of the attribute.

* ct_type_name: Stores the composite type names, which are used when the crosstab
function is called to flatten the selected attribute that has multiplicity greater than one.
The composite type names are included for managing attribute views, which are also
populated when users choose to create views of the attribute.

The columns after the last modification_date are intended for storing information related
to geometry views or materialized views. These columns are populated when the correspond-
ing views or materialized views are created, and the values are removed when users drop
the views. The view information helps manage the created views, enabling operations such
as dropping views or refreshing materialized views.
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Column Name PostgreSQL Values
Type

id bigint[PK] Primary key
cdb_schema varchar Target database schema
bbox_type varchar Bounding box type for extent selection
objectclass_id integer class ID of the features
classname varchar Name of the class
parent_attribute_name varchar Nested parent attribute

”-"” as NULL
parent_attribute_typename varchar Nested parent attribute data type

”-” as NULL
attri_name varchar Inline / Nested child attribute
attribute_typename varchar Inline / Nested child attribute

data type
is_nested boolean Identifier of Nested attribute
is_multiple boolean Identifier of multiple entries
max_multiplicity integer number of multiplicity
is_multiple_value_columns boolean Identifier multiple value columns
ct_type_name varchar composite type names
n_value_columns integer number of value columns
value_column text[] Array of value column names
last_modification_date timestamp(3) Last update time of the record
view_name varchar Attribute view name
view creation_date timestamp(3) Attribute view creation date
mview_name varchar Attribute materialized view name
mv_refresh_date timestamp(3) Attribute materialized view

refresh date

Table 5.3.: FEATURE_ATTRIBUTE_METADATA table design

5.4.2. Attribute Metadata Check

The PL/pgSQL functions used to check the metadata of feature attributes are stored in the
”040_meta_attribute” SQL file. The pipeline of the update_feature_attribute metadata func-
tion is explained in Algorithm 5.3. The function takes three inputs: usr_schema, cdb_schema
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and cdb_bbox_type. Users can specify the bounding box type for extent selection. The
function populates the FEATURE_ATTRIBUTE_.METADATA table with the check results.

Algorithm 5.3: update_feature_attribute metadata

Input: usr_schema, cdb_schema, cdb_bbox_type
Output: void: Populate the FEATURE_ATTRIBUTE_METADATA table from the result of
querying existing feature attributes

1 Delete existing records of the specified cdb_schema;

Let O < Array of existing objectclass_ids within the extent;
Let IN <— datatype_ids of Nested attributes;

Let A < datatype_id of the appearance property;

Let ID < datatype_id of the address property;

Let F <— datatype_id of the feature relation property;

Let G < datatype_id of the geometry property;

Let I <— datatype_id of the implicit geometry property;

for each o € O do

@® NN S Ul e W N

o

10 Let o4 < attribute datatype_id of 0 ;

11 Query distinct Inline attributes for o and exclude o; € {A,D,F,G,I,IN};
12 | Query distinct pairs of Nested attributes for o in the format of
[parent_attri, child_attri] and exclude o; € {A, D, F, G, 1};

13 Let « < Array of Inline attributes;
14 | Let B < Nested array of Nested attributes;

15 | if length(a) # 0O then
16 for each a; € a do
17 L Call check feature_inline attribute function with o and «;;

18 | if length(B) # 0 then
19 L for each B; € B do

20 L Call check_feature nested_attribute function with o and g;;

The check feature attribute metadata process starts with deleting the existing records in the
FEATURE_ATTRIBUTE_METADATA table regarding the given cdb_schema, ensuring that the
available feature attributes in the specified cdb_schema are up-to-date.

Since the cdb_schema PROPERTY table stores all feature properties, irrelevant attribute data
types are required to be excluded from querying the distinct feature attributes regarding
each available objectclass_id in the cdb_schema. These irrelevant attribute data types
(datatype_id) include the address (8), appearance (9), feature relation (10), geometry (11),
and implicit geometry properties (16) types. Note that the datatype_ids of the Nested
attributes are checked by looking up the qgis_pkg ATTRIBUTE_DATATYPE_LOOKUP ta-
ble, which is used to filter out Nested attributes when querying Inline attributes. The
attribute datatype_ids from the “Dynamizer”, “CityObjectGroup” and “Version” modules
are excluded, and the query can be seen in Listing 5.21.

The update_feature_attribute metadata first checks the irrelevant attribute datatype_ids
and the available objectclass_ids within an extent in the cdb_schema. The query templates
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for objectclass_id availability check and extent selection (sql_where) are the same as List-
ing 5.6 and Listing 5.7. For every objectclass_id, the function then checks its available Inline
and Nested attributes, and the query templates are shown in Listing 5.22 and Listing 5.23.

1 SELECT STRING_AGG (adl.id::TEXT, ',') -- array as a string separated by comma
> FROM qgis_pkg.attribute_datatype_lookup AS adl

5 WHERE adl.alias NOT IN ("dyn", "grp", "ver")

4 AND adl.is_nested = 1; -- TRUE

Listing 5.21: Query for checking the datatype_ids of Nested attributes

SELECT

2 ARRAY_AGG (DISTINCT p.name)

3 FROM ',qi_cdb_schema,'.feature AS f

4 INNER JOIN ',qi_cdb_schema,'.property AS p ON (f.id = p.feature_id
5 AND f.objectclass_id = ',oc_id,' ',sql_where,')

¢ WHERE p.parent_id IS NULL

7 -- Filter irrelevant attridbute data types and Nested attridbute

8 AND p.datatype_id NOT IN (8, 9, 10, 11, 16, ',nested_attri_ids,');

Listing 5.22: Query template for checking Inline attributes for each objectclass_id

1 SELECT

2 ARRAY_AGG (ARRAY[p_attri, attri]) AS nested_attribute_set
5 FROM (

4 SELECT DISTINCT p.name AS p_attri, pl.name AS attri

FROM ',qi_cdb_schema,'.feature AS f

6 INNER JOIN ',qi_cdb_schema,'.property AS p ON f.id = p.feature_id
AND f.objectclass_id = ',oc_id,"'

8 -- Failter on parent attribute
AND p.datatype_id NOT IN (8, 9, 10, 11, 16)',sql_where,'

10 -- Join the child attributes and filter out the Inline attributes

11 INNER JOIN ',qgi_cdb_schema,'.property AS pl ON p.id = pl.parent_id

12 ORDER BY p.name, pl.name

15 ) AS nested_attribute;

Listing 5.23: Query template for checking Nested attributes for each objectclass_id

The available Inline attributes datatype_ids are stored as an array. In contrast, the available
Nested attributes datatype_ids are stored as a nested array, with each element in the
format of parent and child attribute name tuples for referencing their hierarchical relations.
Finally, the function traverses through these two attributes datatype_ids arrays and calls
the check_feature_inline_attribute and check_feature nested_attribute functions to
populate the FEATURE_ATTRIBUTE_METADATA table.

The attribute meta table is populated by executing the insert values query text, generated
dynamically based on each Inline attribute and Nested attribute pair. Several lookup functions
such as attribute name to_datatype_id and objectclass_id_to_classname are called to
check for the attribute datatype_id and class names, preparing the values for insertion. An
example of the populated FEATURE_ATTRIBUTE_METADATA table is shown in Figure 5.8.
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5.4.3. Attribute View Creation

After performing the attribute metadata scan, users can check the availability of feature
attributes in the FEATURE_ATTRIBUTE_METADATA table. The main function used to create
feature attribute views is named create_attribute_view, which is wrapped with other
additional functions in the ”060_attribute” SQL file.

Algorithm 5.4 shows the pipeline of the create_attribute_view function. The function
allows users to create views or materialized views of the selected feature attribute based on
the existing feature classes to an extent. Users can specify the view types using the boolean
parameter is_matview, and the corresponding query texts for view headers are generated by
the same functions as mentioned in Section 5.3.3. The view headers are then added to the
collect and flatten feature attribute queries for view creation. To enhance query time efficiency
of the generated attribute materialized views, the generate_sql_attribute matview_footer
function stored in the “060_attribute” SQL file is called to generate the footers to add indices
dynamically based on the existing value columns.

The character varying parameter, cdb_bbox_type, can be specified for extent selection. The
is_matview parameter is set to false by default for views while the cdb_bbox_type is set to
”db_schema” for full dataset extent by default.

Algorithm 5.4: create_attribute_view

Input: usr_schema, cdb_schema, objectclass_id (0), attribute_name (a),
is_nested, cdb_bbox_type, is.matview
Output: void: Create feature attribute views or materialized views and store in
usr_schema
1 Let sql_header <— generated based on the is_matview input;
2 Let sql_footer <— generated only when the is_matview is TRUE;

3 if not is_nested then

4 Call collect_inline_attribute function with o and a;
5 Let M < calculate the maximum attribute multiplicity;
6 if M > 1 then
7 Let V < check the number of value columns with;
8 L sql_attri <— Call collect_inline multiple_attribute function with V;
9 else
10 Let V < check the number of value columns with;
11 L sql_attri <— Call collect_inline_single attribute function with V;
12 else
13 Call collect nested_attribute function with o and a;
14 | Let M < calculate the maximum attribute multiplicity;
15 if M > 1 then
16 Let V < check the number of value columns;
17 L sql_attri <— Call collect_nested multiple_attribute function with V;
18 else
19 Let V < check the number of value columns;
20 L sql_attri <— Call collect nested_single_ attribute function with V;

2 execute (sql-header & sql_attri & sql_footer);
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The function first differentiates the Inline and Nested attribute classes based on the is_nested
input. To flatten the selected attributes, the maximum attribute multiplicity check is per-
formed in both the collect_inline attribute and collect nested attribute functions.
Listing 5.24 demonstrates the query template to check the maximum multiplicity of the
selected attribute, where the number of the attribute entries regarding each feature_id is
calculated by the COUNT and GROUP BY functions in the sub-query. The maximum counted
number is obtained by performing the MAX function on the sub-query result. The attribute
multiplicity check determines whether to use the crosstab function in the attribute flattening
process (see Section 4.3.1.2).

1 SELECT
2 MAX (count_p_name) AS max_count
5 FROM (
" SELECT f.id, f.objectclass_id, COUNT(p.name) AS count_p_name
FROM ',qi_cdb_schema,'.property AS p
6 INNER JOIN ',qi_cdb_schema,'.feature AS f ON (f.id = p.feature_id
7 AND f.objectclass_id = ,oc_id, "'
8 AND p.parent_id IS NULL ',ksql_where,')
WHERE p.name = ',ql_attri_name,
10 GROUP BY f.id
1 ) AS count_attri;

Listing 5.24: Query template for checking maximum attribute multiplicity

After the maximum attribute multiplicity check, the process is divided into four attribute
classes: Inline-Single, Inline-Multiple, Nested-Single, and Nested-Multiple, which are intro-
duced in Section 4.3.2. Four different functions are developed according to these attribute
classes. Before flattening the feature attributes, the attribute value columns check is invoked to
guarantee the existence of attribute values in the corresponding value columns. The attribute
name is converted to the datatype_id by another function, and the target array of attribute
value columns is retrieved by referencing the qgis_pkg ATTRIBUTE_DATATYPE_LOOKUP
table with the attribute datatype_id. Listing 5.25 shows the query template for checking
the attribute value existence of each value column from the column array. The attribute
value column check gives the target columns for retrieving the attribute values. It deter-
mines the element columns in the composite types if the crosstab function is in use (see
Section 4.3.1.3).

SELECT EXISTS(
2 SELECT 1
FROM ',qi_cdb_schema,'.feature AS f
| INNER JOIN ',qgi_cdb_schema,'.property AS p ON f.id = p.feature_id

5 AND f.objectclass_id = ',oc_id,"'
6 WHERE p.name = ',ql_attri_name,'
7 AND p.',attri_val_col,' IS NOT NULL -- candidate walue column name

8 LIMIT 1);

Listing 5.25: Query template for checking attribute value columns

With the attribute multiplicity and value columns information checked, the function collects
and flattens feature attributes to create attribute views or materialized views. The naming
convention of the feature attribute view names is to concatenate the cdb_schema name,
type labels, attribute class label, objectclass_id, and attribute name using underscores.
The ”av” label is used for the attribute views, while the "amv” label is for the attribute

98



5.4. Feature Attribute Metadata Check and View Creation

v
1

materialized views. The attribute class labels are for the Inline attributes and “n” for
the Nested attribute. If users choose to create the “height” attribute view of buildings
from the “citydb” schema, the view name will be: citydb_av.n_ 901 height, as buildings’
"height” is a Nested attribute. The attribute metadata, which are the input parameters of the
create_attribute_view function, are used to create the view name dynamically within the
function, and the view headers and footers are generated correspondingly.

Since the attribute views can have different numbers of columns, the attribute materialized
view footer generation for adding indices consists of three steps: checking the candidate
column names, checking the column types and creating the index. These three steps are
achieved in three functions:

1. get_view_column name: Given the attribute view name and usr_schema, returns an
array of existing column names in an attribute view. The query template is shown in
the Listing 5.26.

1 SELECT ARRAY (
2 SELECT
3 a.attname

4 FROM pg_attribute AS a

5 INNER JOIN pg_class AS t on a.attrelid = t.oid

6 INNER JOIN pg_namespace s on t.relnamespace = s.o0id
7 WHERE a.attnum > O

8 AND NOT a.attisdropped

) AND t.relname = ',ql_view_name,'
) AND s.nspname
11 ORDER BY a.attnum);

',ql_usr_schema,

Listing 5.26: Query template for checking the column names in an attribute view

2. get_view_column_type: Given the attribute view name, usr_schema and attribute value
column name, returns the attribute data type name of the input value column. This
function avoids creating an index on the “json” type value column since it is not
supported in PostgreSQL. The query template is shown in Listing 5.27.

| SELECT FORMAT_TYPE(atttypid, atttypmod) AS data_type
> FROM pg_attribute

3 WHERE attrelid = ',ql_view_name),' ::regclass

. AND attname = ',ql_val_col_name,';

Listing 5.27: Query template for checking the data type of an attribute column

3. generate_sql_attribute matview_footer: Get the existing attribute value columns
with the above two functions and dynamically generate the attribute materialized view
footer. An example query template is shown in Listing 5.28.
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I CREATE INDEX ',f_idx_name,' -- <ndex name of feature ID

2 ON ',qi_usr_schema,'.',qi_view_name,' (f_id);

4 —-— Dynamically extended part

5 CREATE INDEX ',attri_idx_name,' -- <ndexz name of attribute column

6 ON ',qi_usr_schema,'.',qi_view_name,' (',qi_view_col_name,');

s ALTER TABLE ',qi_usr_schema,'.',qi_view_name,' OWNERTO ',qi_usr_name,';

Listing 5.28: Query template for attribute materialized view footer

The following subsections present the query templates for collecting and flattening Inline-
Single, Inline-Multiple, Nested-Single, and Nested-Multiple attributes. The attribute metadata
gathered from the FEATURE_ATTRIBUTE_.METADATA table is passed to these templates
by the create_geometry_view function for dynamically generating the SQL statements to
collect and flatten feature attributes. The attribute value column check function indicated in
Listing 5.25 retrieves the target attribute source value column. The sql_where query can also
be added in the query to perform extent selection.

5.4.3.1. Collect and Flatten Inline-Single Attributes

The collect_inline_single_attribute function is invoked in this case. Listing 5.29 shows
the query template to collect and flatten the Inline-Single attributes. The function checks the
number of target attribute value columns and dynamically renames the resulting attribute
value columns to the attribute name.

For Inline-Single attributes with one value column, the value column name is placed in
the SELECT clause and renamed to the target attribute name. In the case of multiple value
columns, the first value column is renamed to the target attribute name while the prefix val_
in the remaining value columns is replaced by the target attribute name. An example of this
attribute class is the “class” attribute of buildings, and the generated query and result are
shown in Listing 4.6 and Figure 4.15.

1 SELECT
2 f.id AS f_id,
p.-',qi_attri_val_col_1,' AS ',attri_name,',

-- Dymamtically extended part
6 p-',qi_attri_val_col_2,'
7 AS ',qi_attri_name, '_','SUBSTRING(',qi_attri_val_col,' FROM val_(.*))

10 FROM citydb.feature AS f

1 INNER JOIN citydb.property AS p ON f.id = p.feature_id

12 AND f.objectclass_id = 'oc_id' -—- Target feature class
13 AND p.name = 'qi_attri_name'; -- Target attribute

',8ql_where,'

Listing 5.29: Query template for collecting and flattening Inline-Single attributes
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5.4.3.2. Collect and Flatten Inline-Multiple Attributes

The collect_inline multiple_attribute function generates the query of the Inline-Multiple
attributes differently based on the number of value columns. The differences in the query are
explained structurally to satisfy the use of the crosstab function.

1

e Composite type header

The composite type is created in the case of multiple value columns, combining all
value columns into a single composed value column for the crosstab function. The
composite type header creation template is shown in Listing 5.30. The definition wraps
each attribute value column with its data type separated by a space. The definition
of creation type is generated dynamically based on the input attribute value columns

array.

DROP TYPE IF EXISTS ',qi_ct_type_name,';

3 -—- Dynamically exztended part

4

CREATE TYPE ',qi_ct_type_name,'
AS (',qi_attri_val_col_1,' ',qi_attri_val_col_1_type,"',
ll

',qi_attri_val_col_2,' ',qi_attri_val_col_2_type,',
00d 8

Listing 5.30: Query template of the composite type header for Inline-Multiple attributes

e Crosstab SELECT clause

The crosstab SELECT clause is determined by the number of value columns. Listing 5.31
provides the template for one value column, where the value columns are renamed to
the attribute name followed by the multiplicity count. This process repeats to extend
the query until the value column with the maximum multiplicity number is renamed.

Listing 5.32 shows the template for multiple value columns, where the actual values
of each attribute entry are extracted from the renamed composite-type value tuples
using dot notation according to its source value column name. The first value column
of each attribute entry is renamed to the attribute name with the multiplicity count. In
contrast, the remaining value columns are renamed to the attribute name followed by
the source value column suffix and the multiplicity count. The source value column
suffixes are retrieved using the SUBSTRING function to slice the source value column
name. This process repeats to extend the query until the actual attribute values and
the value columns of the attribute entry with the maximum multiplicity number are
extracted and renamed.

1 SELECT

4

f_id AS f_id,

-- Dynamically extended part

ct.',qi_attri_name,'_',multi_count,' AS ,qi_attri_name,'_',multi_count,',
ct.',qi_attri_name,'_',multi_count,' AS ',qi_attri_name,'_',multi_count,'

Listing 5.31: Query template of the crosstab SELECT clause for Inline-Multiple attributes

(One attribute value column)
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1 SELECT

f_id AS f_id,

-- Dynamically exztended part

(',qi_attri_name,'_',multi_count,').',qi_attri_val_col_1,'
AS ',qi_attri_name,'_',multi_count,',
(',qi_attri_name,'_',multi_count,').',qi_attri_val_col_2,"'
AS ',qi_attri_name,'_"',
'SUBSTRING(',qi_attri_val_col,' FROM val_(.*))', '_', multi_count,'

Listing 5.32: Query template of the crosstab SELECT clause for Inline-Multiple attributes

(Multiple attribute value columns)

e Crosstab FROM clause

The crosstab FROM clause is determined by the number of value columns. Listing 5.33
provides the template for one value column, where the crosstab resulting value columns
are renamed to the attribute name followed by the multiplicity count, and they are cast
to the source value column data type. This process repeats to extend the query until all
value columns are renamed and typecast up to the maximum multiplicity number.

Listing 5.34 shows the template for multiple value columns, where the source value
columns are composed dynamically and cast to the composite type in the crosstab input
SQL statement. In the crosstab resulting value columns definition, the value column of
each attribute entry is renamed to the attribute name with the multiplicity count and
cast to the composite type. This process repeats to extend the query until the value
column of the attribute entry with the maximum multiplicity number is renamed and
typecast.

| FROM CROSSTAB ($BODY$

SELECT
f.id As f_id,
p.name,
p.',qi_attri_val_col,'
FROM citydb.feature AS f
INNER JOIN citydb.property AS p ON (f.id = p.feature_id

AND f.objectclass_id = ',oc_id,' -- Target class
',sql_where, ')
WHERE p.name = ',qi_attri_name,' -- Target attribute

ORDER BY f_id, p.id ASC $BODY$)
AS ct(f_id bigint,
-- Dynamically extended part
',qi_attri_name,'_',multi_count,' ',qi_attri_val_col_type,',
',qi_attri_name,'_',multi_count,' ',qi_attri_val_col_type,'

o) B

Listing 5.33: Query template of the crosstab FROM clause for Inline-Multiple attributes
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| FROM CROSSTAB ($BODY$
SELECT
f.id AS f_id,

6 -- Dynamically exztended part

7 (p.',qi_attri_val_col_1,",

8 p-',qi_attri_val_col_2,' ... )::',qi_ct_type_name,'

10 FROM citydb.feature AS f

11 INNER JOIN citydb.property AS p ON (f.id = p.feature_id

12 AND f.objectclass_id = ',o0c_id,' -- Target class
13 ',sql_where, ')
14 WHERE p.name = ',attri_name,' -- Target attribute

15 ORDER BY f_id, p.id ASC $BODY$)
16 AS ct(f_id bigint,

18 -- Dynamically extended part
19 ',qi_attri_name,'_',multi_count,' ',qi_ct_type_name,',
20 ',qi_attri_name,'_',multi_count,' ',qi_ct_type_name,'

21 0009 8
Listing 5.34: Query template of the crosstab FROM clause for Inline-Multiple attributes
(Multiple attribute value columns)

The output query of collect_inline multiple_attribute function is generated dynamically
by consisting of the above three main parts based on the number of source attribute value
columns. Examples of this attribute class are the “name” (one value column) and ”function”
(multiple value columns) attributes of buildings, and the generated queries are shown in
Listing 4.7 and Listing 4.8. At the same time, the results can be seen in Figure 4.16 and
Figure 4.17.

5.4.3.3. Collect and Flatten Nested-Single Attributes

The collect nested_single_attribute function is called to generate the query dynamically
for collecting and flattening Nested-Single attributes. The child attributes of the target parent
attribute are gathered in an array by looking up the FEATURE_ATTRIBUTE_.METADATA
table, as shown in Listing 5.35. The function traverses through the child attributes array, checks
the value columns for each child attribute, and generates the SELECT clause dynamically.

Listing 5.36 shows the query template to collect and flatten the Nested-Single attributes. In the
FROM clause, the cdb_schema FEATURE table is joined with the PROPERTY table twice, where
the first join queries for the parent attribute. In the SELECT clause, the CASE and MAX functions
are applied to handle each child attribute with its attribute value column name specified
after the alias of the second joined cdb_schema PROPERTY table (p1). Every resulting value
column is renamed to the combination of parent-child attribute names. This process repeats
to extend the query until all child attributes are queried and renamed. An example of this
attribute class is the “height” attribute of buildings. The generated query and result are
shown in Listing 4.9 and Figure 4.18.
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SELECT ARRAY AGG (attribute_name)
> FROM qgis_pkg.feature_attribute_metadata

; WHERE cdb_schema = ',qi_cdb_schema,'
4 AND objectclass_id = ',oc_id,'
AND parent_attribute_name = ',qi_parent_attri_name,';

Listing 5.35: Query template for gathering child attributes of the given parent attribute

1 SELECT
2 f.id AS f_id,

! -- Dynamically extended part

5 MAX (CASE WHEN pil.name = ',qi_child_attri_name_1,'
6 THEN pl.',qi_child_attri_val_col_1,"' END)
7 AS ',qi_parent_attri_name,'_',qi_child_attri_name_1,"',
8 MAX (CASE WHEN pl.name = ',qi_child_attri_name_2,'
THEN pl.',qi_child_attri_val_col_2,' END)
10 AS ',qi_parent_attri_name,'_',qi_child_attri_name_2,',

13 FROM citydb.feature AS f

14 INNER JOIN citydb.property AS p ON (f.id = p.feature_id
15 AND f.objectclass_id = ',oc_id,' -- Target class
16 AND p.name = ',qi_parent_attri_name,') -- Target attribute

17 INNER JOIN citydb.property AS pl ON p.id = pl.parent_id
1s GROUP BY f.id;

Listing 5.36: Query template for collecting and flattening Nested-Single attributes

5.4.3.4. Collect and Flatten Nested-Multiple Attributes

The collect nested multiple_attribute function is used to generate the query dynamically
for collecting and flattening Nest-Multiple attributes. In this attribute class, the implementa-
tion of the Inline-Multiple attributes for using crosstab and composite type (Section 5.4.3.2)
and Nested-Single attribute for renaming the resulting value columns (Section 5.4.3.3) are
combined. The child attributes of the target parent attribute are gathered in an array using
the same query shown in Listing 5.35. The function traverses through the child attributes
array, checks the value columns for each child attribute, and generates the crosstab SELECT
and FROM clauses dynamically. The query is explained structurally to satisfy the use of the
crosstab function.

¢ Composite type header
The child attributes of this attribute class usually have their values stored across multiple
value columns. Thus, the composite type must combine all value columns into a single
composed value column for the crosstab function. Listing 5.37 shows the composite
type header template. The child attribute value columns are wrapped with their data
types separated by spaces, and the composite type definition is extended dynamically
based on the existing child attribute value columns.
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1 DROP TYPE IF EXISTS ',qi_ct_type_name, ';

3 —— Dynamically extended part
4+ CREATE TYPE ',qi_ct_type_name,'

AS (',qi_child_attri_val_col_l,‘ ',qi_child_attri_val_col_1_type,',
',qi_child_attri_val_col_2,' ',qi_child_attri_val_col_2_type,',
00d B

Listing 5.37: Query template of the composite type header for Nested-Multiple attributes

e Crosstab SELECT clause

Listing 5.38 shows the crosstab SELECT clause template for the Nested attributes, where
the actual values of each child attribute entry are extracted from the renamed composite-
type value tuples using dot notation according to its source value column name. The
resulting value columns of each Nested parent attribute entry are renamed to the parent-
child attribute name combinations followed by the multiplicity count. If a child attribute
has multiple source value columns, its resulting value column name is renamed to the
parent-child attribute name combinations followed by the source value column suffix
and the multiplicity count. This process repeats to extend the query until the actual
child attribute values and the resulting value columns of the Nested attribute entry
with the maximum multiplicity number are extracted and renamed.

1 SELECT

4

f_id AS f_id,

-- Dynmamically exztended part

(',qi_child_attri_name_1,'_',multi_count,').',qi_attri_val_col_1,"
AS ',qi_child_attri_name_1,'_"',multi_count,',
(',qi_child_attri_name_2,'_"',multi_count,').',qi_attri_val_col_2,"

AS ',qi_child_attri_name_2,'_"
'SUBSTRING(',qi_child_attri_val_col_2,' FROM val_(.*x))', '_',

multi_count,'

Listing 5.38: Query template of the crosstab SELECT clause for Nested-Multiple attributes

e Crosstab FROM clause

Listing 5.38 shows the crosstab FROM clause template for the Nested attributes, where
the child attribute source value columns are composed dynamically and cast to the
composite type in the crosstab input SQL statement. In the crosstab resulting value
columns definition, the value columns for each Nested parent attribute entry are
renamed to the child attribute names followed by the multiplicity count. These renamed
columns are then cast to the composite type. This process repeats to extend the query
until the child value columns of the Nested parent entry with the maximum multiplicity
number are renamed and typecast.
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FROM CROSSTAB($BODY$
SELECT
f.id AS f_id,

6 -- Dynamically exztended part
7 (p.',qi_child_attri_val_col_1,"',
8 p.',qi_child_attri_val_col_2,' ... )::',qi_ct_type_name,

[

10 FROM citydb.feature AS f

1 INNER JOIN citydb.property AS p ON (f.id = p.feature_id

12 AND f.objectclass_id = ',oc_id,' -- Target class

13 AND p.name = ',qi_parent_attri_name,' -- Target attribute
',sql_where, ')

15 INNER JOIN citydb.property AS pl ON p.id = pl.parent_id

16 ORDER BY f.id, p.id, pl.name ASC $BODY$)

17 AS ct(f_id bigint,

19 -- Dymnamically extended part
20 ',qi_child_attri_name_1,'_',multi_count,' ',qi_ct_type_name,"',
21 ',qi_child_attri_name_2,'_',multi_count,' ',qi_ct_type_name,'

22 000) B

Listing 5.39: Query template of the crosstab FROM clause for Nested-Multiple attributes

The collect _Nested multiple_attribute function dynamically generates the query using
the above three parts. Examples of this attribute class can be the "height” attributes of
buildings. The generated query and result are shown in Listing 4.10 and Figure 4.19.

5.4.3.5. Attribute View Results

The create_attribute_view function uses the attribute metadata retrieved from the FEA-
TURE_ATTRIBUTE_METADATA table as inputs (see Algorithm 5.4) to dynamically generate
SQL statements based on the templates introduced above, which are executed to create feature
(flattened) attribute views or materialized views. Listing 5.40 demonstrates examples of
creating a view of buildings’ “description” (Inline) attribute and a materialized view of
buildings” “height” (Nested) attribute. The attribute materialized view is refreshed when
created. The created results are stored in the usr_schema named ”qgis_bstsai”, and the view
names and other metadata regarding the views are updated in the attribute metadata table.

The created attribute views consist of £_id and all existing attribute value columns based
on the selected attribute, where the first column is stored to be associated with the feature
geometries. Users can check the generated attribute views and materialized views either
in pgAdmin4 or in QGIS. The generated results of the four attribute classes can be seen
in Figure 5.9 (Inline-Single attribute), Figure 5.10 (Inline-Multiple attribute), Figure 5.11
(Nested-Single attribute) and Figure 5.12 (Nested-Multiple attribute).
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1 —-- View: buildings ' description
2> SELECT qgis_pkg.create_attribute_view('qgis_bstsai', 'citydb',
3 901, 'description');

4 -- Matertalized View: buildings ' height
5 SELECT qgis_pkg.create_attribute_view('qggis_bstsai', 'citydb',
6 901, 'height', 'TRUE', 'db_schema', TRUE);

Listing 5.40: Calling the create_attribute_view function

Additional functions for users to manage the feature attribute views are included in the
”060_attribute” SQL file. For instance, the create_all_attribute_view_in_schema function
allows users to bulk-create views of available feature attributes within an extent from the
selected cdb_schema. Listing 5.41 shows two modes for bulk creation of views. Users can
specify the target class to create attribute views of that class or use the default inputs to create
all available feature attribute views.

1 -- Inputs (default wvalue): usr_schema, cdb_schema, oc_td (NULL), is_matview (
FALSE), cdb_bboz_type ('db_schema ')

2 == All classes

5 SELECT qgis_pkg.create_all_attribute_view_in_schema

" ('ggis_bstsai', 'citydb'); -- view
5 SELECT qgis_pkg.create_all_attribute_view_in_schema
6 ('qgis_bstsai', 'citydb', NULL, TRUE); -- materialized view

7 == Building class only
s SELECT qgis_pkg.create_all_attribute_view_in_schema

9 ('gqgis_bstsai', 'citydb', 901); -- wiew
10 SELECT qgis_pkg.create_all_attribute_view_in_schema
1 ('qgis_bstsai', 'citydb', 901, TRUE); -- materialized view

Listing 5.41: Calling the create_all_attribute_view_in_schema function

Finally, the generated attribute views can be dropped individually or jointly by calling the
drop_all_attribute_views function. Listing 5.42 shows two modes to drop the generated
geometry views. The metadata of the view names and the view creation date are removed
from the FEATURE_ATTRIBUTE_.METADATA table.

1 -- Inputs (default wvalue): usr_schema, cdb_schema, oc_%d (NULL)
2 -—— All classes

3 SELECT qgis_pkg.drop_all_attribute_views('qgis_bstsai', 'citydb');
4 —-- Building class only
5 SELECT qgis_pkg.drop_all_attribute_views('qgis_bstsai', 'citydb', 901);

Listing 5.42: Calling the drop_all_attribute_view function
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Figure 5.9.: Inline-Single attribute view checked in QGIS -
"description” of buildings from the Alderaan dataset
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Figure 5.10.: Inline-Multiple attribute view checked in QGIS -
“function” of buildings from the Alderaan dataset
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Figure 5.11.: Nested-Single attribute materialized view checked in pgAdmin4 -
”Landslide Disaster Warning Area” of buildings from the Tokyo dataset
(Code values translated from [46])
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Figure 5.12.: Nested-Multiple attribute materialized view checked in pgAdmin4 -
“height” of buildings from the Alderaan dataset

5.4.4. Lessons Learned from the Feature Attributes

The integrated characteristic and the Nested attributes of 3DCityDB v.5.0 encoding present
a more challenging process for flattening (linearising) feature attributes, unlike the direct
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retrieval of querying the flattened attributes encoded with 3DCityDB v.4.x. Compared to
3DCityDB v.4.x, all types of feature attributes, including general, generic, and specific attributes,
require flattening to be joined with feature geometries. The Inline-Nested attribute classes,
attribute multiplicity, and the number of attribute value columns are the three crucial factors
that lead to the four attribute flattening approaches: Inline-Single, Inline-Multiple, Nested-
Single, and Nested-Multiple. Attribute multiplicity determines the use of the crosstab
function, while the number of attribute value columns necessitates using composite types
when the crosstab function is in use.

The server-side qgis_pkg developed by this research allows users to select their desired
feature attribute for each class in a CityGML module, offering more flexibility than the
current plug-in. The main differences include:

e Current plug-in (v.0.8.9)

o General and specific attributes are not selectable by users. These attributes are
linked with feature geometries when creating GIS layers.

o Generic attributes are processed as sub-tables and associated with GIS layers. Users
can only check the generic attributes individually.

e Server-side qgis_pkg of this research

o All attributes are flattened (linearised), allowing users to customise which attributes
are joined with feature geometries for creating GIS layers.

o Generic attributes are flattened as “normal” attributes, enabling users to check
them with multiple features.

o Attribute names in other alphabets (e.g. Kanji in Japanese) can be used as column
names of GIS layers.

For example, users can choose to create attribute views of “description”, “function” and
"height” of buildings and join them with feature geometries, whereas the current plug-in
links all available general and specific attributes of buildings with the selected buildings’
geometries. The selectable attribute linking enhances user interaction with the abundant
CityGML data stored in 3DCityDB.
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Creation

This chapter introduces approaches to join feature geometries and attributes for creating
GIS layers. According to Section 4.4, feature geometry materialized views are joined with
user-selected attribute views to create GIS layers. Since feature attributes are selectable based
on users’ decisions, three approaches for joining these attributes with geometry materialized
views are proposed to assess the query performance of the generated GIS layers.

Section 6.1 elaborates on the pipeline of GIS layer creation, which includes sub-sections
referring to three different approaches. Section 6.1.1 introduces the first approach, where
user-selected feature attributes are stored in individual views. These attribute views are
then associated with the specified feature geometry materialized view using the LEFT JOIN
function based on the £_id. Section 6.1.2 provides a similar joining process, with the difference
that user-selected attributes are stored in individual materialized views. Section 6.1.3 presents
an integrated version of attribute materialized views, where the feature attributes chosen
by users are first joined together using the FULL JOIN function and stored in a materialized
view. This integrated attribute view table is joined with the specified feature geometry
materialized view. Section 6.2 shows the query performance test to check the query time
from the generated GIS layers under specified conditions. Finally, the GIS layer creation results
are presented in Section 6.4.

6.1. Layer Creation Approaches

The PL/pgSQL function used to create GIS layers is the create_layer function. This function
calls one of three sub-functions based on the provided inputs: create_layer multiple_join,
create_layer multiple_join_all_attri, and create_layer_attri_table. The first and sec-
ond sub-functions correspond to approaches 1 and 2, while the third corresponds to ap-
proaches 3. For the target feature geometry representation and LoD, the id of the target geom-
etry within the FEATURE_GEOMETRY_METADATA table is derived from the user’s specifi-
cation using the get_geometry_key_id function. In contrast, the ids of target attributes within
the FEATURE_ATTRIBUTE_METADATA table are obtained via the get_attribute key_id
function, which takes the desired attribute names in an array as its input. All functions
involved in the GIS layer creation are included in the “070_layers” SQL file.

Algorithm 6.1 illustrates the pipeline of how these three functions are invoked within the
create_layer function, based on three selectable parameters. The parameter is_matview
determines whether views or materialized views are used to store the selected attributes and
specifies the output view types of layers. The parameter is_all_attri indicates whether
all available attributes are chosen based on the provided objectclass_id, and triggers an
attributes scan to generate an array of all existing attribute ids if is_all_attri is set to
TRUE. Finally, is_joins decides which approach to create the layers. The function starts with
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converting geometry and attributes ids. The is_joins parameter first determines which
approach is applied for layer creation, andis_all_attri dictates whether all attributes are
included in the layers generated by multiple joins between individual attribute views or
materialized views with the specified geometry.

Algorithm 6.1: create_layer

Input: usr_schema, cdb_schema, parent_objectclass_id (po), objectclass_id (0),
geometry_name (), attributes (attris), is_matview, is_all_attri, is_joins
Output: void: Joining the specified feature LoD, geometry representation, and
attributes to create GIS layers

1 Let G < id of feature geometry representation and LoD retrieved by the
get_geometry key_id function with po, 0, and g;
if attris # NULL and not is_all_attri then
for each attri € attris do
Let A < Array of feature attributes ids retrieved by the
L get_attribute_key_id function with o and attri;

= W N

o1

if not is_joins then
| Call create layer attri table function with G and A;

(=)}

else
if is_all_attri then
L Call create_layer multiple_joins_all attri function with G and o;

© @ N

10 else
11 | Call create layer multiple joins function with G and A;

The naming convention of the GIS layers is to concatenate indicator labels, such as ”=Iv” for
"layer view” and “=Imv” for ”layer materialized view,” with the cdb_schema name, class
alias, geometry, and attribute labels using underscores. The attribute labels differ based on
different modes in different approaches:

e Approach 1 & 2 (is_joins set to TRUE)

o Select mode: This mode creates labels if users choose only to join certain attributes.
The ”ia” label represents the Inline attribute, while the “na” label represents the
Nested attribute. The attribute id numbers, enclosed in curly brackets, are then
attached after the labels using underscores. For example, if the ids of the building
“function” and "height” are 42 and 57, the attribute label will be ”_ia_{42} na_{57}".

o All attributes mode: The label will be ”_all_attri_joins”.
o No attributes mode: The label will be "no_attris_joins”.

* Approach 3 (is_joins set to FALSE): The attribute label generated in this approach is
consistently set to ”_attri_table” regardless of the attribute selection modes, to avoid
auto-truncation of the attribute table name in PostgreSQL. If no attributes are selected
using approach 3, the attribute label is set to “no_attris_table”.

If users choose to create a layer using approach 2 with the buildings in LoD1 Solid and only
want to inspect the “name,” “function,” and “height” attributes of buildings from the ”citydb”
schema, the view name would be "=1mv_citydb_bdg lod1 Solid ia {42,46} na_{57}”, as
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approach two stores the result in a materialized view, and the “name” and “function” of
buildings are Inline attributes while “height” is a Nested attribute. The geometry and attribute
metadata tables serve as menus for users to customise the GIS layer creation based on their
needs. Similar to the feature geometry and attribute views creation, the user specifications
are the input parameters of the create_layer function, where the view headers and footers
are generated correspondingly to create layers dynamically.

The following three sub-sections propose three different approaches considering view types
for storing the selected attributes and the implementation to associate them with target
feature geometry materialized view to create GIS layers.

6.1.1. Approach 1- Joining Feature Geometry Materialized Views and
Attribute Views

In approach 1, the target feature geometry materialized view is associated with the selected
attribute views for layer creation. If the view of a selected attribute has not been created, the
create_layer function calls the create_attribute_view function to create it first. Listing 6.1
shows the query template of approach 1, where every value column specified after the
attribute number alias, except the £_id in each selected attribute view, is dynamically extracted
and inserted into the SELECT clause. In the FROM clause, the LEFT JOIN function is performed
repetitively to join geometries with selected attributes on f_id and extended dynamically
based on the number of selected attributes.

1 CREATE OR REPLACE VIEW ',usr_schema,'.',qi_layer_name,' AS
> SELECT

g.f_id,
4 g.f_object_id,

g.geom,

7 -- Dynmamically extended part

8 al.',qi_al_col_name_2,"',
a2.',qi_a2_col_name_2,"',

10 a2.',qi_a2_col_name_3,"'

13 FROM ',usr_schema,'.',qi_geometry_materialzied_view_name,' AS g

15 -- Dynamically extended part

16 LEFT JOIN ',usr_schema,'.',qi_attribute_view_name_1,' AS al
17 ON g.f_id = al.f_id
18 LEFT JOIN ',usr_schema,'.',qi_attribute_view_name_2,' AS a2

19 ON g.f_id = a2.f_id;
Listing 6.1: Query template to creation layers using approach 1

Listing 6.2 shows two different modes to create layers of buildings in LoD1 Solid associ-
ated with two and all attributes using approach 1. Users can choose their desired feature
geometry type and LoD for extracting the target feature geometry materialized view. The
create_geometry_view function is invoked if the selected geometry view has not been cre-
ated. For the attribute part, users can specify their desired attribute names in an array with
the is_all_attri input parameter (the last two ones) set to FALSE to join the corresponding
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attribute views with geometries. Users can also choose to join all available attribute views
regarding the feature geometries, which is achieved by leaving the attri (the attribute name
array) input parameter to NULL with the is_all_attri input parameter set to TRUE. The
generated layer of CASE 1 in Listing 6.2 is illustrated in Figure 6.1.

1 —-- CASE 1 SELECTED ATTRIBUTES

2 -— Last three inputs: is_matview, is_all_attri, is_joins

3 SELECT qgis_pkg.create_layer('qgis_bstsai', 'citydb', 0, 901, 'lod1Solid',
4 ARRAY['function', 'height'], FALSE, FALSE, TRUE);

6 —— CASE 2 ALL ATTRIBUTES

7 SELECT qgis_pkg.create_layer('qgis_bstsai', 'citydb', 0, 901, 'lodiSolid',
8 NULL, FALSE, TRUE, TRUE);

Listing 6.2: Calling the create_layer function using approach 1

N

=Iv_citydb_bdg_lod1_Selid_ia_{40}_na_{57} — Features Total: 21,Filtered: 21,Selected: 1 ®

J RIfm 8 & LTV ESD 2E s aE
10~ fobiectid | deseription  height 1T height 1| height_status.1 | high_value_1_height_vaue_UoM_1 | height neight. height_status_2 | height_valus_2 | height_value_UoM, :

1 20 id_building_03 This is Buildi... | highestRoofEdge lowestGroundPoint  measured 15 m NULL NULL NULL NULL|NULL

27 28 id_building_07 This is Buildi... highestRoofEdge lowestGroundPoint  measured 15 m NULL NULL NULL NULL|NULL

: 37 id_building_01 This is Buildi... highestRoofEdge lowestGroundPoint  measured 15 m highestRoofEdge lowestGroundPoint  measured 49.21 ft

47 45 id_building_08 This is Buildi... highestRoofEdge lowestGroundPoint  measured 15 m NULL NULL NULL NULL|NULL

: 54 id_building_05 This is Buildi...  highestRoofEdge lowestGroundPoint  measured 15 m NULL NULL NULL NULL|NULL

6_ 63 id_building_04  This is Buildi.. highestRoofEdge lowestGroundPoint  measured 15 m NULL NULL NULL NULL|NULL

7 72 id_building_02 This is Buildi... highestRoofEdge lowestGroundPoint  measured 15 m NULL NULL NULL NULL|NULL

: 82 id_building_11 This is Buildi... highestRoofEdge lowestGroundPoint  measured 1% m NULL NULL NULL NULL|NULL

: 90 id_building_06 This is Buildi... | highestRoofEdge lowestGroundPoint  measured 15 m NULL NULL NULL NULL|NULL

; 99 id_box_building... This is a simp... NULL NULL NULL NULL|NULL NULL NULL NULL NULL|NULL

: 100 id_box_building... This is a simp... NULL NULL NULL NULL|NULL NULL NULL NULL NULL|NULL

; 101 id_box_building... This is a simp... NULL NULL NULL NULL|NULL NULL NULL NULL NULL|NULL

; 102 id_box_building... This is a simp... NULL NULL NULL NULL|NULL NULL NULL NULL NULL|NULL

: 104 id_box_building... This is a simp... NULL NULL NULL NULL|NULL NULL NULL NULL NULL|NULL =
=Imv_citydb_sol_veg_obj_lod3_ImplicitR_attri_table — Features Total: 33, Filtered: 3... =Imv_citydb_bdg_roofsurf_lod2_MSurf_all_attri_joins — Features Total: 20,Filtered: 2... ‘ =lv_citydb_bdg_lod1_Solid_ia_{40}_na_{57} — Features Total: 21 Filtered: ...

Figure 6.1.: Layer generated with approach 1 checked in QGIS
( Buildings in LoD1 Solid with “function” and "height” from the Alderaan dataset)

6.1.2. Approach 2- Joining Feature Geometry Materialized Views and
Attribute Materialized Views

In approach 2, the target feature geometry materialized view is associated with the selected
attribute materialized views for layer creation. If the materialized view of a selected attribute
has not been created, the create_layer function calls the create_attribute_view function
to create it first. Listing 6.3 provides the query template of approach 2. Similar to the
query template of approach 1 (Listing 6.1), the SELECT and FROM clauses are dynamically
extended based on the number of selected attributes. The main differences are the creation of
indices on every column in the generated layer except those of JSON type. Note that only the
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attribute value columns in each attribute materialized view are extracted and indexed, with
the enumeration of these columns starting from two, as the first column (f_id) is skipped.

1 CREATE MATERIALIZED VIEW IF NOT EXISTS ',usr_schema,'.',qi_layer_name,' AS
2 SELECT
3 g.f_id,
4 g.f_object_id,
g.geom,
.
7 -- Dynamically extended part
8 al.',qi_al_col_name_2,"',
9 a2.',qi_a2_col_name_2,"',

10 a2.',qi_a2_col_name_3,"'

1
1
15 -- Dynamically extended part

16 LEFT JOIN ',usr_schema,'.',qi_attri_materialized_view_name_1,' AS al
1

1

1

7 ON g.f_id = al.f_id
8 LEFT JOIN ',usr_schema,'.',qi_attri_materialized_view_name_2,' AS a2

9 ON g.f_id = a2.f_id;

2> CREATE INDEX ',qi_layer_name,'_g_1_f_id_idx

23 ON ',usr_schema,'.',qi_layer_name,' USING btree (f_id);

2 CREATE INDEX ',qi_layer_mname,'_g_2_o_id_idx

25 ON ',usr_schema,'.',qi_layer_name,' USING btree (f_object_id);

2 CREATE INDEX ',qi_layer_name,'_g_3_geom_spx

27 ON ',usr_schema,'.',qi_layer_name,' USING gist (geom);

29 —-- Dynmamically extended part

30 CREATE INDEX ',qi_layer_name,'_al_2

31 ON ',usr_schema,'.',qi_layer_name,' USING btree (',qi_al_col_name_2,');
32 CREATE INDEX ',qi_layer_name,'_a2_2

33 ON ',usr_schema,'.',qi_layer_name,' USING btree (',qi_aQ_col_name_2,');
3+ CREATE INDEX ',qi_layer_name,'_a2_3

35 ON ',usr_schema,'.',qi_layer_name,' USING btree (',qi_a2_col_name_3,');

Listing 6.3: Query template to creation layers using approach 2

Listing 6.4 shows two different modes to create layers of building roofs in LoD2 Multi-Surface
associated with two and all attributes using approach 2. The function input specifications
are similar to Listing 6.2, with the difference being that is_matview is set to TRUE for creating
individual attributes and storing the generated layer in materialized views. The generated
layer of CASE 2 in Listing 6.4 is illustrated in Figure 6.2.
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-- CASE 1 SELECTED ATTRIBUTES

2 -- Last three inputs: <s_matview, <s_all_attri, 2s_joins

; SELECT qgis_pkg.create_layer('qgis_bstsai', 'citydb', 901, 712,

4 'lod2MultiSurface', ARRAY['name', 'description'], TRUE, FALSE, TRUE);
6 —— CASE 2 ALL ATTRIBUTES

7 SELECT qgis_pkg.create_layer('qgis_bstsai', 'citydb', 901, 712,

8 'lod2MultiSurface', NULL, TRUE, TRUE, TRUE);

Listing 6.4: Calling the create_layer function using approach 2

N\

=Im_citydb_bdg_roofsurf_lod2_MSurf_al_attr_joins — 20 Selected: 1 ®
/ QR 8 & BE =S @
iid _object_id name test_date_att_rs _test_integer _att_rs _test_measure_att_rs _test_measure_aft_rs_UoM lest_real_att_rs _test_string_att_rs _test_uri_att_rs 2
1 21 id_building_3_roofsurface_1  This is Roofsurface 1 (West) (Building 3) RoofSurface 1 (Building 3) NULL NULL NULL NULL NULL NULL NULL
2 22 id_building_3_roofsurface_2 | This is Roof surface 2 (East) (Building 3)  RoofSurface 2 (Building 3) NULL NULL NULL|NULL NULL | NULL NULL
a 29 id_building_7_roofsurface_1 | This is Roof surface 1 (South) (Building 7)  RoefSurface 1 (Building 7) NULL NULL NULL| NULL NULL | NULL NULL
a 30 id_building_7_roofsurface_2 | This is Roofsurface 2 (North) (Building 7)  RoofSurface 2 (Building 7) NULL NULL NULL|NULL NULL | NULL NULL
5 38 id_building_1_roofsurface 1 | This is Roofsurface 1 (West) (Building 1) RoofSurface 1 (Building 1)  8/5/20 02:00... 21 12356 Pa 98.76 Thisisa test ... hitps//wwws..
s 39 id_building_1_roofsurface_2 | This is Roof surface 2 (East) (Building 1) | RoofSurface 2 (Building 1) NULL NULL NULL|NULL NULL | NULL NULL
7 46 id_building_8_roofsurface_1 | This is Roofsurface 1 (South) (Building 8) RoofSurface 1 (Building 8) NULL NULL NULL|NULL NULL | NULL NULL
8 47 id_building_8 _roofsurface_2 | This is Roof surface 2 (North) (Building 8) RoofSurface 2 (Building 8) NULL NULL NULL|NULL NULL | NULL NULL
° 56 id_building_5 _roofsurface_1 | This is Roof surface 1 (South) (Building 5)  RoofSurface 1 (Building 5) NULL NULL NULL|NULL NULL | NULL NULL
0 56 id_building_5_roofsurface_2 | This is Roof surface 2 (North) (Building 5) RoofSurface 2 (Building 5) NULL NULL NULL|NULL NULL | NULL NULL
n 64 id_building_4_roofsurface 1 | This is Roofsurface 1 (South) (Building 4) RoofSurface 1 (Building 4) NULL NULL NULL| NULL NULL | NULL NULL
2 65 id_building_4_roofsurface_2 | This is Roof surface 2 (North) (Building 4) RoofSurface 2 (Building 4) NULL NULL NULL|NULL NULL | NULL NULL
1 73 id_building_2_roofsurface_1 | This is Roof surface 1 (South) (Building 2)  RoofSurface 1 (Building 2) NULL NULL NULL| NULL NULL | NULL NULL
u 74 id_building_2_roofsurface_2 | This is Roof surface 2 (North) (Building 2) RoofSurface 2 (Building 2) NULL NULL NULL|NULL NULL | NULL NULL

77 Show Al Features |

=Imv_citydb_sol_veg_obj_lod3_ImplicitR_attri_table — Features Total: 33, Filtered: 33, Selected: 1 | =imv_citydb_bdg_roofsurf_lod2_MSurf_all_attri_joins — Features Total: 20, Filtered: 20, Selected: 1

Figure 6.2.: Layer generated with approach 2 checked in QGIS
(Building roofs in LoD2 Multi-surface with all attributes from the Alderaan dataset)

6.1.3. Approach 3- Joining Feature Geometry Materialized Views and
Attribute Table Materialized Views

In approach 3, the selected attributes are first gathered into an integrated attribute table and
stored in materialized views. This attribute table is then associated with the target feature
geometry materialized view for layer creation. If the attribute table of the selected attributes
has not been created, the create_layer function calls the create_attris_table_view function
to generate it by dynamically filling the query template shown in Listing 6.5. The attribute
table query template uses the FULL JOIN function to gather the selected attributes by joining
them on their £_ids union. The SELECT and FROM clauses are dynamically extended based on
the candidate attribute names and columns, and indices are created on every attribute value
column correspondingly.

The naming of the integrated attribute table consists of indicator labels, such as ”_av_" for
"attribute view” and ”_amv_" for “attribute materialized view”, along with the cdb_schema
name, class alias, a ”_g_" label followed by the geometry_id corresponding to the selected
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feature geometry, and an “attribute” label. For instance, if users choose to create a layer of
buildings represented in LoD1 Solid (geometry_id = 14 in the geometry metadata table) and
join it with the desired attributes, the specified attributes are then stored in the integrated
attribute table named _amv_citydb_Building g 14_attributes.

1 CREATE MATERIALIZED VIEW IF NOT EXISTS ',usr_schema,'.',qi_attri_table,' AS

3 —— Dynamically extended part

4+ SELECT

5 COALESCE(al.f_id, a2.f_id, ...) AS f_id,
6 al.',qi_al_col_name_2,"',

7 a2.',qi_a2_col_name_2,',

8 a2.',qi_a2_col_name_3,"',

0 FROM (',ql_collect_flatten_attri_1_SQL,') AS al

11 FULL JOIN (',ql_collect_flatten_attri_2_SQL,') AS a2
12 ON COALESCE(al.f_id) = a2.f_id

13 FULL JOIN (',ql_collect_flatten_attri_3_SQL,') AS a3
14 ON COALESCE(al.f_id, a2.f_id) = a3.f_id

16 CREATE INDEX ',qi_attri_table,'_al_1

17 ON ',usr_schema,'.',qi_attri_table_name,' USING btree (f_id);

18 CREATE INDEX ',qi_attri_table_name,'_al_2

19 ON ',usr_schema,'.',qi_attri_table,' USING btree (',qi_al_col_name_2,');
20 CREATE INDEX ',qi_attri_table_name,'_a2_2

21 ON ',usr_schema,'.',qi_attri_table,' USING btree (',qi_a2_col_name_2,');
22 CREATE INDEX ',qi_attri_table_name,'_a2_3

23 ON ',usr_schema,'.',qi_attri_table,' USING btree (',qi_a2_col_name_3,');

Listing 6.5: Query template to create integrated attribute table view for approach 3

Listing 6.6 gives the query template of approach 3. Compared to approaches 1 and 2,
the prominent difference is that the LEFT JOIN operation for the attributes is reduced to a
single instance, as all selected attributes are stored in the integrated attribute table and then
associated with feature geometries. Only the SELECT clause and attribute index creation
query are dynamically extended based on the selected attributes.

Listing 6.7 shows two different modes to create layers of trees in LoD3 Implicit-Representation
associated with two and all attributes using approach 3. Similar to Listing 6.2 and Listing 6.4,
the main differences in the function input specifications are that the last input is_joined is
omitted for the default FALSE value, and is_matview is set to TRUE for integrating all selected
attributes into the attribute table and storing the generated layer in materialized views. The
generated layer of CASE 2 in Listing 6.7 is illustrated in Figure 6.3.
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6. Implementation Part 2: GIS Layer Creation
1 CREATE MATERIALIZED VIEW IF NOT EXISTS ',usr_schema,'.',qi_layer_name,' AS
> SELECT
3 g.f_id,
4 g.f_object_id,
5 g.geom,
B e e e e e e e e e
7 -- Dymnamtically extended part
8 -- The first column a.f_td is not selected
9 a.',qi_a_col_name_2,"',
10 a.',qi_a_col_name_3,"',
11 a.',qi_a_col_name_4,"'
12
| ST
1+ FROM ',usr_schema,'.',qi_geometry _materialzied_view_name,' AS g
15 LEFT JOIN ',usr_schema,'.',qi_attri_table,' AS a ON g.f_id = a.f_id
16
17 CREATE INDEX ',qi_layer_name,'_g_1_f_id_idx
18 ON ',usr_schema,'.',qi_layer_name,' USING btree (f_id);
19 CREATE INDEX ',qi_layer_name,'_g_2_o_id_idx
20 ON ',usr_schema,'.',qi_layer_name,' USING btree (f_object_id);
21 CREATE INDEX ',qi_layer_name,'_g_3_geom_spx
2 ON ',usr_schema,'.',qi_layer_name,' USING gist (geom);
24 —-- Dynamically extended part
25 CREATE INDEX ',qi_layer_name,'_a_2
26 ON ',usr_schema,'.',qi_layer_name,' USING btree (',qi_a_col_name_2,');
27 CREATE INDEX ',qi_layer_name,'_a_2
28 ON ',usr_schema,'.',qi_layer_name,' USING btree (',qi_a_col_name_Z,');
29 CREATE INDEX ',qi_layer_name,'_a_3
30 ON ',usr_schema,'.',qi_layer_name,' USING btree (',qi_a_col_name_3,');
31
Listing 6.6: Query template to creation layers using approach 3
1 -- CASE 1 SELECTED ATTRIBUTES
2 -- Last <nput is_joins is omitted for the default FALSE
35 SELECT qgis_pkg.create_layer('qgis_bstsai', 'citydb', 0, 1301,
4 'lod3ImplicitRepresentation', ARRAY['name', 'species'], TRUE, FALSE);
6 —— CASE 2 ALL ATTRIBUTES
7 SELECT qgis_pkg.create_layer('qgis_bstsai', 'citydb', 0, 1301,
8 'lod3ImplicitRepresentation', NULL, TRUE, TRUE);

Listing 6.7: Calling the create_layer function using approach 3
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=im_citydb_sol_veg_obi_lod3_ImplicitR_atiri_table — Features Total: 33, Fittered: 33,Selected: 1 ex
/ QIR ) & s T E P PE S @
fid v fobjectid | crownDiameter ownDiameter_Uo  height height_UoM name species
273 id_tree_01 6m om Alderaan Tree 01 Populus |

271 id_tree_25 4m &m Alderaan Tree 25 | Platanus occidentalis
270 id_tree_27 4m 6m Alderaan Tree 27 | Platanus occidentalis

269 id_tree_33 4m 6m Alderaan Tree 33 | Platanus occidentalis

1
2

3

a

3 268 id_tree_29 4m 6m Alderaan Tree 20 |Platanus occidentalis
6 267 id_tree_32 6m 8m Alderaan Tree 32 | Platanus orientalis

7 266 id_tree_31 4m 6m Alderaan Tree 31 |Platanus occidentalis
8 265 id_tree_30 6m 8m Alderaan Tree 30 | Platanus orientalis

9 264 id_tree_26 6m 8m Alderaan Tree 26 |Platanus orientalis

0 263 id_tree_28. &m 8m Alderaan Tree 28 |Platanus orientalis

n 262 id_tree_24 6m sm Alderaan Tree 24 | Platanus orientalis

2 261 id_tree_13 am 5m Alderaan Tree 13 | Abies nebrodensis
3 260 id_tree_21 4m 6m Alderaan Tree 21

u 259 id.

|_tree_20 5'm 8m

5 258 id_tree_22 6m 8m

% Show Al Features |

Figure 6.3.: Layer generated with approach 3 checked in QGIS
(Trees in LoD3 implicit representation with all attributes from the Alderaan dataset)

6.2. Layer Query Performance Test

For determining the approach of GIS layer creation, query performance assessments of the
generated GIS layers are conducted on both the Rijsen-Holten and Vienna datasets to evaluate
the query time efficiency of the different layer creation approaches.

Table 6.1 and Table 6.2 present the results of the GIS layer query performance tests. Although
approaches 2 and 3 consume storage space and take longer generation time due to the
indexing of materialized views, they significantly outperform approach 1 regarding layer
query speed. Notably, approach 3 provides flexible layer management by reducing the number
of individual attribute views and the LEFT JOIN operations between feature geometries and
selected attributes. The selected attributes are gathered and stored in an integrated attribute
table, which is dropped and created each time users specify the target feature geometries. It
offers an up-to-date attributes table for user reference.

Additionally, fewer joins could be a better choice because each LEFT JOIN adds computational
overhead, increasing the complexity and execution time of the query. By minimizing the
number of joins, approach 3 could not only speed up query processing but also reduce
the likelihood of potential bottlenecks, making it the optimal approach for fast GIS layer

querying.
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6. Implementation Part 2: GIS Layer Creation
6.3. Layer Metadata Table Design

As indicated in Section 4.4, the design of the LAYER_ METADATA table is shown in the
Table 6.3. The LAYER_METADATA table created under the cdb_schema stores the metadata
of the generated GIS layers, which can be used for layer management. The populated result
after GIS layer generation is shown in Figure 6.4.

Column Name PostgreSQL Type Values

id bigint[PK] Primary key

cdb_schema varchar Target database schema

feature_type varchar CityGML module name

parent_objectclass_id integer Parent class ID of boundary features. NULL
as default

parent_classname varchar Name of the parent class. NULL as default

objectclass_id integer class ID of the features

classname varchar Name of the class

lod varchar LoD value

geometry_type varchar Solid, MultiSurface, etc

layer name varchar Generated layer name

gv_name varchar Selected geometry view name

inline_attris varchar[] Selected inline attributes

nested _attris varchar[] Selected nested attributes

is_matview boolean Identifier of layer materialized view creation

is_all_attris boolean Identifier of all existing attributes selection

for the target class

is_joins boolean Identifier of layer creation approach. False as
default. True for using approaches 1 or 2

av_table_name varchar joined attribute table view name when
approach 3 is applied. Null for using
approach 1 or 2

av_join_names varchar joined attribute view names when approach
1 or 2 is applied. Null for using approach 3

n_features integer number of features in the generated layer

creation_time timestamp(3) layer creation time

Table 6.3.: LAYER_.METADATA table design
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Figure 6.4.: Populated LAYER_ METADATA table example



6. Implementation Part 2: GIS Layer Creation
6.4. Generated Layer Results

This section presents the visualised results in QGIS of the GIS layers generated by approach 3
from different datasets listed in Table 5.1.

* Railway (CityGML2.0): This dataset is used to test the layer generation of classes across

V7

various CityGML modules, including ”Bridge”, “Building”, ”CityFurniture”, “Generics”,
"Transportation”, “Tunnel”, ”"Vegetation”, "WaterBody”, and "Relief”. Figure 6.5 and
Figure 6.6 show the generated layers viewed in 2D and 3D using QGIS.
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Figure 6.5.: Generated layers of the Railway dataset checked in QGIS (2D)

te

Figure 6.6.: Generated layers of the Railway dataset checked in QGIS (3D)
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6.4. Generated Layer Results

* Rijsen-Holten (CityGML2.0): This real-world dataset, rich in attributes, is used to
test layer generation for common modules such as ”Building”, “Vegetation”, and
"Reliet”. Figure 6.7 and Figure 6.8 demonstrate the zoomed-in, full-database extent
of layer generation for all existing feature geometries and their attributes. In these
figures, building roofs and walls are represented in LoD2 Multi-Surface, coloured in
red and grey, respectively. Trees are shown in implicit representation and coloured in
green, while the relief triangular irregular network (TIN) in LoD1 is coloured in yellow.
Figure 6.9 and Figure 6.10 present the results of layer generation with extent selection.
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Figure 6.7.: Generated layers of the Rijsen-Holten dataset (full extent) checked in QGIS (2D)
(Buildings layer in LoDO Multi-Surface selected)

» O 0

Figure 6.8.: Generated layers of the Rijsen-Holten dataset (full extent) checked in QGIS (3D)
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Figure 6.9.: Generated layers of the Rijsen-Holten dataset (small extent) checked in QGIS (2D)
(User-specified extent coloured in blue; Building roofs layer in LoD2 Multi-Surface selected)

Figure 6.10.: Generated layers of the Rijsen-Holten dataset (small extent) checked in QGIS
(3D)

* Vienna (CityGML2.0): The large real-world dataset tests layer generation in an extreme
case. It contains classes from commonly seen modules: “Building”, “Vegetation”, and
"Relief”. Figure 6.11 presents the full database extent, showing the generation of all
existing feature geometries and their attributes. Figure 6.12 displays the zoomed-in
result of the layer generation in 3D.
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Figure 6.11.: Generated layers of the Vienna dataset (full extent) checked in QGIS (2D)
(Building roofs layer in LoD2 Multi-Surface selected)

Figure 6.12.: Generated layers of the Vienna dataset (full extent) checked in QGIS (3D)

¢ Tokyo (CityGML2.0): The real-world dataset is tested using column header names in
languages other than English for the generated GIS layers, which contain classes from
the “Building” module. Figure 6.13 demonstrates in 2D that the value columns can be
renamed using Japanese Kanji characters to represent the flattened feature attributes.
Figure 6.14 shows the generated buildings layer in a 3D visualisation.
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Figure 6.13.: Generated layers of the Tokyo dataset (one file full extent) checked in QGIS (2D)
(Buildings layer in LoD2 Solid selected)

Figure 6.14.: Generated layers of the Tokyo dataset (one file full extent) checked in QGIS (3D)
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¢ FZK-Haus (CityGML3.0): This artificial dataset is used to test GIS layer generation from
CityGML v.3.0 data, which contains classes from the “Building” and ”“Construction”
module (Figure 6.15). The test dataset files downloaded from [42] include building
construction elements (roofs, walls, Beam, etc.), storeys and interior rooms. These are
the distinct features introduced in CityGML v.3.0 standards to enhance interoperability
with IFC objects for supporting building information management and can now be
represented in different LoDs and geometries, e.g. building storeys in LoD2 Multi-Surface
(Figure 6.16a) and building rooms in LoD2 Solid (Figure 6.16b).
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Figure 6.15.: Generated layers of the FZK-Haus dataset (full extent) checked in QGIS (2D)
(Building construction elements layer in LoD2 Solid selected)

N

(a) Building storey roofs (red), walls (grey) with (b) Building construction elements (blue) and
windows (blue) and doors (brown) interior rooms (yellow)

Figure 6.16.: Generated layers of the FZK-Haus dataset (full extent) checked in QGIS (3D)
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Layers

CRBOTE-BAL

e Munich and New York City Transportation (CityGML3.0): These two real-world

datasets are used to test GIS layer generation from classes in the modified “Transporta-
tion” module following the CityGML v.3.0 standards. Figure 6.17 and Figure 6.18 show
the 2D and 3D visualisations of the GIS layers generated from the Munich transportation
dataset, while Figure 6.19 and Figure 6.20 present results from the New York City
transportation dataset. These datasets include features such as (auxiliary) traffic spaces
and areas, roads, sections, intersections, and squares.

The concept of (auxiliary) traffic space is introduced in CityGML v.3.0 to represent 3D
spaces where traffic occurs, in addition to surface-based objects. However, only the
(auxiliary) traffic areas, the child features of the (auxiliary) traffic space, have direct
LoD and geometry representations in these datasets. As a result, the GIS layers are
generated without attributes since the (auxiliary) traffic spaces have no direct geometry
views available to associate their attributes for visualisation. Additionally, features
such as roads, sections, intersections, and squares do not have any direct LoDs and
geometry representations. They only have feature relation properties to the (auxiliary)
traffic spaces and areas as nested features, making them currently unavailable via
GIS layers. Further investigation is required to address these limitations in the future
development of the plug-in, and certain possible solutions are elaborated in Section 8.2.2
and Section 8.2.3.
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Figure 6.17.: Generated layers of the Munich transportation dataset (full extent) checked in

QGIS (2D)

(Traffic space traffic areas layer in LoD2 Multi-Surface selected)
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Figure 6.18.: Generated layers of the Munich transportation (full extent) checked in QGIS (3D)
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(Traffic areas in grey and auxiliary traffic areas in red)
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Figure 6.19.: Generated layers of the New York City transportation dataset (full extent)

checked in QGIS (2D)
(Traffic space traffic areas layer in LoD2 Multi-Surface selected)
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Figure 6.20.: Generated layers of the New York City Transportation (full extent) checked in
QGIS (3D)
(Traffic areas in grey and auxiliary traffic areas in red)
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7. Evaluation of Possible Use Cases for
CityGML Data in QGIS

With the methodology and implementation for collecting and processing feature geometries
and attributes detailed in Chapter 4, Chapter 5, and Chapter 6, users can now create GIS
layers from data stored in 3DCityDB v.5.0. This chapter evaluates the extent to which this
research fulfils the possible use cases identified in Chapter 3.

7.1. Case 1: Users interact Only with feature geometries

Users can collect feature geometries and store them in materialized views to visualise the
results in QGIS by the following Section 4.2 and Section 5.3. Each feature geometry with
its unique feature_id(f_id) and f_object_id can then be inspected in 2D using either the
“attribute table” or “attribute form” in QGIS (Figure 7.1, the selected feature is coloured in
yellow). Users can visualise feature geometries in 3D using either the QGIS 3D Map or the
plug-in called “Qgis2threejs” (Figure 7.2).
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Figure 7.1.: Use case 1 checked - feature geometries viewed in 2D
(Left) attribute table view. (Right) attribute form view
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Figure 7.2.: Use case 1 checked - feature geometries viewed in 3D (Qgis2threejs plug-in)

7.2. Case 2: Users Interact with Visualised Feature
Geometries and Retrieve the Attributes by Clicking on
Features

The cdb_schema PROPERTY table can be imported into QGIS to be associated with the
selected feature geometry materialized view. Figure 7.3 shows the process of adding relations
between the cdb_schema PROPERTY table and the buildings materialized view in LoD0 multi-
surface. By joining the f_id of the buildings with the feature_id of the property table,
users can view the associated attributes in the ”attribute form” (Figure 7.4). The feature
attributes can only be edited in the EAV model storage due to the structure of the cdb_schema
PROPERTY table. Users can query the target attribute name and change the values within
the corresponding value columns (Figure 7.5). The two sub-use cases, i.e. read-only and read-
write, can be achieved by manually adding relations with the feature geometry materialized
views generated by the server-side plug-in developed in this research.
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Figure 7.4.: Use case 2-1 read only checked - feature geometries viewed in 2D
(Left) attribute table view. (Right) attribute form view
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Figure 7.5.: Use case 2-2 read & write checked - attributes editing in attribute form view

7.3. Case 3: Users Interact with Visualised Feature
Geometries and the "Linked” Attributes

Feature attributes stored within 3DCityDB v.5.0 can be classified into four attribute cases and
flattened (linearised) using the corresponding approaches (see Section 4.3 and Section 5.4).
Users can then specify their desired attributes and join them with the target feature geometries
to create GIS layers. Each generated layer consists of a feature geometry materialized view
and an integrated attribute table, which holds all user-selected attributes. The resulting join
is stored as a materialized view for improved query performance (see Section 6.2).

The approach proposed in this research converts feature attributes stored in the cdb_schema
PROPERTY table from the EAV model to the SFS model. In comparison to the use cases sup-
ported by the current plug-in for 3DCityDB v.4.x, where general and specific attributes are
directly linked with geometries while generic attributes can only be accessed individu-
ally as sub-tables due to vertical database storage. In 3DCityDB v.5.0, generic attributes are
flattened (linearised) and directly linked with geometries, providing direct access to all
attributes. These linked attributes enhance the usability of CityGML data, as users can
perform advanced queries via GIS layers associated with generic attributes, enabling more
detailed analyses in QGIS (see Figure 7.6, Figure 7.7, and Figure 7.8, where attributes such as
“dutch_building_type” and "bag net_internal area” become selectable in batch selection).

However, the approach proposed in this research only partially addresses use case 3 for users
with access-only privileges, allowing them to view and inspect feature attributes without
editing capabilities. Since the generated GIS layers are stored as materialized views, which
are not automatically updatable like views in PostgreSQL (see Figure 7.9), use case 3 with
read and write privileges is currently not achievable.
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Figure 7.6.: Use case 3 checked - conditional query on flattened (linearised) feature attributes
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Figure 7.9.: Use case 3-2 read and write checked - currently not available

7.4. Case 4: Users Perform Use Case 3 Using GUIs in QGIS

This research only focuses on adding server-side support to 3DCityDB v.5.0 in the plug-in. While
the current implementation partially reproduces use case 3, allowing users to interact with
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feature geometries and the flattened (linearised) attributes in QGIS with read-only privileges,
it does not fully address the interactive editing capabilities that users may require.

Therefore, use case 4 should be considered for further development on the client-side of the
plug-in, and future work should continue enhancing the plug-in to enable full read and write
access directly through GUIs in QGIS. By implementing this capability, users would be able to
perform real-time edits on GIS layers, with changes reflected in the underlying database.
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8. Conclusion and Future Development

This chapter concludes this thesis in the research overview and answers the research questions
in Section 8.1. This thesis’s main contributions and limitations are discussed in Section 8.2,
followed by the research recommendations for future development.

8.1. Research Overview

The 3DCityDB-Tools plug-in for QGIS (plug-in) developed by the 3D Geoinformation team
at TU Delft facilitates the management and visualisation of spatial data stored within the
3DCityDB, which currently supports CityGML v.1.0, v.2.0 and City]SON [1]. This thesis aims
to enhance the plug-in by developing server-side support to create GIS layers from spatial data
encoded in 3DCityDB v.5.0. This new open-source geo-relational database adheres to CityGML
v.3.0 standards. It will extend the capabilities of plug-in.

The research begins with an overview of the significant changes introduced by CityGML
v.3.0 and the corresponding differences in 3DCityDB encoding. This includes new concepts of
LoD and geometry, updated 3DCityDB schema tables, and the EAV model storage of all feature
attributes. By identifying potential use cases for CityGML data in QGIS via the plug-in, the
goal becomes clear: to create layers comprising feature geometries associated with flattened
(linearised) attributes for user interaction with 3DCityDB-encoded data in QGIS.

To create these GIS layers, this thesis presents the concept of feature geometry and attribute
metadata checks concerning the encoding characteristics of 3DCityDB v.5.0. Feature geometries
are categorised into Space, Boundary, Relief, and Relief Component features, each with a
custom query template for collection in geometry views. Feature attributes are classified
into Inline-Single, Inline-Multiple, Nested-Single, and Nested-Multiple classes, with specific
methods for collecting and flattening them into attribute views. By storing the combined
target feature geometry and attribute tables in materialized views, users can access various
feature LoDs and geometry representations, along with the existing flattened (linearized)
attributes. This allows users to explore and utilise CityGML data encoded in 3DCityDB
v.5.0 with read-only access by importing the generated GIS layers into QGIS, similar to
the current capabilities of the plug-in. The PL/pgSQL functions developed in this thesis
for creating GIS layers from data in 3DCityDB v.5.0 are available at the GitHub repository:
https://github.com/bsttsai/3DCityDB-Tools-for-QGIS_beta/tree/thesis_final.

To reproduce the capabilities of the current plug-in that allows users to interact with the
CityGML data encoded with 3DCityDB v.5.0 via GIS layers, the main research question is
determined as:

How does the new database structure of 3DCityDB v.5.0 affect the current methods of the
plugin to create layers containing both geometries and attributes for a selected feature
type following the SFS model?
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The following paragraphs define and answer four sub-questions to answer this question.

1. How do the new CityGML v.3.0 concepts of space and LoD affect the process?

In CityGML v.3.0, the concepts of LoD and geometry have been elevated from the
thematic module level to the core module level of the data model. In CityGML v.2.0,
each class specified its possible LoDs geometry representations. The current plug-in
traverses existing classes within a user-specified module to generate all possible feature
geometry representations according to these specifications. Feature geometries are
decomposed into polygons within the 3DCityDB v.4.x encoding, and relevant polygons
for a specified feature geometry representation are collected and aggregated when
accessed.

In contrast, CityGML v.3.0 derives the spatial concepts of all features from four top-level
classes: ”AbstractSpace”, ” AbstractThematicSurface”, “ReliefFeature”, and ”AbstractRe-
liefComponent”. These four abstract classes categorise features into Space, Boundary,
Relief, and Relief Component features, each with a limited set of possible LoDs geometry
representations. This structural change allows for a schema-wide scan to check for
the existence of feature geometries, after which users can select their desired feature
geometry representation and LoD for visualisation in QGIS via materialized views. The
shift in spatial concepts in CityGML v.3.0 enhances the flexibility of the methods used
to create feature geometry views, which form the foundation of GIS layers.

. Regarding geometries, can the same or a similar approach be reproduced?

This question is addressed in Section 4.2.2. Below is a summary of the conclusions on
creating feature geometry views:

e [s it still necessary to rely on materialized views?
Relying on materialized views is not strictly necessary, particularly for relief compo-
nent features and space features without implicit representations, as the geometry
roots are directly stored in the 3DCityDB v.5.0 encoding. However, materialized
views remain preferable when working with large datasets, as they offer faster
access to the queried results.

* What alternatives are available?
For space and relief component features with geometry properties, PostgreSQL
views can be used to store the collected feature geometries. The difference in query
time between these two types of views is minimal.

3. Regarding attributes, can the same or a similar approach be reproduced?
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This question is discussed in Section 4.3.2, Section 5.4.4, and Section 6.2. Below is a
summary of the conclusions on creating feature attribute views:

e [s it still necessary to rely on updatable views?
Since all feature attributes are stored following EAV model in 3DCityDB v.5.0, flat-
tening these attributes is necessary when accessing them via GIS layers. However,
updatable views in PostgreSQL are not the optimal solution for storing the flat-
tened (linearised) attribute results, as re-computation during attribute flattening
can be complex and time-consuming.

¢ What alternatives are available?
For better query performance, materialized views are preferable when accessing
feature attributes through GIS layers. In future work, certain trigger functions
should be developed to reflect user changes in QGIS and update the underlying
source tables accordingly.



8.2. Discussion

4. How is the CityGML v.2.0 data mapped to the new schema of 3DCityDB v.5.0?

1 {

4

The mapping of CityGML v.2.0 data to the new 3DCityDB v.5.0 schema is based on the
identifiers of each class, adhering to the namespace standards of 3DCityDB v.5.0 encoding,
which is still under development. The mapping rules for CityGML classes are stored as
JSON texts in the schema column within the 3DCityDB OBJECTCLASS table. For example,
the mapping rules for the “Building” class are shown in Listing 8.1. The identifier
specifies the table used for mapping the class, and properties are encoded according
to the type derived from the rules specified in the namespace, which references the
3DCityDB NAMESPACE table.

"identifier" : "bldg:Building",
"table" : "feature",
"properties" : [

{

"name": "buildingPart",
"namespace" : "http://3dcitydb.org/3dcitydb/building/5.0",
"type": "core:FeatureProperty"

Listing 8.1: Mapping example in JSON - “Building” Class

e Can we handle CityGML v.2.0 data as CityGML v.3.0 data if it is stored in

3DCityDB V.5.0?

By following the mapping rules specified in the schema column of the 3DCityDB
OBJECTCLASS table, CityGML v.2.0 data is automatically mapped to CityGML
v.3.0 and stored accordingly within 3DCityDB v.5.0, with some exceptions based
on CityGML v.3.0 standards, allowing it to be processed as CityGML v.3.0 data.
However, certain properties from CityGML v.2.0 cannot be directly mapped to
CityGML v.3.0. For instance, the “roof edge” geometry type, which has been
removed in CityGML v.3.0, is marked as ”“deprecated” according to the 3DCityDB
NAMESPACE table. The PL/pgSQL functions developed in this research still display
these deprecated properties in the feature metadata check but exclude them during
view creation.

8.2. Discussion

8.2.1. Contributions

The qgis_pkg developed in this research successfully demonstrates the capability to reproduce
the GIS layer creation process from CityGML data stored within the new 3DCityDB v.5.0
encoding, marking an advancement in the integration and utilisation of spatial data within
the updated database framework. Compared to the current plug-in, the added support for
3DCityDB v.5.0 on the server side enhances user flexibility in interacting with 3DCityDB-encoded
data, particularly in terms of feature geometry and attribute management:
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e Feature Geometries

Users now have the option to store collected feature geometries in either views or
materialized views. The create_geometry_view function allows users to specify the
desired view type in the input parameters. Views can be used to visualise feature
geometries in QGIS when working with relatively small datasets, offering a lighter and
more responsive option, particularly when changes are made to the source tables.

For checking target feature geometries, users can specify the LoDs and geometry repre-
sentations for each class within a CityGML module when creating views rather than
generating views for all classes simultaneously. The selectable feature geometry view
creation could shorten the view generation time, providing a better user experience.

Feature Attributes

Feature attributes become selectable for the users when creating GIS layers. The
create_attribute_view function enables individual attribute view creation, and the
create_attris_table_view function allows users to specify their desired attribute and
integrate them into an attribute table, which is updated when the attributes of the
corresponding class are selected.

Additionally, the general, specific, and generic feature attributes are all flattened by the
implementation of this thesis. Unlike the current plug-in, where generic attributes can
only be inspected as sub-tables associated with the GIS layers in the “attribute form”
view in QGIS, users can now inspect attributes in the ”attribute table” view as well.
This enhancement improves the usability of CityGML data, as generic attributes can be
batch-queried using the analysis tools in QGIS.

Overall, this research contributes substantially to the usability and adaptability of spatial data
management within the updated 3DCityDB v.5.0 framework, providing a more tailored and
flexible user experience in QGIS.

8.2.2. Limitations

Although this thesis successfully demonstrates the creation of GIS layers from data stored
within the new 3DCityDB v.5.0 schema, certain limitations still exist. These can be summarised
as follows:
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* Read-only privileges in Use Case 3: A key limitation is that the generated GIS layers

can only be visualised and inspected in QGIS. Since materialized views in PostgreSQL
are not as updatable as regular views, any changes made to the source tables require
manual refreshes of the layers to keep them up-to-date. Additionally, editing feature
attributes via these layers in QGIS is not yet possible. Enabling read and write privileges
for Use Case 3 would require additional functions, such as triggers [47], to handle insert,
update, and delete operations. Future work should explore managing user-initiated
changes within QGIS to provide full support for 3DCityDB v.5.0 on the plug-in server side.

Features without direct LoDs and geometry representations cannot be viewed via
GIS layers: As indicated in the layer generation results of transportation datasets
(Section 6.4), certain features and their attributes cannot be viewed and checked via the
GIS layers. For example, the features of the “TrafficSpace” and ”AuxiliaryTrafficSpace”
classes in the CityGML v.3.0 "Transportation” module can have granularity attributes
as lane or way [20]. However, only their child boundary features, (auxiliary) traffic
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areas, have direct LoDs and geometry representations in the Munich and New York
City transportation datasets. This results in the missing geometry views for joining
attributes like the granularity to form visible layers.

Furthermore, the Munich and New York City transportation datasets also contain
features such as roads, sections, intersections and squares. They are structured as nested
features to express the semantic hierarchy of Road-Section/Intersection-(Auxiliary)
Traffic space-(Auxiliary) Traffic area; however, they do not possess direct geometry
representation for GIS layer visualisation and can only be viewed by gathering their child
feature geometries, i.e. (auxiliary) traffic areas. Since modules like "Transportation”
in CityGML v.3.0 are modified to incorporate more detailed feature types, it requires
further investigation to view the features without direct spatial properties and access
their attributes via GIS layers.

* Limited testing with CityGML v.3.0 datasets: The qgis_pkg developed in this research
has yet to be thoroughly tested due to the limited availability of CityGML v.3.0 data.
Conducting such tests is crucial to validate the proposed method for GIS layer creation
and to ensure full compatibility with 3DCityDB v.5.0 for the plug-in.

8.2.3. Future Development

As discussed in the possible use case evaluation (Chapter 7) and the limitations (Section 8.2.2),
the following paragraphs outline the directions for further development aimed at providing
full support for 3DCityDB v.5.0 within the plug-in.

1. Optimisation of the Approach for GIS Layer Creation
Future development of the plug-in should focus on optimising the approach for creating
GIS layers to reflect user changes in the source tables within QGIS. Key areas for
improvement include:

a) Dynamic Updates
Explore methods to ensure that GIS layers are dynamically updated in real-time,
reflecting user changes in QGIS. This may involve implementing trigger functions
to handle insert, update, and delete operations within the database. Additionally,
the concept of Incremental View Maintenance (IVM) could be referenced as a
potential approach to make materialized views updatable, ensuring they remain
current without full recomputation.

IVM keeps materialized views up-to-date by calculating and applying only the
changes rather than fully re-computing the view as the REFRESH MATERIALIZED
VIEW command does. This is more efficient, especially when only small parts
of the view are modified [48]. Materialized views that support IVM are called
Incrementally Maintainable Materialized View (IMMV), enabled by the pg_ivm
extension in PostgreSQL [49]. The create_immv function allows users to create
IMMVs with a relation name and a view definition query. When an IMMV is
created, triggers are automatically set up to enable immediate updates to the view
in response to modifications. Unique indices are also automatically created on
primary key columns, GROUP BY expressions, and columns with a DISTINCT clause.
IMMVs provides faster updates of materialized views compared to the normal
refresh command at the cost of slower base table updates since triggers process
each modification.
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b)

Although IMMVs provide a solution for updatable materialized views, they cannot
be directly applied to this research due to two main reasons:

i. IMMVs created by the pg_ivm extension only supports simple view definitions
and does not allow materialized views defined with OUTER JOINs. As the
proposed approach involves flattening and joining user-selected attributes
into an integrated attribute table using OUTER JOINSs, it does not meet IMMV
requirements.

ii. Changes made in QGIS are updated to the underlying 3DCityDB schema via
the generated GIS layers. This reversed approach is not supported by IMMVs.
Moreover, IVM may be slower than normal refreshes when base tables are
frequently modified. This suggests that relying on IMMVs for batch-editing
updates in QGIS may not be ideal, even if reversed updates were possible.

Despite the limitations of IMMVs, the underlying concepts of IVM still offer valuable
insights into updating materialised views. When enabling users to read and write
to the generated GIS layers, these ideas should be considered.

Performance and Scalability

Enhancing the performance of materialized views and other database operations
involves optimising query structures and refresh strategies. The goal is to ensure
the system can handle large datasets and frequent updates efficiently without
compromising performance.

The approach used in this research generates a GIS layer by creating a materialized
view that consists of a feature geometry joined with an integrated attribute table.
The content of this attribute table is based on the user’s selection of attributes.
These selected attributes are flattened (linearized) to follow the SFS model while
they are stored in the source table using the EAV model. Therefore, any changes
made to a layer within QGIS would require corresponding trigger functions to
detect these events and convert the changed attributes from the SFS model back
into the EAV model. This process is complex and challenging, as it would require
dynamically creating numerous trigger functions based on the selected attributes,
leading to significant implementation and maintenance overhead.

To simplify the implementation of GIS layer updates, an alternative approach could
involve duplicating the data of the generated GIS layer into a “flattened” table that
holds the modifications performed by the users. The changes to the “flattened”
table can then be updated back to the underlying cdb_schema PROPERTY table,
reducing the workload in handling user updates in QGIS. However, this alternative
requires further verification and should be investigated in future development of
the plug-in on the server side.

2. Access the features without direct spatial properties via GIS layers
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a)

Two possible solutions are proposed for users to view the features without direct
geometry representations and access their attributes via GIS layers (see Section 8.2.2):

Feature bounding box envelopes

Using the feature envelopes as the alternative geometries to join the attributes
could be the simplest and fastest approach to creating layers for visualisation.
The feature envelopes are directly accessible in the FEATURE table without join-
ing the GEOMETRY_DATA table. The selected envelopes can then be saved in
materialized views named with LoDx and envelope, indicating that they are not
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the existing feature geometry representation of the target features. Figure 8.1a
shows the layer created using (auxiliary) traffic space envelopes from the Munich
transportation dataset. It allows users to access the granularity values, giving
semantic information about the free spaces above the traffic area used as lanes.
However, the bounding box envelopes of the features are not suitable for checking
the feature spatial properties due to the overlapping geometries and the coarse
representation.

b) Aggregation of child feature geometries

Aggregating the child feature geometries as the alternative geometries to join the
attributes is the other approach for creating layers. In the Munich transportation
dataset, the (auxiliary) traffic spaces comprise (auxiliary) traffic areas. It is then
reasonable to collect corresponding child boundary features and aggregate the
geometries to represent their parent space features. Figure 8.1b shows the layer
created using the aggregated (auxiliary) traffic area geometries, which can be a
possible solution for users to check the “geometry-less” attributes.
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(a) Envelope feature geometries (b) Aggregated child boundary feature geometries

Figure 8.1.: Alternative geometry options to generate layers for the (auxiliary) traffic spaces
(Munich transportation dataset)

Child feature geometries aggregation could be a more suitable approach for viewing
parent features as layers, especially to check the semantic hierarchy. This could involve
using more advanced SQL queries to integrate semantic information into features with
direct geometry representations, such as the (auxiliary) traffic areas in the Munich and
New York City transportation datasets (Figure 8.2a), and then storing the results as
additional layers. This approach allows users to visualise roads and squares (Figure 8.2b)
or more detailed semantic elements like road sections and intersections (Figure 8.2c).
Further discussion and investigation are required to develop the solutions on the plug-in
server side to provide comprehensive support for CityGML v.3.0 data applications.
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Figure 8.2.: Create additional semantic layers (New York City transportation dataset)

3. Client-Side Adaptations for 3DCityDB v.5.0 in the plug-in GUIs
After updating the plug-in server-side to support 3DCityDB v.5.0, necessary client-side
adaptations should be made to ensure seamless interaction and enhanced usability. Key
areas for adaptation include:

a) "Layer Loader” Adaptation for Selectable Feature LoDs, Geometry Representa-
tions, and Attributes
The plug-in GUIs should be enhanced to allow users to select their desired feature
LoD and geometry representation when creating geometry views. Additionally,
users should be able to choose which feature attributes to include in GIS layers.
This involves:

i. Implementing a user-friendly interface for displaying the available LoDs and
geometry representations from the geometry metadata table.

ii. Providing options to filter and select specific attributes for display in the GIS
layers, with options to include or exclude attributes based on relevance from
the attribute metadata table.

iii. Updating the GUI to support these selections dynamically, ensuring that
changes are reflected immediately in the layer creation process.

b) "Bulk Deleter” Adaptation Regarding the Feature Editing Approach of the GIS
Layers
Adapt the "Bulk Deleter” function to align with the new feature editing capabilities
and workflows in 3DCityDB v.5.0. This includes:

i. Enhancing the interface to support bulk deletion of features directly from the
GIS layers, incorporating user feedback mechanisms to confirm and manage
deletions.

ii. Integrating new functionalities that respect the concurrent editing constraints
and updating the underlying data accordingly, possibly by utilising trigger
functions or synchronisation methods to ensure consistency.
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c) User Experience Enhancements: Offering customisable settings for users to save
their preferences for feature LoD, geometry representations, and attributes. Stream-
lining repeated tasks, such as setting up optional toggle buttons for joining all
available attributes regarding a target class to improve workflow efficiency.

8.2.4. Reflection and Outlook

The core contribution of this thesis is the linearisation of “complex features”, which are the
"nested attributes” referred to by this research in CityGML data encoded within 3DCityDB,
making them compatible with SFS model and more accessible for users in QGIS. This approach
aims to bridge the gap between complex, multi-tiered data schemas and more simplified,
usable formats that can be easily viewed and queried.

While the WFS provides a convenient method for creating, modifying, and exchanging
CityGML data in QGIS over the Internet, challenges persist in handling complex feature
schemas, especially since all GIS software relies upon data structured following SFS model. The
QGIS WFs provider was previously limited to consuming features returned as GML simple
features, referred to as ”inline attributes” in this research. To access complex features via
WFS, a workaround involving the QGIS GML Application Schema Toolbox plugin (GMLAS)
plug-in is used [50]. The GMLAS can consume complex features either by linking the initial
XML hierarchical view to GIS layers or by converting the data to a relational database. In
the latter case, the data is spread across different GIS layers, and the relationships between
tables are defined in QGIS using relation reference widgets, enabling navigation through the
standard QGIS attribute table in the “forms view”. However, working with complex features
using GMLAS requires users to be aware of its limitations, and it does not offer the same level
of user experience as working with simple feature WFs layers [51].

For supporting complex features consumption in WFS providers, QGIS was recently enhanced
with a solution proposed by the QGIS-DE user group to expose complex feature properties
as JSON content converted from XML [51]. The proposed solution aims to enhance QGIS’s
capability to handle complex feature schemas in WFS providers by flattening nested XML
structures as JSON serialised strings, which are compatible with the existing infrastructure of
WES providers. This conversion allows users to view and interact with complex GML data in
QGIS attribute tables. However, the implementation is still in development, with limitations,
such as supporting only one geometry field per WFS layer. This implies that if a fetched WFS
layer has multiple geometry representations, only one will be accessible at a time in QGIS.
Additionally, WFS with Transactions (WFS-T) is not supported, meaning users are limited in
editing capabilities for writing changes back to WFS providers. Finally, server-side filtering is
restricted to non-XML fields, so only simple feature properties can be queried.

As highlighted in ongoing developments within the QGIS community, flattening XML data
served from WFS is still an evolving process. QGIS WFS providers are yet to support complex
feature structures in a user-friendly manner fully, limiting access and editing of CityGML data
in real-time. In contrast, the approach proposed by this research offers an alternative. Except
for handling complex features on the client side as the WFS providers offer, the research
approach flattens them on the server side in the database. By downloading CityGML data
and encoding it with 3DCityDB, users can linearise nested features and complex attributes to
access them as usual GIS layers since they are flattened to follow SFS model. This conversion
simplifies the structure, providing direct access to feature attributes via QGIS’s attribute table,
making the dataset more accessible for analysis and manipulation.
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Looking to the future, if users are granted read-and-write privileges (use case 3-2) to the
linearised attribute tables, it will enable the potential for users to edit attributes directly
in QGIS. Any changes can then be pushed back to the underlying 3DCityDB schema tables
and exported to CityGML files via the 3DCityDB for broader data exchange purposes. While
editing CityGML attributes directly through 3DCityDB might require more effort, flattening
(linearising) the feature attributes encoded within 3DCityDB offers a viable solution for users
to interact with and use the rich CityGML data. The proposed approach of this thesis aligns
with ongoing development efforts surrounding complex features in WFS providers, offering a
complementary pathway for handling complex geospatial data.
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A. Reproducibility self-assessment
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Figure A.1.: Reproducibility criteria to be assessed.

Grade/evaluate yourself for the five criteria (giving 0/1/2/3 for each):

1. Input Data: The CityGML datasets are available, open, and permanent on websites.
However, only a portion of the test datasets are provided due to GitHub’s file size
limitation, which slightly reduces accessibility. [2]

2. Preprocessing: The CityGML datasets can be imported using the open-source 3DCityDB
command line tool, making it a straightforward process. [3]

3. Methods: The proposed PL/pgSQL functions are installable and applicable across mul-
tiple 3DCityDB v.5.0 instances, offering flexibility and reproducibility for creating GIS
layers.[3]

4. Computational Environment: pgAdmin4, QGIS, and 3DCityDB v.5.0 are all open-source
tools and can be freely set up, which makes the computational environment highly
accessible and reproducible. [3]
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5. Results: The PL/pgSQL functions are available on GitHub, enabling others to reproduce
the results using the listed tools. Although the dataset limitation slightly affects input
availability, the method and environment are reproducible. [3]

A.2. Self-reflection

This thesis presents an experimental approach to creating GIS layers from CityGML data
stored within the new 3DCityDB v.5.0, partially replicating the capabilities of the existing
plug-in. The CityGML test datasets are primarily accessible via online data portals, and users
can generate GIS layers after setting up the required open-source applications.

The results demonstrate a more flexible method for interacting with 3DCityDB-encoded spatial
data, allowing users to select desired feature LoD geometry representations and attributes
for visualisation via GIS layers. The most significant contribution is the successful flattening
(linearisation) of "nested attributes.” Handling the complex features of GML schemas in QGIS
remains a challenge, even with XML-to-JSON conversion support in WES layers. While the
current approach only allows users to inspect feature attributes with read-only privileges,
it shows potential for future development, particularly in enabling editability. This offers a
promising pathway to more comprehensive CityGML data usage.

On a personal level, this thesis has deepened my understanding of the CityGML data model
and the capabilities of the open-source 3DCityDB. Although fixing bugs in the functions
was sometimes frustrating, I found it rewarding to explore new solutions and refine my
understanding of the detailed CityGML standards through trial and error.
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