
General Tree Evaluation for AlphaZero

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Albin Jaldevik

Sequential Decision Making
Faculty EEMCS, Delft University of Technology

Delft, the Netherlands
www.ewi.tudelft.nl

www.ewi.tudelft.nl

©2024 Albin Jaldevik. All rights reserved.

General Tree Evaluation for AlphaZero

Author: (Rolf) Albin Jaldevik
Student id: 5839408

Abstract

Over the last decade, there have been significant advances in model-based deep rein-
forcement learning. One of the most successful such algorithms is AlphaZero which
combines Monte Carlo Tree Search with deep learning. AlphaZero and its successors
commonly describe a unified framework for tree construction and acting. For instance,
build the tree with PUCT and act according to visitation counts. Policies based on
visitation counts inherently make assumptions about the tree construction. This is
problematic since it constrains the construction algorithm. For example, breadth-first
tree construction yields a uniform visitation policy. To address this, we investigate
the goals when extracting policies from decision trees and propose novel construction
decoupled policies. Furthermore, we use these to modify how decision nodes are eval-
uated and utilize this during tree construction. We support the claim that our novel
policies can benefit AlphaZero with theoretical analysis and empirical evidence. Our
results on classical Gym environments show that the benefits are especially prominent
for limited simulation budgets. The code is available through GitHub1.

Thesis Committee:

University Supervisor: Wendelin Böhmer, Sequential Decision Making, TU Delft
Committee Member: Neil Yorke-Smith, Algorithmics, TU Delft

1https://github.com/albinjal/GeneralAlphaZero

r.a.jaldevik@student.tudelft.nl
https://github.com/albinjal/GeneralAlphaZero
https://github.com/albinjal/GeneralAlphaZero

Preface

I would like to express my deepest gratitude towards my supervisor, Wendelin Böhmer,
for his guidance and support throughout this thesis. He was the one who introduced me
to the subject and suggested the initial research direction which I found very enjoyable. I
would also like to thank Neil Yorke-Smith for agreeing to be on my thesis committee and
providing feedback. Furthermore, I would like to thank the other members of the Sequential
decision-making and Algorithmics research groups for fruitful discussions. In particular
PhD student Yaniv Oren and MSc student Felix Kaubek for showing great interest in my
work and helping me improve both the report and presentations. Lastly, I would like to
thank my friends and family for their unwavering support and encouragement.

Albin Jaldevik
Delft, Netherlands

June 16, 2024

iii

Contents

Preface iii

Contents v

List of Figures vii

1 Introduction 1
1.1 Contributions . 2
1.2 Outline . 2

2 Background 3
2.1 Reinforcement Learning . 3
2.2 Monte Carlo Tree Search . 4
2.3 AlphaZero . 6

3 Analysis 9
3.1 Tree Evaluation . 9
3.2 Goals of Tree Evaluation . 11
3.3 Matrix Notation . 12
3.4 The Covariance Matrix . 15
3.5 The Visitation Count Evaluator . 18
3.6 General Tree Evaluation . 23
3.7 Modified Construction . 29
3.8 Numerical Computation . 30
3.9 AlphaZero . 32

4 Related Work 35
4.1 Limited Simulation Budget . 35
4.2 Uncertainty Analysis . 36
4.3 Non Arithmetic Mean Backup . 37

v

CONTENTS

5 Experimental Setup 39
5.1 Agents . 39
5.2 Environments . 40
5.3 Value Functions . 41

6 Results 45
6.1 Cliff Walking . 45
6.2 Frozen Lakes . 52

7 Discussion 55

8 Conclusion 57
8.1 Conclusion . 57
8.2 Future Work . 58

Bibliography 61

A Implementation Details 67

B Additional Results 73

vi

List of Figures

3.1 A decision tree from the perspective of the tree evaluation policy. 11

5.1 6×12 Cliff Walking Environment. The starting state is in the bottom left corner
and the goal state is in the bottom right corner. The cliff is located in the bottom
row. 41

5.2 Frozen Lake Environments. The starting state is in the top left corner and the
goal state is in the bottom right corner. 42

5.3 Heuristic Value Functions used for the Cliff Walking and Frozen Lake. 43

6.1 Cliff Walking. Training and Evaluation mean return over training episodes. The
column numbers indicate the simulation budget. 45

6.2 Policy normalized entropy over training episodes. 1 indicates uniform distribu-
tion and 0 fully deterministic policy. 46

6.3 Partition into evaluation completion ratio and completion return. The column
numbers indicate the simulation budget. 47

6.4 Final evaluation state visitation distribution for the Cliff Walking environment.
The row numbers indicate the simulation budget and the columns the agents. . . 48

6.5 Cliff Walking heuristic value function mean return for different simulation bud-
gets (100 seeds). 49

6.6 Cliff Walking heuristic value function average state density (100 seeds). The
row numbers indicate the simulation budget and the columns the agents. 49

6.7 Cliff Walking heuristic value function average state density (100 seeds) for
baseline (Visit+UCT). The row numbers indicate the simulation budget and the
columns the value of the UCT constant c. 50

6.8 Cliff Walking mean tree state counts difference for different UCT constants.
Green is for c = 1 and red c = 100. Each subplot shows a different root state
(marked with a black border). 51

6.9 Cliff Walking mean tree state counts difference for different construction algo-
rithms. Blue is MVCUCT and green is regular UCT (baseline). Each subplot
shows a different root state (marked with a black border). 52

6.10 4×4 Frozen Lake. Training and Evaluation step performance. 53

vii

LIST OF FIGURES

6.11 8×8 Frozen Lake. Training and Evaluation step performance. 53
6.12 Final evaluation state visitation distribution for the 4× 4 Frozen lake environ-

ment. The row numbers indicate the simulation budget and the columns the
agents. 54

A.1 Neural Network architecture options. 70
A.2 Neural Network modules. 70

B.1 Cliff Walking 40×12 heuristic value Visit+UCT agent extreme simulation path
lengths. 74

B.2 Cliff Walking 40×12 heuristic value Visit+UCT agent extreme simulation state
densities for each budgets. The simulation budgets (from left to right) are 16,
64, 256, 1024, and 4096. Stronger red indicates higher density. 74

B.3 4× 4 Frozen Lake heuristic value function average state density (100 seeds).
The row numbers indicate the simulation budget and the columns the agents. . . 75

B.4 Final evaluation state visitation distribution for the 8×8 Frozen Lake environ-
ment. The row numbers indicate the simulation budget and the columns the
agents. 76

B.5 8× 8 Frozen Lake heuristic value function average state density (100 seeds).
The row numbers indicate the simulation budget and the columns the agents. . . 77

viii

Chapter 1

Introduction

Tree search techniques have played a fundamental role in many successful sequential decision-
making algorithms over the last century. One early such algorithm is Minimax search [47],
which was later extended with alpha-beta pruning [28]. Deep Blue, the first computer pro-
gram to defeat a world champion in chess in 1997, was based on alpha-beta search [10].
Another important tree search algorithm is Monte Carlo Tree Search (MCTS) which addi-
tionally utilizes random rollouts [44].

The last decade has witnessed significant advancements in deep learning, catalyzing break-
throughs across various domains, including computer vision and natural language process-
ing [48]. It also sparked extra incentive for integrating these techniques into sequential
decision-making algorithms. Deep reinforcement learning is one such flourishing field [31].
In 2016, Silver et al. [40] published AlphaGo, demonstrating how deep learning can be
combined with tree search (MCTS) to achieve superhuman performance in the game of Go.
In the following years, the framework was refined into the AlphaGoZero and AlphaZero
algorithms [41, 42].

The success of AlphaZero inspired numerous descendants, impacting both practical appli-
cations and theoretical advancement. On the practical side, AlphaTensor is an algorithm
based on AlphaZero used for discovering novel, faster ways of multiplying matrices [19].
On the theoretical side, MuZero lets the agent learn the environment dynamics as well [39].
Stochastic MuZero supports stochastic environments [1], and Gumbel MuZero improves
the performance for large action spaces and low simulation budgets [16, 35].

Despite these advancements, challenges remain. The algorithms in the AlphaZero fam-
ily commonly describe a unified framework for building and analyzing search trees. For
example, AlphaZero uses an algorithm called PUCT for construction and acts under this
assumption [38, 42]. If we use another tree construction algorithm than PUCT or even
mistune the PUCT hyperparameters, the performance might deteriorate.

This work aims to investigate the possibility of detaching tree construction and evaluation.
We hypothesize that novel tree evaluation strategies could, not only allow the application of
different construction algorithms but also improve the performance of the default AlphaZero
algorithm. Our research aims to address the following questions:

1

1. INTRODUCTION

1. How can policies be efficiently extracted from general decision trees?

2. What are the objectives and inherent trade-offs involved in designing tree evaluation
policies?

3. Can AlphaZero’s performance be improved by diverging from its default tree evalua-
tion policy?

4. Can modifications to tree evaluation and construction boost performance further?

The first two questions are answered analytically in Chapter 3, while the other two are
answered empirically in Chapter 6. Next, we provide a summary of our contributions and
an outline of the thesis.

1.1 Contributions

This thesis’s contributions are summarized as follows:

• We propose a framework for general MCTS tree evaluation based on value estimation.

• We parametrize the value estimator and provide insight into its variance.

• We propose multiple concrete tree evaluators balancing expectation and variance.

• We show how our framework could also be used to improve tree construction.

• We empirically demonstrate that our framework, using one of the proposed evalua-
tors, outperforms the AlphaZero baseline in certain environments. This holds both
when only modifying the evaluation and when modifying both evaluation and con-
struction.

• We investigate and provide insight into why performance is improved.

• We suggest several directions for future work in this domain.

• We provide an open-source modular implementation of our AlphaZero framework.

1.2 Outline

The remainder of this thesis is structured as follows. In Chapter 2, we provide the necessary
background on reinforcement learning, MCTS, and AlphaZero. Chapter 3 is the main ana-
lytical part of the thesis describing our proposed framework for general tree evaluation. We
provide theoretical results and propose several novel policies. The chapter also discussed
practical computation aspects as well as modifications to the construction algorithms. Chap-
ter 5 describes the experiments conducted. The experiments evaluate the performance of the
novel policies compared to the baseline. Chapter 6 reports and comments on the results of
the experiments. In Chapter 7 the experimental results are discussed and analyzed. Lastly,
Chapter 8 describes our conclusion and discusses directions for future work.

2

https://github.com/albinjal/GeneralAlphaZero

Chapter 2

Background

2.1 Reinforcement Learning

In reinforcement learning (RL), the goal is to learn a good policy (agent) π(a|s) by inter-
acting with an environment. The policy π(a|s) denote the probability of taking action a in
state s. The environment is traditionally represented as a Markov Decision Process (MDP)
[4] defined by a tuple ⟨S ,A ,ρ,P ,R ⟩. S represent the set of states, A the set of actions,
ρ the initial state distribution, P the transition model (probability of transitioning to a new
state given the current state and action), and R the reward distribution. We will primarily
focus on deterministic environments which simplifies ρ, P , and R . We can also include a
discount factor γ ∈ (0,1) indicating how we value future rewards. We define the value Vπ(s)
of a policy π as the discounted expected cumulative reward (return) starting in state s

Vπ(s) = E[
H

∑
t=0

γ
trt | rt ∼ R (st ,at ,st+1),st+1 ∼ P (st ,at),at ∼ π(st),s0 = s].

Note that the rewards, states, and actions are sequentially sampled. We will refer to this
sampled sequence as a trajectory. The sampling stops when we reach a terminal state in the
environment or after an optional maximal time horizon H (we can also let H = ∞). The goal
in reinforcement learning is usually to find an optimal policy π∗ that maximizes the value
function Vπ∗(s0) when s0 ∼ ρ [43]:

π∗ = argmax
π

E[Vπ(s0) | s0 ∼ ρ].

Note that there could exist multiple optimal policies. It is often useful to expand the value
function into a recursive form

Vπ(s) = E[r+γVπ(s′) | r∼R (s,a,s′),s′ ∼ P (s,a),a∼ π(s)] = E[Qπ(s,a) | a∼ π(s)] (2.1)

where Qπ(s,a) is the expected discounted return starting in state s, taking action a, and then
following policy π. The recursive formulation in equation 2.1 is commonly referred to as

3

2. BACKGROUND

one of the Bellman equations [4]. From this recursive formulation, we can conclude that an
optimal policy π∗ must satisfy the Bellman optimality equation

Vπ∗(s) = E[r+ γVπ∗(s
′) | r ∼ R (s,a,s′),s′ ∼ P (s,a),a∼ π∗(r)], ∀s ∈ S .

that is, the optimal policy is the policy that maximizes the expected reward plus the expected
value of the next state following the optimal policy. This lets us consider the optimal policy
on a step-by-step basis. This comes down to optimization over the possible actions in the
current state.

In a reinforcement learning context, the full MDP is not always provided but instead, the
goal is to learn a good policy solely from interacting with the environment (sequential sam-
pling from the MDP).

2.2 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a popular heuristic search algorithm for sequential
decision-making problems. It combines ideas from decision tree search used by methods
like Minimax search with elements of Monte Carlo sampling [44]. A decision tree is a tree
where each node represents a unique action sequence, and the root node usually represents
the current state (no action taken). In some literature, the nodes represent states but this
is less flexible since it can potentially cause issues when it comes to stochastic or cyclic
environments.

The main idea in MCTS is to build the tree by sequentially sampling from the environment
and then using these samples to guide the search. The algorithm is commonly divided into
four main steps. First, select a node in the tree to expand. Second, expand the selected
node by adding a new node (execute a new action in the environment). Third, simulate
a rollout from the new node to the end of the episode to estimate the value of the node.
Finally, backup the value estimate to the root node. The algorithm repeats these steps until
a stopping criterion such as time or compute is met. In this work, the stopping criterion is
simulation budget which is the number of repetitions of the four steps. The budget can also
be thought of as the number of visits to the root node or the number of nodes in the tree.
When the search stops, we evaluate the tree to determine the policy at the root. Algorithm 1
describes the high-level structure of how a policy is extracted with the MCTS algorithm.

Algorithm 1 MCTS: Monte Carlo Tree Search
Require: MDP, SimulationBudget, s

1: Tree← ConstructTree(MDP, SimulationBudget, s)
2: return ExtractPolicy(Tree)

The construction of the decision tree is a vital component of the algorithm. Algorithm 2
describes how the MCTS tree is built. The Select function in Algorithm 2 is responsible for
selecting a node in the tree to expand. This is commonly done by iterative sampling from
a selection policy such as UCT (Upper Confidence Trees) [29] until an expandable node is

4

2.2. Monte Carlo Tree Search

Algorithm 2 ConstructTree
Require: MDP, SimulationBudget, s

1: Tree← Node(s)
2: i← 0
3: while i < SimulationBudget do
4: Node← Select(Tree)
5: NewNode← Expand(MDP, Node)
6: v← Evaluate(NewNode)
7: NewNode.v← v
8: Backup(NewNode)
9: i← i+1

10: end while
11: return Tree

reached. UCT is based on the Upper Confidence Bound algorithm (UCB1) [2]. The UCT
policy is defined as

πUCT = PolicyMax
A

[UCT]

with

PolicyMax
A

[f] (x,a) =
δ(f (x,a)−maxa′∈A f (x,a′))∫

A δ(f (x,a′′)−maxa′∈A f (x,a′))da′′
∝ δ

(
f (x,a)−max

a′∈A
f (x,a′)

)
(2.2)

where the integral is a sum in the discrete case and δ is the Dirac delta function defined as

δ(x) =

{
1 if x = 0,
0 otherwise.

The UCT score is defined as

UCT(x,a) = Q̄(x⊎a)+ c ·

√
logN(x)
N(x⊎a)

.

The PolicyMax function returns a uniform distribution over the actions with the highest
value. The UCT function gives the UCT score of each child node. The notation x⊎ a
denotes the node we arrive at by taking action a from node x. The function Q̄(x) returns
the empirical mean return of collected trajectories that start in node x. The constant c is
a positive hyperparameter and N(x) denotes the visitation count for node x. If we reach a
node that is not fully expanded we select it for expansion.

After selecting a node, we Expand it by taking a new action (sampled uniformly among
the unexpanded) in the environment, this adds a new node to the tree. We then Evaluate to
get a bootstrap estimate for its value. In the default version of MCTS, simulation is done
by sequentially sampling a finite horizon trajectory from the MDP with some rollout policy
and returning its discounted return. The rollout policy is usually the uniform distribution.

5

2. BACKGROUND

Finally, we Backup the value estimate to the root node by updating Q̄ and N for all nodes in
the path from the root to the new node. The backup step is described in Algorithm 3. Node.r
is the reward observed in the environment when expanding the node. Node.N is initialized
to 0 but incremented during backup. For the new node, line 6 will simply assign Return
to Node.Q since Node.N is 1. The final step in the MCTS algorithm is to ExtractPolicy

Algorithm 3 Backup
Require: NewNode, γ

1: Node← NewNode
2: Return← Node.v
3: while Node is not None do
4: Node.N← Node.N + 1
5: Return← Node.r + γ ∗ Return
6: Node.Q← Node.Q + (Return - Node.Q) / Node.N
7: Node← Node.Parent
8: end while

from the constructed tree. This is done by selecting the action at the root with the highest
visitation count. The deterministic visitation count policy is defined as

πN′ = PolicyMax
A

[N(x⊎a)] .

Simply selecting the action with the highest visitation count makes the most sense if we use
some kind of optimistic tree construction algorithm such as UCT. The exploration term in
UCT will decay for large numbers of visits which means that the policy will converge to
selecting the action with the highest value Q̄. This is proved in Section 3.5.

2.3 AlphaZero

AlphaZero (AZ) is a framework for combining MCTS with elements of deep learning. Its
main predecessor AlphaGo was published by Silver et al. [40] (DeepMind) in 2016. The
framework was extended in a series of papers to improve performance and generality, and
in late 2017, the version called AlphaZero was published [41, 42].

The core component of the algorithm involves iteratively collecting experiences through
self-play and learning from them. An overview of the algorithm is described in Algorithm 4.
Note that there is a fundamental difference between MCTS and AlphaZero in that MCTS
returns a policy for a specific state while AlphaZero returns a trained neural network (NN).
This neural network is then used to determine future policies. MCTS is a search algorithm
while AZ is also a framework for learning with modified MCTS as its core component. The
rest of this section will be for investigating the algorithm components in further detail.

6

2.3. AlphaZero

Algorithm 4 AZ: AlphaZero

Require: MDP, SimulationBudget, BatchSize, Iterations, NN
1: ReplayBuffer← ReplayBuffer()
2: i← 0
3: while i < Iterations do
4: Trajectories← CollectTrajectories(MDP, SimulationBudget, BatchSize, NN)
5: ReplayBuffer.extend(Trajectories)
6: Learn(NN, ReplayBuffer)
7: i← i+1
8: end while
9: return NN

2.3.1 AlphaZero MCTS

The trajectories collected by CollectTrajectories are sequentially sampled from the MDP
using the AlphaZero Monte Carlo Tree Search (AZMCTS) policy at each environment step.
In a multi-player setting, such as in the game of Go, the trajectories are collected through
self-play. The AZMCTS policy is generated through a modified version of MCTS (Algo-
rithm 1) which uses the neural network during Evaluate instead of random rollouts.

The neural network in AlphaZero, parametrized by θ, maps an environment state s to a value
vθ and a policy πθ. The policy πθ is sometimes referred to as the prior policy. Further details
on state embeddings and architectures used in this work are described in Appendix A.

AlphaZero presents three main modifications to the default MCTS algorithm. The first
modification is that during tree construction, v returned from Evaluate is replaced by vθ

from the neural network. This value will still be referred to as a simulation value. Evaluate
additionally returns the prior policy πθ which is stored for each node in the tree.

The second modification that AlphaZero makes, is that it uses PUCT (Predictor + UCT) as
the selection policy rather than UCT [38, 42]. PUCT uses the prior policy produced by the
neural network for more sophisticated exploration. The PUCT selection policy is defined as

πPUCT = PolicyMax
A

[PUCT]

with

PUCT(x,a) = Q̄(x⊎a)+ c ·πθ(x,a) ·
√

N(x)
1+N(x⊎a)

where c is a positive constant. PUCT is based on many of the same principles as UCT. It
prefers actions with larger Q̄ and gives a bonus to actions with low visitation counts.

The last modification in AZMCTS is that during learning, ExtractPolicy returns a stochas-
tic policy proportional to the visitations instead of just taking the max. This is primarily
done for exploration purposes since it increases the diversity in trajectories to learn from.

7

2. BACKGROUND

The visitation count policy used in AZMCTS is defined as

πN(x,a) =
N(x⊎a)

N(x)
∝ N(x⊎a).

Note that N(x⊎a) = 0 for unexpanded actions. If N(x) = 0 we return a uniform distribution.
During evaluation, the deterministic visitation count policy is used.

2.3.2 Learning

During the learning phase, AlphaZero aims to improve the parameters θ of the neural net-
work based on previous experiences. The parameters are updated iteratively using stochas-
tic gradient descent to minimize the loss function. The loss function in AlphaZero is of the
form

LAZ = αLValue +(1−α)LPolicy

for α ∈ (0,1). We can also add an optional regularization term to the loss function. The
value and policy losses are computed over a batch of trajectories T sampled from the replay
buffer. The value loss is computed as the mean squared error between the current value
network output and the target value

LValue = ∥vθ(T [s])− vtarget(T)∥2

where vθ(T [s]) is a vector of the neural network outputs for the states in the trajectory and
vtarget(T) is a vector with the value targets for those states. The norm is the Euclidian l2-
norm. In the default AlphaZero implementation, we use n-step bootstrapped value targets
[31]: [

vtarget(T)
]

t =
n−1

∑
i=0

γ
i ·T [r]t+i + γ

n · vθ(T [s])t+n ·¬T [terminated]t+n

where T [r] is a vector of rewards, γ the discount factor, and n the number of steps to boot-
strap. The entries of T [terminated] is 1 if the trajectory has terminated. Note that we do not
let any gradient flow from the value target into the value loss.

The policy loss is decreased if the policy network successfully predicts the prior policies
πtarget, extracted by AZMCTS. The loss for a batch of sampled trajectories T is a mean over
each timestep where the policy is evaluated

LPolicy =
1
|T | ∑

(πtarget,s)∈T
∑

a∈A
−πtarget(s,a) · logπθ(s,a)

where |T | is the cardinality including both the learning batch size as well as the trajectory
lengths.

This concludes our description of the AlphaZero algorithm. More details on the implemen-
tation and hyperparameters used in this work can be found in Appendix A. Now with the
necessary background, we can move on to the main part of the thesis where we propose a
framework for general tree evaluation.

8

Chapter 3

Analysis

Let’s consider the task of determining a good policy π from an arbitrary decision tree. Each
node in the tree represents a unique sequence of actions and records the reward obtained
when taking that action. In a stochastic environment, the reward can be modeled as a sample
from a random variable conditioned on the action sequence. In the MCTS framework, each
node contains a simulation value which we can model as a sample from a random variable
conditioned on the state. In traditional MCTS this sample comes from a random rollout
(with aleatoric uncertainty) but in AlphaZero it comes from a neural network, where the
uncertainty is epistemic.

3.1 Tree Evaluation

As mentioned in the previous chapter, the goal is to find a policy π∗ that maximizes the value
of the current state Vπ∗(s). The classical Bellman equations recursively define the value of a
certain state. When working with decision trees, we want to consider the value of a node in
the tree instead. We use x to denote a node in the tree and Tx to denote all nodes in the subtree
rooted at x. If the transition model of the MDP is stochastic, the state and reward observed
in each tree node are random variables. Each node in the tree is associated with a unique
action sequence from the root state. If we know the transition model P , we can determine
the probability of observing a state in each node. Rigorously, we can recursively define the
state distribution of each node in the tree. Let fP (s,a)(s′) be the probability density (mass in
the discrete case) function of the transition model P (s,a). Then the state distribution of a
node x⊎a is given by

fS(x⊎a)(s
′) =

∫
S

fP (s,a)(s
′) fS(x)(s)ds.

The integral is a sum over S in the discrete case. A standard assumption is that we know
the state of the root node S(x) = s0. This implies that we can recursively determine the state
distribution of all nodes in the tree. We can also consider the probability of a node being
terminal in a similar fashion.

We can additionally consider the distribution of rewards R(x) when entering a node x. The
distribution is dependent on the state distribution of the parent, child, and the reward dy-

9

3. ANALYSIS

namics of the environment. Marginalizing over the state distribution of the parent and child
gives the reward distribution of the node

fR(x⊎a)(r) =
∫

S

∫
S

fR (s,a,s′) fS(x⊎a)(s
′) fS(x)(s)dsds′.

In the discrete case, the integrals are replaced with summations. Note that if the environment
transition model is deterministic, the difference between R and R diminishes.

The first step in our analysis is to convert the Bellman equations (2.1) to the decision tree
framework by defining the value of a decision node as

Vπ(x) = E[Qπ(x⊎a) | a∼ π(x)]

where
Qπ(x) = E[R(x)]+ γVπ(x).

Traditionally the Q value is parameterized by state and action but we now consider the Q
of a node in the tree instead (Q(x,a) = Q(x⊎ a)). Similarly, π(x) is a policy determined
from a tree node x instead of a state. There could be multiple nodes with the same state
yielding different policies. In stochastic environments, we do not know the exact expected
reward E[R(x)] but we can estimate it with the obtained sample r(x). In deterministic en-
vironments, the observed reward r(x) is precisely the expected reward E[R(x)]. This thesis
primarily focuses on deterministic environments since this is the classical setting for Alp-
haZero (Chess, Go, Atari, etc). This simplifies some parts of the analysis but in theory, the
framework should work for stochastic environments as well.

To find the optimal value of a node we would have to expand these recursive formulations
until all leaves reach terminal states since in the deterministic setting, the value of terminal
nodes is zero. This is possible for some simpler environments like Tic-Tac Toe but it is
not feasible for more complex environments like Chess or Go. Instead, MCTS builds on
incorporating the simulation values v(x) to estimate the value of a node

V̂π̃(x) = π̃(x,av)v(x)+ ∑
a∈A

π̃(x,a)Q̂π̃(x⊎a) = ∑
a∈Av

π̃(x,a)Q̂π̃(x⊎a) (3.1)

and
Q̂π̃(x) = r(x)+ γV̂π̃(x) (3.2)

where Av = A ∪ av and Q̂(x⊎ av) = v(x). This notation is convenient since we can think
of the simulation as a special action and π̃ as a tree evaluation policy incorporating it. This
gives us a new framework for analyzing tree policies. Note that π̃ has the properties of a
proper policy but we can not take the action av in the real environment. When acting in the
real environment we can convert the tree evaluation policy into a real policy by

π(x,a) =
π̃(x,a)

1− π̃(x,av)
∝ π̃(x,a).

Figure 3.1 shows how we can think of v as special action nodes in the decision tree. We can
consider v as a noisy measurement of some value function Vπ(x). For example, in default
MCTS, π is the rollout policy.

10

3.2. Goals of Tree Evaluation

))

))

Figure 3.1: A decision tree from the perspective of the tree evaluation policy.

3.2 Goals of Tree Evaluation

In the previous section, we established that we can use a tree evaluation policy to estimate
the value of each node in a tree. In this section, we investigate the desirable properties of
such value estimates. We can think of the tree evaluation policy as a parameterization of the
value estimator. The goal of this estimator is to provide the most accurate estimate of the
optimal value of the root nodes’ children since this would allow us to extract the optimal
policy. We also generally want to increase the expected value estimate at the root since it
should correspond to a higher-value policy.

A good statistical estimator should have low bias and low variance. Bias in the value esti-
mator arises if the expected value of the estimator deviates from the optimal value. In this
context, the estimator might underestimate the optimal value since the value of all nonop-
timal policies is lower. To counteract this, we could find the tree evaluation policy that
maximizes the value

π̃Q(x) = argmax
π̃

V̂π̃(x).

We will refer to this evaluator as the Q-evaluator1 which simply picks the action with the
highest Q-value estimate

π̃Q(x,a) = PolicyMax
Av

[
Q̂π̃(x⊎a)

]
.

1The implementation might differ depending on whether nodes are fully expanded or not. See Appendix A.

11

3. ANALYSIS

This is a similar policy to the one used in Q-learning as well as in Minimax tree search
[51, 47]. The problem is that Q̂π̃ is also a random variable and could require extensive
search to be sufficiently sure about. These are empirically estimated Q-values that introduce
variance.

The variance in the value estimate arises from the uncertainty in the simulation values as
well as the rewards in stochastic environments. The variance of the estimator is given by

V[V̂π̃(x)] = ∑
(a,b)∈Av×Av

π̃(x,a)π̃(x,b)Cov[Q̂π̃(x⊎a), Q̂π̃(x⊎b)].

Intuitively, the variance will therefore be decreased if the tree evaluator prioritizes actions
with low variance as well as spreading the policy over actions with low covariance. The Q-
evaluator does not take the variance into account and therefore might have a high variance.

3.3 Matrix Notation

Before proceeding to the main results, we devote this section to some convenient matrix no-
tation. We can define vectors by mapping sets instead of individual elements. For example,
let

x⊎A = {x⊎a | a ∈ A}

and
π̃(x,Av) =

[
π̃(x,a) | a ∈ Av

]
.

In this notation, the value estimate can be written as

V̂π̃(x) = π̃(x,Av)
T Q̂π̃(x⊎Av)

with its variance given by

V[V̂π̃(x)] = π̃(x,Av)
T Cov[Q̂π̃(x⊎Av)]π̃(x,Av).

The beauty of this notation is that we can also use the set of nodes in the subtree Tx to expand
the estimators for the full subtree under the assumption that π̃(x,a) = 0 for non-expanded
child nodes. Define the discounted probability of reaching node y from node x as

Λπ̃(x,y,γ) = ∏
(z,a)∈path(x,y)

γπ̃(z,a)

where
path(x,y) = {(x,a0),(x⊎a0,a1), . . . ,(x⊎a0⊎ . . .⊎an−1,an)}

so that x⊎a0⊎ . . .⊎an = y. Note that path(x,x) = /0 so Λπ̃(x,x,γ) = 1. We can now expand
the Q-value estimate to

Q̂π̃(x) = Λπ̃(x,Tx,γ)
T (r(Tx)+ γπ̃(Tx,av)⊙ v(Tx)) (3.3)

12

3.3. Matrix Notation

where ⊙ is the element-wise product and x ∈ Tx (the root is in the subtree). This can also
be expressed as

Q̂π̃(x) = Λπ̃(x,Tx,γ)
T r(Tx)+Λπ̃(x,Tx⊎av,γ)

T v(Tx).

Proof (3.3). One can utilize proof by induction to show that the matrix (3.3) and recur-
sive formulations are equivalent (3.2). Let l(x) ∈ {0,1, . . . ,n} denote the depth level in
the tree of the node x, that is, its distance from the root. The root node is the only node
at level 0. The proof includes two steps: the base case and the induction step. In the
base case, we show that the formulation holds for all nodes at level n. In the induction
step, we assume that the formulation holds for all nodes at level n and show that it also
holds for all nodes at level n−1.

Base case: l(x) = n. Since n is the last level in the tree, all nodes at this level must be
leaf nodes. By definition, a leaf has no children and we assume that π̃(x,a) = 0 ∀a∈A .
For a leaf x, the tree is simply the node itself

Tx = {x} if l(x) = n.

which implies that the Q-value estimate is

Q̂π̃(x) =

Λπ̃(x,Tx,γ)
T (r(Tx)+ γπ̃(Tx,av)⊙ v(Tx)) =

Λπ̃(x,{x} ,γ)T (r({x})+ γπ̃({x} ,av)⊙ v({x})) =
Λπ̃(x,x,γ)(r(x)+ γπ̃(x,av)v(x)) =

r(x)+ γv(x) =

r(x)+ γV̂π̃(x)

since Λπ̃(x,x,γ) = 1 and π̃(x,av) = 1 for leaf nodes. This shows that (3.3) is equivalent
to (3.2) for all nodes in level n.

Induction step: l(x) = L−1. Suppose that (3.3) holds for all nodes at level L. We will
show that it also holds for all nodes at level L− 1. By definition (3.2), the value of a
node at level L−1 is given by

Q̂π̃(x) = r(x)+ γπ̃(x,av)v(x)+ γ ∑
a∈A

π̃(x,a)Q̂π̃(x⊎a)

where Qπ̃(x⊎ a) are at level L. We can expand this expression using the induction

13

3. ANALYSIS

hypothesis for Q̂π̃(x⊎a):

Q̂π̃(x) =

r(x)+ γπ̃(x,av)v(x)+

γ ∑
a∈A

π̃(x,a)Λπ̃(x⊎a,Tx⊎a,γ)
T (r(Tx⊎a)+ γπ̃(Tx⊎a,av)⊙ v(Tx⊎a)) =

r(x)+ γπ̃(x,av)v(x)+ γ ∑
a∈A

π̃(x,a) ∑
y∈Tx⊎a

Λπ̃(x⊎a,y,γ)(r(y)+ γπ̃(y,av)v(y)) =

r(x)+ γπ̃(x,av)v(x)+ ∑
a∈A

∑
y∈Tx⊎a

γπ̃(x,a)Λπ̃(x⊎a,y,γ)︸ ︷︷ ︸
Λπ̃(x,y,γ)

(r(y)+ γπ̃(y,av)v(y)) =

r(x)+ γπ̃(x,av)v(x)+ ∑
a∈A

∑
y∈Tx⊎a

Λπ̃(x,y,γ)(r(y)+ γπ̃(y,av)v(y))

Now, note that the terms in the sum is a partition of T ′x = Tx \ x:

∪a∈A ∪y∈Tx⊎a {y}= T ′x .

We can therefore rewrite the expression as

Q̂π̃(x) =

r(x)+ γπ̃(x,av)v(x)+ ∑
y∈Tx′

Λπ̃(x,y,γ)(r(y)+ γπ̃(y,av)v(y)) =

∑
y∈Tx

Λπ̃(x,y,γ)(r(y)+ γπ̃(y,av)v(y)) =

Λπ̃(x,Tx,γ)
T r(Tx)+Λπ̃(x,Tx⊎av,γ)

T v(Tx)

where we used Λπ̃(x,x,γ) = 1 to rewrite

r(x)+ γπ̃(x,av)v(x) = Λπ̃(x,x,γ)(r(x)+ γπ̃(x,av)v(x)) .

This shows that if equation (3.3) holds for all nodes at level L, it also holds for all nodes
at level L− 1. By induction, we have therefore shown that (3.3) holds for all nodes in
the tree. ■

The value estimate can be expressed as

V̂π̃(x) = π̃(x,av)v(x)+Λπ̃(x,T ′x ,γ)T (r(T ′x)+ γπ̃(T ′x ,av)⊙ v(T ′x)
)

or
V̂π̃(x) = Λπ̃(x,T ′x ,γ)T r(T ′x)+Λπ̃(x,Tx⊎av,γ)

T v(Tx)

where T ′x = Tx \ x. Proving the expressions for the value estimates is trivial by applying
(3.2) since we know the expanded Q-values.

14

3.4. The Covariance Matrix

3.4 The Covariance Matrix

As established in the previous section, the variance of the value estimate is given by

V[V̂π̃(x)] = π̃(x,Av)
T Cov[Q̂π̃(x⊎Av)]π̃(x,Av).

To evaluate this expression, we need to investigate the covariance matrix further. We will
derive a new expression for the variance of the value evaluation by first investigating the
variance of the Q-values, the connection between the two will be evident later. We know
that

V[Q̂π̃(x)] = V[r(x)+ γV̂π̃(x)] = V[Λπ̃(x,Tx,γ)
T (r(Tx)+ γπ̃(Tx,av)⊙ v(Tx))].

The vector Λπ̃(x,Tx,γ) is not a random variable so

V[Q̂π̃(x)] = Λπ̃(x,Tx,γ)
T Cov [r(Tx)+ γπ̃(Tx,av)⊙ v(Tx)]Λπ̃(x,Tx,γ)

which is an expression for how the variance depends on the covariance between rewards and
value evaluations in the tree. In deterministic environments, which is a common assumption
for AlphaZero, the variance simplifies to

V[Q̂π̃(x)] = Λπ̃(x,Tx⊎av,γ)
⊤Cov[v(Tx)]Λπ̃(x,Tx⊎av,γ).

This will be derived in the following section.

3.4.1 Possible Variance Assumtions

To simplify the expression further, we will investigate several optional assumptions on the
distributions of r and v to better understand how these assumptions affect the variance of
the value estimate.

Reward and Simulation Value Independence

If we assume that the observed rewards and the simulation values are independent then the
expression simplifies to

V[Q̂π̃(x)]=Λπ̃(x,Tx,γ)
T Cov [r(Tx)]Λπ̃(x,Tx,γ)+Λπ̃(x,Tx⊎av,γ)

T Cov [v(Tx)]Λπ̃(x,Tx⊎av,γ).

It is also reasonable to assume that the rewards are independent, that is, the covariance
matrix of r is diagonal. Then we can substitute

Cov [r(Tx)] = diag(V[r(Tx)])

where diag is a function mapping a vector to a diagonal matrix. We can also derive a new
expression for the variance of the value estimator

V[V̂π̃(x)] = γ
−2V[Q̂π̃(x)]− γ

−2V[r(x)].

15

3. ANALYSIS

Deterministic Environment

If we operate in a deterministic environment, the reward variance is zero. This simplifies
the expressions further to

V[V̂π̃(x)] = γ
−2V[Q̂π̃(x)] = γ

−2
Λπ̃(x,Tx⊎av,γ)

T Cov [v(Tx)]Λπ̃(x,Tx⊎av,γ).

Independent Simulation Values

Under the assumption that the simulation values are independent, the covariance matrix of
the simulation values is diagonal and the variance of the value estimate simplifies to

V[V̂π̃(x)] = γ
−2

Λπ̃(x,Tx⊎av,γ)
T diag(V[v(Tx)])Λπ̃(x,Tx⊎av,γ)

which is a sum of the variance of the simulation values weighted by the discounted proba-
bility of reaching the node

V[V̂π̃(x)] = ∑
y∈Tx

Λπ̃(x,y,γ)2
π̃(y,av)

2V[v(y)].

Fixed Variance Simulation Values

If we assume that the variance of each simulation value is σ2 then the variance of the value
estimate simplifies to

V[V̂π̃(x)] = σ
2

∑
y∈Tx

Λπ̃(x,y,γ)2
π̃(y,av)

2 (3.4)

and

V[Q̂π̃(x)] = σ
2
Λπ̃(x,Tx⊎av,γ)

T
Λπ̃(x,Tx⊎av,γ).

3.4.2 The Minimal Variance Evaluator

We now have a better understanding of the variance of the value estimate. In general,
an estimator with low variance is desirable. One important tree evaluator is the minimal
variance evaluator which for a tree node x is defined as

π̃Var = argmin
π̃

V[V̂π̃].

The solution to this optimization problem is

π̃Var(x,Av) =
Cov[Q̂π̃(x⊎Av)]

−1
1

1T Cov[Q̂π̃(x⊎Av)]−11
∝ Cov[Q̂π̃(x⊎Av)]

−1
1 (3.5)

16

3.4. The Covariance Matrix

Proof (3.5). We shorten Q̂ = Q̂π̃(x⊎Av), and π̃ = π̃(x,Av) for breivty

π̃Var = argmin
π̃

V[V̂π̃(x)] = argmin
π̃

π̃
T Cov[Q̂]π̃

subject to the constraint that 1T π̃ = 1 and π̃(x,a)≥ 0. We can use the Lagrange multi-
plier method to solve this optimization problem. The Lagrangian is

L(π̃,λ) = π̃
T Cov[Q̂]π̃+λ(1T

π̃−1).

The gradient with respect to π̃ is

∇π̃L(π̃,λ) = 2Cov[Q̂]π̃+λ1

where 1 is a vector of ones and we used that the covariance matrix is symmetric. Note
that the gradient is only concerning π̃(x), not π̃ for all nodes, this is why we can treat Q̂
as a constant. The partial derivative with respect to λ is

∂L(π̃,λ)

∂λ
= 1

T
π̃−1.

Setting these to zero yields

Cov[Q̂]π̃ =−λ

2
1 =⇒ π̃ =−λ

2
Cov[Q̂]−1

1.

We know that the inverse exists since a full-rank covariance matrix is symmetric and
positive definite. We see that −λ

2 acts as the normalizer making the sum of the tree
evaluation policy equal to one. This yields the final solution

π̃Var(x,Av) =
Cov[Q̂]−1

1

1T Cov[Q̂]−11
.

This solution fulfills the constraint π̃(x,a) ≥ 0 since the inverse of the covariance ma-
trix is positive definite. Further, this solution is a global minimum since the objective
function and constraint set are convex. ■

In practice, the covariance matrix would be derived from the covariance of the rewards and
simulation values. The solution can be simplified further under independence assumptions
where the covariance matrix is a diagonal matrix of variances:

π̃Var(x,a) =
V[Q̂π̃(x⊎a)]−1

∑b∈Av V[Q̂π̃(x⊎b)]−1
∝ V[Q̂π̃(x⊎a)]−1. (3.6)

Proving this is trivial by substituting the covariance matrix with the diagonal matrix in the
previous proof.

17

3. ANALYSIS

3.5 The Visitation Count Evaluator

Node visitation counts play an important role in many previous works on MCTS [16]. We
define the visitation count N(x) of a node x as

N(x) = |Tx|

or equivalently
N(x) = 1+ ∑

a∈A
N(x⊎a) = ∑

a∈Av

N(x⊎a)

for all expanded nodes if we consider the visitation count of N(x⊎ av) = 1. The visitation
count of unexpanded nodes is zero. In classical MCTS, the visitation count for terminal
nodes can be greater than one even if it does not have any children [44] since it is simply
incremented by the backup. To keep the definitions consistent, we let N(x ⊎ av) ≥ 1 for
terminal nodes. Under the perspective of tree evaluation, the default tree evaluation policy
in AlphaZero [42] is the visitation count evaluator defined as

π̃N(x,a) =
N(x⊎a)

N(x)
∝ N(x⊎a).

This policy is used for final action selection as well as for estimating the Q-values of nodes
in the selection policy. This evaluator seems somewhat arbitrary but we will highlight three
important properties making it powerful.

Trajectory Averaging

The first important property of the visitation count evaluator is that

Q̂π̃N = Q̄ (3.7)

that is, if we evaluate a decision node with the visitation count evaluator, the estimate is
the arithmetic average return of trajectories passing through the node. This stems from
the property that under the visitation count policy, the probability of reaching each node is
proportional to its visits and each value estimate has an equal probability

Λπ̃N (x,y,1) =
N(y)
N(x)

,

Λπ̃N (x,y,1)π̃N(y,av) =
1

N(x)
.

For example, with a discount factor of 1, we can express both the average and the visitation
count estimate as

Q̂π̃N (x) =
1

T

N(x)
(N(Tx)⊙ r(Tx)+ v(Tx)) =

1
N(x) ∑

y∈Tx

(N(y)r(y)+ v(y)) = Q̄(x).

where 1 is a vector of ones.

18

3.5. The Visitation Count Evaluator

Proof (3.7). We utilize equation (3.3):

Q̂π̃N (x) =

Λπ̃N (x,Tx,γ)
T (r(Tx)+ γπ̃N(Tx,av)⊙ v(Tx)) =

∑
y∈Tx

Λπ̃N (x,y,γ)(r(y)+ γπ̃N(y,av)v(y)) .

We start by investigating Λπ̃N (x,y,γ). Let l(y) = lx(y) = |path(x,y)| denote the depth
level of node y in the tree (of node x by default). Then

Λπ̃N (x,y,γ) =

∏
(z,a)∈path(x,y)

γπ̃N(z,a) =

γ
l(y)

∏
(z,a)∈path(x,y)

N(z⊎a)
N(z)

=

γ
l(y) N(y)

N(x) ∏
(z,a)∈path(x,y)

N(z)
N(z)

=

γ
l(y) N(y)

N(x)

where we used that N(z⊎ a) is simply a shift in the path forward which we can also
express by multiplying by the last factor N(y) and dividing by the first factor N(x).
Substituting this into the expression for the Q-value estimate yields

Q̂π̃N (x) =

∑
y∈Tx

γ
l(y) N(y)

N(x)

(
r(y)+ γ

1
N(y)

v(y)
)
=

1
N(x) ∑

y∈Tx

γ
l(y) (N(y)r(y)+ γv(y)) =

1
|Tx| ∑

y∈Tx

|Ty|γl(y)r(y)+ γ
l(y)+1v(y) =

1
|Tx| ∑

y∈Tx︸ ︷︷ ︸
Average

∑
(z,)∈path(x,y)

γ
l(z)r(z)+ γ

l(y)+1v(y)︸ ︷︷ ︸
Discounted return

=

Q̄(x).

■

19

3. ANALYSIS

Mimics Selection Policy

The second important property of the visitation count policy is that if the decision tree is
built like in MCTS/AlphaZero, by sampling from a selection policy at each node to de-
termine which node to expand, then the visitation count policy will be a reflection of the
selection policy. A simple example of this property is when the selection policy is uniform,
then the visitation counts will also be uniformly distributed. The value of the visitation count
policy will also converge to the value of the selection policy. We will start by showing that
the visitation count policy will almost surely converge to the selection policy

lim
N(x)→∞

πN(x)
a.s.
= πSelect(x). (3.8)

Proof (3.8). This can be proven with the law of large numbers. For simplicity, we
assume that πSelect is static (not the case for UCT). Let Yk(x,a) be a Bernoulli random
variable indicating if action a was selected at node x in the k-th iteration. Then the
visitation count policy can be expressed as

πN(x,a) =
N(x∪a)

N(x)
=

1
N(x)

N(x)

∑
k=1

Yk(x,a).

The mean of Yk(x,a) is πSelect(x,a) which lets us apply the law of large numbers:

πN(x,a) =
1

N(x)

N(x)

∑
k=1

Yk(x,a)
a.s.−−→ πSelect(x,a) as N(x)→ ∞.

■

In practice, we, for instance, use UCT/PUCT as the selection policy [29, 38]. Both of
these policies will change as the tree grows. In the limit of an infinite number of visits, the
exploration term will converge to zero and they will simply follow the Q-value policy

lim
N(x)→∞

πUCT(x) = lim
N(x)→∞

πPUCT(x) = πQ(x). (3.9)

Proof (3.9). The exploration term will converge to zero for both UCT and PUCT. The
exploration term for UCT is

UUCT(x,a) = c ·

√
logN(x)
N(x⊎a)

and for PUCT it is

UPUCT(x,a) = c ·πθ(x,a) ·
√

N(x)
1+N(x⊎a)

.

20

3.5. The Visitation Count Evaluator

We know that N(x⊎a)≤ N(x) ∀a ∈ Av and UUCT ≥ 0 so

0≤ lim
N(x)→∞

UUCT(x,a)≤ lim
N(x)→∞

c ·

√
logN(x)

N(x)
= 0.

Similarly, for PUCT we have

0≤ lim
N(x)→∞

UPUCT(x,a)≤ lim
N(x)→∞

c ·πθ(x,a) ·
√

N(x)
1+N(x)

= 0.

These limits are trivial since logarithm and square root grow sub-linearly. There are
some additional technicalities to consider for this proof. Please consult literature on
multi-armed bandits for all the details [2]. ■

With default UCT and PUCT, the Q-values used in the selection policy are the average
returns Q̄ of the nodes which, as we showed in the previous section, is equivalent to Q̂π̃N

which will converge to Q̂π̃Q with enough visits. Conceptually, this implies that

lim
N(x)→∞

πN(x) = lim
N(x)→∞

πSelect(x) = πQ(x)︸ ︷︷ ︸
If UCT / PUCT

so
lim

N(x)→∞

V̂π̃N (x) = lim
N(x)→∞

V̂πSelect(x) = lim
N(x)→∞

V̂π̃Q(x)︸ ︷︷ ︸
If UCT / PUCT

=V ∗(x).

This means that the combination of a selection policy like UCT or PUCT and the visitation
count evaluator should converge to the optimal value for the root node with enough visits.
This is an important theoretical result since it suggests that with enough simulation budget,
the visitation count evaluator will converge to an optimal policy [29].

Variance Minimizing

The final interesting property of the visitation count evaluator is that it minimizes the vari-
ance of the value estimate under certain assumptions. In a deterministic environment with
fixed variance simulation values and discount γ = 1

π̃N = π̃Var. (3.10)

Proof (3.10). Under the independence assumption, we know from equation (3.6) that
the minimal variance evaluator is given by

π̃Var(x,a) ∝ V[Q̂π̃(x⊎a)]−1.

21

3. ANALYSIS

The question that remains is, what is the variance of each child node V[Q̂π̃(x⊎a)]?

We postulate that with fixed variance, the Q-variance when using the minimal variance
evaluator is

V[Q̂π̃(x)] = V[Q̂π̃Var(x)] = V[Q̂π̃N (x)] =
σ2

N(x)
which we will prove by induction. Preserve the notation in proof (3.3).

Base case: l(x) = n. For leaf nodes, the variance the minimal variance evaluator is

V[Q̂π̃Var(x)] = V[r(x)+ γv(x)] = 0+σ
2︸ ︷︷ ︸

Fixed variance

=
σ2

1
=

σ2

N(x)
.

Induction step: l(x) = L−1. Assume that the variance of the Q-value estimate for all
nodes at level L−1 is σ2/N(x). Under the assumption that γ = 1 and simulation value
independence, the variance of the Q-value estimate for all nodes at level L is

V[Q̂π̃Var(x)] =

V[V̂π̃Var(x)] =

∑
a∈Av

π̃Var(x,a)2V[Q̂π̃Var(x⊎a)] =

∑
a∈Av

(
V[Q̂π̃Var(x⊎a)]−1

∑b∈Av V[Q̂π̃Var(x⊎b)]−1

)2

V[Q̂π̃Var(x⊎a)] =

∑
a∈Av

V[Q̂π̃Var(x⊎a)]−1(
∑b∈Av V[Q̂π̃Var(x⊎b)]−1

)2 =

(
∑

a∈Av

V[Q̂π̃Var(x⊎a)]−1

)−2(
∑

a∈Av

V[Q̂π̃Var(x⊎a)]−1

)
=

(
∑

a∈Av

V[Q̂π̃Var(x⊎a)]−1

)−1

.

Now, all nodes x⊎a are at level L−1 and we can apply the induction hypothesis to get(
∑

a∈Av

(
σ2

N(x⊎a)

)−1
)−1

=

(
∑

a∈Av

N(x⊎a)
σ2

)−1

=

σ2

∑a∈Av N(x⊎a)
=

σ2

N(x)
.

22

3.6. General Tree Evaluation

This completes the proof of the variance of the minimal variance evaluator in this set-
ting. Finally, we can use that

π̃Var(x,a) ∝ V[Q̂π̃(x⊎a)]−1 =

(
σ2

N(x⊎a)

)−1

=
N(x⊎a)

σ2 ∝
N(x⊎a)

N(x)
= π̃N(x,a)

to show that the visitation count and the minimal variance evaluator are equivalent in
this setting. The tree evaluators being proportional means they are equal since they are
probability distributions. ■

The variance of the visitation count evaluator is given by

V[V̂π̃N (x)] =
1

N(x)21
T Cov [v(Tx)]1=

1
N(x)21

T V[v(Tx)]︸ ︷︷ ︸
If independent

=
σ2

N(x)︸ ︷︷ ︸
If fixed variance

∝
1

N(x)
.

This is an important result since it forms a connection between the variance and the visita-
tion counts.

3.6 General Tree Evaluation

Up to this point, we have concentrated on the Q-evaluator π̃Q and the visitation evaluator
π̃N . The former yields a high value but with high variance, whereas the latter offers low
variance but may underestimate the optimal value. Additionally, the visitation evaluator is
inherently dependent on how the tree is constructed. In this section, we will investigate
alternative, novel, evaluators and try to find a middle ground between π̃Q and π̃N .

Chebyshev Evaluator

One way of approaching this is to consider V̂π̃ as a distribution parameterized by the evalua-
tor π̃. Previously, we found the distribution that maximized its observed value or minimized
the variance. To combine these, we will instead attempt to maximize a probabilistic lower
bound on its expected value. Consider the optimization

argmax
π̃

Bπ̃

s.t. P
(
E[V̂π̃]≥ Bπ̃

)
≥ 1−δ

for δ ∈ (0,1]. That is, we find an evaluator that is good with high probability. Depending
on what we know about the distribution of V̂π̃ we can solve this in different ways. We
have already investigated the mean and variance of this distribution and could use these to
construct a lower bound. Chebyshev’s inequality states that, for any k ∈ R+

1
k2 ≥P

(
|V̂π̃−E[V̂π̃]| ≥ k

√
V[V̂π̃]

)
≥P

(
V̂π̃−E[V̂π̃]≥ k

√
V[V̂π̃]

)
=P

(
V̂π̃− k

√
V[V̂π̃]≥ E[V̂π̃]

)
23

3. ANALYSIS

so

P

(
E[V̂π̃]≥ V̂π̃− k

√
V[V̂π̃]

)
≥ 1− 1

k2

which means that
π̃Chebyshev = argmax

π̃

V̂π̃−
1√
δ

√
V[V̂π̃]

provide one feasible solution to the inequality under the current distributional assumptions.
It might be possible to construct tighter bounds by introducing additional assumptions such
as bounded values (see Chernoff, Hoeffding, Bernstein) [12, 5, 24]. Note that

lim
δ→0+

π̃Chebyshev = π̃Var

and
lim
δ→∞

π̃Chebyshev = π̃Q.

Finding an analytical solution for the Chebyshev evaluator is difficult but if we relax the
lower bound further and assume value estimate independence we find the solution

π̃Chebyshev′ = PolicyMax
Av

[
Q̂π̃(x⊎a)− 1√

δ

√
V[Q̂π̃(x⊎a)]

]
(3.11)

which is a deterministic policy (assuming no ties).

Proof (3.11). First, note that under the independence assumption, we can find an upper
bound on the standard deviation of the value estimate√

V[V̂π̃] =
√

∑
a∈Av

π̃(x,a)2V[Q̂π̃(x⊎a)]≤ ∑
a∈Av

π̃(x,a)
√

V[Q̂π̃(x⊎a)]

where we used the Cauchy–Schwarz (triangle) inequality. This implies

V̂π̃− k
√

V[V̂π̃]≥

V̂π̃− k ∑
a∈Av

π̃(x,a)
√
V[Q̂π̃(x⊎a)] =

∑
a∈Av

π̃(x,a)Q̂π̃(x⊎a)− k ∑
a∈Av

π̃(x,a)
√

V[Q̂π̃(x⊎a)] =

∑
a∈Av

π̃(x,a)
(

Q̂π̃(x⊎a)− k
√

V[Q̂π̃(x⊎a)]
)
.

We can therefore conclude that

P

(
E[V̂π̃]≥ ∑

a∈Av

π̃(x,a)
(

Q̂π̃(x⊎a)− k
√
V[Q̂π̃(x⊎a)]

))
≥ 1− 1

k2

24

3.6. General Tree Evaluation

which means that we have another feasible lower bound from

π̃Chebyshev′ = argmax
π̃

∑
a∈Av

π̃(x,a)
(

Q̂π̃(x⊎a)− 1√
δ

√
V[Q̂π̃(x⊎a)]

)
.

This trivially has the analytical solution

π̃Chebyshev′ = PolicyMax
Av

[
Q̂π̃(x⊎a)− 1√

δ

√
V[Q̂π̃(x⊎a)]

]
. (3.12)

■

Mean-Variance Evaluator

The relaxed Chebyshev evaluator is a good start but it returns a deterministic policy which is
not ideal in certain scenarios. We investigate the Mean-Variance evaluator where we replace
the standard deviation with variance in the optimization problem

π̃MV = argmax
π̃

V̂π̃−λV[V̂π̃] with λ≥ 0

which has the solution

π̃MV(x,Av)= π̃Var(x,Av)+
1

2λ
Cov

[
Q̂π̃(x⊎Av)

]−1 (
Q̂π̃(x⊎Av)− π̃Var(x,Av)

T Q̂π̃(x⊎Av)1
)
.

(3.13)
To avoid negative policy values we have the additional constraint that

λ≥max
a∈Av

1
2π̃Var(x,a)

[
Cov

[
Q̂
]−1
]T

a

(
Q̂− π̃

T
VarQ̂1

)
where [Σ]a denotes a vector corresponding to row a in Σ.

Proof (3.13). We shorten Q̂ = Q̂π̃(x⊎Av), and π̃ = π̃(x,Av) for breivty. The optimiza-
tion problem can be written as

π̃MV =

argmax
π̃

V̂π̃−λV[V̂π̃] =

argmax
π̃

π̃
T Q̂−λπ̃

T Cov
[
Q̂
]

π̃

subject to the constraint that π̃T
1 = 1 and π̃(x,a) ≥ 0, ∀a ∈ Av. We can use the La-

grange multiplier method to solve this optimization problem. To find the optimal policy

25

3. ANALYSIS

π̃MV, let’s set up the Lagrangian to enforce the constraint that π̃ is a valid probability
distribution:

L(π̃,κ) = π̃
T Q̂−λπ̃

T Cov
[
Q̂
]

π̃+κ
(
π̃

T
1−1

)
.

Taking the gradient with respect to π̃(x) yields

∇π̃(x)L = Q̂−2λCov
[
Q̂
]

π̃+κ1

since x /∈ x⊎Av. The derivative with respect to κ gives

∂L
∂κ

= π̃
T
1−1.

Setting the derivatives to zero yields

∇π̃(x)L = 0 ⇐⇒ 2λCov
[
Q̂
]

π̃ = Q̂+κ1 ⇐⇒ π̃ =
1

2λ
Cov

[
Q̂
]−1 (

Q̂+κ1
)
.

We can add the constraint 1T π̃ = 1 to find κ:

1
T

π̃ = 1
T 1

2λ
Cov

[
Q̂
]−1 (

Q̂+κ1
)
= 1 ⇐⇒

κ1
T Cov

[
Q̂
]−1

1= 2λ−1T Cov
[
Q̂
]−1

Q̂ ⇐⇒

κ =
2λ

1T Cov
[
Q̂
]−1

1

−
1

T Cov
[
Q̂
]−1

1T Cov
[
Q̂
]−1

1

Q̂

where we can identify the minimal variance evaluator from (3.5)

1
T Cov

[
Q̂
]−1

1T Cov
[
Q̂
]−1

1

Q̂ =

(
Cov

[
Q̂
]−1

1

1T Cov
[
Q̂
]−1

1

)T

︸ ︷︷ ︸
π̃T

Var

Q̂

where we used that the inverse of the covariance matrix is symmetric. Substituting this
into the policy yields

π̃ =

1
2λ

Cov
[
Q̂
]−1

(
Q̂+

2λ

1T Cov
[
Q̂
]−1

1

1− π̃
T
VarQ̂1

)
=

Cov
[
Q̂
]−1

1

1T Cov
[
Q̂
]−1

1

+
1

2λ
Cov

[
Q̂
]−1 (

Q̂− π̃
T
VarQ̂1

)
=

π̃Var +
1

2λ
Cov

[
Q̂
]−1 (

Q̂− π̃
T
VarQ̂1

)

26

3.6. General Tree Evaluation

This is a global maximum since the objective function is concave and the constraint
set is convex. The solution holds as long as all probabilities are non-negative which
induces a tighter lower bound on λ.

[π̃MV]a =

[
π̃Var +

1
2λ

Cov
[
Q̂
]−1 (

Q̂− π̃
T
VarQ̂1

)]
a
≥ 0,∀a ∈ Av ⇐⇒

1
2λ

[
Cov

[
Q̂
]−1 (

Q̂− π̃
T
VarQ̂1

)]
a
≥− [π̃Var]a ,∀a ∈ Av ⇐⇒

λ≥ 1
2 [π̃Var]a

[
Cov

[
Q̂
]−1 (

Q̂− π̃
T
VarQ̂1

)]
a
,∀a ∈ Av ⇐⇒

λ≥max
a∈Av

1
2π̃Var(x,a)

[
Cov

[
Q̂
]−1
]T

a

(
Q̂− π̃

T
VarQ̂1

)
where I used [Av]a = [A]Ta v if [A] extracts a row vector from the matrix. All these
matrices/vectors can be indexed by a. ■

Note that the evaluator is a perturbation of the minimal variance evaluator where the weights
are increased for actions with higher Q-values. Similarly to the Chebyshev evaluator, the
Mean-Variance evaluator will converge to the minimal variance evaluator as λ→ ∞ and to
the Q evaluator as λ→ 0+:

lim
λ→0+

π̃MV = π̃Q

and
lim
λ→∞

π̃MV = π̃Var.

The Mean-Variance evaluator does not suffer from the issues of being deterministic but the
constraint on λ makes it impractical.

Mean-Variance Constrained Evaluator

The Mean-Variance Constrained (MVC) evaluator maximizes the expected value but con-
strains the policy to stay close to the minimal variance evaluator. The evaluator is defined
as

π̃MVC = argmax
π̃

V̂π̃−
1
β

KL(π̃, π̃Var) with β > 0

which has the solution

π̃MVC(x,a) =
π̃Var(x,a)exp

(
βQ̂π̃(x⊎a)

)
∑b∈Av π̃Var(x,b)exp

(
βQ̂π̃(x⊎b)

) ∝ π̃Var(x,a)exp
(
βQ̂π̃(x⊎a)

)
. (3.14)

27

3. ANALYSIS

Proof (3.14).

π̃MVC =

argmax
π̃

V̂π̃−
1
β

KL(π̃, π̃Var) =

argmax
π̃

∑
a∈Av

π̃(x,a)Q̂π̃(x⊎a)− 1
β

∑
a∈Av

π̃(x,a) log
(

π̃(x,a)
π̃Var(x,a)

)
=

argmax
π̃

∑
a∈Av

π̃(x,a)
(

Q̂π̃(x⊎a)− 1
β

log
(

π̃(x,a)
π̃Var(x,a)

))

To find the optimal policy π̃MVC, let’s set up the Lagrangian to enforce the constraint
that π̃ is a valid probability distribution:

L(π̃,λ) = ∑
a∈Av

π̃(x,a)
(

Q̂π̃(x⊎a)− 1
β

log
(

π̃(x,a)
π̃Var(x,a)

))
+λ

(
∑

a∈Av

π̃(x,a)−1

)
.

Taking the derivative with respect to π̃(x,a) yields

∂L
∂π̃(x,a)

= Q̂π̃(x⊎a)− 1
β

log
(

π̃(x,a)
π̃Var(x,a)

)
+1+λ

since x /∈ x⊎Av. The derivative with respect to λ gives

∂L
∂λ

= ∑
a∈Av

π̃(x,a)−1.

Setting the derivatives to zero yields

∂L
∂π̃(x,a)

= 0 ⇐⇒

log
(

π̃(x,a)
π̃Var(x,a)

)
= β

(
Q̂π̃(x⊎a)+1+λ

)
⇐⇒

π̃(x,a) = π̃Var(x,a)exp
(
β
(
Q̂π̃(x⊎a)+1+λ

))
∝ π̃Var(x,a)exp

(
βQ̂π̃(x⊎a)

)
and

∂L
∂λ

= 0 ⇐⇒ ∑
a∈Av

π̃(x,a) = 1.

Combining these gives

π̃MVC(x,a) =
π̃Var(x,a)exp

(
βQ̂π̃(x⊎a)

)
∑b∈Av π̃Var(x,b)exp

(
βQ̂π̃(x⊎b)

) .
This is a global maximum since the objective function is concave and the constraint set
is convex. ■

28

3.7. Modified Construction

This evaluator also balances the trade-off between high value and variance while being
easier to use than the Mean-Variance evaluator. When β→ ∞, the MVC evaluator will
converge to the Q-evaluator, and when β→ 0+ it will converge to the minimal variance
evaluator:

lim
β→0+

π̃MVC = π̃Var

and
lim
β→∞

π̃MVC = π̃Q.

3.7 Modified Construction

In the previous section, we introduced several tree evaluators for general decision trees.
The primary application for these evaluators is extracting a final policy from a previously
constructed tree. In this section, we will investigate how we could additionally use the new
evaluators to improve the tree construction process. We will start by considering how we
can improve the UCT/PUCT selection algorithms.

3.7.1 Modified Selection

We focus on selection algorithms in the UCB family such as UCT and PUCT [2, 29, 38].
The general form of these selection policies are

πUCB = PolicyMax
A

[UCB]

with
UCB(x,a) = Q̄(x⊎a)+U(x,a) (3.15)

where Q̄ is the average return of the node and U is an exploration term.

In Section 3.5 we showed that the average return is the value estimate of the visitation count
evaluator

Q̄(x) = Q̂π̃N (x).

This makes sense under the assumption that we use visitation counts to determine the final
policy but if we instead use one of the new evaluators, we propose to use the value estimate
of the new evaluator instead. This would modify equation (3.15) to

UCBπ̃(x,a) = Q̂π̃(x⊎a)+U(x,a). (3.16)

Note that this implies that
UCBπ̃N = UCB.

Furthermore, we could also investigate the exploration term U for UCT and PUCT. For
UCT, the exploration term is given by

UUCT(x,a) = c ·

√
logN(x)
N(x⊎a)

29

3. ANALYSIS

and for PUCT it is

UPUCT(x,a) = c ·πθ(x,a) ·
√

N(x)
1+N(x⊎a)

.

The principle both of these algorithms are based on is upper confidence bounds, that is
optimistic exploration. They both base their exploration bonus on visitation count. In the
default algorithm, Q̄(x) is determined by averaging over N(x) returns. In this setting, the
variance of the average return is inversely proportional to the number of visits which is also
what we showed in Section 3.5. This property only holds under certain assumptions and
if we use Q̄. If we use the introduced value estimate instead, we can replace the visitation
count with the estimated variance instead. This would give us the following exploration
term for UCT

UUCT
π̃ (x,a) = c ·

√
logV[Q̂π̃(x)]−1

V[Q̂π̃(x⊎a)]−1
= c ·

√
logV[Q̂π̃(x)]−1

√
V[Q̂π̃(x⊎a)]

where we assume that V[Q̂π̃(x)]≤ 1 so that the square root of the logarithm is real. This can
be achieved in any environment by reward scaling. For PUCT, the exploration term would
be

UPUCT
π̃ (x,a) = c ·πθ(x,a) ·

√
V[Q̂π̃(x)]−1

1+V[Q̂π̃(x⊎a)]−1
.

These modifications to the already well-established selection algorithms could potentially
improve the performance of the tree construction process and better capture the essence of
optimistic search.

3.7.2 General Construction

The previous section focused on how we could modify UCT or PUCT to improve tree con-
struction. It is important to acknowledge that the true strength of our proposed general tree
evaluators is that they are not inherently dependent on any construction algorithm. This is
not the case for the default visitation count evaluator since the visitation distribution is deter-
mined by the construction algorithm. The possibilities for modified construction are vaster
than the already proposed modifications to UCT/PUCT. We could, for example, consider
constructing the tree using breadth-first search or using the sequential halving algorithm
used by Danihelka et al. [16].

3.8 Numerical Computation

The novel tree evaluators used for final policy extraction as well as in the modified selection
policies require access to the value estimate Q̂π̃ and its estimated variance V[Q̂π̃]. This
section will focus on the computation of these values in practice. The value estimate is
recursively defined as

Q̂π̃(x) = r(x)+ γ ∑
a∈Av

π̃(x,a)Q̂π̃(x⊎a).

30

3.8. Numerical Computation

In general, we assume that

π̃(x,a) = 0 ∀ a ∈ A if |Tx|= 1.

This implies that the value estimate for leaf nodes is

Q̂π̃(x) = r(x)+ γQ̂π̃(x⊎av) = r(x)+ γv(x)

since π̃ is a probability distribution. In practice, when computing the value estimate, we
therefore start with the leaf nodes and then recursively evaluate the value of the parent nodes
until we reach the root. We follow a similar procedure to compute the variance, under the
assumption of independent rewards and value estimates, the variance can be computed as

V[Q̂π̃(x)]=Λπ̃(x,Tx,γ)
T Cov [r(Tx)]Λπ̃(x,Tx,γ)+Λπ̃(x,Tx⊎av,γ)

T Cov [v(Tx)]Λπ̃(x,Tx⊎av,γ)

which for leaf nodes simplifies to

V[Q̂π̃(x)] = V[r(x)]+ γ
2V[v(x)].

The computation of the vector Λπ̃(x,Tx,γ) is not trivial since it requires evaluating the tree
evaluation policy for all nodes in the subtree. The evaluation policy is usually also a function
of the value estimate or the variance which again requires recursive computation from the
leaves up to the root. The variance for each node could be expressed recursively as

V[Q̂π̃(x)] = V[r(x)]+ γ
2
π̃(x,Av)

T Cov
[
Q̂π̃(x⊎Av)

]
π̃(x,Av)

where the covariance matrix would have to be computed as a function of the individual
value estimates and their variances. If we assume that the value estimates are independent,
the covariance matrix is diagonal and the variance computation simplifies to

V[Q̂π̃(x)] = V[r(x)]+ γ
2
π̃(x,Av)

2T V[Q̂π̃(x⊎Av)]

this is computationally simpler since we do not need to manage any covariance structures.

Depending on its usage, the computation of the value estimate and its variance can either
be done on a complete tree or continuously during construction by incorporating it into the
backup. The key property allowing efficient continuous computation of the values is that
they only depend on the nodes in its subtree. This implies that when a node is modified or a
new node is added, only the values of its ancestors need to be recomputed. We can therefore
efficiently update the value estimates and variances during the backup stage.

Algorithm 5 shows how the backup is modified for general tree evaluators under the in-
dependent value estimate assumption. Node.vVar and Node.rVar are estimates of the vari-
ance of the value estimate and the reward respectively. For deterministic environments,
Node.rVar is 0. Options for estimating Node.vVar will be discussed in the next section but
a fixed positive real value tuned as a hyperparameter is a viable option. In the Algorithm
description, dot is the dot product of two vectors, π̃ is a function that returns a vector of the

31

3. ANALYSIS

tree evaluation policy with av as the first element. The square of a vector is the element-wise
square of the vector and ++ concatenates two vectors.

Algorithm 5 EvaluatorBackup
Require: NewNode, γ, π̃

1: Node← NewNode
2: while Node is not None do
3: RealizedEvaluator← π̃(Node)
4: ChildQVector← [Node.v] ++ [Child.Q for Child in Node.Children]
5: ChildVarVector← [Node.vVar] ++ [Child.Var for Child in Node.Children]
6: Node.Q← Node.r + γ ∗ dot(RealizedEvaluator, ChildQVector)
7: Node.Var← Node.rVar + γ2 ∗ dot(RealizedEvaluator2, ChildVarVector)
8: Node← Node.Parent
9: end while

3.9 AlphaZero

This chapter has previously simply considered general decision trees of random variables.
In this section, we will discuss the implications of general tree evaluation on the AlphaZero
framework.

3.9.1 Modified Learning

In AlphaZero, the policy and value networks are trained on data from the visitation count
policy. If we make changes to the final policy used by the agent it would also make sense to
update the learning targets. The target for the policy network would be the policy extracted
by the tree evaluator instead of the visitation counts. The target for the value network would
also be affected since the collected trajectories are sampled with a different policy.

3.9.2 Epistemic Uncertainty

The new tree evaluators are functions of the value estimates and their estimated variances.
The variance in value estimate arises from the randomness of rewards r and simulation
values v. We will focus on deterministic environments where the variance of the rewards is
zero. For both random rollout MCTS and AlphaZero, the simulation values still have some
variance, even for deterministic environments. For random rollout MCTS, the variance
arises from the randomness of the rollout policy.

In AlphaZero, the simulation values come from neural network predictions instead. There
is no inherent randomness in the network evaluation since if we input the same state twice,
it would return the same value. The variance instead arises from epistemic uncertainty [25],
which is related to variance in the network parameters. Every time we train the network, the
parameters are updated and the network will output different values. These values will also

32

3.9. AlphaZero

be affected by exactly what training data the network is trained on which is also sampled in
AlphaZero.

Knowledge of the source of uncertainty is important since it might allow us to model the
variance more accurately. For example, in most cases, the epistemic uncertainty should be
reduced in regions that we have visited and trained extensively on. This could for example
be implemented using visitation counts or random network distillation [9].

We could additionally model the covariance between the simulation values. For example,
we know that the covariance between the simulation values of two nodes with the same
state will be their variance since they are the same random variable. Depending on what
state encoding we use, we could also model the covariance as a function of state encoding
similarity. This could potentially be implemented using Gaussian process regression [53].

3.9.3 Adding the policy network

So far, we have not discussed the role of the policy network in tree evaluation. Just like
the default visitation count evaluator, our proposed evaluators do not explicitly consider the
prior policy but the network would still indirectly affect the evaluation if we use policy-
guided tree construction like PUCT.

One important question, especially for further research in this direction is how we could
better incorporate the policy network in the tree evaluation policies. We start the reasoning
process by considering some extreme cases.

• If the simulation budget is zero, so that the only node in the tree is the root node, then
the policy network would be the only source of information so the optimal policy
must be that of the policy network.

• When the simulation budget is infinite, the information from the policy network is
irrelevant since it would pale in significance to the information from the planning
tree.

This type of reasoning aligns with a Bayesian perspective where the policy network serves
as a prior and as we plan we update our policy belief. One critical question in this context
is how much should we trust the prior policy compared to the new observations we receive
during planning. In the related work chapter, some previously proposed methods will be
presented.

33

Chapter 4

Related Work

This chapter presents several previously published works related to our proposed method.
One of the main motivators for this thesis is the poor performance of visitation counts in the
limited simulation budget setting. The first section covers other approaches to combat this
issue. The second section focuses on papers quantifying uncertainty in MCTS which is also
what we aim to do by estimating variance. The last section includes previous works that
modify how Q-values are estimated and propagated up the decision tree. This is something
that we also do, particularly when changing the Q-value estimate used in PUCT.

4.1 Limited Simulation Budget

As shown in Section 3.5, the visitation policy approaches the optimal policy when the
simulation budget grows large. However, the policy struggles in the limited budget set-
ting [22, 16]. When using random rollouts, the value estimates are usually cheap to com-
pute which allows larger simulation budgets. In the AlphaZero framework, a forward pass
through the neural network is required for each simulation which can be time-consuming.
This calls for methods better suited for limited budgets. We hypothesize that our proposed
new tree evaluators will handle the low simulation budgets better than the visitation count
evaluator but there also exists other proposed methods for handling this issue.

In their work, Monte-Carlo tree search as regularized policy optimization, Grill et al. [22]
identify similar limitations with the visitation count policy under constrained simulation
budgets. They take a unified view of the selection and acting policy and propose a novel
policy that captures the goal of the search while avoiding some of the pitfalls of the visitation
count policy. The novel policy is defined by

argmax
π

Q̄T
π−λNKL(πθ,π)

with

λN = c

√
N

N + |A |

35

4. RELATED WORK

which bears a resemblance to our minimal variance-constrained policy. The main difference
is that they constrain the policy to be close to the prior policy while we use the minimal
variance policy. Their policy still partly considers variance via λN since visitation counts
and variance are connected but this is the variance of the root node only, not the children.
This policy is therefore still dependent on the tree construction. Consider a binary tree
where one action is visited N−1 times and the other one once. If we let N grow large then
their policy will resemble the greedy policy which simply picks the action with the highest
Q-value estimate. This is problematic since one of these Q-values is based on only a single
simulation which could have huge variance.

Grill et al. [22] additionally propose using their novel policy as the selection policy instead
of PUCT. The primary motivation for this is that since Q-values are estimated by averaging
subtree returns this estimate is only unbiased if the trajectories are sampled with the same
policy as we use at the root. This is related to our method of changing how Q-values are
estimated. Instead of changing how trajectories are sampled to get an unbiased estimator,
we change how they are analyzed with the same intention.

Another important recent paper dealing with the limited budget setting is Policy improve-
ment by planning with Gumbel by Danihelka et al. [16]. They focus specifically on the
issues arising when the simulation budget is smaller than the action space size. They pro-
pose a unified framework for tree construction and evaluation built on the idea of policy
improvement and sampling without replacement. We will not delve into all the details but
the main idea is somewhat similar to the one proposed by Grill et al. [22] in that we interpret
the policy network as a prior that we incrementally improve by planning. Danihelka et al.
[16] also update the selection policy at non-root nodes to a policy similar to the one at the
root to avoid bias in the Q-value estimates when averaging returns.

Since the publication of the previous two policy improvement-focused papers, there has
been a range of papers extending these ideas for better learning and performance in certain
domains. Muesli: Combining Improvements in Policy Optimization by Hessel et al. [23] and
EfficientZero V2: Mastering Discrete and Continuous Control with Limited Data by Wang
et al. [50] are two significant examples.

4.2 Uncertainty Analysis

Our work aims to quantify and use uncertainty estimates for the tree search domain by con-
sidering estimator variance. In the paper Variance Reduction in Monte-Carlo Tree Search,
the authors Veness et al. [49] also consider the bias and variance of value estimates of MCTS
nodes. The authors suggest that many previous works focus on bias reduction but few on
variance reduction. They present three general techniques that can be incorporated into
UCT to reduce the variance.

Another paper on this topic is Bayesian Inference in Monte-Carlo Tree Search by Tesauro
et al. [45]. The authors propose a framework where Bayesian methods are used to propagate
value estimate means and variances through the tree. The estimated means and variances
are then used in UCT to partly replace the visitation counts. This is similar to our proposed

36

4.3. Non Arithmetic Mean Backup

modification of UCT. A more recent work in the same domain is Monte-Carlo tree search
with uncertainty propagation via optimal transport by Dam et al. [15]. They model the
value estimates as Gaussian distributions and propagate these up the tree using optimal
transport. They similarly use this information to improve tree construction.

The last line of work regarding variance analysis for MCTS considers how we can estimate
the variance of simulation values. In the paper The Second Type of Uncertainty in Monte
Carlo Tree Search, Moerland et al. [33] attempts to incorporate the idea that the variance of
value estimate for terminal nodes is zero. They propose a method where information about
terminal nodes (subtree depth) is propagated up the tree and used to influence UCT. Simi-
larly, Oren et al. [36] propose a method for estimating the epistemic uncertainty throughout
the decision tree. They use the methodology developed to encourage deep exploration of
the environment.

4.3 Non Arithmetic Mean Backup

We are not the first to modify how Q-values are estimated and propagated up the decision
tree. One early such paper is Efficient Selectivity and Backup Operators in Monte-Carlo
Tree Search by Coulom [13]. The authors argue that the mean backup operator earlier
proposed by Chang et al. [11] is inefficient since it will underestimate the value of the best
move. Furthermore, they note that purely backing up the maximum value also causes issues
since it is very sensitive to noise in individual samples. Eventually, they propose using an
algorithm called Crazy Stone for backup. Keller and Helmert [26] experiment with two
novel algorithms called MaxUCT and DP-UCT which replace the mean backup with more
greedy backups. They show that this choice can lead to performance benefits. Furthermore,
Feldman and Domshlak [20] investigates the worst-case bounds of both regular UCT and
DP-UCT.

There have also been attempts to combine the greedy and the average backup. Dam et al.
[14] propose a method called Power-UCT parameterized by p. Using p they tune which
power-mean should be used for estimating Q-values. Setting p to 1 returns the regular
arithmetic average UCT while increasing it makes it more greedy and closer to MaxUCT.
Similarly, Lanctot et al. [30] propose estimating Q-values by a weighted average of the
maximum and mean values. More recently, Willemsen et al. [52] investigated different
value targets for AlphaZero in which the greediness of the backup plays a role.

37

Chapter 5

Experimental Setup

In Chapter 3, we proposed a novel perspective on general tree evaluation. To demonstrate
the usefulness of this perspective, we conduct a series of experiments. All experimental
code is available at github.com/albinjal/GeneralAlphaZero.

5.1 Agents

This section covers the three different agents compared in the experiments. All agents are
compared with the same set of hyperparameters for each environment. The hyperparameters
are tuned experimentally so that the baseline agent performs sufficiently well in the Cliff
Walking environment. The tuning was assisted by the Weights and Biases platform [6] as
well as Bayesian optimization [32]. Exact details on the hyperparameters used are covered
in Appendix A.

5.1.1 AlphaZero Agent (Visit+PUCT)

AlphaZero serves as the baseline agent in all experiments. The algorithm is described in
Section 2.3. Q-values and final acting policies are determined using the default visitation
count evaluator. Tree construction is done using standard PUCT with Q̄ unless otherwise
specified [38].

Despite other varieties existing, we argue that the AlphaZero/MuZero with Visit+PUCT is
the most well-established algorithm which makes it a good baseline. It is also used as the
only baseline in Grill et al. [22] and Danihelka et al. [16].

5.1.2 MVC Tree Evaluation Agent (MVC+PUCT)

To demonstrate the use of general tree evaluation, we investigate the performance of the
Mean-Variance Constrained tree evaluator presented in Section 3.6. The agent uses the
same tree construction algorithm as the AlphaZero agent but we modify ExtractPolicy in
Algorithm 1 to use the MVC evaluator instead of visitation count.

39

https://github.com/albinjal/GeneralAlphaZero

5. EXPERIMENTAL SETUP

The MVC evaluator requires an estimate of the variance of simulation values. The exper-
iments are conducted using the assumption that the variance is constant (see Section 3.4).
The variance of observed rewards is set to 0 for deterministic environments.

5.1.3 MVC Tree Construction Agent (MVC+MVCPUCT)

In addition to modifying how the final policy is extracted from the built tree, we also propose
utilizing the tree evaluation framework during tree construction (Section 3.7). This agent
also uses the MVC evaluator for policy extraction but additionally modifies how Q-values
in PUCT are estimated. Specifically, equation 3.16 (Q̂π̃MVC) is used instead of equation 3.15
(Q̄). Algorithm 5 is used to achieve computational efficiency matching that of the baseline
agent. The variance assumptions are the same as for the Tree Evaluation Agent.

5.2 Environments

The codebase developed for this project is implemented with the environment interface of
OpenAI Gym in mind [7, 46]. Experiments can therefore be conducted on any of these
environments without much modification, except for hyperparameter tuning. The algorith-
mic modifications we propose primarily focus on how we estimate the values of nodes in
the tree. Therefore, we choose to evaluate the agents in environments with simpler reward
structures. We also avoid introducing any deep exploration strategies since it is not central
to this work. This leads us to avoid environments such as Mountain Car [34] with adver-
sarial dynamics or sparse rewards. We choose to experiment with the Cliff Walking and
Frozen Lake environments.

5.2.1 Cliff Walking

Cliff Walking is a grid world environment included in Gym as CliffWalking-v0. It is cred-
ited to Sutton and Barto [43]. The goal of the agent is to navigate from the starting state to
the goal state as quickly as possible while avoiding jumping into the cliff. The environment
is deterministic with a discrete action and state space. The possible actions are moving up,
down, left, or right. If the agent moves towards the edge of the environment, it stays in the
same state. The agent receives a reward of −1 for each step taken. Stepping into the cliff
resets the agent to the starting state and yields a reward of −100. No reward is given for
reaching the goal state but this is the only terminal state. The environment is visualized in
Figure 5.1.

We constrain the episode length to a finite time horizon H = 100. We use a discount factor
of γ= 1 (no discount) since the agent is already incentivized by the reward structure to reach
the goal as quickly as possible. The default grid size is 4× 12 but we modify it to 6× 12.
The reason for this will be evident in the next chapter but in essence, it enables additional
possible trajectories from start to goal. This is useful for analyzing agent behavior further.

40

https://gymnasium.farama.org/environments/toy_text/cliff_walking/#cliff-walking

5.3. Value Functions

Figure 5.1: 6×12 Cliff Walking Environment. The starting state is in the bottom left corner
and the goal state is in the bottom right corner. The cliff is located in the bottom row.

5.2.2 Frozen Lake

Frozen Lake is another grid world environment included in Gym as FrozenLake-v1. The
goal for the agent is to navigate from the top right corner to the bottom right without falling
into one of the holes. The action space is the same as for the Cliff Walking environment.
One major difference between the Frozen Lake and the Cliff Walk is that the holes are
terminal states. The reward signals given to the agent are +1 for reaching the goal and −1
for falling into a hole. A negative reward for falling into the holes is a modification to the
original environment we introduce to prevent an untrained agent from being invariant to
jumping into the holes.

To incentivize the agent to walk to the goal as quickly as possible, we apply a discount
factor (specified in Appendix A). We use the deterministic version of the environment (no
slipping) and constrain the episode length to a finite time horizon H = 100. Our experiments
are conducted on the default 4×4 and 8×8 map layouts. See Figure 5.2 for a visualization
and exact map layout.

5.3 Value Functions

We evaluate the agents using two value function configurations. These are the default Alp-
haZero setting and the heuristic value function setting. Another potential setting would be
the random rollout setting like classical MCTS but we decided to exclude it. The reason
for this is that the uniform policy is a poor estimator of the optimal value for the environ-
ments in question. Random rollouts are also stochastic which makes the results difficult to
interpret.

41

https://gymnasium.farama.org/environments/toy_text/frozen_lake/

5. EXPERIMENTAL SETUP

(a) 4x4 (b) 8x8

Figure 5.2: Frozen Lake Environments. The starting state is in the top left corner and the
goal state is in the bottom right corner.

5.3.1 AlphaZero

In the AlphaZero setting, the value and policy functions used in tree search are learned
through self-play (see Section 2.3). The learning is dependent on several hyperparameters
such as learning rate and neural network architecture. Details on these used for the exper-
iments are covered in Appendix A. Good performance in this setting is important since it
is critical for most practical applications. In this setting, the agent iterates between training
and evaluation mode.

Training and Evaluation

In the AlphaZero framework, exploration during training is primarily achieved through two
mechanisms. Firstly, when collecting trajectories, we sample from the final policy distri-
bution without applying PolicyMax (equation 2.2). This greatly increases the exploration
and diversity in training data but might not yield the highest possible expected returns we
could achieve. Secondly, AlphaZero adds Dirichlet noise to the prior probabilities of the
root node. This also encourages exploration as well as a wider search at the root.

To properly evaluate the best-case performance of the agent, we introduce an evaluation
mode where we attempt to avoid exploration. In this mode, PolicyMax is applied to the
final policies extracted from the tree. We could also remove the Dirichlet noise completely
but we choose to substitute it by mixing in a uniform distribution. This will avoid random
exploration without losing the benefit of a wider search at the root. In general, the agents
behave almost (ties in PolicyMax is the exception) deterministically during evaluation.

42

5.3. Value Functions

5.3.2 Heuristic Value Function

In the heuristic value function setting, the agent is provided with a value function instead
of letting it learn one itself. There are several reasons for doing this. Firstly, our proposed
framework focuses on the tree search component of AlphaZero so excluding the learn-
ing component further isolates exactly the modified component. Secondly, the heuristic
value function is simpler and therefore also easier to analyze. Thirdly, evaluating perfor-
mance without learning is much faster which allows for more statistically significant results.
Lastly, in some practical applications such as Chess engines, heuristically constructed value
functions are still used since they can be much faster to evaluate [10, 17].

In this setting, the agent can only access the value function but no prior policy. Therefore
UCT is used for tree construction instead of PUCT. Before final action selection, PolicyMax
is applied (evaluation mode).

The heuristic value functions used for these environments are the optimal value function
for each environment. For all environments, the optimal value function was determined
by first determining each state’s distance from the goal via breadth-first search. For Cliff
Walking, the value is the negative distance and for the frozen lakes, the distance is one
times the discount factor to the power of the distance (optimal discounted return). The
value functions are visualized in Figure 5.3.

-16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5

-15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4

-14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3

-13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2

-12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

-13

Cliff Walking Heuristic Value Function

(a) Cliff Walking

0.53 0.59 0.66 0.59

0.59 0.73

0.66 0.73 0.81

0.81 0.90

4x4 Frozen Lake Heuristic Value Function

(b) 4×4 Frozen Lake

0.49 0.51 0.54 0.57 0.60 0.63 0.66 0.70

0.51 0.54 0.57 0.60 0.63 0.66 0.70 0.74

0.54 0.57 0.60 0.66 0.70 0.74 0.77

0.57 0.60 0.63 0.66 0.70 0.77 0.81

0.54 0.57 0.60 0.74 0.77 0.81 0.86

0.51 0.74 0.77 0.81 0.90

0.54 0.66 0.70 0.86 0.95

0.57 0.60 0.63 0.86 0.90 0.95

8x8 Frozen Lake Heuristic Value Function

(c) 8×8 Frozen Lake

Figure 5.3: Heuristic Value Functions used for the Cliff Walking and Frozen Lake.

43

Chapter 6

Results

This chapter presents the empirical results from the experiments conducted. The results
are divided among the Cliff Walking and Frozen Lake environments. The analysis of the
Cliff Walking environment is more detailed and discussed since many of the observations
are transferable to the Frozen Lake environment. Some additional results are included in
Appendix B. The text accompanying the figures is intended to help interpret the results and
provide context. The main discussion and conclusions from the results are presented in
Chapter 7 and Chapter 8 respectively.

6.1 Cliff Walking

0 25 50 75 100 125 150 175
Episode

300

200

100

0

Tr
ai

ni
ng

: M
ea

n
Re

tu
rn 16

0 25 50 75 100 125 150 175
Episode

32

0 25 50 75 100 125 150 175
Episode

64

0 25 50 75 100 125 150 175
Episode

128

MVC+MVCPUCT
MVC+PUCT
Visit+PUCT
Optimal Return

CliffWalking-v0 (10 seeds)

(a) Training

0 25 50 75 100 125 150 175
Episode

100

80

60

40

20

Ev
al

ua
tio

n:
 M

ea
n

Re
tu

rn 16

0 25 50 75 100 125 150 175
Episode

32

0 25 50 75 100 125 150 175
Episode

64

0 25 50 75 100 125 150 175
Episode

128
MVC+MVCPUCT
MVC+PUCT
Visit+PUCT
Optimal Return

CliffWalking-v0 (10 seeds)

(b) Evaluation

Figure 6.1: Cliff Walking. Training and Evaluation mean return over training episodes. The
column numbers indicate the simulation budget.

Figure 6.1 shows the training and evaluation curves for the three agents described in Sec-
tion 5.1 on the Cliff Walking environment. The horizontal axis describes the number of
episodes (trajectories) that the agent has experienced. The vertical axis shows the mean
discounted return of the agent. The shaded area indicates the standard error over training

45

6. RESULTS

seeds. The dashed red line displays the highest possible discounted return achievable for
this environment (-13).

This is a quantitative plot indicating that our two proposed agents outperform the baseline
AlphaZero agent. The difference is especially prominent for lower simulation budgets. The
difference is less pronounced during evaluation than during training but still significant. To
better understand these results, we will discuss the observed behavior with the support of
additional data.

6.1.1 Simulation Budget and Entropy

Firstly, we observe that the performance of the baseline AlphaZero agent is significantly
lower during training, especially for low budgets. We hypothesize that this is due to the
effects described by Grill et al. [22] (section 4.1). Particularly, even if the agent discovers
more or less promising actions, it will take additional simulations for this information to
be reflected in the visitation counts. In this particular environment, this is determinantal
since it also means that if the agent is standing next to the cliff, it has at least a 1÷budget
probability of jumping into the cliff. The reward for falling into the cliff is −100 which is a
significant penalty. This will make the baseline agent avoid the cliff which hinders learning
and performance since the goal is also located next to the cliff. The MVC agents do not
suffer from this issue in the same manner since they take the Q-value estimates into account
when selecting actions.

We can observe this effect in the data since for the lower budgets, AlphaZero reports returns
less than −100 which is the minimum return when not jumping into the cliff. We note that
none of the agents jump into the cliff during the evaluation stage. This makes sense since
a PolicyMax is applied before action selection but the performance is still worse. This
is likely due to: 1. The policy and value functions learned by the agents are suboptimal
and 2. Values are still propagated up the tree with the visitation count evaluator Q̄ = Q̂π̃N .
This hypothesis is additionally supported by the baseline reporting higher entropies than the
MVC agents during training (Figure 6.2). This is interpreted as the baseline acting more
randomly during training.

0 25 50 75 100 125 150 175
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

: M
ea

n
En

tro
py 16

0 25 50 75 100 125 150 175
Episode

32

0 25 50 75 100 125 150 175
Episode

64

0 25 50 75 100 125 150 175
Episode

128

MVC+MVCPUCT
MVC+PUCT
Visit+PUCT

CliffWalking-v0 (10 seeds)

Figure 6.2: Policy normalized entropy over training episodes. 1 indicates uniform distribu-
tion and 0 fully deterministic policy.

6.1.2 Completion Ratio and Completion Return

We observe that the evaluation episode outcomes can be partitioned into two different sce-
narios. Either, the agent finds a path to the goal and terminates the episode or it times out

46

6.1. Cliff Walking

and returns −100. In the evaluation setting, it is possible that agents get stuck and time out
since they act deterministically in each state. If the agent takes actions that lead to reaching
the same state again it will get stuck in an infinite loop. For example, if the agent moves
against the edge of the environment, it will not change its state and there is no way that the
agent will ever reach the goal.

With this knowledge, we can investigate the performance of the agents with two new ques-
tions. Firstly, how many of the agents reach the goal before timing out? Secondly, for the
agents who find the goal, how quickly do they do it?

0 50 100 150
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n:
 Fr

ac
tio

n
Re

ac
hi

ng
 G

oa
l 16

0 50 100 150
Episode

32

0 50 100 150
Episode

64

0 50 100 150
Episode

128

MVC+MVCPUCT
MVC+PUCT
Visit+PUCT
Optimal

CliffWalking-v0 (10 seeds)

(a) Fraction of seeds reaching the goal.

100 110 120 130 140 150 160 170 180
Episode

24

22

20

18

16

14

12

Ev
al

ua
tio

n:
 M

ea
n

Re
tu

rn 16

100 110 120 130 140 150 160 170 180
Episode

32

100 110 120 130 140 150 160 170 180
Episode

64

100 110 120 130 140 150 160 170 180
Episode

128

MVC+MVCPUCT
MVC+PUCT
Visit+PUCT
Optimal Return

CliffWalking-v0 (10 seeds)

(b) Mean return of seeds reaching the goal.

Figure 6.3: Partition into evaluation completion ratio and completion return. The column
numbers indicate the simulation budget.

The first question is answered in Figure 6.3a which displays the fraction of seeds that reach
the goal during each evaluation. The MVC agents consistently reach the goal for all simu-
lation budgets. On the other hand, the baseline agent has trouble reaching the goal for lower
budgets. For higher budgets, a majority reach the goal but the stability seems worse than
the MVC agents.

The second question is answered in Figure 6.3b which shows the mean return of the episodes
that reach the goal. The construction agent is barely visible since it achieves optimal returns
for all budgets. For earlier episodes, this data is noisy since it is based on only a fraction
of the total seeds. Note that for this reason, the episode range is adjusted. Even when
excluding the seeds not reaching the goal in the mean calculation, we still observe that our
proposed agents achieve higher returns than the baseline in general. We can additionally
observe that, in particular for larger budgets, the tree construction agent outperforms the
evaluation agent.

47

6. RESULTS

6.1.3 State Distributions

To improve our understanding of the observed returns, we can investigate the state distribu-
tions of the agents to see what paths they learn. For this, we consider the average visitation
counts per state during the final evaluation episodes (10 seeds). The results for all budgets
are shown in Figure 6.4. Please refer to figure 5.1 for the environment layout.

12
8

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00

MVC+MVCPUCT

0.10 0.10 0.10

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.90 1.00

1.00 1.00

1.00

MVC+PUCT

0.11 0.33 0.33 0.33 0.33

0.11 0.11 0.22 0.33 0.67 0.78 0.89 0.89 0.78 0.56 0.56 0.89

1.00 0.89 0.89 0.78 0.67 0.33 0.22 0.11 0.11 0.11 0.11 1.00

1.00 1.00

1.00

Visit+PUCT

64

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00

0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90

1.00 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 1.00

1.00

0.33 0.33 0.33 0.33 0.33

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.67 0.67 0.67 1.00

1.00 1.00

1.00

32

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00

0.30 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80

1.00 0.70 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 1.00

1.00

0.25 0.25 0.25

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.75 1.00

1.00 1.00

1.00

16

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00

0.17 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 0.83 0.50 1.00

1.00

Figure 6.4: Final evaluation state visitation distribution for the Cliff Walking environment.
The row numbers indicate the simulation budget and the columns the agents.

The state distributions show that the tree construction agent consistently learns to walk next
to the cliff directly to the goal which explains why it has the highest return in Figure 6.3b.
The evaluation agent also learns a faster route than the baseline agent but for all budgets
except 16, it is not as direct as the tree construction agent. We can also note that, somewhat
against our initial intuition, the baseline and tree evaluation agents both seem to avoid the
cliff and take longer paths the larger the simulation budget. We will investigate this further
by observing what happens in the heuristic value function scenario.

6.1.4 Heuristic Value Function

Figure 6.5 shows the mean returns for the different agents on the Cliffwalking Environ-
ment while using the heuristic value function described in Section 5.3.2. The results are
collected for 100 seeds for each simulation budget. The primary reason why multiple seeds
are collected is because UCT is used as the selection policy. When using PUCT like in the
AlphaZero setting, the policy network will dictate the order in which nodes are expanded.

48

6.1. Cliff Walking

24 25 26 27

Simulation Budget

30.0

27.5

25.0

22.5

20.0

17.5

15.0

12.5

Ev
al

ua
tio

n:
 M

ea
n

Re
tu

rn

CliffWalking-v0: Heuristic Value Function Performance (100 seeds)

MVC+MVCUCT
MVC+UCT
Visit+UCT
Optimal Return

Figure 6.5: Cliff Walking heuristic value function mean return for different simulation bud-
gets (100 seeds).

12
8

0.28 0.61 0.70 0.81 0.86 0.89 0.96 0.99 0.93 0.87 0.54 0.24

1.22 0.73 0.40 0.30 0.19 0.16 0.20 0.27 0.36 0.59 0.76 1.00

1.11

MVC+MVCUCT

0.08 0.12 0.25 0.28 0.37 0.46 0.50 0.52 0.54 0.53 0.47 0.55

0.64 0.59 0.70 0.66 0.70 0.63 0.54 0.49 0.52 0.54 0.50 1.17

1.22 0.60 0.39 0.24 0.17 0.13 0.14 0.09 0.07 0.05 0.03 1.00

1.01

MVC+UCT
0.02 0.05 0.10 0.12 0.16 0.15 0.17 0.17 0.31 0.13 0.05

1.12 0.96 1.01 0.95 0.94 0.93 0.88 0.91 0.92 1.08 0.95 1.29

10.05 0.70 0.12 0.05 0.03 0.02 0.05 0.05 0.05 1.52

1.13 1.42

1.00 1.00

1.01

Visit+UCT

64 0.22 0.44 0.61 0.76 0.81 0.90 0.98 0.98 1.01 1.04 0.67 0.31

1.36 0.80 0.57 0.42 0.26 0.20 0.11 0.03 0.17 0.50 0.69 1.00

1.12

0.03 0.05 0.16 0.19 0.25 0.32 0.30 0.38 0.36 0.29 0.29

0.54 0.76 0.82 0.82 0.79 0.75 0.72 0.70 0.73 0.71 0.62 0.91

1.19 0.75 0.38 0.23 0.22 0.16 0.14 0.13 0.13 0.15 0.09 1.00

1.02

0.04 0.19 0.28 0.36 0.43 0.49 0.53 0.61 0.68 0.40 0.23

1.97 1.26 1.11 1.00 0.87 0.84 0.81 0.72 0.77 0.85 0.77 1.00

3.17 0.01 1.31

1.01 1.00

1.03

32 0.17 0.37 0.61 0.71 0.79 0.89 0.92 0.94 0.93 0.96 0.86 0.41

1.44 0.88 0.67 0.44 0.34 0.29 0.21 0.20 0.15 0.19 0.59 1.00

1.19

0.47 0.65 0.81 0.84 0.84 0.95 0.97 0.98 0.94 0.90 0.86 0.86

1.52 0.78 0.58 0.39 0.28 0.31 0.21 0.23 0.27 0.21 0.14 1.00

1.01

0.41 0.69 0.88 0.92 0.98 1.03 1.05 1.04 0.99 0.84 0.64

2.80 1.38 0.83 0.60 0.36 0.36 0.34 0.29 0.28 0.26 0.36 1.00

2.02 1.00

1.05

16 0.03 0.27 0.56 0.68 0.67 0.70 0.82 0.82 0.90 0.90 0.83 0.73

1.55 1.08 0.87 0.61 0.48 0.48 0.45 0.31 0.27 0.21 0.27 1.00

1.00

0.06 0.35 0.60 0.72 0.83 0.80 0.84 0.84 0.90 0.90 0.84 0.84

1.93 1.05 0.70 0.48 0.44 0.35 0.35 0.29 0.25 0.21 0.16 1.00

1.00

0.12 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

5.81 1.04 0.10 1.00

1.10

Figure 6.6: Cliff Walking heuristic value function average state density (100 seeds). The
row numbers indicate the simulation budget and the columns the agents.

However, in this setting, there is no policy network so the expansion order is randomly sam-
pled from a uniform distribution. In this environment, this has a substantial impact since
expanding into the cliff first will discourage further search in this direction.

Figure 6.6 shows the mean state densities over trajectories in the heuristic value function
scenario for different budgets. All episodes terminated with the agent reaching the goal (no

49

6. RESULTS

timeouts). Similarly to when learning the value function, we observe that the MVC tree
construction agent finds the shortest route, followed by the MVC evaluation agent. For the
agents constructing the tree with default UCT, we note that the trajectory length increases
as the budget increases. The paths also seem generally longer than in the AlphaZero setting.
We will reason about this further in the discussion.

6.1.5 Tuning the UCT constant (c)

One potential criticism of the MVC agents is that they come with an additional hyperpa-
rameter (β) for tuning. The hyperparameter β balances the weighting of expectation and
variance. One could say that it controls the pessimism level. The baseline AlphaZero al-
ready comes with the hyperparameter c for tuning the exploration-exploitation trade-off
during tree construction (in UCT/PUCT). One could argue that the baseline agent might
be able to perform as well as the MVC agents by tuning c. For example, if c is set to a
very high value, the visitation count agent will essentially act completely random since the
visitations are equally distributed among the children. To investigate this, we conducted
experiments in the heuristic value function setting where we tuned the c parameter of the
baseline to different extreme values. Note that c = 2.0 is what is used in the other Cliff
Walking experiments.

12
8

0.02 0.33 0.66 0.78 0.91 0.92 0.95 1.05 1.29 1.89 0.88 0.73

2.39 1.19 0.78 0.52 0.36 0.21 0.22 0.36 0.76 0.66 0.26 0.99

2.17 0.24 0.06 0.08 0.02 0.01 0.04 0.08 0.01 0.01 1.00

1.04 1.00

1.00 1.00

1.01

0.01
0.10 0.21 0.40 0.48 0.56 0.53 0.59 0.65 0.65 0.48 0.40

1.35 1.14 0.98 0.97 0.81 0.71 0.60 0.56 0.65 0.71 0.60 1.00

3.08 0.31 0.05 0.04 0.06 0.05 0.03 0.03 0.03 1.00

1.02 1.00

1.00 1.00

1.02

1.0

0.10 0.25 0.34 0.47 0.37 0.40 0.41 0.37 0.39 0.25 0.16

2.33 1.23 1.22 1.22 1.33 1.16 1.21 1.18 1.07 1.00 1.91 27.65

3.74 47.28

1.02 0.02

1.00

100.0

64

0.01 0.01 0.02 0.02 0.03 0.02 0.03 0.03 0.01 0.01

0.19 0.53 0.69 0.77 0.78 0.86 0.82 0.93 0.98 0.66 0.58

2.63 1.67 1.32 1.02 0.83 0.60 0.68 0.63 0.67 0.70 0.42 0.97

2.04 0.10 0.04 0.02 0.03 0.02 0.02 0.01 0.01 0.03 1.00

1.00 1.00

1.02

0.12 0.26 0.50 0.57 0.61 0.59 0.69 0.64 0.77 0.57 0.52

2.00 1.30 1.06 0.92 0.79 0.81 0.69 0.67 0.66 0.74 0.48 1.00

2.46 0.02 0.01 0.03 0.01 0.01 0.02 1.00

1.00 1.00

1.01

0.01 0.02 0.01 0.02 0.15 0.14

0.02 0.01 0.02 0.03 0.04 0.01 0.03 0.29 0.19

1.56 1.07 1.11 1.14 1.17 1.11 1.10 1.14 1.19 1.42 1.85 2.49

8.08 1.37 0.40 0.15 0.17 0.14 0.14 0.11 0.12 0.21 0.60 3.27

1.41 1.00

1.00

32

0.01 0.01 0.01

0.26 0.60 0.82 0.89 0.93 0.99 1.03 1.02 1.07 0.95 0.89

3.88 1.82 0.96 0.62 0.34 0.30 0.33 0.25 0.16 0.18 0.11 1.00

1.13 1.00

1.03

0.30 0.64 0.81 0.96 0.93 0.94 0.99 0.97 0.97 0.86 0.72

2.72 1.50 0.87 0.55 0.36 0.16 0.16 0.20 0.23 0.26 0.28 1.00

1.29 1.00

1.04

0.07 0.19 0.54 0.48 0.74 0.86 0.49 0.53 0.41 0.42 0.91

0.09 0.23 0.45 0.70 0.70 0.91 1.05 0.70 0.82 0.71 0.92 1.05

0.77 1.28 1.62 1.79 1.84 1.75 1.69 1.62 1.56 1.56 1.61 1.71

6.11 3.11 1.88 1.40 1.26 1.31 1.21 1.15 1.14 1.25 1.61 2.94

6.13 1.95

1.30

16 0.18 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

11.00 1.13 0.05 0.99

1.01

0.20 0.88 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

6.67 1.02 0.12 1.00

1.05

0.05 0.11 0.17 0.33 0.43 0.50 0.29 0.41 0.64 1.44

0.03 0.15 0.25 0.34 0.41 0.42 0.70 0.52 0.50 0.88 1.86

0.23 0.52 0.77 0.92 1.01 1.11 0.94 1.13 1.00 0.95 1.28 2.36

2.06 2.09 2.21 2.16 2.26 2.45 2.18 2.21 2.03 1.98 2.32 3.36

5.52 1.44 0.51 0.35 0.41 0.41 0.33 0.42 0.31 0.28 0.62 1.82

1.66

Figure 6.7: Cliff Walking heuristic value function average state density (100 seeds) for
baseline (Visit+UCT). The row numbers indicate the simulation budget and the columns
the value of the UCT constant c.

50

6.1. Cliff Walking

The results are shown in Figure 6.7. We observe that the hyperparameter c has an impact
on the performance of the baseline agent. However, none of these configurations reach the
same performance (short paths) as the MVC agents. As expected, for the large c = 100, the
agent seems to act mostly randomly for the lower budgets. For higher budgets, the agent’s
actions seem less random but the agent prefers paths further from the cliff. For the agents
with lower values of c, the agent works better for lower budgets but for higher budgets,
the lengths of the paths increase. These paths are even longer than the one observed for
the agent with c = 100. Our hypothesis for this is that with a lower exploration constant,
the constructed tree will be deeper which allows the agent to observe the cliff from further
away. For a very high c, the tree will be constructed in a close to breadth-first manner which
implies that there are not enough simulations to build a deep tree for the actions.

To investigate the effect of c on the structure of the tree, we conduct an additional experi-
ment where we compare the mean state densities of the constructed trees for some selected
states. Precisely, for each state, we construct 100 trees of size 128 with c = 100 and c = 1.
We then count the mean number of times each state is observed in the tree and subtract the
means to get the difference between the two construction variants. Note that these numbers
are not the same as visitation counts for each node since the tree can have many nodes with
the same state at different depths.

0.0 2.6 4.3 6.3 2.8 0.6 -1.0 -0.8 -0.1

0.8 2.0 5.7 3.2 2.9 -2.6 -3.1 -1.5 -0.5

0.4 1.9 2.9 2.9 -2.5 -4.8 -3.4 -1.9 -0.6

0.6 0.9 -0.9 -3.2 -3.8 -3.0 -0.9

-0.0 0.1 -0.8 -1.5 -2.1 -0.5

-1.7

State (1, 6)
0.3 -0.4 -0.4 -1.0 -0.3 -0.0

0.6 0.6 -0.2 -2.8 -1.7 -1.5 -0.4 -0.0

0.6 1.8 1.2 -0.5 -1.9 -3.9 -1.4 -0.7 -0.1

0.2 1.0 1.7 2.6 0.7 -0.5 -1.0 -1.4 -0.1 -0.1

0.2 0.4 1.6 1.9 2.1 1.0 -0.2 0.5 -0.1

1.5

State (3, 6)
0.1 3.7 7.2

0.1 3.5 7.7 14.4

0.0 1.1 3.4 11.7 17.4

0.5 3.4 7.9 12.6

0.9 2.8 4.6

0.7 -103.8

State (2, 11)
Tree state density difference: c = 100 (Red) - c = 1 (Green). Mean over 100 seeds. N = 128, Construction = UCT

Figure 6.8: Cliff Walking mean tree state counts difference for different UCT constants.
Green is for c = 1 and red c = 100. Each subplot shows a different root state (marked with
a black border).

The results of this experiment are shown in Figure 6.8. Note that jumping into the cliff
results in instant transportation to the starting state. As expected, the tree constructed with
the higher c (Red) seems to have a higher density for states closer to the root state while the
low c (Green) constructs a deeper tree toward the goal. This is especially visible in the state
(2, 11). We can also observe that for the state (1, 6), the tree constructed with lower c is in
general building more towards the cliff and consequently simulating jumping into it more
frequently. This can be concluded from the −1.7 observed from the starting state that must
come from cliff jumps. These results support our hypothesis that the tree constructed with
a lower c will be deeper and observe the cliff from further away.

6.1.6 Tree Construction Differences

We can further investigate the tree state distributions for trees built with regular UCT as
opposed to our proposed MVCUCT tree construction. Similarly to Figure 6.8, we construct

51

6. RESULTS

trees for 100 seeds with 128 simulations for both the baseline and the MVC tree construction
agent. We then calculate the difference in mean state visitation counts for each state.

-0.5 -0.5 0.0 0.0

-2.1 -1.1 -0.6 0.4 0.2 0.0

-2.7 -1.9 1.0 1.2 0.3 0.2 0.0

-2.1 0.8 1.3 1.3 1.0 0.1

-0.0 0.1 0.8 1.4 0.1

1.2

State (3, 0)
-1.6 -1.3 -1.6 -0.9 -0.2

-1.3 -1.0 -3.4 -3.1 -1.2 -0.3 0.5 0.1

-0.4 -0.4 -2.9 -3.9 -2.1 0.3 3.0 1.0 0.5

0.0 -1.0 -2.2 -1.6 0.5 4.9 3.0 2.4 0.6

-0.3 -0.4 0.5 2.6 3.0 3.1 0.8 0.1

4.0

State (3, 6)
-0.2 -0.4

-0.1 -0.7 -1.3

-0.1 -0.4 -0.8 -1.2

-0.3 -0.9 -0.9

-0.0 0.2 -0.1

-0.2 7.4

State (2, 11)
Tree state density difference: MVCUCT (Blue) - UCT (Green). Mean over 100 seeds. N = 128, c = 2.0

Figure 6.9: Cliff Walking mean tree state counts difference for different construction al-
gorithms. Blue is MVCUCT and green is regular UCT (baseline). Each subplot shows a
different root state (marked with a black border).

The results are shown in Figure 6.9. One can see that the modified tree construction has a
large impact on the structure of the tree and state distributions. As expected, the modified
tree construction is less pessimistic and builds more towards the goal. For state (2, 11) the
effect of using the new tree evaluator is similar to the effect of using a lower c which makes
some sense since a lower c should also produce a more greedy policy (see Figure 6.8).
However, in state (3, 6) one can observe that adjusting c has a different effect than the novel
tree construction. MVCUCT builds more towards the goal even if it means going close to
the cliff. Conversely, the decreased c builds more away from the cliff. Our hypothesis for
this is that the MVCUCT is the only algorithm able to observe the cliff without propagating
that negative reward up the tree. Lowering c will make the tree more shallow but it will
still propagate the negative reward from observing the cliff which means that search in
this direction will be discouraged, even with a more shallow tree. Changing c changes
how information is collected while changing the tree evaluator changes how the collected
information is analyzed for future decisions.

6.2 Frozen Lakes

Figure 6.10 and Figure 6.11 display the training and evaluation performance in the Alp-
haZero setting for the 4× 4 and 8× 8 Frozen Lake environments respectively. The results
display similar behaviors as for the Cliff Walking environment. For both map sizes, the
visitation counts AlphaZero baseline agent performs poorly in training, especially for lower
budgets. For larger budgets, our novel agents reliably optimally solve the 4× 4 environ-
ment. As expected, the 8× 8 environment seems more difficult for all agents. The MVC
tree construction agent produces the most promising results in this environment and finds
the optimal route for the 64-budget setting. The evaluation performance degrades somewhat
for the 128-budget. We hypothesize that this could be mitigated by additional hyperparam-
eter tuning.

We conduct a similar analysis on the Frozen Lake evaluation state distributions as with the
Cliff Walking environment. Figure 6.12 displays the final episode state distributions for all

52

6.2. Frozen Lakes

0 25 50 75 100 125 150 175
Episode

0.2

0.0

0.2

0.4

0.6

Tr
ai

ni
ng

: M
ea

n
Di

sc
ou

nt
ed

 R
et

ur
n 16

0 25 50 75 100 125 150 175
Episode

32

0 25 50 75 100 125 150 175
Episode

64

0 25 50 75 100 125 150 175
Episode

128

MVC+MVCPUCT
MVC+PUCT
Visit+PUCT
Optimal Return

FrozenLake-v1-4x4 (10 seeds)

(a) Training

0 25 50 75 100 125 150 175
Episode

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ev
al

ua
tio

n:
 M

ea
n

Di
sc

ou
nt

ed
 R

et
ur

n 16

0 25 50 75 100 125 150 175
Episode

32

0 25 50 75 100 125 150 175
Episode

64

0 25 50 75 100 125 150 175
Episode

128

MVC+MVCPUCT
MVC+PUCT
Visit+PUCT
Optimal Return

FrozenLake-v1-4x4 (10 seeds)

(b) Evaluation

Figure 6.10: 4×4 Frozen Lake. Training and Evaluation step performance.

0 25 50 75 100 125 150 175
Episode

0.2

0.0

0.2

0.4

Tr
ai

ni
ng

: M
ea

n
Di

sc
ou

nt
ed

 R
et

ur
n 16

0 25 50 75 100 125 150 175
Episode

32

0 25 50 75 100 125 150 175
Episode

64

0 25 50 75 100 125 150 175
Episode

128
MVC+MVCPUCT
MVC+PUCT
Visit+PUCT
Optimal Return

FrozenLake-v1-8x8 (10 seeds)

(a) Training

0 25 50 75 100 125 150 175
Episode

0.0

0.1

0.2

0.3

0.4

0.5

Ev
al

ua
tio

n:
 M

ea
n

Di
sc

ou
nt

ed
 R

et
ur

n 16

0 25 50 75 100 125 150 175
Episode

32

0 25 50 75 100 125 150 175
Episode

64

0 25 50 75 100 125 150 175
Episode

128
MVC+MVCPUCT
MVC+PUCT
Visit+PUCT
Optimal Return

FrozenLake-v1-8x8 (10 seeds)

(b) Evaluation

Figure 6.11: 8×8 Frozen Lake. Training and Evaluation step performance.

10 seeds. We refer to Appendix B for additional results. We conclude that the most difficult
part of the Frozen Lake environment seems to be that the agent has to approach and walk
past the holes to reach the goal. This proves especially tricky for the agents constructing
the tree with regular PUCT since the initial poor rewards observed during the search will
discourage further search in this direction. This leads to the baseline agent often getting
stuck in the area around the starting state. This differs from the Cliff Walking environment
since the agent can not choose to take an extra-long route to avoid the holes.

53

6. RESULTS

12
8

1.00 0.10 0.10

0.90 0.10

0.90 0.90 0.10

0.90 1.00

MVC+MVCPUCT
1.00

1.00

1.00 1.00

1.00 1.00

MVC+PUCT
20.80

0.80

0.80 0.80

0.80 0.80

Visit+PUCT

64

1.00

1.00

1.00 1.00

1.00 1.00

1.00

1.00

1.00 1.00

1.00 1.00

60.50

0.40

0.40 0.40

0.40 0.40

32

55.40 24.80

0.20

0.20 0.20

0.20 0.20

30.70

0.70

0.70 0.70

0.70 0.70

90.10 0.10 9.80

16

50.50 0.30 0.30 19.40

0.20 0.10

0.20 0.20 0.10

0.20 0.30

15.80

74.40

0.10 0.10

0.10 0.10

58.40

41.60

Figure 6.12: Final evaluation state visitation distribution for the 4×4 Frozen lake environ-
ment. The row numbers indicate the simulation budget and the columns the agents.

54

Chapter 7

Discussion

In the analysis section, we proposed a novel framework for general tree evaluation and in-
troduced the MVC tree evaluator. Our experiments show that the two agents based on MVC
outperform the baseline agent in both the Cliff Walking and Frozen Lake environments. In
this chapter, we further investigate and discuss why this happens.

In our experiments, we operate under the fixed variance assumption which, as we showed in
Section 3.5 means that there is a clear connection between visitation counts and variance. In
this setting, the visitation count evaluator has a strong resemblance to the minimal variance
policy. If we consider the variance bias trade-off for the evaluator, this evaluator would
therefore have low variance but underestimation bias. Another way of phrasing this is that
it is very pessimistic. On the other hand, the MVC evaluator takes both expectation and
variance into account. It can, by tuning beta, express a less pessimistic policy.

We hypothesize that being overly pessimistic is problematic when solving most environ-
ments, but especially the Cliff Walk and Frozen Lakes. In the Cliff Walk, the agent will
need to leave the left wall and walk closer to the cliff to approach the goal. This proves
somewhat adversarial since an overly pessimistic agent might avoid going remotely close
to the cliff since it believes it might jump in. Similarly, in the Frozen Lake environment,
the agent will have to walk next to holes to reach the goal. If it believes it might jump into
a hole it will avoid it and simply never reach the goal. These behaviors can be observed in
the reported state distributions.

The issues with overly pessimistic evaluation can be observed both in the AlphaZero learn-
ing setting as well as the heuristic value function setting. For the baseline visitation count
agent, learning seems to improve with an increased simulation budget. We observe that in
the low-budget setting, the visitation count agent might sometimes fall into the cliff/holes
during training. We believe this has an immense negative impact on learning since it dras-
tically lowers the value target of the state next to the cliff/hole. Passing that state or nearby
states might be necessary to reach the goal.

The difference in evaluation trajectories in the learning or heuristic value function settings
highlights another interesting phenomenon. The paths taken to the goal in the learned setting
are quicker than those in the heuristic setting, even when using the same hyperparameters.

55

7. DISCUSSION

One explanation for this could be that the value functions learned differ but we believe the
main difference arises from the difference between PUCT and UCT. In the learned setting,
we use PUCT for searching with a learned policy network. One important task of this
network, especially in the low-budget setting is to dictate the order in which leaves are
expanded. On the contrary, with UCT, the expansion is done by sampling uniformly. When
estimating the value of a tree node adjacent to the cliff, expanding into the cliff will have
a profound impact, especially if the visitation count evaluator is used. Observing the large
negative reward from the cliff would lower the average return of that subtree and discourage
further search in that direction. On the other hand, in the learning setting, the policy network
would make sure that the Cliff direction is not expanded first which mitigates this issue.

The experimental results show the importance of tree construction. The baseline visita-
tion count agent as well as the MVC tree evaluation agents are constructed with default
UCT/PUCT where the value is estimated by Q̄ = Q̂π̃N . We observe that there is a substantial
difference in performance for the tree construction agent using Q̂π̃MVC instead. Even if the
tree evaluation agent uses MVC for tree evaluation, it is more pessimistic since the search
is guided by Q̄. The MVC policy takes both expectation and variance into account to ex-
tract a good policy. Since variance is reduced by search, the actions at the root with higher
visitation counts will gain additional weight. We believe that this is the reason for the per-
formance difference between the two MVC agents as well as the reason why the difference
grows for higher budgets.

When constructing the tree with Q̄, exploring the action of falling into the cliff/hole will
propagate negative Q-values up the subtree. This leads to this tree generally being expanded
away from the cliff/holes which will influence the final policy to do the same. On the other
hand, when using Q̂π̃MVC , MVC will assign a lower probability to nodes with low expectation
(such as cliff/hole) which means that they will have a low weight in the propagated Q-values.
To us, this makes a lot of sense since the probability of the agent jumping into the cliff when
adjacent, is near zero, especially in the evaluation setting. This showcases once again how
the visitation count evaluator is overly pessimistic. The behavior induced is adversarial for
the tested environments which can even lead to worse performance for higher budgets. For
low budgets, the decision trees are smaller, and the difference between the two construction
algorithms is less impactful.

Another perspective on this issue is that Q̂π̃ will propagate Q-values for each node as if it
were the root node and we act with π̃. It is well established that the visitation count evaluator
π̃N performs poorly in the low-budget setting. Even if we allocate a high budget to the agent,
this budget will be distributed among the child nodes which will emulate a lower budget
setting from the perspective of these nodes. The dilution of the budget will continue down
the tree which means that low-budget settings will be prominent in any MCTS tree. This
also helps explain why PUCT seems to outperform UCT, the policy network is especially
important for low budgets. The fact that Q̂π̃ is applied to every node in the tree highlights
the importance of good tree evaluators π̃ which can properly assess general trees. It would
be interesting to experiment with the policies from Grill et al. [22] and Danihelka et al. [16]
since they also claim improved policies for limited simulation budgets.

56

Chapter 8

Conclusion

In this chapter, we present our conclusions as well as propose directions for future work.

8.1 Conclusion

This thesis is about general tree evaluation for AlphaZero. In Chapter 3 we proposed a
novel framework for tree policy extraction and evaluation. The tree node value estimates
can be parametrized by tree evaluation policies. The goal of a tree evaluation policy is to
reduce the variance of the value estimate without inducing too much bias. Based on this
insight, we propose several novel evaluators such as the MVC evaluator balancing variance
and expectation. We additionally propose how our insights can be used to improve tree
construction.

Our experiments on gym environments demonstrate that our novel framework combined
with the MVC evaluator outperforms the AlphaZero baseline, both when learning the value
function and when using a heuristic one. Additionally, our suggested modified tree con-
struction algorithm outperforms both agents based on AlphaZero’s default construction al-
gorithm. We observe that the effect of the novel tree construction differs from what can be
achieved by tuning UCT c-values.

We attribute the success of our novel agents to multiple factors. Our agents do not attempt
poor actions such as jumping into a cliff during training. They are not as overly pessimistic
as the baseline when propagating values up the tree. Lastly, they do not make any strong
assumptions about the structure of the subtrees being analyzed.

Even though our agents outperform AlphaZero, we can not claim that the MVC evaluator
achieves state-of-the-art performance in all environments since there are other contenders
such as GumbelZero [16] which we did not directly compare to. However, we do believe
that our general framework, combined with adjacent improvements in learning, construc-
tion, and policy optimization could produce new state-of-the-art agents [50]. Our frame-
work additionally brings major benefits such as being less sensitive to the tree construction
algorithm. The final section on future work will cover some specific ideas for further im-
provements.

57

8. CONCLUSION

8.2 Future Work

This section presents ideas for future work based on our work. We partition the suggestions
into three distinct subsections.

8.2.1 Tree Construction

One of the main benefits of a general tree evaluation framework is that it should function re-
gardless how how the tree is constructed. This could pave the way for further improvements
in tree construction. One possible direction for this is to reconsider the goal of the selection
policy. In literature, the goal is often to minimize the so-called simple or cumulative regret
under a multi-armed-bandit assumption [8, 37]. In the context of general tree evaluators,
the goal could instead be to select the action with the highest expected new information
useful for the evaluator. This would probably yield some optimistic exploration strategy but
it would be interesting to analyze this further analytically.

Furthermore, most of the state-of-the-art tree construction algorithms (ex PUCT) operate
under the assumption that the tree is expanded one node at a time. This is a problematic
restriction since it prohibits parallelization. There have been previous attempts at mitigating
this but many of them involve heuristics and produce suboptimal results [44]. This issue is
further amplified by the shift towards deep learning-based simulation values. It is well
known that batched computation of inputs increases the throughput of neural networks.
If we expand nodes one by one (like PUCT), the forward passes are also done with one
element at a time. We conjecture that it would be beneficial to expand multiple nodes in
each iteration to utilize batched inference. The structure of the tree would be different and
overall, the general quality of the tree might be lower. These issues are mitigated by using
a general tree evaluator. The benefit is that we could construct much larger trees under the
same time constraints which should improve performance.

8.2.2 Variance Analysis

In Chapter 3, we showed that we can use estimator variance instead of visitation counts
and utilize this in our proposed tree evaluators. In Section 3.4, we discussed possible as-
sumptions for simplifying variance calculation. In our experiments, we assumed that the
variance of the value evaluations was fixed. This is most likely an oversimplification. It
would therefore be interesting to experiment further with what can be accomplished under
other assumptions. In random rollout MCTS, the rollout depths or sample variance could be
considered. For AlphaZero, the epistemic uncertainty could be captured with for example
random network distillation or Gaussian process regression (see Section 3.9.2).

Another suggestion related to the variance calculation is to generalize it by estimating full
distributions instead. Our purpose in estimating variance and expectation is primarily for
constructing probabilistic bounds. We might be able to tighten these bounds with addi-
tional information on the distributions. Inspiration for how this can be accomplished can be
found in Dam et al. [15]. Another suggestion is estimating and propagating the probabilistic
bounds directly.

58

8.2. Future Work

8.2.3 AlphaZero

Our suggested framework was initially designed with general MCTS trees in mind. The
most likely application of this framework is in the AlphaZero setting which utilizes deep
learning. We showed experimentally that AlphaZero could benefit from our approach but
we conjecture that the performance could be improved further by designing specifically for
AlphaZero.

One idea in this direction is to design a tree evaluator that also incorporates the policy
network. The output of the policy network should provide some additional information that
could be utilized. This was discussed in Section 3.9.3.

Another idea is to utilize this framework to improve the learning targets. In our experiments,
we kept the policy and value targets for AlphaZero unchanged. If our proposed framework
enables improved estimates of the values of tree nodes, we might be able to use these for
the value targets. Additionally, we could consider what would be the most beneficial target
for the policy network.

Lastly, we did not consider how our new policies affect environmental exploration. In
the conducted experiments, the novel agents did not struggle with this but it could still be
beneficial. For example, if one uses random network distillation to estimate the simulation
variance and also applies a pessimistic policy for final action selection. In this scenario, the
agent would avoid regions it has not yet been in which could be good for evaluation but
determinantal for learning. We recommend keeping this under advisement and potentially
adding extra incentives for deep exploration such as those proposed by Oren et al. [36].

59

Bibliography

[1] Ioannis Antonoglou, Julian Schrittwieser, Sherjil Ozair, Thomas K Hubert, and David
Silver. Planning in stochastic environments with a learned model. In International
Conference on Learning Representations, 2021. 1

[2] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multi-
armed bandit problem. Machine learning, 47:235–256, 2002. 5, 21, 29, 68

[3] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv
preprint arXiv:1607.06450, 2016. 70

[4] Richard Bellman. A markovian decision process. Journal of mathematics and me-
chanics, pages 679–684, 1957. 3, 4

[5] Sergei Bernstein. On a modification of chebyshev’s inequality and of the error formula
of laplace. Ann. Sci. Inst. Sav. Ukraine, Sect. Math, 1(4):38–49, 1924. 24

[6] Lukas Biewald. Experiment tracking with weights and biases, 2020. URL https:
//www.wandb.com/. Software available from wandb.com. 39

[7] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. Openai gym, 2016. 40

[8] Sébastien Bubeck, Rémi Munos, and Gilles Stoltz. Pure exploration in multi-armed
bandits problems. In Algorithmic Learning Theory: 20th International Confer-
ence, ALT 2009, Porto, Portugal, October 3-5, 2009. Proceedings 20, pages 23–37.
Springer, 2009. 58

[9] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by ran-
dom network distillation. arXiv preprint arXiv:1810.12894, 2018. 33

[10] Murray Campbell, A Joseph Hoane Jr, and Feng-hsiung Hsu. Deep blue. Artificial
intelligence, 134(1-2):57–83, 2002. 1, 43

61

https://www.wandb.com/
https://www.wandb.com/

BIBLIOGRAPHY

[11] Hyeong Soo Chang, Michael C Fu, Jiaqiao Hu, and Steven I Marcus. An adaptive
sampling algorithm for solving markov decision processes. Operations Research, 53
(1):126–139, 2005. 37

[12] Herman Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based
on the sum of observations. The Annals of Mathematical Statistics, pages 493–507,
1952. 24

[13] Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search.
In International conference on computers and games, pages 72–83. Springer, 2006.
37

[14] Tuan Dam, Pascal Klink, Carlo D’Eramo, Jan Peters, and Joni Pajarinen. Generalized
mean estimation in monte-carlo tree search. arXiv preprint arXiv:1911.00384, 2019.
37

[15] Tuan Dam, Pascal Stenger, Lukas Schneider, Joni Pajarinen, Carlo D’Eramo, and
Odalric-Ambrym Maillard. Monte-carlo tree search with uncertainty propagation via
optimal transport. arXiv preprint arXiv:2309.10737, 2023. 37, 58

[16] Ivo Danihelka, Arthur Guez, Julian Schrittwieser, and David Silver. Policy improve-
ment by planning with gumbel. In International Conference on Learning Representa-
tions, 2021. 1, 18, 30, 35, 36, 39, 56, 57

[17] AD De Groot. Chess playing programs. In Proceedings Koninklijke Akademie van
Wetenschappen, Series A, volume 67, pages 385–398, 1964. 43

[18] Shiv Ram Dubey, Satish Kumar Singh, and Bidyut Baran Chaudhuri. Activation func-
tions in deep learning: A comprehensive survey and benchmark. Neurocomputing,
503:92–108, 2022. 70

[19] Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-
Paredes, Mohammadamin Barekatain, Alexander Novikov, Francisco J R Ruiz, Ju-
lian Schrittwieser, Grzegorz Swirszcz, et al. Discovering faster matrix multiplication
algorithms with reinforcement learning. Nature, 610(7930):47–53, 2022. 1

[20] Zohar Feldman and Carmel Domshlak. Monte-carlo tree search: To mc or to dp? In
ECAI, pages 321–326, 2014. 37

[21] Kunihiko Fukushima. Visual feature extraction by a multilayered network of analog
threshold elements. IEEE Transactions on Systems Science and Cybernetics, 5(4):
322–333, 1969. 70

[22] Jean-Bastien Grill, Florent Altché, Yunhao Tang, Thomas Hubert, Michal Valko, Ioan-
nis Antonoglou, and Rémi Munos. Monte-carlo tree search as regularized policy
optimization. In International Conference on Machine Learning, pages 3769–3778.
PMLR, 2020. 35, 36, 39, 46, 56

62

Bibliography

[23] Matteo Hessel, Ivo Danihelka, Fabio Viola, Arthur Guez, Simon Schmitt, Laurent
Sifre, Theophane Weber, David Silver, and Hado Van Hasselt. Muesli: Combining
improvements in policy optimization. In International conference on machine learn-
ing, pages 4214–4226. PMLR, 2021. 36

[24] Wassily Hoeffding. Probability inequalities for sums of bounded random variables.
The collected works of Wassily Hoeffding, pages 409–426, 1994. 24

[25] Eyke Hüllermeier and Willem Waegeman. Aleatoric and epistemic uncertainty in
machine learning: An introduction to concepts and methods. Machine learning, 110
(3):457–506, 2021. 32

[26] Thomas Keller and Malte Helmert. Trial-based heuristic tree search for finite horizon
mdps. In Proceedings of the International Conference on Automated Planning and
Scheduling, volume 23, pages 135–143, 2013. 37

[27] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014. 69

[28] Donald E. Knuth and Ronald W. Moore. An analysis of alpha-beta pruning. Artificial
Intelligence, 6(4):293–326, 1975. ISSN 0004-3702. doi: https://doi.org/10.1016/
0004-3702(75)90019-3. URL https://www.sciencedirect.com/science/arti
cle/pii/0004370275900193. 1

[29] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In Eu-
ropean conference on machine learning, pages 282–293. Springer, 2006. 4, 20, 21,
29

[30] Marc Lanctot, Mark HM Winands, Tom Pepels, and Nathan R Sturtevant. Monte carlo
tree search with heuristic evaluations using implicit minimax backups. In 2014 IEEE
Conference on Computational Intelligence and Games, pages 1–8. IEEE, 2014. 37

[31] Yuxi Li. Deep reinforcement learning: An overview. arXiv preprint
arXiv:1701.07274, 2017. 1, 8

[32] Jonas Mockus. On bayesian methods for seeking the extremum. In Proceedings of the
IFIP Technical Conference, pages 400–404, 1974. 39

[33] Thomas M Moerland, Joost Broekens, Aske Plaat, and Catholijn M Jonker. The second
type of uncertainty in monte carlo tree search. arXiv preprint arXiv:2005.09645, 2020.
37

[34] Andrew William Moore. Efficient memory-based learning for robot control. Technical
report, University of Cambridge, Computer Laboratory, 1990. 40

[35] Yazhe Niu, Yuan Pu, Zhenjie Yang, Xueyan Li, Tong Zhou, Jiyuan Ren, Shuai Hu,
Hongsheng Li, and Yu Liu. Lightzero: A unified benchmark for monte carlo tree
search in general sequential decision scenarios. Advances in Neural Information Pro-
cessing Systems, 36, 2024. 1

63

https://www.sciencedirect.com/science/article/pii/0004370275900193
https://www.sciencedirect.com/science/article/pii/0004370275900193

BIBLIOGRAPHY

[36] Yaniv Oren, Matthijs TJ Spaan, and Wendelin Böhmer. E-mcts: Deep exploration in
model-based reinforcement learning by planning with epistemic uncertainty. arXiv
preprint arXiv:2210.13455, 2022. 37, 59

[37] Tom Pepels, Tristan Cazenave, Mark HM Winands, and Marc Lanctot. Minimizing
simple and cumulative regret in monte-carlo tree search. In Computer Games: Third
Workshop on Computer Games, CGW 2014, Held in Conjunction with the 21st Eu-
ropean Conference on Artificial Intelligence, ECAI 2014, Prague, Czech Republic,
August 18, 2014, Revised Selected Papers 3, pages 1–15. Springer, 2014. 58

[38] Christopher D Rosin. Multi-armed bandits with episode context. Annals of Mathe-
matics and Artificial Intelligence, 61(3):203–230, 2011. 1, 7, 20, 29, 39

[39] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent
Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Grae-
pel, et al. Mastering atari, go, chess and shogi by planning with a learned model.
Nature, 588(7839):604–609, 2020. 1

[40] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,
Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya
Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel,
and Demis Hassabis. Mastering the game of Go with deep neural networks and tree
search. Nature, 529(7587):484–489, January 2016. ISSN 1476-4687. doi: 10.1038/
nature16961. URL https://doi.org/10.1038/nature16961. 1, 6

[41] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mas-
tering the game of go without human knowledge. nature, 550(7676):354–359, 2017.
1, 6

[42] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai,
Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al.
A general reinforcement learning algorithm that masters chess, shogi, and go through
self-play. Science, 362(6419):1140–1144, 2018. 1, 6, 7, 18, 68

[43] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
2018. 3, 40

[44] Maciej Świechowski, Konrad Godlewski, Bartosz Sawicki, and Jacek Mańdziuk.
Monte carlo tree search: A review of recent modifications and applications. Artifi-
cial Intelligence Review, 56(3):2497–2562, 2023. 1, 4, 18, 58

[45] Gerald Tesauro, VT Rajan, and Richard Segal. Bayesian inference in monte-carlo tree
search. arXiv preprint arXiv:1203.3519, 2012. 36

64

https://doi.org/10.1038/nature16961

Bibliography

[46] Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola,
Tristan Deleu, Manuel Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Ro-
drigo Perez-Vicente, Andrea Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin
Shen, and Omar G. Younis. Gymnasium, March 2023. URL https://zenodo.org
/record/8127025. 40

[47] J v. Neumann. Zur theorie der gesellschaftsspiele. Mathematische annalen, 100(1):
295–320, 1928. 1, 12

[48] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017. 1

[49] Joel Veness, Marc Lanctot, and Michael Bowling. Variance reduction in monte-carlo
tree search. Advances in Neural Information Processing Systems, 24, 2011. 36

[50] Shengjie Wang, Shaohuai Liu, Weirui Ye, Jiacheng You, and Yang Gao. Efficientzero
v2: Mastering discrete and continuous control with limited data. arXiv preprint
arXiv:2403.00564, 2024. 36, 57

[51] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8:279–292,
1992. 12

[52] Daniel Willemsen, Hendrik Baier, and Michael Kaisers. Value targets in off-policy
alphazero: a new greedy backup. Neural Computing and Applications, 34(3):1801–
1814, 2022. 37

[53] Christopher Williams and Carl Rasmussen. Gaussian processes for regression. Ad-
vances in neural information processing systems, 8, 1995. 33

65

https://zenodo.org/record/8127025
https://zenodo.org/record/8127025

Appendix A

Implementation Details

Table A.1: Comprehensive hyperparameters across environments.

Category Hyperparameter Cliffwalk 4x4 Lake 8x8 Lake

Planning

UCB c 2.0 1.0 1.0
UCB value transform Identity Identity Identity
MVC β 1.0 10.0 10.0
MVC value transform Identity Identity Identity
Dirchlect noise α 2.5 2.5 2.5
Dirchlect noise ε 0.4 0.4 0.4

Environment
Maximum episode length 100 100 100
Discount factor γ 1 0.9 0.95

Training

Total iterations 30 30 30
Self-play batch size 6 6 6
Replay buffer size 90 90 90
Training batch size 23 23 23
Epochs per iteration 4 2 4
Learning rate 0.001 0.001 0.0002
Learning rate decay None None None
Optimizer Adam Adam Adam

Loss

State normalized loss True True True
Value learning n 3 1 2
Value loss weight 0.7 0.7 0.7
Policy loss weight 0.3 0.3 0.3
Regularization loss weight 0.000001 0.000001 0.000001

Neural Network

State embedding Coordinate Coordinate Coordinate
Architecture type Separated Separated Separated
Normalization layer None None None
Hidden dimension 64 64 64
Hidden layers 2 2 2
Activation function ReLU ReLU ReLU

67

A. IMPLEMENTATION DETAILS

The full set of hyperparameters used to produce the results in Chapter 6 are displayed in
Table A.1. In the remainder of this section, we will provide further explanations of some of
the implementation details and hyperparameters. We divide the section into the categories
indicated in the table: Planning, Environment, Training, Loss, and Neural Network.

Planning

The planning hyperparameters are related to how the search trees are constructed and eval-
uated. The parameter UCB c is the exploration constant used in PUCT or UCT (depending
on whether we have access to the policy network). The UCB value transform and MVC
value transform are functions applied to the Q-values before usage in UCB or MVC. The
point of these is that in literature, it is often assumed that the Q-values are in the range [0,1]
[2]. There are many ways in which this transformation can be done, but we choose to leave
it out to introduce less complexity. If the normalization is based on empirical Q-values we
noticed that the algorithm becomes more sensitive to the initialization of the value network
since the noise can be amplified into the zero-one range. Instead, we scale UCB c and the
MVC β to match the relative Q-value scale of the environments. This is the main reason
why the values differ between the Cliff Walk and the Frozen Lake. The return range is wider
for the Cliff Walk.

The parameters Dirchlet noise α and Dirchlet noise ε are used to, during training, add
noise to the prior policy in the root node of the search tree. This helps with exploration but
is turned off during evaluation. In comparison to what is used in the original AlphaZero
paper [42], our values for α and ε are larger. The reason for this is that our environment has
smaller action spaces. The final prior policy at the root is, during training calculated as

πprior(s,A) = (1− ε) ·πθ(s,A)+ ε ·Dirichlet([α, . . . ,α]︸ ︷︷ ︸
|A |

).

Environment

The maximum episode length is the maximum number of steps that can be taken by the
agent in each episode. After this, we time out the episode and report the current accumulated
discounted reward. The agent can not observe that the end of the episode is near during
planning. An episode timing out is treated differently than reaching a terminal state. The
discount factor γ is the discount factor used in the environment. It is used to weigh future
rewards against immediate rewards. We do not use a discount factor in Cliff Walk since
there is a negative reward for each step which encourages the agent to finish quickly. In
the Frozen Lake environments, we use a discount factor to encourage the agent to reach the
goal faster. The agent has access to the discount factor and uses it for improved planning
and learning.

68

Training

The total iterations are the total number of self-play + training cycles we train the agent
for. The self-play batch size is the number of trajectories collected during each self-play
stage. These are preferably collected in a batched manner over multiple CPU cores. The
total number of episodes is the total iterations times the self-play batch size. We sample
uniformly from the replay buffer of size replay buffer size to train the agent. The training
batch size is the number of trajectories we sample from the replay buffer each time. The
epochs per iteration is the number of times we sample from the buffer and perform a
gradient step for each learning iteration. The total number of gradient steps is the total
iterations times the epochs per iteration. The learning rate is the learning rate used in
the optimizer and we do not apply learning rate decay, even if this is supported in our
implementation. The optimizer is the optimizer used for stochastic gradient descent. We
use the Adam optimizer [27].

Loss

The state normalized loss is a modification to the value and policy loss functions available
in our implementation. In the default value and policy losses, the loss is computed as a
mean overall environment step in a batch of trajectories. One main difference between
our environments and the more classical AlphaZero environments such as chess is that our
trajectories can contain many environment steps of the same state. For example, the agent
can get stuck in a corner of the grid world until timing out. In this case, a majority of the
trajectory states will be the same. To avoid the loss being dominated by these states, we
normalize the loss so that the mean is over unique states instead of environment steps. In
practice, this is done by first calculating the state counts over the batch and then dividing
the step loss by the state counts. The counts are normalized so that the loss magnitude
is preserved. Through experiments, we noticed that this improved the performance of all
agents.

The value learning n is the number of steps we look ahead in the value learning loss.
The value loss weight, policy loss weight, and regularization loss weight are the weights
used in the final total loss function. These were scaled experimentally so that no component
dominate the total loss. The regularization loss is an l2-norm on all the weights of the neural
network.

Neural Network

The state embedding controls how the environment observations are transformed into fea-
ture vectors for the neural network. In the basic discrete gym environments, the state is
returned as an integer. The simplest way to embed it is through one hot encoding but our
implementation also supports coordinate encoding for the grid worlds which lets the agent
generalize further. For the coordinate encoding, the integer is mapped to an (x,y) coordi-

69

A. IMPLEMENTATION DETAILS

nate. The coordinates are normalized to the range x,y ∈ [0,1] before being passed to the
network.

The architecture type controls the network structure. The two options are unified (Fig-
ure A.1a) and separated (Figure A.1b). In the figures, Σ indicates a linear layer, sigma an
activation function, and SM a softmax layer. In the unified structure, the value and policy
heads share most of the weights while in the separated structure they do not. When using
the unified architecture, the ratio between the value and policy losses should be adjusted
properly. We experimented with normalization layers such as Layer normalization but
found that they did not improve the performance of the agents [3]. The normalization layers
are called NL in Figure A.2b.

The hidden dimension and hidden layers are the size and number of layers in the core
module of the neural network. In Figure A.2a, E is the embedding dimension, H is the
hidden dimension, and N is the number of Linear Modules (Figure A.2b) in sequence. We
used ReLU (rectified linear unit) as the activation function in all experiments but also
experimented with other functions such as logistic sigmoid [21, 18].

Embedding Core

Value

PolicySM

State

(a) Unified.

Embedding

Core Value

PolicySM

State

Core

(b) Seperated.

Figure A.1: Neural Network architecture options.

Linear
Module

H H

Core

E H Linear
Module

H

N

(a) Neural Network core module.

NL

Linear Module

(b) Neural Network linear module.

Figure A.2: Neural Network modules.

Special cases for π̃(x,av)

In Chapter 3, we presented several tree evaluators derived from optimization problems. The
solutions to these problems hold in general but in practice, there are some special cases in
implementation. These cases primarily arise when it comes to non-fully expanded nodes
and affect the value of π̃(x,av). For example, we say that the Q-evaluator is solved by

π̃Q(x,a) = PolicyMax
Av

[
Q̂π̃Q(x⊎a)

]
.

70

The issue here is that this max is over Av which includes av. The value of Qπ̃Q(x⊎a) is by
definition v(x). This is a noisy random variable and if this is an overestimation it might be
much larger than the value estimate of the child nodes, even if the child value estimate builds
on much more data. This would prevent the propagating of information from the subtree to
the parent node (only one v is propagated). This is a valid policy but often undesirable since
we can not take action av in the environment. To circumvent this, most implementations
add the condition that π̃Q(x,av) = 0 for fully expanded nodes. The same issue can, in a
more limited manner, arise for our novel tree evaluators. The issue is more limited since the
variance of v(x) will probably decrease its impact. Nonetheless, in our implementation, we
decided to simplify this consideration by letting

π̃(x,av) = π̃N(x,av) =
1

N(x)

for all tree evaluators. This limits the impact of the described behavior. We believe this to
be a reasonable assumption since we use π̃N as the baseline. This means that we can instead
observe the isolated impact of π̃(x,a), ∀a ∈ A without having to construct custom rules for
π̃(x,av) to ensure fair comparisons.

71

Appendix B

Additional Results

This appendix includes some additional results that were not included in the main text.

Extreme Cliff Walking

In Figure 6.6 we observed that the path lengths of the baseline UCT agent increased when
we increased the simulation budget. This sparked the question if this behavior continues
forever or if the path lengths would reach some maximum length. To investigate this, we
extended the experiment to a simulation budget of 212 = 4096 for the heuristic value func-
tion baseline agent. We also increased the number of rows in the Cliff Walking environment
from 6 to 40 to allow the agent to take even longer paths.

The results are displayed in Figure B.1 and Figure B.2. Note that if the agent does not jump
into the cliff the return is the negative path length. As expected (observed in Figure 6.6),
for lower budgets, the path lengths increase with increased budget. However, for extreme
budgets like 1024 and 4096, the pattern breaks and the average lengths decrease again. In
Figure B.2, we observe that the distance the agent travels from the cliff stays somewhat
constant for higher budgets but it gets more decisive on leaving the left wall. This is likely
the primary reason why the total path lengths decrease for higher budgets in Figure B.1.

Frozen Lake Distributions

Figure B.3 and Figure B.5 shows the state visitation distributions in the heuristic value
setting for the 4×4 and 8×8 Frozen Lake environments. Figure B.4 shows the final eval-
uation state visitation distribution for the 8×8 Frozen Lake environment. The distributions
are averaged over 100 seeds.

73

B. ADDITIONAL RESULTS

24 25 26 27 28 29 210 211 212

Simulation Budget

17.5

20.0

22.5

25.0

27.5

30.0

32.5

35.0

M
ea

n
Pa

th
 L

en
gt

h

Mean Path Length and Standard Error by Planning Budget

Figure B.1: Cliff Walking 40×12 heuristic value Visit+UCT agent extreme simulation path
lengths.

Budget: 16
visit+UCT

Budget: 64
visit+UCT

Budget: 256
visit+UCT

Budget: 1024
visit+UCT

Budget: 4096
visit+UCT

Figure B.2: Cliff Walking 40×12 heuristic value Visit+UCT agent extreme simulation state
densities for each budgets. The simulation budgets (from left to right) are 16, 64, 256, 1024,
and 4096. Stronger red indicates higher density.

74

12
8

1.21 0.30 0.29

0.71 0.29

0.71 0.71 0.86

0.14 1.00

MVC+MVCUCT
6.69 2.38 0.94 0.23

0.75 0.74

0.26 0.26 0.89

0.11 1.00

MVC+UCT
65.06 16.70 4.53 0.95

2.69 0.17

0.01 0.01 0.17

0.01 0.18

Visit+UCT

64

1.10 0.77 0.76 0.08

0.52 0.59

0.42 0.41 0.89

0.11 1.00

2.33 2.63 1.84 0.54

0.15 0.94

0.06 0.06 0.96

0.04 1.00

43.52 33.01 4.24 1.34

0.13 0.33

0.33

0.33

32

1.27 0.86 1.26 0.20

0.44 0.66

0.35 0.34 0.82

0.18 1.00

5.19 1.03 1.97 0.19

0.69 0.62

0.50 0.38 0.70

0.30 1.00

49.59 7.08 26.30 3.75

2.20

0.54 0.22 0.07

0.13 0.19

16

1.29 0.59 1.40

0.56 0.61

0.55 0.43 0.69

0.31 1.00

2.29 0.66 2.25

0.59 0.74

0.35 0.34 0.70

0.30 1.00

9.52 5.17 41.98 3.10

2.01 0.90

0.27 0.24 0.52

0.16 0.67

Figure B.3: 4× 4 Frozen Lake heuristic value function average state density (100 seeds).
The row numbers indicate the simulation budget and the columns the agents.

75

B. ADDITIONAL RESULTS
12

8

1.00 0.58 0.48 0.48 0.48 0.48 0.48 0.25

0.42 0.19 0.09 0.09 0.09 0.09 0.32 0.38

0.37 0.39 0.15 0.03 0.03 0.22 0.41

0.25 0.51 0.61 0.44 0.43 0.19 0.66

0.01 0.40 0.41 0.41 0.99

0.03 0.98

0.02 0.98

0.02 0.02

MVC+MVCUCT
1.00 0.55 0.49 0.40 0.40 0.40 0.40 0.32

0.61 0.54 0.06 0.02 0.01 0.01 0.09 0.43

18.68 2.36 0.10 0.77

34.60 3.09 0.01 1.50

0.90

0.40

0.40

MVC+UCT
1.00 2.35 1.88 0.62 0.64 0.55 0.55 0.42

3.47 1.02 0.13 17.51

18.86 0.04 21.93

24.10 0.09 4.51

0.33

Visit+UCT

64

1.00 0.58 0.53 0.52 0.52 0.52 0.52 0.20

0.42 0.16 0.06 0.06 0.06 0.05 0.37 0.30

0.31 0.75 0.65 0.06 0.05 0.32 0.36

0.24 0.78 0.87 0.42 0.44 0.27 0.62

0.01 0.42 0.32 0.32 1.05

0.09 0.11 0.89

0.11 0.89

0.11 0.11

1.00 0.47 1.33 0.43 0.43 0.43 0.43 0.23

0.54 0.06 0.09 0.05 0.05 0.05 0.25 0.46

0.51 0.16 0.02 0.02 0.54

36.27 13.93 0.03 1.58

1.12

0.48

0.48

1.35 0.67 2.45 0.49 0.52 0.49 0.46 0.27

0.77 0.61 0.12 0.03 0.03 0.23 0.47

4.81 1.07 0.23 29.10

35.81 10.05 8.70

1.21 0.06

32

1.00 0.54 0.41 0.37 0.37 0.34 0.32 0.11

0.48 0.29 0.26 0.14 0.16 0.16 0.37 0.26

0.34 0.79 0.38 0.06 0.04 0.26 0.48

0.32 1.22 1.02 0.55 0.53 0.05 0.70

0.02 0.07 0.55 0.38 0.32 1.36

0.01 0.22 0.21 1.11

0.17 0.84

0.20 0.16

1.00 0.54 1.03 0.79 0.80 0.71 0.60 0.22

0.52 0.61 0.68 0.09 0.18 0.56 0.45

1.06 5.64 1.12 0.33 0.86

6.31 13.70 4.76 1.35

2.01

0.76

0.76

1.51 1.33 1.97 0.95 1.15 0.75 0.63 0.42

1.56 1.87 1.08 0.25 0.45 0.68 0.56

5.25 5.37 0.18 0.78 4.24

12.36 9.19 1.71 17.81

2.26 16.43

0.93

0.26

16

1.00 0.49 0.35 0.27 0.27 0.21 0.14 0.08

0.51 0.34 0.25 0.07 0.14 0.20 0.25 0.17

0.35 0.43 0.76 0.20 0.15 0.31 0.34

0.09 1.15 2.29 1.07 0.78 0.14 0.49

0.65 0.51 0.34 1.22

0.04 0.34 0.39 1.16

0.01 0.18 0.82

0.23 0.18

1.00 0.39 0.37 0.27 0.27 0.21 0.15 0.08

0.61 0.26 0.30 0.10 0.17 0.17 0.24 0.12

0.47 0.42 0.25 0.08 0.04 0.24 0.30

0.11 5.08 5.66 0.96 0.66 0.06 0.40

0.81 0.62 0.37 2.46

0.38 0.46 1.28

0.27 0.73

0.74 0.27

1.59 1.29 1.61 0.77 0.90 0.87 0.98 1.74

1.35 1.89 1.52 0.39 0.94 1.03 1.59 2.60

3.36 4.26 1.52 0.24 0.38 1.88 4.17

5.58 10.54 5.89 0.09 0.08 1.39 6.82

2.05 1.83 0.06 0.13 0.25 1.48 15.35

0.10 0.09 0.15 3.06

0.01 0.21

0.01 0.01

Figure B.4: Final evaluation state visitation distribution for the 8×8 Frozen Lake environ-
ment. The row numbers indicate the simulation budget and the columns the agents.

76

12
8

1.00 0.48 0.30 0.21 0.14 0.07 0.03

0.52 0.31 0.22 0.29 0.36 0.21 0.10 0.01

0.39 0.36 0.18 0.19 0.28 0.37 0.09

0.23 0.37 0.54 0.40 0.45 0.29 0.32

0.17 0.08 0.07 0.46 0.38 0.40 0.69

0.17 0.03 0.15 0.23 0.66

0.19 0.15 0.02 0.19 0.66

1.20 7.57 5.80 0.19 0.19

MVC+MVCUCT
1.00 0.39 0.19 0.16 0.15 0.12 0.07

0.61 0.41 0.12 0.13 0.16 0.18 0.22 0.09

0.40 0.52 0.21 0.03 0.04 0.17 0.15

0.26 0.45 0.55 0.54 0.56 0.13 0.24

0.21 0.11 0.06 0.57 0.47 0.34 0.63

0.18 0.18 0.28 0.46 0.54

0.19 0.18 0.18 0.46 0.54

0.19 0.19 1.06 0.46 0.46

MVC+UCT
1.00 1.89 1.13 0.43 0.48 0.39 0.39 0.32

2.97 0.92 0.06 11.57

30.69 0.05 15.04

28.65 0.15 3.46

0.02 0.28

0.01

0.01

Visit+UCT

64

1.00 0.54 0.12 0.11 0.11 0.09 0.02

0.46 0.72 0.09 0.06 0.08 0.14 0.15 0.03

0.16 0.73 0.23 0.02 0.02 0.14 0.07

0.14 1.34 1.29 0.79 0.76 0.10 0.10

0.11 0.34 0.08 0.80 0.65 0.54 0.73

0.09 0.03 0.25 0.38 0.63

0.10 0.45 0.08 0.31 0.63

0.53 2.46 3.47 0.30 0.30

1.00 0.49 0.15 0.12 0.12 0.10 0.06

0.51 0.72 0.22 0.07 0.09 0.10 0.15 0.02

0.13 0.59 0.44 0.05 0.05 0.18 0.07

0.12 0.44 1.05 0.79 0.76 0.14 0.14

0.06 0.18 0.36 0.77 0.58 0.53 0.70

0.06 0.06 0.25 0.35 0.65

0.06 0.07 0.07 0.35 0.65

0.09 0.06 0.14 0.35 0.35

1.24 0.56 2.33 0.49 0.51 0.49 0.46 0.31

0.54 0.12 0.09 0.02 0.03 0.22 0.48

0.56 0.07 0.25 31.94

39.21 7.80 9.97

2.17 0.14

32

1.00 0.55 0.24 0.15 0.13 0.05 0.01 0.01

0.45 0.61 0.32 0.14 0.22 0.18 0.14 0.07

0.15 0.53 0.40 0.09 0.08 0.16 0.11

0.09 0.64 1.45 0.72 0.72 0.12 0.27

0.13 0.33 0.76 0.79 0.63 0.52 1.09

0.07 0.06 0.35 0.42 0.83

0.07 0.51 0.10 0.29 0.70

0.13 0.79 2.56 0.32 0.28

1.00 0.53 0.21 0.12 0.12 0.07 0.04 0.01

0.47 0.55 0.26 0.18 0.23 0.17 0.17 0.07

0.24 0.46 0.17 0.09 0.09 0.20 0.13

0.16 0.60 0.93 0.66 0.68 0.14 0.22

0.08 0.75 0.87 0.70 0.48 0.43 0.66

0.05 0.07 0.31 0.37 0.65

0.05 0.11 0.05 0.35 0.65

0.06 0.07 0.15 0.35 0.35

1.45 1.31 1.49 0.70 0.83 0.73 0.56 0.65

1.01 1.44 0.77 0.22 0.28 0.46 0.41

2.58 3.71 0.14 0.65 3.71

16.43 10.90 1.80 17.30

7.70 16.22

0.81

0.20

16

1.00 0.49 0.25 0.08 0.06 0.01 0.01

0.51 0.40 0.34 0.17 0.22 0.12 0.09

0.35 0.54 0.59 0.20 0.15 0.24 0.02

0.04 0.82 1.98 1.00 0.89 0.22 0.05

0.09 0.42 0.69 0.83 0.75 0.56 0.88

0.03 0.20 0.52 0.85

0.03 0.41 0.03 0.36 0.61

0.04 0.42 1.63 0.51 0.36

1.00 0.45 0.26 0.09 0.07 0.01

0.55 0.40 0.35 0.18 0.25 0.17 0.14 0.01

0.36 0.48 0.35 0.09 0.07 0.20 0.08

0.10 0.79 1.27 0.68 0.71 0.13 0.16

0.19 0.75 0.79 0.71 0.69 0.45 0.84

0.13 0.11 0.32 0.60 0.82

0.08 0.34 0.14 0.40 0.61

0.19 0.43 0.84 0.59 0.39

1.39 1.17 0.91 0.67 0.88 0.61 0.74 1.79

0.99 1.47 1.19 0.37 0.81 0.90 1.30 2.10

1.15 2.51 1.07 0.18 0.26 1.27 3.00

5.83 8.89 4.93 0.08 0.03 0.88 5.18

11.17 3.44 0.05 0.05 0.17 1.33 12.46

2.20 0.06 0.11 2.33

0.28 0.01 0.24

4.78 0.86 0.30

Figure B.5: 8× 8 Frozen Lake heuristic value function average state density (100 seeds).
The row numbers indicate the simulation budget and the columns the agents.

77

	Preface
	Contents
	List of Figures
	 Introduction
	Contributions
	Outline

	Background
	Reinforcement Learning
	Monte Carlo Tree Search
	AlphaZero

	Analysis
	Tree Evaluation
	Goals of Tree Evaluation
	Matrix Notation
	The Covariance Matrix
	The Visitation Count Evaluator
	General Tree Evaluation
	Modified Construction
	Numerical Computation
	AlphaZero

	Related Work
	Limited Simulation Budget
	Uncertainty Analysis
	Non Arithmetic Mean Backup

	Experimental Setup
	Agents
	Environments
	Value Functions

	Results
	Cliff Walking
	Frozen Lakes

	Discussion
	Conclusion
	Conclusion
	Future Work

	Bibliography
	Implementation Details
	Additional Results

