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Surface dynamics of rough magnetic films
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The chirality of magnetostatic Damon-Eshbach (DE) magnons affects the transport of energy and angular
momentum at the surface of magnetic films and spheres. We calculate the surface-disorder-limited dephasing
and transport lifetimes of surface modes of sufficiently thick high-quality ferromagnetic films such as yttrium
iron garnet. Surface magnons are not protected by chirality, but interact strongly with smooth surface roughness.
Nevertheless, for long-range disorder, the transport is much less affected by the suppressed backscattering (vertex
correction). Moreover, in the presence of roughness, ferromagnetic resonance under a uniform microwave field
can generate a considerable number of surface magnons.

DOI: 10.1103/PhysRevB.99.174402

I. INTRODUCTION

Spin waves or their quanta, magnons, are weakly dis-
sipating carriers of angular momentum and energy [1–5].
Magnetostatic surface or Damon-Eshbach (DE) spin waves
in finite-size magnets have additional unique features [6–9]
such as exponential localization at the surface of spheres [6]
or films [7] and chirality: surface magnons propagate only
in one direction that is governed by surface normal and
magnetization directions [6–9]. Surface magnons are, for
example, found to transport heat in a particular direction,
even against a temperature gradient, i.e., heat conveyer-belt
effect [10–13]. In spherical magnetic resonators, surface
magnons can strongly interact with optical whispering gallery
modes [14–17], and the chirality of the DE mode can be
beneficial for magnon cooling by light [18].

The physics of surface magnons depends on their lifetime
and mean-free path, which are limited by disorder, by phonon
and magnon scattering [1–4], and especially by surface rough-
ness [19–22]. As surface magnons are not topologically pro-
tected, the effect of chirality on the magnon transport and
lifetime in disordered systems has not been thoroughly dis-
cussed in the literature. Previous studies [19–21] focused on
the damping of the uniform spin precession (the Kittel mode)
by two-magnon scattering at surface disorder in either bulk
materials [19] or films with nearly zero thickness [20,21].
Recently, scattering of dipole-exchange spin waves by single
edge defects in very thin films (80 nm) was studied by
numerically solving the linearized Landau-Lifshitz equations,
showing a suppression of backscattering of chiral spin waves
in the DE configuration, even though the magnetization am-
plitude is nearly constant over the film [23].

Here we quasi-analytically study lifetime and transport of
chiral DE magnons, i.e., for a configuration in which the
spin waves propagate normal to an in-plane magnetization,
in the presence of surface disorder. We focus on magnetic
films/slabs sufficiently thick such that surface states exist,
but thin enough to allow interactions between surfaces. We
find that the surface roughness strongly reduces the lifetime

of magnons, but affects the transport only mildly because
of suppressed backscattering. Furthermore, we propose that
a uniform magnetic field allows for an efficient population
of surface states mediated via the surface roughness. An
asymmetry of the surface roughness on the two surfaces of
the film [21,24] can lead to an unbalanced excitation of the
surface magnons on opposite sides of the sample, which is a
necessary conditions for the magnon conveyer belt [10–13].

This paper is organized as follows. We first review the
equations that govern the magnon amplitudes or wave func-
tions in Sec. II. In Sec. III, we derive magnon-magnon scat-
tering cross sections by the surface disorder. The lifetime and
transport of surface magnons are addressed in Secs. IV and V.
Excitation of surface magnons indirectly via Kittel mode is
discussed in Sec. VI. We summarize the results and give an
outlook in Sec. VII.

II. SURFACE MAGNON WAVE FUNCTION

Magnetostatic waves in ferromagnetic films with in-plane
magnetization were studied long back [7,8]. Here, we review
the amplitude or the “wave function” of the surface magnons
as far as it is relevant for our objectives. As shown in Fig. 1,
the surface is perpendicular to the x̂ axis, the equilibrium
magnetization points along the ẑ axis, and we are mainly
interested in spin waves propagating along the ŷ axis.

The magnetization M(r) satisfies the Landau-Lifshitz (LL)
equation [25]

∂M(r)/∂t = −γμ0M(r) × Heff (r), (1)

where γ is modulus of the gyromagnetic ratio, μ0 denotes the
vacuum permeability, and the effective magnetic field

Heff (r) = −(1/μ0)δF [M]/δM(r), (2)

with F being the free energy functional. In the presence of an
applied magnetic field Hzẑ and dipolar interactions,

F = −μ0

∫
dr
[

MzHz + M(r)

8π
· ∇
∫

dr′ ∇′ · M(r′)
|r − r′|

]
. (3)
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FIG. 1. (a) Surface roughness on the upper surface of a magnetic
film. The surface normal is along the x̂-direction. (b) The roughness
is located only in a thin surface layer on top of an ordered magnetic
film with thickness that corresponds to twice the root-mean-square σ

of the thickness fluctuations.

We disregard the crystalline anisotropy and damping, which
is often allowed in high-quality materials such as yttrium iron
garnet (YIG) [21,26,27]. We ignore the exchange interaction,
which is valid for spin waves with wavelengths much larger
than the exchange length ∼100 nm in YIG [28].

We linearize Eq. (1) for small magnetization amplitudes
around M = M0ẑ, where M0 is the saturation magnetization.
For a film with in-plane translation symmetry, M jk

γ=x,y =
m jk

γ (x)eikyyeikzz, where

m jk
x (x) = a jkeiκ j x + b jke−iκ j x, (4)

m jk
y (x) = c jkeiκ j x + d jke−iκ j x. (5)

Here, j labels the energy bands of the magnons and k =
kyŷ + kzẑ represents the in-plane momentum. We choose the
normalization condition [6,29]∫

dr
[
M jk

x (r)M jk
y (r)∗ − M jk

x (r)∗M jk
y (r)

] = −i/2, (6)

in which M∗ is the complex conjugate of M. The coefficients
{a, b, c, d} jk are determined using the ansatz M jk

γ ∝ e−iω jkt in
which ω jk is the eigenfrequency. The linearized LL equations
are

⎛
⎝iω jk − ωM

κ j ky

k2
s

−ωH − ωM
k2

y

k2
s

ωH + ωM
κ2

j

k2
s

iω jk + ωM
κ j ky

k2
s

⎞
⎠(a jk

c jk

)
= 0, (7)

(
f+(k) f ∗

+(k)

f ∗
−(k) f−(k)

)(
a jk
b jk

)
= 0, (8)

where ωH = γμ0Hz, ωM = γμ0M0,

f±(k) = 1

2

(
|k| ± iky

iω jk/μ0 − γ M0κ jky/k2
s

γ Hz + γ M0k2
y /k2

s

)
eiκ j d/2

iκ j − |k|
(9)

and k2
s = κ2

j + |k|2. An equation similar to (7) holds,
with {a jk, c jk, κ j} → {b jk, d jk,−κ j}. Equation (7) gives the

dispersion relation [7]

ω jk =
√

ω2
H + ωHωM

κ2
j + k2

y

k2
s

. (10)

Equation (8) gives the characteristic equation for κ j [7],

(βky)2 + κ2
j (α + 1)2 − |k|2 − 2κ j |k|(α + 1) cot(κ jd ) = 0.

(11)

Here, α = ωHωM/(ω2
H − ω2

jk ) and β = ω jkωM/(ω2
H − ω2).

When κ j = iqx is purely imaginary, we obtain a DE
mode [7]:

mk
x (x) = C[e−qxx(−αqx + βky) + Deqx (x+d )(αqx + βky)],

mk
y (x) = iC[e−qxx(−βqx + αky) + Deqx (x+d )(βqx + αky)],

(12)

in which C is governed by the normalization Eq. (6); d denotes
the thickness of the film, and

D = qx(α + 1) − βky + |k|
qx(α + 1) + βky − |k| . (13)

The characteristic relation for this DE mode becomes [7]

(βky)2 − q2
x (α + 1)2 − |k|2 − 2qx|k|(α + 1) coth(qxd ) = 0.

(14)

For surface magnons with ky < 0 and eqxd � 1,

imk
x + ky

|k|mk
y ≈ 0, (15)

i.e., when k = kyŷ the DE magnons are circularly polar-
ized. When kz 
= 0, the DE modes precess elliptically. From
Eq. (14) we conclude that DE modes preserve their character
as long as |kz| < |ky|

√
M0/Hz [7]. We now prove that for small

kz the ellipticity is weak. When eqxd � 1, coth(qxd ) → 1 and
Eq. (14) simplifies to

qx(α + 1) + |k| ≈ |βky| = βky, (16)

because β, ky < 0. This implies D → 0 in Eq. (13). Therefore

imk
x + ky

|k|mk
y → iCe−qxx

[
−αqx + βky + ky

|k| (−βqx + αky)

]

= iCe−qxx

|k|
[|k|2 − (α + 1)q2

x + αk2
y

]= 0, (17)

where the term in the last square bracket vanishes because of
the dispersion relation (10). This relation is essential for the
chiral coupling between the magnons and surface roughness
as discussed in Sec. III.

III. MAGNON–SURFACE-ROUGHNESS INTERACTION

We focus on a simple generic model of surface roughness:
the magnetic order is preserved up to the surface position,
which varies slightly as a function of position in a random
manner. A film with surface roughness [Fig. 1(a)] can be
separated into two parts: a smooth film and a fluctuating thin
surface layer [19–22], as shown in Fig. 1(b).
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The free energy in Eq. (3) is affected by the surface
morphology. We derive the two-magnon scattering amplitude
induced by the dipolar interaction and the Zeeman energy.

A. Dipolar interaction

The free energy due to the dipolar interaction in the mag-
netic film [25],

Fd = −μ0

2

∫
dr‖

∫ d
2 +xu (r‖ )

− d
2 +xl (r‖ )

dx M(r) · HD(r), (18)

where r‖ = yŷ + zẑ. xu(r‖) and xl (r‖) are the fluctuating part
of the upper and lower surface positions, respectively. The
magnetic potential ψ , defined in terms of the demagnetiza-
tion field as HD = −∇ψ , can be written as Coulomb-like
expression [25],

ψ (r) = −
∫

V
dr′ ∇ · M(r′)

4π |r − r′| . (19)

The free energy reads

Fd = − μ0

8π

∫
dr‖

∫ d
2 +xu(r‖ )

− d
2 +xl (r‖ )

dx
∫

dr′
‖

∫ d
2 +xu (r′

‖ )

− d
2 +xl (r′

‖ )
dx′

× Mβ (r)∂β∂α

Mα (r′)
|r − r′| , (20)

using the summation convention over repeated Cartesian in-
dices α = {x, y, z}. When the amplitudes of xu(r‖) and xl (r‖)
are much smaller than both thickness of the film and decay
depth of the DE modes, we can simplify Eq. (20) by the
mean-value theorem for the integral, i.e.,∫ d/2+xu

d/2
f (x)dx ≈ f

(
d

2

)
xu. (21)

To linear order, Fd = F0 + F u
d + F l

d , where F0 is given by
Eq. (20), putting xu = xl = 0,

F u
d = − μ0

4π

∫
dr‖

∫ d
2

− d
2

dx Mβ (r)∂β∂α

∫
dr′

‖xu(r′
‖)

× Mα (d/2, r′
‖)√

(x − d/2)2 + (r‖ − r′
‖)2

, (22)

and

F l
d = μ0

4π

∫
dr‖

∫ d
2

− d
2

dx Mβ (r)∂β∂α

∫
dr′

‖xl (r′
‖)

× Mα (−d/2, r′
‖)√

(x + d/2)2 + (r‖ − r′
‖)2

. (23)

Note that this approximation does not take into account the
large-momentum scattering that is caused by the derivative of
xu/l (r‖). Our theory is therefore limited to the smooth surface
roughness that governs the Gilbert damping [21].

These expressions can be integrated with the Hamiltonian
formulation for the magnetization dynamics [8,17,30–32].
Substituting M → −γ h̄Ŝ (and M0 = γ h̄S), the Hamiltonian

for the upper surface roughness reads [8,17,30–32]

Hu
d = −μ0γ

2h̄2

4π

∫
dr
∫

dr′
‖(Ŝx(r) Ŝy(r) Ŝz(r))

× Ĝ
(

x − d

2
, r‖ − r′

‖

)

×
(

Ŝx

(
d

2
, r′

‖

)
, Ŝy

(
d

2
, r′

‖

)
, Ŝz

(
d

2
, r′

‖

))T

, (24)

introducing the Green function tensor [33]

Ĝ
(

x − d

2
, r‖ − r′

‖

)
≡
⎛
⎝ ∂2

x ∂x∂y ∂x∂z

∂y∂x ∂2
y ∂y∂z

∂z∂x ∂z∂y ∂2
z

⎞
⎠

× xu(r′
‖)√

(x − d
2 )2 + (r‖ − r′

‖)2
. (25)

We focus on the linear regime, thereby disregarding higher-
order terms encoding the magnon-magnon scattering process
that becomes important for large magnon numbers [34,35].
The spin operators may then be expressed in terms of magnon
operators α̂ jk [17,30–32],

Ŝx,y(r) =
√

2S
∑
j,k

[
M jk

x,y(r)α̂ jk + M jk
x,y(r)∗α̂†

jk

]
,

Ŝz(r) = −S + (Ŝ2
x + Ŝ2

y )/(2S). (26)

The interaction for the upper surface then reduces to

Hu
d =

∑
jk

(Ljkα̂ jk + H.c.) +
∑

jk

∑
j′k′

[Ajk, j′k′ α̂ jkα̂ j′k′

+ Bjk, j′k′ α̂
†
jkα̂ j′k′ + Cjk, j′k′ α̂

†
jkα̂

†
j′k′ + Djk, j′k′ α̂ jkα̂

†
j′k′].

(27)

The coefficients of the linear term,

Ljk = −μ0M0

√
h̄γ M0

2
xu(−k)kz

×
∫

dx e(x− d
2 )|k|
[

im jk
x (x) + ky

|k|m jk
y (x)

]
, (28)

nearly vanish for DE modes with momenta kyŷ + kzẑ =
−|ky|ŷ + kzẑ when |k|d � 1 because of Eq. (15).

The linear terms do not conserve spin and therefore exert
a torque on the magnetization [M0(r) = M0ẑ for a clean
surface]. When the linear term is eliminated by the transfor-
mation α̂

†
jk → α̂

†
jk − Ljk/ω jk, Eq. (26) introduces transverse

components of the equilibrium magnetization,

M0
x,y(r) =

√
2M0γ h̄

∑
j,k

[
M jk

x,y(r)L∗
jk

ω jk
+ H.c.

]
. (29)

Strong surface disorder therefore affects the equilibrium mag-
netization and eigenmodes. However, here we focus on weak
disorder with |M0

x,y(r)| � M0, where we may disregard the
linear term.
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The quadratic terms in Hu
d represent two-magnon scattering by disorder, with coefficients

Ajk, j′k′ = −μ0γ h̄M0xu(−k − k′)

{∫
dx e(x− d

2 )|k|(m jk
x (x) m jk

y (x)
)( |k| −iky

−iky − k2
y

|k|

)(
m j′k′

x ( d
2 )

m j′k′
y ( d

2 )

)

+ 1

2

(kz + k′
z )2

|k + k′|
∫

dx
[
m jk

x (x)m j′k′
x (x) + m jk

y (x)m j′k′
y (x)

]
e(x− d

2 )|k+k′| − 2m jk
x (d/2)m j′k′

x (d/2)

}
, (30)

and

Bjk, j′k′ = −μ0γ h̄M0xu(k − k′)

{∫
dx e(x− d

2 )|k|(m jk
x (x)∗ m jk

y (x)∗
)(|k| iky

iky − k2
y

|k|

)(
m j′k′

x ( d
2 )

m j′k′
y ( d

2 )

)

+ 1

2

(kz − k′
z )2

|k − k′|
∫

dx
[
m jk

x (x)∗m j′k′
x (x) + m jk

y (x)∗m j′k′
y (x)

]
e(x− d

2 )|k−k′| − 2m jk
x (d/2)∗m j′k′

x (d/2)

}
. (31)

Cjk, j′k′ = A∗
jk, j′k′ and Djk, j′k′ = B∗

jk, j′k′ by hermiticity.
The first and nonlocal term in Eq. (31) couples two DE

states with opposite momenta only very weakly, because of
their (nearly) circular polarization m jk

x (x)∗ + i ky

|k|m
jk
x (x)∗ ≈ 0

when ky < 0 and |kz| < |ky|
√

M0/Hz [see Eq. (15)], and may
therefore be disregarded. The local second and third terms
are exponentially suppressed because of the low overlap of
the magnons with opposite momenta that are localized on
opposite surfaces. The large momentum backscattering of DE
magnons by surface disorder is therefore suppressed. Similar
results hold for the lower surface by ky → −ky and d/2 →
−d/2.

B. Zeeman energy

The free energy due to the Zeeman interaction is [25]

FZ = −μ0

∫
dr‖

∫ d/2+xu (r‖ )

−d/2+xl (r‖ )
dxM(r) · Hz, (32)

and the equivalent (quantum) Hamiltonian reads

HZ = μ0γ h̄

2S

∫
dr‖

∫ d/2+xu (r‖ )

−d/2+xl (r‖ )

[
Ŝ2

x (r) + Ŝ2
y (r)

]
Hzdx. (33)

As above, we derive the interaction Hamiltonian with small
surface roughness:

Hu
Z = μ0γ

2h̄2

2M0
Hz

∫
dr‖

[
Ŝ2

x

(
d

2
, r‖

)
+ Ŝ2

y

(
d

2
, r‖

)]
xu(r‖),

(34)

Hl
Z = −μ0γ

2h̄2

2M0
Hz

∫
dr‖

[
Ŝ2

x

(
d

2
, r‖

)
+ Ŝ2

y

(
d

2
, r‖

)]
xl (r‖).

(35)

By the Bogoliubov transformation (26), the interaction Hamil-
tonian by a rough upper surface becomes

Hu
Z =

∑
jk

∑
j′k′

[Ã jk, j′k′ α̂ jkα̂ j′k′ + B̃ jk, j′k′ α̂
†
jkα̂ j′k′

+ C̃ jk, j′k′ α̂
†
jkα̂

†
j′k′ + D̃ jk, j′k′ α̂ jkα̂

†
j′k′], (36)

in which

Ã jk, j′k = μ0γ h̄Hzxu(−k − k′)
∑

γ=x,y

m jk
γ

(
d

2

)
m j′k′

γ

(
d

2

)
,

B̃ jk, j′k = μ0γ h̄Hzxu(k − k′)
∑

γ=x,y

m jk
γ

(
d

2

)∗
m j′k′

γ

(
d

2

)
.

(37)

The fluctuations in the Zeeman energy are generated only by
the states with significant wave functions on the rough surface.
Similar result holds for the lower surface, with ky → −ky and
d/2 → −d/2.

IV. SURFACE DAMPING

We now use the Hamiltonians derived in the previous
section to find the damping of surface magnons by rough
surfaces, i.e., the lifetime for a surface magnon to reside at
particular states. We first use the Green’s function technique,
and subsequently discuss the results.

A. Analytical analysis

The Green function of a magnon in the jth band with in-
plane wave vector k is [36–38]

Gjk(ω) = 1

ω − ω jk + i� jk − 
 jk(ω)
, (38)

where ω jk is the resonance frequency, 
 jk(ω) is the self-
energy due to surface scattering, � jk = α0ω jk is the intrinsic
damping in the absence of surface roughness, and α0 is
the Gilbert damping constant [39] of the Kittel mode of a
film with smooth surfaces. The imaginary part of 
 governs
the magnon scattering rate or damping due to the surface
roughness

αs(ω jk ) ≡ −2 Im
(ωk )/ωk. (39)

In the Matsubara representation [36–38],

Gjk(τ − τ ′) = −
〈
Tτ α̂ jk(τ )α̂†

jk(τ ′) exp

(
−
∫ β

0
d τ̃Hs

int

)〉
,

(40)
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FIG. 2. Feynman diagram for the self-energy in the self-
consistent Born approximation. Here, → represents the full Green
function Gjk(iωn). The orange dashed line denotes the scattering
potential.

where β = 1/(kBT ) and T is the temperature. Tτ is the
chronological product with imaginary time τ . Hu

int is the
interaction Hamiltonian due to the surface roughness at the
upper layer,

Hu
int =

∑
jk

∑
j′k′

[A jk, j′k′ α̂ jkα̂ j′k′ + B jk, j′k′ α̂
†
jkα̂ j′k′ ] + H.c.,

(41)

in which A jk, j′k′ = Ajk, j′k′ + Ã jk, j′k′ and B jk, j′k′ = Bjk, j′k′ +
B̃ jk, j′k′ . In the weak coupling regime, the Green function in the
frequency-momentum space Gjk(iωn) = ∫ β

0 dτ eiωnτ Gjk(τ )
can be expanded in the self-consistent Born approxima-
tion [40–42] as

Gjk(iωn) = G(0)
jk (iωn) + G(0)

jk (iωn)

⎧⎨
⎩
∑
j′k′

|B j′k′, jk|2

×Gj′k′ (iωn) +
∑
j′k′

|A j′k′, jk|2Gj′k′ (−iωn)

⎫⎬
⎭

× Gjk(iωn), (42)

where G(0)
jk (iωn) = 1/(iωn − ω jk + i� jk ). The corresponding

Feynman diagram for the self-energy due to the surface scat-
tering is shown in Fig. 2.

In the real frequency domain, by the analytical continua-
tion iωn → ω + iδ, the self-energy of the magnons from the
surface roughness is calculated to be


 jk(ω) =
∑
j′k′

|B jk, j′k′ |2 G(0)
j′k′ (ω)

1 − G(0)
j′k′ (ω)
 j′k′ (ω)

+
∑
j′k′

|A jk, j′k′ |2 G(0)
j′k′ (−ω)

1 − G(0)
j′k′ (−ω)
 j′k′ (−ω)

. (43)

At the magnon’s frequency ω = ω jk,


 jk(ω jk ) =
∑
j′k′

|B jk, j′k′ |2 G(0)
j′k′ (ω jk )

1 − G(0)
j′k′ (ω jk )
 j′k′ (ω jk )

+
∑
j′k′

|A jk, j′k′ |2 G(0)
j′k′ (−ω jk )

1 − G(0)
j′k′ (−ω jk )
 j′k′ (−ω jk )

.

(44)

The A term is off-resonant, with negligible contribution to the
self-energy since ω jk + ω j′k′ � � j′k′ in G(0)

j′k′ (−ω jk ). Hence,
in the calculation below, we disregard this contribution,
which is the “rotating wave approximation” [35,43,44]. Using
Eq. (31), |B jk, j′k′ |2 ∝ xu,l (k − k′)xu,l (k′ − k) and, under the
ergodic hypothesis, a configurational averaging of 
 jk over
the disorder leads to a self-correlation function that we model
by a Gaussian [21,24],

〈xu,l (k)xu,l (−k)〉 = πR2
u,lσ

2
u,l exp

(−|k|2R2
u,l/4

)
, (45)

in which σ and R are the root mean square (rms) of the
amplitude and correlation length of the surface roughness,
respectively.

B. Results

Concrete predictions for the magnon damping in a spe-
cific material require knowledge of the sample and ma-
terial parameters. We focus on a YIG film with μ0M0 =
0.177 T [26,27,45], α0 = 5 × 10−5 [45,46], and d = 3 μm.
The surface topology of YIG can be varied by different
polishing methods [47]. Varying σ from several nm and corre-
lation lengths R of the order micrometers, strongly affects the
transverse spin Seebeck effect. However, here we focus on
longitudinal (in-plane) transport. We adopt here the smooth
surface roughness with R = 2 μm, σu = 4 nm as reported
for ferromagnetic metal films [21,47]. The interface to the
substrate gallium gadolinium garnet (GGG) is believed to be
of very high quality, so we disregard any interface roughness
of the lower surface, i.e., we adopt σl = 0. The choice for
a long-range surface roughness implies that magnetostatic
magnons cannot be scattered into (degenerate) exchange-
regime magnons with high momentum, which are therefore
disregarded in the following.

The dispersion relations of the surface and bulk modes
of magnetic films can be found in Fig. 3 in Ref. [7] and
textbooks. DE modes are allowed for finite kz as long as
|kz/ky| <

√
M0/Hz and frequencies above the magnetostatic

spin-wave band, ω > γμ0
√

H2
z + M0Hz [7]. We focus here on

DE magnons with kz = 0 and |ky|d > 1/2 that are exponen-
tially localized near the surface and frequencies approaching
the limiting constant γμ0(Hz + M0/2) [8] (see also Sec. II).
These magnons are spectrally distant from the magnetostatic
spin-wave band [7,8], which therefore do not contribute to the
self-energy of the surface magnons by two-magnon scattering;
see Eq. (44).

Figure 3 shows a plot of the effective scattering potential
|B jk jk′ | [defined below Eq. (41)], where index j is that of the
DE band, between a DE mode with momentum k′ = (1/d )ŷ
and DE modes with momentum k for in-plane magnetic field
Hz = M0 and correlation function Eq. (45).

The rough upper surface scatters magnons with posi-
tive momentum into magnons on the same surface, while
backscattering to magnons on the remote surface is sup-
pressed, for larger k almost completely. The phase space for
scattering is defined by the white and blue boundary kz =√

Hz/M0ky, the point of degeneracy of the DE and bulk modes.
We observe that the scattering is dominated by small mo-
mentum transfer |k − k′| � 2/R. Since the frequency is con-
served for two-magnon scattering, we plot the isofrequency
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FIG. 3. Momentum k dependence of the scattering potential
|Bkk′ | (in units of 10−8μ0γ M0) between DE modes. k′ is fixed to
(1/d )ŷ, i.e., the cross in the figure. The black and orange dashed
curves represent the equal-frequency contours for magnons with
momentum k′ = (1/d )ŷ and (2/d )ŷ, respectively. d is the film
thickness, σu/l the rms amplitude (upper/lower surface), and R
the correlation length of the surface roughness. The horizontal bar
indicates 2d/R.

contours for the magnons with momentum k′ = (1/d )ŷ
(black) and (2/d )ŷ (orange) respectively, illustrating that with
larger momentum the magnons are increasingly scattered
in the forward direction, reflecting the “ridge”-like energy
spectra of DE magnons [7]. This feature allows simplifications
of the analysis of DE magnon surface damping and transport
(see Sec. V) below.

As discussed above, DE magnons with momentum k =
|ky|ŷ can only scatter into other DE magnons. We find the
surface damping coefficient from the self-energy by self-
consistently solving the integral equations [42] (omitting the
constant band index)


k(ωk ) =
∑

k′
|Bkk′ |2 G(0)

k′ (ωk )

1 − G(0)
k′ (ωk )
k′ (ωk )

≈
∑

k′
|Bkk′ |2 G(0)

k′ (ωk )

1 − G(0)
k′ (ωk )
k(ωk )

. (46)

In the last step, we invoke the long-range nature of the
scattering potential |Bkk′ |2 ∝ e−|k−k′ |2R2/4 that allows us to
replace the self-energy 
k′ (ωk ) by 
k(ωk ). Equation (46) is
numerically solved by carrying out the integral of k′ explicitly.

The long-range nature of the scattering potential implies
localization of the scattering in momentum space with the
analytical estimate


k(ωk ) ≈ |Bkk|2
i�k − 
k(ωk )

L2

4π2
S, (47)

where L2 is the sample area and

S ≈ 2
√

Hz/M0

2π
π

(
2

R

)2

= 4
√

Hz/M0

R2
(48)

FIG. 4. Momentum dependence of surface damping coefficient
αs relative to the intrinsic Gilbert damping α0 = 5 × 10−5. The
applied magnetic fields are Hz = M0/2 (blue dashed-dotted curve
with squares), M0 (red solid curve with circles) and 2M0 (green
dashed curve with squares), respectively. Inset: Correlation length
R dependence of αs for Hz = M0 and kyd = 3. The black dot-dashed
curve with squares and the solid curve with circles are calculated
with σu = 4 μm and 2 μm, respectively.

denotes the scattering area in reciprocal space (see Fig. 3).
Disregarding the small intrinsic Gilbert damping α0 and the
real part of the self-energy, we find

|Im
k| ≈ L

πR
|Bkk|

(
Hz

M0

)1/4

. (49)

|Bkk| ∝ kσR/L implies that Im
k ∝ σky but does not depend
on R. When Hz = M0, and kyd = 2 (kyd = 3), αs = 5.67 ×
10−3 (0.84 × 10−2) which is of the same order of magnitude
as the numerical results αs = 7.0 × 10−3 (1.24 × 10−2).

Figure 4 is a plot of the ky and in-plane magnetic field
dependence of the calculated surface damping coefficient αs

that is normalized by the intrinsic Gilbert damping α0 = 5 ×
10−5, confirming the approximate linear dependence αs ∝
σky derived above, for larger momenta kyd � 2 and k = kyŷ.
Physically, this effect is caused by the increasing localiza-
tion of the wave functions at the surface, which becomes
more susceptible to the roughness, while simultaneously the
phase space for scattering increases. The enhanced surface
damping coefficient for larger wave numbers kyd � 2.5 is of
the order of 0.01, much larger than the Gilbert damping in
YIG, which should hinder the spectroscopic observation of
DE modes [48–50] as well as the manipulation of magnons
by light [18].

At large momenta, the coupling strength between DE
modes, determined by the amplitude overlap at the sample
surface, |Bkk′ |2 ∝ kk′ increases significantly [see Eqs. (31)
and (37)], reflecting their increased surface localization.
At large momenta (or strong surface roughness), the self-
consistent Born approximation breaks down [38,40–42].
The more involved single-site approximation could then be
used [51], but we note that the divergence for large wave
numbers is an artifact of the magnetostatic approximation: the
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exchange interaction eventually adds a finite inertia [33,52,53]
that reduces the amplitude of DE mode at the sample surface
and hence the scattering potential. A cutoff momentum kc

can take care of the exchange effect as follows [33,52,53].
When the exchange energy μ0γ M0αexk2 is one order of
magnitude smaller than the dipolar one μ0γ M0, i.e., αexk2

c �
0.1, the exchange interaction can be disregarded. For YIG
with αex = 3 × 10−16 [28,52,53], kc � 5 × 106m−1. With our
film thickness d = 3 × 10−6 m, kcd � 15. Here, we focus on
momenta kd � 4, which implies still relatively weak coupling
as well as absence of exchange effects.

For DE magnons with k = kyŷ, when kyd � 2, αs(ωk ) ∼
σky and increases slowly with large R when R � d . The inset
in Fig. 4 shows these dependencies for typical parameters
Hz = M0 and kyd = 3. The effect of the enhanced scattering
potential by a large R [see Eq. (45)] is largely canceled by
the simultaneous squeezing of the magnon scattering phase
space (see Fig. 3). The small effect of an applied field Hz is
caused by another cancellation of two effects: On one hand,
the effective scattering potential contributed by the Zeeman
perturbation [Eq. (37)] is proportional to Hz, while on the
other hand the Lorentzian magnon spectral function broadens
with Hz for constant α0. As long as |k|d � 1, αs does not
depend strongly on the thickness of the film either, because the
surface magnon wave function mk

x,y(d/2) ∝ √
k [see Eq. (6)]

and hence the local scattering potentials in Eqs. (31) and (37)
do not depend significantly on the thickness of the sample.
This also implies that the surface-induced damping of surface
magnons in magnetic spheres is not expected to depend on
a radius in the submillimeter range [14–17]. Also, surface
damping only weakly depends on a bulk Gilbert damping
when α0 � αs.

V. TRANSPORT OF SURFACE MAGNONS

Forward scattering is not as detrimental for transport as
backscattering. Large differences in the single-particle and
transport lifetimes of electrons therefore exist when the scat-
tering potential is long range [36–38,54]. We may expect sim-
ilar physics for DE-magnon transport in the linear response
regime [36–38,54].

A. Linear response theory

The magnon number current Jm and magnon heat cur-
rent JQ respond to a magnon accumulation gradient that is
parametrized by a spatially dependent temperature T and
chemical potential μm. In linear response,

(
Jm

JQ

)
=
(
L(11) L(12)

L(12) L(22)

)( ∇μm

∇T/(kBT )

)
, (50)

where L(i j)
are material response tensors [5,55]. Here we

focus on transport by ∇μm while ∇T = 0, i.e., the magnon

(number) conductivity L(11) ≡ L. In the static limit,

ReLαα = − lim
ω→0

Im
�ret

αα (ω)

ω
, (51)

with α = {y, z}.

�ret
αα (ω) = −i

∫ ∞

−∞
dt ′�(t − t ′)eiω(t−t ′ )〈[ĵ †

α (t ), ĵα (t ′)]〉 (52)

is the retarded current-current correlation function. ĵα =∑
k vα

k α̂
†
kα̂k represents the magnon number current (not di-

rectly proportional to the spin current when magnon polariza-
tion is elliptic) operator in terms of the magnon group velocity
vk ≡ ∂ωk/∂k. For DE magnons with momentum k = kyŷ,

v
y
ky

= (μ0γ M0)2d

4ωky

e−2kyd (53)

with the frequency [7,9]

ωky =
√

ω2
H + ωHωM + ω2

M

1 − e−2kyd

4
.

v
y
ky

exponentially tends to zero with increasing ky.
It is again convenient to calculate first the Matsubara Green

function �αα (iωn) followed by analytical continuation iωn →
ω + iδ [36–38,54]. Then

ReLαα =
∫ ∞

−∞

dε

2π

(
−dnB(ε)

dε

)
P(ε − iδ, ε + iδ), (54)

where nB(ε) ≡ (eβε − 1)−1 and

P(ε − iδ, ε + iδ) =
∑

k

vα
k �α

k (ε − iδ, ε + iδ)Gk(ε + iδ)

× Gk(ε − iδ). (55)

Here, �α
k is the vertex function, which in the ladder approxi-

mation satisfies the integral equation

�α
k (ε − iδ, ε + iδ) = vα

k +
∑

k′
�α

k′ (ε − iδ, ε + iδ)|Bkk′ |2

× Gk′ (ε + iδ)Gk′ (ε − iδ). (56)

This integral equation is difficult to solve in gen-
eral [36–38,54]. However, for DE magnons with momentum
perpendicular to the magnetization, we can find an approx-
imate solution for their transport perpendicular to the mag-
netization, i.e., Lyy, with long-ranged surface roughness as
follows.

We use the identity Gk(ε + iδ)Gk(ε − iδ) =
Ak(ε)/[2�k(ε)] with spectral function

Ak(ε) = 2�k(ε)

[ε − ωk − Re 
k(ε)]2 + �2
k(ε)

(57)

and �k(ε) = −Im
k(ε) being the total broadening by the in-
trinsic Gilbert damping and surface roughness [see Eq. (44)].
The spectral function appears in both Eqs. (55) and (56),
indicating that ωk ≈ ωk′ ≈ ε when the broadening is small
and Ak(ε) → 2πδ(ε − ωk ). Both k and k′ are nearly normal
to the magnetization, as established in the previous sections
(see Fig. 3). In other words, the DE magnons with momenta
k are scattered mainly along the ŷ direction. Furthermore, for
smooth surface roughness, the momentum transfer between
DE modes is not very large. When writing �

y
k(ε − iδ, ε +

iδ) = v
y
kγk(ε − iδ, ε + iδ), for |k|d � 1, using v

y
k ∼ e−2kyd
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from Eq. (53) and expressing |Bkk′ |2 ∼ Qkyk′
ye−|k′−ky ŷ|2R2/4 for

nearly one-dimensional scattering,

F = lim
ε→ωk

∑
k′

v
y
k′

v
y
ky

|Bkk′ |2
(ω − ωk′ )2 + (�k′ (ε))2

→
∑

k′
e−2(k′

y−ky )d e−|k′−ky ŷ|2R2/4
Qkyk′

y

(ωk − ωk′ )2 + �2
k

. (58)

The first and second exponentials limit the scattering vectors
|k′

y − ky| � 1/(2d ) and |k′
y − ky| � 2/R, respectively. When

2/R � 1/(2d ) and hence R � 4d , substituting the “mean
value” of k′

y by ky + 1/R in the first exponential leads to

F � e−2d/R
∑

k′

|Bkk′ |2
(ωk − ωk′ )2 + �2

k

= e−2d/R, (59)

where we used∑
k′

|Bkk′ |2 1

(ωk − ωk′ )2 + (Im
k )2
= 1 (60)

from the self-consistent Born approximation. γk therefore
does not depend on k to leading order when R � 4d . This
allows application of the mean value theorem, which leads to
γk′ ≈ γk. We arrive at the closed expression

�
y
k(ε − iδ, ε + iδ) ≈ v

y
k(1 − F )−1 (61)

and

ReLyy =
∫ ∞

−∞

dε

2π

(
−dnB(ε)

dε

)∑
k

(
v

y
k

)2 Ak(ε)

2�t
k(ε)

, (62)

where

2�t
k(ε) = 2�k(ε)

[
1 −

∑
k′

v
y
k′

v
y
k

Ak′ (ε)

2�k′ (ε)
|Bkk′ |2

]
. (63)

We thus derived a relation between the lifetime broadening in
Eq. (63) and the transport damping coefficient for the magnon
propagating nearly perpendicular to the magnetization:

αt (ωk ) = 2�t
k

ωk
= αs(ωk )(1 − F ), (64)

where F accounts for the backscattering contribu-
tion [36–38,54].

With d = 3 μm, the suppressing factor (58) is calculated
to be F � 0.61 when R = 12 μm, and F � 0.74 when R =
20 μm. αs does not change much with larger R when kyd �
2 (see Fig. 4) and hence αt decreases exponentially with
increasing R. The transport of DE magnons perpendicular
to the magnetization is therefore efficient for smooth surface
roughness, i.e., when R � 4d , even though their lifetime can
be very short. For larger k or shorter-ranged roughness, i.e.,
R � 4d , αt (ωk ) � αs(ωk ) still holds, but the transport of DE
magnons is not protected anymore because the group velocity
and in-scattering of DE magnons exponentially decreases. We
conclude that smooth surface roughness affects the transport
of DE magnons much less than the large lifetime broadening
suggests, which is caused by chirality and long-range disorder,
which both favor strong forward scattering.

B. Chiral conductivity

As addressed in Sec. IV B, DE magnons propagating in
opposite directions experience different scattering potential
when the surface roughness is different at the two surfaces,
which leads to different magnon conductivities when the in-

plane magnetic field is reversed, i.e., Li j
yy(M) 
= Li j

yy(−M).
The magnon conductivity (associated with the magnon num-
ber [55–57]) can be estimated from Eq. (62). In the weak scat-
tering regime, the spectral function Ak(ε) → 2πδ(ε − ωk ),
and the spin conductivity reduces to the conventional form
from the Boltzmann equation [55,57],

L �= ReL(11)
yy =

∑
k

(
v

y
k

)2 1

2�t
k

(
−dnB(ωk )

dωk

)
, (65)

where nB is the Boltzmann distribution function. The spin

Seebeck coefficient L(12)
and magnon heat conductivity L(22)

are obtained by replacing one or two magnon number-current
operators ĵα in Eq. (52) by the magnon energy-current opera-
tor ĵQ

α =∑k h̄ωkv
α
k α̂

†
kα̂k [38], leading to [38,55,57]

ReL(12)
yy =

∑
k

(
v

y
k

)2 h̄ωk

2�t
k

(
−dnB(ωk )

dωk

)
≈ h̄ωDEL, (66)

ReL(22)
yy =

∑
k

(
v

y
k

)2 (h̄ωk
)2

2�t
k

(
−dnB(ωk )

dωk

)
≈ (h̄ωDE)2L.

(67)

where the approximation is allowed when conduction is dom-
inated by the DE magnons with narrow bandwidth [7]. v

y
k can

be estimated by Eq. (53) due to the “ridge”-like shape of the
DE dispersion [7]. In Eq. (67), �t

k ≡ 1/(2τk ) is inversely pro-
portional to the momentum scattering time τk. Magnon trans-
port is thereby understood as magnon diffusion driven by the
magnon-accumulation gradient parametrized by the temper-
ature and chemical potential. In the relaxation-time approxi-
mation, the steady-state Boltzmann equation vk · ∇r f (k, r) =
−[ f (k, r) − nB(ωk )]/τk for the distribution function f (k, r)
reconciles our results with those in Refs. [55,57] for bulk
systems.

Figure 5 shows the magnetic-field dependence of the
magnon conductivities L(M) and L(−M) at room temper-
ature T = 300 K. When the upper surface is rough with
σu = 4 μm and R = 12 μm but the lower surface is flat, we
find L(−M) ≈ 3L(M) in a YIG film with thickness d =
3 μm, where L(M) and L(−M) are dominated by the DE
magnons near the upper and lower surfaces, respectively.
For momenta |k|d � 1, the scattering is chiral, so the up-
per surface roughness efficiently scatters the DE magnons
near the upper surface, but does not affect the modes on
the lower surface. Therefore, the spin conductivity changes
when the in-plane magnetic field is reversed. However, we
do not generate a short circuit even in the absence of all
scattering at the lower surface since the DE magnons with
relatively small momenta |k|d � 1 on the lower surface are
still scattered by the upper surface roughness. L decreases
with increasing magnetic field because ωk increases and the
freeze-out effect dnB(ωk )/dωk ∝ 1/ω2

k. From the transport
lifetime τ t

k ≡ 1/(2�t
k ), we expect L−1 ∝ σ (1 − e−2d/R).
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FIG. 5. Magnetic-field dependence of spin conductivities Lyy(M)
(blue dashed curve with squares) and Lyy(−M) (red solid curve with
circles) at room temperature, T = 300 K.

We may compare the surface conductivity with that of
the parallel channel of the bulk exchange modes with higher
energy but larger group velocity. From the calculated bulk
conductivity Lb at room temperature, in the film with d =
3μm, L′ = Lbd ≈ 5 × 1041(s J)−1 [57], about four orders in
magnitude larger than the surface contribution. The spin
conductivity contributed by the magnetostatic bulk magnons
should be much smaller than L′ because of their small group
velocity. DE magnon channels can still be identified in trans-
port by their chirality or by selective excitation.

Conductivities parametrize the ability for transport, here
the magnon number, angular momentum, and energy. The
magnon number and heat current can be directly obtained
from the transport coefficients and Eq. (50) when the gradients
are known. Often, conductivities can be expressed in terms of
transport relaxation times τk [36,38,54]. For magnon transport
perpendicular to the magnetization [36,38,54,55,57],

τk ≡ 1

2�t
k

= 1

αs(k)ωk(1 − F )
. (68)

We plot the momentum dependence of the transport lifetime
of the upper-surface DE magnons in the inset of Fig. 5 for
the same parameters as the main panel. With increasing mo-
mentum, the transport lifetime decreases from nearly 100 ns
to tens of picoseonds.

Pirro et al. [23] report a micromagnetic study of ultrathin
films with a local strongly scattering defect, reporting a sup-
pression of backscattering of magnons in the DE configuration
far into the exchange regime. This result appears to be similar
to ours, but it is difficult to compare these two very different
approaches. Pirro et al. do not address the magnon lifetime
or self-energy, which is important for experiments that study
their spectral properties. Moreover, we are able to treat thick
films in which the surface states are well developed, which
are difficult to model by micromagnetism. We also focus
on weak long-range correlated disorder in order to exclude

FIG. 6. Momentum dependence of the scattering potential |BkK |
(in units of 10−8μ0γ M0) between the Kittel mode (marked by a
cross) and DE modes with wave vector k. The orange dashed curves
kz = ±√

Hz/M0ky are the equal-frequency contour of the DE and
Kittel modes that define the boundary between surface and bulk
modes [7].

scattering into volume exchange modes, which may reduce
transport significantly when the spectra of surface and bulk
modes overlap [23]. We plan to extend the present quasiana-
lytical method to assess the thin-film regime and short-range
scattering potentials by including the exchange interaction in
a future study.

VI. EXCITATION OF SURFACE MAGNONS
FROM SURFACE ROUGHNESS

For long-range disorder, the scattering of DE magnons with
momenta kyŷ into bulk states close to the Kittel mode in
energy is very inefficient, and we disregarded it completely
in the discussion of the DE magnon lifetimes. Also, for
the surface conductivity, the scattering into the Kittel mode
contributes only in a very small region of momentum space.
However, the inverse process, i.e., the scattering of bulk
magnons into surface modes with finite kz is allowed (see
Fig. 6) [7]: The DE modes with momenta k = kyŷ are well
separated in energy and therefore cannot scatter elastically
into bulk modes. On the other hand, the DE modes very close
to the boundary between bulk and DE modes with significant
kz are nearly degenerate with the Kittel mode [7] and can be
populated via surface roughness when the latter is excited by a
uniform microwave field. DE magnon numbers on both sides
of a film excited by the uniform microwave field differ when
the roughness is asymmetric [11–13].

A. Model

We consider a subspace consisting of the Kittel modes
and DE modes with momenta k = (0, ky, kz ), with operators
α̂K and α̂k respectively, and interaction matrix elements BkK .
The Hamiltonian of noninteracting [34,35] magnons coupled
to a uniform linearly polarized microwave field Hxx̂ with
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frequency ωd reads

Ĥ = ωK α̂
†
K α̂K +

∑
k

ωkα̂
†
kα̂k +

∑
k

(BkK α̂
†
K α̂k

+ B∗
kK α̂

†
kα̂K ) + 2gĤx(t )(α̂K + α̂

†
K ). (69)

Here, Ĥx(t ) = ĥx(0)e−iωd t + ĥ†
x (0)eiωd t is the magnetic-

field operator in terms of photon operator ĥx, and g =
μ0d

√
2γ M0/2 mK

x arises from the Zeeman coupling between
the Kittel mode and the uniform microwave magnetic field.
The master equations for the magnon operators are obtained
from the Heisenberg equation [35,43,44], augmented by the
dampings �K and �k:

dα̂K

dt
= −iωK α̂K − �K α̂K − i

∑
k

BkK α̂k − igĤx(t ), (70)

dα̂k

dt
= −iωkα̂k − �kα̂k − iB∗

kK α̂K . (71)

From Eq. (71), we obtain [35,43,44]

α̂k(t ) = α̂k(0)e−iωkt−�kt

− iB∗
kK

∫ t

0
dτ e−(iωk+�k )(t−τ )α̂K (τ ). (72)

When the damping and excitation of the Kittel mode is weak,
the evolution of α̂K is free dα̂K/dt ≈ −iωK α̂K ≈ −iωd α̂K for
the small time interval �k:

α̂K (τ ) ≈ α̂K (t )eiωd (t−τ ), (73)

inside the integral often referred to as “Markov
approximation” [43,44]. At large times

α̂k(t ) = α̂k(0)e−iωkt−�kt + iB∗
kK α̂K (t )

1 − e(iωd −iωk−�k )t

iωd − iωk − �k
,

(74)

which settles into the steady state

α̂k(t → ∞) = −B∗
kK α̂K (t → ∞)

ωk − ωd − i�k
. (75)

By substituting this into Eq. (70) for t → ∞,

dα̂K

dt
= − iωK α̂K − �K α̂K − igĤx(t )

+
∑

k

|BkK |2α̂K

−i(ωk − ωd ) − �k
. (76)

Using the rotating wave approximation [35,43,44],

α̂K (t → ∞) = −gĥx (0)e−iωd t

ωK − ωd − i�K −∑k
|BkK |2

ωk−ωd −i�k

. (77)

From Eq. (75), the excited DE magnon population

δnDE ≡
∑

k

〈α̂†
kα̂k〉 = ρs〈α̂†

K α̂K〉, (78)

where

ρs ≡
∑

k

|BkK |2
(ωk − ωK )2 + �2

k

(79)

is the FMR excitation efficiency of the DE magnons.

B. Results

We computed the surface-roughness–assisted excitation of
the DE magnons for YIG films with material parameters
introduced in Sec. IV B. The disorder on the upper and
lower surfaces is chosen to be asymmetric, σu = 4 nm and
σl = 0, nm and the correlation length R = 2 μm, as above.
In Fig. 6, we plot the effective scattering potential |BkK |
between the Kittel mode and DE modes with momentum
k for Hz = M0.

The Kittel mode couples dominantly with the DE modes
with positive ky, i.e., the ones propagating on the upper surface
that is chosen to be rough, even though the microwave field is
uniform [11–13]. The orange dashed lines kz = ±√

Hz/M0ky

are the equal-frequency contours of the DE and Kittel modes
that separate bulk and surface modes (see Sec. II).

The efficiency ρs of the surface-roughness–assisted excita-
tion of DE magnons in Eq. (79) with the resonant excitation
of Kittel mode ωd = ωK is ρs = 2.4%, 3.4%, 4.8% and 7.5%
for Hz = 0.5M0, M0, 1.5M0, and 2M0, respectively. A signif-
icant number of DE magnons is excited during FMR and it
increases with magnetic field. The excitation efficiency can
be enhanced by rougher surfaces.

The FMR-excited DE magnons with momentum |k|d � 1
are distributed by |BkK |2/[(ωk − ωK )2 + �2

k]. The denomi-
nator is small for the magnons close to the dark-blue re-
gions in Fig. 6. These magnons are well localized to the
film surface even when |k|d � 1 with finite kz and they are
still chiral [7], which implies that with asymmetric surface
roughness one surface is preferentially excited. These results
can be tested by Brillouin light scattering spectra for films
with different roughness, and help one to understand the
heat conveyer effect [10] in recent experiments in which a
uniform magnetic field was shown to generate chiral heat
transport [11–13].

VII. SUMMARY

In conclusion, we investigated the effects of long-range,
static surface roughness on the damping and excitation of
surface magnons in thick magnetic films with in-plane mag-
netic fields. We reveal an additional damping channel for
the surface magnons that strongly reduces the lifetime of
surface magnons with wave number k � d−1, where d is the
film thickness, possibly far above the bulk Gilbert damping.
This indicates that the spectral features of surface magnons
are smeared out by surface disorder. It is also bad news
for cavity optomagnonics [58–61] with DE modes, since
the strong dephasing by surface roughness suppresses the
coupling to optical whispering gallery modes. On the other
hand, transport of DE magnons is protected since scattering is
dominantly in the forward direction, which is caused by their
nearly circular polarization and unidirectional propagation.
The surface roughness also mixes the Kittel and DE modes
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quite efficiently, such that even a uniform microwave field
can pump considerable amounts of surface magnons out of
the magnetic order, which is observable by Brillouin light
scattering experiments. Moreover, an asymmetry of the sur-
face roughness on both sides of the film generates unbalanced
distributions of the surface magnons and chirality during spin
and heat transport.

The surface roughness may be also dynamic, i.e., is both
space and time dependent, generated by thermal surface
acoustic waves [62–64]. We will show in future work that our

framework for the static surface roughness may be generalized
to the dynamic one.

ACKNOWLEDGMENTS

This work is financially supported by the Nederlandse Or-
ganisatie voor Wetenschappelijk Onderzoek (NWO) as well
as JSPS KAKENHI Grant No. 26103006. One of the authors
(T.Y.) would like to thank Simon Streib for useful discussions.

[1] B. Lenk, H. Ulrichs, F. Garbs, and M. Münzenberg, Phys. Rep.
507, 107 (2011).

[2] A. V. Chumak, V. I. Vasyuchka, A. A. Serga, and B. Hillebrands,
Nat. Phys. 11, 453 (2015).

[3] D. Grundler, Nat. Nanotechnol. 11, 407 (2016).
[4] V. E. Demidov, S. Urazhdin, G. de Loubens, O. Klein, V. Cros,

A. Anane, and S. O. Demokritov, Phys. Rep. 673, 1 (2017).
[5] G. E. W. Bauer, E. Saitoh, and B. J. van Wees, Nat. Mater. 11,

391 (2012).
[6] L. R. Walker, Phys. Rev. 105, 390 (1957).
[7] R. W. Damon and J. R. Eshbach, J. Phys. Chem. Solids 19, 308

(1961).
[8] A. Akhiezer, V. Baríakhtar, and S. Peletminski, Spin Waves

(North-Holland, Amsterdam, 1968).
[9] D. D. Stancil and A. Prabhakar, Spin Waves—Theory and

Applications (Springer, New York, 2009).
[10] T. An, V. I. Vasyuchka, K. Uchida, A. V. Chumak, K.

Yamaguchi, K. Harii, J. Ohe, M. B. Jungfleisch, Y. Kajiwara, H.
Adachi, B. Hillebrands, S. Maekawa, and E. Saitoh, Nat. Mater.
12, 549 (2013).

[11] O. Wid, J. Bauer, A. Müller, O. Breitenstein, S. S. P. Parkin, and
G. Schmidt, Sci. Rep. 6, 28233 (2016).

[12] E. Shigematsu, Y. Ando, S. Dushenko, T. Shinjo, and M.
Shiraishi, Appl. Phys. Lett. 112, 212401 (2018).

[13] P. Wang, L. F. Zhou, S. W. Jiang, Z. Z. Luan, D. J. Shu, H. F.
Ding, and D. Wu, Phys. Rev. Lett. 120, 047201 (2018).

[14] A. Osada, R. Hisatomi, A. Noguchi, Y. Tabuchi, R. Yamazaki,
K. Usami, M. Sadgrove, R. Yalla, M. Nomura, and Y.
Nakamura, Phys. Rev. Lett. 116, 223601 (2016).

[15] X. Zhang, N. Zhu, C.-L. Zou, and H. X. Tang, Phys. Rev. Lett.
117, 123605 (2016).

[16] J. A. Haigh, A. Nunnenkamp, A. J. Ramsay, and A. J. Ferguson,
Phys. Rev. Lett. 117, 133602 (2016).

[17] S. Sharma, Y. M. Blanter, and G. E. W. Bauer, Phys. Rev. B 96,
094412 (2017).

[18] S. Sharma, Y. M. Blanter, and G. E. W. Bauer, Phys. Rev. Lett.
121, 087205 (2018).

[19] M. Sparks, R. Loudon, and C. Kittel, Phys. Rev. 122, 791
(1961).

[20] R. Arias and D. L. Mills, Phys. Rev. B 60, 7395 (1999).
[21] A. Y. Dobin and R. H. Victora, Phys. Rev. Lett. 92, 257204

(2004).
[22] E. Schlömann, J. Appl. Phys. 41, 1617 (1969).
[23] M. Mohseni, T. Bracher, Q. Wang, D. A. Bozhko, R. Verba, B.

Hillebrands, and P. Pirro, arXiv:1806.01554.
[24] T. Yu and M. W. Wu, Phys. Rev. B 93, 045414 (2016).

[25] L. D. Landau and E. M. Lifshitz, Electrodynamics of Continu-
ous Media, 2nd ed. (Butterworth-Heinenann, Oxford, 1984).

[26] A. G. Gurevich and G. A. Melkov, Magnetization Oscillations
and Waves (CRC, Boca Raton, FL, 1996).

[27] P. Hansen, J. Appl. Phys. 45, 3638 (1974).
[28] S. Klingler, A. V. Chumak, T. Mewes, B. Khodadadi, C. Mewes,

C. Dubs, O. Surzhenko, B. Hillebrands, and A. Conca, J. Phys.
D 48, 015001 (2015).

[29] R. Verba, G. Melkov, V. Tiberkevich, and A. Slavin, Phys. Rev.
B 85, 014427 (2012).

[30] C. Kittel, Quantum Theory of Solids (Wiley, New York, 1963).
[31] A. Kamra and W. Belzig, Phys. Rev. Lett. 116, 146601

(2016).
[32] T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940).
[33] B. A. Kalinikos, Sov. J. Phys. 24, 718 (1981).
[34] H. Suhl, J. Phys. Chem. Solids 1, 209 (1957).
[35] V. E. Zaharov, V. S. L’vov, and S. S. Starobinets, Sov. Phys.

Usp. 17, 896 (1975).
[36] A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Meth-

ods of Quantum Field Theory in Statistical Physics (Prentice
Hall, Englewood Cliffs, NJ, 1963).

[37] A. L. Fetter and J. D. Walecka, Quantum Theory of Many
Particle Systems (McGraw-Hill, New York, 1971).

[38] G. D. Mahan, Many Particle Physics (Plenum, New York,
1990).

[39] T. L. Gilbert, IEEE Trans. Magn. 40, 3443 (2004).
[40] A. B. Migdal, Sov. Phys. JETP 34, 996 (1958).
[41] L. Gor’kov, Sov. Phys. JETP 36, 1364 (1959).
[42] T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437

(1982).
[43] C. W. Gardiner and M. J. Collett, Phys. Rev. A 31, 3761 (1985).
[44] A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and

R. J. Schoelkopf, Rev. Mod. Phys. 82, 1155 (2010).
[45] J. L. Chen, C. P. Liu, T. Liu, Y. Xiao, K. Xia, G. E. W. Bauer,

M. Z. Wu, and H. M. Yu, Phys. Rev. Lett. 120, 217202 (2018).
[46] H. Chang, P. Li, W. Zhang, T. Liu, A. Hoffmann, L. Deng, and

M. Wu, IEEE Magn. Lett. 5, 6700104 (2014).
[47] A. Aqeel, I. J. Vera-Marun, B. J. van Wees, and T. T. M. Palstra,

J. Appl. Phys. 116, 153705 (2014).
[48] G. Srinivasan, C. E. Patton, and P. R. Emtage, J. Appl. Phys. 61,

2318 (1987).
[49] P. A. Grünberg, Rev. Mod. Phys. 80, 1531 (2008).
[50] Y. Hashimoto, S. Daimon, R. Iguchi, Y. Oikawa, K. Shen, K.

Sato, D. Bossini, Y. Tabuchi, T. Satoh, B. Hillebrands, G. E. W.
Bauer, T. H. Johansen, A. Kirilyuk, T. Rasing, and E. Saitoh,
Nat. Commun. 8, 15859 (2017).

174402-11

https://doi.org/10.1016/j.physrep.2011.06.003
https://doi.org/10.1016/j.physrep.2011.06.003
https://doi.org/10.1016/j.physrep.2011.06.003
https://doi.org/10.1016/j.physrep.2011.06.003
https://doi.org/10.1038/nphys3347
https://doi.org/10.1038/nphys3347
https://doi.org/10.1038/nphys3347
https://doi.org/10.1038/nphys3347
https://doi.org/10.1038/nnano.2016.16
https://doi.org/10.1038/nnano.2016.16
https://doi.org/10.1038/nnano.2016.16
https://doi.org/10.1038/nnano.2016.16
https://doi.org/10.1016/j.physrep.2017.01.001
https://doi.org/10.1016/j.physrep.2017.01.001
https://doi.org/10.1016/j.physrep.2017.01.001
https://doi.org/10.1016/j.physrep.2017.01.001
https://doi.org/10.1038/nmat3301
https://doi.org/10.1038/nmat3301
https://doi.org/10.1038/nmat3301
https://doi.org/10.1038/nmat3301
https://doi.org/10.1103/PhysRev.105.390
https://doi.org/10.1103/PhysRev.105.390
https://doi.org/10.1103/PhysRev.105.390
https://doi.org/10.1103/PhysRev.105.390
https://doi.org/10.1016/0022-3697(61)90041-5
https://doi.org/10.1016/0022-3697(61)90041-5
https://doi.org/10.1016/0022-3697(61)90041-5
https://doi.org/10.1016/0022-3697(61)90041-5
https://doi.org/10.1038/nmat3628
https://doi.org/10.1038/nmat3628
https://doi.org/10.1038/nmat3628
https://doi.org/10.1038/nmat3628
https://doi.org/10.1038/srep28233
https://doi.org/10.1038/srep28233
https://doi.org/10.1038/srep28233
https://doi.org/10.1038/srep28233
https://doi.org/10.1063/1.5022452
https://doi.org/10.1063/1.5022452
https://doi.org/10.1063/1.5022452
https://doi.org/10.1063/1.5022452
https://doi.org/10.1103/PhysRevLett.120.047201
https://doi.org/10.1103/PhysRevLett.120.047201
https://doi.org/10.1103/PhysRevLett.120.047201
https://doi.org/10.1103/PhysRevLett.120.047201
https://doi.org/10.1103/PhysRevLett.116.223601
https://doi.org/10.1103/PhysRevLett.116.223601
https://doi.org/10.1103/PhysRevLett.116.223601
https://doi.org/10.1103/PhysRevLett.116.223601
https://doi.org/10.1103/PhysRevLett.117.123605
https://doi.org/10.1103/PhysRevLett.117.123605
https://doi.org/10.1103/PhysRevLett.117.123605
https://doi.org/10.1103/PhysRevLett.117.123605
https://doi.org/10.1103/PhysRevLett.117.133602
https://doi.org/10.1103/PhysRevLett.117.133602
https://doi.org/10.1103/PhysRevLett.117.133602
https://doi.org/10.1103/PhysRevLett.117.133602
https://doi.org/10.1103/PhysRevB.96.094412
https://doi.org/10.1103/PhysRevB.96.094412
https://doi.org/10.1103/PhysRevB.96.094412
https://doi.org/10.1103/PhysRevB.96.094412
https://doi.org/10.1103/PhysRevLett.121.087205
https://doi.org/10.1103/PhysRevLett.121.087205
https://doi.org/10.1103/PhysRevLett.121.087205
https://doi.org/10.1103/PhysRevLett.121.087205
https://doi.org/10.1103/PhysRev.122.791
https://doi.org/10.1103/PhysRev.122.791
https://doi.org/10.1103/PhysRev.122.791
https://doi.org/10.1103/PhysRev.122.791
https://doi.org/10.1103/PhysRevB.60.7395
https://doi.org/10.1103/PhysRevB.60.7395
https://doi.org/10.1103/PhysRevB.60.7395
https://doi.org/10.1103/PhysRevB.60.7395
https://doi.org/10.1103/PhysRevLett.92.257204
https://doi.org/10.1103/PhysRevLett.92.257204
https://doi.org/10.1103/PhysRevLett.92.257204
https://doi.org/10.1103/PhysRevLett.92.257204
https://doi.org/10.1063/1.1659081
https://doi.org/10.1063/1.1659081
https://doi.org/10.1063/1.1659081
https://doi.org/10.1063/1.1659081
http://arxiv.org/abs/arXiv:1806.01554
https://doi.org/10.1103/PhysRevB.93.045414
https://doi.org/10.1103/PhysRevB.93.045414
https://doi.org/10.1103/PhysRevB.93.045414
https://doi.org/10.1103/PhysRevB.93.045414
https://doi.org/10.1063/1.1663830
https://doi.org/10.1063/1.1663830
https://doi.org/10.1063/1.1663830
https://doi.org/10.1063/1.1663830
https://doi.org/10.1088/0022-3727/48/1/015001
https://doi.org/10.1088/0022-3727/48/1/015001
https://doi.org/10.1088/0022-3727/48/1/015001
https://doi.org/10.1088/0022-3727/48/1/015001
https://doi.org/10.1103/PhysRevB.85.014427
https://doi.org/10.1103/PhysRevB.85.014427
https://doi.org/10.1103/PhysRevB.85.014427
https://doi.org/10.1103/PhysRevB.85.014427
https://doi.org/10.1103/PhysRevLett.116.146601
https://doi.org/10.1103/PhysRevLett.116.146601
https://doi.org/10.1103/PhysRevLett.116.146601
https://doi.org/10.1103/PhysRevLett.116.146601
https://doi.org/10.1103/PhysRev.58.1098
https://doi.org/10.1103/PhysRev.58.1098
https://doi.org/10.1103/PhysRev.58.1098
https://doi.org/10.1103/PhysRev.58.1098
https://doi.org/10.1007/BF00941342
https://doi.org/10.1007/BF00941342
https://doi.org/10.1007/BF00941342
https://doi.org/10.1007/BF00941342
https://doi.org/10.1016/0022-3697(57)90010-0
https://doi.org/10.1016/0022-3697(57)90010-0
https://doi.org/10.1016/0022-3697(57)90010-0
https://doi.org/10.1016/0022-3697(57)90010-0
https://doi.org/10.1070/PU1975v017n06ABEH004404
https://doi.org/10.1070/PU1975v017n06ABEH004404
https://doi.org/10.1070/PU1975v017n06ABEH004404
https://doi.org/10.1070/PU1975v017n06ABEH004404
https://doi.org/10.1109/TMAG.2004.836740
https://doi.org/10.1109/TMAG.2004.836740
https://doi.org/10.1109/TMAG.2004.836740
https://doi.org/10.1109/TMAG.2004.836740
https://doi.org/10.1103/RevModPhys.54.437
https://doi.org/10.1103/RevModPhys.54.437
https://doi.org/10.1103/RevModPhys.54.437
https://doi.org/10.1103/RevModPhys.54.437
https://doi.org/10.1103/PhysRevA.31.3761
https://doi.org/10.1103/PhysRevA.31.3761
https://doi.org/10.1103/PhysRevA.31.3761
https://doi.org/10.1103/PhysRevA.31.3761
https://doi.org/10.1103/RevModPhys.82.1155
https://doi.org/10.1103/RevModPhys.82.1155
https://doi.org/10.1103/RevModPhys.82.1155
https://doi.org/10.1103/RevModPhys.82.1155
https://doi.org/10.1103/PhysRevLett.120.217202
https://doi.org/10.1103/PhysRevLett.120.217202
https://doi.org/10.1103/PhysRevLett.120.217202
https://doi.org/10.1103/PhysRevLett.120.217202
https://doi.org/10.1109/LMAG.2014.2350958
https://doi.org/10.1109/LMAG.2014.2350958
https://doi.org/10.1109/LMAG.2014.2350958
https://doi.org/10.1109/LMAG.2014.2350958
https://doi.org/10.1063/1.4897933
https://doi.org/10.1063/1.4897933
https://doi.org/10.1063/1.4897933
https://doi.org/10.1063/1.4897933
https://doi.org/10.1063/1.337943
https://doi.org/10.1063/1.337943
https://doi.org/10.1063/1.337943
https://doi.org/10.1063/1.337943
https://doi.org/10.1103/RevModPhys.80.1531
https://doi.org/10.1103/RevModPhys.80.1531
https://doi.org/10.1103/RevModPhys.80.1531
https://doi.org/10.1103/RevModPhys.80.1531
https://doi.org/10.1038/ncomms15859
https://doi.org/10.1038/ncomms15859
https://doi.org/10.1038/ncomms15859
https://doi.org/10.1038/ncomms15859


YU, SHARMA, BLANTER, AND BAUER PHYSICAL REVIEW B 99, 174402 (2019)

[51] B. Velicky, S. Kirkpatrick, and H. Ehrenreich, Phys. Rev. 175,
747 (1968).

[52] R. E. De Wames and T. Wolfram, Appl. Phys. Lett. 15, 297
(1969).

[53] T. Wolfram and R. E. De Wames, Phys. Rev. Lett. 24, 1489
(1970).

[54] H. Haug and A. P. Jauho, Quantum Kinetics in Trans-
port and Optics of Semiconductors (Springer, Berlin,
1996).

[55] L. J. Cornelissen, K. J. H. Peters, G. E. W. Bauer, R. A. Duine,
and B. J. van Wees, Phys. Rev. B 94, 014412 (2016).

[56] C. Sun, T. Nattermann, and V. L. Pokrovsky, J. Phys. D: Appl.
Phys. 50, 143002 (2017).

[57] B. Flebus, K. Shen, T. Kikkawa, K. I. Uchida, Z. Qiu, E. Saitoh,
R. A. Duine, and G. E. W. Bauer, Phys. Rev. B 95, 144420
(2017).

[58] O. O. Soykal and M. E. Flatté, Phy. Rev. Lett. 104, 077202
(2010).

[59] H. Huebl, C. W. Zollitsch, J. Lotze, F. Hocke, M. Greifenstein,
A. Marx, R. Gross, and S. T. B. Goennenwein, Phy. Rev. Lett.
111, 127003 (2013).

[60] Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Usami, and
Y. Nakamura, Phy. Rev. Lett. 113, 083603 (2014).

[61] X. Zhang, C.-L. Zou, L. Jiang, and H. X. Tang, Phy. Rev. Lett.
113, 156401 (2014).

[62] M. Weiler, L. Dreher, C. Heeg, H. Huebl, R. Gross, M. S.
Brandt, and S. T. B. Goennenwein, Phys. Rev. Lett. 106, 117601
(2011).

[63] R. Sasaki, Y. Nii, Y. Iguchi, and Y. Onose, Phys. Rev. B 95,
020407(R) (2017).

[64] R. Verba, I. Lisenkov, I. Krivorotov, V. Tiberkevich, and A.
Slavin, Phys. Rev. Appl. 9, 064014 (2018).

174402-12

https://doi.org/10.1103/PhysRev.175.747
https://doi.org/10.1103/PhysRev.175.747
https://doi.org/10.1103/PhysRev.175.747
https://doi.org/10.1103/PhysRev.175.747
https://doi.org/10.1063/1.1653006
https://doi.org/10.1063/1.1653006
https://doi.org/10.1063/1.1653006
https://doi.org/10.1063/1.1653006
https://doi.org/10.1103/PhysRevLett.24.1489
https://doi.org/10.1103/PhysRevLett.24.1489
https://doi.org/10.1103/PhysRevLett.24.1489
https://doi.org/10.1103/PhysRevLett.24.1489
https://doi.org/10.1103/PhysRevB.94.014412
https://doi.org/10.1103/PhysRevB.94.014412
https://doi.org/10.1103/PhysRevB.94.014412
https://doi.org/10.1103/PhysRevB.94.014412
https://doi.org/10.1088/1361-6463/aa5cfc
https://doi.org/10.1088/1361-6463/aa5cfc
https://doi.org/10.1088/1361-6463/aa5cfc
https://doi.org/10.1088/1361-6463/aa5cfc
https://doi.org/10.1103/PhysRevB.95.144420
https://doi.org/10.1103/PhysRevB.95.144420
https://doi.org/10.1103/PhysRevB.95.144420
https://doi.org/10.1103/PhysRevB.95.144420
https://doi.org/10.1103/PhysRevLett.104.077202
https://doi.org/10.1103/PhysRevLett.104.077202
https://doi.org/10.1103/PhysRevLett.104.077202
https://doi.org/10.1103/PhysRevLett.104.077202
https://doi.org/10.1103/PhysRevLett.111.127003
https://doi.org/10.1103/PhysRevLett.111.127003
https://doi.org/10.1103/PhysRevLett.111.127003
https://doi.org/10.1103/PhysRevLett.111.127003
https://doi.org/10.1103/PhysRevLett.113.083603
https://doi.org/10.1103/PhysRevLett.113.083603
https://doi.org/10.1103/PhysRevLett.113.083603
https://doi.org/10.1103/PhysRevLett.113.083603
https://doi.org/10.1103/PhysRevLett.113.156401
https://doi.org/10.1103/PhysRevLett.113.156401
https://doi.org/10.1103/PhysRevLett.113.156401
https://doi.org/10.1103/PhysRevLett.113.156401
https://doi.org/10.1103/PhysRevLett.106.117601
https://doi.org/10.1103/PhysRevLett.106.117601
https://doi.org/10.1103/PhysRevLett.106.117601
https://doi.org/10.1103/PhysRevLett.106.117601
https://doi.org/10.1103/PhysRevB.95.020407
https://doi.org/10.1103/PhysRevB.95.020407
https://doi.org/10.1103/PhysRevB.95.020407
https://doi.org/10.1103/PhysRevB.95.020407
https://doi.org/10.1103/PhysRevApplied.9.064014
https://doi.org/10.1103/PhysRevApplied.9.064014
https://doi.org/10.1103/PhysRevApplied.9.064014
https://doi.org/10.1103/PhysRevApplied.9.064014

