
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

MobileClusterNet:
Unsupervised Learnable
Clustering of Mobile 3D
Objects
A. Kulshreshtha

Supervisors: D. M. Gavrila and T. de Vries Lentsch

Tuesday, 22 October 2024



MobileClusterNet:
Unsupervised Learnable
Clustering of Mobile 3D

Objects
by

A. Kulshreshtha

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Tuesday October 29, 2024 at 3:00 PM.

Student number: 5695821
Project duration: February 1, 2024 – October 22, 2024
Thesis committee: Dr. D. M. Gavrila, TU Delft, supervisor and committee chair

Ir. T. de Vries Lentsch, TU Delft, daily supervisor and committee member
Dr. H. Caesar, TU Delft, Cognitive Robotics committee member

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/


MobileClusterNet: Unsupervised Learnable Clustering of Mobile 3D Objects

Ayush Kulshreshtha
Delft University of Technology

Abstract

Unsupervised 3D object detection methods can reduce
the reliance on human-annotations by leveraging raw sen-
sor data directly for supervision. Recent approaches com-
bine density-based spatial clustering with motion and ap-
pearance cues to extract object proposals from the scene,
which serve as pseudo-annotations. However, density-
based methods struggle with the uneven data densities seen
in LiDAR point clouds, and fail to distinguish between fore-
ground and background objects effectively. To address this
issue, this thesis introduces MobileClusterNet, a learnable
framework designed for 3D spatial clustering. MobileClus-
terNet incorporates a novel loss module which utilizes ap-
pearance embeddings alongside scene flow information,
thereby learning to generate high-quality clusters consist-
ing of both static and dynamic mobile objects. Annotations
generated by MobileClusterNet can be used for training
any existing supervised detector, without the need for ex-
tensive self-training. Experimental results on the Waymo
Open Dataset demonstrate that MobileClusterNet outper-
forms traditional density-based methods like HDBSCAN in
clustering performance by a large margin, and provides
high quality proposals for training supervised detectors.

1. Introduction

Autonomous driving is set to redefine the approach to mo-
bility, safety and urban design, offering benefits such as im-
proved traffic flow, reduction in accidents, lower fuel emis-
sions, and increased accessibility for the disabled and el-
derly [14]. At the heart of the autonomous driving tech-
nology is 3D object detection, which is a core component
of the perception pipeline. Current state-of-the-art methods
for 3D object detection rely predominantly on supervised
learning. Training these sophisticated supervised detection
models requires extensive human-annotated datasets, which
are not only time consuming and costly to produce but can
also be prone to human error [34]. Additionally, these mod-
els face challenges adapting across different datasets [53].

In contrast, unsupervised learning offers a promising al-
ternative to reduce the dependency on extensive annotated

datasets by directly extracting meaningful patterns and ob-
ject characteristics from raw, unlabeled sensor data. In the
2D domain, there has been a notable emergence of ’foun-
dation models’ [7, 39]—large models pre-trained with self-
supervised learning that generate robust visual features ap-
plicable to a wide array of downstream tasks, including 2D
object discovery, without requiring fine-tuning [46, 47].

Unlike images, 3D point cloud data is typically sparse,
and objects within the point cloud are unevenly distributed
across its range; that is, objects might not appear salient
in the point cloud. Given that a LiDAR sensor captures
accurate spatial information of the environment, spatial
clustering has become an integral component of 3D unsu-
pervised object discovery. Recent works in this domain
[3, 29, 54, 62, 64] employ density-based spatial clustering
methods like DBSCAN [13] and HDBSCAN [5] to extract
3D instance proposals from the scene. These methods work
on the core assumption that 3D space is characterised by
regions of high point density (object clusters) separated by
regions of low point density (noise). However, this assump-
tion often falls short for LiDAR point clouds due to factors
like data incompleteness (part of the object can be occluded
by itself) and low point density in far ranges. Furthermore,
density-based spatial clustering does not differentiate be-
tween foreground (mobile) and background (non-mobile)
object instances. We define mobile instances as objects
that have the ability to move, such as vehicles, cyclists, and
pedestrians, which may appear either static or dynamic in
the scene. Accurately detecting mobile objects and predict-
ing their future trajectories are crucial tasks in autonomous
driving, as this allows the vehicle to plan and execute safe
maneuvers.

To discover mobile objects in the scene, spatial cluster-
ing is often combined with temporal information to gen-
erate dynamic object proposals. An existing 3D detector
is then trained using these dynamic object proposals, with
the hypothesis of inference-time generalization to static in-
stances of mobile classes based on their geometric fea-
tures. However, this training approach inherently penalizes
the detection of static mobile objects, potentially causing
the detector to overfit subtle variations in the data distri-
bution between static and dynamic instances. To address

1



Figure 1. MobileClusterNet effectively generates robust clustering proposals for both static and dynamic mobile objects. By
leveraging appearance-based prototype embeddings of dynamic objects, it identifies semantically similar static clusters, thereby generating
high quality clustering proposals. These can then be utilized to train supervised 3D object detectors.

this, [3, 62, 64] employ self-training, where a detector is
iteratively re-trained using labels generated from its own
predictions, gradually incorporating static instances into the
training set. While self-training can boost performance, it
is computationally expensive and risks including static in-
stances of immobile objects in the training set, which can
lead to label inconsistencies.

To discover static mobile instances without self-training,
UNION [29] employs a vision foundation model to generate
a visual appearance embedding for each spatial cluster. This
embedding helps in grouping spatial clusters that appear vi-
sually similar. Additionally, by estimating the motion of
each cluster through self-supervised scene flow, UNION
can differentiate between static foreground and static back-
ground instances, thereby refining its object proposal se-
lection. However, like other methods based on density-
based spatial clustering, UNION’s performance is affected
by the quality of the initial spatial clusters, particularly in
sparse regions of the point cloud where it is prone to under-
segmentation/over-segmentation. In contrast, Wang et al.
[54] introduced ClusterNet, a learnable point cloud cluster-
ing network designed to overcome the limitations of tradi-
tional density-based methods. Despite its improvements,
ClusterNet is trained solely using dynamic object propos-
als from LiDAR data, and utilizes a slow, multi-modal joint
optimization procedure to discover static mobile instances.

We hypothesize that the quality of spatial clustering pro-
posals can be enhanced by adopting a learning-based ap-

proach that integrates semantic features directly during the
training stage. This integration enables the network to learn
to identify both dynamic and static mobile instances within
the scene. The key contributions of this thesis include:

1. The LiDAR-only ClusterNet architecture by Wang et al.
[54] is extended with a multi-modal loss module to a new
network called MobileClusterNet.

2. We propose a novel unsupervised training strategy for
MobileClusterNet that incorporates appearance embed-
dings directly during training, enabling it to learn to clus-
ter all mobile objects in the scene, whether static or dy-
namic.

3. Validation through experiments on the Waymo Open
Dataset [49] demonstrate that MobileClusterNet outper-
forms traditional spatial clustering methods by a large
margin, and it’s 3D proposals serve as effective pseudo-
labels for training off-the-shelf 3D detectors.

2. Related work

2.1. Unsupervised 2D object discovery

Early works on unsupervised object detection in images fo-
cused on generating class-agnostic region proposals as the
initial stage of an object detection pipeline. Techniques
such as graph-based segmentation leveraged distinct ob-
ject characteristics, including color information and edge
boundaries [1, 17, 50] as well as motion cues [48].

2



Figure 2. Overview of MobileClusterNet. Multi-modal input data (blue) is fed through processing modules (purple) to extract spatial,
motion and semantic information (green) before being fed to MobileClusterNet (orange).

More recently, self-supervised learning has emerged as
a promising direction, with Vision Transformers (ViTs)
trained via self-distillation showing an ability to learn fea-
tures that inherently encode semantic segmentation infor-
mation [7, 39]. These learned feature embeddings are effec-
tively employed in methods such as LOST [46], FreeSOLO
[51], and cutLER [52] to generate unsupervised object
masks, enabling 2D instance segmentation without the need
for manual annotations. Self-supervised learning is dis-
cussed in greater detail in the section 6.

2.2. Unsupervised 3D object discovery

2.2.1 Spatial clustering

This section only discusses a few relevant methods for spa-
tial clustering. A detailed discussion on additional methods
can be found in section 7.
Density-based clustering DBSCAN [13] is a popular
method for unsupervised spatial clustering, particularly for
identifying arbitrary-shaped clusters. It uses two key pa-
rameters which define the minimum number of points re-
quired for a cluster and the radius for point reachability.
DBSCAN can effectively handle outliers and identify clus-
ters of varying shapes and sizes without needing a prede-
fined number of clusters. However, its performance is sen-
sitive to the chosen parameters, and it struggles with vary-
ing point densities or when clusters are not well-separated.
HDBSCAN [5] extends DBSCAN to handle clusters with
varying densities by building a hierarchical cluster tree and
condensing it based on the stability of clusters across dif-
ferent scales. Unlike DBSCAN, HDBSCAN does not re-
quire specifying a radius for point reachability, making
it more flexible in datasets with uneven densities. De-
spite these advantages, HDBSCAN still suffers from over-
segmentation/under-segmentation issues and cannot differ-
entiate between mobile and non-mobile instances.

Learning-based clustering As opposed to density-based
clustering, ClusterNet by Wang et al. can learn to cluster
the point cloud into (dynamic) foreground instances. For
each point, it assigns a foreground or background label and
an instance ID, yield K clusters per LiDAR frame. Cluster-
Net starts by voxelizing the 3D points and augments them
with the features from a transformer-based feature extractor
[16]. Inspired by VoteNet [42], its voting module predicts
class labels and center offsets, aggregating voted points into
spatial clusters via center voting results. Predicted cluster
centers form graph vertices which are connected if their dis-
tance is below a threshold, with each connected component
representing a cluster instance.

ClusterNet is trained only using dynamic object propos-
als, and penalizes static instances of mobile objects during
training. In contrast, our method directly teaches the net-
work to discover all mobile instances during training.

2.2.2 Object proposal refinement

Since density-based clustering methods cannot distinguish
between foreground and background, various methods in-
corporate motion cues from consecutive LiDAR frames to
discover moving objects. MODEST [62] utilizes ephemer-
ality as a heuristic to detect objects by requiring multiple
traversals over the same area to identify transient objects.
This dependency on specific data collection protocols lim-
its its scalability. Alternatively, methods like Najibi et al.
[37] and LISO [3] enhance spatial 3D instance proposals
with self-supervised scene flow [4, 30, 31] and temporal
tracking, extracting dynamic object proposals from spatial
clusters. As stated in [3], [37] focuses only on discovering
moving objects within the scene and suffers from a large
performance gap between discovering dynamic mobile and
static mobile objects. LISO [3] undergoes multiple train-
ing iterations using self-training, gradually incorporating

3



static class instances. However, this iterative retraining in-
troduces inconsistencies, with the network being penalized
for detecting static class instances, and the propagation of
false positive training targets. OYSTER [64] takes a dif-
ferent approach and relies on the notion that spatial cluster-
ing methods can perform relatively well on the near range
of a LiDAR point cloud, due to higher density. They only
extract proposals from the near-range and rely on data aug-
mentations for generalization to far range. Temporal consis-
tency along frames is used to further refine object proposals.
However, like other methods, it struggles to segregate fore-
ground from background, affecting its overall effectiveness.

We also use self-supervised scene flow [31] to train Mo-
bileClusterNet, but it can learn to directly output high qual-
ity object proposals, without relying on self-training.

2.2.3 Static object discovery with semantic cues

In [54], a 3D instance segmentation network (ClusterNet)
and a 2D localization network (Faster R-CNN [43]) are
consecutively optimized, exploiting spatio-temporal con-
sistency across 2D video frames and 3D point cloud se-
quences as a supervisory signal. This work does not make
use of multi-modal features jointly for generating pseudo-
bounding boxes. UNION [29] on the other hand uses ap-
pearance embeddings generated by encoding camera im-
ages with a DINOv2 vision transformer (ViT) to group spa-
tial clusters into appearance-based pseudo classes. Appear-
ance classes with a high proportion of dynamic components,
determined via scene flow, are classified as mobile.

Our method builds on this by computing appearance em-
beddings similar to those in UNION. Instead of using these
embeddings to segregate mobile clusters from the set of all
spatial clusters, we use them to establish dynamic object
prototype embeddings that serve as direct training signals
for our clustering network.

3. Methodology

3.1. MobileClusterNet overview

An overview of MobileClusterNet is shown in Figure 2. The
input to the framework consists of raw LiDAR point clouds
and multi-camera images captured by M cameras. At each
time step t, let Pt ∈ RN×3 denote a single point cloud
and Im,t ∈ RH×W×3 denote an image captured by cam-
era m ∈ M , with height H and width W . We assume that
the LiDAR sensor and the camera suite have overlapping
fields of view (FoV), and that projection matrices, along
with transformation matrices, are available for projecting
and transforming data across sensor frames and time steps.

The output of MobileClusterNet includes class-agnostic
bounding box annotations βt for all detected mobile objects
in frame t. Each bounding box bt = [x, y, z, l, w, h, θ] ∈

βt consists of the geometric center (x, y, z), dimensions
(l, w, h), and orientation θ of the mobile object. These
pseudo-bounding boxes can be utilized as supervisory sig-
nals for training any off-the-shelf 3D object detector.

The two input modalities undergo distinct processing
steps. LiDAR point clouds are preprocessed to extract dy-
namic object proposals (as detailed in 3.2), while camera
images are encoded using the pre-trained DINOv2 encoder
[39], yielding appearance feature maps (as detailed in 3.3).
Subsequently, LiDAR points are projected onto the image
plane and each point is augmented with its corresponding
appearance feature vector based on the appearance feature
map. These augmented point features are used to generate
dynamic appearance prototypes (as detailed in 3.4), which
help in discovering static mobile instances during training.

3.2. Dynamic object proposals generation

To extract the dynamic object proposals from LiDAR point
clouds, the following processing steps are followed:
Ground-removal. We remove ground plane points from
the LiDAR point clouds since they do not represent mo-
bile objects. Following the method outlined in [29], we em-
ploy RANSAC [18] for plane fitting. All LiDAR points that
are more than 30cm above this plane are classified as non-
ground.
Ego-motion compensation. The ego-motion of the vehi-
cle is compensated using the pose information provided for
each frame in the Waymo Open Dataset [49].
Scene flow estimation. In the next step, we adopt the self-
supervised Fast Neural Scene Flow [31] method to estimate
the flow field between consecutive LiDAR frames. This
method was chosen primarily due to its fast inference time.
All LiDAR points having a flow value larger than 1m/s are
classified as dynamic points, while others are classified as
static points.
Spatial clustering. HDBSCAN [5] is used to form spatial
clusters from the non-ground points, yielding Ot clusters
for frame t. A cluster is deemed to be a dynamic cluster if
at least 80% of its points are classified as dynamic points,
resulting in O′

t dynamic spatial clusters.
Bounding-box fitting. Since training MobileClusterNet re-
quires both, point classification labels as well as center off-
set values, we fit a 3D bounding box bt to each spatial
cluster in O′

t following the same procedure as in [29, 62].
Bounding boxes are filtered based on prior geometric as-
sumptions to exclude implausible detections (further details
provided in section 9). This yields a set of dynamic object
proposals, βdyn,t, for each LiDAR frame at time t.

3.3. Visual appearance embeddings

To extract semantic cues from the scene, we utilize im-
age features generated by a DINOv2 ViT encoder [39].
Each camera image Im,t is encoded into a feature map

4



Fm,t ∈ RHf×Wf×Cf , where Hf ,Wf , and Cf represent the
dimensions and number of channels in the feature map, re-
spectively (further details provided in section 10).

LiDAR points from Pt are then projected onto the cam-
era image planes using projection matrices, with each point
being assigned a corresponding appearance vector af ∈
RCf from the image feature map. This results in a points
feature map Fp,t ∈ RN×Cf for each point cloud.

For each pseudo bounding box b′i,t within the set of dy-
namic object proposals βdyn,t, we extract the corresponding
subset of the points feature map Fp′,t ∈ RNdyn×Cf , where
Ndyn denotes the dynamic points belonging to b′i,t. By tak-
ing the mean of all appearance vectors in Fp′,t, we get the
visual appearance embedding Ai,t ∈ RCf for the pseudo
bounding box.

3.4. Calculating appearance prototypes

We aggregate the visual appearance embeddings from all
dynamic proposals βdyn across the dataset to form a dy-
namic feature map Fdyn ∈ RT×Cf , where T represents
the total number of dynamic object proposals in the dataset.
This consolidated feature map captures crucial information
about the consistency and variability of appearance embed-
dings among dynamic clusters.

In the next step, we want to group the dynamic appear-
ance embeddings into appearance-based pseudo-classes,
where each pseudo-class belongs to the category of mobile
objects. Similar to UNION, we use the K-Means cluster-
ing algorithm [35]. However, while UNION performs K-
Means on appearance embeddings from all spatial clusters,
we only consider dynamic clusters in calculating mobile
object prototypes. Since the number of clusters K is not
known beforehand, a silhouette score analysis is done to de-
termine the optimal number of clusters, with an upper limit
(max num K) set at 50. The centroids of the resulting K
clusters serve as the prototype appearance embeddings.

To classify any new appearance embedding A′
i,t ∈ RCf

as ’similar’ to a prototype embedding, we define a scalar
distance threshold dk for each prototype ρk ∈ RCf us-
ing the Euclidean distance metric. Given that the K-Means
algorithm is not designed to handle any outliers, we set
each prototype’s distance threshold as the mean distance
of all cluster inlier embeddings from the cluster centroid
(here, cluster refers to a K-Means cluster). To further pre-
vent non-mobile instances from influencing the prototypes,
we assign a distance threshold of zero to prototypes with
fewer than 1% inliers (of all dynamic appearance embed-
dings). A′

i,t is classified as ’similar to a prototype ρk if∥∥ρk −A′
i,t

∥∥
2
≤ dk. This process is summarized in Al-

gorithm 1.
As a result, all LiDAR points belonging to a spatial clus-

ter are classified as mobile points if the cluster’s appearance
embedding is close to one of the K appearance prototypes.

Algorithm 1 Calculate Prototypes and Distance Thresholds
Input: Fdyn ∈ RT×Cf ,max num K
Output prototypes, distance thresholds

function CALCULATE PROTOTYPES(Fdyn,max num K)
scores← []
distance thresholds← []
all possible Ks← {2, . . . ,max num K}

for k in all possible Ks do
clusterer← KMEANS(k, Fdyn) ▷ Fit KMeans
cluster labels← GET LABELS(clusterer)
score← SILHOUETTE SCORE(Fdyn, cluster labels)
append score to scores

end for

best K← all possible Ksi : i = argmax(scores)
best clusterer← KMEANS(best K, Fdyn) ▷ Fit

Kmeans to data with n clusters = best K

cluster labels K← GET LABELS(best clusterer)
prototypes← GET CENTROIDS(best clusterer)

for this label in unique(cluster labels K) do
centroid← prototypes[this label]
inliers← GET INLIERS(cluster labels K, Fdyn)
if length(inliers) < 0.01 · length(Fdyn) then

append 0 to distance thresholds ▷ Discard
clusters with less than 1% inliers

else
dists← EUCLIDEAN DIST(centroid, inliers)
mean dist← AVERAGE(dists)
append mean dist to distance thresholds

end if
end for

return prototypes, distance thresholds
end function

3.5. Training MobileClusterNet

Architecture. The architecture of MobileClusterNet, based
on ClusterNet [54], features a transformer-based sparse
voxel encoder [16] and dual heads for point classification
and center offset voting. First, the encoder voxelizes the
3D LiDAR points to extract voxelized features from them.
These features are then projected back onto the points, re-
sulting in point features fi ∈ R3+D, where D is the fea-
ture dimension. The classification head outputs a class label
(yi ∈ 0, 1) for each point, where 0 represents a non-mobile
point and 1 represents a mobile point. The offset head out-
puts an offset distance vector ∆xi ∈ R3, indicating dis-
tance to its corresponding cluster center. Based on the cen-

5



Figure 3. Deep-dive into the loss module of MobileClusterNet.

ter voting results, the predicted mobile points are grouped
into spatial clusters using connected-components labeling
[16] (further details are provided in section 8).

The pseudo-labels for training MobileClusterNet are
derived from the dynamic object proposals βdyn. The
mobile classification targets are the inlier points in βdyn

and the regression targets are based on the centers of the
bounding boxes in βdyn. The loss function combines Focal
loss [32] for point classification and L1 loss for offset
predictions. The total loss is expressed as a weighted sum
L = Loffset+λLclass. The L1 loss term is calculated only
for those points which are classified as mobile points in
the pseudo-labels. In the following subsection, we discuss
MobileClusterNet’s training strategy which allows it to
discover static instances of mobile objects during training.

Training strategy. An overview of the loss module of Mo-
bileClusterNet is shown in Figure 3. During the forward
pass, the network predicts class labels and center-offset dis-
tances for each point. Points predicted as mobile (yi = 1)
but labeled as non-mobile in the pseudo-annotations (ygt =
0) are termed as false positives. Points labelled as mobile
in the pseudo-annotations contribute to both the offset loss
(Loffset) and the classification loss (Lclass).

Next, we segregate all false positive points from the
point cloud Pfp,t and cluster them based on their predicted
center-offsets using connected-components labeling, result-
ing in a set of false-positive spatial clusters ζfp,t. For each
cluster ζi ∈ ζfp,t, we calculate its visual appearance em-
bedding by averaging the appearance features of all points
within the cluster, using the previously calculated points
feature map (see 3.3). A cluster ζi is classified as a mobile
cluster if its appearance embedding closely matches any of

the K prototype appearance embeddings (refer to 3.4); oth-
erwise, it is classified as non-mobile. All points within mo-
bile clusters in ζfp,t are not penalized during training i.e the
loss component from these points is set to zero. Conversely,
points in non-mobile clusters influence only the classifica-
tion loss (Lclass).

This approach ensures that false positives which resem-
ble dynamic mobile instances are treated as static mobile in-
stances and excluded from contributing to the training loss,
aiding in static object discovery.

4. Experiments
In this section, we specify our implementation setup, the
used dataset, baselines and metrics as well as the our main
results.

4.1. Dataset & metrics

Dataset. Our experiments are conducted on the large and
geographically diverse Waymo Open Dataset (WOD) [49]
which comprises approximately 158k training and 40k val-
idation frames annotated at 10Hz. To keep the compute
resources manageable during the thesis, we subsample the
frames at 1Hz, resulting in 10% of WOD which is used as
our training set. All experiments are done class-agnostic
(ie the semantic labels are mobile and non-mobile objects)
and the provided annotations are not used anywhere except
during evaluation.
Evaluation: We evaluate using the same protocol as in
[3, 37], considering only the predictions and ground-truth
within a 100m × 40m BEV grid centered around the ego-
vehicle.

We train a CenterPoint detector [61] on the set of all
bounding box annotations βT , generated by MobileClus-

6



Table 1. Evaluation results on WOD Validation set. All experiments are conducted class-agnostic on a BEV grid 100m× 40m around the
vehicle. †: Results taken from [3]

Method Annotations Self-training Temporal tracking 3D AP@0.4

Supervised

MobileClusterNet (LiDAR only) ground-truth ✗ ✗ 43.75
CenterPoint [61] ground-truth ✗ ✗ 67.5

Unsupervised

HDBSCAN [5] - ✗ ✗ 3.25
MobileClusterNet (Ours) Dynamic object proposals (3.2) ✗ ✗ 21.73

CenterPoint HDBSCAN ✗ ✗ 3.08
CenterPoint OYSTER [64] ✓ ✓ 8.4†

CenterPoint LISO [3] ✗ ✓ 21.1†

CenterPoint LISO [3] ✓ ✓ 30.8†

CenterPoint MobileClusterNet (Ours) ✗ ✗ 26.16

(a) MobileClusterNet predictions. (b) CenterPoint (trained with MobileClusterNet annotations) predictions.

Figure 4. Visualization of 3D object detection on WOD validation set. Blue boxes represent the ground truth annotations while red boxes
represent the discovered ones.

terNet on the 10% WOD training set. The main metric
for assessing performance is Average precision (AP), cal-
culated on CenterPoint predictions on the WOD validation
set. We use 3D AP since that is the default evaluation metric
in WOD.

Additionally, we also directly evaluate the raw clustering
performance of MobileClusterNet by calculating the AP on
all bounding box annotations generated by MobileCluster-
Net on the WOD validation set.
Baselines: We compare the performance of CenterPoint
when trained on MobileClusterNet pseudo-labels against
pseudo-labels generated using the following unsupervised,
class-agnostic methods: 1) HDBSCAN [5], 2) OYSTER
[64], 3) LISO [3]. Additionally, we report the raw cluster-
ing performance of MobileClusterNet and HDBSCAN on
WOD validation set. The supervised CenterPoint perfor-
mance is stated as an upper limit to our method’s potential.

We do not include MODEST [62], Najibi et al. [37],
ClusterNet [54] and UNION [29] in our baselines. MOD-
EST requires multiple traversals of the same location and
they do not report performance of their method on WOD.
Najibi et al. and ClusterNet follow a different evalua-
tion criteria and did not make their code publicly available.

UNION does not provide evaluation results or code com-
patibility on WOD.

4.2. Implementation details

We utilize the open-source framework MMDetection3D
[10] for implementing MobileClusterNet and conducting all
experiments involving the CenterPoint detector. All exper-
iments are conducted on 3 NVIDIA V100 32 GiB GPUs.
Further implementation details are provided in section 11.

4.3. Main results

The main evaluation results from our experiments are sum-
marized in Table 1. Utilizing only 10% of WOD for train-
ing, MobileClusterNet demonstrates strong performance.
It significantly outperforms HDBSCAN in raw clustering
ability, giving higher quality spatial clusters which can be
utilised in various downstream tasks, in an autonomous
driving perception pipeline.

When comparing the performance of a CenterPoint de-
tector trained with annotations from different methods, Mo-
bileClusterNet surpasses both OYSTER and LISO (with-
out self-training). It is noteworthy that these methods train

7



on the full WOD training set and refine their object pro-
posals with temporal tracking. While integrating tempo-
ral tracking was beyond the scope of this thesis’ timeline,
it presents a future opportunity for boosting performance.
Additionally, MobileClusterNet closes the gap to the per-
formance of LISO with self-training, while avoiding the
computationally-expensive iterative re-training procedure.

Qualitative comparisons between annotations from Mo-
bileClusterNet and predictions by CenterPoint trained on
these annotations (see Figure 4) show improvements in
the shape and orientation of predicted bounding boxes by
CenterPoint. This improvement is anticipated since Mo-
bileClusterNet is primarily designed for spatial clustering
rather than (direct) 3D object detection.

4.4. Ablation study

We analyze the contribution of different sources of supervi-
sory information—spatial cues, motion cues, and semantic
cues—in the performance of MobileClusterNet. This anal-
ysis is performed considering both the direct annotations
from MobileClusterNet and the predictions from Center-
Point trained on these annotations. The results of this ab-
lation study are presented in Table 2.

The most significant improvement in MobileCluster-
Net’s performance stems from the incorporation of visual
appearance features during its training. This is in-line with
the findings of UNION and supports our hypothesis that
MobileClusterNet can effectively learn to identify static
mobile objects during training, by incorporating visual fea-
tures alongside motion information.

Table 2. Impact of different supervisory cues on MobileClusterNet
performance. Best performance is highlighted in bold.

Annotations 3D AP@0.4

MobileClusterNet
Spatial clusters (HDBSCAN [5]) 5.66
+ Motion cues (3.2) 8.46
+ Appearance cues (3.3) 21.73

CenterPoint trained on MobileClusterNet annotations
Spatial clusters 3.53
+ Motion cues 13.51
+ Appearance cues 26.16

5. Conclusion
In this thesis, we addressed the problem of unsupervised
3D object detection by introducing MobileClusterNet, a
learnable framework for 3D spatial clustering. MobileClus-
terNet leverages a novel training strategy that integrates
spatial cues, motion cues, and semantic cues, enabling it to
identify all mobile objects in the scene. Our approach be-
gins with extracting dynamic proposals using density-based
clustering and scene flow estimation. Subsequently, camera

Figure 5. Visualization of the bounding boxes generated by Mo-
bileClusterNet when trained using dynamic object proposals only,
showing multiple false negatives.

images are encoded into feature maps to calculate visual
appearance prototypes for dynamic objects. We supervise
MobileClusterNet using these dynamic object proposals
and appearance prototypes, by not penalizing false positive
predictions that visually resemble the dynamic prototypes.
This allows MobileClusterNet to discover static instances
of mobile objects in the scene. Experimental results on the
Waymo Open Dataset demonstrate the effectiveness of our
learning-based approach to clustering; it outperforms some
of the existing baselines using only 10% of the data and
avoids the computationally expensive temporal tracking
and self-training. We achieve an AP of 26.16 on the WOD
validation set.

Limitations and Future work: One limitation to Mo-
bileClusterNet is that it currently does not distinguish be-
tween different object classes. A future extension could in-
volve assigning pseudo-classes to MobileClusterNet’s pre-
dictions based on the closest appearance prototype.

The calculation of prototypes within MobileClusterNet
is done using K-Means, which struggles with noise and out-
liers. Therefore if non-mobile objects are present in the
set of dynamic object proposals, they can influence pro-
totype calculations. To mitigate this, we currently discard
all appearance clusters comprising less than 1% of inliers,
which risks overlooking rare but genuine mobile objects.
Future work can explore using alternative methods for clus-
tering apperance embeddings that can better handle outliers.
Furthermore, the current implementation uses the K-Means
centroids as prototypes, and there is potential to directly
learn robust prototypes from the data, using self-supervised
techniques like contrastive learning.

Additionally, the use of scene flow for dynamic object
proposal extraction is computationally intensive, and
the per-point flow information is not utilized. Future
versions of MobileClusterNet might benefit from al-
ternative methods to detect motion, such as integrating
radar data, which directly provides the per-point radial
velocity, or employing newer unsupervised techniques
like M-Detector [56], which can rapidly classify LiDAR
points as static or moving based on occlusion principles.

8



References
[1] Bogdan Alexe, Thomas Deselaers, and Vittorio Ferrari. Mea-

suring the objectness of image windows. IEEE transactions
on pattern analysis and machine intelligence, 34(11):2189–
2202, 2012. 2

[2] Mihael Ankerst, Markus M Breunig, Hans-Peter Kriegel,
and Jörg Sander. Optics: Ordering points to identify the clus-
tering structure. ACM Sigmod record, 28(2):49–60, 1999. 2

[3] Stefan Baur, Frank Moosmann, and Andreas Geiger. Liso:
Lidar-only self-supervised 3d object detection. arXiv
preprint arXiv:2403.07071, 2024. 1, 2, 3, 6, 7

[4] Stefan Andreas Baur, David Josef Emmerichs, Frank Moos-
mann, Peter Pinggera, Björn Ommer, and Andreas Geiger.
Slim: Self-supervised lidar scene flow and motion segmen-
tation. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 13126–13136, 2021. 3

[5] Ricardo JGB Campello, Davoud Moulavi, and Jörg Sander.
Density-based clustering based on hierarchical density esti-
mates. In Pacific-Asia conference on knowledge discovery
and data mining, pages 160–172. Springer, 2013. 1, 3, 4, 7,
8, 2

[6] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Pi-
otr Bojanowski, and Armand Joulin. Unsupervised learning
of visual features by contrasting cluster assignments. Ad-
vances in neural information processing systems, 33:9912–
9924, 2020. 1

[7] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In Pro-
ceedings of the IEEE/CVF international conference on com-
puter vision, pages 9650–9660, 2021. 1, 3

[8] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In International conference on ma-
chine learning, pages 1597–1607. PMLR, 2020. 1

[9] Nathaniel Chodosh, Deva Ramanan, and Simon Lucey. Re-
evaluating lidar scene flow for autonomous driving. arXiv
preprint arXiv:2304.02150, 2023. 8

[10] MMDetection3D Contributors. MMDetection3D: Open-
MMLab next-generation platform for general 3D object
detection. https://github.com/open-mmlab/
mmdetection3d, 2020. 7

[11] Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr
Bojanowski. Vision transformers need registers, 2023. 5

[12] Alexey Dosovitskiy. An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 1

[13] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu,
et al. A density-based algorithm for discovering clusters in
large spatial databases with noise. In kdd, pages 226–231,
1996. 1, 3, 2

[14] Daniel J Fagnant and Kara Kockelman. Preparing a nation
for autonomous vehicles: opportunities, barriers and policy
recommendations. Transportation Research Part A: Policy
and Practice, 77:167–181, 2015. 1

[15] Lue Fan, Ziqi Pang, Tianyuan Zhang, Yu-Xiong Wang, Hang
Zhao, Feng Wang, Naiyan Wang, and Zhaoxiang Zhang.
Embracing single stride 3d object detector with sparse trans-
former. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 8458–8468,
2022. 3, 6

[16] Lue Fan, Feng Wang, Naiyan Wang, and Zhao-Xiang Zhang.
Fully sparse 3d object detection. Advances in Neural Infor-
mation Processing Systems, 35:351–363, 2022. 3, 5, 6

[17] Pedro F Felzenszwalb and Daniel P Huttenlocher. Efficient
graph-based image segmentation. International journal of
computer vision, 59:167–181, 2004. 2

[18] Martin A Fischler and Robert C Bolles. Random sample
consensus: a paradigm for model fitting with applications to
image analysis and automated cartography. Communications
of the ACM, 24(6):381–395, 1981. 4

[19] Karl Pearson F.R.S. Liii. on lines and planes of closest fit
to systems of points in space. The London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science, 2
(11):559–572, 1901. 5

[20] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
Tallec, Pierre Richemond, Elena Buchatskaya, Carl Doersch,
Bernardo Avila Pires, Zhaohan Guo, Mohammad Ghesh-
laghi Azar, et al. Bootstrap your own latent-a new approach
to self-supervised learning. Advances in neural information
processing systems, 33:21271–21284, 2020. 1

[21] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. Cure:
An efficient clustering algorithm for large databases. ACM
Sigmod record, 27(2):73–84, 1998. 1

[22] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. Rock: A
robust clustering algorithm for categorical attributes. Infor-
mation systems, 25(5):345–366, 2000. 1

[23] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollár, and Ross Girshick. Masked autoencoders are scalable
vision learners. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 16000–
16009, 2022. 1

[24] Alexander Hinneburg, Daniel A Keim, et al. An efficient
approach to clustering in large multimedia databases with
noise. Bibliothek der Universität Konstanz Konstanz, Ger-
many, 1998. 2

[25] George Karypis, Eui-Hong Han, and Vipin Kumar.
Chameleon: Hierarchical clustering using dynamic model-
ing. computer, 32(8):68–75, 1999. 1

[26] L Kaufman and PJ Rousseeuw. Partitioning around medoids
(program pam). finding groups in data: an introduction to
cluster analysis. 1990; 344: 68–125. 2

[27] Leonard Kaufman and Peter J Rousseeuw. Finding groups
in data: an introduction to cluster analysis. John Wiley &
Sons, 2009. 2

[28] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou,
Jiong Yang, and Oscar Beijbom. Pointpillars: Fast encoders
for object detection from point clouds. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 12697–12705, 2019. 7

[29] Ted Lentsch, Holger Caesar, and Dariu M Gavrila. Union:
Unsupervised 3d object detection using object appearance-

9

https://github.com/open-mmlab/mmdetection3d
https://github.com/open-mmlab/mmdetection3d


based pseudo-classes. Advances in Neural Information Pro-
cessing Systems, 2024. 1, 2, 4, 7

[30] Xueqian Li, Jhony Kaesemodel Pontes, and Simon Lucey.
Neural scene flow prior. Advances in Neural Information
Processing Systems, 34:7838–7851, 2021. 3

[31] Xueqian Li, Jianqiao Zheng, Francesco Ferroni, Jhony Kae-
semodel Pontes, and Simon Lucey. Fast neural scene flow.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 9878–9890, 2023. 3, 4

[32] Tsung-Yi Lin, Ross Girshick, Kaiming He, and Piotr Dol-
lar. Focal loss for dense object detection. In proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 2980–2988, 2017. 6

[33] Ilya Loshchilov and Frank Hutter. Fixing weight decay reg-
ularization in adam. CoRR, abs/1711.05101, 2017. 7

[34] Xinzhu Ma, Wanli Ouyang, Andrea Simonelli, and Elisa
Ricci. 3d object detection from images for autonomous driv-
ing: a survey. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2023. 1

[35] J Macqueen. Some methods for classification and anal-
ysis of multivariate observations. In Proceedings of 5-th
Berkeley Symposium on Mathematical Statistics and Prob-
ability/University of California Press, 1967. 5, 2

[36] Leland McInnes, John Healy, and Steve Astels. hdbscan:
Hierarchical density based clustering. The Journal of Open
Source Software, 2(11):205, 2017. 4

[37] Mahyar Najibi, Jingwei Ji, Yin Zhou, Charles R Qi,
Xinchen Yan, Scott Ettinger, and Dragomir Anguelov. Mo-
tion inspired unsupervised perception and prediction in au-
tonomous driving. In European Conference on Computer
Vision, pages 424–443. Springer, 2022. 3, 6, 7

[38] Raymond T. Ng and Jiawei Han. Clarans: A method for clus-
tering objects for spatial data mining. IEEE transactions on
knowledge and data engineering, 14(5):1003–1016, 2002. 2

[39] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy
Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez,
Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al.
Dinov2: Learning robust visual features without supervision.
arXiv preprint arXiv:2304.07193, 2023. 1, 3, 4

[40] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor
Darrell, and Alexei A Efros. Context encoders: Feature
learning by inpainting. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
2536–2544, 2016. 1

[41] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.
Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.
Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011. 4

[42] Charles R Qi, Or Litany, Kaiming He, and Leonidas J
Guibas. Deep hough voting for 3d object detection in point
clouds. In proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 9277–9286, 2019. 3

[43] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. IEEE transactions on pattern analysis
and machine intelligence, 39(6):1137–1149, 2016. 4

[44] Jenny Seidenschwarz, Aljosa Osep, Francesco Ferroni, Si-
mon Lucey, and Laura Leal-Taixé. Semoli: What moves to-
gether belongs together. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 14685–14694, 2024. 3

[45] Jianbo Shi and Jitendra Malik. Normalized cuts and image
segmentation. IEEE Transactions on pattern analysis and
machine intelligence, 22(8):888–905, 2000. 3

[46] Oriane Siméoni, Gilles Puy, Huy V Vo, Simon Roburin,
Spyros Gidaris, Andrei Bursuc, Patrick Pérez, Renaud
Marlet, and Jean Ponce. Localizing objects with self-
supervised transformers and no labels. arXiv preprint
arXiv:2109.14279, 2021. 1, 3

[47] Oriane Siméoni, Chloé Sekkat, Gilles Puy, Antonı́n
Vobeckỳ, Éloi Zablocki, and Patrick Pérez. Unsupervised
object localization: Observing the background to discover
objects. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 3176–
3186, 2023. 1

[48] Andrew Stein, Derek Hoiem, and Martial Hebert. Learning
to find object boundaries using motion cues. In 2007 IEEE
11th International Conference on Computer Vision, pages 1–
8. IEEE, 2007. 2

[49] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien
Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,
Yuning Chai, Benjamin Caine, et al. Scalability in perception
for autonomous driving: Waymo open dataset. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 2446–2454, 2020. 2, 4, 6, 1

[50] Jasper RR Uijlings, Koen EA Van De Sande, Theo Gev-
ers, and Arnold WM Smeulders. Selective search for object
recognition. International journal of computer vision, 104:
154–171, 2013. 2

[51] Xinlong Wang, Zhiding Yu, Shalini De Mello, Jan Kautz,
Anima Anandkumar, Chunhua Shen, and Jose M Alvarez.
Freesolo: Learning to segment objects without annotations.
In Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 14176–14186, 2022. 3

[52] Xudong Wang, Rohit Girdhar, Stella X Yu, and Ishan Misra.
Cut and learn for unsupervised object detection and instance
segmentation. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 3124–
3134, 2023. 3

[53] Yan Wang, Xiangyu Chen, Yurong You, Li Erran Li, Bharath
Hariharan, Mark Campbell, Kilian Q Weinberger, and Wei-
Lun Chao. Train in germany, test in the usa: Making 3d ob-
ject detectors generalize. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 11713–11723, 2020. 1

[54] Yuqi Wang, Yuntao Chen, and Zhao-Xiang Zhang. 4d unsu-
pervised object discovery. Advances in Neural Information
Processing Systems, 35:35563–35575, 2022. 1, 2, 4, 5, 7

[55] Joe H Ward Jr. Hierarchical grouping to optimize an objec-
tive function. Journal of the American statistical association,
58(301):236–244, 1963. 1

[56] Huajie Wu, Yihang Li, Wei Xu, Fanze Kong, and Fu Zhang.
Moving event detection from lidar point streams. nature
communications, 15(1):345, 2024. 8

10



[57] Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised
deep embedding for clustering analysis. In International
conference on machine learning, pages 478–487. PMLR,
2016. 3

[58] Saining Xie, Jiatao Gu, Demi Guo, Charles R Qi, Leonidas
Guibas, and Or Litany. Pointcontrast: Unsupervised pre-
training for 3d point cloud understanding. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part III 16, pages
574–591. Springer, 2020. 1

[59] Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embed-
ded convolutional detection. Sensors, 18(10):3337, 2018. 6

[60] Junbo Yin, Dingfu Zhou, Liangjun Zhang, Jin Fang, Cheng-
Zhong Xu, Jianbing Shen, and Wenguan Wang. Proposal-
contrast: Unsupervised pre-training for lidar-based 3d object
detection. In European conference on computer vision, pages
17–33. Springer, 2022. 1

[61] Tianwei Yin, Xingyi Zhou, and Philipp Krahenbuhl. Center-
based 3d object detection and tracking. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 11784–11793, 2021. 6, 7

[62] Yurong You, Katie Luo, Cheng Perng Phoo, Wei-Lun Chao,
Wen Sun, Bharath Hariharan, Mark Campbell, and Kilian Q
Weinberger. Learning to detect mobile objects from lidar
scans without labels. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
1130–1140, 2022. 1, 2, 3, 4, 7

[63] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and
Stéphane Deny. Barlow twins: Self-supervised learning via
redundancy reduction. In International conference on ma-
chine learning, pages 12310–12320. PMLR, 2021. 1

[64] Lunjun Zhang, Anqi Joyce Yang, Yuwen Xiong, Sergio
Casas, Bin Yang, Mengye Ren, and Raquel Urtasun. To-
wards unsupervised object detection from lidar point clouds.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 9317–9328, 2023. 1,
2, 4, 7

[65] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful
image colorization. In Computer Vision–ECCV 2016: 14th
European Conference, Amsterdam, The Netherlands, Octo-
ber 11-14, 2016, Proceedings, Part III 14, pages 649–666.
Springer, 2016. 1

[66] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch:
an efficient data clustering method for very large databases.
ACM sigmod record, 25(2):103–114, 1996. 1

11



MobileClusterNet: Unsupervised Learnable Clustering of Mobile 3D Objects

Supplementary Material

6. Self-supervised methods in literature

Overview. Self-supervised learning aims to learn good rep-
resentations of the data by training on a pretext task that
doesn’t require annotations, with subsequent fine-tuning on
actual tasks to enhance generalization. There are 2 main
categories of self-supervised architectures: generative ar-
chitectures and joint embedding architectures. Generative
architectures generate reconstructions from latent represen-
tations or corrupted versions of the input, using pretext tasks
like image colorization [65], image inpainting [40], and
masked image modeling [23]. Conversely, joint embed-
ding architectures learn to produce consistent embeddings
across different views of the same input, learning features
robust to distortions and invariant to data augmentations.
A challenge involved with using joint embedding networks
is preventing informational collapse, where all inputs are
mapped to a constant embedding. This is achieved via sim-
ilarity maximization techniques (e.g. contrastive learning
[8], clustering [6], distillation [20]) and redundancy reduc-
tion techniques (information maximization [63]).

Self-supervised vision transformers. Vision transform-
ers (ViTs) [12] have been a breakthrough architecture in
2D computer vision tasks due to their ability to scale ef-
fectively with large input datasets. ViTs operate by di-
viding images into patches and processing them through
self-attention mechanisms. In DINO [7] the authors use
a self-distillation approach to train a ViT. This results in
learnt features that contain explicit information about im-
age semantic segmentation. These learned representations
also exhibit inherent properties such as robustness to image
perturbations and adaptability to various downstream tasks.
DINOv2 [39] further builds upon DINO by introducing re-
finements that improve model performance and feature rep-
resentation. These include optimized training strategies and
architectural adjustments, which lead to more distinct and
interpretable visual features (see Figure 6).

Challenges in the 3D domain. In contrast to 2D images,
applying self-supervised learning techniques to the 3D do-
main poses some unique challenges. Point cloud sequences
are typically sparse and not object centric; that is, objects
are of much smaller sizes and unevenly distributed across a
wide range. While this research area is comparatively un-
explored, [58], [60] look at self-supervised pre-training in
LiDAR point clouds.

Figure 6. Visualization of semantic segmentation results from us-
ing a pre-trained DINOv2 ViT [39] on a sample image from WOD
[49] shows that the features from DINOv2 contain information
about the semantic classes within an image.

7. Spatial clustering methods in literature

7.1. Traditional clustering methods

Hierarchical clustering. Hierarchical clustering methods
organize data by creating clusters either through a bottom-
up or a top-down approach. These methods can be catego-
rized into agglomerative and divisive hierarchical cluster-
ing [55]. Agglomerative clustering, a bottom-up approach,
begins by treating each object as its own cluster and then
progressively merges these atomic clusters into larger ones
until all objects are in a single cluster or until pre-specified
criteria are met. Conversely, divisive clustering, a top-
down approach, starts with all objects in one cluster and
divides this cluster into smaller ones until each object is in
its own cluster or until pre-determined conditions are ful-
filled. The linkage between 2 clusters can be based on the
minimum nearest neighbour distance between the cluster
members (single-linkage clustering), the maximum furthest
neighbour distance between them (complete-linkage clus-
tering) or the average distance between all cluster members
(average-linkage clustering). Some examples of hierarchi-
cal clustering methods include BIRCH [66], CURE [21],
ROCK [22] and chameleon [25].

The downside of hierarchical clustering methods is that
they are not robust to noise and outliers, and once two mem-
bers of the clusters are linked, they cannot move to other
clusters in the hierarchy. The computational complexity of
hierarchical clustering methods is O(N2) and they cannot
be used efficiently in large datasets.
Partitional clustering. Partitional clustering, in contrast to
hierarchical clustering, involves grouping data into a pre-
defined number of clusters, K, without building a hierar-
chical structure. This method optimizes a criterion, typi-

1



cally the Euclidean distance, to minimize the distance be-
tween data points and their designated cluster centers. K-
Means [35] is a prominent example of partitional cluster-
ing, with some other examples being PAM [26], CLARA
[27], CLARANS [38]. In K-Means, the process begins by
initializing K centroids, each representing the center of a
cluster. The algorithm then iteratively assigns each data
point to the nearest centroid, thereby forming clusters. Af-
ter all points have been assigned, the centroids are recal-
culated based on the mean of the points in each cluster.
This process repeats until the centroids stabilize, indicating
that the clusters are as compact and distinct from each other
as possible. This method is particularly effective for large
datasets where forming a hierarchy is computationally ex-
pensive. However, one of the major downsides of K-Means
clustering is that the number of clusters needs to be defined
beforehand, which is not practical when prior knowledge of
the dataset’s structure is unknown, which is true in general
for point cloud data. Additionally, K-Means cannot handle
noise or outliers in the dataset, and every point is assigned
to a cluster center.

Density-based clustering. Density-based clustering meth-
ods were previously discussed in 2.2.1, and are particularly
suitable for 3D point cloud data due to their ability to iden-
tify clusters based on the density of points, which aligns
well with how objects appear in spatial (LiDAR) datasets.
Some additional commonly used density-based algorithms
include OPTICS [2] and DENCLUE [24]. The OPTICS
(Ordering Points To Identify the Clustering Structure) clus-
tering algorithm is an extension of DBSCAN [13] designed
to overcome its sensitivity to the radius parameter that de-
fines the neighborhood size. OPTICS does not produce a
clustering of a data set explicitly; instead, it produces an
augmented ordering of the data which sorts the data points
such that spatially closest points become neighbors in the
ordering. Each point is also assigned a reachability dis-
tance, which is an indication of how far away it is from the
nearest cluster. Points within a cluster have smaller reach-
ability distances compared to those that are lying between
clusters. OPTICS can identify clusters of different densities
and is particularly useful in scenarios where the contrast be-
tween different cluster densities is significant. DENCLUE
(DENsity-based CLUstEring) on the other hand uses a den-
sity distribution function to model the overall point density
of the data space. It defines clusters based on the areas of
higher density than the threshold and locates cluster cen-
ters at the maximum density function values. DENCLUE is
effective in dealing with large data sets and can handle out-
liers well. However, it requires a prior understanding of the
underlying data density distribution, which is a challenge in
the autonomous driving LiDAR datasets.

While density-based clustering algorithms have been fre-
quently used for clustering 3D point cloud data, they do

(a) Under-segmentation of a scene in WOD [49] when clustered using
HDBSCAN [5].

(b) Qualitative results with DBSCAN [13] clustering. Image taken from
[64].

Figure 7. Visualization of some challenges associated with
density-based clustering on 3D point cloud data.

have certain limitations. They can struggle with datasets
that have varying densities, which are common in point
clouds due to sensor noise, varying object distances, or
(self) occlusions. This variability can lead to fragmented
clusters or the merging of distinct objects into a single clus-
ter if not tuned properly. Additionally, these methods of-
ten have several hyperparameters, such as the neighborhood
search radius and the minimum number of points required to
form a dense region, which can be challenging to set with-
out domain knowledge or a trial-and-error process. This
complexity can make them less intuitive and harder to op-
timize. Some of these limitations are visualized in Figure
7.

Graph-based clustering. Graph-based clustering meth-
ods represent a group of clustering techniques that lever-
age graph-theory principles to detect the intrinsic structures
and patterns within the data. These methods construct a
graph where nodes represent data points and edges repre-
sent the proximity or similarity between them. The goal is

2



to partition this graph into clusters based on the connectivity
or the edge weights of the graph. One prominent example
of graph-based clustering is the spectral clustering method.
Spectral clustering transforms clustering into a graph parti-
tioning problem, focusing on cutting the graph into pieces
such that the connections (edges) between different groups
(clusters) are weak while connections within a group are
strong. Notably, works like normalized cuts (NCut) [45]
have derived many fundamental ideas from the spectral
graph theory, which in turn has inspired the development
of more recent methods like CutLER [52]. The main dis-
advantage of graph-based clustering methods is that their
time complexity increases dramatically with the increasing
of graph complexity.

7.2. Learning-based clustering methods

Unlike traditional clustering techniques which operate on
predefined distance metrics, learning-based clustering in-
volves training a machine learning model to learn an em-
bedding space where clustering objectives can be optimized
directly. One common approach is the use of autoencoders,
where the network learns to compress data into a lower-
dimensional space and then reconstruct it. The learned
compressed features, which capture the essential character-
istics of the data, are then used for clustering. Methods
like Deep Embedded Clustering (DEC) [57] further refine
this approach by jointly optimizing the feature space and
clustering objective, leading to improved clustering perfor-
mance.

SeMoLi [44] is a semi-supervised method for 3D object
detection that utilizes a message parsing network (MPN)
trained with a small fraction of dataset annotations, to
generate spatial cluster proposals on the entire dataset.
These clusters are then used to fit bounding boxes, creating
pseudo-labels suitable for training any standard 3D object
detector. At the core of SeMoLi is a graph-based clustering
algorithm that processes node and edge features to segment
the graph into connected components, each representing a
cluster instance. This graph is constructed using only mov-
ing points, with node connectivity being constrained to its
k-nearest neighbours. The node and edge features are ini-
tialised based on spatial proximity and motion cues. Train-
ing the message parsing network involves iteratively updat-
ing the node and edge embeddings, and calculating an edge
score based on the sigmoid function. During inference, all
edges with a score lower than a threshold are ignored, and
the remaining graph represents a set of connected compo-
nents instances. SeMoLi is not a fully unsupervised ap-
proach, and requires some annotations to be able to train the
message parsing network. In contrast, training MobileClus-
terNet requires no labels.

Figure 8. Illustration of the voting module in VoteNet [42]. The
input point cloud is passed through a backbone network which
subsamples the point cloud into seed points, and extracts point
features for these points. Each seed then generates a vote using
the voting module, and all votes are grouped together to form vote
clusters. Image taken from [42].

Figure 9. Illustration of connected components clustering. Image
taken from [16].

8. MobileClusterNet architecture

The core architecture of MobileClusterNet is discussed in
more detail below.
Encoder backbone. MobileClusterNet first voxelizes the
input point cloud and then utilises the Single-stride Sparse
Transformer (SST) [15] to extract voxel features. These en-
coded voxel features are then scattered back to the original
point locations, and are augmented with the offset values
(x, y, z) of the points from their corresponding voxel cen-
ters, resulting in point features.
Classification and voting heads. After the point features
have been extracted from the input point cloud, they are
passed onto 2 heads: One for classifying the semantic label
of the LiDAR point (mobile or non-mobile) and the other
for center voting. The center voting head is inspired from
the voting module in VoteNet (shown in Figure 8) and it
predicts, for each mobile classified point, an offset distance
(x, y, z) from the point to its corresponding cluster center.
Connected components clustering. Based on the classi-
fication results, we first filter out the non-mobile (back-
ground) points from the point cloud. For the remaining
mobile (foreground) points, we use the predicted offset dis-
tances to compute the voted cluster centers. Next, we build
a graph using the voted cluster centers as graph vertices. If

3



(a) Visualisation of point clouds after ego-motion compensation. (b) Visualisation of point cloud after removing ground points.

(c) Results from scene flow estimation. Blue indicates the ground truth
point cloud at time t, green indicates the ground truth point cloud at time
t− 1, red is the predicted point cloud at time t− 1 (Reverse flow).

(d) Dynamic object proposals extracted from the given point cloud. Anno-
tations are shown in red.

Figure 10. Visualising different steps involved in dynamic object proposal extraction.

the spatial (euclidean) distance between 2 vertices is less
than a pre-determined threshold, then they are connected
with an edge. All connected components in this graph
(shown in Figure 9) are then viewed as cluster instances,
and they share a common cluster ID.

9. Dynamic proposals extraction
A visualisation of some of the intermediate results is shown
in Figure 10. The implementation details of the dynamic
proposals extraction workflow are discussed as follows:
Ground plane fitting. For estimating the ground plane,
we only consider the points within the a Z-axis range of
[−1m, 1m] and no more than 75m from the ego-vehicle in
the XY-plane, termed as ground candidate points. We use
RANSAC [18] for plane fitting, and set minimum number
of chosen samples as 250, the inlier threshold as 10cm and
the maximum number of trials as 20. We call this estimated
plane as the global plane. In the next step, the global plane
area is divided into 8 sub-regions, each with equal field of
view (FoV). A more refined plane fitting is then performed
within each sub-region using RANSAC, but with a tight-
ened inlier threshold of 5cm, while maintaining other pa-
rameters. This approach allows for an initial coarse estima-

tion of the ground plane followed by more precise fitting
in the sub-regions, thereby capturing the local variations
across them. Our implementation uses the RANSACRe-
gressor method from sklearn [41].

Scene flow estimation. We estimate the scene flow on the
full, ego-motion compensated point clouds. We run the op-
timization in FNSF [31] for 5000 iterations with a batch size
of 1 and a learning rate of 0.001. We use a grid cell size of
0.1m, and employ early stopping with a patience of 125 it-
erations and a minimum delta of 0.00025 for termination.
Our model is the neural prior, with 8 layers and 128 hidden
units per layer.

Spatial clustering. We use the hdbscan python library [36]
for extracting initial object proposals, with a minimum clus-
ter size threshold of 16 points and a cluster selection epsilon
value of 0.5m.

Bounding box filtering Similar to UNION [29], we discard
all the fitted bounding-boxes with l > 20m, w > 6m, h <
0.25m, l/w > 8, lw < 0.25m2 as well as any box lying
more than 0.75m above the ground plane.

4



Figure 11. LiDAR point cloud projection to the front camera im-
age in WOD. Ground points have been removed for visualisation.

10. Appearance prototypes
10.1. Point feature map calculation

Encoding camera features. Since the camera images in
Waymo have different resolutions—1920 × 1040 for side
left and side right cameras versus 1920 × 1280 for front,
front left, and front right cameras—we first pad all cam-
era images to the same resolution (1920 × 1280) and then
encode them with the DINOv2 vision foundation model.
We use the ViT-L backbone with registers [11] and a stride
of 14. The resulting feature map is a 3D tensor of size
91× 137× 1024.
Dimensionality reduction. To enhance computational effi-
ciency, we reduce the feature channel dimensionality from
1024 to 64 using Principal Component Analysis (PCA)
[19]. A PCA model is trained on 79 diverse frames from the
Waymo Open Dataset (WOD) training set to extract 64 prin-
cipal components. This PCA model is then used to trans-
form our appearance feature map to a size 91 × 137 × 64.
We use the PCA implementation in sklearn with the default
parameters.
Point features. After projecting the LiDAR point cloud to
the 5 camera image planes, each point is associated with
the closest camera plane based on its distance to the im-
age plane centers. We then assign each LiDAR point to
the corresponding appearance feature map from that cam-
era. Bilinear interpolation is utilized to compute a feature
vector for each point, resulting in a points feature map of
dimensions N × 64, where N is the number of points.

10.2. Prototypes calculation

Silhouette analysis. The silhouette analysis is a method
used to assess the quality of clustering in a dataset, when
the ground truth labels are not known. This metric calcu-
lates the silhouette score for each point in the dataset, which
measures how similar that point is to points in its own clus-

ter compared to points in other clusters. The score ranges
from -1 to 1, where a high value indicates that the point
is well matched to its own cluster and poorly matched to
neighboring clusters, thus suggesting good clustering.

The silhouette score is calculated based on two distances:
the average distance between a sample and all other mem-
bers in the same cluster (a) and the average distance be-
tween a sample and all members in the next nearest cluster
(b). The silhouette score is then defined as (b−a)

max(a,b) . Aver-
aging these scores across across the entire dataset provides
a single score that describes the overall clustering effective-
ness.

Typically, well-separated clusters with dense cores yield
higher average silhouette scores. Figure 12 shows the plot
of silhouette scores against the number of clusters for our
appearance clustering. Looking at the graph, we can tell
that the silhouette score significantly drops when we try to
cluster the data into 8 or more clusters.

Figure 12. Silhouette score analysis.

Prototypes. For calculating prototypes, we employ the K-
Means implementation from sklearn. Based on the silhou-
ette score analysis, we determined the optimal number of
appearance clusters to be 3 (refer to Figure 12), and all
other K-Means parameters were left at their default settings.
These include a maximum of 300 iterations and an initial-
ization method of ’k-means++’ which enhances the likeli-
hood of convergence.

To better visualize and understand the semantic informa-
tion captured in the prototype embeddings, we perform a
qualitative analysis of object proposals that were classified
as ’similar’ to each prototype. We extracted spatial cluster-
ing proposals from selected scenes using HDBSCAN and
computed an appearance embedding ∈ R64 for each spa-
tial cluster. We then mapped these clusters to their clos-
est prototypes based on Euclidean distance in the embed-
ding space. Our findings, shown in Figure 13, revealed

5



(a) Prototype 1 - scene 1. (b) Prototype 1 - scene 2. (c) Prototype 1 - scene 3.

(d) Prototype 2 - scene 1. (e) Prototype 2 - scene 2. (f) Prototype 2 - scene 3.

(g) Prototype 3 - scene 1. (h) Prototype 3 - scene 2. (i) Prototype 3 - scene 3.

Figure 13. Qualitative visualisation of the semantic features captured by the prototype embeddings. The projected cluster points (as shown
in red) within the images correspond to a spatial cluster that was semantically similar to one of the prototype embeddings. The rows in the
figure correspond to the 3 prototype embeddings while the columns correspond to 3 different scenes chosen from WOD.

distinct semantic characteristics associated with each pro-
totype. The first prototype predominantly corresponded to
pedestrian-related features, while the second and third pro-
totypes captured aspects related to vehicles, with each play-
ing a complementary role.

10.3. Training strategy intuition

The key distinction in the training strategy of MobileClus-
terNet, as compared to the LiDAR-only ClusterNet, lies in
the treatment of false positive detections during training.
While both frameworks use dynamic object proposals as
training targets, all false positive predictions by ClusterNet
(with respect to the training targets) contribute to the focal
loss term. This approach penalizes the detections of static
mobile objects, such as parked vehicles during training, that
are not included in the set of dynamic object proposals but
are otherwise valid detections.

In contrast, MobileClusterNet incorporates appearance
prototypes to evaluate false positive predictions, identifying
those that are semantically similar to the calculated appear-
ance prototypes. If a detection, such as a parked car, closely
matches an appearance prototype, it is not penalized; that is,
this prediction is ignored in the focal loss term. Since local-
ization information is only limited to dynamic object pro-

posals, static mobile objects also do not contribute to the
center offset regression loss. By not penalizing the detec-
tion of static mobile objects during training, MobileCluster-
Net enhances its ability to recognize these instances during
inference.

11. Training details
11.1. MobileClusterNet

The network is trained on three NVIDIA V100 32 GiB
GPUs, utilizing a batch size of two data samples per GPU.
Each data sample includes one LiDAR point cloud covering
a range of [−74.88, 74.88] in the X and Y axes and [−2, 4]
in the Z-axis, along with five camera images of size 1280×
1920× 3. The voxel size used is (0.32m, 0.32m, 6m).

The model uses the Dynamic Voxel Feature extractor
(DynamicVFE) from SECOND [59] for feature extraction
coupled with an SST [15] backbone. In the loss module,
both the focal loss and the L1 loss are equally weighted
to balance classification accuracy with bounding box pre-
cision. The classification head uses a segmentation score
threshold of 0.4 to classify points as foreground, while
the connected components labeling module uses a distance
threshold of 0.4m between vertices to connect them with an

6



edge.
We train MobileClusterNet for 12 epochs, with the first 3

epochs conducted without appearance features to allow for
an initial ’warm-up’ phase, accelerating the training process
by reducing computational demand early on. This warm-
up phase incorporates data augmentations like random flip-
ping, rotation, scaling and translation of the bounding box
targets. The training utilizes the AdamW optimizer [33]
with a cosine learning rate scheduler. The learning rate is
initialized at 10−5 and the maximum learning rate is 0.001
while the weight decay is 0.05.

11.2. CenterPoint

CenterPoint is trained using the same GPU setup with a
batch size of 8 LiDAR point clouds per GPU. The point
cloud dimensions and voxel size remain consistent with
MobileClusterNet’s settings. We use the Pillar Feature Net
[28] as the voxel encoder, and to prune the predictions,
we integrate non-maximum suppression (NMS) with a 2D
BEV IoU threshold of 0.1. CenterPoint is trained over 20
epochs utilizing the Adam optimizer and a cyclic learning
rate schedule with a peak rate of 0.003. The training pro-
cess also includes the same data augmentation strategies as
those applied to MobileClusterNet.

12. Qualitative results and Discussion

12.1. Training with spatial clustering annotations

As hypothesized, MobileClusterNet underperforms when
trained only with spatial clustering proposals from HDB-
SCAN, leading to a significant number of false positive pre-
dictions involving both mobile and non-mobile objects (as
shown in Figure 14a).

Surprisingly, when these training set annotations were
used to train the CenterPoint detector, there was a drop in
performance. This can be visualised with Figure 14b. In ad-
dition to too many false positive detections, the orientation
estimation of CenterPoint has collapsed due to many ran-
dom targets, and the network predicts a constant orientation
for all detected objects.

12.2. Training with dynamic object proposals

When MobileClusterNet is trained with only dynamic ob-
ject proposals, it struggles with many missed detections;
that is, there is a large number of false negatives. This is
due to the detector generalization being hampered as it is
penalized for discovering static mobile objects during train-
ing.

We visualize the annotations generated by MobileClus-
terNet trained with dynamic object proposals on a frame in
WOD training set (shown in Figure 15a). While these anno-
tations contain more training targets than the initial dynamic

(a) Predictions from MobileClusterNet.

(b) Predictions from CenterPoint.

Figure 14. Visualization of predictions from MobileClusterNet
trained using spatial clusters (HDBSCAN) only and CenterPoint
when trained using annotations from MobileClusterNet trained us-
ing spatial clusters only.

(a) Predictions from MobileClusterNet.

(b) Predictions from CenterPoint.

Figure 15. Visualization of predictions from MobileClusterNet
trained using spatial clusters (HDBSCAN) only and CenterPoint
when trained using annotations from MobileClusterNet trained us-
ing spatial clusters only.

object proposals, the performance of CenterPoint still suf-
fers from the unlabelled static mobile objects. It can be seen
in Figure 15b that CenterPoint even generates some false
predictions in the scene.

7



12.3. Training with appearance prototypes

As already highlighted in subsection 4.4, MobileCluster-
Net, when trained with appearance features, shows a sig-
nificant performance boost—approximately 2.5 times better
than the baseline ClusterNet implementation, which only
utilizes dynamic object proposals. As demonstrated by Fig-
ure 13, the calculated appearance prototypes capture infor-
mation related to the semantics of mobile objects, which
helps MobileClusterNet in learning to accurately cluster
static objects that are visually similar to dynamic mobile
objects. Furthermore, Figure 16 demonstrates the improved
quality of annotations produced by MobileClusterNet when
trained with these appearance prototypes, showcasing its ro-
bust generalization across all types of mobile objects within
the scene.

Figure 16. Visualisation of annotations generated by MobileClus-
terNet on a frame from the WOD training set.

Scope for improvement. One way to further boost the
performance of MobileClusterNet is by improving the qual-
ity of its initial training targets—the dynamic object pro-
posals. The quality of spatial clustering can be improved
by aggregating multiple LiDAR sweeps across a temporal
window, which could densify the point cloud. Additionally,
our current scene flow estimation method was chosen for
speed rather than accuracy; adopting a more robust tech-
nique, such as the one suggested by Chodosh et al. [9],
could further refine the quality of dynamic object proposals.
Finally, leveraging a larger proportion of the WOD training
set could also contribute to performance improvements by
providing a richer diversity of training data.

8


	. Introduction
	. Related work
	. Unsupervised 2D object discovery
	. Unsupervised 3D object discovery
	Spatial clustering
	Object proposal refinement
	Static object discovery with semantic cues


	. Methodology
	. MobileClusterNet overview
	. Dynamic object proposals generation
	. Visual appearance embeddings
	. Calculating appearance prototypes
	. Training MobileClusterNet

	. Experiments
	. Dataset & metrics
	. Implementation details
	. Main results
	. Ablation study

	. Conclusion
	. Self-supervised methods in literature
	. Spatial clustering methods in literature
	. Traditional clustering methods
	. Learning-based clustering methods

	. MobileClusterNet architecture
	. Dynamic proposals extraction
	. Appearance prototypes
	. Point feature map calculation
	. Prototypes calculation
	. Training strategy intuition

	. Training details
	. MobileClusterNet
	. CenterPoint

	. Qualitative results and Discussion
	. Training with spatial clustering annotations
	. Training with dynamic object proposals
	. Training with appearance prototypes


