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A complex system that works is invariably found to have evolved from
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Abstract
Records from ledgers of Dutch companies all across the Netherlands are used in this study. Records
can be submitted in the ledgers with various lags, because the data of many different bookkeepers
is involved with different workflows. Bookkeepers can be punctual or late, therefore records can be
submitted with various lags in the ledgers. This causes missing data, which results in a deformation of
a time series that is constructed from these records. Using a technique called nowcasting, a prediction
can be made of how these series with no missing data would have looked like.

This study sheds light on how information of an incomplete time series from ledgers of Dutch com
panies can be used to nowcast on that series, without the use of external indicators. To better utilize
the information available from the series, an addition to the Seasonal Auto Regressive Integrated Mov
ing Average with eXogenous regressors (SARIMAX) model is proposed. The addition to the SARIMAX
model is presented in two forms: the additive and multiplicative relation between indicator and target
series. These are modeled with the goal to improve the information utilization and therefore improve the
nowcasting accuracy. Experiments have shown that this addition to the model does not give a direct
improvement in accuracy compared to an ordinary SARIMAX model. Thereafter an iterative nowcast
procedure is proposed to utilize information from highly lagged records. It has been shown that this
gives a slight increase in accuracy for the overall nowcast.
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1
Introduction and Related work

Exact is a Dutch software company that offers a service for online accounting1. One of the goals
of Exact is to give financial insights into the Dutch economy by means of Key Performance Indicators
(KPIs) to its customers2. Timely and reliable KPIs play a key role for important decisions of companies 3.
Bookkeeping records from ledgers of Dutch Small to Medium Enterprises (SMEs) are used to produce
these KPIs. To generate KPIs which give a representative view on the current state of the Dutch
economy, records from the bleeding edge are used. These records are submitted in ledgers of the
online accounting software. They are submitted by many bookkeepers from different companies and
sectors all across the Netherlands. Bookkeeping can be done in many ways. A common bookkeeping
workflow is to submit records of transactions after the end of each quarter. This way, records are
submitted in time to publish quarterly financial reports. Various workflows can differ in punctuality,
which influences the delay in which records are submitted. As an example, a sales transaction that
happened in January could be submitted in the ledger by a bookkeeper as a record after the first quarter,
in April. Bookkeepers which are more punctual, would for example submit records of all transactions
before the end of the week. These reporting lags can vary from a day to over a year.

The following pattern from aggregated records is observed: a lot of transactions are not yet recorded
in the recent past. Further back in the past, fewer records are still missing. Figure 1.1 displays the
average distribution of records which are still not reported after one or more months have passed since
the transaction date. From the figure, one could observe that when three months have passed, less
than 10% of records are still expected to be submitted.

1.1. Problem statement
At Exact, KPI time series are produced by summing a selection of records, partitioned in a monthly
interval. A problem arises: KPI time series constructed with records (of which some are still missing
due to submission delays) can give a wrong representation of the real world. A sudden drop is observed
at the end of time series constructed from the presently known records. The missing records cause a
downward bias in the time series. Figure 1.2 shows an example financial time series, observed at the
end of January 2016 (Figure 1.2a) and January 2018 (Figure 1.2b). The bias is especially clear in the
last three points in the two plots of Figure 1.2 because the time series drops to zero. This behavior
renders the correctness of possible interpretations on the data debatable.

The objective of this thesis is to make a projection of the series in such a way that useful interpre
tations can be made (e.g. calculate the yearoveryear growth rate per month). The desired output is
a time series with no downward bias. This means that the data points in 2016 in Figure 1.2a would be
projected in such a way that they approach the data points of 2016 observed two years later, depicted
in Figure 1.2b. This projection can be produced by financial nowcasting. This term is a contraction of
1Exact offers more products, for the complete list visit https://www.exact.com/products.
2Some of the KPIs are publicly displayed and can be seen at https://www.exact.com/nl/overons/mkbmonitor (At
the time of writing).

3Exact published a (Dutch) white paper with clarifications of the motivation and displayed KPIs: https://files.exact.com/
static/web/downloads/NLOTHWhitepaperExactMKBMonitor.pdf

1
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Figure 1.1: Average distribution of missing records as a function of time. The distribution can differ for records from other sectors
or dates. This figure serves for the purpose of giving a general intuition.

now and forecasting. Nowcasting is the prediction of the present, the very near future and the very
recent past in economics [2]. In Section 1.2 the difference between forecasting and nowcasting is
explained in more detail. The main question of this thesis is how to nowcast in such a way that the
downward bias is removed. Early reported records might give a premature glance of the time series.
Many other background indicators could be used for nowcasting. However, this study focuses on how
much information a financial time series provides for its own nowcast. In this research it is studied how
this premature view could be used as auxiliary information for the nowcast.
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(a) Time series as seen from Januari 2016
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(b) Time series as seen from Januari 2018

Figure 1.2: Aggregated sum of a selection of records

1.2. Related Work
The growth rate of Quarterly Gross Domestic Product (GDP) is a key indicator for the state of the
economy. The GDP is of great importance to decisionmakers in governments, central banks, financial
markets and nonfinancial firms [6]. Banks estimate GDP prematurely because GDP is subject to
substantial lags of financial publications. A timely and reliable evaluation of economic conditions is a key
element in the assessment of the monetary policy stance [9]. Financial statements are published with
high delays, therefore the European Central Bank (ECB) publishes preliminary estimates approximately
30 days after the end of the reference quarter [9]. To acquire a realtime estimate of the real GDP, banks
use indicators with higher publication frequencies to produce short term nowcasts.

Generally, nowcasting is the act of predicting for the pending or just finished period (e.g. quarter).
A nowcast can be seen as an intraperiod forecast, with the information about that period already
available, which is used for the forecast [24]. Nowcasting is different than forecasting in the sense that
a nowcast uses information available from the pending period which is being nowcasted, whereas
forecasts use the information available to predict subsequent periods from which no information is
available yet.
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For the estimation of current quarter GDP, usually a mix of indicators is used such as industrial
production, unemployment, consumer confidence, stock markets and prices of goods and services [6].
Richardson et al. used Factor Models and machine learning approaches to nowcast the GDP growth
of New Zealand [20]. The Factor Model combines different indicators with a linear combination. The
Factor Model is described by:

𝑦𝑡 = 𝛼0 +
𝑘

∑
𝑖=1
𝛼𝑖𝑓𝑖 + 𝜀𝑡 (1.1)

Where 𝛼0 to 𝛼𝑛 are parameters and 𝜀𝑡 is the residual term. 𝑓𝑖 are factors obtained using Principal
Component Analysis (PCA) on the indicator time series.

Giannone et al. used about 200 macroeconomic indicators to nowcast the GPD. A combination
of indicator time series from different sources usually increases the forecasting accuracy but comes at
the cost of using different types of data being released in a nonsynchronous manner and with different
degrees of lag and frequency. This results in datasets with a socalled jagged edge [12]. Nowcasting
with a combination of mixedfrequency indicators can be challenging because of the unstructured na
ture. Bridge equations are used to translate the linear combination of factors to GDP. The information
contained in various shortterm indicators gets transferred, or bridged, to the coherent structure implied
by the National Accounts4 [13]. In other words, highfrequency time series gets converted to quarterly
time series using a dynamic linear equation:

𝑦𝑡 = 𝛼 +
𝑞

∑
𝑠=0
𝛽𝑖,𝑠𝑥𝑖,𝑡−𝑠 + 𝜀𝑖,𝑡 (1.2)

𝛼 is a constant and 𝛽𝑖,𝑠 are regression coefficients, 𝑞 is the number of highfrequency periods that fit in
the lowfrequency period (e.g. 3 months per quarter). 𝑥𝑖,𝑡 is the 𝑖th indicator at time 𝑡.

Mixed Frequency Vector Auto Regressive models (MFVAR) are more recent approaches which are
capable of using many data sources with different reporting frequencies and lags. Ouwehand used
MFVAR models to nowcast Quarterly GDP with Monthly time series. The quarterly time series is
modeled as a monthly time series with missing data in the first two months of the quarter [18]. Kalman
filters are used to estimate regressors in a model and is capable of working with missing data in time
series.

Mixed Data Sampling Regression Models (MIDAS) is yet another model, introduced by Ghysels
et al. [11]. MIDAS includes indicators in the regression at their original observation frequency. This
approach has the advantage of preserved timing information in the indicators. Different types of MIDAS
implementations have successfully been applied to data produced by Portuguese automated teller
machines and pointsofsale [8].

The Dynamic Factor Model (DFM) is a technique that models the motions of unobserved factors in
a time series. Doz et al. introduced a twostep estimator that combines DFM with a Kalman filter to
perform nowcasting [7, 21]. DFM is generally written as two equations:

𝑦𝑡 = Λ𝑓𝑡 + 𝛽𝑥𝑡 + 𝜀𝑡 , 𝜀𝑡 ∼ 𝑁(0, Σ) (1.3)

𝑓𝑡 = ∑𝑝𝑖=1 𝛼𝑖𝑓𝑡−𝑖 + 𝜉𝑡 , 𝜉𝑡 ∼ 𝑁(0, 𝐼) (1.4)

Where 𝑓𝑡 are the latent factors. Λ is a matrix of factor loadings5. 𝑥𝑡 are optional indicators. Σ is a
covariance matrix. 𝐼 is the identity matrix. 𝑝 is the number of autoregressive factors. Λ, 𝛼𝑖 and 𝛽 are
parameters. Equation 1.4 describes the motion of the unobserved factors. The DFM described in
Equations 1.3 and 1.4 can be cast into state space form to estimate the parameters with a Kalman
Filter. Bańbura et al. and Schiavoni et al. adopted and extended the model from Doz et al. in their
studies [1, 21].

Xie et al. nowcasted electricity prices in Sweden using a SARIMAX model. SARIMAX is short
for Seasonal Auto regressive Integrated Moving Average with eXogenous regressors. Different power
production sources are used as indicator data for the nowcast of electricity prices. This model has a
satisfactory performance on the domain [26].
4A National Account implements a technique for measuring economic activity of a nation.
5A factor loading matrix is a matrix of size 𝑝 × 𝑘 with 𝑝 observable random variables and 𝑘 unobserved random variables. The
matrix is used to indicate the relationship between each observable and unobservable random variable.
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1.3. Report Outline
In Chapter 2, the data used during this study is described and two new ideas are proposed. This
is followed by the experiments in Chapter 3 where the experimental setup is defined and results are
shown. The results are interpreted in Chapter 4 with a conclusion, discussion and recommendations
for future work. The Appendix contains work that is not a part of the core study but gives additional
insight in the topic.



2
Data and Methodology

In this chapter the problem is identified with more details. First, it is described with what kind of data
has been worked and how the data is preprocessed. Thereafter a model for nowcasting is described
and explained. Furthermore, a change to the model is proposed.

2.1. Dataset
Exact provides data from their online accounting software for this study. This data comprises bilions
of transactions. These transactions are structured as records in a ledger. Together they represent the
accounting of over 300,000 Dutch SMEs. These records are submitted in the ledgers with a delay.
This delay (or lag) marks the difference between the execution date of a transaction and the date this
transaction is submitted as record in the ledger. The month a transaction is executed in, will be referred
to as transaction month (or transaction date) later in this report. Different ledgers are used per account
to distinguish the purpose of the transaction. Revenue transactions represent sold products which are
recorded in the revenue ledger, salary payments are recorded in the salaries ledger, and so on.

Time series can be acquired from these different ledgers. As an example, the revenue ledger can
be shown as function of time by using the revenue transactions from a company as time series. To take
a step further, a time series can be acquired with the revenue transactions of thousands of companies
from the same sector. This represents the revenue of a whole sector. Series like these are used to
construct KPIs, such as the yearoveryear growth rate1. From the provided data, time series can be
acquired from different sectors and different ledger types. Later in this report, hypothesis are defined
and validated. These tests are explained in Chapter 3 using time series with a variety of characteristics.
For this reason datasets are generated from the data provided by Exact.

2.1.1. Data acquisition and Preprocessing
The transactions are subdivided in different ledgers for different companies. Every ledger is identified
by a Reference Classification System (RCSFI) code2 and company. The timestamps of all transactions
in the ledgers are partitioned to monthly intervals. All transactions from companies in the same sector
are aggregated together by summing the values per month and per sector. Time series are produced
on sector level, not for individual companies. Sector time series represent the total sum of the transac
tions from companies in the same sector. This way, so much transactions are used to construct the time
series that the series is much smoother than series constructed from individual companies. Therefore
the fluctuations caused by noise in the series are reduced and yearly patterns become more empha
sized. From the data, 15 sectors and 7 RCSFI codes are identified. From every sector/RCFIcode
combination is a time series constructed. In total, 15 × 7 = 105 datasets are obtained.

1Yearoveryear growth rate compares a statistic for a period with the same period from one year ago.
2Reference Classification System of Financial Information, or Referentie GrootboekSchema in Dutch, is a scheme intro
duced to use standardized codes in bookkeeping, general ledger, profit and loss accounts and balance sheets. Exam
ple accounts for these codes are: Salary payment, Revenue, Taxes. More information about RCSFI: https://www.
referentiegrootboekschema.nl/.

5
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Publicly available data from the Dutch National Institute of Statistics (CBS) is used as a reference
in this study to check whether the produced time series are representative. For example, the revenue
growth of the construction sector obtained from CBS3 is compared with the revenue growth time series
constructed from the transactions of the construction sector. The time series are compared by means
of the Pearson correlation coefficient. Pearson correlation is widely used as a measure of the linear
relationship between two variables and can also be used to measure the noise between two signals
[3, 4]. The Pearson correlation coefficient of the publicly available data and the constructed time series
is about 0.75.

The records that are used to construct time series might contain mistakes. Records of transaction
which are accidentally an order of magnitude bigger than they should have been (e.g. an extra 0 at the
end), can disrupt the time series. Therefore, outlier removal methods have been explored to increase
the correlation. Removing transactions with values outside the Lower and Upperlimit range4 shows
an improvement in correlation. Removing transactions with even stricter bounds, values outside the
lower Quartile and upper quartile, will improve the correlation still. After outlier removal, the correlation
coefficient between the two time series has improved to over 0.8. Such a correlation coefficient indicates
that the the available data is relatively representative, especially when considering that the data from
Exact represents about 20% of all SMEs in the Netherlands. Outlier transactions are ignored during
the construction of the 105 datasets to obtain more realistic time series.

2.1.2. Twodimensional dataset
Each dataset contains all records for a particular sector/RCSFIcode combination. In the dataset, the
record submission dates are preserved. Therefore it is possible to consider older versions from the time
series. Records submitted after a particular date could be ignored when a time series is constructed.
This is effectively changing the present time to some point in the past. The date that the present
time is set to, will from now on be referred to as the observation date. Records submitted after the
observation date are not used in the time series. Figures 1.2a and 1.2b are examples where the
observation date is changed to January 2016 and January 2018 respectively. All the datasets that
are produced as described in Section 2.1.1, are twodimensional: they can be used to construct a
time series of transactions for different observation dates. The observation date will be used for a
nowcasting procedure, described in Section 2.3.3.

2.2. Forecasting methods
In this study we consider two general methods to produce a forecast for this projection: time series
forecasting using historical data and nowcasting using indicator data.

2.2.1. Forecasting on historical data
A lot of financial time series from individual companies in our dataset do not always show clear pat
terns such as seasonality or trend. As an example, monthly salary payments of a company might
show a trend, while business purchases might be much more irregular and unpredictable. During pre
processing of the data as described in Section 2.1.1, the fluctuations caused by noise are reduced and
the patterns in the time series are emphasized. The noise and fluctuation is reduced by aggregating
financial data of companies from the same sector together, resulting in a dataset with time series which
are likely to contain a trend, seasonal or cyclical component. These components can be modeled
with time series models.

In order to get a representative forecast, a model should be fitted on unbiased data. Less recent
data contains almost no bias. As explained in Section 1.1 the bias is caused by the absence of lagged
records. When fitting a model from the start of a time series until a point where the bias increases over
a certain threshold 𝜔, then there is a risk of generalizing on data that lost relevance due to economic
change. Economic change can be caused by many factors. Therefore the economy as a whole is
treated as a hidden context5, which is subject to gradual Concept Drift [23]. Informally, gradual eco

3Publicly available database with yearoveryear revenue growth of the Dutch construction sector, provided by CBS: https:
//opendata.cbs.nl/statline/#/CBS/nl/dataset/83837ned/table?ts=1575465775727

4Lowerlimit and Upperlimit are defined as 𝑄1–1.5𝐼𝑄𝑅 and 𝑄3 + 1.5𝐼𝑄𝑅 respectively, according to Box plot terminology.
5A system is considered a Hidden Context if the rule set that would express the outputs of that system is unknown or difficult to
uncover [25].

https://opendata.cbs.nl/statline/#/CBS/nl/dataset/83837ned/table?ts=1575465775727
https://opendata.cbs.nl/statline/#/CBS/nl/dataset/83837ned/table?ts=1575465775727
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nomic Concept Drift refers to a slow shift in the structure of an economic system [10]. These shifts could
for example be caused by governments which are embarking subsidies to shift a market. A model fitted
on data from too far in the past, could suffer from a wrong generalization for the present due to possible
Concept Drift. A model fitted on data too close to the present suffers from a bias caused by missing
records. The optimum is somewhere in the middle.

To be able to train models on unbiased data, it is important to quantify the bias and find a point
where the bias becomes insignificant. To do this, the bias threshold 𝜔 is defined as a change of
0.1% compared to the observation of the prior month. Records are submitted with delays according to
an exponential distribution. In the recent past of a transaction month a lot of records are submitted.
whereas further in the past, fewer records are submitted for that transaction month. The amount of
records submitted with high delays becomes small enough after 12 to 24 months that the impact of
these delayed records on the total observed value less than 0.1%. Over 95% of the time series in
our dataset reach below threshold 𝜔 between 12 and 24 months. In other words, 24 months after a
transaction date, the aggregated sum of records for the transaction date does not change more than
0.1% and is assumed to not change anymore. This is used as a motivation to assume every time series
in the dataset is saturated with records, and therefore has a negligible bias, after 24 months. We define
the number of months passed since the transaction month 𝑒 as Δ𝑡. Δ𝑡 = 𝜏 − 𝑒, where 𝜏 is the month of
the present date. In Section 2.3.2 is further elaborated on the motivation for the choice of 24 months.
Throughout this study, it is assumed that for every transaction month 𝑒 in the data, 𝑒 is considered
unbiased if Δ𝑡 ≥ 24. In Section 2.3.2 is this assumption used to train models on unbiased data.

2.2.2. Nowcasting with indicator data
External indicators can be incorporated in the model to improve the accuracy. Indicators are referred to
as exogenous data6. The time series that is being modeled is referred to as endogenous data. Different
external data sources can be used as exogenous data. Ouwehand and Gianonne et al. have observed
that the use of relevant indicators play an important role in the stability and accuracy of a nowcast
[12, 18]. The use of many indicator datasources for nowcasting has to be done with caution; too many
datasources used together can lead to overfitting due to the Curse of Dimensionality. MIDAS and MF
VAR are two techniques which are especially sensitive for this problem, as their design encourages the
use of a broad range of datasources [6, 16].

In this study, the option of multiple external datasources to improve the stability and accuracy is
disregarded. As explained in Section 1.1, this study focuses on how much information early records
can give when used as indicator series. Instead, the information from early submitted records are used
as indicator data. As explained earlier records are submitted in the ledgers with a delay. These records
in the ledgers are used to construct a time series. They also provide some extra information about the
time series in two ways: (1) they reflect the punctuality of bookkeepers which can be observed with
a delay distribution of the records. This delay distribution is similar to the missing records distribution
displayed in Figure 1.1. It is assumed that the punctuality of bookkeepers stays somewhat the same.
(2) They also reflect the state of the economy at the transaction date. The latter is interesting because
it can serve as an indicator for a nowcast. Records with low delays, e.g. records submitted within a
month after the transaction date, give a premature glance of the current state of the economy. These
low delay records can be used as an indicator time series. In the following sections, this concept is
used in the model design.

2.3. Proposed Methods
In the sections below, models addressing the problem of time series with a downward bias are pro
posed.

2.3.1. Time series Model
A time series model is created and configured for our data. Most of the financial time series in the
dataset show a strong yearly auto correlation, this is displayed for one of the datasets with an Auto
Correlation Function shown in Figure 2.1.

Some time series also show an Auto Correlation at lags three, six and nine months. This indicates
that they have quarterly auto correlations. The yearly auto correlation is the most significant in many
6An Exogenous variable is one whose value determined externally and independently of the endogenous variable.
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Figure 2.1: Auto Correlation and Partial Auto Correlation of one of the financial time series in the dataset

time series, therefore it is chosen to model two Auto Regressive (AR) parameters and a seasonal
component. The seasonal component will be discussed later. An AR(𝑝) process is described as follows:

𝑌𝑡 = 𝜙0 + ∑
𝑝
𝑖=1 𝜙𝑖𝑌𝑡−𝑖 + 𝜀𝑡 , 𝜀𝑡 ∼ 𝑁(0, 𝜎2𝜀 ) (2.1)

𝜙𝑖 are the parameters and 𝑝 is the AR order. 𝜀𝑡 is a noise term, drawn from an independent and
identically distributed normal distribution. Subsequently, Moving Average (MA) terms are incorporated
for the lagged prediction errors. An MA(𝑞) process is described as follows:

𝑌𝑡 = 𝜉𝑡 + ∑
𝑞
𝑖=1 𝜃𝑖𝜉𝑡−𝑖 , 𝜉𝑡 ∼ 𝑁(0, 𝜎2𝜉 ) (2.2)

𝜃𝑖 are the parameters and 𝑞 is the MA order.
In time series, seasonality is modeled to capture the variations that occur in every period. This

component contributes by modeling the seasonal adjustment [15]. It is a way of modeling in a desea
sonalized fashion, which Pijpers applied for nowcasting unemployment payments[19]. In this study, a
Seasonal component with a period of 12 lags with 2 Seasonal AR parameters is used.

The constructed time series in this study usually have an upward trend which means that the time
series is not stationary. A nonstationary time series can be transformed into a stationary one, by
taking the difference of the series [27]. For this reason an Integrated component is modeled. The
integration part is realized by taking the 𝑑th difference of 𝑌𝑡. For 𝑑 = 1, first order differencing is applied:
𝑌′𝑡 = 𝑌𝑡 − 𝑌𝑡−1. Similarly, a seasonal difference 𝐷 = 1 and seasonal period of 𝑠 lags is specified with:
𝑌′𝑡 = 𝑌𝑡 − 𝑌𝑡−𝑠.

Early submitted records are used as indicator data, which form a premature observation of the
current state of economy. The indicator time series is treated as exogenous data. From now on we
refer to exogenous time series with 𝑋𝑡. The indicator time series 𝑋𝑡 contains aggregated sums with only
transactions from records that were reported in the same month as they were executed. In other words,
𝑋𝑡 is in essence a time series of early submitted records. 𝑋𝑡 is used to steer the nowcast according to
the current economy. The exogenous data contains the initial transactions that happened in the recent
past and reveal the presence of a potential economic depression or growth. 𝑋𝑡 can be seen as a time
series that contains a subset of all aggregated transactions as a function of time 𝑡. It is important to
note that 𝑋𝑡 is discretized per month, just like 𝑌𝑡. Therefore adjusting the frequency of 𝑋𝑡 to match 𝑌𝑡 ’s
frequency is not needed. This renders Bridge Equations unnecessary.

To illustrate the operation of 𝑋𝑡, an ARMAX(𝑝, 𝑞) process is shown:

𝑌𝑡 = 𝜓𝑋𝑡 + ∑
𝑝
𝑖=1 𝜙𝑖𝑌𝑡−𝑖 + ∑

𝑞
𝑖=1 𝜃𝑖𝜀𝑡−𝑖 + 𝜀𝑡 , 𝜀𝑡 ∼ 𝑁(0, 𝜎2) (2.3)

𝜓, 𝜙𝑖, 𝜃𝑖 and 𝜎2 are the parameters in this model. 𝑝 is the AR order. 𝑞 is the MA order.
The use of premature observations of aggregated transactions is only effective if the policies driving

bookkeeping behavior stay somewhat the same. If this would not be the case, then the relation between
𝑋𝑡 and 𝑌𝑡 would suddenly change. This might lead to a wrong generalization, resulting in erroneous
estimations. As an example, if bookkeepers would stop reporting records throughout the year and
report almost all records at the end of the year instead, then the modeled behavior is not applicable
anymore and wrong estimations will be made for 𝑌𝑡 with respect to 𝑋𝑡. Therefore the bookkeeping
behavior is assumed to stay somewhat the same or changes gradually so generalizations can be made.

The cash flow of a month depends on the number of day per month and the number of working days
per month. For simplicity reasons, the number of days per month are assumed to be constant across
time.
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With a combination of the components S, AR, I, MA and X described earlier, a SARIMAX model
is created. This model is suited for time series from the datasets and can anticipate its predictions
on economic turbulence due to the influence of 𝑋𝑡. A SARIMAX model is specified with: (𝑝, 𝑑, 𝑞) ×
(𝑃, 𝐷, 𝑄)𝑠. The orders of AR, I and MA are specified with 𝑝, 𝑑 and 𝑞 respectively. The seasonal AR, I
and MA orders are specified with 𝑃, 𝐷 and 𝑄 respectively.

This model forms the basis of this study. New additions that are proposed in the following sections
will extend on this model.

2.3.2. Extended model
Indicator time series used in Equation 2.3 can be very reliable if 𝑋𝑡 is a process that shows a somewhat
consistent relation with respect to 𝑌𝑡. The relation of 𝑋𝑡 to 𝑌𝑡 however, is timevarying in many datasets.
Figure 2.2 depicts two charts of the 𝐴𝑡/𝑌𝑡 ratio as a function of the time passed Δ𝑡. Where 𝐴𝑡 is the
aggregated sum of records for transaction month 𝑒 submitted between 𝑒 and 𝑒+Δ𝑡. With 𝑒 ∈ 𝐸 where 𝐸
is the set of transaction dates: all Novembers from 2011 to 2017 in Figure 2.2a and all Decembers 2011
to 2017 in Figure 2.2b. As the observation time progresses (Δ𝑡 goes up), more records have become
available and at Δ𝑡 = 24: 𝑌𝑡 = 𝐴𝑡. The distribution of lags from the submitted records are somewhat
consistent throughout the years. These two charts are plotted from the same dataset, but they show
that the lag distribution differs per month of the year. As an example: In November 2017 (Figure 2.2a)
at Δ𝑡 = 0, the sum of available records is ∼ 0.42 times the sum for November 2017 Δ𝑡 = 24. While one
month later, December 2017 (Figure 2.2b) at Δ𝑡 = 0, the sum of available records is only ∼ 0.12 times
the sum for December 2017 Δ𝑡 = 24.
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(b) Ratio of all December months from 2011 till 2017

Figure 2.2: The ratio 𝐴𝑡/𝑌𝑡 as a function of Δ𝑡 for November and December. 𝐴𝑡 is the sum of records available after Δ𝑡.

Figure 2.2 shows how the punctuality of the records can vastly differ. Let us now change the per
spective and consider what implication this has on the information carried by the exogenous data. In
Section 2.3.1 is described that 𝑋𝑡 is a time series obtained from aggregated records reported between
transaction month 𝑒 and 𝑒 + Δ𝑡. The behavior of 𝑋𝑡, constructed with records from 𝑒 to 𝑒 + 1, as a
function of all transaction months 𝑒, is illustrated in Figure 2.3a. The graph shows that the December
months of 𝑌𝑡 are distinct compared to the other months of the year. These distinct data points are
present in Figure 2.3b as a dip. The data points of the December months in Figure 2.3b are the same
as the points at Δ𝑡 = 1 in Figure 2.2b.

These patterns observed in the data can be used to better utilize the information. Information utiliza
tion is defined as: how much information is contributing to the prediction of the nowcast. If a model is
better capable of utilizing the available indicator information, then the accuracy of the nowcast should
increase.

It is inviting to incorporate this timevarying relation as an extension on the earlier discussed SARI
MAX model. The metric used to measure utilized information is explained in Section 3.1.1. To test
whether these additions increase the information utilization, a hypothesis is defined:

Hypothesis 1. Modeling a timevarying relation between exogenous and endogenous time series for
nowcasting, improves the information utilization. With exogenous data being a time series constructed
with early submitted records.

To validate Hypothesis 1, two processes are proposed which model a relation. They are described
below.
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(b) The relation 𝑅𝑡 = 𝑋𝑡/𝑌𝑡 as function of time 𝑡.

Figure 2.3: The relation between Endogenous (𝑌𝑡) and Exogenous (𝑋𝑡) time series. 𝑋𝑡 is the sum of records available at Δ𝑡 = 1

The relation between 𝑋𝑡 and 𝑌𝑡 can be modeled as a process. Inspired by Factor Models, a linear
combination of the time series 𝑋𝑡 can be used to model the timevarying relation between 𝑋𝑡 and 𝑌𝑡. Let
us define the relation 𝑅𝑡 as 𝑅𝑡 = 𝑋𝑡/𝑌𝑡. 𝑅𝑡 is modeled as an AR process and is defined in Equation 2.4.
𝜓𝑖 and 𝜎2 are the parameters and 𝑝′ is the AR order. 𝑝′ = 12 could be a suitable order to capture the
seasonality, because the timevarying behavior is yearly.

The process from Equation 2.4 with estimated parameters is used for the process that models 𝑌𝑡
in Equation 2.5. This equation is an ARMAX model with parameters Ψ, 𝜙𝑖, 𝜃𝑖 and 𝜎2𝜉 . 𝑅𝑡 is used as
exogenous data. The ratio 𝑅𝑡 is used to remove the time variance of 𝑋𝑡. This is done through: 𝑋𝑡/𝑅𝑡
and can be seen in Equation 2.5.

𝑅𝑡 = ∑
𝑝′
𝑖=1 𝜓𝑖𝑅𝑡−𝑖 + 𝜀𝑡 , 𝜀𝑡 , ∼ 𝑁(0, 𝜎2𝜀 ) (2.4)

𝑌𝑡 = Ψ
𝑋𝑡
𝑅𝑡
+ ∑𝑝𝑖=1 𝜙𝑖𝑌𝑡−𝑖 + ∑

𝑞
𝑖=1 𝜃𝑖𝜉𝑡−𝑖 + 𝜉𝑡 , 𝜉𝑡 ∼ 𝑁(0, 𝜎2𝜉 ) (2.5)

The formulas described with Equation 2.4 and 2.5 are capable of modeling financial time series in
the dataset with a multiplicative time varyingrelation between the endogenous and exogenous data.
Instead of the ratio 𝑅𝑡, also the difference can be used to model additive exogenous time variance.
This would be useful if the time variant relation can better be described by a time series representing
the difference between 𝑌𝑡 and 𝑋𝑡. Therefore 𝐷𝑡 = 𝑌𝑡 − 𝑋𝑡 is introduced as an alternative to 𝑅𝑡. This
would give two new but similar equations:

𝐷𝑡 = ∑
𝑝′
𝑖=1 𝜓𝑖𝐷𝑡−𝑖 + 𝜀𝑡 , 𝜀𝑡 , ∼ 𝑁(0, 𝜎2𝜀 ) (2.6)

𝑌𝑡 = Ψ(𝑋𝑡 + 𝐷𝑡) + ∑
𝑝
𝑖=1 𝜙𝑖𝑌𝑡−𝑖 + ∑

𝑞
𝑖=1 𝜃𝑖𝜉𝑡−𝑖 + 𝜉𝑡 , 𝜉𝑡 ∼ 𝑁(0, 𝜎2𝜉 ) (2.7)

The equations 2.4 and 2.6 describe an AR(𝑝′) process and Equations 2.5 and 2.7 describe an
ARMAX(𝑝, 𝑞) process. These processes can extended with the Seasonal and Integrated component
to better fit on the data used in this study.

These models are used in Section 3.1 to validate Hypothesis 1.

2.3.3. Iterative Method
The model described in the previous section can be extended even further. The exogenous data 𝑋𝑡
gives a premature view of 𝑌𝑡. Records of various delays can be incorporated as indicator time series.
The use of information available from records submitted with higher lags could increase the information
utilization during nowcasting. The reasoning for this is explained in this section.

The datasource used for the exogenous time series has an interesting property: it can be con
structed with more delayed records. For every time step (Δ𝑡) of new information, an exogenous time
series can be obtained. For higher Δ𝑡 values, more records are available. Therefore exogenous time
series 𝑋𝑡 that incorporates records with higher lags are assumed to contain more information about 𝑌𝑡.

Giannone et al. observed from forecasting errors on their data that new information has a monotonic
and negative effect on the forecasting uncertainty [12]. The data used in this study might also show
a negative effect on the uncertainty with new information from higher lagged records. A hypothesis is
defined to test this:
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Δ𝑡

12 ×
11 × ×
10 × × ×
9 × × × ×
8 × × × × ×
7 × × × × × ×
6 × × × × × × ×
5 × × × × × × × ×
4 × × × × × × × × ×
3 × × × × × × × × × ×
2 × × × × × × × × × × ×
1 × × × × × × × × × × × ×
0 × × × × × × × × × × × × ×

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
2018 2019

Table 2.1: Records submitted over time as seen from January 2019, crosses indicate submitted records.

Hypothesis 2. The use of delayed records as indicator data for nowcasting increases the information
utilization.

To validate Hypothesis 2, a method is designed that uses records submitted with higher delays.
This is described below.

Table 2.1 illustrates how much months of records are available after Δ𝑡 months passed. As an
example: in January 2019, 12 months have passed since January 2018 and therefore records for
January 2018 with a lag of up to 12 months have been recorded. Hence, predictions for January 2018
with 12 months of data will be much more accurate than predictions for January 2019 with only one
month of data.

To exploit this property, nowcasts can bemadewith exogenous data that containsmore information.
This is achieved by constructing 𝑋𝑡 using records submitted with higher lags. This approach is limited
by the fact that records with high lags have not been submitted for the months in the recent past. Older
months contain more information, but might be less representative for the economy at present date.
Many factors influence the economy and is therefore treated as a hidden context. Let us consider this
ballpark example: the economy of January 2018 is likely to be similar to the economy of February 2018,
but the economy might gradually change after one or more years, which means that the economy of
January 2018 might not be similar to the economy of January 2019.

To summarize: older months used for the exogenous time series give a less biased and therefore
more representative view of the economy at that time, because many records are known now. Older
dates give less insight in present day economy compared to the months in the recent past. Months
from the recent past have more missing records and therefore have a downward bias. For this reason
a procedure is designed that uses both a recent and unbiased view of the economy. This is done by
exploiting these properties by means of iteratively nowcasting for each step Δ𝑡 with Δ𝑡 ∈ {0, 1,⋯ , 23}
7. The procedure starts at Δ𝑡 = 23 and goes down with each step. Each step uses less information and
therefore nowcasts become less accurate. From now on, this procedure is referred to as the iterative
nowcast.

The iterative nowcast procedure uses a matrix 𝑀 that consists of cumulative aggregated sums of
records. 𝑀 is structured with the same intuition as Table 2.1. 𝑀 is a lower triangular matrix of size
𝑘 × 𝑘, with 𝑘 the number of time steps. Every column represents the date in which a transaction from
a record happened. Every row represents the total sum of aggregated records which are submitted
within 𝑖 months, starting with 𝑖 = 0 at the bottom of the matrix. A cell at row 𝑖 and column 𝑗 in 𝑀 is
referred to as 𝑚𝑖,𝑗. Cells in𝑀 above the diagonal contain a NotaNumber value, indicated with a dash
(−). Cells are cumulative, meaning that𝑚𝑖,𝑗 equals the aggregated sum of the new records plus𝑚𝑖−1,𝑗.
Accessing a complete row 𝑖 of 𝑀 is done using the colon symbol (∶), 𝑚𝑖,0∶𝑘. Accessing a range of cells
from the 𝑝th column to 𝑞th column on row 𝑖 is done with: 𝑚𝑖,𝑝∶𝑞. The matrix𝑀 is shown in Equation 2.8.

7Take note that 𝑋𝑡 = 𝑌𝑡 if 𝑋𝑡 contains records all with a delay Δ𝑡 ≤ 24.
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𝑀 =
⎡
⎢
⎢
⎢
⎣

𝑚𝑘,1 − ⋯ − −
𝑚𝑘−1,1 𝑚𝑘−1,2 ⋯ − −
⋮ ⋮ ⋱ ⋮ ⋮

𝑚2,1 𝑚2,2 ⋯ 𝑚2,𝑘−1 −
𝑚1,1 𝑚1,2 ⋯ 𝑚1,𝑘−1 𝑚1,𝑘

⎤
⎥
⎥
⎥
⎦

(2.8)

The iterative nowcast procedure is described in Algorithm 1. The procedure makes a onepoint
prediction in every iteration. 𝑛 is the number of observations (the length of the time series to train the
model on). 𝑟 is the total number of iterative steps. As assumed in Section 2.2.1, the bias becomes
negligible after two years. Therefore, the total number of iterative steps is 24 (months). At line 6, 𝑓 is
a function that takes the endogenous and exogenous time series and returns an instance of a time
series model, for which the parameters are fitted to the data with the fit()function. Various time
series models can be used, this will be discussed in Section 3.2.1. The model.predict()function
at line 7, predicts 𝑛_𝑝𝑟𝑒𝑑𝑖𝑐𝑡 steps ahead and requires exogenous data to make predictions. Line 8
writes the prediction to the matrix 𝑀, the prediction will be used in later iterations as endogenous data.
At line 9, 𝑛 is incremented to increase the time series length for fitting the model with every iteration.

Algorithm 1 Iterative Nowcast
1: procedure iterativeNowcast(𝑀, 𝑛, 𝑟)
2: for (𝑖 = 0; 𝑖 < 𝑟;+ + 𝑖) do
3: 𝑌0∶𝑛 ← 𝑚𝑟,0∶𝑛
4: 𝑋0∶𝑛 ← 𝑚𝑟−𝑖−1,0∶𝑛
5: 𝑋𝑛+1 ← 𝑚𝑟−𝑖−1,𝑛+1
6: model ← 𝑓(𝑌0∶𝑛, 𝑋0∶𝑛).fit()
7: �̂�𝑛+1 ← model.predict(𝑛_𝑝𝑟𝑒𝑑𝑖𝑐𝑡 ← 1, 𝑒𝑥𝑜𝑔 ← 𝑋𝑛+1)
8: 𝑚𝑟,𝑛+1 ← �̂�𝑛+1
9: 𝑛 ← 𝑛 + 1

10: return 𝑚𝑟,0∶𝑛
11:
12: 𝑛 ← 60 // Number of observations, example initialization
13: 𝑟 ← 24 // Total number of iterations, Two years
14: �̂�0∶60+24 ← iterativeNowcast(𝑀, 𝑛, 𝑟)

The procedure in Algorithm 1 is used to nowcast from 𝑛 to 𝑛 + 𝑟, where 𝑛 + 𝑟 is the present time.
The output of the iterative nowcast procedure is a time series �̂� with the intention to have removed
the bias due to missing records. An example nowcast from the procedure is shown in Figure 2.4. In
the figure, 𝑌𝑡 and nowcast �̂�𝑡 are slowly deviating halfway the prediction. At that point �̂�𝑡 starts making
a difference because the portion of missing records becomes significant enough to see. Whether the
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Figure 2.4: An example nowcast from the iterative nowcast procedure
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iterative procedure is better able to utilize information can not be judged from Figure 2.4, this will be
analyzed in Section 3.2.





3
Experiments

Two experiments are performed to analyze how the proposed nowcastingmodels perform on financial
data. The first experiment tests if the information can be utilized in a more effective way. Modeling the
relation between exogenous and endogenous time series might improve the efficiency of information
utilization. Two relations are considered in this experiment which are described in Section 2.3.2: the
additive relation and the multiplicative relation. The information utilization is assessed by measuring
the accuracy of the model. This will be explained in more detail in Section 3.1.2.

In the second experiment is tested if highly lagged records can be incorporated in the nowcast and
provide some extra information. The iterative procedure providesmeans for utilizing records with higher
delays. The contribution of using records with higher delays is assessed by means of the prediction
accuracy.

3.1. Timevarying relation experiment
This experiment aims to verify the validity of Hypothesis 1, defined in Section 2.3.2.

3.1.1. Setup
The goal of the experiment is to analyze the contribution of modeling time variant exogenous behavior.
To do so, different models are tested on various financial datasets. The first model is a SARIMAX
(2, 1, 2) × (1, 1, 2)12 without time varying 𝑋𝑡. This model is is shown as #1 in Table 3.1. As second and
third model, the Equations 2.5 and 2.7 with additional Seasonal and Integrated components are used.
These models are explicitly capturing the time variant behavior of the exogenous time series in either
𝑅𝑡 or 𝐷𝑡. All three SARIMAX models use 9 free parameters with the earlier specified configuration and
have the free parameters assigned as follows: 2 for AR, 2 for MA, 1 for seasonal AR, 2 for seasonal MA,
1 for exogenous data and 1 parameter for the state covariance1. The two models are shown as #2.1
and #3.1 in Table 3.1. Model #2.1 and #3.1 both use the relation modeled with 𝑅𝑡 and 𝐷𝑡 respectively.
These two processes are modeled by a SARIMA (2, 1, 2) × (1, 1, 2)12, without exogenous data. 𝑅𝑡 and
𝐷𝑡 are estimated with 8 free parameters. The models are used to simulate the process 𝑅𝑡 and 𝐷𝑡, this
yields time series �̂�𝑡 and �̂�𝑡. These series are used as exogenous data in #2.1 and #3.1 respectively.
Table 3.1 shows these additional processes as #2.2 and #3.2.

# Model(endog. data, exog. data) Explicitly model time variance 𝑋𝑡 No parameters
1 SARIMAX (𝑌𝑡, 𝑋𝑡) No 9
2.1 SARIMAX (𝑌𝑡, 𝑋𝑡/�̂�𝑡), with �̂�𝑡 from #2.2 Yes, multiplicative 9
2.2 SARIMA (𝑅𝑡), with 𝑅𝑡 = 𝑋𝑡/𝑌𝑡 8
3.1 SARIMAX (𝑌𝑡, 𝑋𝑡 + �̂�𝑡), with �̂�𝑡 from #3.2 Yes, additive 9
3.2 SARIMA (𝐷𝑡), with 𝐷𝑡 = 𝑌𝑡 − 𝑋𝑡 8

Table 3.1: Models used in experiments.

1The state covariance is a covariance matrix for the current state and next state of a system estimated by a Kalman Filter.
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The data provided by Exact is used to compare the models. The financial data ranges from 2011 to
the end of 2018 and is separated into many time series. With the preprocessing method explained in
Section 2.1.1, time series for different sectors and different RCSFIcodes are obtained. A total of 105
datasets are acquired. From these datasets the endogenous data 𝑌𝑡 is selected and three different
exogenous time series: 𝑋𝑡 containing all records for transaction months 𝑒 ∈ 𝐸 with a report date from
𝑒 to 𝑒 + Δ𝑡, with Δ𝑡 ∈ {1, 2, 6} and 𝐸 = {January 2011, February 2011, ⋯, November 2018, December
2018}. 315 datasets are harvested, of which 3 datasets were not usable. These 3 datasets have a
low record density which resulted in time series with empty partitions. In total 312 problem instances
(datasets) are used in this experiment. From every dataset the time series 𝑌𝑡 and 𝑋𝑡 are obtained.
These are used as training data for the models with 𝑛 = 60 observations. Every model has access to:
𝑌0, ⋯ , 𝑌𝑛−1 and 𝑋0, ⋯ , 𝑋𝜏 as training data. The models have to nowcast 24 data points: 𝑌𝑛 , ⋯ , 𝑌𝜏, with
𝜏 as the observation date.

3.1.2. Error Analysis
The models are assessed on the nowcasting accuracy. The accuracy is measured with the Mean
AbsoluteScaledError (MASE) and normalized RootMeanSquaredError (nRMSE). In the field of time
series forecasting, MASE is one of the metrics that is widely used for time series with different scales,
such as for method comparison in the M4competition [17].

MASE scales the error down by the magnitude of fluctuation in 𝑌𝑡, this makes comparisons between
nowcasts of time series with different scales and fluctuations possible [14]. MASE is shown in Equa
tion 3.1, with 𝑌𝑡 the time series and �̂�𝑡 the predicted time series. A model is assessed from its first
prediction, at time 𝑛, to the last prediction, at time 𝜏, with 𝜏 = 𝑟 + 𝑛 and 𝑟 = 24.

𝜖𝑀𝐴𝑆𝐸 =
1
𝑟 ∑

𝜏
𝑡=𝑛 |𝑌𝑡 − �̂�𝑡|

1
𝜏−1 ∑

𝜏
𝑡=2 |𝑌𝑡 − 𝑌𝑡−1|

(3.1)

The nRMSE measure is used to normalise for different time series scales. nRMSE measure scales the
error down with the mean value �̄� of 𝑌𝑡. nRMSE is in contrast with MASE disregarding the fluctuations
in the time series [22]. It is shown in Equation 3.2.

𝜖𝑛𝑅𝑀𝑆𝐸 =
1
�̄�√

1
𝜏 − 𝑛

𝜏

∑
𝑡=𝑛
(𝑌𝑡 − �̂�𝑡)2 (3.2)

3.1.3. Results
The accuracy results are too extensive to show all in one table, therefore the results are presented in
a summarized fashion. Table 3.2 shows the average values of the nowcasting accuracy for the three
models. The results are averaged per different exogenous Δ𝑡 values. All measurements are shown
with the standard deviation. The standard deviation of the accuracy measures MASE and nRMSE is
relatively high for all models. The table also shows that no model outperforms the other two models.
Models #1 and #3.1 have a competing performance while model #2.1 scores somewhat worse. From
Table 3.2 can be seen that a more saturated exogenous dataset positively contributes to lower error
measures for #1, #2.1 and #3.1. In other words: as time passes (Δ𝑡 goes up), the uncertainty goes
down.

The models #2.1 and #3.1 are both dependent on the quality of the modeled processes 𝑅𝑡 and 𝐷𝑡
respectively. In other words, if by accident #2.2 or #3.2 does not manage to fit its parameters properly
and produces an �̂�𝑡 or �̂�𝑡 which can be considered worthless, then model #2.1 or #3.1 will suffer from
it. Figure 3.1 shows the MASE of process #3.1 versus the MASE of process #3.2 for the three different
dataset groups: Δ𝑡 ∈ {1, 2, 6}. Every dot in the figure resembles a sample from the dataset and is
located according to the accuracy of #3.1 and #3.2. The dependence of #3.1 on #3.2 can be seen by
the correlation between the errors from #3.1 and #3.2 in the three subfigures. The average accuracy
increases for both #3.1 and #3.2 with higher Δ𝑡 datasets. Similar patterns are observed for processes
#2.1 and #2.2. The accuracy of #2.2 displayed in Table 3.2 is relatively bad, this negatively impacts the
accuracy of #2.1. A paired TTest is performed to determine if the accuracy of model #3.1 is improved
relative to model #1. The following hypotheses are defined:
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Dataset # Model MASE nRMSE

Δ𝑡 = 1

1 SARIMAX (𝑌𝑡, 𝑋𝑡) 0.589 ±0.47 0.117 ±0.078
2.1 SARIMAX (𝑌𝑡, 𝑋𝑡/�̂�𝑡) 0.730 ±0.55 0.172 ±0.213
2.2 SARIMA (𝑅𝑡) 1.170 ±1.89 0.276 ±0.728
3.1 SARIMAX (𝑌𝑡, 𝑋𝑡 + �̂�𝑡) 0.585 ±0.45 0.116 ±0.080
3.2 SARIMA (𝐷𝑡) 0.672 ±0.53 0.133 ±0.093

Δ𝑡 = 2

1 SARIMAX (𝑌𝑡, 𝑋𝑡) 0.484 ±0.31 0.100 ±0.061
2.1 SARIMAX (𝑌𝑡, 𝑋𝑡/�̂�𝑡) 0.584 ±0.46 0.144 ±0.178
2.2 SARIMA (𝑅𝑡) 0.878 ±1.17 0.281 ±0.332
3.1 SARIMAX (𝑌𝑡, 𝑋𝑡 + �̂�𝑡) 0.471 ±0.32 0.099 ±0.064
3.2 SARIMA (𝐷𝑡) 0.543 ±0.41 0.386 ±0.478

Δ𝑡 = 6

1 SARIMAX (𝑌𝑡, 𝑋𝑡) 0.288 ±0.18 0.061 ±0.041
2.1 SARIMAX (𝑌𝑡, 𝑋𝑡/�̂�𝑡) 0.351 ±0.41 0.105 ±0.351
2.2 SARIMA (𝑅𝑡) 1.197 ±1.27 0.249 ±1.498
3.1 SARIMAX (𝑌𝑡, 𝑋𝑡 + �̂�𝑡) 0.296 ±0.20 0.065 ±0.047
3.2 SARIMA (𝐷𝑡) 0.758 ±0.70 0.291 ±0.324

Table 3.2: Averages of MASE and nRMSE for all Δ𝑡 ∈ {1, 2, 6}.
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Figure 3.1: Three scatter plots of accuracy for SARIMAX (𝑌𝑡, 𝑋𝑡 + �̂�𝑡) versus SARIMA (𝐷𝑡). Every dot is a sample from one of
the datasets.

H0: 𝜇#3.1 = 𝜇#1
H1: 𝜇#3.1 < 𝜇#1
𝜇#𝑖 is the average MASE error of model #𝑖. H0 is not rejected. There is not enough evidence in

the data to prove whether modeling a time variance improves the accuracy. Considering the fact that
model #1 also requires less parameters to produce similar results, makes model #1 is the preferred
model in this experiment.

This experiment is performed to validate Hypothesis 1, defined in Section 2.3.2. Modeling a time
varying relation between exogenous and endogenous data have not been shown to improve the infor
mation utilization. With the models and datasets used in this experiment, there is not enough evidence
to accept Hypothesis 1, therefore it is rejected.

From the experiments, various nowcast accuracies are observed for different problem instances
among the models #1, #2.1 and #3.1. This variation in accuracy is caused by the different ways in
which the information of 𝑋𝑡 is used in the models. For some problem instances, 𝑋𝑡 is more informative
for a nowcast than 𝑅𝑡 or 𝐷𝑡. For other problem instances 𝑅𝑡 or 𝐷𝑡 can be more informative. 𝑅𝑡 and 𝐷𝑡
are shown in Figure 3.2 from an example problem instance. 𝑅𝑡 (in Figure 3.2a) is less informative for a
nowcast because the relation does not reveal patterns (which makes it hard to model the series). 𝐷𝑡
(in Figure 3.2b), on the other hand, shows a yearly seasonality and a trend. For this problem instance,
𝐷𝑡 is more useful than 𝑅𝑡 when used as auxiliary data in a nowcast.



18 3. Experiments
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(a) The relation 𝑅𝑡 of the problem instance.
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(b) 𝐷𝑡 of the problem instance.

Figure 3.2: Relations 𝑅𝑡 and 𝐷𝑡 of a problem instance from the dataset.

3.2. Lagged records experiment
This experiment aims to verify the validity of Hypothesis 2, defined in Section 2.3.3.

3.2.1. Setup
In the second experiment the performance of the Iterative procedure, introduced in section 2.3.3, is
tested. 𝑓 was left unspecified in Algorithm 1. The results in Section 3.1.3 have shown that a SARI
MAX (𝑌𝑡, 𝑋𝑡) model would be the preferred implementation. For this reason a SARIMAX (𝑌𝑡, 𝑋𝑡) model
with the configuration as described in Section 3.1.1 is chosen as implementation for 𝑓 in the second
experiment.

The goal of this experiment is to analyze the contribution of incorporating lagged records in a now
cast, by means of the iterative procedure. The contribution of lagged records is measured in terms of
the nowcast accuracy.

In this experiment, 24 time steps are being nowcasted. For some months of the year it is harder to
nowcast than other months of the year. Therefore a twelveiteration forward validation (or walkforward
validation) method is used to weight every month of the year equally. Forward validation is used to
measure how well a model generalizes for time series [5]. Every iteration in the forward validation has
a training set of 48 or more data point and a test set of 24 data points. The first three forward validation
iterations are shown in Table 3.3. The table shows how the 𝑌𝜏 shifts with every iteration. Referring
to the table: the training set is indicated with orange, the test set is indicated with red. The iterative
procedure will be tested with 105 datasets, which are obtained as described in Section 2.1.1. With
the use of forward validation, in total with 105 datasets and 12 iterations 105 ⋅ 12 = 1260 tests are
performed.

2011 2014 2014 2015 2015 2017 2017 2017
Iteration Jan ⋯ Nov Dec Jan Feb ⋯ Jan Feb Mar

1 𝑌0 ⋯ 𝑌𝜏−24 ⋯ 𝑌𝜏
2 𝑌0 ⋯ 𝑌𝜏−24 ⋯ 𝑌𝜏
⋮ 𝑌0 ⋯ 𝑌𝜏−24 ⋯ 𝑌𝜏

Table 3.3: First three iterations of the forward validation. Orange is the training set and red is the test set.

The accuracy of the nowcast is measured by the mean error of the 24 predicted points: from 𝑌𝜏−24
to 𝑌𝜏, with 𝑌𝜏 the last and most recent point. Every predicted point has equal weight in the accuracy
measure. The prediction of the most recent point 𝑌𝜏, usually is the most uncertain because only one
month of information from the exogenous data is available. Therefore the accuracy of the prediction of
the most recent point 𝑌𝜏 is of interest and will also be measured as a separate score metric.

Two additional models are compared in this experiment. As second process, a SARIMAX (𝑌𝑡, 𝑋𝑡)
model predicting 24 steps, with 𝑋𝑡 containing records with lags 𝑒 to 𝑒 + 1 (Δ𝑡 = 1). Informally, the
second model will use a time series of early submitted records as exogenous data. As third process
a SARIMA (𝑌𝑡) model is used, which does not utilize the information that 𝑋𝑡 provides. The third model
in this experiment disregards 𝑋𝑡 whereas the iterative procedure and second model do not. With this
difference, the contribution of exogenous data is measured.
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The accuracy is measured with MASE and nRMSE (described with Equations 3.1 and 3.2).

3.2.2. Results
In total, 1260 time series are tested and the results are summarized in Table 3.4. This table shows
the average errors accompanied with the standard deviation. The first MASE and nRMSE columns
show the average error of 24 nowcasted time steps. The second MASE and nRMSE columns only
considers the accuracy of the most recent point on the same nowcasts.

Accuracy of nowcasted 𝑌𝜏−24 to 𝑌𝜏 Accuracy of nowcasted 𝑌𝜏
# Method MASE nRMSE MASE nRMSE
1 Iterative Procedure 0.2540 ±0.4543 0.0874 ±0.0935 0.6420 ±1.2663 0.1246 ±0.2106
2 SARIMAX (𝑌𝑡, 𝑋𝑡) 0.5894 ±0.4604 0.1887 ±0.1516 0.8458 ±0.9134 0.1645 ±0.2098
3 SARIMA (𝑌𝑡) 0.6818 ±0.6745 0.1906 ±0.1569 1.1097 ±1.2181 0.1655 ±0.1314

Table 3.4: Average nowcasting accuracies, expressed in MASE and nRMSE.

In Table 3.4 can be seen that the 𝑌𝜏 errors are much higher than the error of 𝑌𝜏−24 to 𝑌𝜏. This aligns
with the other experiments and agrees with the assumption that recent points are nowcasted with more
uncertainty. It is interesting to notice that the standard deviation of the most recent prediction errors
from the Iterative Procedure is the highest compared to the other models. This is caused by the way
the iterative procedure is constructed. In every iteration, it uses its prior predictions. This is done with
the idea to utilize the information in 𝑋𝑡 as much as possible. The downside of this approach is that
prediction errors can be compounded. Therefore this procedure is prone to over or under predictions.
An example of a nowcast with an over prediction is depicted in Figure 3.3. The dashed blue line
indicates a hypothetical correct nowcast.

From the accuracy results of models #2 and #3 in Table 3.4 can be concluded that the use of
information available in 𝑋𝑡 somewhat positively contributes to the nowcast. Even more information in
𝑋𝑡 can be utilized if more lagged records are incorporated by means of the iterative procedure. This
also increases the accuracy as can be seen with the accuracy measures of #1 and #2 in Table 3.4.
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Figure 3.3: An example of an overnowcast

A second Paired TTest is performed to see if the iterative procedure is able to better utilize records
with higher delays. The following hypothesis are defined for the models used in this experiment:

H0: 𝜇#1 = 𝜇#2
H1: 𝜇#1 < 𝜇#2
𝜇#𝑖 is the average MASE of the prediction for 𝑌𝜏−24 to 𝑌𝜏, from model #𝑖. From the Paired TTest a

𝑝value of 7.69−110 is obtained, therefore H0 is rejected.
This experiment is performed to validate Hypothesis 2, defined in Section 2.3.3. The results show

that the use of delayed records as indicator data for nowcasting increases the accuracy. With this
result can be concluded that the information utilization is increased if records are used with higher
delays. Hypothesis 2 is accepted.





4
Conclusion, discussion and

Recommendations

This chapter presents the conclusions from this thesis research, followed by a discussion about the
design choices and the assumptions that are made. The last section gives recommendations for future
work.

4.1. Conclusion
In this thesis the problem of incomplete time series due to missing records is addressed. The main
problem was the downward bias in the time series as a consequence of lagged records. The bias can
be removed by the practice of nowcasting. Different studies applied financial nowcasting to estimate
the quarterly GDP. An important aspect in these studies was the acquisition of data. Various data
sources are used together as indicator time series to serve as exogenous data for the nowcasts.

In this study is analyzed how records in a ledger can be used as auxiliary data for a nowcast. The
lag distribution of the submitted records is generated by the workflows of bookkeepers. This informa
tion is used for nowcasting. Furthermore, it is studied if more information of records can be utilized
by modeling the relation between the exogenous and endogenous series. Experiments have been
performed to uncover whether modeling the timevarying behavior can improve the utility of the avail
able information. Utility is measured by comparing nowcast accuracies of models which use different
auxiliary data. In the first experiment three different models are tested, of which one does not use the
timevarying relation. The results of the experiments do not show an improved accuracy when model
ing the timevarying relation between indicator and target time series. There is not enough evidence
to prove that modeling a timevarying relation increases the information utility. The models that use
a timevarying relation for the nowcast depend on two processes, which together requires more pa
rameters. It is preferred to not model the relation between endogenous and exogenous, because this
addition does not show an improvement. For some problem instances however, the use of an additive
or multiplicative relation results in a better accuracy. This means that some properties, extracted from
the indicator data can be used to better utilize the available information in the data. Although modeled
relations do not improve the overall accuracy, they can provide some extra information for a nowcast.

Records which are submitted recently after the transaction date, can be used to give a premature
view of the economy. Records with higher delays can give an even better view of the economy at
that time. This motivation is used to analyze whether incorporating lagged records can improve the
utilization of the available data to nowcast. An iterative fashion is used to nowcast with different
levels of delayed records. This approach makes more use of the available information than a model
that only uses early reported records. Results from the experiments show there is a slight improvement
when using more information by means of an iterative nowcast. This comes at a cost of possible
compounding errors, which makes the method more prone for over or under predictions. The most
recent data point is nowcasted with the most uncertainty, because for this point the least information
is available.
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4.2. Discussion
This section will elaborate on some of the design choices made during this project.

4.2.1. Model design
There is not enough evidence to show that modeling a time variant relation between 𝑋𝑡 and 𝑌𝑡 increases
the amount of utilized information during nowcasting. It could be possible that the datasets used in
this experiment have a less significant time variant relation than initially thought.

In the Section 2.3.2 is described how the time variant relation between 𝑋𝑡 and 𝑌𝑡 can be modeled
with two processes each. One downside is that two processes are used to model the time variance
while only one was needed. A linear combination of 𝑋𝑡 and 𝑌𝑡 would reduce the model to only one
process. Such a process is described with Equation 4.1.

𝑌𝑡 = ∑
𝑃
𝑖=0 𝜓𝑖𝑋𝑡−𝑖 + ∑

𝑝
𝑖=1 𝜙𝑖𝑌𝑡−𝑖 + 𝜀𝑡 , 𝜀𝑡 ∼ 𝑁(0, 𝜎2𝜀 ) (4.1)

𝑝 is the AR order, and 𝑃 is the exogenousAR order. 𝜓𝑖, 𝜙𝑖, 𝜎2𝜀 are the parameters. This model can
be extended by also incorporating the additive or multiplicative relation between 𝑋𝑡 and 𝑌𝑡, as shown
in Equations 4.2 and 4.3. Even a mix of additive and multiplicative relation can be used.

𝑌𝑡 = 𝜓0𝑋𝑡 + ∑
𝑃
𝑖=1 𝜓𝑖

𝑋𝑡−𝑖
𝑌𝑡−𝑖

+ ∑𝑝𝑖=1 𝜙𝑖𝑌𝑡−𝑖 + 𝜀𝑡 , 𝜀𝑡 ∼ 𝑁(0, 𝜎2𝜀 ) (4.2)

𝑌𝑡 = 𝜓0𝑋𝑡 + ∑
𝑃
𝑖=1 𝜓𝑖(𝑌𝑡−𝑖 − 𝑋𝑡−𝑖) + ∑

𝑝
𝑖=1 𝜙𝑖𝑌𝑡−𝑖 + 𝜀𝑡 , 𝜀𝑡 ∼ 𝑁(0, 𝜎2𝜀 ) (4.3)

During the project, the models described in the equations above are implemented in State Space
form, which is convenient for the Kalman Filter to fit the parameters of the model. The State Space
form of Equation 4.1 was somewhat challenging to implement, but it was realised. This was challenging
because the library (Statsmodels1) that was used to build the models was not very transparent. It is
even more complicated when the Integrated and Seasonal components are modeled in State Space
form. These components are difficult to build because they require a big change in the matrices used
inside the State Space model. The Seasonal and Integrated components are needed to be able to
test on real data, such as the dataset provided by Exact. Something went wrong in the design of the
models during the developments, because the parameters of the State Space equivalent of a SARIMA
with Auto Regressive X were not able to converge properly. It took too much time to correct the mis
takes, therefore an alternative solution was tried. The alternatives are the processes described with
Equations 2.4, 2.5, 2.6 and 2.7.

One of the important questions which is still left unanswered is whether∑𝑃𝑖=0 𝜓𝑖𝑋𝑡−𝑖 in Equation 4.1 is
able to capture a timevarying relation such that the Equations 4.2 and 4.3 are not needed. Section A.1
provides an artificial scenario in which Equation 4.1 would not be capable of properly modeling without
the relation. The scenario is crafted with artificial data, and therefore does not prove the idea. It is
unfortunate that this question can not be answered at the end of this project.

In this study, statistical models similar to SARIMAX are analyzed and tested. To gain more insight,
a comparison with other models from the nowcasting literature should be performed. The use of
different techniques would allow to extract other information from the indicator data. As an example:
Bridge Equations can be used discretize the indicator data with smaller time intervals. This means that
the date property of the records have higher resolution and therefore less information is lost.

4.2.2. Assumptions
A few assumptions had to be made for the nowcasts on the data. This section briefly goes through
them and discusses the consequences of these assumptions.

As mentioned in Chapter 1, bookkeepers have different record submission punctualities. The punc
tuality of bookkeeping influences the value of indicator 𝑋𝑡 used for the nowcasts. As an example, if
bookkeepers would suddenly be less punctual, then 𝑋𝑡 observed at Δ𝑡 = 1 would change. During
model fitting it is assumed that bookkeepers will remain about as punctual as they were previously.
Of course bookkeepers can differ with their punctuality from time to time, but because the time series
involve so much different companies, the punctuality distribution will smooth out. It is also assumed
1Statsmodels is a Python library for statistical modeling. Documentation about State Space of Statsmodels: https://www.
statsmodels.org/stable/statespace.html

https://www.statsmodels.org/stable/statespace.html
https://www.statsmodels.org/stable/statespace.html
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that the overall punctuality might gradually change. The punctuality can be impacted in many ways,
such as system downtime for a long period that causes bookkeepers to submit records at a later time.
In this study, these domain specific factors are not taken into account. It is also assumed that economic
turbulence will hardly impact the punctuality.

Monthly cash flow is influenced by the number of days per month and the number of working days
per month. All months are assumed to have the same number of days and the same number of working
days for the sake of simplicity. In reality, on average every month has about 21 working days. The
number of working days per month can vary from 18 days (in April 2017) to 23 days (in March 2017) 2.

During the preprocessing described in Section 2.1.1 it is assumed that some bookkeeping mistakes
can disrupt a nowcast. Records of transaction which are accidentally an order of magnitude bigger
than they should have been because of an extra 0 at the end, can have a major impact on the time
series. It is not investigated how these mistakes can be detected and therefore it is chosen to strip the
outliers from the dataset. Outliers which are benign are also stripped from the dataset, this is the price
that is payed to reduce the overall noise in the dataset.

4.3. Recommendations
There are still some directions left to explore due to limited time and scope of this thesis. In this section,
possible future steps will be recommended. Some of these recommendations are followups from the
research done in this project.

It is observed in the data of this study that after 24 months the downward bias is vanished, because
almost all the records are submitted by that time. Therefore, for all the time series in the dataset the
nowcasting starts 24 months before the present. Beginning a nowcast 24 months before the present
is not necessary for all datasets. How long it takes before enough records have been submitted for
the bias to disappear can differ per time series and per month of the year. If this would have been
measured, then variable starting times could have been used for nowcasting. It would be preferred to
start a nowcast closer to the present if the downward bias vanishes early. This gives less overhead
and a nowcast starting point which might better reflect the present economy.

The use of more indicators is an interesting direction to explore. More relevant indicators for now
casting can be obtained either from the dataset provided by Exact or external economic data. Various
data sources might improve the accuracy, but more importantly, opens up a more techniques which
can be explored. For example, the Factor Model or Dynamic Factor Model described in the Related
Work, could be extended to additionally model the relation between endogenous data and exogenous
indicators.

The data that is used for this study is discretized per month. This means that the submission date
and transaction date of each record is partitioned in intervals of months. This is convenient because it
is the same frequency as the KPIs that need to be nowcasted. This results in some loss in information
due to the discretization. The records could be partitioned in higher frequency periods, such as weeks
or days. It is also possible to not discretize at all. To be able to still nowcast on a monthly frequency
Bridge Equations could be used. The use of models designed for mixed frequency data will become
more inviting to use.

In the data that is used were also records submitted with future transactions. The records with future
transactions are expected to occur in the future, usually because they happen on a regular basis, like
fixed costs. These future transactions give an insight in the foresighted cash flow from the bookkeeper’s
perspective. The foresights are disregarded during this study but might be able to contribute in a now
cast.

2Calendar of working days for the Netherlands: http://www.vakantiespreiding.eu/aantalwerkdagen/.

http://www.vakantiespreiding.eu/aantal-werkdagen/
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A.1. Experiments on artificial data
This section illustrates the possible contribution of modeling a time varying relation. Artificial time series
are used to show how the principle works in simple circumstances. In this section is shown how amodel,
that would be able to capture a time varying relation between exogenous and endogenous data, would
be designed to (almost) perfectly fit on the data.

In Figure A.1 is a time series 𝑌𝑡 displayed with an auto regressive lag of 3. In this artificial setup, 𝑌𝑡
has no noise and follows this signal: {4, 3, 7, 4, 3, 7,⋯}. An AR(3) process for which its parameters are
fitted on time series 𝑌𝑡 is displayed with the green line in Figure A.1. The AR(𝑝)process is described in
Equation A.1, with 𝜙𝑖 free parameters. The model is trained on 𝑌𝑡 from 𝑡 = 0 to 𝑡 = 29. For 𝑡 ≥ 30 the
model forecasts subsequent points. The dashed line starting from 𝑡 = 30 for 𝑌𝑡 in Figure A.1 indicates
that this is not shown to themodel. The AR(3) model is able to (almost) perfectly reproduce and forecast
𝑌𝑡.

𝑌𝑡 =
𝑝

∑
𝑖=1
𝜙𝑖𝑌𝑡−𝑖 (A.1)
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Figure A.1: Time series 𝑌𝑡 and a fitted AR(3)process

An external factor 𝑋𝑡 can be observed. 𝑋𝑡 has 4 auto regressive lags and is described by:
{1, 0.5, 1.5, 0.75, 1, 0.5, 1.5, 0.75,⋯}. A new time series 𝑌′𝑡 is introduced. 𝑌′𝑡 is influenced by 𝑋𝑡. 𝑋𝑡 has
a time varying influence on 𝑌′𝑡 . This time varying influence is described with relation 𝑅𝑡. The relation
𝑅𝑡 is described by an artificial time series which has 4 auto regressive lags and follows this signal:
{1, 3, 2, 4, 1, 3, 2, 4,⋯}. In figure A.2 is the new time series 𝑌′𝑡 depicted which is influenced by the external
factor 𝑋𝑡 according to: 𝑌′𝑡 = 𝑌𝑡 ⋅ 𝑅𝑡 ⋅ 𝑋𝑡. The different auto regressive lags of 𝑅𝑡 and 𝑌𝑡 cause a more
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complex structure in 𝑌′𝑡 . The external influence causes 𝑌′𝑡 to obtain an auto regressive lag of 12. An
AR(3)process would not be able to fit on 𝑌′𝑡 . An AR(12)process however would be able to (almost)
perfectly fit on the training data. An AR(12)process requires 12 parameters. We can do better in terms
of parameters and generalization. A new model is introduced which models an AR and exogenousAR
(ARXAR) process. an ARXAR(𝑝, 𝑃) is described with Equation A.2. An ARXAR(3, 4) is trained on 𝑌′𝑡
with exogenous time series: 𝑋𝑡 ⋅𝑅𝑡. 7 parameters are used for this model. It is able to (almost) perfectly
fit on the new data 𝑌′𝑡

𝑌𝑡 =
𝑝

∑
𝑖=1
𝜙𝑖𝑌𝑡−𝑖

𝑃

∑
𝑖=0
𝜓𝑖𝑋𝑡−𝑖 (A.2)
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Figure A.2: Time series 𝑌′𝑡 and two processes

The AR(12)process does not correctly generalize because it has not learned to model the external
influence. This can be tested by changing the values of 𝑋𝑡 in with 𝑡 ≥ 30. To allow the process to
anticipate on external changes, an ARX model is introduced. ARX is desribed by Equation A.3. In
Figure A.3a is shown that the ARX(12) process is not able to fit properly on the data. An ARXAR(3, 4)
requires 𝑋𝑡 ⋅ 𝑅𝑡 as exogenous time series to be able fit on 𝑌′𝑡 .

Let us change 𝑋𝑡 to an IID random variable: 𝑋𝑡 ∼ 𝑁(0, 1). 𝑌′𝑡 is still defined as: 𝑌′𝑡 = 𝑌𝑡 ⋅ 𝑅𝑡 ⋅ 𝑋𝑡. The
ARXAR is still able to obtain a good fit on the data if the relation is as exogenous data. This can be
seen in Figure A.3b. An ARXAR(3, 4) with 𝑋𝑡 is provided as exogenous data. The model is not able to
properly fit.

𝑌𝑡 = 𝜓𝑋𝑡
𝑝

∑
𝑖=1
𝜙𝑖𝑌𝑡−𝑖 (A.3)
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Figure A.3: Time series 𝑌′𝑡 influenced by external variable 𝑋𝑡

We have seen that 𝑌′𝑡 is influenced by an observable external variable 𝑋𝑡. 𝑋𝑡 has a time dependent
influence on 𝑌′𝑡 . This time dependent influence is described by 𝑅𝑡 which is not directly observable, but
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can be uncovered: 𝑅𝑡 = 𝑌′𝑡/(𝑋𝑡 ⋅ 𝑌𝑡). To be able to use relation 𝑅𝑡, it needs to be modeled because it
is derived as the relation between 𝑋𝑡 and 𝑌′𝑡 , but 𝑌′𝑡 is unknown after 𝑡 ≥ 30. The modeled relation 𝑅𝑡
and external variable 𝑋𝑡 are used together in a model to properly fit on the data.
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