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Abstract

In this manuscript an approach for the optimization for strength of curved variable stiffness
laminates is proposed. A correction function to estimate the effect of gaps and overlaps
based on the design variables is evaluated. To allow the currently available multiple mesh
optimization approach (MMOA) to be applied to curved surfaces, the method is adapted. A
secondary coarse mesh is defined and in the nodes of this mesh the fibre angles are defined.
The elements of the secondary mesh are rotated into a plane and inverse isoparameticly
mapped the centroids of the finite element (FE) mesh in these elements are found. The fibre
angles are interpolated in these centroids and exported to ABAQUS® for an evaluation of
the stress field. To find a density correction function initially an approximation function
is defined, in the process of evaluating the correction function complications regarding the
boundary conditions are encountered. These are generated by ’shockwaves’ that occur during
the lay-up processing depending on the manufacturing strategy, a FE solution proposed and
evaluated.



viii



Table of Contents

Preface xv

List of Abbrevations xvii
List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii
List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

1 Introduction 1

2 Literature Review 3
2.1 What approach for optimizing the fibre paths in a fibre steered laminate will lend

itself the best for the purpose of the research? . . . . . . . . . . . . . . . . . . . 3
2.1.1 Laminate parameter approach . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Multiple Mesh Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 Conclusion and answer to the question . . . . . . . . . . . . . . . . . . . 6

2.2 What is the effect of gaps and overlaps on the stiffness of a fibre steered laminate? 7
2.2.1 The effects of gaps and overlaps on the stiffness. . . . . . . . . . . . . . 7
2.2.2 Deductions, assessment of the literature, and answer . . . . . . . . . . . 7

2.3 Can a continuous correction function be found that corrects the stiffness during
optimization in 3 dimensional space? . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.1 Point based evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Approaches using continuous functions . . . . . . . . . . . . . . . . . . . 8
2.3.3 Deductions, assessment of the literature, and answer . . . . . . . . . . . 11

3 Methodology of the 3D multiple mesh approach 13
3.1 Identifying CM centroids within MM elements . . . . . . . . . . . . . . . . . . . 14

3.1.1 Finding centroids of quadrilateral element in 3D space . . . . . . . . . . 15
3.1.2 Distance between centroids . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Rotating the MM element and it CM centroids . . . . . . . . . . . . . . . . . . 18



x Table of Contents

3.2.1 Verification of the rotation methodology . . . . . . . . . . . . . . . . . . 19
3.3 Moving into iso-parametric space. . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Failure criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.6 Optimization algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Implementation of the 3D multiple mesh approach 25
4.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1 Model and mesh generation . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.2 Mapping process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.1 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.2 Optimization loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Verification of the 3D multiple mesh approach 29
5.1 Tensile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1.2 Optimization results and discussion . . . . . . . . . . . . . . . . . . . . . 30

5.2 Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2.2 Optimization results and discussion . . . . . . . . . . . . . . . . . . . . . 32

5.3 3 dimensional tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6 The density function 35
6.1 Density function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2 Complications of the density function . . . . . . . . . . . . . . . . . . . . . . . . 39
6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7 Conclusion 47
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

References 48

References 49

A Building rotation matrix through changing basis 51
A.1 Building rotation matrix through changing basis . . . . . . . . . . . . . . . . . . 51

B Validation of the centroid finding algorithm 55

C Validation of the conditions of the inverse iso-parametric mapping procedure 57



List of Figures

2.1 The manufacturing mesh with the fibre angles in the nodes. [1] . . . . . . . . . . 6
2.2 Course centerline of a lamina T1 < T0 and T0 < T1 respectively Fayazbakhsh [2] 9
2.3 Gaps and overlaps as found by Fayazbakhsh [3] . . . . . . . . . . . . . . . . . . 10
2.4 Tow path with ’s’ and ’n’ directions [4] . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 A high level overview of the order of the actions required to find a laminate opti-
mized for a cost function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 A simplified visual representation of the manufacturing mesh (MM) with the
calculation mesh (CM) and their centroids . . . . . . . . . . . . . . . . . . . . . 15

3.3 A quadrilateral element in triangular elements. . . . . . . . . . . . . . . . . . . . 15
3.4 Square surface at an 45o degree angle with its centroid. . . . . . . . . . . . . . . 17
3.5 A wedge shaped surface at 45o degree angle with its centroid . . . . . . . . . . . 17
3.6 Figure showing the vectors and elements involving rotation of the MM element . 20
3.7 Figure describing the node numbering order in the global and natural coordinate

system [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.8 The MM element after rotation and inverse parametric mapping with the fibre angle 23

4.1 Work flow describing the mapping process . . . . . . . . . . . . . . . . . . . . . 26
4.2 Work flow of the cost function of the optimization loop . . . . . . . . . . . . . . 27

5.1 Boundary conditions for the tensile load maximization . . . . . . . . . . . . . . . 29
5.2 The meshes for the tensile load maximization . . . . . . . . . . . . . . . . . . . 30
5.3 Boundary conditions for the buckling load maximization . . . . . . . . . . . . . . 31
5.4 The meshes for the buckling load maximization . . . . . . . . . . . . . . . . . . 31
5.5 Two alternative MM evaluated . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.6 Results of maximizing for the buckling load [1] . . . . . . . . . . . . . . . . . . . 33
5.7 Fibre tow paths as obtained by maximizing the buckling load . . . . . . . . . . . 33



xii List of Figures

5.8 The manufacturing mesh elements used to represent a curved plate . . . . . . . 34
5.9 The tow paths on the curved plate after optimizing for maximum tensile load . . 34

6.1 Tow cross-sections, shown normal to the fibre. . . . . . . . . . . . . . . . . . . . 35
6.2 A fibre with the tangent and normal directions [4] . . . . . . . . . . . . . . . . . 37
6.3 Fibre angle distribution for the ’flower’ . . . . . . . . . . . . . . . . . . . . . . . 40
6.4 Density distribution for the ’flower’ . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.5 Creation of two domains in the ’fatman’ . . . . . . . . . . . . . . . . . . . . . . 41
6.6 Distributions for a quarter of the rectangular plate . . . . . . . . . . . . . . . . . 41
6.7 Example mesh to illustrate the procedure for finding the density. . . . . . . . . . 42
6.8 The density field for a quarter of the geometry using two iso-density lines at y = 0

and x = −1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.9 The density field of the ’fatman’ based on a post tow path planning averaging [6] 43
6.10 The tows for the ’fatman’ case with two different manufacturing approaches . . . 44
6.11 The density field based using a singular iso-density line of infinite length . . . . . 44
6.12 A shock wave as created during optimization for maximum buckling load . . . . 45

A.1 Vector projection of mmm onto nnn in red, vector rejection of mmm onto nnn in green. . . . 52

B.1 A 2D square surface with its centroid . . . . . . . . . . . . . . . . . . . . . . . . 56
B.2 A 2D wedge surface with its centroid . . . . . . . . . . . . . . . . . . . . . . . . 56

C.1 The quadrilateral element before and after transformation for the first condition . 57
C.2 The quadrilateral element before and after transformation for the second condition 58
C.3 The quadrilateral element before and after transformation for the third condition 59
C.4 The quadrilateral element before and after transformation for the fourth condition 59
C.5 The quadrilateral element before and after transformation for the fifth condition . 60
C.6 The quadrilateral element before and after transformation for the sixth condition 61
C.7 The quadrilateral element before and after transformation for the seventh condition 61
C.8 The quadrilateral element before and after transformation for the last condition . 62



List of Tables

2.1 The stacking sequence of the laminates as discussed in 2.2 . . . . . . . . . . . . 7
2.2 In-plane stiffness and buckling load of designs (A) and (B) normalized with respect

to the baseline considering the weight penalty. [3] . . . . . . . . . . . . . . . . . 8

3.1 Coordinates for a square surface at an 45o degree angle . . . . . . . . . . . . . . 16
3.2 Coordinates for a wedge surface at an 45o degree angle . . . . . . . . . . . . . . 17
3.3 Coordinates inclined example MM element . . . . . . . . . . . . . . . . . . . . . 19

5.1 Optimization results for the tensile test case using different starting variables . . 30
5.2 Optimized layup for the buckling load case with a single MM element with different

starting layups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3 Optimized layup for the 3D tensile load case with different starting layups . . . . 34

B.1 Coordinates of the nodes of the 2D square . . . . . . . . . . . . . . . . . . . . . 55
B.2 Coordinates of the nodes of the 2D wedge . . . . . . . . . . . . . . . . . . . . . 55

C.1 Node coordinates for first condition . . . . . . . . . . . . . . . . . . . . . . . . . 57
C.2 Node coordinates for second condition . . . . . . . . . . . . . . . . . . . . . . . 58
C.3 Node coordinates for third condition . . . . . . . . . . . . . . . . . . . . . . . . 58
C.4 Node coordinates for fourth condition . . . . . . . . . . . . . . . . . . . . . . . 59
C.5 Node coordinates for fifth condition . . . . . . . . . . . . . . . . . . . . . . . . 60
C.6 Node coordinates for sixth condition . . . . . . . . . . . . . . . . . . . . . . . . 60
C.7 Node coordinates for seventh condition . . . . . . . . . . . . . . . . . . . . . . . 61
C.8 Node coordinates for eighth condition . . . . . . . . . . . . . . . . . . . . . . . 62



xiv List of Tables



Preface

In this thesis some of the research I performed under Dr. van Tooren for GKN Aerospace
some of this research is published in the papers:

"F.J. van Zanten, C. Pupo, D. Barazanchy, M. van Tooren. Fiber angle optimization and tow
path planning on 3D curved surfaces using the multiple mesh approach. ASC 33rd Annual
Technical Conference. September 2018 Seattle (USA)"

In addition to the work done for this paper, this master thesis discusses finding a correction
factor for the stiffness of variable stiffness laminates based on discrete fibre angles.

I would like to thank my supervisor Dr.ir M. van Tooren for his assistance during the writing
of this thesis, the discussions and the suggestions provided were always of great value. I am
grateful for the suggestions provided to me by Dr. D. Barazanchy. I would like to express
my appreciation to Chris Sacco for the fruitful mathematical and programming discussions,
and Fokker for providing funds in a research subject related to this thesis. Finally I’d like to
thank Dr.ir. S. Koussios for the extended feedback on the thesis work.

Delft, University of Technology F.J. van Zanten
27th of August 2018



xvi Preface



List of Abbrevations

List of Acronyms

AFP automated fibre placement

CLPT classical laminated plate theory

CM calculation mesh

CS constant stiffness

FE finite element

FEA finite element analysis

FEM finite element method

GUI graphical user interface

KLPT Kirchoff-Love plate theory

LPA lamination parameter approach

MM manufacturing mesh

MMOA multiple mesh optimization approach

RBF radial basis functions

NURBS non-uniform rational basis spline

VS variable stiffness



xviii List of Abbrevations



“Imagination is more important than knowledge. Knowledge is limited. Imagina-
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Chapter 1

Introduction

The introduction of new technologies like automated fibre placement (AFP) allows for the
creation of variable stiffness (VS) laminates. These laminates can be tailored to their loading
condition by varying the fibre angle in the ply, whereas constant stiffness (CS) laminates have
the same fibre angle throughout the ply. VS laminates have been discussed extensively by
B.F. Tatting [7], S. Setoodeh [8] and M. van Tooren [9]. In this literature two main approaches
are identified. The first uses the lamination parameters, as defined by Hahn and Tsai [10], as
design variables; this is a stiffness based approach. In order to reduce the design variables,
the second approach meshes the geometry with a rough mesh in which the fibre angles in
the nodes are the design variables. The design variables are then interpolated onto a normal
finite element method (FEM) which is evaluated to acquire the stress field. Van Tooren et
al. [6] discusses an approach to find a continuous correction function for the gaps and overlaps
caused by fibre steering.

In this manuscript the goal is to create a methodology that allows for the optimization
of curved VS laminates. The methodologies discussed above are capable of optimizing VS
laminates on flat plates, however this process has not been reported on before for curved
surfaces. A possible solution for the density function was presented in [6], however this
solution is only capable of taking in account the gaps and overlaps in flat laminates.

The workflow of this process is shown in Figure 3.1. These methodologies are limited to 2D
shells, a methodology to extend one of these approaches such that it can be used on 3D shells
is discussed in Chapter 3.

During the design of VS laminates gaps and overlaps are created; ideally these should be
taken in account during the optimization process. To achieve this Van Tooren et al. [6] used
a function to approximate the change in density over the surface as a function of the discrete
fibre angles. The process of finding this function for 2D surfaces is discussed in section 6.1,
to move this process to a 3D surface; the same approach as proposed for the optimization
process in Chapter 3 is valid. During the course of this thesis complications are found and a
solution is presented in section 6.2.
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Chapter 2

Literature Review

2.1 What approach for optimizing the fibre paths in a fibre steered
laminate will lend itself the best for the purpose of the re-
search?

To optimize the strength using the fibre orientation of a fibre steered plate, multiple methods
are available in the literature. To take the fibre orientation in each Finite Element (FE) mesh
element for each ply would cause the optimization problem to have an overwhelming amount
of design variables, which would result in time costly optimization problem. To reduce the
design variables two optimization approaches are available in the literature. The first method
discussed is to optimize panels for stiffness through the usage of Laminate Parameters (LP).
The other approach is to use a secondary mesh, called the Manufacturing Mesh (MM) which
is laid over the mesh the FE solver uses. On the nodes of this coarser mesh the fibre angles
are the design variables, then through a mapping and interpolation process the fibre angles
in the FE mesh are found.

2.1.1 Laminate parameter approach

To reduce the amount of design variables for the optimizer, the laminate configuration can be
expressed as the laminate parameters, as demonstrated by Tsai and Hahn [10]. The geometric
lamination parameters as a function of the fibre angle are shown in the following equation:
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[V1A, V1B, V1D] =
∫ 1/2

−1/2
cos 2θ

[
1, z, z2

]
dz

[V2A, V2B, V2D] =
∫ 1/2

−1/2
cos 4θ

[
1, z, z2

]
dz

[V3A, V3B, V3D] =
∫ 1/2

−1/2
sin 2θ

[
1, z, z2

]
dz

[V4A, V4B, V4D] =
∫ 1/2

−1/2
sin 4θ

[
1, z, z2

]
dz

(2.1)

By isolating the lamination parameters from the material invariants found by Tsai and Pagano
[11], Tsai and Hahn then related the lamination parameters to the in-plane stiffness matrix.
This was then expanded upon by finding formulations for the coupling and bending stiffness
matrices as shown in equation 2.2. Based on these formulas Miki [12] established a new
and unified optimal design method for composite laminates. This approach assumes that
the laminated plates are symmetric. This design method reduces the number of variables
of the optimization problem to 12 lamination parameters, 4 per stiffness matrix. However
this simplification brings consequences, the first of which is that the lamination parameters
are found through the usage of the Classical Laminate Theory (CLT) this implies that the
laminate is assumed to be thin thus the out of plane stresses and transverse shear stresses
are neglected in the problem. The CLT assumes perfect bonding, therefore the interlaminar
stresses are assumed to be zero.

[A11, B11, D11] = U1

[
h, 0, h

3

12

]
+ U2 [V1A, V1B, V1D] + U3 [V2A, V2B, V2D]

[A22, B22, D22] = U1

[
h, 0, h

3

12

]
− U2 [V1A, V1B, V1D] + U3 [V2A, V2B, V2D]

[A12, B12, D12] = U4

[
h, 0, h

3

12

]
− U3 [V2A, V2B, V2D]

[A66, B66, D66] = U5

[
h, 0, h

3

12

]
− U3 [V2A, V2B, V2D]

[A16, B16, D16] = U2
2 [V3A, V3B, V3D] + U3[V4A, V4B, V4D]

[A26, B26, D26] = U2
2 [V3A, V3B, V3D]− U3[V4A, V4B, V4D]

(2.2)

The optimization problem is not necessarily convex. The optimal lamination parameters re-
turn a stiffness matrix. An infinite number of different lay-ups can result in this stiffness
matrix. To solve for the fibre angles genetic algorithm or search techniques are used, however
these are computationally inefficient at finding a global optimum. Foldager et al. [13] pro-
posed a method using the strain energy to create convexity in the problem of finding the ply
angles and thicknesses.
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Failure criteria evaluate whether a laminate has failed; Through the ply strain the ply stresses
are found using the ABD matrix. The ply strains are a function of the laminate strain and
the ply angle. This poses a problem since in the lamination parameter approach the ply
angles are undefined. To solve this problem, IJsselmuiden [14] developed a method to find
the area in the strain space that is safe to be designed within. This was done by mapping
the Tsai-Wu failure criterion in the strain space. This space is limited by the worst case fibre
angle. As such the failure criterion provides a conservative approximation of the Tsai-Wu
failure criterion. The approach implies that all possible ply angles could be at all possible
locations in the laminate, significantly reducing the design space. Khani [15] elaborates on
the method developed by IJsselmuiden, by using a hybrid approximation for the failure index.
This was improved upon by Peeters et al. [16] by taking in account the size of a tow, and
the maximum size of a gap or overlap created by the fibre paths during the post-processing.
During the optimization these defects are not taken into account.

The lamination parameter approach allows for the design variables to be reduced to just
12 per finite element (FE) element, however it also inhibits the design tool to view the fibre
angles during optimization and thus the gaps and overlaps can not be taken in account during
the optimization process. This form of optimization is also limited by the assumptions made
in the CLT.

2.1.2 Multiple Mesh Approach

The multiple mesh optimization approach (MMOA) differs from the lamination parameter
approach (LPA) as it does not remove the ply angles from the optimization problem. Instead
it employs a secondary coarser mesh named the manufacturing mesh (MM) as explained by
van Tooren [9] and places this mesh over the mesh used for finite element analysis (FEA).
The mesh used during the FEA is referred to as the calculation mesh (CM). In the nodes of
the MM fibre angles are defined, and these are the design variables used by the optimization
algorithm to find a solution.

By interpolating the fibre angles of the MM element nodes to the centroids of the elements in
the CM, the amount of design variables can be reduced. This concept is shown in figure 2.1.
The smoothness of the fibre paths over the mesh element boundaries is guaranteed [4], however
the change in fibre angle is not continuous as the solution is using Lagrangian interpolation
functions which are not C1 continuous.
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Figure 2.1: The manufacturing mesh with the fibre angles in the nodes. [1]

The reduction in design variables depends on the coarseness of the MM. The coarser the MM,
the fewer design variables, however this also reduces how close the solution can approach the
true optimal solution. For simple load cases with simple geometries this phenomenon plays a
less significant role. As the geometry starts incorporating holes and other complexities this
could become an issue. The usage of a secondary mesh allows for the manufacturing con-
straints such as the minimum turn radius to be applied easily by constraining the change in
fibre angle. This method however, does rapidly increase in the number of design variables as
layers are added to the composite layup, while the previously discussed lamination property
approach does not.

The solution approach presented by van Tooren et al. [9] was used by Barazanchy [1] on
various load cases, in this article a solution is found for the load case of: Pure tensile, pure
shear, pure compression loading, and a plate with a hole loaded under pure tension. To find
a solution, a global search algorithm based on the basin of attraction was used. To avoid
finding local minima, different initial laminates were used for each of the load cases. The
solution is compared to solution created by the LPA, and the results of the MMOA match
the expected results based on literature.

An issue discussed in [4] is the smoothness of the density function across the element bound-
aries. A possible solution could be through implementing the Hermite interpolation function.
An area of concern that is remarked upon in the article as well is that violation of the conser-
vation of mass continuity within the elements is not checked. The amount of design variables
in this approach is the amount of MM nodes times the amount of plies, where the amount of
MM nodes depends on the complexity of the geometry and the load case.

2.1.3 Conclusion and answer to the question

Due to the obfuscated ply angles the LPA does not lend itself well for the problem at hand. A
2 dimensional solution that aims to quantify the effect of gaps and overlaps on the stiffness for
the MMOA is in development. The approach also allows for the optimization to be strength
based; however a method to move the approach in a 3 dimensional space must be found.
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2.2 What is the effect of gaps and overlaps on the stiffness of a
fibre steered laminate?

The gaps and overlaps created during steering need to be related to a change in stiffness. The
effect of gaps and overlaps is assessed through the literature in which experiments have been
done and recorded.

2.2.1 The effects of gaps and overlaps on the stiffness.

During the creation of an AFP steered laminate an initial tow is laid out. The next tow is laid
offset from the previous tow. The tow-overlapping method results in overlaps which locally
increase the thickness of the laminate. The tow-dropping method creates resin-rich regions.
Depending on the strategy employed during the tow placement process, gaps and overlaps are
created. To better understand the consequences of these defects, various studies have been
conducted in regards to the strength.

Lopes [17] reports an increase in stiffness due to overlaps, while gaps create a reduction in
stiffness. This makes sense as the thickness increases the stiffness increases. Gaps are areas
where less fibers are available and this a reduction of stiffness is observed, Lopes adds a weight
penalty to the calculation of the stiffness of the laminate. The results are shown in table 2.2,
the layups are shown in table 2.1. The angles in this table are used to generate fibre paths
as shown in Figure 2.2.

Arian Nik [18] created a variable stiffness laminate and discussed the effect of full overlaps
and full gaps on the in-plane stiffness and buckling load.

Table 2.1: The stacking sequence of the laminates as discussed in 2.2

Design Layup
(A) [± < 26/45/26 >]4S

(B) [± < 17/39/17 >]4S

As a result, gap regions have lower stiffness as compared to the unaltered composite mate-
rial areas. Overlaps tend to generate stiffener-like features, which will carry higher load in
comparison to to the areas with regular composite material. [7] [18]

Important of note is that the effect of gaps and overlaps on laminates in general is not limited
to stiffness, as the stiffness changes so does the stress field on the plate. Aside from that the
gaps and overlaps also affect the strength of the plate. To take this in account additional
modification are required to the failure criteria applied during optimization for strength.

2.2.2 Deductions, assessment of the literature, and answer

From documented experiments in the literature the following can be concluded. A overlap
increases stiffness, while a gap or resin-rich area reduces stiffness. After taking into account
the weight penalty, there is no significant change in the penalized stiffness.
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Table 2.2: In-plane stiffness and buckling load of designs (A) and (B) normalized with respect
to the baseline considering the weight penalty. [3]

Laminate Normalized stiffness

Normalized
stiffness

with weight
penalty

Normalized
buckling load

Normalized
buckling
load with

weight penalty

Design (A)
Ignoring defects 0.6 0.6 1.56 1.56

Design (A)
Full overlap (8.93%) 0.66 0.61 2.05 1.88

Design (B)
Ignoring defects 0.99 0.99 1.33 1.33

Design (B)
Full overlap (10.40%) 1.10 1.00 1.84 1.67

2.3 Can a continuous correction function be found that corrects
the stiffness during optimization in 3 dimensional space?

Multiple approaches are available to locate gaps and overlaps in a fibre steered ply. However
none of those approaches have been implemented in a 3 dimensional space. The first approach
is proposed by A. Blom.

2.3.1 Point based evaluation

To find gaps, Blom et al. [2] proposes a method to find tow-drop areas. Blom et al. finds
whether a point is within a tow with the width of the tow. This method is computationally
heavy as it finds which tow covers any given point, then the outermost point of the tow in
question is checked with its neighbouring tow for overlap. The 0% coverage rule dictates that
a tow drop should be formed, this means that this area has a low fibre density. The method
in question allows for tow-drop areas to be found, however the method used is not suitable
for the problem at hand. Blom et al. [2] also only find tow-drop areas, the methodology can
be adjusted by checking if a point falls within a tow to find a gap. Knowing the course width
and the centreline of the tow. This would allow the method to check for gaps and overlaps,
however it would not solve the problem of requiring a relatively large amount of computing
power. This makes it unsuitable for usage during the optimization.

2.3.2 Approaches using continuous functions

Fayazbakhsh [3] used a similar principle as described in section 3.3 of his dissertation to find
the gaps in a 0% coverage strategy. Instead of using discrete points to find where gaps are in
the ply, continuous functions were used to find the boundaries of each course. Using MATLAB,
a subroutine was developed to calculate the intersection points of the course boundaries.
When one edge is at the course boundary, the tow is cut perpendicular to the centreline.
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The result is a gap in the ply. This provides a faster and more accurate way of finding the
gaps. The same approach can be used to find the overlaps for a 100% coverage strategy. The
boundary is deducted from the centreline, the equation for the centreline is shown in equation
2.3. In this equation T0 is the angle as shown in Figure 2.2, ρ is the manufacturing radius,
and x denotes the x-coordinate. The result is the y-coordinate of the centreline.

ycentreline =
√
ρ2 − (x− ρcos(T0))2 − ρsin(T0) (2.3)

(a) (b)

Figure 2.2: Course centerline of a lamina T1 < T0 and T0 < T1 respectively Fayazbakhsh [2]

Using the assumption that the vertical distance between the bottom and top boundaries is
constant, the gaps and overlaps can be found. The result of this approach can be seen in
figure 2.3, the intersection points are shown in figure 2.3a. In figure 2.3b the gaps are shaded
if the 0% coverage rule is applied, in figure 2.3c the overlaps are shaded if the 100% coverage
rule is applied.

Lucas et al. [4] created an approach that uses the change in the fibre orientation angle. The
research is a continuation of [9]. Following the recommendations of [1], in [4] a stiffness
correction was introduced based on the change in fibre angle normal to the curve, as shown in
Figure 2.4 and implemented in the post-processor. The relationship used for this correction
is shown in equation 2.4. Where the change in density is related to a change in the fibre angle
orientation.

∂ρ

∂s = f

(
∂φ

∂n

)
(2.4)

In which φ is the fibre angle orientation, and ρ is the density, which is a function of the
changes in the fibre orientation angle normal to the curve. The orientation of the n and s are
shown in figure 2.4. s is the direction tangent to the curve while n is normal to the curve.

The relation between the change in the fibre orientation angle normal to the curve and the
density is simply taken to be a linear relation in the shape of equation 2.5 with kc as a
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Figure 2.3: Gaps and overlaps as found by Fayazbakhsh [3]

Figure 2.4: Tow path with ’s’ and ’n’ directions [4]

constant. The author in [4] notes that: "The relationship should take more of a logarithmic
functional shape".

∂ρ

∂s = −kc
∂φ

∂n (2.5)

This relation allows the manufacturing engineer to take into account the gaps and overlaps
introduced by the fibre paths during optimization. Building on the stiffness correction factor
of [4], van Tooren et al. [6] then implemented the stiffness correction factor in the optimization
process.
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2.3.3 Deductions, assessment of the literature, and answer

These methodologies for finding gaps and overlaps are 2D approaches to the problem at hand.
The problem to be solved is in 3 dimensions. A continuous correction function can be found
for 2D in current literature, both the methods proposed in [3] and [4] use continuous functions
to find locations where the stiffness should be altered to account for manufacturing induced
defects.

The methodology proposed by [4] was implemented to be used during the optimization process
in [6]. The methodology has little overhead with respect to the other method proposed,
additionally when a solution is found for moving the MMOA to 3D then this solution can be
altered easily to work for the methodology proposed in [4].
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Chapter 3

Methodology of the 3D multiple mesh
approach

To optimize the fibre steered plies in the laminate of a curved plate, the approach of van
Tooren [9] based on the first research question in section 2.1 was chosen. This optimization
method is coined the multiple mesh optimization approach (MMOA) and optimization is
done to maximize the buckling load or failure load given a number of plies in which the fibre
angles can be varied. With this optimization method a program is created that allows the
user to enter different geometries and load cases, and optimize the fibre steered laminate for
the geometry with a supplied loadcase. The workflow shown in Figure 3.1 is outlining the
steps that need to be taken to find a laminate with a maximized failure or buckling load.



14 Methodology of the 3D multiple mesh approach

Figure 3.1: A high level overview of the order of the actions required to find a laminate optimized
for a cost function

First the user-defined geometry is meshed in ABAQUS® to generate the calculation mesh
(CM) and the manufacturing mesh (MM). In the nodes of the MM the design variables are
defined as the fibre angles as shown in Figure 2.1. This coarser mesh is then used to find the
fibre angles in the CM, and the CM is used to evaluate the stress problem. The two meshes
are exported using .txt-file (ASCII code) format and saved in the working directory. These
are then loaded in the TopSteer Python environment. The mapping procedure is initiated,
the CM is mapped on the MM. The result of this procedure is a connection between the CM
and MM, so that the fibre angles can be found in the CM for the ABAQUS® evaluation. This
process is explained in sections 3.1 through 3.3.

The results are fed into the optimization procedure, which uses the connection between the
two meshes and Lagrangian interpolation to distribute the fibre angle onto the CM. The
optimization procedure uses the boundary condition, loads and fibre angles on the CM and
generates an input file for ABAQUS®. This input file is evaluated and after applying a
failure criteria, the maximum value is returned to the optimizer. This process describes one
evaluation, and these steps are described in more detail in sections 3.4 throught 3.6.

3.1 Identifying CM centroids within MM elements

To identify which CM element and lies within which MM element, the distance between the
centroids of the CM elements and MM elements is used. All the CM elements lie within a MM
element and none are located outside of the MM, because the meshes are generated on the
same surface in ABAQUS® as shown in Figure 3.2. The green dots represent the centroids
of the MM elements of which 4 are displayed, the orange dots are the centroids of the CM
elements. A CM element lies within a MM if the distance between the centroid of the CM
element and the centroid of its MM element is smaller than the distance between the centroid
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of the CM element and the centroid of the other MM elements. For this to work, the location
of the centroid of the elements is required as well as a method to find the distance between
two points.

Figure 3.2: A simplified visual representation of the MM with the CM and their centroids

First the centroid of a quadrilateral element of any shape is found as explained in section
3.1.1 then relating the CM to the MM is discussed in section 3.1.2.

3.1.1 Finding centroids of quadrilateral element in 3D space

The centroids of the mesh elements are not available in ABAQUS®, however using the node
locations of a quadrilateral element the centroid can be found. The quadrilateral element is
split in 2 triangular elements as shown in Figure 3.3. The coordinates of the centroid G of
the triangular element ABC can be found by using Eq. (3.1).

Figure 3.3: A quadrilateral element in triangular elements.

G = A+B + C

3 (3.1)

In this equation A = [Ax, Ay, Az] B = [Bx, By, Bz], and C = [Cx, Cy, Cz] are the locations
of the vertices of the triangular element. G = [Gx, Gy, Gz] is the location of the centroid
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of the triangular element. By taking the weighted average of the centroid with their area
as described in Eq. (3.2) the centroid of the quadrilateral element H = [Hx, Hy, Hz] can be
found.

H =
∑ n

i=1GiAi∑ n
i=1Ai

(3.2)

In this equation Ai denotes the area of the triangular element, n will be 2 since the quadri-
lateral element is is split into 2 triangular elements. To find the area, two vectors (βββ and γγγ)
that share the same initial point (A) are created. These vectors are defined as βββ = B−A and
γγγ = C −A Then the area (S) of the parallelogram defined by βββ and γγγ is defined by Eq. (3.3).

S = |βββ ⊗ γγγ| (3.3)

Given that the area of the triangular element will be half the area of the parallelogram and
Eq. (3.3) describes the area of a parallelogram. The area of the triangular element is found
using 3.4

S = 1
2 |β
ββ ⊗ γγγ| (3.4)

With the area of each triangular element known, the centroid of a quadrilateral element can
be calculated using Eq. (3.2).

Verification of the methodology used to find the centroids To ensure the validity of
the approach differently shaped quadrilateral elements have been evaluated. The 2D cases
evaluated are described in Appendix B. The elements chosen have centroid which can be found
through alternate means. The first element is a rectangular element set at a 45o incline, the
nodes of the element are as given in Table 3.1 and the element and its centroid is graphically
represented in Figure 3.4.

Table 3.1: Coordinates for a square surface at an 45o degree angle

x y z
node 1 0 0 0
node 2 1 0 0
node 3 1 1 1
node 4 0 1 1

As this the same element as previously evaluated but under a 45o degree angle, the centroid
is expected to be at [0.5, 0.5, 0.5]. The centroid finding approach locates the centroid at
[0.5, 0.5, 0.5]. Agreeing with the centroid location.
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Figure 3.4: Square surface at an 45o degree angle with its centroid.

A 3D wedge is evaluated to simulate heavily deformed elements, the nodes of the element are
given in Table B.2.

Table 3.2: Coordinates for a wedge surface at an 45o degree angle

x y z
node 1 0 0 0
node 2 0 1 0
node 3 1 0.5 1
node 4 1 0.5 1

The methodology finds the centroid at [0.333, 0.5, 0.333]. With the formula of the centroid of
a triangle, it can be concluded that this is correct.

Figure 3.5: A wedge shaped surface at 45o degree angle with its centroid
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3.1.2 Distance between centroids

The MM element in which a CM element is located can now be found by finding minimum
distance between the centroid of the CM element with respect to each MM element. The
distance between two centroids, c1 and c2 in a 3 dimensional space is calculated using Eq. (3.5).

d =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 (3.5)

Given the location of the CM centroid in its respective MM element the interpolation proce-
dure can be started if this was 2D case. However in 3D few interpolation procedures become
more complex and would need to be done for every evaluation of the problem during the
optimization procedure. Instead the choice is made to move the MM element and the CM
centroids contained in it to a 2D iso-parametric space. This trivializes the interpolation
procedure.

3.2 Rotating the MM element and it CM centroids

To move the problem to a 2 dimensional space the MM elements are rotated to be in one
plane. The unit vector normal to the MM element is found and then the unit vector normal to
the xy-plane a rotation matrix is found. The unit normal vector of a MM element is assumed
to be the average of the unit normal vectors in all the nodes of the element. The normal
vector of the MM element can be found by Eq. (3.6).

nnn = βββ ⊗ γγγ
||βββ ⊗ γγγ||

(3.6)

In this equation AB is B−A and AC is C−A.
To find the rotation matrix, Rodrigues’ rotation formula is used, the formula is shown in
(3.7).

RRR = III + sin(θ)VxVxVx + (1− cos(θ))VxVxVx
2 (3.7)

In this formula RRR represent the rotation matrix; θ is the angle by which a vector aaa is rotated
around a unit vector v̂̂v̂v. III is representing the identity matrix; VxVxVx is the skew-symmetric
cross-product matrix of v̂̂v̂v.

VxVxVx =

 0 −v̂̂v̂v3 v̂̂v̂v2
v̂̂v̂v3 0 −v̂̂v̂v1
−v̂̂v̂v2 v̂̂v̂v1 0

 (3.8)

The normal unit vector (aaa) of the MM element is found using Eq. (3.6) and the unit vector
of the xy-plane [0, 0, 1] (bbb). To find the rotation matrix that rotates aaa onto bbb the unit vector
v̂̂v̂v needs to be found as a function of the vectors aaa and bbb. This vector (v̂̂v̂v) has to be orthogonal
to be aaa and bbb and can be found using Eq. (3.9).

vvv = aaa⊗ bbb
||aaa⊗ bbb||

(3.9)
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With sin(θ) = ||aaa⊗ bbb|| and substituting this into Eq. (3.7) results in Eq. (3.10)

RRR = III + VxVxVx + (1− cos(θ))
sin(θ) VxVxVx

2 (3.10)

The rotation matrix is applied to rotate MM elements and the associated CM centroids to
the xy-plane as shown in Eq. (3.11).

uroturoturot = RRRuuu (3.11)

A different way of finding the same rotation matrix is through the usage of a basis change,
this process yields the same rotation matrix as a result and is explained in A.

3.2.1 Verification of the rotation methodology

To ensure that the rotation matrix that is created using the methodology described in section
3.2 a simple test is conducted. An element with the nodes as described in Table 3.3 is created
and rotated into the xy-plane.

Table 3.3: Coordinates inclined example MM element

x y z
node 1 1 0 0
node 2 1 1 0
node 3 0 0 1
node 4 0 1 1

To do so first a unit vector normal to the xy-plane is defined. The original element is shown
as the blue square in Figure 3.6, the unit vector normal to the x-plane is the red line. The
yellow line shows the unit normal vector to the original MM element which is calculated with
Eq. (3.6). Now the rotation matrix can be calculated with equation Eq. (3.10), after which
the element can be rotated using Eq. (3.11). The rotated element is displayed in Figure 3.6
as the purple square.

This allows for the MM elements and their CM centroids to moved onto the xy-plane. However
the shape of the element is not the same for each element, and not necessarily defined to be
square or rectangular. To aid the interpolation procedure this is desirable. In the next section
this problem is resolved by moving it into iso-parametric space.
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Figure 3.6: Figure showing the vectors and elements involving rotation of the MM element

3.3 Moving into iso-parametric space.

To ensure that the interpolation works on oddly shaped elements, the rotated MM elements
are moved into iso-parametric space. The procedure of moving from the global coordinate
system into the natural coordinate system is well establish and was introduced by Taig [19]
in 1961 as shown in Eq. (3.12).

x(ξ, η) =
4∑

i=1
Ni(ξ, η)xi, y(ξ, η) =

4∑
i=1

Ni(ξ, η)yi (3.12)

Here ξ and η are the natural coordinates, and x and y are the global coordinates. The node
numbering system as shown in Figure 3.7 is employed to find the Lagrangian shape functions
as presented Eq. (3.13).

Figure 3.7: Figure describing the node numbering order in the global and natural coordinate
system [5]

N1 (ξ, η) = 1
4(1− ξ)(1− η), N2 (ξ, η) = 1

4(1 + ξ)(1− η)

N3 (ξ, η) = 1
4(1 + ξ)(1 + η), N4 (ξ, η) = 1

4(1− ξ)(1 + η)
(3.13)



3.3 Moving into iso-parametric space. 21

Substituting Eq. (3.13) into Eq. (3.12) then the following relation is found between x, y, ξ,
and η.

x = x1
4 (1− ξ)(1− η) + x2

4 (1 + ξ)(1− η) + x3
4 (1 + ξ)(1 + η) + x4

4 (1− ξ)(1 + η)

y = y1
4 (1− ξ)(1− η) + y2

4 (1 + ξ)(1− η) + y3
4 (1 + ξ)(1 + η) + y4

4 (1− ξ)(1 + η)
(3.14)

The inverse transformation is generally not considered in the finite element literature. Using
geometric considerations a complete set of general solutions can be derived as shown by Hua
[5]. By inversing Eq. (3.13) the relationship between the natural and global coordinate systems
for quadrilateral isoparametric elements can be written as Eq. (3.14). This bilinear system of
equations can not be solved generally [5]. To write the system of equations compactly a, b,
c, and d have been defined as shown in Eq. (3.16) and Eq. (3.15). Then terms containing ξ,
η, and ξη can be seperated. The definition of these variables depends on the node numbering
scheme in the natural coordinates system, which is shown in Figure 3.7.

d1 = 4x− (x1 + x2 + x3 + x4)
d2 = 4y − (y1 + y2 + y3 + y4)

(3.15)

a1 a2
b1 b2
c1 c2

 =

 1 −1 1 −1
−1 1 1 −1
−1 −1 1 1



x1 y1
x2 y2
x3 y3
x4 y4

 (3.16)

Using Eq. (3.16) and Eq. (3.15), Eq. (3.14) can be rewritten to Eq. (3.17).

[
b1 c1
b2 c2

]{
ξ
η

}
=
{
d1 − a1ξη
d2 − a2ξη

}
(3.17)

The system as defined by Eq. (3.17) can not be solved unless additional conditions on the
system are imposed. To make the process easier the determinant of a 2 by 2 matrix is defined
as in Eq. (3.18).

rs =
∣∣∣∣∣r1 s1
r2 s2

∣∣∣∣∣ = r1s2 − r2s1 (3.18)

In this equation, r and s can be replaced with the a, b, c and d from Eq. (3.16). In the
following paragraphs, different conditions will be discussed.

Condition: a1 = 0, a2 = 0 In this case the Eq. (3.17) becomes a linear system and reduces
to Eq. (3.19)

ξ = dc

a1d2 + bc
η = bd

a2d1 + bc
(3.19)
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Condition: a1 = 0, a2 6= 0 Now Eq. (3.17) is not solveable unless conditions are imposed on
c1. If c1 = 0 then the solution is as given by Eq. (3.20).

ξ = d1
c1

η = bd

a2d1 + b1c2
(3.20)

If c1 6= 0 then the solution is as given by Eq. (3.21). Note that the solution for ξ ε [−1.0, 1.0].

0 = a2b1ξ
2 + (cb − a2d1)ξ + dc η = d1 − b1ξ

c1
(3.21)

Condition: a1 6= 0, a2 6= 0 If ab 6= 0 and ac 6= 0 Eq. (3.22) will provide a solution. Note
that the solution for ξ should be ε [−1.0, 1.0]

abξ
2 + (cb + da)ξ + dc = 0 η = ad + baξ

ac
(3.22)

If instead ab 6= 0 and ac = 0 then Eq. (3.23) will allows for a solution to the inverse transfor-
mation.

ξ = ad

ab
η = a1db

c1ab + a1ad
(3.23)

If ab = 0 then ac must be 0 resulting in Eq. (3.24).

ξ = a1dc

b1ac + a1ad
η = ad

ac
(3.24)

Condition a2 = 0 and c2 6= 0 In this case the expression for the solutions depends on b2, if
b2 = 0 then:

ξ = dc

a1d2 + b1c2
η = d2

c2
(3.25)

If instead b2 6= 0 then the following formulas can be used to find a solution.

a1b1ξ
2 + (cb − a1d2)ξ+c = 0 η = d2 − b2ξ

c2
(3.26)

To verify that the transformation to the natural coordinate system works as intended the 8
different conditions are evaluated. The point for which the problem is evaluated is the average
of the nodes of the quadrilateral element. In the natural coordinate system this should result
in point at [0, 0]. To keep the main body short this section is available for review in C.
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3.4 Interpolation

Now that the MM element and the CM centroids associated with the MM element are in the
natural coordinate system, interpolation the fibre angles upon the centroids from the nodes
of the MM is elementary. For the purpose of interpolation a simple Lagrangian interpolation
is used. The fibre angle definition and node numbering scheme are shown in Figure 3.8.

Figure 3.8: The MM element after rotation and inverse parametric mapping with the fibre angle

The fibre angle as a function of ξ and η in the MM element d is:

φ(d) =
n∑

i=1
Nd

i (ξ, η)φd
i (3.27)

In Eq. (3.27) the N e
i terms are the general shape functions for Lagrangian interpolation as

described in the following equations. Assuming the node numbering as shown in Figure 3.8
is adhered to. i is used to denote the node number.

N
(d)
1 (ξ, η) = x− x2

x1 − x2

y − y4
y1 − y4

(3.28)

N
(d)
2 (ξ, η) = x− x1

x2 − x1

y − y3
y2 − y3

(3.29)

N
(d)
3 (ξ, η) = x− x4

x3 − x4

y − y2
y3 − y2

(3.30)

N
(d)
4 (ξ, η) = x− x3

x4 − x3

y − y1
y4 − y1

(3.31)

These equations are valid for a general 4 node rectangular element. Since the element is
an isoparametric element, the element is square and the values for x1 . . . x4 and y1 . . . y4 are
known. This reduces the equation for the shape functions to Eq. (3.32) through Eq. (3.35).

N
(d)
1 (ξ, η) = (1− ξ)(1− η)

4 (3.32)

N
(d)
2 (ξ, η) = (1 + ξ)(1− η)

4 (3.33)

N
(d)
3 (ξ, η) = (1 + ξ)(1 + η)

4 (3.34)
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N
(d)
4 (ξ, η) = (1− ξ)(1 + η)

4 (3.35)

These shape equations and Eq. (3.27) interpolate the fibre angles in the CM elements. The
ABAQUS® model is evaluated with the fibre angles in the CM.

3.5 Failure criterion

In the optimization procedure a Pythonfunction that takes the stress of an element and
calculates the failure index build in a modular fashion. This allows the user to change the
failure criterion used effortlessly. The failure criterion used in the optimization is the Tsai-Wu
failure criterion. The formula for this criterion is given in 3.36.

FI =
(
σ11
S11

)2
+
(
σ22
S22

)2
−
(
σ11σ22
S2

11

)2
+
(
σ12
S12

)2
(3.36)

The applied load is a unit load, the failure index is used as an indication of how well the current
fibre steered layup performs. The problem is optimized by minimizing the maximum failure
index present in the model. The stress based failure criteria are based on the classical lami-
nated plate theory (CLPT) thus neglecting inter-laminar shear stresses and stresses through
the thickness, instead failure criteria that incorporate these stresses can be evaluated. Failure
mode based failure criteria are a way of improving how well the failure criteria mimics reality,
some of these are the NASA developed LaRC05 and the Puck 3D failure criteria.

3.6 Optimization algorithm

For the optimization the Python package SciPy is used. Within SciPy the method sequential
least squares programming is used to set up a minimization function. The function uses
sequential quadratic programming. [20]



Chapter 4

Implementation of the 3D multiple
mesh approach

In this chapter the implementation of the multiple mesh optimization approach (MMOA) is
presented, the theory is discussed in 3. First the pre-processing is discussed in 4.1, and the
optimization procedure is discussed in 4.2.

4.1 Pre-processing

During pre-processing two main activities are performed. Initially the model that is evaluated
is created and the manufacturing mesh (MM) and calculation mesh (CM) are generated, this
process is discussed in the next section. In the following section the work flow for the mapping
process is shown. The results of the pre-processing are discussed to finalize this section.

4.1.1 Model and mesh generation

First in ABAQUS® a geometry is imported or created in the ABAQUS® graphical user
interface (GUI). The next step is to provide material properties and define a composite layup
in the property module in ABAQUS®. The composite layup does not need to contain any
values, and any properties entered in the composite layup definition will be discarded during
optimization. The only thing that is kept is the layup orientation. So this should be specified
in the ABAQUS® GUI correctly.

The next step is to specify the step in ABAQUS®. For a linear buckling analysis the procedure
type is changed to a Linear perturbation and then a buckle step is chosen. For tensile or shear
optimization a Static, General procedure is chosen.

In the Load module of the ABAQUS® GUI the loads and boundary conditions are defined.
After this step the model must be copied within the ABAQUS® environment. On the geom-
etry of the first model the MM is generated while the problem is evaluated on the surface of
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the second model which has a finer CM. Both the models are evaluated and the .odb files
are made accessible for the mapping process.

4.1.2 Mapping process

The goal is to apply an interpolation process to move the fibre angles from the MM to the
CM to do this the two meshes need to be linked. This is done using the mapping process
shown in the work flow in Figure 4.1.

Figure 4.1: Work flow describing the mapping process

First the CM and MM are loaded from the .odb files as created by the previous process.
These are used with the methodology described in section 3.1.1 to find the centroids of both
of the meshes. The centroids are used with the methodology described in section 3.1.2. The
distance between the centroid of each CM from each MM found, then the CM elements are
assigned to the MM elements in which the lie. This results in a array containing the CM
element numbers that are in the MM element.
The MM element normal unit vector is determined as described in section 3.2 with Eq. (3.6).
The rotation matrix is found with Eq. (A.7) − (A.9). Equation (A.10) rotates all of the
vertices of the MM elements and the centroids of the CM elements associated with the MM
element as found earlier.
The process as described in section 3.3 finds the coordinates of the CM centroids in the
natural coordinate system.

4.1.3 Results

The results are saved so that during each evaluation of the simulation this process does not
have to be repeated. After the mapping procedure the location of the centroid CM in iso-
parametric space is saved with the MM element in which the CM is located. During the
optimization process the mapping procedure will not have to be repeated, instead only the
interpolation procedure required for each evaluation.

4.2 Optimization

This section the optimization procedure and implementation is discussed, first the input
required for the optimization to start is treated. The optimization work flow is elaborated
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upon in the next section. Finally the results are saved and made ready for the next step is
outlined.

4.2.1 Input

For the optimization procedure the following data is required. First is the result of the
mapping procedure as explained in section 4.1. Additionally the .inp file of the CM model is
required as this file is adapted to generate the .inp file that is loaded into ABAQUS® during
every evaluation. In the script the initial layup and which plies are allowed to be steered have
to be defined.

4.2.2 Optimization loop

The work flow diagram of the optimization loop is shown in Figure 4.2. The first step, as
shown in the bottom of the work flow diagram, is to find the fibre angles in the centroids of the
CM elements. With the density function activated, the fibre angles in the MM nodes will also
be determine the knockdown factor added to the material properties which represents a change
in stiffness due to a gap or overlap. The density function alters the material properties for
each element. This process will be further discussed in chapter 6. The new material properties
are then set into the .inp file.

Figure 4.2: Work flow of the cost function of the optimization loop

ABAQUS® then evaluates the .inp file created by the Python script. These steps are executed
in ABAQUS® as indicated by the green steps in Figure 4.2. ABAQUS® exports the stresses
and failure indices or buckling eigenvalue to .txt files. The optimization algorithm then
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uses the evaluation together with the other evaluations in the current iteration to check for
convergence, if the optimizer deems the problem to be converged it exits the optimization
and saves fibre angles of the MM in a .txt file. Otherwise the fibre angles in the MM nodes
are adjusted, and another iteration is started.

4.2.3 Results

The result of the optimization is a .txt file containing the fiber angles in the MM nodes, the
location of the MM nodes and the element connectivity. This allows for the next step to be
done without the need for other data to be read by the post-processor. The post-processor
uses Lagrangian interpolation to find the tow paths that the automated fibre placement
(AFP) machine will lay. A visual representation of these tow paths shows the results of the
optimization.



Chapter 5

Verification of the 3D multiple mesh
approach

To verify the implementation of the multiple mesh optimization approach (MMOA) two cases
are taken from the literature, the first is a simple tensile case. The tensile case is discussed in
section 5.1. The second case is by applying a compression load and optimizing for buckling
through the buckling eigenvalue. This is discussed in section 5.2Results from the literature
are used to verify the results acquired from the optimization

5.1 Tensile

5.1.1 Problem description

The tensile problem taken from the literature. The problem is described by Barazanchy [1].
The same boundary conditions are applied to the model in the ABAQUS® graphical user
interface (GUI) as described in section 4.1.

Figure 5.1: Boundary conditions for the tensile load maximization
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The left side of the plate is constrained in the x-direction, z-direction, rotation around x-axis,
and the rotation around y-axis as shown in Figure 5.1. The remainder of the edges remain
free. A unit load is applied to the right surface. The manufacturing mesh (MM) used for this
problem is shown in Figure 5.2 (a) and the calculation mesh (CM) is shown in Figure 5.2 (b).

(a) The MM consisting of
a single element

(b) The CM a 17 by 17
mesh.

Figure 5.2: The meshes for the tensile load maximization

5.1.2 Optimization results and discussion

The expectation is that the fibres align with the direction of the loading. Hence the fibres
should move to the 0o direction. To ensure that the algorithm works, multiple different
starting points are used; the different attempts and their results are shown in Table 5.1. The
first column shows the initial lay-up given to the optimization algorithm. The second column
provides the average fibre angle in that ply that is returned by the optimization script. This
is done because the values for the fibre angle are very close.

Table 5.1: Optimization results for the tensile test case using different starting variables

Starting lay-up Optimized lay-up
Case 1 [0] [0.0]
Case 2 [45] [3.36e-05]
Case 3 [90] [179.98]
Case 4 [45 / 90] [179.96 / 179.96]
Case 5 [45 / 90 / 135] [0 / 0 / 0]

The results are clear, the optimizer attempts to put the plies in the 0o direction as expected
for any of the attempted starting layups.

5.2 Buckling

After the verification using a simple tensile problem. A buckling problem is proposed, opti-
mized and compared against available literature.
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5.2.1 Problem description

The next case is a plate loaded in compression. To reduce the amount of design variables
for the optimizer the laminate is kept symmetric and balanced. The optimization aims to
maximize the buckling load based on the buckling eigenvalue for the given layup. The follow-
ing configuration is considered [θ1,−θ1,−θ1, θ1]. Here θ1 denotes a array containing the fibre
angles on the MM elements.

The model is given a unit load on the right side of the square. The boundary conditions are
defined as in Figure 5.3 by Reddy [21].

Figure 5.3: Boundary conditions for the buckling load maximization

The buckling boundary conditions are as follows. For the left side of the plate u = w = 0 the
rotations around x and z are constrained. This enforces that the edges remain straight. For
the right edge of the plate the boundary conditions are the same, however u is not constrained
since there a compressive force is applied in the x-direction there. The top and bottom edge
have their displacements in w constrained and the rotation around the y and z axis are
constrained as well.

(a) The single element
MM

(b) The CM for which the
problem is evaluated

Figure 5.4: The meshes for the buckling load maximization

For the next part of the verification the MM is changed to a 2 by 2 mesh and a 3 by 3 mesh
as shown in Figure 5.5.
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(a) The 2 by 2 MM (b) The 3 by 3 MM

Figure 5.5: Two alternative MM evaluated

5.2.2 Optimization results and discussion

For a single MM element the result is expected to be plies containing 45o angles if the plate
is square and the laminate is symmetric and balanced [22].

Table 5.2: Optimized layup for the buckling load case with a single MM element with different
starting layups

Starting layup Optimized layup
Case 1 [0/0/0/0] [45/-45/-45/45]
Case 2 [-37/37/37/-37] [-44/44/44/-44]
Case 3 [-90/90/90/-90] [-45/45/45/-45]
Case 4 [37/-37/37/-37] [-46/46/46/-46]
Case 5 [90/-90/-90/90] [-46/46/46/-46]

Table 5.2 presents the layup after optimizing for the buckling load. Confirming that the
optimization procedure finds the solution that has the highest buckling load.

A MM containing multiple elements can start taking advantage of fibre steering. Figure 5.5
shows the additional MMs for which the buckling optimization was evaluated.



5.3 3 dimensional tension 33

(a) with a 3 by 3 MM
mesh

(b) with a 4 by 4 MM
mesh

Figure 5.6: Results of maximizing for the buckling load [1]

This buckling load case has been evaluated by insert names [1] [23] [24]. According these
articles the fibres in the ply move towards a S shape as shown in Figure 5.6. The seed points
are on the diagonal of the plate running from top left to bottom right. Figure 5.7(a) shows
the results of the 2 by 2 MM and Figure 5.7(b) for a 3 by 3 MM. As before the aim of the
optimization is to maximize the buckling load. In these optimizations the laminate layup
is set to be [θ,−θ,−θ, θ]. So that effectively only a single ply is designed and the resulting
laminate is balanced and symmetric.

(a) with a 2 by 2 mesh (b) with a 3 by 3 mesh

Figure 5.7: Fibre tow paths as obtained by maximizing the buckling load

Figure 5.7 displays the results of optimizing the tow paths for the buckling load case by the
software developed in this thesis, while Figure 5.6 shows the fibre directions in the CM mesh
for an optimal ply layup as found by [1]. Both of these are showing an S shaped tow path.

5.3 3 dimensional tension

As a final test the 3 dimensional capabilities of the program are verified by loading a single
curved structure in tensile. The MM on this curved structure is as shown in Figure 5.8. The
tensile load is in the y-direction while the fibre angle 0o is orientated parallel to the x-axis.
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Figure 5.8: The manufacturing mesh elements used to represent a curved plate

In Table 5.3 the results of the optimization procedure for different starting plies are shown.
In the panels that have been optimized to maximize the tensile failure the fibres are oriented
in the direction of the tensile load as expected. The results are mapped with a tow-path
planner and are shown in Figure 5.9.

Table 5.3: Optimized layup for the 3D tensile load case with different starting layups

Starting layup Optimized layup
Case 1 [0] [89.93]
Case 2 [45] [89.98]
Case 3 [90] [90]
Case 4 [-45] [90]

Figure 5.9: The tow paths on the curved plate after optimizing for maximum tensile load
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The density function

The density function is a continuous function based on the discretized fibre angles on the
nodes of the manufacturing mesh (MM). The density function takes in account the variation
of the ply stiffness properties caused by gaps and overlaps. It does this based on the discrete
fibre angles in the MM. In section 6.1 first the already existing 2D approach to this problem is
reviewed and how the density function can be moved to a 3 dimensional geometry is discussed.
In section 6.2 some of the complications are discussed and an alternative solution is proposed,
which is compared against some of the results found by other researchers.

6.1 Density function

When fibre steering, overlaps and gaps are created. To address the effects of these defects,
the stiffness can be corrected using the increased or reduced density caused by a overlap and
gap respectively.

(a) A simple tow (b) Tows with an
overlap, wgap is
negative

(c) Tows gap, wgap

is positive

Figure 6.1: Tow cross-sections, shown normal to the fibre.

Using Figure 6.1 a new value for the thickness of the tow can be defined. The local thickness
of the tow is defined in such fashion that it is equal to the tow area divided by the sum of
the gap width and the tow width.

The solution to finding the density at a location (x, y) is found using a approximate numerical
method. Three different possible methods are available:
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1. Functional approximation method

2. Finite difference method

3. Finite element method

Both the functional approximation method and the finite difference method require the use
of the boundary conditions as defined in the main problem. To solve find a expression for the
density as a function of the fibre angle, a continuous function is assumed. First a fictional
tow height is found based on gap or overlaps size.

hloc (wtow + wgap) = htow (wtow + wgap)− htowwgap (6.1)

For an overlap the local thickness can be found using Eq. (6.1). The width of the gap wgap as
defined in the equation is negative for an overlap.This reduces Eq. (6.1) to Eq. (6.2). In this
equation hloc signifies a local average height of a fibre, taking in account the gap or overlap.

hloc = htow
wtow

wgap + wtow
(6.2)

For a gap the local thickness can be found using Eq. (6.3).

hloc (wtow + wgap) = htow (wtow + wgap) + hgapwgap (6.3)

In Eq. (6.3) the height of the tow at the gap (hgap) is 0. Thus the equation for the local
thickness at a gap can be re-written to Eq. (6.2). In this equation the width of the gap is a
function of x and y. Thus the equation becomes the following:

hloc = htow
wtow

wgap (x, y) + wtow
(6.4)

Adjusting the thickness locally would also impact the geometry of the ply and would invalidate
the classical laminated plate theory (CLPT), as the Kirchoff-Love plate theory (KLPT) would
no longer hold. The KLPT requires the mid-surface to be a plane. This is not true if the
thickness of the plate is not constant. So instead the local tow thickness is replaced by a
fictitious density function. The fictitious density is defined by Eq. (6.5), where ρk

fict is used
to symbolize the fictional density in ply k.

ρfict = wtow

wgap (x, y) + wtow
(6.5)

This alternative does not violate the KLPT assumptions. Now the laminate stiffness matrices
can be rewritten as:

Aij =
n∑

k=1
ρk

fict

[
Q̄ij

]
k

(zk+1 − zk) (6.6)
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Bij =
n∑

k=1
ρk

fict

[
Q̄ij

]
k

(
z2

k+1 − z2
k

)
(6.7)

Dij =
n∑

k=1
ρk

fict

[
Q̄ij

]
k

(
z3

k+1 − z3
k

)
(6.8)

The density function is assumed to a continuous function of the form of Eq. (6.9)

ρe,k(x, y) = ρk
0 + ρe,k

m (x, y) +
∫ x

x0

∂ρe,k

∂x
dx+

∫ y

y0

∂ρe,k

∂y
dy (6.9)

The density function is differently defined in each element and ply, denoted by e and k
respectively. x and y denote the coordinates within the element. The density ρ0 is a reference
point where the density is known. The term ρe,k

m (x, y) is used to change the distance between
the starting point of two tows during the lay-up process. Depending on the lay-up strategy
the distance between tows may be increased or decreased.

The term ρe,k
m (x, y) is found using the Lagrangian interpolation. The correction terms are

defined to be on the nodes of the MM. To find the correction in the calculation mesh (CM)
elements the same method is used as the method to find the fibre angles in the CM elements
as described in 3.4.

ρe,k
m (x, y) = −

4∑
i=1

Ni · χe,k
i (6.10)

In Eq. (6.10) χe,k
i denotes the nodal correction terms on the MM as supplied by the engineer.

If no correction is created by the engineer, these values should be set to 0. In Eq. (6.10) the Ni

denotes the Lagrangian shape function as previously shown in Eq. (3.32) through Eq. (3.35).

From Eq. (6.9) the last two terms are used relate the change in the fibre angle φ to the change
in density ρ. To do so visualizing the path of a tow with the direction s being tangent to the
direction of the fibre and n is normal to the fibre, see Figure 6.2.

Figure 6.2: A fibre with the tangent and normal directions [4]

Eq. (6.11) describes an unknown relation between the fibre angle and the density.

∂ρ

∂s
= f

(
∂φ

∂n

)
(6.11)
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If the previous equation is describing a linear relation Eq. (6.12) can be assumed.

∂ρ

∂s
= −kc

∂φ

∂n
(6.12)

To be able to use this relation the fractions on the left and right hand side of Eq. (6.12) need
to be functions of x and y. The change in fibre angle normal to the curve can be found in
Eq. (6.13)

∂φ

∂n
= ∂φ

∂x

∂x

∂n
+ ∂φ

∂y

∂y

∂n
(6.13)

For the density Eq. (6.14) is valid.

∂ρ

∂s
= ∂ρ

∂x

∂x

∂s
+ ∂ρ

∂y

∂y

∂s
(6.14)

Looking at Figure 6.2 the following relations can be found ∂y
∂s = sin(φ), ∂x

∂s = cos(φ), ∂y
∂n =

cos(φ), and ∂x
∂n = − sin(φ). Substituting this into Eq. (6.13) and Eq. (6.14) results in the

equations below.

∂φ

∂n
= −∂φ

∂x
sin(φ) + ∂φ

∂y
cos(φ) (6.15)

∂ρ

∂s
= ∂ρ

∂x
cos(φ) + ∂ρ

∂y
sin(φ) (6.16)

Substituting these in Eq. (6.12) results in Eq. (6.17)

∂ρ

∂x
cos(φ) + ∂ρ

∂y
sin(φ) = kc

∂φ

∂x
sin(φ)− kc

∂φ

∂y
cos(φ) (6.17)

Isolating the terms that don’t interact results in Eq. (6.18)

∂ρ

∂x
= −kc

∂φ

∂y

∂ρ

∂y
= kc

∂φ

∂x

(6.18)

Substituting this and Eq. (6.10) in the original equation, Eq. (6.9). Results in Eq. (6.19)

ρe,k(x, y) = −
4∑

i=1
Ni · χe,k

i − kc

∫ x

x0

∂φe,k

∂y
dx+ kc

∫ y

y0

∂φe,k

∂x
dy (6.19)

The fiber angles can be found using the Lagrangian interpolation as described in section 3.4
Eq. (3.32) through Eq. (3.35) with Eq. (3.27) can be used as the mapping process moves the
problem into isoparametric space. The resulting equation is shown in Eq. (6.20).
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φ = 1
4 [(1− x)(1− y)φe

1 + (1 + x)(1− y)φe
2 + (1 + x)(1 + y)φe

3 + (1− x)(1 + y)φe
4] (6.20)

Taking the partial derivative of the Eq. (6.20) to x and y results in Eq. (6.21) and Eq. (6.22).

∂φ

∂x
= 1

4 [(−1 + y)φe
1 + (1− y)φe

2 + (1 + y)φe
3 + (−1− y)φe

4] (6.21)

∂φ

∂y
= 1

4 [(−1 + x)φe
1 + (−1− x)φe

2 + (1 + x)φe
3 + (1− x)φe

4] (6.22)

Substituting Eq. (6.21) and Eq. (6.22) into Eq. (6.19) results in Eq. (6.23)

ρe,k(x, y) = ρ0 −
4∑

i=1
Ni · χe,k

i

−kc

4

∫ x

x0
[(−1 + x)φe

1 + (−1− x)φe
2 + (1 + x)φe

3 + (1− x)φe
4] dx

+kc

4

∫ y

y0
[(−1 + y)φe

1 + (1− y)φe
2 + (1 + y)φe

3 + (−1− y)φe
4] dy

(6.23)

Rewriting and integration Eq. (6.23):

ρe,k(x, y) = ρ0 −
4∑

i=1
Ni · χe,k

i

+kc

4

[(
−1

2(x2 − x2
0) + (x− x0) + 1

2(y2 − y2
0)− (y − y0)

)
φe

1

+
(1

2(x2 − x2
0) + (x− x0)− 1

2(y2 − y2
0) + (y − y0)

)
φe

2

+
(
−1

2(x2 − x2
0)− (x− x0) + 1

2(y2 − y2
0) + (y − y0)

)
φe

3

+
(1

2(x2 − x2
0)− (x− x0)− 1

2(y2 − y2
0)− (y − y0)

)
φe

4

]
(6.24)

This allows for the implementation of the density function, which attempts to estimate the
size gaps and overlaps in a fiber steered ply and the effect of those on the stiffness of the
ply. This methodology is only applicable to a 2D environment. This can be moved into 3
dimensions using the same method as described in Chapter 3.

6.2 Complications of the density function

The density of a fibre steered ply dubbed the ’flower’, of which the fibre angle distribution is
as shown in Figure 6.3, is evaluated. The results are shown in Figure 6.4. On the line y = −1
the density is kept to 1, Diverging tows create gaps and thus a reduction in the density. The
reduction in density is most extreme in the top corners, while on the line x = 0 the density
remains 1. As there is no change in fibre angle along this line due to symmetry.
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Figure 6.3: Fibre angle distribution for the ’flower’

Figure 6.4: Density distribution for the ’flower’

The methodology works if the domain is simple geometry, like a rectangle as in the figure
above, however when evaluating a fatman ply as shown in Figure 6.5(a) complications occur.
The same procedure is used as before and the density along y = 0 is constant. When
examining the top right quarter of the plate, the diverging angles create a boundary past
which the plate contains no tows, unless an alternative iso-density line is defined for this
second domain. The boundary shared by the two domains is shown in Figure 6.5(b), this
phenomenon occurs in all four quarters of the plate for a total of 5 different domains.To take
in account a boundary of which the shape changes each iteration is difficult.
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(a) Fibre angle distribu-
tion for the ’fatman’

(b) The streamline sep-
arating the two domains
created in the top right
quarter of the plate

Figure 6.5: Creation of two domains in the ’fatman’

To solve this problem the finite element method (FEM) is used instead, the first domain is
given the same iso-density line along y = 0. The second domain is then populated with tows
from the edge at x = −1 with another iso-density line along which the density is 1. To find
the density first the change in the fibre angle has to be found for the top right quarter of the
plate. The fibre angles in the nodes assuming the element covers a quarter of the plate are
90, 90, 135, 90. The node numbering scheme is as shown in Figure 3.7. Figure 6.6(a) shows
the fibre angle distribution over the element. The change in fibre angle is then expressed with
respect to the fibre angle on the initial iso-density line y = 0, resulting in the following fibre
angles in the nodes 0, 0, 45, 0 as shown in Figure 6.6(b).

(a) The fibre angle on the
top right quarter of the
rectangular plate

(b) The change in fibre
angle on the top right
quarter of the rectangular
plate

Figure 6.6: Distributions for a quarter of the rectangular plate

With FEM the sum of the change in fibre angle is considered to find the density. The fibre
angle in the nodes is found using the Lagrangian interpolation function as shown in Eq. (6.25),
with Eq. (6.26) as the shape functions.

dφ(x, y) =
4∑

i=1
Ni(x, y)dφi, (6.25)
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In this equation the Ni is the shape function where i represents the node with the node order
as shown in Figure 3.7 and the x and y denote the coordinates where the change in fibre angle
is desired.

N1 (ξ, η) = 1
4ab(x− x2)(y − y4), N2 (ξ, η) = − 1

4ab(x− x1)(y − y3)

N3 (ξ, η) = 1
4ab(x− x4)(y − y2), N4 (ξ, η) = − 1

4ab(x− x3)(y − y1)
(6.26)

In this equation x and y denote the location at which the change the fibre angle is to be
found, and the subscript is the node number. An example mesh is shown in Figure 6.7, the
density of node 6 is found by adding the change in fibre angle to the density of the node below
as illustrated by Eq. (6.27).

ρ6 = ρ1 + dφ(x, y)6 (6.27)

Figure 6.7: Example mesh to illustrate the procedure for finding the density.

Repeating this process with the iso-density line set at the line x = 1, while taking the sum
from right to left instead of upwards results in Figure 6.8.
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Figure 6.8: The density field for a quarter of the geometry using two iso-density lines at y = 0
and x = −1

Van Tooren et al. [6] show a density field based on the post tow path planning averaging as
presented in Figure 6.9.

Figure 6.9: The density field of the ’fatman’ based on a post tow path planning averaging [6]

Note that other strategies are available to dealing with the empty corners created when setting
an iso-density line at x = 0. An example alternative strategy is to extend the original iso-
density line past the plate until the tows, which originate from outside the plate, fill up the
corners. The first strategy is shown in Figure 6.10(a) and the second in Figure 6.10(b). The
density field that corresponds to the second manufacturing strategy is shown in Figure 6.11.
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(a) Seed lines are as indi-
cated by the red lines

(b) Seed line is on y = 0
and is of infinite length

Figure 6.10: The tows for the ’fatman’ case with two different manufacturing approaches

Figure 6.11: The density field based using a singular iso-density line of infinite length

This highlights the effect of the manufacturing strategy on the density field. The amount
of overlap Figure 6.8 is significantly less in Figure 6.11, this difference is dependent on the
manufacturing strategy and the fibre angle distribution. The manufacturing strategy depends
on how the fibre angles in the ply are distributed. The first manufacturing strategy as shown
in Figure 6.10(a) generates a shock wave, akin to the shock waves generated in compressible
flow problems. These indicate discontinuous changes. This problem is not limited to the
fatman case, it also occurs when optimizing for maximum buckling load. For the S-shaped
fibre distribution the iso-density line is on the edges y = −100 and x = −100 of the square
plate a shock wave is created as demonstrated in Figure 6.12.
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Figure 6.12: A shock wave as created during optimization for maximum buckling load

To relate this to a curved panel is possible through the same methodology as discussed in
Chapter 3. To recap; the MM element is rotated in a single plane, then the element is mapped
into the natural coordinate system. After this process the FEM approach described above
can find a correction factor for the stiffness of the material.

6.3 Conclusion

The interdependency of the manufacturing strategy and the fibre angle distribution create
a complex problem. To solve this problem additional research is required to determine a
manufacturing strategy sufficient to cover the geometry with tows. The current implemen-
tation assumes that the automated fibre placement (AFP) machine starts from the middle
of the plate when laying the tows. As shown in Figures 6.11 and 6.8, this is not the opti-
mal manufacturing strategy and only evaluating the fibre angle distribution using this simple
manufacturing strategy is simplifying the problem inappropriately.
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Chapter 7

Conclusion

7.1 Conclusion

The objective of the manuscript was to find a methodology that could be used in combination
with finite element analysis (FEA) to assess the effect of gaps and overlaps on the stiffness
of fibre steered 3 dimensional geometry. In Chapter 2 an efficient methodology to optimize
a fibre steered laminate for strength is identified. This method is known as the multiple
mesh optimization approach (MMOA), which employs two different meshes. The first is a
coarse mesh, named the manufacturing mesh (MM). In the nodes of this mesh the design
variables (fibre angles) are defined. From this mesh the fibre angles are interpolated on the
second mesh, coined the calculation mesh (CM). This fine mesh, with the fibre angles in its
elements, is imported into ABAQUS® to be used for the evaluation.

Through a process of rotation and mapping of the MM elements into iso-parametric space the
MMOA is modified to allow for the evaluation of 3 dimensional geometries. The process to
achieve this is elaborated upon in Chapter 3. The implementation of this process in code is
discussed in Chapter 4. In Chapter 5 the implementation is verified by comparing the results
for various standard cases, such as a tensile and buckling case, with the results obtained by
researchers previously active in the field. The comparison in this chapter validates the results
of the optimization, this is mostly done through 2 dimensional cases as there is currently no
literature available for fibre steering on 3 dimensional surfaces.

The density function is introduced and the validity of the density function is evaluated.
Domains are created for which different manufacturing strategies are feasible; these influence
the distribution and severity of the gaps and overlaps. A general solution for the cases
presented is extending the initial iso-density line until the plate is filled, however this causes
larger gaps and overlaps than other manufacturing strategies.
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7.2 Recommendations

A general method that averts the creation of multiple domains, while not creating an excessive
amount of gaps and overlaps. A possible solution is to create the iso-density in the form of
a spline instead of a straight line. Placing that spline based on the fibre angles in the nodes
of the MM. This spline would be within the bounds of the geometry, thus creating less gaps
and overlaps than extending a hypothetical line.

Alternatively XFEM can be used to deal with the discontinuities in the density function. As
for XFEM the finite element mesh does not have to be adapted based on boundaries of the
domain that is generated when creating multiple iso-density lines.

In the current evaluation for the density correction factor the iso-density line is defined as
1, indicating that the line contains no gaps or overlaps. This does not have to be the best
solution, as creating slight overlaps or gaps in the iso-density line can result in a better
solution depending on the evaluation criteria.

A different optimization algorithm; more suited for the problem should be found and imple-
mented. SLSQP linearizes the problem space created by the cost function. The solution space
is very "spikey" due to the fact that a single change the design variable changes the whole
stress field, and from this stress field only the maximum stress is returned.

To get a closer to realistic estimation of the failure, a different failure criteria can be imple-
mented. The current Tsai-Wu criteria does not take in account stresses in individual plies
or edge stresses that are generated through-out a fibre steered ply. A possible avenue of
improving the methodology is to look into implementing the LaRC05 or Puck failure stress
criteria, which take into account different failure modes instead of trying to approximate fail-
ure through a single formula. Another avenue of improvement is to implement progressive
damage analysis in the optimization procedure.

A final suggestion is to use a global interpolation method instead of a mesh based interpolation
method for the fibre angles. This will solve the problem of limited continuity as would be with
Lagrangian interpolation functions. Examples of two ways this can be achieved is through non-
uniform rational basis spline (NURBS) or radial basis functions (RBF), if local interpolation
functions can not be deviated from a different shape function such as Bézier curves or Hermite
interpolation functions.
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Appendix A

Building rotation matrix through
changing basis

A.1 Building rotation matrix through changing basis

Given that the unit vector normal to the xy-plane is [0, 0, 1] denoted as mmm, a rotation matrix
to rotate the manufacturing mesh (MM) element and its calculation mesh (CM) centroids
can be found. To do so, realize that the rotation is going to be around and unknown axis p
and by and unknown rotation angle θ. The rotation is a 2D rotation around ppp. The rotation
matrix for a 2D rotation is given by Eq. (A.1)

R2DR2DR2D =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 (A.1)

This is true in a hypothetical basis with ppp as its third axis. The axis of rotation is orthogonal
to both the unit normal vector of the MM element nnn and unit vector mmm. Thus the third axis
can be described by Eq. (A.2).

rrr = nnn⊗mmm (A.2)

Now we need to create the remaining 2 axis that are orthogonal in the plane of vectors nnn and
mmm. Two vectors in one plane that are orthogonal are the projection of one vector on the other
and the rejection of that same vector on the other. So the first axis will be the normalized
projection of mmm on nnn as described by mpmpmp in Figure A.1.
Since both mmm and nnn are unit vectors and the basis is to be orthonormal the first axis of the
orthonormal basis can be found using Eq. (A.3).

mpmpmp = (mmm ·nnn)nnn
|nnn|2

(A.3)
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Figure A.1: Vector projection of mmm onto nnn in red, vector rejection of mmm onto nnn in green.

Now given that n is a normalized vector and has a length of 1 the |nnn|2 term can be neglected.
Normalizing the projection of mmm on nnn results in Eq. (A.4).

ppp = mpmpmp

|mpmpmp|
= (mmm ·nnn)nnn

(|mmm ·nnn)nnn| = nnn (A.4)

So the first axis of the orthonormal basis is nnn.

Finally the vector describing the second axis has to be orthogonal to the first and third axis.
This is the normalized vector rejection of mmm on nnn as shown in Figure A.1, as this vector
lies in the plane of the vectors nnn and mmm while being orthogonal to vector nnn. This vector is
mathematically described by Eq. (A.5), where mpmpmp is the vector projection of mmm onto nnn.

qqq = mmm−mpmpmp

||mmm−mpmpmp||
(A.5)

Given that the projection ofmmm on nnn is (mmm ·nnn)mmm, the vector rejection ofmmm on nnn then becomes
as described in Eq. (A.6)

qqq = mmm− (mmm ·nnn)mmm
||mmm− (mmm ·nnn)mmm|| (A.6)

With mmm and nnn being unit vectors Eq. (A.1) can be rewritten to Eq. (A.7)

R2DR2DR2D =

 mmm ·nnn −||mmm⊗nnn|| 0
||mmm⊗nnn|| mmm ·nnn 0

0 0 1

 (A.7)

The basis change matrix for basis of the rotation matrix R2DR2DR2D is shown in Eq. (A.8)

HHH = (ppp qqq rrr)−1 =
(
nnn

mmm− (mmm ·nnn)mmm
||mmm− (mmm ·nnn)mmm|| nnn⊗mmm

)−1
(A.8)
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The final rotation matrix can be found by changing the basis as described in Eq. (A.9)

UUU = H−1H−1H−1R2DR2DR2DHHH (A.9)

Now the rotation matrix UUU can be used to acquire the rotated MM element and CM centroids
using Eq. (A.10)

vrotvrotvrot = UUUvvv (A.10)

Where vvv is the point to be rotated into the xy-plane and vrotvrotvrot is the rotated point in the
xy-plane.
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Appendix B

Validation of the centroid finding
algorithm

To ensure the validity of the approach differently shaped quadrilateral elements are evaluated
in this appendix. The elements chosen have centroid which can be found through alternate
means. The first element is a simple 2 dimensional rectangular element. The node coordi-
nates of this element are shown in Table B.1. The element and its centroid are displayed in
Figure B.1.

Table B.1: Coordinates of the nodes of the 2D square

x y z
node 1 0 0 0
node 2 1 0 0
node 3 1 1 0
node 4 0 1 0

The element is a simple rectangle with sides of length 1 so the centroid is located in the middle
of the rectangular element at [0.5, 0.5, 0]. The proposed methodology finds the centroid to be
located at [0.5, 0.5, 0].

To check how the function works with a heavily deformed element, a triangle is evaluated.
The nodes of the triangle are given in Table B.2

Table B.2: Coordinates of the nodes of the 2D wedge

x y z
node 1 0 0 0
node 2 1 0 0
node 3 0.5 1 1
node 4 0.5 1 1
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Figure B.1: A 2D square surface with its centroid

The methodology finds that the centroid should be located at [0.5, 0.333, 0]. Using the formula
of the centroid of a triangle 3.1, the same location is found for the centroid.

Figure B.2: A 2D wedge surface with its centroid
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Validation of the conditions of the
inverse iso-parametric mapping

procedure

Condition 1: a1 = 0, a2 = 0 For this condition the element is a square in the global
coordinate system. To verify an example with the nodes as shown in Table C.1

Table C.1: Node coordinates for first condition

x y z
node 1 0 0 0
node 2 1 0 0
node 3 1 1 0
node 4 0 1 0

The point of which the natural coordinates need to be found is [0.5, 0.5]. Transforming to the
natural coordinate system results in [0, 0] so for this condition the transformation is correct.

(a) fig:case1before (b) fig:case1after

Figure C.1: The quadrilateral element before and after transformation for the first condition
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Condition 2: a1 = 0, a2 6= 0, c1 = 0 For this condition (x1 + x3) − (x2 + x4) = 0 however
(y1 + y3)− (y2 + y4) = 0 this is not true. While the condition c1 = 0 means that (x3 + x4)−
(x1 + x2) = 0. The result is an element as given in Table C.2.

Table C.2: Node coordinates for second condition

x y z
node 1 0 0.5 0
node 2 1 0 0
node 3 1 1 0
node 4 0 1 0

The average of the nodes is found to be at [0.5, 0.625] which after the transformation to the
iso-parametric space results in [0, 0] as is shown in Figure C.2.

(a) fig: (b) fig:

Figure C.2: The quadrilateral element before and after transformation for the second condition

Condition 3: a1 = 0, a2 6= 0, c1 6= 0 Then using Eq. (3.21). Now c1 is not equal to 0,
(x3 + x4) − (x1 + x2) 6= 0 while (x1 + x3) − (x2 + x4) = 0. An element that fulfills these
conditions is shown in Table C.3. The average sum of the nodes is [0.75, 0.65].

Table C.3: Node coordinates for third condition

x y z
node 1 0.5 0 0
node 2 1 1 0
node 3 1 1.1 0
node 4 0.5 0.5 0

After the transformation to the natural coordinate system the result is found to be in [0, 0].
As shown in Figure C.3.
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(a) fig: (b) fig:

Figure C.3: The quadrilateral element before and after transformation for the third condition

Condition 4: a1 6= 0, a2 6= 0, ab & ac 6= 0 For this condition using Eq. (3.22). The natural
coordinates can be found of the mid point of the 4 nodes. The element that is adhering to
these conditions is as shown in Table C.4. The node average is at [0.625, 0.675], which after
transformation to the natural coordinate system results in [0, 0] as expected. The result is
shown in Figure C.4

Table C.4: Node coordinates for fourth condition

x y z
node 1 0 0 0
node 2 1 0 0
node 3 1.5 1.5 0
node 4 0 1.2 0

(a) fig: (b) fig:

Figure C.4: The quadrilateral element before and after transformation for the fourth condition

Condition 5: a1 6= 0, a2 6= 0, ab 6= 0 & ac = 0 In this case an element that fulfills this
condition is shown in Table C.5. The average of the nodes is located at [0.625, 0.375], as
expected and shown in Figure C.5 the average of the nodes is mapped to [0, 0].
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Table C.5: Node coordinates for fifth condition

x y z
node 1 0 0 0
node 2 1 0 0
node 3 1.5 1.5 0
node 4 0 0 0

(a) fig: (b) fig:

Figure C.5: The quadrilateral element before and after transformation for the fifth condition

Condition 6: a1 6= 0, a2 6= 0, ab = 0 & ac 6= 0 For the sixth case the coordinates of the
nodes of the quadrilateral element are as displayed in Table C.6.

Table C.6: Node coordinates for sixth condition

x y z
node 1 0 0 0
node 2 1 0.5 0
node 3 1.5 1.5 0
node 4 0 0.75 0

The element before and after transforming is shown in C.6. The average of the nodes before
the transformation is [0.625, 0.6875], after the transformation the average of the nodes is [0, 0]
as expected.
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(a) fig: (b) fig:

Figure C.6: The quadrilateral element before and after transformation for the sixth condition

Condition 7: a1 6= 0, a2 = 0 and b2 = 0 In the seventh condition the fact that a2 and b2
have to be equal to 0 allow the element to be very close to a simple square element as can be
seen in Figure C.7. The node locations for the original element are shown in Table C.7.

Table C.7: Node coordinates for seventh condition

x y z
node 1 0 0 0
node 2 1 0 0
node 3 1.5 1.5 0
node 4 0 1.5 0

The average centroid before transformation is located in [0.625, 0.75]

(a) fig: (b) fig:

Figure C.7: The quadrilateral element before and after transformation for the seventh condition

Condition 8: a1 6= 0, a2 = 0 and b2 6= 0 For the final condition the nodes are as can be
seen in Table C.8. The average centroid before transformation is located in [0.375, 0.75].

The before and after images of the element can be seen in Figure C.8.
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Table C.8: Node coordinates for eighth condition

x y z
node 1 0 0.5 0
node 2 1 0 0
node 3 1 1 0
node 4 -0.5 1.5 0

(a) fig: (b) fig:

Figure C.8: The quadrilateral element before and after transformation for the last condition
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