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Introduction
Cancer is one of the leading causes of death worldwide.1 One 
of the biggest challenges in cancer treatment is tumor hetero-
geneity; diverse intertumoral genetics lead to distinct treat-
ment responses in patients.2 To improve the response rate of 
therapies and minimize side effects, making accurate predic-
tions of patients’ therapeutic response is a necessity for person-
alized clinical treatment planning.

Molecular profiling in patient-derived cell cultures, which 
preserves the molecular characteristics of the parental tumors, 
has been widely used in preclinical research in the past decades 
to enable and accelerate cancer therapy development and preci-
sion medicine.3 Machine learning models have been demon-
strated to manage high-dimensional and ever-growing 
molecular data used for clinical outcome predictions. 
Particularly, there is a great interest in deep learning (DL) 
models that can capture the nonlinear interactions between a 
massive number of features. They are broadly applied to large-
scale omics data to facilitate personal diagnosis and prognosis, 
as well as to reveal insights into cancer mechanisms, exploring 

biological patterns and cellular processes.4 For example, Chiu 
et al5 used DL-encoded expression profiles for response pre-
diction of 265 drugs in 33 cancers and identified drug response 
modulating oncogenic features. Zhang et al6 used gene expres-
sion and copy number variation on cell cultures to build inter-
pretable DL models for drug response prediction in cancers. 
However, the remarkable performance of DL models was 
based on cancers with large numbers of cell cultures available 
for training. Ideally, the number of samples should be at least 
10 times the number of the parameters to ensure fitness in the 
DL model training process.7 However, for some cancer types, a 
very limited number of patient samples are available for 
research purposes, while the heterogeneity and variability of 
cancers make outcome predictions challenging based on this 
limited number of samples.7 The need for a large training data-
set, therefore, restricts the broad application of DL approaches 
in cancer research.

Transfer learning (TL) is a technique that solves one task by 
applying the knowledge learned from another (analogous) task 
to mitigate the small sample size problem of DL models. 
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Specifically, DL models are pretrained on a large source dataset 
to gain knowledge that then is transferred to a smaller target 
dataset to enhance the performance on the target dataset. In 
computer vision, the ImageNet8 database has been created to 
enable the pretraining of TL in image analysis studies. It has 
been used to improve DL model performance in applications 
such as automated gender recognition.9 TL also has proven its 
value in the medical research field. Cheerla and Gevaert10 have 
demonstrated improved survival predictions on a small dataset 
of a specific cancer type when pretraining a DL model on large 
pan-cancer data. Furthermore, TL has the potential to help 
with therapeutics development by evaluating the possibility of 
applying an existing drug in a cancer treatment case that has 
not yet been tested before.11

Given the reported advantages of TL, we decided to exploit 
DL models together with TL to alleviate the limited training 
sample problem in drug response prediction. We investigated 
the optimal way of implementing TL, including exploring dif-
ferent source datasets, and assessing whether refinement in the 
target domain is beneficial for TL. We demonstrate the added 
value of TL in a use case which has always been a challenging 
prediction task in previous studies,12,13 namely, predicting 
temozolomide (TMZ) response in glioblastoma (GBM) 
patient-derived cell cultures. The GBM is the most aggressive 
type of brain cancer, but also one of the most lethal cancers 
with a 5-year survival rate of less than 10%.14 It has a low inci-
dence among all cancer types (0.001%) and is therefore consid-
ered a rare cancer. TMZ is the only FDA-approved drug since 
1999 as the first-line treatment for patients with GBM in 
combination with radiation therapy, even though one in 2 
patients with GBM does not respond to TMZ treatment and 
still suffer from side effects, such as severe nausea and vomit-
ing.15 To date, the methylation status of the MGMT 
(O6-methylguanine-DNA methyltransferase) promoter is the 
only well-established biomarker of response for alkylating 
agents including TMZ.16 However, MGMT has shown lim-
ited predictive power to distinguish sensitive and resistant 
patients.17,18 Recently, Ntafoulis et al19 have shown in a retro-
spective clinical study that using an ex vivo drug sensitivity 
screening can predict TMZ response more accurately than 
MGMT. To further improve the prediction accuracy and mini-
mize the side effects of TMZ, there is a need to develop com-
putational models that can use molecular profiling data 
generated from functional tumor cell screening projects.

In this study, we constructed a DL framework with a 2-step 
TL strategy in which knowledge from a large source dataset is 
first transferred to a more domain-specific dataset in which the 
model is refined (step 1) and consequently transferred to the 
(small) target dataset in which a further fine-tuning takes place 
(step 2). We applied this 2-step TL framework to RNA-seq 
data of cell cultures derived from treatment-naïve IDH-1 
wild-type patients with GBM to predict their response to 
TMZ. We deployed 3 datasets: (1) The Genomics of Drug 

Sensitivity in Cancer (GDSC)20 dataset that was used as the 
source dataset, (2) the Human Glioblastoma Cell Culture 
(HGCC)21 dataset that was used as the domain-specific data-
set, and (3) a small but well-defined GBM screening dataset 
GSE23217319 that was the final target dataset for which we 
aimed to predict the TMZ response. We investigated whether 
and how 2-step TL improves prediction accuracy on the small 
target dataset. Furthermore, we demonstrated the value of 
transferring knowledge from other cell cultures and selected 
drugs, which provides oncologists and pharmacologists with 
new insights into alternative therapeutic options. The perfor-
mance of the 2-step TL was extensively compared with 5 cat-
egories of benchmark methods: (1) DL models without TL, (2) 
DL models with 1-step TL, (3) Elastic Net,22 (4) a DL frame-
work developed by Theodore Sakellaropoulos et al,23 and (5) 
the predictions based on the expression and methylation status 
of MGMT.

Methods
We propose a 2-step TL framework to improve the perfor-
mance of DL models on small datasets (Figure 1A). The 
framework consists of 3 parts: First, DL models were pre-
trained on the source dataset (GDSC) containing miscellane-
ous cell cultures with response outcomes for multiple drugs. 
Second, the DL models were then refined on a domain-specific 
dataset (HGCC), and the best source drug for the transferring 
task was selected. Finally, the refined DL model based on the 
dataset of the best source drug was transferred to the final tar-
get set (GSE232173) in which the DL model was further fine-
tuned. We evaluated the performance of the 2-step TL in 
comparison with other clinical and computational approaches. 
The 3 RNA profiling datasets used in the experiment are sum-
marized in Table 1 and detailed in the following section.

More specifically, the GDSC dataset containing cell cul-
tures from various tissue sites treated by 4 drugs was used to 
pretrain 4 corresponding DL models. The 4 drugs, namely, 
TMZ, cyclophosphamide (CPA), bortezomib (BOR), and 
oxaliplatin (OXA), were selected based on their mechanisms of 
action (MOAs) and availability in the dataset. The 4 trained 
DL models were transferred and evaluated on TMZ-treated 
GBM cell cultures from the HGCC dataset to search for the 
best pretrained DL model that improves TMZ prediction in 
GBM cultures. This best pretrained model was then refined on 
the HGCC dataset by training it on TMZ responses in GBM 
cultures. Finally, this refined DL model was transferred to the 
target dataset GSE232173 in which the DL model was further 
refined to predict TMZ response on this small target set of 
GBM patient-derived cell cultures. The entire study design is 
shown in Figure 1A.

The drug response on cell cultures was measured and repre-
sented by the area under the response curve (AUC).24 
Specifically, when the drug responsiveness was tested in the cell 
cultures, the cell viability was measured at discrete points of 
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drug doses, and the AUC was calculated as the definite integral 
of the cell viability in the dose ranges of interest. The perfor-
mance of the DL models was evaluated by the Spearman cor-
relation coefficients (SCC):
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R denotes the ranking of the (predicted or observed) AUC, and 
cov is the covariance of the ranked variables.

The metric SCC is nonparametric (ie, without assuming the 
normal distribution) and determines the monotonic relation-
ship between the rankings of the observed drug AUC and pre-
dicted AUC across different cross-validations (CVs) of the 
datasets, which is more robust to outliers. The CVs of each 
model were performed 10 times with different CV partitions 

to test the CV robustness of the models. Since multiple 
approaches were investigated, we kept the stratified partitions 
the same for each dataset and each experiment, to ensure a fair 
comparison of the model performances. The means and stand-
ard deviations (SD) of the 10 repetitions were calculated. 
Figure 1B illustrates our 2-step TL framework architecture 
and experiment settings.

Datasets

The datasets GDSC and HGCC were downloaded from their 
websites. The data generated in the EMC is available on GEO 
under the number GSE232173.

GDSC dataset. The GDSC contains miscellaneous cell cul-
tures from various tumor types treated by multiple drugs. The 
collection of drugs with distinct MOAs provides an opportu-
nity to test the potential for drug repurposing possibilities. 
Given the MOA and data availability, TMZ and 3 other drugs 
CPA, BOR, and OXA were shortlisted for the experiment to 
determine the source drug dataset for TL. For the 4 drugs, the 
total number of cell cultures used was shown in Table 1, among 

Figure 1. Study design and framework architecture. (A) Study design. The entire study design consists of 7 experiments. Experiment 1: Constructing 4 

DL models on the GDSC dataset containing mRNA expression of cell cultures from various tissue sites for response prediction of 4 drugs: (a) 

temozolomide (TMZ), (b) cyclophosphamide (CPA), (c) bortezomib (BOR), and (d) oxaliplatin (OXA). Experiment 2: Constructing a DL model on the HGCC 

dataset containing mRNA expression data of 83 GBM cell cultures for TMZ response prediction. Experiment 3: One-step transfer learning (TL) from the 

DL models of the 4 drugs from the source GDSC dataset to the HGCC dataset and determine the best source drug dataset for the TMZ-treated GBM cell 

cultures response prediction. Experiment 4: Constructing a DL model solely on the GSE232173 dataset to predict TMZ response. Experiment 5: One-step 

TL from HGCC dataset to the target GSE232173 dataset. Experiment 6: One-step TL from the source GDSC dataset to the target GSE232173 dataset. 

Experiment 7: Two-step TL from the GDSC source dataset to the GSE232173 target dataset, with the refinement on the HGCC dataset. (B) Experiment 

settings and framework architecture. The experiments included 3 parts: DL model constructions on the GDSC, HGCC, and GSE232173 datasets. For 

each part, a 5- or 3-fold CV with 10 repetitions was performed to assess the robustness of the DL models. The transferring process occurred from the 

source to the target dataset for a particular step at hand. Each time the TL was realized by extracting the weights of the input layer of the DL model trained 

on the source dataset to initialize the corresponding weights in the target dataset which were subsequently updated during the training. The DL model 

performance was assessed by Spearman correlation coefficients, where R denotes the ranking of the (predicted or observed) AUC, and cov is the 

covariance of the ranked variables.
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which 18 to 34 cell cultures were from GBM tumor tissues, 
and the rest cell cultures were derived from 29 to 31 other tis-
sue types. TMZ, CPA, and OXA are closely related DNA-
damaging agents with chemical structures of triazines, nitrogen 
mustards, and metal salts drug families, respectively, while 
TMZ and CPA are both alkylating.20,25 The TMZ causes 
DNA damage that starts cycles of futile reparation and eventu-
ally leads to cell death.25,26 The CPA,27 with a similar MOA to 
TMZ, crosslinks the strands of DNA and RNA and inhibits 
transcription synthesis. The OXA binds preferentially to the 
guanine and cytosine bases in DNA, leading to DNA cross-
linking and inhibiting DNA synthesis and transcription.28 The 
BOR, as a proteasome inhibitor, is related to protein stability 
and degradation pathways and thus serves as a benchmark 
source drug with the least similar MOA to TMZ among the 4 
drugs.27

The RNA microarray data in GDSC contains 17 419 fea-
tures at the gene level. The data were preprocessed with RMA 
normalization and log2 transformation before usage. 
Furthermore, given the diverse ranges of the AUC response 
outcome of the 4 drugs (Supplementary Fig. 1A-1D), the AUC 
of each drug was min-max normalized into the range of 0 to 
10. To prevent overfitting the DL models, feature reduction 
was performed by filtering out low-variance genes, ie, genes 
with a variance lower than the 25% quantile of all genes’ vari-
ances were removed, which left us with 10 232 genes.

HGCC dataset. The HGCC contains RNA data of 83 GBM 
patient-derived cell cultures before the drug screening meas-
ured with a microarray. The dataset was RMA normalized and 
annotated with 23 832 genes. Log2 transformation was per-
formed before usage. The maximum value of the AUC response 
was min-max normalized into the range of 0 to 10. The 9955 
overlapping genes between GDSC and HGCC were kept for 
the DL model constructions on the HGCC dataset to enable 
the TL.

GSE232173 dataset. At Erasmus Medical Center, we have 
built a biobank containing >400 patient-derived GBM cell 
cultures that maintain the genetic characteristics of the paren-
tal tumors.19,29,30 The dataset GSE232173 contains RNA 

sequencing (RNA-seq) data of 22 cell cultures derived from 
patients with treatment-naïve GBM. First of all, the batch 
effect was corrected between the first batch of 19 cell cultures 
and the other 3 cell cultures in the second batch with R pack-
age “sva.”31 Among the original 20 076 genes, those with low 
expressions across the 22 cell cultures were removed with the 
function FilterByExpr in edgeR.32 The RNA-seq raw count 
was normalized with a trimmed mean of M values (TMM), 
which estimates the effective library sizes, and log2 trans-
formed before usage, with the “CPM” function of R package 
edgeR.32 The AUC response was min-max normalized into 
the range of 0 to 10. The DL models on GSE232173 were 
constructed on the 9266 overlapping features between 
GSE232173, HGCC, and GDSC.

Framework architecture

The 2-step TL framework was implemented in Python with 
libraries from Pandas (version 1.1.2),33 Numpy (version 
1.19.5),34 sklearn (version 0.23.0),35 TensorFlow (version 
1.15.0),36 and Keras (version 2.2.4).37 The Python code, as well 
as the weights saved from all the fine-tuned models presented 
in the article, is available on GitHub (https://github.com/
ErasmusMC-Bioinformatics/two-step-TL).

DL model without TL. Deep artificial neural network (DNN) 
models were constructed to predict drug response outcomes, in 
terms of AUC, on the RNA profiling of cell cultures from 
GDSC, HGCC, and GSE232173, independently. On GDSC, 
4 models were constructed to predict the response to TMZ, 
CPA, BOR, and OXA for cell cultures from various tumor 
types, respectively (Figure 1A, Experiment 1). On HGCC and 
GSE232173, the response to TMZ was predicted for GBM 
cell cultures (Figure 1A, Experiments 2 and 4). To assess the 
robustness of the performance of the DL models, a 5-fold CV 
was performed on GDSC and HGCC and a 3-fold CV was 
performed on GSE232173 (due to its smaller sample size). 
This CV was repeated 10 times with different partitions. The 
input data in the training and test set were normalized 

Table 1. Overview of the treatment-naïve cell culture RNA profiling datasets.

DATASET NAME DATA TYPE SITES OF TISSUE DRUG NO. OF CELL CULTURES NO. OF FEATURES

GDSC Microarray Various tumor types including GBM TMZ 861 17 419

CPA 558 17 419

BOR 562 17 419

OXA 710 17 419

HGCC Microarray GBM TMZ 83 23 832

GSE232173 RNA sequencing GBM TMZ 22 20 077

Abbreviations: BOR, bortezomib; CPA, cyclophosphamide; GDSC, Genomics of Drug Sensitivity in Cancer; HGCC, human glioblastoma cell culture; OXA, oxaliplatin; 
TMZ, temozolomide.

https://github.com/ErasmusMC-Bioinformatics/two-step-TL
https://github.com/ErasmusMC-Bioinformatics/two-step-TL
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separately with StandardScaler to unify the median and the 
quantile range per feature. The DNN models contained an 
input layer with genes being the input and an output layer that 
predicts the normalized AUC value (between 0 and 10) of each 
cell line. We adopted an architecture of 2 hidden layers, one 
with 1000 neurons and one with 100 neurons. The weights 
were initialized using a RandomUniform distribution. The 
activation functions after the input layer, the first hidden layer, 
and the second hidden layer are “sigmoid,” “softplus,” and “soft-
plus.” The hyper-parameters were optimized with the 5-fold 
CV on GDSC, and they were subsequently applied to all DNN 
models: the dropout rates after the first and the second hidden 
layers were 0.3 and 0.1, both the regularizations of the activa-
tion function kernel and bias were 0.0001, and the loss function 
was the mean squared error (MSE). The detailed settings of 
the hyper-parameter tuning and computational resources are 
shown in Supplementary Methods.36,38

One-step TL. One-step TL was applied to the 4 DL models 
described above from the source dataset GDSC to HGCC 
(Figure 1A, Experiment 3), and the best source drug dataset for 
TMZ prediction in HGCC was chosen for the subsequent 
experiments. Specifically, the 4 DL models were first pretrained 
on the source dataset GDSC with the settings in Experiment 
1. The weights of the input layers of the GDSC-based DL 
models were used to initialize their equivalents in the DL 
model trained on HGCC. The source drug dataset that resulted 
in the best 5-fold CV performance on HGCC was selected for 
further investigation (Figure 1B).

Two more combinations of source and target datasets were 
tested for the 1-step TL: transferring from HGCC to 
GSE232173 (Figure 1A, Experiment 5) and transferring from 
GDSC to GSE232173 (Figure 1A, Experiment 6). These 2 
experiments were performed to assess the contribution of 
GDSC and HGCC in 1-step TL, ie, whether the larger and 
more diverse GDSC dataset was more informative for TL than 
the more specific HGCC dataset that contains only GBM cul-
tures. In Experiment 5, the weights of the input layer of the DL 
model pretrained on HGCC were used to initialize the DL 
model on GSE232173. In Experiment 6, the weights of the 
input layer of the DL model pretrained on the best DL model 
in Experiment 3 (on GDSC) were used to initialize the input 
layer of the DL model on GSE232173.

Two-step TL. We constructed the 2-step TL (Figure 1A, Exper-
iment 7) extending the 1-step TL (Figure 1A, Experiment 3) to 
improve the prediction on the small dataset GSE232173. Simi-
larly, the weights of the input layer of the model with the best 
performance on HGCC in Experiment 3 were extracted to ini-
tialize the DL model on the GSE232173 and a 3-fold CV was 
carried out and repeated 10 times to make the TMZ response 
prediction on dataset GSE232173 (Figure 1B). By comparing 
Experiment 7 with Experiment 6, we evaluated whether the 

extra refinement on HGCC, which represented the target 
domain, helped with the final prediction on GSE232173.

Benchmark methods

To assess the performance of the 2-step TL framework exten-
sively, we compared its performance to 3 other benchmarks. 
Next to a statistical test on MGMT methylation status, all 
other experiments using machine learning methods were per-
formed on GSE232173 with a 3-fold CV and repeated 10 
times using the same seeds in all experiments (including the 
DL models).

First, we assessed the clinical relevance of our framework: ie, 
a correlation analysis between the MGMT methylation status 
(ie, methylated or unmethylated) and AUC outcomes of the 
TMZ-treated GBM cell cultures was performed using the 
Wilcoxon signed-rank test. This indicated the predictive power 
of the current clinical biomarker of TMZ response in patients 
with GBM on GSE232173. Furthermore, we fitted a polyno-
mial regression model (degree = 2) using the MGMT expres-
sion as the single predictor and compared its performance with 
our framework.

Second, we compared the performance of our framework 
with that of an Elastic Net (EN) model, which is widely used 
in drug response prediction.12,39 Feature selection was per-
formed before the EN model construction on the training set 
of each CV, where the top 5, 10, 15, 20, 50, and 100 features 
based on F-statistics were used to construct the model, 
respectively.

Third, we employed the DL model from the study of 
Sakellaropoulos et al,23 where a DL model was constructed 
based on highly varied RNA expression genes to predict the 
outcomes of drug response. For this comparison, we imple-
mented the DL model using the original code on the 
GSE232173 dataset, including the hyper-parameter 
optimization.

Results
Without TL

On GDSC (Figure 2A, Experiments 1a-1d), the OXA-based 
DL model gave the best prediction performance with an 
average SCC of 0.509 (SD 0.015), followed by CPA with an 
SCC of 0.439 (SD 0.019), BOR with an SCC of 0.363 (SD 
0.019), and TMZ with an SCC of 0.085 (SD 0.035). These 
results showed that the DL models could predict OXA, 
BOR, and CPA response on the GDSC dataset with rela-
tively high accuracy, while the response to the drug TMZ 
was close to impossible to predict. To inspect the influence of 
outliers on the performance, we made Q-Q plots: CPA, 
BOR, and OXA all were roughly normally distributed 
(Supplementary Fig. 2B-2D), TMZ, on the contrary, was 
more skewed, and therefore more difficult to predict GDSC 
(Supplementary Fig. 2A).
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On HGCC, the DL model with a 5-fold CV (Figure 2B, 
Experiment 2) to predict GBM cell cultures’ response to TMZ 
resulted in an average SCC of 0.217 (SD 0.052), which is bet-
ter than the result in the larger GDSC dataset (Experiment 
1a). This might be because around 90% of the GDSC TMZ-
treated cell cultures were very resistant (original AUC > 0.95) 
to this drug while the AUC distribution of HGCC was more 
balanced (Supplementary Fig. 1A and 1E), which is confirmed 
by its Q-Q plots (Supplementary Fig. 2A and 2E).

On GSE232173 (Figure 2C, Experiment 4), the DL model 
without TL resulted in an average SCC of 0.120 (SD 0.118) 
for GBM cell culture TMZ response prediction. As expected, 
this is worse than the result on HGCC (Experiment 2) which 
is relatively a larger dataset. Interestingly, it is better than the 
result on the largest dataset GDSC (Experiment 1a). Not only 
the histograms of the AUC of the 3 datasets (Supplementary 
Fig.1A, 1E, and 1F) but also the Q-Q plots (Supplementary 
Fig. 2A, 2E, and 2F), suggested a more balanced distribution of 

TMZ in the GSE232173 dataset than in the GDSC dataset, 
which seems crucial for DL model construction.

One-step TL

The best DL model for TL was determined in the 1-step TL 
from GDSC to HGCC (Figure 1A, Experiment 3), in which 
we evaluated from which drug the model learned the most 
from the GDSC dataset to perform TMZ response prediction 
in HGCC. This was the OXA-based model. Transferring the 
weights from the OXA-based model on GDSC cell cultures to 
the DL model on HGCC (Figure 2B, Experiment 3d) achieved 
an increased SCC of 0.244 (SD 0.050), compared with without 
TL (Experiment 2). Wilcoxon signed-rank test was performed 
to compare the 10 SCC pairs from Experiments 2 and 3d, 
which were obtained from 10 repetitions of 5-fold CV with 
identical partitions in both experiments, yielding a P value of 
.037, confirming a significant improvement by the transferred 

Figure 2. The performance of the DL models with 10-times cross-validations with different partitions. In the boxplots, the mean Spearman correlation 

coefficients (SCC) of the cross-validations with standard deviations are shown for the 10 experiments. (A) Experiments on GDSC without TL for the 

response prediction of 4 drugs. Experiment 1a: TMZ, Experiment 1b: CPA, Experiment 1c: BOR, and Experiment 1d: OXA. (B) Experiments on HGCC to 

predict the response to TMZ. Experiment 2: without TL. Experiments 3a-3d: with 1-step TL from GDSC using source drugs TMZ, CPA, BOR, and OXA, 

respectively. The significance of the performance difference is shown in P values. (C) Experiments on GSE232173 to predict the response to TMZ. 

Experiment 4: without TL. Experiments 5 and 6: with 1-step TL from HGCC TMZ and GDSC OXA, respectively. Experiment 7: with 2-step TL from GDSC 

OXA and refined on HGCC TMZ. Experiment MGMT: predictions made by a polynomial regression using the expression of gene MGMT as the predictor. 

Experiment EN: predictions made by an Elastic Net model. Experiment TS: predictions made by a DL model constructed by Theodore Sakellaropoulos et 

al. The significance of the performance difference between Experiment 7 and the others was shown in P values.
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model. Transferring from other drugs including TMZ (SCC 
0.216), CPA (SCC 0.208), and BOR (SCC 0.196) did not help 
(Figure 2B, Experiments 3a, 3b, and 3c, respectively). Notably, 
transferring from BOR gave the lowest performance in agree-
ment with the different MOA of BOR compared with TMZ. 
The TMZ-based TL did not help the prediction due to the 
skewed distribution and lack of sensitive cultures in the source 
dataset (Supplementary Figs. 1A and 2A). Interestingly, CPA, 
considered the drug with the most similar MOA to TMZ, was 
not identified as the best source for TL. According to the AUC 
distribution of CPA on GDSC (Supplementary Figs. 1B and 
2B), where cell cultures with AUCs less than 0.9 were absent, 
this might be due to insufficient information available from the 
CPA-sensitive cell cultures. Finally, we selected OXA as the 
best source drug dataset among the 4 to pretrain the DL model 
for GBM cell culture response prediction to TMZ.

Based on the best source drug dataset OXA in GDSC, the 
1-step TL from GDSC to GSE232173 (Figure 2C, Experiment 
6) achieved a higher SCC of 0.181 and a smaller SD of 0.078 
compared with the results of Experiment 4 (direct training of 
DL model on GSE232173), although the improvement of the 
SCC was not significant (P = .076). Transferring from TMZ in 
HGCC to GSE232173 (Figure 2C, Experiment 5) decreased 
the DL performance with an SCC of 0.103 (SD 0.126). These 
2 experiments highlight the importance of having sufficient 
samples in the pretraining since the dataset of HGCC contains 
only 83 samples while the GDSC OXA dataset contains 710 
samples.

Two-step TL

After the DL model was pretrained on the GDSC OXA data-
set and transferred to HGCC in the 1-step TL, the model was 
extended further to 2-step TL by training the model on HGCC 
(ie, refining) before being transferred to and validated on 
GSE232173. During the validation on GSE232173, this 
2-step DL model (Figure 2, Experiment 7) achieved an average 
SCC of 0.222, which was significantly higher than the model 
trained without TL (Figure 2, Experiment 4, SCC = 0.120, 
P = .010). This demonstrates that the 2-step TL is superior to 
not using TL at all. The SD (= 0.079) of the 2-step TL is much 
smaller than the SD without TL, suggesting that the 2-step 
TL also increased the stability of the DL models. Furthermore, 
compared with 1-step TL from HGCC and from GDSC to 
GSE232173 (Figure 2, Experiments 5 and 6d, respectively), 
2-step TL succeeded in boosting the performance significantly 
(P values = .006 and .014, respectively). Together, the fact that 
2-step TL was able to make a significant improvement indi-
cates both TL steps are important, ie, starting with a large and 

general source domain and then refinement in the target 
domain.

Other benchmark methods

Biomarker MGMT. To evaluate the clinical relevance of our 
2-step TL framework, we compared it with the performance 
using the methylation status and expression of the MGMT 
gene; the most well-studied predictive marker of TMZ 
response in patients with GBM.18 The MGMT promoter 
methylation status was available for 20 out of the 22 samples in 
GSE232173. However, the gene expression of MGMT was 
weakly correlated to the AUC of GSE232173 with an SCC of 
0.128 (Supplementary Fig. 3A), and no significant difference 
was observed between the MGMT-methylated versus non-
methylated groups regarding their responses to TMZ (Wil-
coxon rank-sum test P = .710, Supplementary Fig. 3B). This 
demonstrates the insufficiency of using MGMT methylation 
status or gene expression directly as a biomarker in clinics, and 
underpins the necessity of our computational models using 
molecular profiling data generated from functional tumor cell 
screening project.

When used as the only input variable of a polynomial 
regression model (degree = 2), the MGMT expression gave a 
mean SCC performance of 0.167 (±0.148) (Figure 2C, 
Experiment MGMT). This reasonable performance supports 
the use of MGMT in clinical practice but with the help of a 
properly trained machine learning model and not by its meth-
ylation status as currently used. However, the model was unsta-
ble and its performance suffered from high variance (ie, for 
some repetitions, the SCCs were close to 0, which was a ran-
dom prediction), just as the DL models without TL did (in 
Experiment 4). Thus, we demonstrate that our 2-step TL 
improved performance as well as prediction stability than the 
machine learning model based on the expression of MGMT.

Elastic Net. The performance of our 2-step TL framework was 
compared with that of EN. The EN model with the top 10 
genes achieved the best performance of an average SCC of 
−0.082 (SD = 0.192, Figure 2C, Experiment EN), which was 
not only significantly worse than the 2-step TL (P = .002) but 
also worse than the performance of the DL models on 
GSE232173 without TL.

DL by Sakellaropoulos et al. Numerous studies have worked on 
drug response predictions using machine learning methods. To 
assess the robustness of our DL framework, we also compared 
the performance of our 2-step TL with that of the DL model 
built by Theodore Sakellaropoulos et al.23 This Sakellaropoulos 
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model resulted in an SCC = –0.020 with the largest SD 
(= 0.266) among all experiments (Figure 2C, Experiment TS), 
which is significantly worse than the 2-step TL (P = .014).

Biological interpretation

To reveal the biological processes our DL models have learned 
about TMZ resistance in GBM cultures, we extracted the 
weights at the input layer from the 3 DL models built on 
GSE232173: one without TL (Experiment 4), one with 1-step 
TL from GDSC (Experiment 6), and one with 2-step TL 
(Experiment 7). Afterward, we performed Gene Set 
Enrichment Analysis (GSEA)40 on these 3 sets of weights for 
each gene. Specifically, the weights of the genes in each model 
were used to rank the genes, which served as the input of the 
GSEA analysis querying against the Hallmark database.41 

Pathways with a false discovery rate (FDR) lower than 0.25 are 
reported.

The results showed that the TL not only improved the pre-
diction performance but also revealed more knowledge about 
the GBM drug response mechanisms (Figure 3). Without TL, 
the only observed pathway was the upregulation of UV response 
in the sensitive responsiveness. This was also confirmed by the 
results with both 1-step and 2-step transferring, where the UV 
response was downregulated in the resistant responsiveness.

Pathways identified based on 1-step and 2-step TL largely 
overlapped (Figure 3), most of which have been reported to 
play an important role in carcinogenesis, drug resistance, and 
immune functions, such as IL2 STAT5 signaling, inflamma-
tory response, and KRAS signaling.42-44 More importantly, the 
cell cycle-related pathways, such as E2F targets, G2M check-
point, and MYC targets, were observed from the models 

Figure 3. Hallmark pathways identified by Gene Set Enrichment Analysis using the weights of the genes at the input layer of 3 deep learning (DL) models 

on the GSE232173 dataset. Pathways were identified from the weights of the DL models without transfer learning (TL, Experiment 4, in green), with 1-step 

TL (Experiment 6, in blue), and with 2-step TL (Experiment 7, in red), ranked by the absolute values of the normalized enrichment scores (abs(NES)). The 

bigger size of the circles indicates the more significance of the pathways (in terms of the false discovery rates).
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transferred from OXA in the sensitive group (Supplementary 
Table 1 and Supplementary Fig. 4). G2M checkpoint and E2F 
targets regulate the cell cycles and DNA damage repair.45 The 
transcription factor MYC also serves as the TMZ resistance 
driver.46 Besides UV response DN, the p53 pathway and epi-
thelial-mesenchymal transition were enriched in the resistant 
cell cultures. Both of them have been demonstrated to induce 
TMZ resistance in GBM.47,48

Discussion
In this study, we explored the added value of TL techniques for 
the prediction task of drug response in studies with limited 
samples and showcased the TMZ drug response prediction 
task in GBM patient-derived cell cultures, which is a difficult 
prediction task. Multiple DL prediction models were con-
structed to predict the response to TMZ in a small dataset 
GSE232173 which only contains 22 samples. Besides DL pre-
diction models with or without TL, we also applied state-of-
the-art machine learning prediction models and biomarkers 
used in the clinic for benchmarking purposes.

We advocate the 2-step TL for the drug response prediction 
problem using a broad range of mixed cancers and related 
drugs as the source and fine-tuning the model with the target 
cancer and target drug. Compared with the DL model without 
TL, 1-step TL from the OXA dataset in GDSC improved the 
average prediction accuracy on HGCC and GSE232173 for 
TMZ response prediction. Furthermore, the 2-step TL, which 
added the refining step in the target domain after the DL 
model was pretrained on a broader dataset, facilitated the per-
formance on small target datasets significantly, whereas the 
1-step TL did not, which indicated that pretraining should be 
done on a relatively large dataset. Notably, the variance of the 
DL models was largely decreased when TL was applied on 
GSE232173, which suggests that TL improved the stability 
and robustness of drug response prediction in the small dataset 
(Supplementary Table 2). Moreover, we tested the DL model 
performance with a 5-fold CV on GDSC and HGCC and a 
3-fold CV on GSE232173, with 10 identical CV partitions for 
different experiments on each dataset for fair comparisons. In 
addition to the observation of a significant improvement in the 
mean SCC scores and decreased SD with 1-step TL on HGCC 
(Figure 2B, Experiment 3d) and 2-step TL on GSE232173 
(Figure 2C, Experiment 7), we inspected the impact of TL on 
each repetition on HGCC and GSE232173 to ensure the 
robustness of TL given different partitions. It is shown that 
1-step TL on HGCC (Experiment 3d) and 2-step TL on 
GSE232173 (Experiment 7) consistently achieved higher per-
formance on most repetitions (Supplementary Fig. 5). The 
CPA-, BOR-, and OXA-based models on GDSC, which is the 
biggest dataset with miscellaneous cell cultures, achieved rela-
tively higher performance (ie, higher SCC scores) and stability 
(ie, smaller SD). It demonstrates the capability of DL models 
to predict the drug response for a mixture of cell cultures from 

various tumor types. The low performance of the TMZ-based 
model on datasets GDSC, HGCC, and GSE232173 alone 
consistently confirms the challenge of TMZ response predic-
tions on cell cultures from various tissue types, including GBM. 
In this challenging dataset, the clinical biomarker MGMT 
methylation status failed to show a correlation with TMZ 
response. Moreover, our framework outperformed an Elastic 
Net model and another DL framework and showed increased 
model stability.

The hallmark pathways identified from the OXA-based TL 
revealed more pathways associated with cell proliferation com-
pared with those without TL. The top 5 most influential genes 
(with the highest weights) are RSL1D1 (involved in the regu-
lation of apoptotic process and regulation of cellular senes-
cence), NPM1 (involved in centrosome duplication, protein 
chaperoning, and cell proliferation processes), PHB2 (involved 
in positive regulation of cell cycle phase transition), HPRT1 
(involved in the generation of purine nucleotides), and PPM1G 
(involved in the encoding of negative regulators of cell stress 
response).49 The finding that the overexpression of these cell 
proliferation-related genes is associated with a better drug 
response is consistent with previous studies.50,51 Specifically, 
Chawla et al showed that highly proliferative tumor cells tend 
to be more sensitive to TMZ in prostate cancer because rapidly 
dividing cells are actively going through the cell cycle and 
TMZ induces double-strand breaks in the post-treatment cell 
cycle.52 The 3 cell cycle–related pathways, E2F targets, G2M 
checkpoint, and MYC targets, together with the UV response, 
have been identified in our previous study19 on the GSE232173 
cohort in both patient-derived cell cultures and matching 
patient tumor tissues. In the previous study, GSEA was per-
formed on the differentially expressed genes between respond-
ers and nonresponders (for cell cultures, the responsiveness was 
defined based on the cell viability, while for tumor tissues, this 
was defined based on progression-free and overall survival of 
the patients) of TMZ-treated GBM samples. It is known that 
OXA and TMZ are both classified in the mechanism of action 
category: cross-linking/alkylation.53 The TMZ induces DNA 
damage by methylating guanine residues, leading to mis-
matches during DNA replication, whereas OXA forms DNA 
crosslinks, which prevent DNA replication and transcrip-
tion.54,55 This means both TMZ and OXA can activate cell 
death pathways through various mechanisms. The fact that the 
cell cycle–related pathways were observed only after OXA-
based TL inferred that the TL framework increased response 
prediction performance probably because the transferred 
weights from OXA-based models put an emphasis on cell 
cycle–related genes, which are involved in cell death and DNA 
repair and important for TMZ response. Therefore, we inferred 
that the model could predict the likelihood of cell death in 
GBM cells. The functional correlation between the 2 drugs has 
been observed in the study of Roberts et al where they proved 
that OXA could induce cell apoptosis and reduce the 



10 Bioinformatics and Biology Insights 

expression level of MGMT, leading to a more sensitive response 
to TMZ treatment.56

We investigated TL, which transfers the knowledge from a 
well-trained source model and refines the model with more 
prediction target-specific data later. As an extra validation, we 
opted for another approach to ensure the robustness of our 
methodology, based on GDSC and HGCC databases but with 
a different definition of the source, fine-tuning, and target set. 
We used all non-GBM cell lines treated by OXA in GDSC as 
the source dataset and took the 34 GBM cell cultures from the 
GDSC treated by TMZ as the fine-tune set to demonstrate 
the value of our 2-step TL. Subsequently, HGCC became the 
independent target set for the external validation. The result 
showed (Supplementary Fig. 6) that the 2-step TL (Experiment 
7) boosted the performance of DL significantly (P = .027) com-
pared with no TL (Experiment 4). Also, the 2-step TL 
(Experiment 7) performed better than the 1-step TL in 
Experiment 5 (P = .004). In Experiment 6, where the 1-step TL 
was performed between the pretraining on GDSC without the 
fine-tuning step in the target domain of TMZ-treated GBM 
samples and directly transferred to the target domain (TMZ 
response in GBM), an improvement of SCC scores was 
observed with less stability. This again demonstrates the value 
of our 2-step TL where first general knowledge is learned from 
a big(ger) source and then it is fine-tuned and focused on the 
target domain for the final task.

More specifically, we inspected the source dataset used for 
pretraining. For the TMZ prediction using a DL model with-
out TL (ie, Figure 1A, Experiment 1a), almost 90% of the cell 
cultures from GDSC were resistant to TMZ with AUC values 
larger than 0.95 (Supplementary Fig. 1A), which resulted in 
poor prediction performance when trained on this dataset. In 
the HGCC and GSE232173 datasets, the AUC distributions 
were less skewed than in the GDSC dataset (Supplementary 
Figs. 1E, 1F, 2E, and 2F), and thus, the DL models trained on 
these datasets achieved much higher SCCs than the one on the 
GDSC datasets. Furthermore, we observed that the OXA 
dataset produced the best performance as the source drug data-
set; OXA belongs to the same MOA category as TMZ and 
CPA. The TMZ-treated samples in the GDSC dataset had a 
very skewed distribution (Supplementary Figs. 1A and 2A), 
which we believe caused the failure of TMZ response predic-
tion in GDSC. CPA, although with an even more similar 
MOA to TMZ than OXA, was incapable of improving the 
performance when used to transfer to HGCC, which was 
probably caused by the lack of samples with an AUC < 0.9 (ie, 
responders) in the GDSC dataset (Supplementary Fig. 1B). 
Notably, for BOR, with the most dissimilar MOA compared 
with TMZ, the transfer to the TMZ-based model on HGCC 
gave the worst performance among the 4 drugs. Together, we 
conclude that in order to transfer models from another dataset, 
these models should be trained not only on similar drugs (ie, 
with similar MOA) but also should have seen a balanced group 

of responders and nonresponders, as well as have to be of a 
reasonable size. In future studies, new clinical problems in need 
will be defined as a validation and extension of the current 
framework.

In addition, we evaluated the impact of different sample 
sizes of the target datasets on the performance of the 2-step 
TL framework (Experiment 7). Random sampling was per-
formed without replacement to generate subsets with sample 
sizes of 10, 13, 15, 18, and 20. The random sampling was 
repeated 3 times with different sample selections. The experi-
ments were implemented the same way as for the whole 
GSE232173 with 22 samples, ie, the weights of the first layer 
of the DL model were the same across different target set sam-
ple sizes, which were initialized using those extracted from the 
pretrained and refined DL models. Also as in Experiment 7, a 
3-fold CV was performed on each target dataset, with 10 rep-
etitions with different partitions. For each sample size, the 
results in 3 random samplings were presented in 3 different 
colors in the figure below. The mean and standard deviation of 
the SCC scores per sampling in each subset were calculated 
and shown in line plots with shadings. We observed from these 
results that smaller sample sizes of the target set generally 
result in larger variations in the SCC scores (Supplementary 
Fig. 7). Notably, the performance of the model became less 
dependent on the selection of the samples when the sample 
size increases, ie, at the sample size of 20, the 3 samplings 
resulted in similar performance. Therefore, we demonstrated 
that we have sufficient samples in the target set for a fair evalu-
ation of the model performance. This also suggested that the 
presence of sufficient representative samples (eg, sample size 
>20 in this analysis) ensures the generalizability and stability 
of the models. The GBM is a very rare yet heterogeneous can-
cer, and therefore there is a strong need to implement TL to 
mitigate the lack of data problem.

To develop a more robust model for TMZ response predic-
tion in the future, more experimental data generated from drug 
screening efforts would contribute the most. This means more 
GBM patient-derived cell cultures with balanced TMZ 
response outcomes (ie, both resistant and sensitive) and testing 
on a broad range of anticancer drugs could help with the explo-
ration of drug repurposing. Computationally, there are also 
strategies to learn from other sources to reduce the training 
burden on limited data by implementing TL or meta-learning. 
In meta-learning, a model is trained by learning from a variety 
of different tasks, such that the model has gained generalizable 
knowledge and could be adapted to new tasks efficiently and 
flexibly.57 Meta-learning has considerable potential in the 
medical field. The generalizability of the meta-learning models 
enables one-shot or few-shot learning on individual patient 
data for personalized medicine and rare disease studies without 
enough labeled samples.

Regarding the metric to represent the sensitivity of cell cul-
tures in drug screening, we had to use AUC since it is the only 
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metric available in HGCC. However, we believe that having a 
more standardized metric would greatly enhance transferable 
information. Area under the response curve is a measure of 
how much cell viability increases upon drug exposure. 
Inevitably, there exist some discrepancies in AUC calculation 
in the 3 datasets in this study. That is, the drug dose range 
given to the cell cultures differs among the drugs within one 
cohort as well as between cohorts. Furthermore, the AUC 
curves were fitted in different manners: GDSC calculated the 
AUC with a 5-parameter model,58 while HGCC used a 
4-parameter model.21 For GSE232173, the AUC was calcu-
lated in GraphPad where the area of the trapezoids under the 
segments between 2 connecting dose ranges was added.59 All 
the inconsistencies suggest that the AUC values between data-
sets are not directly comparable. Therefore, the drug response 
metric AUC was not considered as an absolute response value 
of cell cultures but was used to rank the relative sensitivity of 
cell cultures to the drugs. The concordance of the ranking 
between the predicted and observed drug sensitivity was evalu-
ated by the SCC. While this approach distinguishes the 
responders and nonresponders in a dataset, there is certainly a 
need to unify the measurement of drug response AUC across 
datasets to facilitate the generalizability of drug response 
studies.

Conclusions
We developed and implemented a 2-step TL framework and 
tested its utility in a challenging case of TMZ response predic-
tion on GBM patient-derived cell cultures. We demonstrated 
that our 2-step TL framework improved the robustness and 
stability of DL models on a small dataset compared with with-
out and 1-step transferring. Besides the clinical biomarker 
MGMT methylation status, our model is also superior to 3 
other state-of-the-art machine learning methods. The utiliza-
tion of 2-step TL demonstrates the benefits of pretraining the 
DL model on a broad dataset with a balanced distribution of 
prediction classes and the necessity of refining the DL model 
in the target domain. The 2-step framework could be used in 
the prediction of other drugs for the treatment of cancers, 
where a limited number of patient samples is available. Further, 
this study highlighted the importance of identifying the opti-
mal source drug dataset for the transferring and helped to 
explore the possibility of drug repurposing: While the current 
first-line treatment for patients with GBM is the chemother-
apy drug TMZ, OXA could be investigated in future research 
as an alternative treatment for TMZ-resistant patients, given 
that the antitumor effects of OXA as a treatment for GBM 
have been indicated in a previous study.56 Our findings mani-
fest the potential of TL utilization in new therapy develop-
ment, and we believe that our exploration and recommendations 
on TL construction will advance this development.
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