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Abstract
We study the problem of determining the minimum number f (n, k, d) of affine subspaces of codimension
d that are required to cover all points of Fn

2 \ {�0} at least k times while covering the origin at most k− 1
times. The case k= 1 is a classic result of Jamison, which was independently obtained by Brouwer and
Schrijver for d = 1. The value of f (n, 1, 1) also follows from a well-known theorem of Alon and Füredi
about coverings of finite grids in affine spaces over arbitrary fields. Here we determine the value of this
function exactly in various ranges of the parameters. In particular, we prove that for k≥ 2n−d−1 we have
f (n, k, d)= 2dk− ⌊

k
2n−d

⌋
, while for n> 22dk−k−d+1 we have f (n, k, d)= n+ 2dk− d − 2, and obtain asymp-

totic results between these two ranges. While previous work in this direction has primarily employed the
polynomial method, we prove our results through more direct combinatorial and probabilistic arguments,
and also exploit a connection to coding theory.

Keywords: Boolean hypercube; subspace coverings; blocking sets; Alon–Füredi theorem
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1. Introduction
How many affine hyperplanes does it take to cover the vertices of the n-dimensional Boolean
hypercube, {0, 1}n? This simple question has an equally straightforward answer—one can cover
all the vertices with a parallel pair of hyperplanes, while it is easy to see that a single plane can
cover at most half the vertices, and so two planes are indeed necessary. However, the waters are
quickly muddied with a minor twist to the problem.

Indeed, if one is instead asked to cover all the vertices except the origin, the parallel hyperplane
construction is no longer valid. Given a moment’s thought, one might come up with the much
larger family of n hyperplanes given by {�x : xi = 1} for i ∈ [n]. This fulfils the task and, surprisingly,
turns out to be optimal [1], although this is far from obvious. This problem has led to rich veins
of research in both finite geometry and extremal combinatorics, and in what follows we survey its
history before introducing our new results.
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1.1. An origin story
When we work over the finite field F2, this problem is equivalent to the well-known blocking set
problem from finite geometry, and it was in this guise that it was first studied. A blocking set in
F
n
2 is a set of points that meets every hyperplane, and the objective is to find a blocking set of

minimum size. By translating, we may assume that our blocking set contains the origin �0, and
so the problem reduces to finding a collection of points that meets all hyperplanes avoiding the
origin. Applying duality, we return to our original problem of covering the nonzero points of Fn

2
with affine hyperplanes.

There is no reason to restrict our attention to the binary field F2, and we can generalise the
problem to ask how many hyperplanes are needed to cover the nonzero points of Fn

q . Going even
further, one may replace the hyperplanes with affine subspaces of codimension d. In this general-
ity, the problem was answered in the late 1970s by Jamison [16], who proved that the minimum
number of affine subspaces of codimension d that cover all nonzero points in F

n
q while avoid-

ing the origin is qd − 1+ (n− d)(q− 1). In particular, when q= 2 and d = 1, this lower bound is
equal to n, showing that the earlier construction with n planes is optimal. A simpler proof of the
case d = 1 was independently provided by Brouwer and Schrijver [7].

While the finite geometry motivation naturally leads one to work over finite fields, one can also
study the problem over infinite fields F. Of course, one would need infinitely many hyperplanes
to cover all nonzero points of Fn, which is why we instead ask how many hyperplanes are needed
to cover the nonzero points of the hypercube {0, 1}n ⊆ F

n. This problem was raised in the early
1990s by Komjáth [18], who, in order to prove some results in infinite Ramsey theory, showed
that this quantity must grow with n. Shortly afterwards, a celebrated result of Alon and Füredi
[1] established a tight bound in the more general setting of covering all but one point of a finite
grid. They showed that, for any collection of finite subsets S1, S2, . . . , Sn of some arbitrary field F,
the minimum number of hyperplanes needed to cover all but one point of S1 × S2 × . . . × Sn is∑

i (|Si| − 1). If we take Si = {0, 1} for all i, this once again shows that one needs n hyperplanes to
cover the nonzero points of the hypercube.

1.2. The polynomial method
Despite these motivating applications to finite geometry and Ramsey theory, the primary reason
this problem has attracted so much attention lies in the proof methods used. These hyperplane
covers have driven the development of the polynomial method—indeed, in light of his early
results, this is sometimes referred to as the Jamison method in finite geometry [9].

To see how polynomials come into play, suppose we have a set of hyperplanes {Hi : i ∈ [m]}
in F

n, with the plane Hi defined by Hi = {�x : �x · �ai = ci} for some normal vector �ai ∈ F
n and some

constant ci ∈ F. We can then define the degree-m polynomial f (�x)=∏
i∈m (�x · �ai − ci), observing

that f (�x)= 0 if and only if �x is covered by one of the hyperplanes Hi. Thus, lower bounds on the
degrees of polynomials that vanish except at the origin translate to lower bounds on the number
of hyperplanes needed to cover all nonzero points.

This approach has proven very robust, and lends itself to a number of generalisations. For
instance, Kós, Mészáros and Rónyai [20] and Bishnoi, Clark, Potukuchi and Schmitt [5] con-
sidered variations over rings, while Blokhuis, Brouwer and Szőnyi [6] studied the problem for
quadratic surfaces and Hermitian varieties in projective and affine spaces over Fq.

1.3. Covering with multiplicity
In this paper, we shall remain in the original setting, but instead extend the problem to higher
multiplicities. That is, we shall seek the minimum number of hyperplanes in F

n needed to cover
the nonzero points at least k times, while covering the origin fewer times. Previous work in this
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direction has imposed the stricter condition of avoiding the origin altogether; Bruen [8] consid-
ered this problem over finite fields, while Ball and Serra [4] and Kós and Rónyai [19] worked with
finite grids over arbitrary fields, with some further generalisations recently provided by Geil and
Matrínez-Penas [12]. In all of these papers, the polynomial method described above was strength-
ened to obtain lower bounds for this problem with higher multiplicities. However, these lower
bounds are most often not tight; Zanella [26] discusses when Bruen’s bound is sharp, with some
improvements provided by Ball [2].

Significant progress in this line of research was made recently when Clifton and Huang [10]
studied the special case of covering all nonzero points of {0, 1}n ⊆R

n at least k times, while leaving
the origin uncovered. Observe that one can remove k− 1 hyperplanes arbitrarily from such a
cover, and the remainder will still cover each nonzero point at least once. Thus, by the Alon–
Füredi theorem, we must be left with at least n planes, giving a lower bound of n+ k− 1. While
it is not hard to see that this is tight for k= 2, Clifton and Huang used Ball and Serra’s Punctured
Combinatorial Nullstellensatz [4] to improve the lower bound for larger k. They showed that for
k= 3 and n≥ 2, the correct answer is n+ 3, while for k≥ 4 and n≥ 3, the answer lies between
n+ k+ 1 and n+ (k

2
)
; additionally, they conjectured the upper bound to be correct when n is

large with respect to k. However, they showed that this was far from the case when n is fixed and
k is large; in this range, the answer is (cn + o(1))k, where cn is the nth term in the harmonic series.

A major breakthrough was then made by Sauermann and Wigderson [24], who skipped the
geometric motivation and resolved the polynomial problem directly. More precisely, they proved
the following theorem.

Theorem 1.1. Let k≥ 2 and n≥ 2k− 3, and let P ∈R[x1, . . . , xn] be a polynomial having zeroes
of multiplicity at least k at all points in {0, 1}n \ {�0}, and such that P does not have a zero of mul-
tiplicity at least k− 1 at �0. Then P must have degree at least n+ 2k− 3. Furthermore, for every
� ∈ {0, 1, . . . , k− 2}, there exists a polynomial P with degree exactly n+ 2k− 3 having zeroes of
multiplicity at least k at all points in {0, 1}n \ {�0}, and such that P has a zero of multiplicity exactly
� at �0.

As an immediate corollary, this improves the lower bound in the Clifton–Huang result from
n+ k+ 1 to n+ 2k− 3. However, Theorem 1.1 establishes that n+ 2k− 3 is also an upper bound
for the polynomial problem, whereas Clifton and Huang conjecture that the answer for their
problem should be n+ (k

2
)
. An affirmative answer to this conjecture would thus demonstrate

separation between the algebraic polynomial problem and the geometric covering problem.
Even though Theorem 1.1 is stated for polynomials defined overR, Sauermann andWigderson

note that the proof works over any field of characteristic zero. However, the result need not hold
over finite fields. In particular, they show the existence of a polynomial P4 over F2 of degree n+ 4
with zeroes of multiplicity four at all nonzero points in F

n
2 and with P4(�0) �= 0. More generally, for

every k≥ 4, Pk(�x)= xk−4
1 (x1 − 1)k−4P4(�x) is a binary polynomial of degree only n+ 2k− 4 with

zeroes of multiplicity k at all nonzero points and of multiplicity k− 4 at the origin. The correct
behaviour of the problem over finite fields is left as an open problem.

Note also that Theorem 1.1 allows the origin to be covered up to k− 2 times. Sauermann and
Wigderson also considered the case where the origin must be covered with multiplicity exactly
k− 1, showing that the minimum degree then increases to n+ 2k− 2. In contrast to Theorem 1.1,
the proof of this result is valid over all fields.

1.4. Our results
In this paper, we study the problem of covering with multiplicity in F

n
2 . We are motivated not

only by the body of research described above, but also by the fact that, as we shall show in
Proposition 3.3, when one forbids the origin from being covered, this problem is equivalent to
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finding linear binary codes of large minimum distance. As this classic problem from coding the-
ory has a long and storied history of its own, and is likely to be very difficult, we shall instead work
in the setting where we require all nonzero points in F

n
2 to be covered at least k times while the

origin can be covered at most k− 1 times.
In light of the previous results, we shall abstain from employing the polynomial method, and

instead attack the problem more directly with combinatorial techniques. As an added bonus, our
arguments readily generalise to covering points with codimension-d affine subspaces, rather than
just hyperplanes, thereby extending Jamison’s original results in the case q= 2. To be able to dis-
cuss our results more concisely, we first introduce some notation that we will use throughout the
paper.

Given integers k≥ 1 and n≥ d ≥ 1, we say a multiset H of (n− d)-dimensional affine sub-
spaces in F

n
2 is a (k, d)-cover if every nonzero point of Fn

2 is covered at least k times, while �0 is
covered at most k− 1 times. We then define the corresponding extremal function f (n, k, d) to be
the minimum possible size of a (k, d)-cover in F

n
2.

For instance, when we take k= 1, we obtain the original covering problem, and from the work
of Jamison [16] we know f (n, 1, d)= n+ 2d − d − 1. At another extreme, if we take d = n, then
our affine subspaces are simply individual points, each of which must be covered k times, and
hence f (n, k, n)= k(2n − 1). We study this function for intermediate values of the parameters,
determining it precisely when either k is large with respect to n and d, or n is large with respect to
k and d, and deriving asymptotic results otherwise.

Theorem 1.2. Let k≥ 1 and n≥ d ≥ 1. Then:

(a) If k≥ 2n−d−1, then f (n, k, d)= 2dk−
⌊

k
2n−d

⌋
.

(b) If k≥ 2 and n> 22dk−d−k+1, then f (n, k, d)= n+ 2dk− d − 2.
(c) If k≥ 2 and n≥ �log2 k	 + d + 1, then n+ 2dk− d − log2(2k)≤ f (n, k, d)≤

n+ 2dk− d − 2.

There are a few remarks worth making at this stage. First, observe that, just as in the Clifton–
Huang setting, the extremal function f (n, k, d) exhibits different behaviour when n is fixed and
k is large as compared to when k is fixed and n is large. Second, and perhaps most significantly,
Theorem 1.2 demonstrates the gap between the hyperplane covering problem and the polynomial
degree problem: our result shows that, for any k≥ 4 and sufficiently large n, we have f (n, k, 1)=
n+ 2k− 3, whereas the answer to the corresponding polynomial problem is at most n+ 2k− 4,
as explained after Theorem 1.1. Our ideas allow us to establish an even stronger separation in the
case k= 4—while the polynomial P4 constructed by Sauermann andWigderson, which has zeroes
of multiplicity at least four at all nonzero points of Fn

2 while not vanishing at the origin, has degree
only n+ 4, we shall show in Corollary 3.5 that any hyperplane system with the corresponding
covering properties must have size at least n+ log2

( 2
3n
)
. Third, we see that in the intermediate

range, when both n and k growmoderately, the bounds in (c) determine f (n, k, d) up to an additive
error of log2(2k), which is a lower-order term. Thus, f (n, k, d) grows asymptotically like n+ 2dk.
Last of all, if one substitutes k= 2n−d−1 − 1, the lower bound from (c) is larger than the value in
(a). This shows that k≥ 2n−d−1 is indeed the correct range for which the result in (a) is valid. In
contrast, we believe the bound on n in (b) is far from optimal, and discuss this in greater depth in
the concluding remarks.

The remainder of this paper is devoted to the proof of Theorem 1.2, and is organised as follows.
In Section 2 we prove part (a), determining the extremal function for largemultiplicities.We prove
part (b) in Section 3, handling the case when the dimension of the ambient space grows quickly.
A key step in the proof is showing the intuitive, yet surprisingly not immediate, fact that f (n, k, d)
is strictly increasing in n, as a result of which we shall also be able to deduce the bounds in (c). We
end by presenting some concluding remarks and open problems in Section 4.
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2. Covering with large multiplicity
In this section we prove Theorem 1.2(a), handling the case of large multiplicities. We begin by
introducing some definitions and notation that we will use in the proof. To start with, it will be
convenient to have some notation for affine hyperplanes. Given a nonzero vector �u ∈ F

n
2, let H�u

denote the hyperplane {�x : �x · �u= 1}.
Next, it will sometimes be helpful to specify howmany times the origin is covered. Hence, given

integers n≥ d ≥ 1 and k> s≥ 0, we call a (k, d)-cover in F
n
2 a (k, d; s)-cover if it covers the origin

exactly s times. Let us write g(n, k, d; s) for the minimum possible size of a (k, d; s)-cover in F
n
2 and

call a cover optimal if it has this minimum size. Clearly, we have f (n, k, d)=min0≤s<k g(n, k, d; s),
so any knowledge about this more refined function directly translates to ourmain focus of interest.

2.1. The lower bound
To start with, we prove a general lower bound, valid for all choices of parameters, that follows
from a simple double-counting argument. This establishes the lower bound of Theorem 1.2(a).

Lemma 2.1. Let n, k, d, s be integers such that n≥ d ≥ 1 and k> s≥ 0. Then

g(n, k, d; s)≥ 2dk−
⌊
k− s
2n−d

⌋
.

In particular, f (n, k, d)≥ 2dk−
⌊

k
2n−d

⌋
.

Proof. Let H be an optimal (k, d; s)-cover of Fn
2, so that we have g(n, k, d; s)= |H|. We double-

count the pairs (�x, S) with �x ∈ F
n
2, S ∈H, and �x ∈ S. On the one hand, every affine subspace S ∈H

contains 2n−d points, and so there are 2n−d|H| such pairs. On the other hand, since every nonzero
point is covered at least k times and the origin is covered s times, there are at least (2n − 1)k+ s
such pairs. Thus (2n − 1)k+ s≤ 2n−d|H|, and the claimed lower bound follows from solving for
|H| and observing that g(n, k, d; s) is an integer. The bound on f (n, k, d) is obtained by noticing
that our lower bound on g(n, k, d; s) is increasing in s, and is therefore minimised when s= 0. �

2.2. The upper bound construction
To prove the upper bound of Theorem 1.2(a), wemust construct small (k, d)-covers. As a first step,
we introduce a recursive method for (k, d; s)-covers that allows us to reduce to the d = 1 case.

Lemma 2.2. For integers n≥ d ≥ 2 and k> s≥ 0 we have

g(n, k, d; s)≤ g(n− d + 1, k, 1; s)+ 2k(2d−1 − 1),
and, therefore,

f (n, k, d)≤ f (n− d + 1, k, 1)+ 2k(2d−1 − 1).

Proof. We first deduce the recursive bound on g(n, k, d; s). Let S0 ⊆ F
n
2 be an arbitrary

(n− d + 1)-dimensional (vector) subspace, and let S1, . . . , S2d−1−1 be its affine translates, that,
together with S0, partition F

n
2 . For every 1≤ i≤ 2d−1 − 1, partition Si ∼= F

n−d+1
2 further into two

subspaces, thereby obtaining a total of 2(2d−1 − 1) affine subspaces of dimension n− d. We start
by taking k copies of each of these affine subspaces. This gives us a multiset of 2k(2d−1 − 1) sub-
spaces, which cover every point outside S0 exactly k times and leave the points in S0 completely
uncovered.

It thus remains to cover the points within S0 appropriately. Since (n− d)-dimensional sub-
spaces have relative codimension 1 in S0, this reduces to finding a (k, 1; s)-cover within S0 ∼=
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F
n−d+1
2 . By definition, we can find such a cover consisting of g(n− d + 1, k, 1; s) subspaces.

Adding these to our previous multiset gives a (k, d; s)-cover of Fn
2 of size g(n− d + 1, k, 1; s)+

2k(2d−1 − 1), as required.
To finish, since f (n, k, d)=mins g(n, k, d; s), and the recursive bound holds for each

s, it naturally carries over to the function f (n, k, d), giving f (n, k, d)≤ f (n− d + 1, k, 1)+
2k(2d−1 − 1). �

Armed with this preparation, we can now resolve the problem for large multiplicities.

Proof of Theorem 1.2(a). The requisite lower bound, of course, is given by Lemma 2.1.
For the upper bound, we start by reducing to the case d = 1. Indeed, suppose we already know

the bound for d = 1; that is, f (n, k, 1)≤ 2k−
⌊

k
2n−1

⌋
for all k≥ 2n−2. Now, given some n≥ d ≥ 2

and k≥ 2n−d−1, by Lemma 2.2 we have

f (n, k, d)≤ f (n− d + 1, k, 1)+ 2k(2d−1 − 1)≤ 2k−
⌊

k
2n−d+1−1

⌋
+ 2k(2d−1 − 1)= 2dk−

⌊
k

2n−d

⌋
,

as required.
Hence, it suffices to prove the bound in the hyperplane case. We begin with the lowest mul-

tiplicity covered by part (a), namely k= 2n−2. Consider the family H0 = {H�u : �u ∈ F
n
2 , un = 1},

where we recall thatH�u = {�x : �x · �u= 1}. Note that we then have |H0| = 2n−1 = 2k= 2k−
⌊

k
2n−1

⌋
,

and none of these hyperplanes covers the origin. Given nonzero vectors �x= (�x′, x) and �u= (�u′, 1)
with �x′, �u′ ∈ F

n−1
2 and x ∈ F2, we have �x · �u= 1 if and only if �x′ · �u′ = 1− x. If �x′ �= �0, precisely half

of the choices for �u′ satisfy this equation; if �x′ = �0 (and thus necessarily x= 1), the equation is
satisfied by all choices of �u′. Thus each nonzero point is covered at least 2n−2 times, and henceH0
is a (2n−2, 1)-cover of the desired size.

To extend the above construction to the range 2n−2 ≤ k< 2n−1, one can simply add an
arbitrary choice of k− 2n−2 pairs of parallel hyperplanes. The resulting family will have
2n−1 + 2

(
k− 2n−2)= 2k= 2k−

⌊
k

2n−1

⌋
elements, every nonzero point is covered at least k times,

and the origin is covered k− 2n−2 < k times.
Finally, suppose k≥ 2n−1. Then we can write k= a2n−1 + b for some a≥ 1 and 0≤ b< 2n−1.

We take H1 = {H�u : �u ∈ F
n
2 \ {�0}} to be the set of all affine hyperplanes avoiding the origin, of

which there are 2n − 1. Moreover, for each nonzero �x, there are exactly 2n−1 vectors �u with �x · �u=
1, and so each such point is covered 2n−1 times by the hyperplanes inH1.

Now letH be the multiset of hyperplanes obtained by taking a copies ofH1 and appending an
arbitrary choice of b pairs of parallel planes. Each nonzero point is then covered a2n−1 + b= k
times, while the origin is only covered b< 2n−1 ≤ k times, and soH is a (k, 1)-cover. Thus,

f (n, k, 1)≤ |H| = a(2n − 1)+ 2b= 2(a2n−1 + b)− a= 2k−
⌊

k
2n−1

⌋
,

proving the upper bound. �

3. Covering high-dimensional spaces
In this section we turn our attention to the case when n is large with respect to k, with the aim of
proving part (b) of Theorem 1.2. Furthermore, the results we prove along the way will allow us to
establish the bounds in part (c) as well.
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3.1. The upper bound construction
In this range, in contrast to the large multiplicity setting, it is the upper bound that is straight-
forward. This bound follows from the following construction, which is valid for the full range of
parameters.

Lemma 3.1. Let n, k, d be positive integers such that n≥ d ≥ 1 and k≥ 2. Then

f (n, k, d)≤ n+ 2dk− d − 2.

Proof. We start by resolving the case d = 1 and k= 2, for which we consider the family of hyper-
planes H= {H�ei : i ∈ [n]} ∪ {H�1}, where �ei is the ith standard basis vector and �1 is the all-one
vector. To see that this is a (2, 1)-cover of Fn

2, note first that the planes all avoid the origin. Next, if
we have a nonzero vector �x, it is covered by the hyperplanes {H�ei : i ∈ [n]} as many times as it has
nonzero entries. Thus, all vectors of Hamming weight at least two are covered twice or more. The
only remaining vectors are those of weight one, which are covered once by {H�ei : i ∈ [n]}, but these
are all covered for the second time by H�1. HenceH is indeed a (2, 1)-cover, and is of the required
size, namely n+ 1.

Now we can extend this construction to the case d = 1 and k≥ 3 by simply adding k− 2 arbi-
trary pairs of parallel hyperplanes. The resulting family will be a (k, 1; k− 2)-cover (and hence, in
particular, a (k, 1)-cover) of size n+ 2k− 3, matching the claimed upper bound.

That leaves us with the case d ≥ 2, which we can once again handle by appealing to Lemma 2.2.
In conjunction with the above construction, we have

f (n, k, d)≤ f (n− d + 1, k, 1)+ 2k(2d−1 − 1)≤ n− d + 1+ 2k− 3+ 2k(2d−1 − 1),

which simplifies to the required n+ 2dk− d − 2. �

3.2. Recursion, again
The upper bound in Lemma 3.1 is strictly increasing in n. Our next step is to show that this
behaviour is necessary—that is, the higher the dimension, the harder the space is to cover.
Although intuitive, this fact turned out to be less elementary than expected, and our proof makes
use of the probabilistic method.

Lemma 3.2. Let n, k, d, s be integers such that n≥ 2, n≥ d ≥ 1, and k> s≥ 0. Then
g(n, k, d; s)≥ g(n− 1, k, d; s)+ 1.

Proof. Let H be an optimal (k, d; s)-cover of Fn
2 . To prove the lower bound on its size, we shall

construct from it a (k, d; s)-coverH′ of Fn−1
2 , which must comprise of at least g(n− 1, k, d; s) sub-

spaces. To obtain this cover of a lower-dimensional space, we restrict H to a random hyperplane
H ⊆ F

n
2 that passes through the origin. Since H is a (k, d; s)-cover of all of Fn

2 , it certainly covers
H ∼= F

n−1
2 as well.

However, we require H′ to be a (k, d; s)-cover of H, which must be built of affine subspaces
of codimension d relative to H—that is, subspaces of dimension one less than those in H.
Fortunately, when intersecting the subspaces S ∈H with a hyperplane, we can expect their dimen-
sion to decrease by one. The exceptional cases are when S is disjoint fromH, or when S is contained
in H. In the former case, S does not cover any points of H, and can therefore be discarded from
H′. In the latter case, we can partition S into two subspaces S= S1 ∪ S2, where each Si is of codi-
mension d relative to H, and replace S with S1 and S2 in H′. By making these changes, we obtain
a family H′ of codimension-d subspaces of H. Moreover, these subspaces cover the points of H
exactly as often as those ofH do, and thusH′ is a (k, d; s)-cover of H.

When building this cover, though, we need to control its size. Let X denote the set of subspaces
S ∈H that are disjoint from H, and let Y denote the set of subspaces S ∈H that are contained
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in H. We then have |H′| = |H| − |X| + |Y|. The objective, then, is to show that there is a choice of
hyperplane H for which |X| > |Y|, in which case the coverH′ we build is relatively small.

Recall that H was a random hyperplane in F
n
2 passing through the origin, which is to say it has

a normal vector �u chosen uniformly at random from F
n
2 \ {�0}. To compute the expected sizes of X

and Y , we consider the probability that a subspace S ∈H is either disjoint from or contained inH.
Let S ∈H be arbitrary and suppose first that �0 ∈ S. We immediately have P(S ∈ X)= 0, as in

this case �0 ∈ S∩H, so S andH cannot be disjoint. On the other hand, P(S ∈ Y)= 2d−1
2n−1 , as we have

S⊆H exactly when the normal vector �u is a nonzero element of the d-dimensional orthogonal
complement, S⊥, of S in F

n
2.

In the other case, when �0 /∈ S, we can write S in the form T + �v, where �0 ∈ T ⊆ F
n
2 is an

(n− d)-dimensional vector subspace and �v ∈ F
n
2 \ T. Then S is disjoint from H if and only if �u ∈

T⊥ and �u · �v= 1. Since �v /∈ T, these are independent conditions, and so we have P(S ∈ X)= 2d−1

2n−1 .
Similarly, in order to have S⊆H, �umust be a nonzero vector satisfying �u ∈ T⊥ and �u · �v= 0, and
so P(S ∈ Y)= 2d−1−1

2n−1 .
Now, using linearity of expectation, we have

E [|X| − |Y|]=
∑
S∈H

(P(S ∈ X)− P(S ∈ Y))

=
∑

S∈H:�0/∈S

(
2d−1

2n − 1
− 2d−1 − 1

2n − 1

)
+

∑
S∈H:�0∈S

(
0− 2d − 1

2n − 1

)

=
|{S ∈H : �0 /∈ S}| −

(
2d − 1

)
|{S ∈H : �0 ∈ S}|

2n − 1
= |H| − 2ds

2n − 1
,

where we used the fact thatH is a (k, d; s)-cover, and thus |{S ∈H : �0 ∈ S}| = s. We now apply the
lower bound on |H| given by Lemma 2.1 to obtain

E [|X| − |Y|]≥
2dk−

⌊
k−s
2n−d

⌋
− 2ds

2n − 1
=

2d(k− s)−
⌊

k−s
2n−d

⌋
2n − 1

> 0.

Therefore, there must be a hyperplane H for which |X| − |Y| ≥ 1. The corresponding cover of
H thus has size at most |H| − 1 but, as a (k, d; s)-cover of an (n− 1)-dimensional space, has size
at least g(n− 1, k, d; s). This gives |H| − 1≥ |H′| ≥ g(n− 1, k, d; s), whence the required bound,
g(n, k, d; s)= |H| ≥ g(n− 1, k, d; s)+ 1. �

While this inequality will be used in our proof of part (b) of Theorem 1.2, it also gives us what
we need to prove the bounds in part (c).

Proof of Theorem 1.2(c). Lemma 3.1 gives us the upper bound, f (n, k, d)≤ n+ 2dk− d − 2,
which is in fact valid for all k≥ 2 and n≥ d ≥ 1.

When n≥ �log2 k	 + d + 1, we can prove the lower bound, f (n, k, d)≥ n+ 2dk− d − log2(2k),
by induction on n. For the base case, when n= �log2 k	 + d + 1, we appeal to Lemma 2.1, which
gives

f (n, k, d)≥ 2dk−
⌊

k
2n−d

⌋
= 2dk= n+ 2dk− d − �log2 k	 − 1≥ n+ 2dk− d − log2(2k).

For the induction step we appeal to Lemma 3.2. First note that the lemma gives f (n, k, d)=
mins g(n, k, d; s)≥mins(g(n− 1, k, d; s)+ 1)= f (n− 1, k, d)+ 1. Thus, using the induction
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hypothesis, for all n> �log2 k	 + d + 1 we have

f (n, k, d)≥ f (n− 1, k, d)+ 1≥ n− 1+ 2dk− d − log2(2k)+ 1= n+ 2dk− d − log2(2k),

completing the proof. �
At this stage, all that remains to be proven from Theorem 1.2 is the lower bound of part (b), a

task we undertake in the following subsections.

3.3. A coding theory connection
In Lemma 3.2, we proved a recursive bound on g(n, k, d; s) that is valid for all values of s, the
number of times the origin is covered. In this subsection, we establish the promised connection to
coding theory, which is the key to our proof. Indeed, as observed in Corollary 3.7 below, it allows
us to restrict our attention to only two feasible values of s.

We begin with (k, 1; 0)-covers of Fn
2, showing that, in this binary setting, hyperplane covers that

avoid the origin are in direct correspondence with linear codes of large minimum distance. In the
setting of multiple blocking sets, this connection to coding theory was observed by Landjev and
Rousseva [21], who used it to show that Bruen’s bound is far from being tight over F2. We use a
similar idea to obtain concrete bounds for g(n, k, 1; 0).

Proposition 3.3. A (k, 1; 0)-cover of Fn
2 of cardinality m is equivalent to an n-dimensional linear

binary code of length m and minimum distance at least k.

Remark 3.4. In order to maintain consistency with earlier papers on hyperplane coverings, we
deviate slightly from the standard coding theoretic notation, where n usually stands for the length
of the code, k for its dimension, and d for its minimum distance. In other words, our codes are
[m, n, k]-codes as opposed to the more standard [n, k, d]-codes.

Proof. Let H= {H1,H2, . . . ,Hm} be a (k, 1; 0)-cover of Fn
2 . Since none of the hyperplanes cover

the origin, for each i ∈ [m],Hi has to be described by the equation �ui · �x= 1 for some �ui ∈ F
n
2 \ {�0}.

Let A be them× nmatrix whose rows are �u1, �u2, . . . , �um. We claim that A is the generator matrix
of a linear binary code of dimension n, length m, and minimum distance at least k. Since each
�x ∈ F

n
2 \ {�0} is covered by at least k of the planes, it follows that the vector A�x has weight at least

k, which in turn is equivalent to the vectors in the column space of A having minimum distance
at least k. Indeed, any vector �y in the column space can be expressed in the form A�w for some
�w ∈ F

n
2. Thus, given two distinct vectors �y1, �y2 in the column space, their difference is of the form

A(�w1 − �w2), where �x= �w1 − �w2 is nonzero. Hence this difference has weight at least k; i.e., the
two vectors �y1 and �y2 have distance at least k. The fact that the weight of A�x is at least k≥ 1 for
any �x �= 0 also implies that the kernel of A is trivial; therefore, the dimension of the column space
of A, and hence of the binary code generated by A, is n.

Conversely, given a linear binary code of dimension n, length m, and minimum distance at
least k, let �u1, �u2, . . . , �um be the rows of the generator matrix. By the same reasoning as above, the
hyperplanes Hi, i ∈ [m], defined by the equation �ui · �x= 1, form a (k, 1; 0)-cover of Fn

2 . �
Thus, the problem of finding a small (k, 1; 0)-cover of F

n
2 corresponds to finding an n-

dimensional linear code of minimum distance at least k and small length. This is a central problem
in coding theory [14] and, as such, has been extensively studied (see for example [17, 25] and the
references therein). We can therefore leverage known bounds to bound the function g(n, k, 1; 0).

Corollary 3.5. For all k≥ 2 and n≥ 1,

g(n, k, 1; 0)≥ n+
⌊
k− 1
2

⌋
log2

(
2n

k− 1

)
.
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Proof. LetH be an optimal (k, 1, 0)-cover and let C ⊆ F
m
2 be the equivalent n-dimensional linear

binary code of length m= |H| and minimum distance at least k, as described in Proposition 3.3.
We can now appeal to the Hamming bound: since the code has minimum distance k, the balls
of radius t =

⌊
k−1
2

⌋
around the 2n points of C must be pairwise disjoint. As each ball has size∑t

i=0
(m
i
)
, and the ambient space has size 2m, we get

2n ≤ 2m∑t
i=0

(m
i
) .

We bound the denominator from below by
t∑

i=0

(
m
i

)
≥
(
m
t

)
≥
(m
t

)t ≥ (n
t

)t = 2t log2
(n
t
)
,

where the last inequality is valid providedm≥ n, as it must be. Thus we conclude

g(n, k, 1; 0)= |H| =m≥ n+ t log2
(n
t

)
≥ n+

⌊
k− 1
2

⌋
log2

(
2n

k− 1

)
.

�
Remark 3.6. Although it may seem that some of our bounds might be wasteful, one can deduce
upper bounds from the Gilbert–Varshamov bound, which is obtained by considering a ran-
dom linear code. In particular, if n is large with respect to k, one finds that g(n, k, 1; 0)≤
n+ (k− 1) log2(2n). Narrowing the gap between these upper and lower bounds remains an active
area of research in coding theory.

The above lower bound can be used to show that, if n is large with respect to k and d, then every
optimal (k, d)-cover has to cover the origin many times. This corollary is critical to our proof of
the upper bound.

Corollary 3.7. If n> 22dk−k−d+1, then any optimal (k, d)-cover of Fn
2 covers the origin at least k− 2

times.

Proof. Let S1, . . . , Sm be an optimal (k, d)-cover, and, if necessary, relabel the subspaces so that
S1, . . . , Ss are the affine subspaces covering the origin. Suppose for a contradiction that s≤ k− 3,
and observe that if we delete the first k− 3 subspaces, each nonzero point must still be covered at
least thrice, while the origin is left uncovered. That is, Sk−2, Sk−1, . . . , Sm forms a (3, d; 0)-cover of
F
n
2 .
For each k− 2≤ j≤m, we can then extend Sj to an arbitrary hyperplane Hj that contains Sj

and avoids the origin. Then {Hk−2,Hk−1, . . . ,Hm} is a (3, 1; 0)-cover, and hence m− k+ 3≥
g(n, 3, 1; 0).

By Corollary 3.5, this, together with the assumption n> 22dk−k−d+1, implies

f (n, k, d)=m≥ g(n, 3, 1; 0)+ k− 3≥ n+ log2 n+ k− 3> n+ 2dk− k− d + 1+ k− 3

= n+ 2dk− d − 2,

which contradicts the upper bound from Lemma 3.1. �
Remark 3.8. Observe that Corollary 3.7 in fact gives us some stability for large dimensions. If
n= 22dk−k−d+ω(1), then the above calculation shows that any (k, d)-cover that covers the origin at
most k− 3 times has size at least n+ 2dk+ ω(1). Thus, when n= 22dk−k−d+ω(1), any (k, d)-cover
that is even close to optimal must cover the origin at least k− 2 times.
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3.4. The lower bound
By Corollary 3.7, when trying to bound f (n, k, d)=mins g(n, k, d; s) for large n, we can restrict our
attention to s ∈ {k− 2, k− 1}. First we deal with the latter case.

Lemma 3.9. Let n, k, d be positive integers such that n≥ d ≥ 1. Then

g(n, k, d; k− 1)= n+ 2dk− d − 1.

Proof. To prove the statement, we will show that, for all positive integers n, k, d with n≥ d ≥ 1,
we have g(n+ 1, k, d; k− 1)= g(n, k, d; k− 1)+ 1. Combined with the simple observation that
g(d, k, d; k− 1)= 2dk− 1 for all k≥ 1, since when d = n we are covering with individual points,
this fact will indeed imply the desired result.

By Lemma 3.2 we know that g(n+ 1, k, d; k− 1)≥ g(n, k, d; k− 1)+ 1. For the other inequal-
ity, consider an optimal (k, d; k− 1)-cover H of Fn

2 . For every S ∈H, let S′ = S× {0, 1}, which
is a codimension-d affine subspace of Fn+1

2 , and let S0 be any (n+ 1− d)-dimensional affine
subspace of Fn+1

2 that contains the vector (0, . . . , 0, 1) but avoids the origin. We claim that
H′ = {S′ : S ∈H} ∪ {S0} is a (k, d; k− 1)-cover of Fn+1

2 . Indeed, for all S ∈H, a point of the form
(�x, t) is covered by S′ if and only if �x is covered by S. Hence, the collection {S′ : S ∈H} covers �0
exactly k− 1 times and each point of the form (�x, t) with �x �= �0 at least k times. Finally, the point
(�0, 1) is covered k− 1 times by the {S′ : S ∈H} and once by the subspace S0, so it is also covered
the correct number of times. Hence H′ is indeed a (k, d; k− 1)-cover of size |H| + 1, and so the
second inequality follows. �
Remark 3.10. Recall that the special case of d = 1, g(n, k, 1; k− 1)= n+ 2k− 2, also follows from
[[24], Theorem 1.5].

The proof of Theorem 1.2(b) is now straightforward.

Proof of Theorem 1.2(b). The upper bound is given by Lemma 3.1. For the lower bound, first
observe that for any valid choice of the parameters, we have g(n, k, d; s+ 1)≤ g(n, k, d; s)+ 1, as
adding any subspace containing the origin to a (k, d; s)-cover yields a (k, d; s+ 1)-cover. Then, by
Corollary 3.7 and Lemma 3.9, we obtain

f (n, k, d)=min{g(n, k, d; k− 2), g(n, k, d; k− 1)} ≥ g(n, k, d; k− 1)− 1= n+ 2dk− d − 2,
as desired. �

4. Concluding remarks
In this paper, we investigated the minimum number of affine subspaces of a fixed codimension
needed to cover all nonzero points of Fn

2 at least k times, while only covering the origin at most
k− 1 times. We were able to determine the answer precisely when k is exponentially large with
respect to n, or when n is exponentially large with respect to k, and provided asymptotically sharp
bounds for the range in between these extremes. In this final section, we highlight some open
problems and avenues for further research.

Tightness of the general upper bound. As remarked upon in the introduction, we know that the
bound on k in part (a) of our main result is best possible. However, as we explain below, for part
(b) we believe the upper bound of Lemma 3.1 should be tight for much smaller values of n as well.
For a more detailed discussion, we refer the reader to the arXiv version of this paper.

As we saw in Lemma 2.2, for our upper bounds we can generally reduce to the hyperplane
setting, and so we shall focus on the d = 1 case here. In this hyperplane setting, the upper bound
of Lemma 3.1, valid for all n≥ 1 and k≥ 2, has the simple form n+ 2k− 3. Using the recursive
bound in Lemma 3.2, we observe that if f (n0, k, 1)= n0 + 2k− 3 for some positive integer n0, then
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f (n, k, 1)= n+ 2k− 3 for all n≥ n0. Hence, for every k, there is a well-defined threshold n0(k)
such that f (n, k, 1)= n+ 2k− 3 if and only if n≥ n0(k). Theorem 1.2(b) shows n0(k)≤ 2k + 1,
while part (a) implies that n0(k)> log2 k+ 2.

We can obtain a linear lower bound on n0(k) for k≥ 4 by considering the collection of hyper-
planes in F

k
2 containing H�ei and H�1−�ei for each i ∈ [k], where �ei denotes the ith standard basis

vector and �1 the all-one vector, together with k− 4 copies of the hyperplane �x · �1= 0. This collec-
tion has size 3k− 4 and one can check that it forms a k-cover of Fk

2, implying that n0(k)≥ k+ 1,
and this is the best general construction we have that improves the simple n+ 2k− 3 bound.
Indeed, while the extended binary Golay code, coupled with Proposition 3.3, shows that you can
do better for 8≤ k≤ 11, this is known to be a very efficient, but sporadic, code, and we cannot
generalise the construction to larger k. This leads us to ask the following question.

Question 4.1. Do we have n0(k)= k+ 1 when k≥ 12?

Equivalently, we are asking whether 3k− 2 hyperplanes are needed in a (k, 1)-cover of Fk+1
2 .

We observe that, exploiting the coding connection once again, the Gilbert–Varshamov bound,
discussed in Remark 3.6, shows that a random collection of k+O( log2 k) hyperplanes forms a
(3,1;0)-cover of Fk+1

2 with high probability. Adding k− 3 pairs of parallel planes then yields a
(k, 1)-cover of size 3k+O( log2 k), showing that there are numerous asymptotically optimal cov-
ers. Hence, we cannot hope for any strong stability when n is comparable to k, which could make
the resolution of this question difficult, but as a first step one could attempt to reduce the expo-
nential upper bound on n0(k). Furthermore, while we have focused on the hyperplane case in
Question 4.1, it would also be worth exploring the corresponding threshold n0(k, d) for d ≥ 2, as
it would be very interesting if there were new constructions that appear when covering with affine
subspaces of codimension d.

Larger fields. In this paper we have worked exclusively over the binary field F2, but it is also
natural to explore these subspace covering problems over larger finite fields, Fq for q> 2. Let
us denote the corresponding extremal function by fq(n, k, d), which is the minimum cardinality
of a multiset of (n− d)-dimensional affine subspaces that cover all points of Fn

q \ {�0} at least k
times, and the origin at most k− 1 times. The work of Jamison [16] establishes the initial values of
this function, showing fq(n, 1, d)= (q− 1)(n− d)+ qd − 1.When it comes tomultiplicities k≥ 2,
some of what we have done here can be transferred to larger fields as well.

To start, we can once again resolve the setting where the multiplicity k is large with respect to
the dimension n. Indeed, the double-counting lower bound of Lemma 2.1 generalises immediately
to this setting, giving fq(n, k, d)≥ qdk−

⌊
k

qn−d

⌋
, and one can obtain a matching upper bound by

taking multiple copies of every affine subspace.
In the other extreme, where n is large with respect to k, the problem remains wide open. We

first note that the reduction to hyperplanes from Lemma 2.2 can be extended, giving fq(n, k, d)≤
fq(n− d + 1, k, 1)+ (qd−1 − 1)kq. Thus, as before, it is best to first focus on the case d = 1, where
Jamison’s result gives fq(n, 1, 1)= (q− 1)n.

For an upper bound, let us start by considering 2-covers. It is once again true that if
one takes the standard 1-covering by hyperplanes, consisting of all hyperplanes of the form
{�x : xi = c} for some i ∈ [n] and c ∈ Fq \ {0}, the only nonzero vectors that are only covered
once are those of Hamming weight 1. However, since the nonzero coordinate of these vec-
tors can take any of q− 1 different values, it takes a further q− 1 hyperplanes to cover
these again, and so we have fq(n, 2, 1)≤ (q− 1)(n+ 1). Now, given a (k− 1)-cover of Fn

q , one
can obtain a k-cover by adding an arbitrary partition of Fn

q into q parallel planes, and this
yields fq(n, k)≤ (q− 1)(n+ 1)+ q(k− 2). This construction is the direct analogue of that from
Lemma 3.1, and so, as in Theorem 1.2(b), we expect it to be tight when n is sufficiently large.
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Question 4.2. For n≥ n0(k, q), do we have fq(n, k, 1)= (q− 1)(n+ 1)+ q(k− 2)?

As we already have the construction above, one needs to prove a matching lower bound. It
would of course be very helpful to use some of the machinery we have developed here, and so we
briefly explain where the difficulties therein lie. Key to our binary proof was the equivalence with
codes of a certain minimum weight, but this breaks down over Fq. While we can show that every
(k, 1)-covering of Fn

q gives rise to a linear q-ary n-dimensional code of minimum distance at least
k(q− 1), the converse is not true. As a result, the coding theoretic bounds, which are of the form
n+O(kq logq n), are not strong enough to give us information here.

Another main tool was the recursion over n, showing that f (n, k, 1) is strictly increasing in n.
The same proof goes through here, and we can again show fq(n, k, 1)> fq(n− 1, k, 1). However,
from our bounds, we expect the stronger inequality fq(n, k, 1)≥ fq(n− 1, k, 1)+ q− 1 to hold.
Intuitively, this is because when we restrict a k-cover of Fn

q to F
n
q−1 ⊆ F

n
q , there are q− 1 affine

copies of Fn
q−1 that are lost. However, this does not (appear to) come out of our probabilistic

argument.
A simple general lower bound is obtained by noticing that removing k− 1 hyperplanes

from a (k, 1)-cover leaves us with at least a (1, 1)-cover, and so fq(n, k, 1)≥ fq(n, 1, 1)+ k− 1=
(q− 1)n+ k− 1. This remains the best lower bound we know—in particular, even the case of
fq(n, 2, 1) is unsolved. It would thus be of great interest to develop new tools to handle the q-ary
case, as these may also bear fruit when applied to the open problems in the binary setting, and we
believe that new algebraic ideas may be useful here.

Polynomials with large multiplicity. Finally, speaking of algebraic methods, we return to our
introductory discussion of the polynomial method. Recall that previous lower bounds in this area
have been obtained by considering the more general problem of the minimum degree of a poly-
nomial in F[x1, x2, . . . , xn] that vanishes with multiplicity at least k at all nonzero points in some
finite grid, and with lower multiplicity at the origin. Sauermann and Wigderson’s recent break-
through, Theorem 1.1, resolves this polynomial problem for n≥ 2k− 3 over fields of characteristic
0, while our results here show that, in the binary setting at least, there is separation between the
hyperplane covering and the polynomial problems.

Despite this, we wonder whether the answers to the two problems might coincide in the range
where the multiplicity k is large with respect to the dimension n. That is, can the simple double-
counting hyperplane lower bound be strengthened to the polynomial setting?We would therefore
like to close by emphasising a question of Sauermann and Wigderson [24], this time over F2.

Question 4.3. Given positive integers k, n with k≥ 2n−2, let P ∈ F2[x1, x2, . . . , xn] be a polynomial
that vanishes with multiplicity at least k at every nonzero point, and with multiplicity at most k− 1
at the origin. Must we then have deg(P)≥ 2k−

⌊
k

2n−1

⌋
?
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