
An Empirical Analysis of InCoder on the Statement
Prediction Task

Frank van der Heijden
Supervisors: Maliheh Izadi, Arie van Deursen

EEMCS, Delft University of Technology, The Netherlands

June 19, 2022

A Dissertation Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering

s

1

An Empirical Analysis of InCoder on the Statement
Prediction Task

Frank van der Heijden
Delft Univerisity of Technology

Delft, The Netherlands

Abstract—Automatic code completions are a widely used fea-
ture when programming code efficiently. These completions can
be made by various code language models, and these can be dif-
ferentiated in three categories: single token completion, statement
(line) completion and block completions. These completions, and
in particular statement predictions are usually created using only
the left context, missing key information and context on the other
side. InCoder, a novel state of the art model is capable of using
both contexts. In this study we aim to show the impact of using
both contexts in statement completions. The results show that on
average, an improvement of 9.9% exact match and similar results
for Edit Similarity, BLEU-4, ROUGE-L F1, and METEOR when
using both contexts instead of only the left context.

I. INTRODUCTION

Most code language models that are capable of statement
prediction are unable to work with both the left and right
context of the tokens they are predicting. Therefore, because
they are only working with one context in a document, key in-
formation might be missing while predicting tokens. InCoder
[1] is a generative model which is capable of infilling code
in between the left and right context, combining strengths of
both causal language models and masked language models. In
the InCoder paper it is mentioned that the combined strengths
are an improvement, however, the exact measurements of
how well it performs better are missing. In this study, an
empirical analysis is performed measuring the performance
of the InCoder model on infilling statements in Python and
JavaScript code, using a novel dataset: P1K-22 and JS1K-22,
scraped from the top 1000 most starred Python and JavaScript
projects on GitHub. From this dataset, statements will be
masked and are predicted in two settings: using only the left
context, and using both the left and right contexts. Results
are assessed using the metrics Exact Match, Edit Similarity,
smoothed 4-gram BLEU, ROUGE-L F1, and METEOR. On
average, an improvement of 9.9% on the exact match was seen
when using both contexts instead of only the left context. The
code used in this study is publicly available on GitHub1.

In the following section, a small background is introduced
on code language models and how they operate. The related
works section touches upon related papers in the field of
Transformers, code completion improvements and problems
in the field of code completion. After, the methodology for
creating the dataset and configuring the InCoder-1B model is
described. In the Experiment Design, the research questions

1https://github.com/FrankHeijden/incoder-analysis

are listed and their assessment is explained. After the research
questions, the results are listed, and analysed in the discussion
section. Finally, a conclusion is drawn and a possibility for
future work is suggested.

II. BACKGROUND

Generative language models predict tokens based on a
tokenized input. These tokens are character sequences, which
a model has been trained on, and is considered the vocabulary
of the model. Code (as text) is transformed into this vocabulary
specific to that model, which can be fed into the model. For
causal language models, new tokens are generated repeatedly
until a stopping condition has been met. Masking is where a
single token is masked in a list of tokens, and the model will
predict this single token. InCoder combines masking and the
causal language model by predicting infills, which can consist
of multiple tokens. After predicting, the list of tokens can be
converted back into regular text, containing the input code with
the prediction.

III. RELATED WORKS

In this section we provide an overview of related work
in the field of statement completion. We categorize these
studies in three groups. In the first paragraph, since InCoder is
based on the Transformer model, the main improvement of a
transformer based model approach is described. In the second
paragraph, it is described how code completion models have
been improved in previous works. Finally, problems in the
field of code completion are discussed.

A. Code generation using a Transformer

Code completion is one of the most widely used features in a
modern integrated development environment (IDE), which can
be achieved using a Transformer language model. IntelliCode
Compose [2], a code completion framework, is capable of
generating code sequences such as local variables, methods,
APIs, arguments, and more. In the paper it is mentioned
that previous code completion tools fail to take into account
the surrounding context of the code. This means that the
frameworks fail to create the correct code suggestions the user
actually need, resulting in a low acceptance rate. IntelliCode
Compose introduces a Generative Pretrained Transformer
(GPT), based on the transformer network architecture [3], and
applies a form of source code understanding: natural language
understanding with the help of lexemes, an abstract syntax

https://github.com/FrankHeijden/incoder-analysis

tree (AST), a concrete syntax tree (CST), and a dataflow
graph. The best model yielded an average edit similarity of
86.7%, and a perplexity of 1.82 for the Python programming
language. Codex [4], another language model, based on the
GPT-3 was also able to achieve state-of-the-art performance.
Codex generates python code from a docstring, and is used in
GitHub Copilot. Results show that Codex is able to solve easy
programming interview questions. Trained on 54 million lines
of code, totalling a dataset of 159GB of code, it is able to solve
28.8% of the problems presented. By sampling multiple times
from the same model, the solvability increased to 70.2%.

B. Improving code completions

1) Using dataflow graphs: A dataflow graph represents
a dependency relation between variables. The nodes in this
graph represent a variable, and edges represent where the
value of each variable comes from [5]. In order to generate a
dataflow graph, first an AST is created which can then be
transformed into a data flow graph. GraphCodeBERT is a
pre-trained model that has three main input components: in
addition to the bimodal source code and comment data, it
also has the data flow graph as input. The resulting model
GraphCodeBERT ended up achieving state-of-the-art perfor-
mance in comparison to other models such as CodeBERT [6]
and RoBERTa [7], performing better on the tasks of natural
language code search, code clone detection, code translation,
and code refinement.

2) Using trees: Trees can also be used to represent code
structure. TreeGen [8] solves the long dependency problem
by introducing a novel AST reader (the encoder in the trans-
former model), achieving state-of-the-art performance. The
AST reader combines grammar rules with the AST structure.
The model attempt to predict grammar rules, where programs
are decomposed to their grammar rules, and can be parsed as
an AST.

C. Code completion problems

1) Code completion poisoning: Automatic code completion
models are trained on large code datasets from a large number
of code repositories, but this may lead to problems. Usually,
this data is then split into two categories: unimodel and
bimodal [6], code that only contains the source, and code
that is also paired with a natural language representation,
respectively. However, this code may not contain the best
solution to a problem, or perhaps even an insecure solution
to a problem [9]. Auto completion models could perhaps
suggest outdated code practises, such as recommending an
older SSL/TLS protocol version, like SSLv3. Even without
automatic code completion, developers tend to also pick out-
dated/insecure code practises, based on surface features around
a StackOverFlow question [10].

2) Vocabulary issues: Large vocabularies introduced by
source code affect the performance of Natural Language
Models (NLMs) [11]. In the paper, an open vocabulary NLM
is presented, which is able to scale to such large vocabularies
(but not limited to large corpora), and achieving state-of-
the-art performance, outperforming n-gram LMs. The open

TABLE I
TOP-1000 MOST-STARRED PYTHON AND JAVASCRIPT F ILE STATISTICS

Files N

All 327 972

−Duplicates 286 705

.

vocabulary NLM also has a small hardware footprint, it can
be executed on a consumer-grade GPU and predicting tokens
takes a fraction of a second, fast enough to use in modern
IDEs. Furthermore, the presented NLM also outperforms on
the task of bug detection, where LMs detect defects as
“unnatural” code.

3) Insufficient quality of code completions: While code
completion models may produce very accurate results on
theoretical evaluations, they may perform bad in a real
world scenario. NL2Code [12] is presented, a plugin for the
PyCharm IDE, evaluating the results in such a setting. Results
show that the plugin had little impact on the developer, and
developers would still search for code externally, rather than
accepting the code provided by the IDE plugin. Furthermore,
the study showed that the snippets produced by the plugin
were of insufficient quality, even though the accuracy scores
obtained during automatic evaluations were state-of-the-art.

The efforts of improving code completions using different
techniques are great, and using the right context in addition
to the left context is one of them. This study will examine the
performance gained by using this additional context, using a
novel dataset for Python and JavaScript.

IV. METHODOLOGY

Our approach consists of two steps, data collection and the
empirical assessment of the pretrained InCoder-1B model. For
the former, we have collected and processed 2000 open-source
GitHub repositories. For the latter, we used existing state-of-
the-art metrics to compute accurate and reproducible results.

The P1K-22 and JS1K-22 datasets are created by collecting
the top-1000 GitHub repositories for Python and JavaScript
code, respectively. GitHub provides a Search API2, from which
the most starred repositories can be fetched. This resulted in
a combined dataset of 327 972 individual files. To prevent
oversampling the files were filtered for duplicates, and the
results of the filtering can be found in table I. From these files,
multiple samples can be made where different statements can
be predicted. For each file, 10 samples are made for different
statement completions, on different lines in the code. Each of
these samples will be selected on a random token within the
line, and every token to the left of this selected token is the left
context, and everything starting from the next newline is the
right context. The text in between the end of the left context,
and start of the right context, is the ground truth.

By default, the stopping condition for these models is
based on a maximum number of tokens they are able to

2https://docs.github.com/en/rest/search#search-repositories

2

TABLE II
STOP TOKENS FOR THE STATEMENT PREDICTION TASK

Token ID Text Representation

205 \n

284 \n\n

353 \r\n

536 \n\n\n

994 \r\n\r\n

3 276 \n\n\n\n

4 746 \r\n\r\n\r\n

15 471 \n\n\n\n\n

16 027 \n\n\n\n\n\n\n\n

28 602 \r\n\r\n\r\n\r\n

40 289 \n\n\n\n\n\n

43 275 \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n

50 517 <|endofmask|>

.

predict. InCoder has a token window of 2048 tokens, which
means that the input plus the to be generated tokens need
to fit in this window. On the dataset collected, the average
token length was 10 per line with empty lines excluded. In
order to have some buffer, an input length of 2000 tokens
was chosen, giving InCoder the chance to generate up to 48
tokens for each sample. InCoder has an end-of-mask token,
indicating the end of the model’s statement generation. Since
token prediction is expensive and relatively slow, an early
stopping condition was made to stop as soon as the end-of-
mask token is predicted. In addition, generation is stopped
when a newline has been predicted by the model. The InCoder
token vocabulary contains in total 12 tokens with newlines
(and these happen to also consist of only newlines and carriage
returns, but more within one token), and table II lists the token
ids and their text representation.

To produce the predictions of the InCoder model, the
Delft High Performance Computing Centre (DHPC) [13] was
used. In total, 4 tasks were ran in parallel on the DHPC,
computing the predictions for the P1K-22 dataset, P1K-22
without comments, the JS1K-22 dataset, and JS1K-22 without
comments. For each task, 4 parallel jobs were scheduled, each
using 4 NVIDIA v100 GPUs.

Language Model Metrics

The metrics chosen are state-of-the-art for language models,
and each of them give a score based on a different method.

1) BLEU-4: BLEU [14] compares an n-gram of the predic-
tion against an n-gram of the ground truth. BLEU-4 computes
the weighted uniform sum of the 1, 2, 3 and 4-grams precision.
However, the n-gram precision is modified, and capped to
the maximum number of matches in the ground truth. This
prevents models which are generating a single correct token
over and over from receiving a perfect score. To make BLEU-
4 better on the sentence-level [15], the smoothing function

proposed in (Lin and Och, 2004) was chosen, adding 1 to the
total n-gram count for n ranging from 2 to N.

2) ROUGE-L F1: ROUGE-L [16] applies a longest com-
mon substring (LCS) method. The longer the LCS is between
the prediction and the ground truth, the more similar they are.
Based on the LCS accuracy, a F1-score can be computed.
A benefit over BLEU is that ROUGE-L does not require
any specific n-gram, because the longest common substring
is already the longest n-gram.

3) Exact Match: The exact match is relatively simple, it
returns 1 if the prediction exactly matches with the ground
truth, and 0 if there is no exact match.

4) Edit Similarity (Levenshtein Distance): The Levenshtein
distance [17] is a metric for computing the amount of changes
one has to make to convert one string into another, limited by
three character operations: insertions, deletions and substitu-
tions. When normalised, this Levenshtein distance becomes
the edit similarity.

5) METEOR: METEOR [18] creates alignments between
the prediction and ground truth, where an alignment maps
each unigram to at most 1 unigram in the other. Multiple
alignments can be created, and the one with the least crossing
mappings is chosen. This is done several stages, and after the
final stage a precision and recall can be computed. Using the
precision, recall, and a penalty function, the METEOR score
can be computed.

The metrics were computed on DHPC, using 36 CPU
cores. An overview of the whole workflow can be found in
Figure 1.

V. EXPERIMENT DESIGN

The main research question is “What is the performance of
the state-of-the-art model InCoder of JavaScript and Python
statement completions, when evaluated on only the left context
versus both contexts”. To answer this question, a novel dataset
has been introduced in the last section, allowing a large corpus
of data to be used for inferencing. Since the dataset creates a
test-pair (only the left context and both contexts) for each test
case, the results should be fair to compare against each other.
Python and JavaScript were chosen since these were the main
languages InCoder was trained on.

The main question can be divided in the following research
questions:

RQ1: What is the performance in terms of GPU inference time,
BLEU-4, ROUGE-L, Exact Match, Levenshtein distance and
METEOR for JavaScript and Python statement completions
for statements with both contexts?

InCoder has the ability to use both contexts in the prompt,
and computing the metrics with both left and right contexts
given to the model would be the baseline, and an accurate
real-world scenario, where code exists both to the left of the
prediction and further down a file.

3

Fig. 1. Overview of the workflow of this study.

RQ2: What is the difference in terms of GPU inference time,
BLEU-4, ROUGE-L, Exact Match, Levenshtein distance and
METEOR for JavaScript and Python statement completions
for statements using only the left context?

Both contexts is not required for the infill task, and it is also
possible to generate tokens based on only the left context. To
generate infills using only the left context, the right context
can be set as an empty string. This subquestion analyses the
results in case only the left context is given to the model.

RQ3: What is the difference in terms of GPU inference time,
BLEU-4, ROUGE-L, Exact Match, Levenshtein distance and
METEOR for JavaScript and Python statement completions
for statements on Trigger Points?

Since the dataset is split on a random token within a
line, the last few tokens of the leftcontext could compose
a Trigger Point (TP), a so-called point defined to trigger
autocompletions. These positions are character sequences after
which an IDE would suggest an autocompletion. The TPs
chosen here are composed of some of the keywords and
operators from the Python and JavaScript language. Some
keywords were removed, as predicting after such keyword will
always result to the same output, e.g. for JavaScript in the case
of the “do” keyword, which is always followed by an opening
bracket, “{”.

For the Python language, the following keywords and op-
erators were chosen:

await, assert, raise, del, lambda, yield, return, while,
for, if, elif, else, global, in, and, not, or, is, with,
except, ., +, -, *, /, %, **, <<, >>, &, |, ˆ, ==, !=,
<=, >=, +=, -=, =, <, >, ;, ,, [, (, {, ~

For the JavaScript language the following were chosen:

await, assert, throw, delete, const, var, let, yield,
return, while, for, if, else, new, with, ., +, -, *, /,
%, <<, >>, &, |, ˆ, ==, !=, <=, >=, +=, -=, =, <,
>, ;, ,, [, (, {, ~

RQ4: Case study: how well does InCoder perform with both
contexts when used in an IDE plugin for the Python and
JavaScript language?

This question can be answered by using the data collected
by the Code4Me IDE Plugin3, which collects the prediction
and ground truth in the same fashion as this automatic
evaluation study. With this data, the same metrics can be
computed, and shown how well the InCoder model performed
in a real-world setting, with new unseen data. Code4Me
automatically collects the prediction and ground truth from
the user anonymously, and whether the completion has been
accepted by the user. In order to retrieve the ground truth,
Code4Me tracks the changes the user made over a period of
30s after the prediction has been suggested or accepted.

VI. RESULTS

The dataset statistics can be found in table III, as well as
the same dataset with only the Trigger Points. Interestingly,
the input context length is on average much lower than the
maximum token window of the InCoder model.

The results of running the P1K-22, and JS1K-22 dataset
can be found in table IV, and also the same dataset with only
the Trigger Points filtered out. On average, an improvement of
9.9% on the exact match was seen when using both contexts
instead of only the left context, and similar large improvements
using the other metrics. The most staggering improvement
was seen on the JS1K-22 TP only dataset, an improvement
of 12.47% on exact match. On the same note, Python code
with the comments stripped from the source code seem to
perform slightly better than the raw Python code containing
comments. Removing comments from the code seem to also
have a benefit on the average token prediction time. This can
also be seen in the JS1K-22 TP only dataset, with an average
token length of 321 for the left context, and 527 for both
contexts: 8ms less per token on average.

Finally, table V shows the results of the Code4Me plugin
over a period of 25 days. Most notably, when a user writing
Python code has accepted a suggested statement completion,
the scores are higher than in the automatic evaluation setting
using the P1K-22 dataset.

3https://github.com/code4me-me/code4me

4

TABLE III
STATISTICS ON THE DATASET USED FOR THE INCODER EVALUATION

Dataset N Context ITL T/line C/T

P1K-22 1 040 938 LC 532 8.05 5.05
BC 800 8.04 5.04

- w/o comments 1 017 212 LC 503 7.53 4.93
BC 767 7.53 4.97

P1K-22 (TP only) 63 373 LC 590 7.89 5.13
BC 850 7.90 5.12

- w/o comments 63 394 LC 552 7.32 5.01
BC 806 7.34 5.07

JS1K-22 1 368 282 LC 431 9.28 4.17
BC 620 8.31 4.19

- w/o comments 1 330 895 LC 382 9.00 3.89
BC 552 8.03 3.99

JS1K-22 (TP only) 162 730 LC 347 7.50 4.55
BC 566 7.19 4.42

- w/o comments 165 168 LC 294 7.09 4.20
BC 487 6.87 4.18

Statistics of the novel dataset, showing the total number of test cases
(N), the input token length (ITL), tokens per line (T/line) and characters
per token (C/T) for the left context only (LC) and both contexts (BC).

VII. DISCUSSION

The JS1K-22 dataset contains around 327k more test cases
for the both left context only and both contexts, this can be
explained due to the repository size differences in the scraped
repositories from the top-1000 github repositories. However,
since the size of the dataset is quite large, and the source
code is different for the JavaScript and Python dataset, it
can be neglected. The input is considerably lower than the
maximum token window from InCoder, and combined with
the knowledge that adding the right context to the left context
improves the scores significantly, this could mean that adding
even more context from multiple documents could greatly
improve the score. However, the model needs to be adapted to
be able to work with multiple contexts from across different
documents.

On average, a large improvement was seen by using both
contexts. However, even with both contexts, the actual input
size seems to be around 1265 tokens shorter than the maxi-
mum context window of InCoder. This finding suggests that
modifying the model to allow for more (extra) contexts could
result in even better results for the InCoder model.

Furthermore, the Code4Me IDE plugin shows that whenever
a user accepts a suggested completion, the scores are better
than in the automatic evaluation. When a suggestion has not
been accepted, still relatively good scores are seen. These
scores suggest that InCoder was exactly right 21.94% of the
time for the Python user base and 12.43% for JavaScript.
However, a worthy mention is that the study performed using
the Code4Me IDE plugin was mainly focused on recruiting
a Python user base, and therefore the numbers for JavaScript
are significantly lower.

Threats to validity
Internal threats to validity are factors which unintentionally

affect the results of the study. In this study, the variables
remained constant throughout the process, and the datasets
were treated both in the same way. The InCoder tokenizer
was used for both datasets, and the metrics were configured
and calculated in the same manner.

An external threat present in the project could be that there
might exist an overlap of the code present in the dataset and
the code used for training with the InCoder model. However,
it is unlikely that InCoder has seen the exact same input data,
since the token infills chosen within each file were chosen at
random in the P1K-22 and JS1K-22 datasets.

Threats to construct validity are factors which affect the
validity of the measurements performed. In this work, well
established metrics have been used in this particular field of
research [14], [16]–[18]. These metrics were configured the
same for all computed values throughout this study, and can
be found on the GitHub repository4.

VIII. CONCLUSION AND FUTURE WORK

In conclusion, using both contexts produce significantly bet-
ter results in all cases: on the raw dataset, without comments,
and only on trigger points. Furthermore, stripping comments
from the source code result in better scores for the P1K-
22 dataset. In the Code4Me plugin, when a prediction has
been accepted by the user, the scores are higher than in the
automatic evaluation setting.

For future research, InCoder could be improved by allowing
more contexts to be present in the input context window.
Another improvement can be made by optimising the tokenizer
used for calculating the metrics, which can be improved by
combining knowledge of the source code language used.

IX. RESPONSIBLE RESEARCH

The results in this research should be fairly easy to re-
produce, all code performing the steps in the methodology
and experiment design has been published on GitHub4. The
repositories used in the dataset can be downloaded using the
incoder-analysis-java module. Finalizing the dataset, running
InCoder and computing the metrics can be done using the
incoder-analysis-python module.

Furthermore, the full configuration and exactly which im-
plementation for the metrics was used can also be found in
the public repository.

X. ACKNOWLEDGEMENTS

I would like to thank Maliheh Izadi for supervising the
process of my study and providing helpful feedback through-
out the challenges solved in this project. In addition, I would
like to thank Georgios Gousios for providing feedback and
for providing the Larisa server which were used for testing
and creating the files necessary for the P1K-22 and JS1K-22
dataset. Lastly I want to thank Marc Otten for providing the
key insights of the Code4Me IDE Plugin, and to thank Tim van
Dam, Jorit de Weerdt and Mika Turk for providing feedback
on the project.

4https://github.com/FrankHeijden/incoder-analysis

5

https://github.com/FrankHeijden/incoder-analysis

TABLE IV
METRICS OF THE INCODER MODEL ON THE STATEMENT PREDICTION TASK

Dataset Context IT PL EM Edit Sim BLEU-4 ROUGE-L METEOR

P1K-22 LC 28.92 5.94 41.01 70.82 45.13 56.94 49.47
BC 30.71 6.02 51.23 78.09 54.01 66.12 58.92

- w/o comments LC 28.11 5.83 40.83 71.00 45.31 57.00 49.72
BC 29.84 5.90 52.04 78.99 54.97 67.03 59.99

P1K-22 (TP only) LC 26.93 5.59 42.09 72.06 46.83 63.79 51.68
BC 28.83 5.64 50.89 78.15 54.46 71.13 59.50

- w/o comments LC 26.27 5.56 41.63 72.17 46.78 63.99 51.73
BC 28.30 5.62 51.06 78.69 54.95 71.75 60.13

JS1K-22 LC 28.96 8.65 43.83 70.84 46.39 51.83 51.03
BC 29.82 8.82 52.00 76.48 53.47 59.32 58.60

- w/o comments LC 28.28 8.62 41.15 69.99 44.96 49.37 49.81
BC 28.94 8.77 50.79 76.63 53.34 58.30 58.80

JS1K-22 (TP only) LC 20.29 6.35 39.44 70.43 44.76 59.02 49.75
BC 21.35 6.39 51.91 80.02 56.45 72.13 62.40

- w/o comments LC 19.50 6.43 33.79 66.49 41.25 54.46 46.32
BC 20.39 6.44 48.09 77.87 55.10 69.95 61.35

Results of computing the various metrics after running the InCoder-1B model. The contexts are split up among
the left context only (LC), and both the left and right context (BC). All metrics are an average over multiple
predictions: inference time (IT) as ms·token−1, prediction length (PL) as the amount of tokens generated, exact
match (EM), Edit Similarity, BLEU-4, ROUGE-L and METEOR.

TABLE V
METRICS OF THE CODE4ME IDE PLUGIN USING INCODER

Language N IT PL EM Edit Sim BLEU-4 ROUGE-L METEOR

Python 4166 10.38 5.60 21.94 52.72 26.93 42.85 30.11
- chosen only 663 9.87 4.79 62.14 83.03 59.90 80.14 65.99

JavaScript 724 8.47 6.53 12.43 50.57 24.38 33.21 27.77
- chosen only 95 6.70 4.95 42.11 79.89 54.89 74.78 60.56

Results of the Code4Me IDE Plugin using the InCoder-1B model, with both contexts. These metrics are computed
in the same manner as Table IV

REFERENCES

[1] D. Fried, A. Aghajanyan, J. Lin, S. Wang, E. Wallace, F. Shi, R. Zhong,
W.-t. Yih, L. Zettlemoyer, and M. Lewis, “Incoder: A generative model
for code infilling and synthesis,” 2022.

[2] A. Svyatkovskiy, S. K. Deng, S. Fu, and N. Sundaresan, “Intelli-
code compose: Code generation using transformer,” arXiv preprint
arXiv:2005.08025, 2020.

[3] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems (I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
eds.), vol. 30, Curran Associates, Inc., 2017.

[4] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman, et al., “Evaluating large
language models trained on code,” arXiv preprint arXiv:2107.03374,
2021.

[5] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan,
A. Svyatkovskiy, S. Fu, et al., “Graphcodebert: Pre-training code repre-
sentations with data flow,” 2020.

[6] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang, et al., “Codebert: A pre-trained model for programming
and natural languages,” arXiv preprint arXiv:2002.08155, 2020.

[7] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

[8] Z. Sun, Q. Zhu, Y. Xiong, Y. Sun, L. Mou, and L. Zhang, “Treegen: A
tree-based transformer architecture for code generation,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 8984–
8991, 2020.

[9] R. Schuster, C. Song, E. Tromer, and V. Shmatikov, “You autocom-
plete me: Poisoning vulnerabilities in neural code completion,” in 30th
USENIX Security Symposium (USENIX Security 21), pp. 1559–1575,
2021.

[10] D. Van Der Linden, E. Williams, J. Hallett, and A. Rashid, “The impact
of surface features on choice of (in) secure answers by stackoverflow
readers,” IEEE Transactions on Software Engineering, no. 01, pp. 1–1,
2020.

[11] R.-M. Karampatsis, H. Babii, R. Robbes, C. Sutton, and A. Janes, “Big
code!= big vocabulary: Open-vocabulary models for source code,” in
2020 IEEE/ACM 42nd International Conference on Software Engineer-
ing (ICSE), pp. 1073–1085, IEEE, 2020.

[12] F. F. Xu, B. Vasilescu, and G. Neubig, “In-ide code generation from natu-
ral language: Promise and challenges,” arXiv preprint arXiv:2101.11149,
2021.

[13] Delft High Performance Computing Centre (DHPC), “Delftblue
supercomputer (phase 1).” https://www.tudelft.nl/dhpc/ark:
/44463/DelftBluePhase1, 2022.

[14] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: A method for
automatic evaluation of machine translation,” in Proceedings of the 40th
Annual Meeting on Association for Computational Linguistics, ACL ’02,
(USA), p. 311318, Association for Computational Linguistics, 2002.

[15] B. Chen and C. Cherry, “A systematic comparison of smoothing
techniques for sentence-level BLEU,” in Proceedings of the Ninth
Workshop on Statistical Machine Translation, (Baltimore, Maryland,
USA), pp. 362–367, Association for Computational Linguistics, June
2014.

[16] C.-Y. Lin and F. J. Och, “Automatic evaluation of machine translation
quality using longest common subsequence and skip-bigram statistics,”

6

https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1

in Proceedings of the 42nd Annual Meeting of the Association for
Computational Linguistics (ACL-04), (Barcelona, Spain), pp. 605–612,
July 2004.

[17] P. E. Black, “Algorithms and theory of computation handbook.” https:
//www.nist.gov/dads/HTML/Levenshtein.html, 1999.

[18] S. Banerjee and A. Lavie, “METEOR: An automatic metric for MT
evaluation with improved correlation with human judgments,” in Pro-
ceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation
Measures for Machine Translation and/or Summarization, (Ann Arbor,
Michigan), pp. 65–72, Association for Computational Linguistics, June
2005.

7

https://www.nist.gov/dads/HTML/Levenshtein.html

