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Abstract
In this paper, a variable-fidelity constrained lower confidence bound (VF-CLCB) criterion is presented for computationally 
expensive constrained optimization problems (COPs) with two levels of fidelity. In VF-CLCB, the hierarchical Kriging 
model is adopted to model the objective and inequality constraints. Two infill sampling functions are developed based on the 
objective and the constraints, respectively, and an adaptive selection strategy is set to select the elite sample points. Moreover, 
based on the VF-CLCB criterion, a parallel optimization method noted as PVF-CLCB is subsequently developed to acceler-
ate the optimization process. In PVF-CLCB, a VF influence function is defined to approximately evaluate the estimation 
error of the hierarchical Kriging models, based on which multiple promising points can be determined at each iteration. In 
addition, an allocation strategy is proposed to distribute the computation resources between the objective- and constraint-
oriented functions properly. Lastly, the proposed VF-CLCB and PVF-CLCB approaches are compared with the alternative 
methods on 12 benchmark numerical cases, and their significant superiority in solving computationally expensive COPs is 
verified. Furthermore, the proposed methods are employed to optimize the global stability of the stiffened cylindrical shell, 
and the optimum structure is yielded.

Keywords  Variable-fidelity surrogate model · Computationally expensive constrained optimization · Lower confidence 
bound · Parallel computing

1  Introduction

As simulation techniques are rapidly developed and exten-
sively applied, surrogate models are widely employed to 
design and optimization of the engineering products whose 
simulations are computationally expensive (Forrester and 

Keane 2009). A typical design optimization problem can be 
formulated as follows,

where � = (x1, x2, ..., xd) is the design variable, d is the 
dimensionality of � ; f (�) and gj(�) are the objective and 
the constraint performance of the problem, which are usu-
ally evaluated by analysis models. NC indicates the number of 
constraints; Lbi and Ubi are the lower and upper bounds of the 
design variable. Generally, there are multiple analysis models 
with different accuracy and efficiency that can be employed 
to engineering optimization problems, and these models can 
be differentiated by fidelity (Jin 2011). The high-fidelity 
(HF) analysis model refers to the one that contains physics 
or details that do not exist or are not accounted for in the 
low-fidelity (LF) model (Gano et al. 2005). In this context, 
the HF analysis models usually have acceptable accuracy 
with respect to the real behavior of a system for applications 

(1)

min f (�)

s.t. ∶ gj(�) ≤ 0 , ∀j = 1, 2, ...,NC

Lbi ≤ xi ≤ Ubi , ∀i = 1, 2, ..., d,
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intended, for example, a highly refined grid RANS or DNS 
(Giselle Fernández-Godino et al. 2019). The LF analysis 
models are typically cheap to evaluate but less accurate, and 
examples for LF are dimensionality reduction (Robinson 
et al. 2008), coarser discretization (Biehler et al. 2015), par-
tially converged condition (Jonsson et al. 2015). The fidelity 
level for an analysis model is problem-dependent, and it can 
be decided based on the cost and accuracy against other fidel-
ities available, which depends on the accuracy being sought 
(Giselle Fernández-Godino et al. 2019). The surrogate mod-
els built by data from the LF analysis models are referred to 
LF surrogates. Similarly, the surrogate models constructed 
from HF analysis data are called HF surrogates.

To relieve the above conflict, variable-fidelity (VF) surro-
gate models are developed to hold the promise of achieving 
high accuracy with low computation expense (Park et al. 
2017). VF surrogates utilize plenty of LF data to grasp the 
variation tendency of the responses of the analysis model 
and a handful of HF data to increase the accuracy in finding 
the extrema. Due to the advantage, VF surrogate models 
have gained much attention in computationally expensive 
black-box global optimization (Han et al. 2020; Wang et al. 
2020). In variable-fidelity surrogate model-based opti-
mization (VFSBO), a VF surrogate model is constructed 
first. After that, it is critical to determine a promising point 
through an infill sampling criterion [also known as the 
acquisition function in Bayesian optimization (Shahriari 
et al. 2015)]. Differing from the single-fidelity surrogate 
model, the infill sampling criteria for VF surrogates need to 
not only determine the location of potential sample point but 
consider the computation budget of different fidelity. Lower 
confidence Bound (LCB) criterion (Cox and John 1992; 
Sasena 2002) is a widely used criterion in the single-fidelity 
global optimization for its capability of balancing global 
exploration and local exploitation. To extend its usability, 
variant LCB criteria are developed for VF-based optimiza-
tion (Jiang et al. 2019; Xiong et al. 2008). These criteria are 
mainly aimed at unconstrained optimization, but most of 
engineering design and optimization problems contain vari-
ous constraints. To solve these computationally expensive 
constrained optimization problems (COPs), the probability 
of feasibility (PoF) function is a useful way to transform the 
original problem into unconstrained form (Chaudhuri and 
Haftka 2014; Parr et al. 2012). But the main drawback is that 
it might affect the quality of optimal solution since feasible 
optimum usually appears on the boundary. To fill this gap, a 
novel variable-fidelity constrained lower confidence bound 
(VF-CLCB) criterion is presented in this research to deal 
with computationally expensive COPs involving two levels 
of fidelity.

When optimizing computationally expensive engineer-
ing problems, parallel computing structure is advantageous 
since it can significantly shorten the design cycle (Haftka 

et al. 2016). A parallel surrogate model-based optimization 
(SBO) method needs a parallel infill sampling criterion to 
select several sample points at each iteration and then simul-
taneously simulate them at different computers or proces-
sors. The existing VF infill sampling criteria are unable to 
be directly used in parallel computing, and specific parallel 
VF infill sampling criteria are scarce. To this end, a parallel 
variable-fidelity constrained lower confidence bound (PVF-
CLCB) criterion is proposed to parallelize the developed 
VF-CLCB method.

New contributions of this work are summarized as 
follows.

(1)	 The currently popular VFSBO methods mostly employ 
the PoF function to deal with the constraints in COPs, 
which significantly leave out the improvement of the 
prediction accuracy of the constraints. To address this 
issue, this paper presents a novel VF infill sampling 
criterion to improve the efficiency and effectiveness 
for optimizing computationally expensive COPs with 
two levels of fidelity. The proposed VF-CLCB criterion 
defines a variable-fidelity constrained lower confidence 
bound (CLCB) function. The function plays the role of 
searching for feasible solution when all existed samples 
are infeasible and improving the accuracy of the sur-
rogates of the constraints after finding a feasible point. 
Besides, a variable-fidelity penalized lower confidence 
bound (PLCB) function is derived based on the VF 
surrogate model of the objective to search for optimal 
feasible points. Additionally, to enhance the efficiency 
of the optimization, a selection algorithm is developed 
to adaptively determine the final update point.

(2)	 To fill the gap that the parallel VFSBO method is 
scarce, the proposed VF-CLCB criterion is extended 
to a parallel criterion to accelerate the optimization pro-
cess. Specifically, the proposed PVF-CLCB criterion 
introduces a VF influence function to approximately 
calculate the estimation error of the surrogates. Based 
on the approximate estimation error, multiple update 
points can be further selected through the VF-CLCB 
criterion. Besides, an allocation algorithm is devel-
oped to adaptively allocate the multiple computation 
resources between objective-oriented variable-fidelity 
PLCB function and constraint-oriented variable-fidelity 
CLCB function. Finally, the performance of the VF-
CLCB and PVF-CLCB criteria are verified through 12 
benchmark numerical COPs and an engineering exam-
ple. The effectiveness and efficiency are demonstrated 
through the comparisons between the proposed meth-
ods and currently developed methods.

The remainder of this paper is organized as follows. 
Section 2 reviews some start-of-the-art work for VFSBO. 
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Section 3 elaborates the proposed VF-CLCB method, and 
then it is extended to a parallel algorithm named PVF-CLCB 
in the next section. Section 5 compares the proposed meth-
ods with the popular methods through numerical examples. 
Then in Sect. 6, an engineering case, the optimization of 
stiffened cylindrical shell with variable stiffness, is tested 
to verify the performance of the proposed methods. Finally, 
conclusions and future work are provided in Sect. 7.

2 � Related work

A lot of effort and progress has been made in constructing VF 
surrogate models. Generally, the existing VF surrogate models 
are generally categorized into three types. The first type is scal-
ing function-based VF surrogate models (Haftka 1991; Lewis 
and Nash 2000; Zhou et al. 2016), which uses a scaling function 
to catch the discrepancy between HF and LF models. The sec-
ond one is space-mapping VF surrogate models (Koziel et al. 
2006), in which a transformation operator is employed to map 
the LF design space to HF design space and then the optimal 
sample point in HF space can be determined. The last category 
is Kriging-based VF surrogate models, for instance, Co-Kriging 
model (Kennedy and O’Hagan 2000) and hierarchical Kriging 
model (Han and Görtz 2012). Due to their ability to provide 
appropriate HF estimation error and high prediction accuracy, 
Kriging-based VF surrogate models have been widely applied 
in engineering field (Mukhopadhyay et al. 2017; Singh et al. 
2017). Co-Kriging model is built based on the information of 
covariance between HF and LF sample points. Therefore, the 
HF sample set is required to be nested of the LF sample set, 
which limits its application in optimization to a generic extent. 
In hierarchical Kriging model, the LF prediction is assumed 
to be the trend function of VF surrogate without the require-
ment of nested sample sets. There are many extensions of Co-
Kriging model and hierarchical Kriging model, for example, 
the improved hierarchical Kriging (Hu et al. 2018).

For single-fidelity SBO, there are three famous infill sam-
pling criteria, expected improvement (EI) (Jones et al. 1998), 
LCB (Cox and John 1992), and probability of improvement 
(PI) (Jones 2001). Besides, Nakayama et al. (Nakayama 
et al. 2002) introduced a radial basis function (RBF) net-
work assisted optimization method, where two update points 
are determined in parallel for global exploration and local 
exploitation, respectively. It was further enhanced by devel-
oping the adaptive scaling techniques and density function 
using RBF network (Kitayama et al. 2011). A constrained 
efficient global optimization method was then proposed by 
introducing an SVM-based probability of feasibility using a 
Probabilistic SVM model (Basudhar et al. 2012); however, 
these methods are only designed for the problems with sin-
gle fidelity. To extend those methods to the VF scenario, 
VF infill sampling criteria have to be developed to balance 

global exploration and local exploitation with consideration 
of the computational cost and the correlation between dif-
ferent fidelities. For example, Huang et al. (2006) first pro-
posed a sequential Co-Kriging-based optimization method, 
in which an augmented expected improvement (AEI) was 
developed to adaptively determine the location and the fidel-
ity level of promising sample points. To combine LCB cri-
terion and VF surrogate models, Xiong et al. (2008) put 
forward a periodical switching LCB criterion for VFSBO; 
however, the computation cost of LF analysis model was 
ignored. Recently, VFSBO is extensively researched and 
developed. Zhang et al. (2018) proposed a VF-EI criterion 
that used the prediction error to quantify the prediction 
uncertainty to avoid the empirical parameter. Serani et al. 
(2019) investigated the performance of four type of VFSBO 
strategies based on the stochastic RBF for CFD computer 
simulations. Yi et al. (2020b) presented a multi-fidelity RBF 
surrogate-based optimization framework, where the LF 
and HF surrogate models are sequentially exploited. Apart 
from RBF, support vector regression (SVR) model was also 
employed to build VF surrogate models (Shi et al. 2020a). 
To accelerate the VFSBO, researchers begins to develop the 
parallel VF optimization methods, for instance, He et al. 
(2021) extended the VF-EI approach to a parallel process in 
consideration of simulation failures. Guo et al. (2021) pre-
sented a novel infill criterion, Filter-GEI, to determine mul-
tiple HF and LF samples at each iteration while keeping a 
good balance between the local and global search. However, 
these methods do not address the problems with constraints.

To deal with COPs with multiple levels of fidelity, most of 
work considers assisting the PoF function with the variable-
fidelity EI function. Liu et al. (2018) improved AEI criterion 
by considering a full correlation Co-Kriging model and the 
sample cluster issue. Afterward, Jiang et al. (2019) extended the 
standard LCB function to a VF-LCB criterion by considering 
the cost ratio and the estimated errors. Similarly, it was further 
extended to handle constraints with the use of the PoF function.

Discussions: the aforementioned research has made efforts 
to deal with unconstrained optimization problems. However, 
for COPs, most of them employed the PoF function to handle 
the computationally expensive constraints. The PoF function 
may affect the quality of optimal feasible solution since it 
uses the probability to determine promising points. Besides, 
the parallel VFSBO method is very scarce because these exist-
ing non-parallel methods are unable to be directly parallelized.

3 � The proposed VF‑CLCB method

3.1 � Motivation

Most developed VFSBO methods applied the PoF function 
to handle the constraints in COPs; however, it may affect 
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the effectiveness and efficiency of the optimization process. 
The PoF function may underestimate the quantity of interests 
around the region of the constraint boundary and further 
impair the quality of the optimized solution. Besides, the 
PoF function neglects the improvement of the uncertainty 
of the constraint surrogates; therefore, it may delay the effi-
ciency of the optimization. To address these issues, the pro-
posed method presents a criterion which separately deals 
with the surrogates of the objective and the constraints and 
evaluates the quality of the constraint surrogates at every 
cycle to improve the computation efficiency.

3.2 � Variable‑fidelity constrained lower confidence 
bound criterion

Multiple types of surrogate model, for example, RBF, SVR, 
have been used in VFSBO; nonetheless, the Kriging model 
can reasonably quantify the estimation uncertainty which is 
significantly useful in the optimization process. Therefore, 
instead of variable-fidelity RBF or SVR models, the hierar-
chical Kriging model is used in this work to build the VF 
surrogates due to its flexibility in sampling. Brief details 
about constructing hierarchical Kriging models and hyper-
parameter tuning can refer to Appendix A (Han and Görtz 
2012; Toal et al. 2008). The proposed VF-CLCB criterion 
in this paper contains three parts to select promising sample 
points.

3.2.1 � Formulation of variable‑fidelity PLCB

To search for optimum with two levels of fidelity, a variable-
fidelity LCB function is defined as,

Equation (2) is comprised of a linear combination of two 
parts. The first part ŷhf(�) denotes the HF prediction of the 
surrogate for the objective function at point � , and it is used 
to concentrate on the region around the predicted optimum 
of the HF surrogate. The optimum of HF surrogate is quali-
fied because we aim at solving the optimum of HF analysis 
model. The second part includes three factors. The first one [
2 + ln(flag)

]
 is the weighting parameter for balance between 

global exploration and local exploitation, and flag means an 
index that represents the repetition times of the current opti-
mal solution. By adding ln(flag) , the algorithm can get rid 
of the local optimum by the emphasis on global exploration. 
CR(l) is the analysis cost ratio function (Giselle Fernández-
Godino et al. 2019; Huang et al. 2006) that is defined as the 
computation cost between the HF analysis model and the l 
level fidelity model, as shown in Eq. (3); cr is the cost ratio 
value between HF model and LF model, which refers to the 
proportion between the computation cost of evaluating an 

(2)lcbvf(�, l) = ŷhf(�) −
[
2 + ln(flag)

]
⋅ CR(l) ⋅ ŝy(�, l)

HF analysis model (obtaining both the objective and the con-
straint responses) and that of an LF analysis model. If evaluat-
ing objective and constraints needs multiple analyses, the cost 
ratio is determined through the whole process of the analyses. 
The last item ŝy(�, l) , presented in (Zhang et al. 2018), rep-
resents the prediction uncertainty of the hierarchical Krig-
ing model of the objective function. It is defined as Eq. (4), 
where �0 denotes the scaling factor of the hierarchical Kriging 
model, as shown in Eq. (A-3) of Supplementary Information, 
and ŝy,lf(�) , ŝy,hf(�) are the estimated error functions for the LF 
and the HF surrogate, respectively. By querying the prediction 
uncertainty, the criterion is going to judge the model quality 
and decide the fidelity level to be focused on.

When aiming at the objective, the paper employs the pen-
alty method to handle the constraints. After building the 
hierarchical Kriging model for each constraint function, the 
variable-fidelity PLCB function is derived by assuming a 
very large constant to the original unconstrained function 
when the constraints are violated, which can be expressed as,

where plcbvf(�, l) is the variable-fidelity PLCB value at point 
� under fidelity level l ; � is a penalty factor; ĝ�

hf
(�) refers to 

the maximum constraint value. The constraint with maxi-
mum constraint value is considered as the active constraint, 
and it dominates the feasibility of the solution, which is 
evaluated by,

where ĝhf,j(x) is the prediction of the jth constraint by hier-
archical Kriging model, and NC is the number of constraints.

By minimizing Eq. (5), the algorithm can select the 
points with low HF prediction and high prediction uncer-
tainty. Besides, due to the different costs between HF and LF 
analysis models, the algorithm is apt to select the lower level 
of fidelity for reducing the computation cost. By minimizing 
Eq. (5) with HF and LF level respectively, two candidate 
points, �′hf and �′lf , can be obtained.

3.2.2 � Formulation of variable‑fidelity CLCB

The variable-fidelity PLCB function is derived mainly 
based on the objective, which ignores the improvement of 
the models' accuracy. Therefore, a variable-fidelity CLCB 
function is developed to take care of the prediction accuracy 

(3)CR(l) =

{
cr l = 1

1 l = 2

(4)ŝy(�, l) =

{
𝛽0ŝy,lf(�) , l = 1

ŝy,hf(�) , l = 2

(5)plcbvf(�, l) = lcbvf(�, l) + 𝛼 ⋅max(0, ĝ�
hf
(�))

(6)ĝ�
hf
(�) = max

{
ĝhf,j(�)

}
, j = 1, 2, ...,NC
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around constraint boundaries during the optimization pro-
cess, which is a natural extension of our previous work for 
single-fidelity (Yi et al. 2020a). The developed function is 
expressed as,

where ĝ�
hf
(�) is the maximum constraint value defined in Eq. 

(6), and ŝ�
g
(�, l) is the uncertainty of the prediction.

To give more effort to the HF analysis models, the predic-
tion of the HF surrogates are employed in Eq. (7). Minimiz-
ing the item |||ĝ�hf(�)

||| can lead to a search for a feasible solu-
tion when none of initially sampled solutions is feasible and 
the accuracy improvement of the constraint boundaries. 
Meanwhile, the second item can eliminate the prediction 
uncertainty and improve the predictions of the constraints. 
The proposed criterion judges the model quality through the 
uncertainty and then chooses the model fidelity. By minimiz-
ing Eq. (7) with respect to the HF and the LF level respec-
tively, two candidate points, �′′hf and �′′lf , can be obtained.

3.2.3 � Selection strategy for determining update points

After four candidate points are selected by the variable-
fidelity PLCB and the variable-fidelity CLCB functions, two 
promising points for the objective and the constraint can 
be determined according to the corresponding function val-
ues. The promising point for the objective can be confirmed 
through Eq. (8), and the promising point for the constraint 
can be determined by Eq. (9).

(7)clcbvf(�, l) =
||ĝ�hf(�)|| − CR(l) ⋅ ŝ�

g
(�, l),

The goal of updating promising points for the constraints 
is to improve the prediction accuracy of the constraints; 
therefore, the algorithm can give up the point for feasibility 
if the VF surrogates of the constraints are accurate enough. 
The feasibility of the selected points is evaluated by the 
estimation uncertainty provided in Eq. (4). As the predic-
tions of the constraints obey norm distribution, the condition 
whether a point satisfies the constraints can not be judged 
through the single mean value. Therefore, the possibilities is 
calculated through the prediction and the uncertainty. Con-
sidered the three-sigma rule, if the selected points have more 
than 95% possibility to determine their signs, these points 
will be throwed away and not updated. In other words, if the 
point �′′ has larger than 5% probability of wrong sign, the 
surrogate models of the constraints are assumed to be not 
accurate enough, and the point needs to be updated. The 
point for optimality, �′ , is always updated and evaluated dur-
ing the optimization process. Through the mechanism, the 
proposed criterion can reach the balance between feasibility 
and optimality.

The whole selection process of the proposed VF-CLCB 
criterion is summarized in Algorithm 1.

(8)(��, l�) = argmin
(�,l)=(��hf,2) or (�

�
lf ,1)

plcbvf(�, l)

(9)(���, l��) = argmin
(�,l)=(���hf,2) or (�

��
lf ,1)

clcbvf(�, l)

Algorithm 1. The VF-CLCB criterion.

Input Hierarchical Kriging models of the objective and the constraints.

Output Updating sample set and corresponding fidelity levels ( , )lx .

Begin
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3.3 � Steps for the VF‑CLCB method

The framework of the VF-CLCB optimization method is 
shown in Fig. 1. The specific detail for each step is provided 
as follows.

Begin
Step 1: Generate initial sample points by the Latin hyper-
cube design (LHD) method (Helton and Davis 2003) for 
HF and LF, respectively. Then evaluate the responses by 
the HF/LF analysis model.
Step 2: Build/re-build the hierarchical Kriging models of 
the objective and each constraint function based on the 
current sample set.
Step 3: Determine the update points and corresponding 
fidelity levels based on the proposed VF-CLCB crite-
rion. The particle swarm optimizer (PSO) (Kennedy and 
Eberhart 1995) is employed to minimize the Eq. (5) and 
(7) with 100 swarms searching 100 generations. Differ-
ential optimizers usually have respective pros and cons, 
and other optimizers, like the differential evolution (DE) 
(Price et al. 2006) or the grey wolf optimizer (GWO) 
(Mirjalili et al. 2014), can also be employed instead of 
PSO.
Step 4: Simulate the responses at the update points with 
the corresponding analysis model. If a better solution is 

found, the best feasible solution is then updated, and the 
parameter flag is assigned by 1; if not, flag updates with 
flag = flag + 1.
Step 5: Judge the termination condition at the end of each 
iteration. In general, the number of function evaluation is 
used as the metric for efficiency. Since there are multiple 
levels of fidelity, the cost of LF is transformed into the 
equivalent HF cost based on the cost ratio between differ-
ent fidelity. The number of equivalent function evaluation 
(NEFE) is evaluated by,

where HFE and LFE denote the number of added sample 
points for HF and LF, respectively.
In numerical cases, the maximum NEFE and the opti-
mal solution are used as the termination condition to test 
the efficiency and effectiveness of the method, which is 
expressed as follow.

where y(n)
min

 means the optimal solution at the iteration n 
during the optimization process, and yactual is the best-
known feasible optimum. � is a predefined error for stop-
ping, and NEFEmax is the maximum NEFE defined by 
users for the optimization process. For engineering prob-
lems, only the maximum NEFE is set as the termination 
condition as the real feasible optimum is unknown.
If the condition is met, the algorithm proceeds to step 
6; otherwise, it turns back to step 2 and enters another 
iteration after the parameter flag in Eq. (2) updates. As 
inspired by reference (Srinivas et al. 2009), flag increases 
one if the current optimal solution is the same with that 
of the last iteration.
Step 6: Once the termination condition is satisfied, the 
algorithm outputs the best feasible solution and the values 
of corresponding design variable.
End

4 � The proposed PVF‑CLCB method

To parallelize the proposed VF-CLCB method, two issues 
should be considered: (1) how to select multiple promis-
ing sample points, and (2) how to allocate computation 
resources between the objective and constraint. To this end, 
a PVF-CLCB method is introduced in this section, in which 
a parallel criterion is proposed to select multiple promising 
sample points and an allocation algorithm is proposed to 
properly distribute the computation resources.

(10)NEFE = HFE +
LFE

cr
,

(11)
|||y

(n)

min
− yactual

||| ≤ �

NEFE ≥ NEFEmax,

Fig. 1   Flowchart of the proposed VF-CLCB method
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4.1 � Parallel variable‑fidelity constrained lower 
confidence bound criterion

In a Kriging model-assisted parallel approach, an influence 
function was introduced in (Zhan et al. 2017) to approxi-
mately evaluate the EI function value after determining 
several update points. Influence function is defined by the 
correlation function of the Kriging model as follows,

where �u is the promising point to be updated, R(⋅) is the cor-
relation function of the Kriging model. The value of influ-
ence function approaches to zero if the point is really close 
to the selected update points, and approaches to one with 
the Euclidean distance between the point and selected points 
increases. The influence function is originally developed to 
alter the value of EI function, but the EI function has no 
direct relationship with the Euclidean distance of two points.

In the proposed VF-CLCB criterion, the factor that deter-
mines which fidelity to choose is the prediction uncertainty 
of the VF surrogate models. Moreover, the estimation error 
function in the hierarchical Kriging model depends on the 
Euclidean distance-based correlation function. Therefore, 
it is more rational to approximately evaluate the estimated 
error of the prediction through the influence function after 
determining update points as follows,

where ŝ(�) denotes the estimation error provided by the 
Kriging model.

Considering multiple levels of fidelity, the influence func-
tion can be defined as,

where �u is a update point for the fidelity l . Rl(⋅) is the cor-
relation function of the Kriging model for the fidelity l.

Assumed that the algorithm has determined HF update 
points �n+1

hf
, ..., �

n+phf
hf

 and LF update points �n+1
lf

, ..., �
n+plf
lf

 at 
iteration n . The approximate uncertainty functions for objec-
tive and constraint can be expressed as,

(12)IF(�, �u) = 1 − R(�, �u),

(13)ŝestimate(�) = ŝ(�) ⋅ IF(�, �u),

(14)IFl(�, �
u) = 1 − Rl(�, �

u),

(15)

ŝy
�
�, l, �n+1

hf
, ..., �

n+phf
hf

, �n+1
lf

, ..., �
n+plf
lf

�
=

⎧⎪⎨⎪⎩

𝛽0 ŝy,lf(�) ⋅
plf∏
i=1

IF1(�, �
n+i
lf

) , l = 1

ŝy,hf(�) ⋅
phf∏
i=1

IF2(�, �
n+i
hf

) , l = 2

Based on the approximate uncertainty functions, the algo-
rithm can select desired number of promising update points 
at each iteration. After the first HF and LF update points are 
determined, the following update points can be determined 
through Eqs. (17) and (18).

(16)

ŝg,j
�
�, l, �n+1

hf
, ..., �

n+phf
hf

, �n+1
lf

, ..., �
n+plf
lf

�

=

⎧
⎪⎨⎪⎩

𝛽0,jŝg,lf,j(�) ⋅
plf∏
i=1

IF1(�, �
n+i
lf

) , l = 1

ŝg,hf,j(�) ⋅
phf∏
i=1

IF2(�, �
n+i
hf

) , l = 2

,

j = 1, 2, ...,NC

(17)

plcbvf(�, l) = ŷhf(�) − (2 + ln(flag)) ⋅ CR(l) ⋅ ŝy(
�, l, �n+1

hf
, ..., �

n+phf
hf

, �n+1
lf

, ..., �
n+plf
lf

)
+ 𝛼 ⋅max(0, ĝ�

hf
(�))

(18)
clcbvf(�, l) =

||ĝ�hf(�)|| − CR(l) ⋅ ŝ�
g
(�, l, �n+1

hf
, ..., �

n+phf
hf

, �n+1
lf

, ..., �
n+plf
lf

),

Fig. 2   Flowchart of the proposed PVF-CLCB method
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where ŝ�
g
(�, l, �n+1

hf
, ..., �

n+phf
hf

, �n+1
lf

, ..., �
n+plf
lf

) is the approxi-
mate uncertainty function of the activated constraint.

In non-parallel VF-CLCB criterion, a selection algorithm 
is proposed to discard redundant update points for con-
straints if the surrogate models of constraints are accurate 
enough. But in the parallel method, all the update points for 
objective and constraint can all be simulated and archived 

in the sample set because multiple computers are available. 
In addition, due to the difference in the computational cost 
between HF and LF simulation models, several LF points 
which cost the same with one HF point can be selected and 
allocated to one computer simulating together. The pseudo 
code of the proposed PVF-CLCB criterion is provided in 
Algorithm 2.

4.2 � Allocation strategy for computation resources

The PVF-CLCB criterion can select multiple promising 
points, but the computation resources for objective and con-
straint should be determined beforehand. One direct way 
is to equally distribute existing resources for objective and 
constraint. That may lead to infeasible solution when the sur-
rogate models of the constraints are inaccurate and affect the 
optimization efficiency. This paper proposes an allocation 

strategy for the trade-off between the adequacy of optimality 
and the accuracy of feasibility.

Assumed that there are q computers occupied in an opti-
mization problem, the number of computation resources for 
objective and constraint at iteration n are q(n)

obj
 and q(n)con , 

respectively. The proposed strategy equally allocates the 
resources at the first iteration due to limited information at 
this cycle. Then after the update points are simulated at each 
iteration, the number of points whose feasibility is wrong 
expected by the hierarchical Kriging models of the 
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constraints are evaluated. If the ratio of that number exceeds 
a predefined threshold � , which means the accuracy of the 
surrogates of the constraints should be improved, and an 
extra computation resource will be added for updating the 
constraints at the next iteration. Otherwise, the surrogate 

models of the constraints are considered to be accurate and 
the optimal feasible solution is then evaluated to allocate the 
resources for the objective. The allocation strategy is pro-
vided in Algorithm 3.

Table 1   Specific characteristics 
of numerical cases

Problems Dimen-
sionality

Number of 
constraints

Best-known solution Target solution Maximum 
NEFE

Maxi-
mum 
NEI

G1 13 9 − 15.0000 − 14.8 50 20
G4 5 6 − 30,665.539 − 30,665 50 20
G5MOD 4 5 5126.50 5130 50 20
G6 2 2 − 6961.8139 − 6960 50 20
G7 10 8 24.3062 28 100 30
G8 2 2 − 0.095825 − 0.0957 100 30
G9 7 4 680.6301 1000 200 50
G24 2 2 − 5.5080 − 5.5070 50 20
Gano2 2 1 5.668365 5.670 50 20
Hesse 6 6 − 310 − 309 50 20
TCS 3 4 0.012665 0.01267 100 30
SR 7 11 2994.42 2995 50 20

1  https://​github.​com/​jiche​ng9617/​VF-​CLCB.

4.3 � Steps for the PVF‑CLCB method

The framework of the PVF-CLCB optimization method is 
shown in Fig. 2. Code is available through the webpage.1

In Step 7, the number of iteration is used to rate the effi-
ciency instead of the NEFE metric since several computers 
are computing at the same time. The number of equivalent 

iteration (NEI) is defined based on the NEFE metric, which 
is calculated as,

The termination condition for the numerical examples is 
expressed as,

(19)NEI =
NEFE

q
=
(
HFE +

LFE

cr

)
∕q

https://github.com/jicheng9617/VF-CLCB
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Table 2   Statistical results on numerical cases ( cr = 4 ) for non-parallel methods

Problems Methods SR LFE HFE NEFE Best OS Mean OS Worst OS Mean error NEFE W-test OS W-test

G1 CEI 0.7 – 75.3 75.3 − 14.9340 − 14.8004 − 14.5457 0.1996  +   + 
AEI 0.4 256.7 7.1 41.3 − 14.9515 − 14.8767 − 14.8232 0.1233  +   + 
VF-EI 0.8 17.5 49.8 54.2 − 14.9582 − 14.5788 − 12.3871 0.4212  +   + 
VF-LCB 1.0 20.7 8.0 13.2 − 14.9853 − 14.9035 − 14.8009 0.0965  +   + 
VF-CLCB 1.0 20.3 3.3 8.4 − 14.9990 − 14.9866 − 14.9782 0.0134

G4 CEI 1.0 – 44.9 44.9 − 30,665.1 − 30,663.1 − 30,656.1 2.436  +   + 
AEI 1.0 58.5 35.4 50.0 − 30,665.0 − 30,662.1 − 30,655.0 3.442  +   + 
VF-EI 1.0 16.8 38.6 42.8 − 30,665.4 − 30,661.1 − 30,654.5 4.405  +   + 
VF-LCB 1.0 6.1 4.4 5.9 − 30,665.5 − 30,665.5 − 30,665.3 0.070 ≈ ≈
VF-CLCB 1.0 17.2 3.4 7.7 − 30,665.5 − 30,665.5 − 30,665.1 0.067

G5MOD CEI 1.0 – 50.0 50.0 5167.67 5252.01 5361.01 125.51  +   + 
AEI 1.0 98.8 25.3 50.0 5149.20 5189.01 5276.65 62.51  +   + 
VF-EI 0.9 6.4 48.7 50.3 5152.58 5218.25 5290.50 91.75  +   + 
VF-LCB 0.1 5.5 48.9 50.3 5193.44 5193.44 5193.44 66.94  +   + 
VF-CLCB 1.0 31.0 19.5 27.3 5126.66 5128.39 5133.58 1.89

G6 CEI 0.3 – 50.0 50.0 − 6267.03 − 5666.67 − 4802.78 1295.14  +   + 
AEI 0.2 11.8 47.3 50.3 − 6736.52 − 4940.39 − 3144.26 2021.42  +   + 
VF-EI 0.3 0.5 50 50.1 − 6751.12 − 5236.73 − 3863.88 1725.08  +   + 
VF-LCB 1.0 14.1 46.8 50.3 − 6957.03 − 6946.25 − 6930.63 15.57  +   + 
VF-CLCB 1.0 23.7 11.7 17.6 − 6961.40 − 6960.69 − 6960.07 1.12

G7 CEI 0.0 – 100.0 100.0 N/Fa N/Fa N/Fa N/Fa  +   + 
AEI 0.0 400.0 0.0 100.0 N/Fa N/Fa N/Fa N/Fa  +   + 
VF-EI 0.0 0.0 100.0 100.0 N/Fa N/Fa N/Fa N/Fa  +   + 
VF-LCB 1.0 101.3 29.1 54.4 25.8831 26.8915 27.9495 2.5853  +  ≈
VF-CLCB 1.0 26.7 6.2 12.9 25.2243 26.4929 27.4023 2.1867

G8 CEI 1.0 – 61.5 61.5 − 0.09583 − 0.09576 − 0.09558 0.00007 ≈ ≈
AEI 1.0 17.1 50.6 54.9 − 0.09583 − 0.09578 − 0.09571 0.00005 ≈ ≈
VF-EI 1.0 22.4 50.1 55.7 − 0.09583 − 0.09578 − 0.09572 0.00004 ≈ ≈
VF-LCB 0.9 178.6 32.3 77.0 − 0.09582 − 0.07906 − 0.01182 0.01676  +  ≈
VF-CLCB 1.0 66.3 39.4 56.0 − 0.09583 − 0.09579 − 0.09571 0.00004

G9 CEI 1.0 – 161.6 161.6 805.961 935.004 1012.567 254.374 ≈ ≈
AEI 0.0 800.0 0.0 200.0 N/Fa N/Fa N/Fa N/Fa ≈  + 
VF-EI 1.0 85.8 161.6 183.1 852.335 1002.723 1232.365 322.093 ≈ ≈
VF-LCB 1.0 307.7 91.5 168.4 841.202 993.482 1114.962 312.852 ≈ ≈
VF-CLCB 1.0 378.5 79.3 173.9 788.565 1010.112 1354.112 329.482

G24 CEI 1.0 – 46.4 46.4 − 5.50785 − 5.49834 − 5.47455 0.00966  +   + 
AEI 1.0 98.2 14.8 39.4 − 5.50745 − 5.50391 − 5.49232 0.00409  +   + 
VF-EI 1.0 6.6 34.6 36.3 − 5.50772 − 5.50464 − 5.49298 0.00336  +   + 
VF-LCB 1.0 6.2 4.4 6.0 − 5.50801 − 5.50787 − 5.50701 0.00014 ≈ ≈
VF-CLCB 1.0 5.0 6.1 7.3 − 5.50801 − 5.50795 − 5.50758 0.00007

Gano2 CEI 1.0 – 35.8 35.8 5.66846 5.67008 5.67308 0.00172  +   + 
AEI 1.0 13.6 33.8 37.2 5.66876 5.67082 5.67549 0.00246  +   + 
VF-EI 1.0 22.3 26.8 32.4 5.66841 5.66960 5.67086 0.00124 ≈  + 
VF-LCB 1.0 38.6 14.9 24.6 5.66838 5.66905 5.66983 0.00069  +   + 
VF-CLCB 1.0 20.6 12.0 17.1 5.66835 5.66858 5.66959 0.00022

Hesse CEI 1.0 – 27.4 27.4 − 309.989 − 309.408 − 307.493 0.592 ≈  + 
AEI 1.0 10.1 7.3 9.8 − 309.998 − 309.740 − 309.106 0.260 −  + 
VF-EI 1.0 11.0 17.1 19.9 − 309.993 − 309.347 − 306.719 0.653 ≈  + 
VF-LCB 1.0 10.3 4.6 7.2 − 309.998 − 309.493 − 309.122 0.507 −  + 
VF-CLCB 1.0 43.2 7.3 18.1 − 310.000 − 309.995 − 309.973 0.004
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where NEImax is the predefined maximum NEI. Similarly, 
only the maximum NEI is employed in the engineering 
problems.

5 � Numerical experiments

5.1 � Experiment settings

1)	 Test problems: Twelve benchmark numerical COPs are 
selected according to the recent publications, including 
eight CEC2006 cases (Liang et al. 2006), two famous 
cases Gano and Hesse (Gano et al. 2005), and two clas-
sical engineering applications (Coello et  al. 2007; 
Kazemi et al. 2011). The detailed formulas of these 
cases are provided in Appendix B, and the specific infor-
mation is listed in Table 1. These functions are treated 
as the HF models. Referred to the reference (Shi et al. 
2020b), the LF analysis models are directly formulated 
by scaling the associated HF functions and adding a con-
stant bias according to Eq. (21), where f b

lf
 and f b

hf
 are the 

objective values for LF and HF models, respectively. gb
lf
 

and gb
hf

 represent the constraint responses. The scaling 
factor and constant deviations are directly extracted in 
the reference paper as � = 0.9, �b

f
= 0.5, and �b

g
= −0.05.

2)	 Design of experiment: The numbers of initial sample 
points for HF and LF are set to 3d and 6d , respectively. 
d represents the dimensionality of the problem.

(20)
|||y

(n)

min
− yactual

||| ≤ �

NEI ≥ NEImax,

(21)
f b
lf
= �f b

hf
+ �b

f

gb
lf
= �gb

hf
+ �b

g

3)	 Number of runs: All experiments are repeated 10 times 
to test the performance with the stochastic influence of 
initial sampling and sub-optimizer. The initial designs 
are the same for all the compared methods, but different 
for the 10 independent runs.

5.2 � Comparison for non‑parallel methods

To study the performance of the proposed VF-CLCB opti-
mization method, four alternative methods are tested, which 
are described as follows.

1)	 CEI (Schonlau 1997): the CEI method is the benchmark 
single-fidelity constrained optimization method that only 
uses the HF model. The comparison with it can show the 
efficiency of the usage of the VF surrogate model.

2)	 AEI (Huang et al. 2006): the AEI method uses the Co-
Kriging model, and the cost ratio between HF and LF 
models is considered.

3)	 VF-EI (Zhang et al. 2018): the VF-EI method employs 
the hierarchical Kriging model, which excludes all the 
empirical parameters including the cost ratio.

4)	 VF-LCB (Jiang et al. 2019): the VF-LCB method is the 
authors’ previous work that handles constraints by the 
PoF function, and it is compared to test the effectiveness 
of the proposed constraint-handling strategy.

The cost ratio is first set to four, and the statistical results 
are summarized in Table 2. In Table 2, SR denotes the suc-
cessful ratio to find a feasible solution in ten runs, and OS is 
the finally obtained optimal solution. The item “Mean error” 
indicates the discrepancy between the mean OS and the best-
known optimum. W-test refers to the Wilcoxon rank sum 
test (Dong et al. 2021), specifically, the significance level of 

Table 2   (continued)

Problems Methods SR LFE HFE NEFE Best OS Mean OS Worst OS Mean error NEFE W-test OS W-test

TCS CEI 1.0 – 100 100 0.012700 0.012748 0.01281 8.25E-05 ≈  + 
AEI 0.0 400 0 100 N/Fa N/Fa N/Fa N/Fa ≈  + 
VF-EI 1.0 52.2 87.4 100.5 0.012704 0.01273 0.012763 6.45E − 05 ≈  + 
VF-LCB 1.0 90.8 77.6 100.3 0.012694 0.012754 0.012819 8.92E − 05 ≈  + 
VF-CLCB 1.0 63.4 84.8 100.7 0.012679 0.012681 0.012687 1.59E − 05

SR CEI 0.1 – 50.0 50.0 2995.71 2995.71 2995.72 1.30  +   + 
AEI 0.0 200.0 0.0 50.0 N/Fa N/Fa N/Fa N/Fa  +   + 
VF-EI 1.0 18.0 33.7 38.2 2994.53 2995.92 3001.93 1.51  +   + 
VF-LCB 1.0 15.0 9.8 13.6 2994.48 2994.64 2994.97 0.23 ≈  + 
VF-CLCB 1.0 29.6 8.8 16.2 2994.47 2994.48 2994.55 0.06

a The algorithm has not found a feasible solution in the repeated ten experiments
The best results are marked in bold
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� = 0.05 is conducted, and the symbol + means the proposed 
method significantly outperforms the compared methods—
indicates that the proposed method is significantly worse 
than the other methods, and the symbol ≈ represents that 
there exists no significant difference between the compared 
methods.

In Table 2, the best results are marked in bold. Intuitively, 
the proposed VF-CLCB method can always find a feasible 
solution in all these experiments. The VF-LCB method 
exhibits unstable performance on problems G5MOD and 
G8 as it failed to find a feasible solution under prescribed 

budgets. This demonstrates that the variable-fidelity CLCB 
function can lead to a feasible solution when no sample point 
is available. From the results of LFE and HFE, it can be 
observed that VF-CLCB method tends to select more LF 
sample points due to their lower computation cost. This is 
opposite to the VF-EI method which does not consider the 
effect of cost ratio. For the metric of the efficiency, VF-LCB 
outperformed the other methods in most cases, whereas the 
VF-CLCB method converged the fastest on the problems 
that are highly constrained, e.g., G5MOD, G6, and G7. 
Since the proposed method considers the accuracy of the 

Fig. 3   Comparisons for the NEFE metric between three levels of cost ratio
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constraint's predictions and selects sample points for the 
improvement of the accuracy, the optimization process may 
consume more computation cost at early stages. From the 
results of the obtained OS, VF-CLCB outperformed the 
other methods for the item “Best OS” on all the problems. 
For the mean results, VF-CLCB was better than the others 
on all the problems except for G9. Moreover, it shows bet-
ter performance according to the worst OS. The results of 
the W-test for OS indicate that the proposed method shows 
superior performance on the effectiveness to optimize highly 
constrained problems.

In engineering problems, the cost ratio is critical for 
deciding the computation budget, and it is usually problem-
dependent. Therefore, the numerical cases are tested on 
the other two values of cost ratio, cr = 10 and cr = 25 . We 
assigned different cost ratios to test the approaches under dif-
ferent conditions. The statistical results are listed in Tables 
C3 and C4 in Appendix. It should be noted that a mass of 
LF sample points are usually selected when the value of cost 
ratio is 25. The construction of the LF Kriging models may 
waste too much time due to the computation complexity of 
the Kriging model. To relieve the burden of computation, 

Fig. 4   Comparisons for the obtained OS under three levels of cost ratio
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the incremental Kriging model (Zhan and Xing 2021) is 
employed to re-build the LF Kriging model. The statisti-
cal results in Tables C3 and C4 indicate that the VF-CLCB 
significantly outperformed the compared methods on the 
convergence ability and optimization effectiveness.

Figures 3 and 4 provide the comparison results under the 
three different levels of cost ratio for the NEFE metric and 
the obtained OS, respectively. From Fig. 3, it can be seen 
that the proposed VF-CLCB method is more robust than the 
other methods. The NEFE metric reduces as the cost ratio 
increases, which demonstrates the rationality of considering 
the cost ratio function in VF-CLCB. In Fig. 4, the VF-CLCB 
also shows superior stability on the obtained OS, and the 
results outperform those of other methods on all the prob-
lems except for G9.

To illustrate the effectiveness of the employment of 
VF surrogate model, the optimization cost ratio, the ratio 
between the computational cost of the proposed VFSBO and 
that of single-fidelity optimization, is compared and showed 
in the Fig. 5. The results for the adopted single-fidelity opti-
mization is directly cited from the research (Cheng et al. 
2021). Eight numerical problems are selected for the com-
parison. Each marker represents the comparison for one 
problem under specific analysis cost ratio. The region below 
the cost-savings lines means that the saving cost by using 
VF surrogates is larger than the analysis cost ratio. With the 
LF/HF analysis cost ratio decreasing, the corresponding cost 
reduction achieved by using the proposed VFSBO method 
is increasing.

5.3 � Comparison for parallel methods

This section offers the experiments of the proposed PVF-
CLCB method to test its acceleration capacity. Two com-
pared parallel methods are described as follows.

1)	 PCEI (Qian et al. 2021): PCEI is a Kriging-assisted par-
allel optimization method that uses the benchmark CEI 
criterion and the influence function. The comparison can 
demonstrate the effectiveness of the proposed variable-
fidelity method.

2)	 PVF-CLCBc: the PVF-CLCBc carries out the optimiza-
tion with an equal allocation of computation resources 
between objective and constraint. It is tested to show 
effectiveness of the proposed allocation strategy.

The experiment was first conducted under the condition 
that the cost ratio CR = 4 and the total parallel resources 
q = 5 . The statistical results are provided in Table 3. The 
proposed PVF-CLCB found feasible solutions on all experi-
ments, but the single-fidelity PCEI method fails on problems 
G6 and G7. From the NEI metric, the proposed method used 
less computation budget to find the target solutions com-
pared with the PCEI, and the results show significant dif-
ferences in most problems. Moreover, the obtained OSs of 
the proposed method are remarkably better than those of the 
PCEI, which demonstrates the advantage of the usage of the 
VF surrogate model. Besides, the PCEI performs the best on 
problem G9. By comparing with the PVF-CLCBc, the pro-
posed allocation strategy leads to a significant enhancement 
of the efficiency and effectiveness on problems G6 and G7, 
but a slight improvement of the efficiency in the other cases.

To test the ability of the proposed parallel method, the 
condition of more resources ( q = 10 ) is experimented and 
the statistical results are provided in Table D1 in Appen-
dix. At this time, only the single-fidelity PCEI method is 
compared, and the results demonstrate that the proposed VF 
parallel method can significantly accelerate the optimization 
process with more computation resources.

Appendix E provides the convergence histories of the 
proposed methods, and the numbers in parentheses indicate 
the times for failing to find a feasible solution in repeated 10 
experiments. It can be seen that the compared PCEI method 
converges faster at the first few iterations, but it always fails 
to find the target solutions, which is apparently due to the 
drawback of the PoF function. The proposed VF optimiza-
tion methods tend to improve the accuracy of the LF sur-
rogate first; therefore, they always converge slowly at the 
first few iterations. After that, they can directly converge to 

Fig. 5   Comparison of optimization cost ratio and analysis cost ratio 
for the proposed approach and the single-fidelity optimization method
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the required solutions. Besides, it is apparent that the pro-
posed parallel method converges faster than the proposed 
non-parallel method, which verifies the effectiveness of the 
parallelization.

To further quantify the parallelization capacity of the 
proposed method, the results of the efficiency under the 
three scenarios of different computation resources (q = 1, 
5, and 10) are concluded in Table 4. The results of TCS are 
excluded for the comparison because of the fact that all the 

repeated runs fail to converge. Commonly, an ideal paral-
lel optimization structure is that the reduction in iterations 
equals the number of parallel resources. However, due to 
the estimation errors and other uncertain effects, the par-
allel method is hard to be a linear speedup algorithm. As 
shown in Table 4, with the number of parallel resources 
increases, the performance of the proposed PVF-CLCB 
method improves gradually. On average, the PVF-CLCB 
can speed up the optimization process by 2.83 times with 

Table 3   Statistical results on numerical cases ( cr = 4 ) for parallel methods ( q = 5)

a The algorithm has not found a feasible solution in the repeated ten experiments
The best results are marked in bold

Problems Methods SR NEFE NEI Best OS Mean OS Worst OS Mean error NEFE W-test OS W-test

G1 PCEI 1.0 63 12.6 − 14.9861 − 14.9084 − 14.7574 0.0917  +  ≈
PVF-CLCBc 1.0 54 10.8 − 14.9722 − 14.9300 − 14.8761 0.0700  +  ≈
PVF-CLCB 1.0 12.5 2.5 − 14.9995 − 14.9171 − 14.8347 0.0829

G4 PCEI 1.0 91.5 18.3 − 30,665.0 − 30,608.5 − 30,473.8 57.009  +   + 
PVF-CLCBc 1.0 23 4.6 − 30,665.5 − 30,665.5 − 30,665.1 0.072 ≈ ≈
PVF-CLCB 1.0 22.5 4.5 − 30,665.5 − 30,665.5 − 30,665.4 0.036

G5MOD PCEI 1.0 100 20 5133.07 5230.11 5290.15 103.61  +   + 
PVF-CLCBc 1.0 75.5 15.1 5126.52 5128.72 5136.73 2.22 ≈ ≈
PVF-CLCB 1.0 57.5 11.5 5126.53 5127.71 5129.92 1.21

G6 PCEI 0.1 100 20 − 3681.21 − 3681.21 − 3681.21 3280.61  +   + 
PVF-CLCBc 1.0 100 20 − 6959.67 − 6955.45 − 6951.29 6.36  +   + 
PVF-CLCB 1.0 27.5 5.5 − 6961.77 − 6960.83 − 6960.00 0.99

G7 PCEI 0.0 150 30 N/Fa N/Fa N/Fa N/Fa  +   + 
PVF-CLCBc 1.0 128 25.6 26.1736 28.7676 32.6084 4.4614  +   + 
PVF-CLCB 1.0 19 3.8 24.6400 26.1120 27.3681 1.8058

G8 PCEI 1.0 130.5 26.1 − 0.09582 − 0.09324 − 0.08017 0.00258  +   + 
PVF-CLCBc 1.0 80 16 − 0.09582 − 0.09580 − 0.09574 0.00002 ≈ ≈
PVF-CLCB 1.0 60 12 − 0.09583 − 0.09580 − 0.09571 0.00003

G9 PCEI 1.0 79.5 15.9 773.327 854.766 911.826 174.136 − ≈
PVF-CLCBc 1.0 234 46.8 828.403 1154.826 1440.964 474.196 ≈ ≈
PVF-CLCB 1.0 220.5 44.1 768.159 1068.399 1989.563 387.769

G24 PCEI 1.0 78 15.6 − 5.50788 − 5.50204 − 5.48335 0.00596  +   + 
PVF-CLCBc 1.0 33.5 6.7 − 5.50801 − 5.50795 − 5.50743 0.00007 ≈ ≈
PVF-CLCB 1.0 33 6.6 − 5.50801 − 5.50799 − 5.50787 0.00003

Gano2 PCEI 1.0 59.5 11.9 5.66889 5.66960 5.67057 0.00124 ≈  + 
PVF-CLCBc 1.0 62.5 12.5 5.66836 5.66853 5.66954 0.00017 ≈ ≈
PVF-CLCB 1.0 55 11 5.66835 5.66863 5.66976 0.00026

Hesse PCEI 1.0 59 11.8 − 309.992 − 308.772 − 304.228 1.228 ≈  + 
PVF-CLCBc 1.0 37 7.4 − 310.000 − 309.987 − 309.894 0.013 ≈ ≈
PVF-CLCB 1.0 32.5 6.5 − 310.000 − 309.891 − 309.197 0.109

TCS PCEI 1.0 150 30 0.012701 0.012750 0.012822 0.000085 ≈  + 
PVF-CLCBc 0.9 150 30 0.012685 0.019690 0.056988 0.007025 ≈  + 
PVF-CLCB 1.0 150 30 0.012679 0.012694 0.012732 0.000029

SR7 PCEI 1.0 84 16.8 2994.58 2997.02 3002.95 2.60  +   + 
PVF-CLCBc 1.0 27 5.4 2994.47 2994.48 2994.49 0.06 ≈ ≈
PVF-CLCB 1.0 26.5 5.3 2994.47 2994.51 2994.74 0.09
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five computers, and 4.00 times with ten computers. In sum, 
the proposed parallel method can effectively and efficiently 
reduce the computation time when solving COPs.

6 � Engineering case: global stability 
optimization of stiffened cylindrical shell

In this section, the global stability optimization of the stiff-
ened cylindrical shell with variable ribs is investigated to 
demonstrate the effectiveness and efficiency of the intro-
duced (P)VF-CLCB methods on solving engineering issues. 
The structural profile of the stiffened cylindrical shell is 
depicted in Fig. 6, in which two big ribs divide the shell into 
three isometric parts. The length of the stiffened cylindrical 

shell is controlled by 24 spans whose length is 500 mm, and 
the diameter of this shell is 6000 mm.

The goal of this optimization problem is to maximize the 
global stability of the stiffened cylindrical shell considering 
the constraints of strength, local stability, structural parame-
ter requirements of T-sections, and weight limitation. To this 
end, the optimization mathematical model could be given by,

where � is design variables whose detailed information and 
valued space are listed in Table 5; Pcr2 is the global buck-
ling pressure where a larger value indicates better global 

(22)

Find x�=
[
x1, x2, ..., x9

]T

MaxmizePcr2

Subject to

g1(�) =
�1

k1�s
− 1 ≤ 0 ≤ g2(�) =

�2

k2�s
− 1 ≤ 0 ≤ g3(�) =

�3

k3�s
− 1 ≤ 0

g4(�) = 1 −
Pcr1

Pc

≤ 0 ≤ g5(�) =
h1

23t2
− 1 ≤ 0 ≤ g6(�) =

b1

6t1
− 1 ≤ 0

g7(�) =
h2

23t4
− 1 ≤ 0 ≤ g8(�) =

b2

6t3
− 1 ≤ 0 ≤ g9(�) =

w(x)

w0

− 1 ≤ 0,

Table 4   Comparison of the 
PVF-CLCB under different 
computation resources

Problems NEI (q = 1) NEI (q = 5) Speedup ratio 
(q = 5)

NEI (q = 10) Speedup 
ratio 
(q = 10)

G1 8.4 2.5 3.36 2.2 3.82
G4 7.7 4.5 1.71 2.8 2.75
G5MOD 27.3 11.5 2.37 5.9 4.63
G6 17.6 5.5 3.20 3.8 4.63
G7 12.9 3.8 3.39 2.8 4.61
G8 56.0 12.0 4.67 8.5 6.59
G9 173.9 44.1 3.94 40.4 4.30
G24 7.3 6.6 1.11 3.8 1.92
Gano2 17.1 11.0 1.55 8.5 2.01
Hesse 18.1 6.5 2.78 3.6 5.03
SR 16.2 5.3 3.06 4.4 3.68

Fig. 6   The structural profile of the stiffened cylindrical shell

Table 5   Value space of the design variables

Parameters Values (mm)

Thickness of the shell t 18–18
Big ribs
 Thickness of the web t

2
14–26

 Height of the web h
1

80–120
 Thickness of the face panel t

1
12–22

 Width of the face panel b
1

250–300
Small Ribs
 Thickness of the web t

4
22–35

 Height of the web h
2

130–170
 Thickness of the face panel t

3
20–30

 Width of the face panel b
2

450–500
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stability of the shell. �1, �2, and �3 are the mid-span mid-
plane stress of the shell, longitudinal stress at the rib, and 
rib stress respectively. Moreover, k1 ∼ k3 are three factors 
to determine critical stress associated with the yield limit 
of the material �s = 650MPa , whose values are 0.80, 1.15, 
and 0.60 respectively in line with the ship norm (Zhou et al. 
2021). Pcr1 is the local buckling pressure and Pc = 3MPa is 
the computational pressure to simulate the underwater work-
ing condition with 300 m. w(x) is the weight function and 
w0 is the marginal weight of the stiffened cylindrical shell 
with w0 = 76 ton . In this case, the software ANSYS 18.2 is 
employed to obtain the simulated responses of �1, �2, �3 and 
Pcr2 separately, in which the meshing schemes for strength 
simulation and global stability simulations are: more than 
137,600 elements for HF strength simulation, about 14,300 
elements for LF strength simulation; more than 35,000 

elements for HF global stability simulation, about 2,800 ele-
ments for LF global stability simulation. It is demonstrated 
that the convergence of the finite element analysis could be 
guaranteed for both HF strength and stability analyses (Yi 
et al. 2018). In addition, the mesh models and correspond-
ing simulation results of the stability analysis are depicted 
in Fig. 7 as an example for better illustration.

It could be found from Fig. 7 that although there is a great 
discrepancy in the number of mesh grids, the simulation 
results of both the HF and LF models have similar contour 
distribution, which reflects the coarse model is an excellent 
simplification. All the simulations are executed on the com-
putational platform with a 3.30 GHz AMD Ryzen 95,900HX 
Eight-Core Processor and 16 GB RAM. The simulation 
times for an HF model and an LF model are approximately 
60 s and 19 s; therefore, the cost ratio is set to 3 in this case.

Fig. 7   The mesh models and corresponding results of different fidelity simulations of global stability



	 J. Cheng et al.

1 3

  188   Page 18 of 21

To optimize the structure, 20 HF samples and 30 LF 
samples are initially determined through the LHD method. 
Then the optimization is conducted by the five non-parallel 
optimization methods introduced in the last section. The 
maximum NEFE of this case is set as 50, and the optimiza-
tion results are provided in Table 6. As the results shown, 

the proposed VF-CLCB obtained the shell that has the best 
global stability compared with the other methods. The simu-
lation results for global stability are illustrated in Fig. 8. It 
can be seen that the global stability of the stiffened cylindri-
cal shell is enhanced with the rational design of the shape 
parameters. This also indicates that the VF-CLCB can effec-
tively handle the time-consuming VF engineering optimiza-
tion problem.

The proposed PVF-CLCB approach is then used to opti-
mize this engineering problem with the same initial sample, 
and the maximum NEI is set to 20. The optimization results 
are provided in Table 7, from which it can be seen that the 
PVF-CLCB can obtain better structures compared with the 
PCEI method in two parallel scenarios. However, the opti-
mal structures are a little bit worse than those obtained by 
the VF-CLCB. Moreover, the PCEI and PVF-CLCB with 
q = 10 outperform those with q = 5 , which indicates that the 
parallel optimization method can enhance its performance 
by adding the parallel computation resource.

7 � Conclusion

In this work, a VF-CLCB criterion is proposed to solve 
the computationally expensive COPs with bi-level fidelity. 
Specifically, a constraint-oriented variable-fidelity CLCB 
function and an objective-oriented variable-fidelity PLCB 

Table 6   Optimization results of 
the non-parallel methods for the 
engineering case

Optimization methods CEI AEI VF-EI VF-LCB VF-CLCB

Thickness of outer plate t 27.441 27.203 27.228 27.322 27.363
Small rib
 Panel thickness t

3
14.000 14.536 14.352 14.196 14.413

 Panel width b
2

83.290 87.212 86.107 85.110 86.347
 Web thickness t

4
12.000 12.000 12.000 12.072 12.000

 Web height h
2

250.001 250.003 250.002 250.001 250.002
Big rib
 Panel thickness t

1
27.486 27.827 28.467 26.535 25.278

 Panel width b
1

144.685 163.212 169.997 158.766 151.216
 Web thickness t

2
20.000 20.001 20.000 20.002 20.000

 Web height h
1

450.007 450.000 450.000 450.000 450.055
Constraints
 g

1
− 0.315 − 0.314 − 0.313 − 0.315 − 0.316

 g
2

− 0.586 − 0.578 − 0.578 − 0.582 − 0.584
 g

3
− 0.152 − 0.152 − 0.151 − 0.152 − 0.154

 g
4

− 0.737 − 0.736 − 0.736 − 0.737 − 0.737
 g

5
− 0.094 − 0.094 − 0.094 − 0.100 − 0.094

 g
6

− 0.009 − 0.000 − 0.000 − 0.001 − 0.002
 g

7
− 0.123 − 0.023 − 0.005 − 0.003 − 0.003

 g
8

− 0.022 − 0.022 − 0.022 − 0.022 − 0.022
 g

9
− 0.070 − 0.034 − 0.006 − 0.033 − 0.002

Objective values 13.2011 13.2467 13.2208 13.2530 13.2923

Fig. 8   Simulation results of the optimum stiffened cylindrical shell by 
the proposed VF-CLCB method
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function are defined based on the VF surrogate models. 
Based on these two functions, the promising sample points 
and corresponding fidelity levels can be determined. Moreo-
ver, an adaptive selection strategy is developed to further 
enhance the optimization efficiency. To verify the effec-
tiveness of the proposed VF-CLCB method, 12 benchmark 
numerical examples and an engineering case were tested, the 
results are summarized: (1) the proposed VF-CLCB method 
is more efficient and robust compared with the popular opti-
mization methods; (2) VF-CLCB shows obvious superiority 
for different cost ratios; and (3) for the engineering case, 
global stability optimization of the stiffened cylindrical 
shell, the proposed method obtained the structure with the 
best performance on global stability.

To reduce the design cycle, the VF-CLCB is further 
extended to a PVF-CLCB method which can optimize with 
several computers computing simultaneously. Concretely, a 
VF influence function is defined to approximately calculate 
the estimation error. Additionally, an allocation strategy is 

developed to adaptively distribute the computation resources 
for objective and constraint. The results of the numerical test 
cases indicate that the proposed PVF-CLCB method can 
speed up the optimization process by 2.83 times with five 
computers working simultaneously, and 4.00 times with ten 
computers. For the engineering problem, the results indicate 
that the PVF-CLCB can significantly reduce the design cycle 
compared with non-parallel methods.

This work improves the effectiveness of using VF sur-
rogate models to solve computationally expensive COPs. 
However, since the computation complexity of VF mode-
ling is commonly unbearable when facing high-dimensional 
problems, the VF surrogate model is hardly employed in this 
situation. In future work, the fast modeling of VF surrogate 
models will be researched to enhance its applicability in 
engineering optimization. Besides, the proposed approach 
will be extended to a more general method by considering 
multiple (more than two) levels of fidelity and applied to 
more complicated engineering problems.

Table 7   Optimization results 
of the parallel methods for the 
engineering case

Optimization methods PCEI (q = 5) PVF-CLCB (q = 5) PCEI (q = 10) PVF-CLCB (q = 10)

Thickness of outer plate t 27.537 27.314 27.614 27.387
Small rib
 Panel thickness t

3
14.019 14.473 14.000 14.146

 Panel width b
2

80.000 86.332 80.071 84.682
 Web thickness t

4
12.000 12.022 12.001 12.086

 Web height h
2

250.000 250.049 250.004 250.056
Big rib
 Panel thickness t

1
25.872 26.041 24.478 25.815

 Panel width b
1

154.125 150.558 142.423 150.616
 Web thickness t

2
20.080 20.001 20.005 20.000

 Web height h
1

450.048 450.024 450.143 450.140
Constraints
 g

1
− 0.316 − 0.315 − 0.317 − 0.316

 g
2

− 0.588 − 0.583 − 0.591 − 0.584
 g

3
− 0.152 − 0.153 − 0.153 − 0.153

 g
4

− 0.736 − 0.737 − 0.736 − 0.737
 g

5
− 0.094 − 0.096 − 0.094 − 0.100

 g
6

− 0.049 − 0.006 − 0.047 − 0.002
 g

7
− 0.007 − 0.036 − 0.030 − 0.028

 g
8

− 0.026 − 0.022 − 0.022 − 0.021
 g

9
− 0.013 − 0.035 − 0.016 − 0.020

Objective values 13.1812 13.2573 13.1978 13.2647
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