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Abstract—	   Environmentally friendly and comfortable 
buildings are a much sought after goal in today’s architectural 
practice. In order to improve energy consumption of buildings 
without sacrificing indoor comfort, careful consideration of 
design decisions is needed. Simulation tools provide a solution to 
one aspect arising from this need, namely the requirement for 
accurate quantitative results. On the other hand, the complexity 
of the real-world design problems in question calls for decision 
support tools that integrate, in addition to simulation, 
optimization, analysis, and modeling. The aim of the paper is to 
present ongoing work on the development of such a tool. The 
focus of the tool is on abstraction of the technical complexity, 
while maintaining a sufficient level of flexibility. The tool is 
designed according to an integrated workflow beginning from 
sampling, data analysis, model creation and testing, up until the 
final analysis of the optimization results. We present the 
architecture of the platform, as well as its application in two case 
studies, one focusing on the design of an office tower, and one on 
the design of a sustainable facade. Results from qualitative usage 
cases indicate favorable performance in supporting decision-
making. 

Keywords—	   Decision Support, Optimization, Surrogate 
Modeling, Data Analysis, Architectural Design 

I. INTRODUCTION

It is well established that the built environment profoundly 
affects many aspects of our society, not the least of which are 
related to sustainability and human comfort. This calls for an 
informed decision making process, that is based on objective 
figures regarding the various performance aspects of the built 
environment. Moreover, this information needs to be made 
available as early as possible in the design decision-making 
process. Ideally, decision makers should be equipped with data 
on design performance and potential of design alternatives 
already from the conceptual design stage. Tools for this 
purpose exist, but they are either too technical in nature, or 
their capabilities are not in par with the state-of-the-art. The 
present research is inspired by the need for a software tool that 
may facilitate the application of computational decision 
support methods in the fields of sustainable building design 
and architecture.  

The aim of this research, as such, is to produce a software 
tool that i. offers state-of-the-art computational decision 
support methods, focusing mainly on optimization, meta-

modeling and cognition, and, ii. abstracts away as much as 
possible from the technical infrastructure from the end user, the 
decision maker, allowing for high-level operations. We term 
this tool, CIDEA. 

 The paper is structured as follows: In section 2, a brief 
background is presented, and popular tools are being outlined. 
In section 3, the proposed tool is being presented in detail, 
focusing on its software architecture, user interface, 
functionality and extensibility. Section 4 discusses two 
applications in the field of sustainable office design that have 
been carried out in order to evaluate the tools effectiveness. 
Section 5 provides a brief discussion on results from using the 
tool, and section 6 concludes the study. 

II. BACKGROUND

Simulation, while used extensively as a tool for supporting 
decisions in architectural design, is only one part of decision-
making and can only provide information on solutions that 
have already been established in the design process. On the 
contrary, it is desired in many cases that computational 
decision support systems offer advance information in the form 
of alternative solutions and their performance. Going one step 
further, the full range of optimal and near-optimal solutions 
should be made available, and even further, decision maker 
preferences need to be considered.  

Most decision support software tools use in the 
Architecture discipline focus mainly on the derivation and 
presentation of performance results on a single design solution, 
defined by the tool user. More advanced tools use techniques 
that allow the discovery of design alternatives, and 
performance evaluation thereof. However, these tools are 
generally either complicated for the end user, or offer limited 
functionality with respect to design discovery. Among varying 
reported tools, some are based on the use of what is mentioned 
as Parametric Analysis, which involves the perturbation of 
design parameters and subsequent comparison of results. This 
is the approach taken by the popular OpenStudio software and 
jePlus [1], among others.   

Tools that employ more advanced methods, such as 
stochastic optimization, are often too specialized, or require 
advanced technical knowledge. Furthermore, many of the tools 
are software-specific. As such, collaboration between teams 
often breaks down in the orchestration of different software 
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Fig. 2.  The Software Architecture of CIDEA, with emphasis on the 
interlinkable modules that make up the bulk of the functionality of the 
tool. 
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Fig. 3.  Scenario involving generation of predictive model and use in 
optimization. In process I. a data sample is transformed by a user-defined 
function (Transform) and subsequently used in training (Model Training). 
The resulting model is placed in the Module Pool for reuse. In process II. 
an optimization process (Optimization) is communicating decision 
variable, objective function and constraint values to the recently trained 
predictive model (Predictive Model), through the same transformation 
used during training (Transform). 

 

packages. This turns out to be a significant obstacle during the 
design process, due to the fact that designing takes place in a 
time-constraint environment.  

There have been several tools reported which make use of 
optimization, among which Paragen [2], GENE_ARCH [3], 
MOBO [4], ArDOT [5] as well as commercial packages such 
as TRNSYS and ModeFRONTIER, among others. For a 
comprehensive review on available tools, the reader is referred 
to [6].  

 The proposed tool was built to address mainly two issues, 
as have been briefly outlined above: The first one is the relative 
lack of software tools that include advanced, state-of-the-art 
computational decision support implementations and are 
addressed to non-expert users in the field. The second one is 
the apparent fragmentation caused by platform-specific 
decision-support tools, which, as mentioned above, increases 
the technical complexity in the design process. CIDEA puts 
forward a clean delineation of responsibilities, namely: the 
concentration of problem-agnostic computational decision 
support functionality, focusing on optimization and cognition, 
and the exclusion of problem-specific functionality, which 
should be taking place in specialized design packages. A 
schematic demonstrating the framework of operation of 
CIDEA is available in Fig. 1. 

III. SOFTWARE ARCHITECTURE AND FUNCTIONALITY 

A. Architecture 
The software architecture of CIDEA is outlined in Fig. 2. A 

fundamental view towards the tool’s architecture is that of a 
series of modules that reside in a common environment. The 
environment itself takes care of generic tasks, such as module 
management and interaction. Each of the modules, on the other 
hand, is a self-contained program, that carries out a specific 
task or set of tasks, and provides a Graphical User Interface 
(GUI) for the user to interact with, as well as exposes an 
Application Programming Interface (API) to allow interaction 
with other modules. The tasks of each module are performed 
on one or more background threads, with periodic GUI 
notifications, thus allowing the user to continue working while 
a task is running. CIDEA and it’s modules follow the Model-
View-Controller (MVC) software architecture. 

The modules may provide references to other modules, and 
request data through the module API, optionally passing 
arbitrary parameters in the form of key-value pairs, along with 
the request. In essence, this allows the implicit creation of one 
or more directed graphs within the application environment, 

through recursive referencing of nodes. The operation, in this 
case, is such that a node requests processed data from the 
referenced nodes upstream, which, in turn do the same for their 
own references, propagating the process until a node without 
upstream references is found.  

While this scheme can easily provide a fully automated 
process, by relating all modules in a single undirected graph, in 
practice only small groups of modules are usually referenced. 
As will be seen later on, this provides a compromise between 
two extremes: One is that of the user fully defining a priori the 
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Fig. 1.   Delineation of functionality between the proposed tool, CIDEA 
and domain-specific software packages. 



Modules List

Module Category

Modules in Category

Module GUI  

Fig. 4.  The Graphical User Interface of the, CIDEA. On the left, a categorized list of active modules. On the right, the module-specific GUI. 

 process to be followed, and then letting it run and eventually 
altering it’s parameters; the other is that of the user performing 
each step of the process manually.  

CIDEA takes a middle road, in an attempt to eliminate 
drawbacks of both extremes. Thus, a trivial data pre-processing 
task can be easily automated through referencing modules 
together, but at the same time, output of a critical process, such 
as a predictive model hyperparameter optimization, can be 
output as a separate module and examined by the user, before 
being used in another process, such as surrogate-based 
optimization. An example of such a process, involving 
derivation of predictive model based on transformed data and 
subsequent use in optimization, is presented graphically in Fig. 
3. 

CIDEA is based on the fundamental assumption of 
separation between algorithm and design problem. As such, the 
platform has been designed to be completely problem-agnostic 
in all respects, both in terms of algorithms in use, as well as its 
architecture and interface. This characteristic generates an 
interesting question as to how integration with domain- and 
problem-specific tools should occur. In this case, the decision 
was to make use of a client-server architecture through which 
the proposed tool may effectively communicate with software 
used by decision makers. In our client-server model the client 
is the tool itself, and the server is a small “adapter” program, 
that is written as a plugin to domain-specific software. Its task 
is to translate the standardized communication between CIDEA 
and the domain-specific software.  

During an experiment of an optimization task, the adapters 
would be first set-up in one or more machines, running the 
domain-specific software. Subsequently, CIDEA would 
connect to the host and query required information. It should 
be noted that this scheme gives itself very easily to parallel 
processing, in contrast with configuration or file-based 
schemes, which require extensive preparation for each 
application, and demonstrate synchronization issues. The 
connection protocol is HTTP, and the data exchange scheme is 
JSON. So far, adapter server programs have been developed 

for the Grasshopper™ parametric design program, associated 
to the Rhino3d CAD software, and the Dynamo parametric 
design software, associated to the Autodesk Revit™ CAD 
program. A diagram of the inter-program communication is 
available in Fig. 5. 

B. Graphical User Interface (GUI) 
CIDEA implements a GUI for interacting with the various 

components, and visually setting up their references. The GUI 
consists of a single window, with a categorical list of modules 
that are included in a document, on the left of the window, and 
a module-specific detail view on the right. The latter is 
responsible for exposing configuration options, and visualizing 
the progress of ongoing tasks.  

Referencing of modules is performed by a single drag-and 
drop operation: the user first selects the referencing module, so 
that it’s configuration view shows up, and then drags the 
referenced module from the list on the left, to a corresponding 
placeholder on the module configuration screen. In this way, 
the act of module referencing is performed in an intuitive way, 
while reducing program complexity, as there are no individual 
module lists to manage for every reference. A number of 
snapshots of the GUI of CIDEA are available in Fig. 4.  

Lastly, it should be mentioned that the proposed tool does 
away completely with the management of any sort of 
configuration files, which is a common shortfall of many of the 
existing tools. 

C. Functionality 
In this section, we briefly touch on the algorithms that are 

available as modules in CIDEA, and discuss the rationale 
behind their selection and implementation. 

a) Data Processing and Generation 
CIDEA offers algorithms for generating pseudorandom and 

quasi-random, low discrepancy, multi-dimensional sequences, 
as well as sampling from existing data.  
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Fig. 5.  Communication diagram between the prroposed tool and CAD 
and Parametric Design software packages. Communication happens in a 
Distributed manner, using the HTTP 1.1 protocol The External Process 
module can be referenced by other modules, and as such act as a delegate 
for processes depending on external programs. 

 Regarding basic pseudorandom generation, the tool 
supports generating numbers in user defined ranges, according 
to uniform and normal distributions (using the Box-Muller 
transform). In addition to pseudorandom sequences, two types 
of low-discrepancy sequences are supported. Low-discrepancy 
sequences, also known as “quasi- random” sequences, are 
numbers that are better equidistributed in a given volume than 
pseudo-random numbers [7], [8]. Low discrepancy sequences 
have been reported to offer advantages when used for meta-
model and surrogate training [9], [10]. The sequences 
supported are Sobol sequence [8] and Halton sequence [11].  
Finally, one may sample using random walks with uniform 
random starting points, user defined step size and optional 
restarts. 

In addition, algorithms for sampling and partitioning 
datasets are present, to facilitate preprocessing and testing. 
Finally, corruption of existing dataset values according to a 
probability, is available. This is especially useful for generating 
data for training auto-associative models via methods similar to 
those used for Denoising Auto-encoders, such as those 
introduced in [12]. As will be seen later in the article, such 
models are useful to capture latent distributions in datasets of 
interest, and as such useful in building constraint-satisfaction 
models that impose constraints in preference vectors. 

Outputs from all sampling methods are made available as 
datasets, to be used subsequently on other tasks, such as 
sampling of objective function space via simulation (e.g. for 
analysis or surrogate model training). 

b) Predictive Modeling 
CIDEA offers several algorithms to build predictive 

models, as well as tools for cross-validating models and 
parameter tuning. Currently, five training algorithms are 
implemented; details of the algorithms are not given in this 
study, for reasons of compactness, however the interested 
reader is invited to find detailed descriptions in the referenced 
studies. The implemented algorithms are as follows: 

• Multilayer Perceptrons (MLP), trained using 
Back-Propagation [13], [14] 

• MLPs trained using Resilient-Back-Prop [15] 

• Radial Basis Function (RBF) Networks trained 
using the Orthogonal Least Squares (OLS) 
Algorithm [16]–[18] 

• RBF Networks trained using the OLS-PRESS 
Algorithm [19] 

• Support Vector Machine-based Regression, using 
the Sequential Minimal Optimization Algorithm 
[20]–[22] 

For reasons of space efficiency we do not provide a 
description of each algorithm here; the interested reader is 
referred to the referred publications, which contain detailed 
treatments of each case. Among many different predictive 
algorithms, the above mentioned ones have been chosen 
because of their reported popularity in surrogate modelling 
[23]. All algorithms as they have been implemented, are 
capable of multi-output predictions. The algorithms are part of 
the YCML machine-learning framework1, and make use of the 
fast matrix math implementations found in the BLAS and 
LAPACK libraries for improving the efficiency of the 
underlying matrix computations.  

In training the algorithms, there are options for evaluating 
their performance using cross-validation. Cross-validation 
(CV) has been chosen over estimates of predictive performance 
despite it’s increased computational cost, as it is a universal 
approach to providing less biased estimates of a predictive 
models performance. Two types of CV are available: k-Fold 
and Monte Carlo. In k-Fold CV, the training sample is 
partitioned in k folds; we produce k different models, trained 
on k-1 folds, and test them on the remaining fold each time. 
The prediction error is the mean of the errors on each 
individual fold. In Monte Carlo CV, we perform n different 
models, by splitting the training sample into two parts by a 
factor p. The model error is the mean of each individual trained 
model’s error. 

Finally, CIDEA offers several methods for optimizing the 
hyper-parameters of the predictive model. The user may 
choose which parameters are to be optimized, and the 
respective parameter domains. We implement several types of 
parameter search and optimization: Grid-based search, 
pseudorandom search, quasi-random search using two 
sequences, Sobol [8] and Halton [11]. The tool identifies the 
best performing model, as well as outputs a dataset with the 
configurations and corresponding performances of each 
instance that has been tested. Hyper-parameter search makes 
use of model performance either on the training set, or using 
the user-defined CV method, according to the results of which 
the model is ultimately chosen.  

c) Optimization and Analysis 
CIDEA implements optimization algorithms with a focus 

on multi-objectivity and stochastic optimization.  Two 

                                                             
1  The YCML machine learning framework is an Open Source 

(GPLv3) software library that is available online at the following address: 
https://github.com/yconst/YCML . The framework is currently under 
continued development, and will be subject to publication in the near future. 



 

Fig. 6.  The office space considered in the first application. It is a space of 
variable dimensions, and variable orientation to the North. It consists of 
two windows of variable dimensions, on each of two adjacent sides. 
Within the space, a single point with coordinate and orientation is used to 
measure illuminance and glare. 

 algorithms are currently implemented, namely the well-known 
NSGA-II [24], and the HYPE algorithm [25]. In addition to the 
optimization algorithms themselves, there are tools that aid in 
evaluating the algorithm performance. Currently, estimation of 
Hypervolume, using a stochastic sampling algorithm, as 
described in [25], as well as calculation of the Inverted 
Generational Distance Metric [26] is implemented.  

The implementation of optimization algorithms in CIDEA 
follows a modular approach. To formulate and solve an 
optimization problem, one selects an algorithm and references 
one or more problem modules, which in turn define one or 
more objective functions or constraints. As problem module 
can be considered any module that accepts numerical data as 
an input, and provides numerical data as output. As such, it is 
possible to reference plain functions, predictive models, as well 
as a mixture of the above.  

It is worth mentioning that in the case of referencing a 
predictive model as an objective function, we are practically 
turning the predictive model into a surrogate model. As such, 
the use of surrogate modeling in optimization is 
straightforward, and does not introduce any new machinery or 
user interaction. 

D. Extensibility 
CIDEA is build with extensibility in mind. An API is 

exposed which allows the creation of new modules, with their 
own logic, framework and library references, and user interface 
elements. Through the API, the functionality of each module is 
exposed to others, so that they may be combined together by 
referencing. The most essential API functions serve goals as 
outlined below: 

• Being able to notify of what types of data the 
module is able to process, or output, 

• Being able to accept arbitrary data of the correct 
type, and return the result, 

• Being able to return persistent data (if any) of the 
requested type, 

• Being able to report it’s referenced modules. 

The above functionality is essential for a module to be able 
to be incorporated in an automated or semi-automated process 
defined by the user. 

IV. APPLICATIONS 
Two applications in the field of building performance 

analysis and optimization are reported. The purpose here is to 
illustrate the tool’s functionality in a design environment, 
through demonstrating advanced use-cases on research-based 
design scenarios. 

A. Surrogate Modeling for Visual Comfort Approximation 
The first example aims to outline an application of CIDEA 

in the development of a surrogate model for daylighting and 
glare evaluation in an office space, and it’s subsequent use in 
multi-objective optimization, in order to derive optimal 
solutions with respect to those objectives. This application is 
related to a previous publication on the same topic [27]. 
Specifically, the use of a problem definition interface, together 
with the surrogate models, for easily defining the optimization 
problem at hand, is outlined. 

The problem at hand concerns the development of a 
predictive model that can approximate the adequacy and 
quality of daylight within an office space of variable 
dimensions and window configurations. The inputs to the 
predictive model are the dimensions, orientation and window 
configurations of the office, as well as the coordinates, within 
the office space, and direction of a sampling point 
corresponding to viewer position, and are available in Table I.  

TABLE I.  INDEPENDENT VARIABLES FOR APPLICATION A. 

Name Unit Range 
Room Width m [4, 8] 
Room Length m [4, 8] 
Orientation rad [0, 2π] 
Window 1 Width % [0, 100] 
Window 1 Height m [1.5, 2.5] 
Window 1 Position % [0, 100] 
Window 2 Width % [0, 100] 
Window 2 Height m [1.5, 2.5] 
Window 2 Position % [1.5, 2.5] 
Sampling Point X - [0, 1] 
Sampling Point Y - [0, 1] 

 

An instance of the space in question is available in Fig. 6. 
The outputs are two: The Daylight Autonomy (DA) value [28], 
[29] for the particular point, and the Daylight Glare Probability 
(DGP) value [30], [31], for the point and direction in question. 
DA and DGP are popular metrics that can be used to define the 
visual comfort of a single point in an interior space. DA and 
UDI are defined as follows: 

DA,UDI = 1
h b(I(pi ),B)
i=1

h

∑  

Where I(x) is a function giving the illuminance at point p, 
and b(x) a function that returns one if x is within bounds B, and 



 

Fig. 8.  Outline of the cognitive framework used in Application 2. One the 
left, Objective Function space of a 2-objective problem. On the right, 
decision variable space of the same problem, supposing 3 DVs for visual 
clarity. Solution A is a non-dominated solution with undesirable features. 
Solution B occurs through manipulation of features by the decision 
maker. It satisfies designer preferences but is not non-dominated. 
Solution C is a result of the cognitive system reaction to solution B, and is 
both preferable and near-optimal, to the degree allowed by the problem 
definition . 
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Fig. 7.  The openings on the façade of the second application, together 
with the shading elements and corresponding decision variables. 

 0 otherwise. The main difference between DA and UDI is how 
B is defined. The reader is referred to the respective 
publications above for more information and derivations of the 
metrics in question. Calculation of DA was performed using 
the Radiance program [32], and of DGP using the evalglare 
program [33].  

Subsequently, a multi-objective optimization scenario that 
includes improvement of daylight conditions, namely 
maximization of Daylight Autonomy and minimization of 
Glare is considered, and approached using two types of 
Evolutionary Algorithms: NSGA-II and HYPE. The objective 
function formulation is as follows: 

min(−DA,DGP)  

Where DA and DGP correspond to the above defined 
Daylight Autonomy and Daylight Glare Probability metrics, 
and their values are obtained by means of the predictive 
models discussed. 

B. Cognitive Modeling for Sustainability in the context of 
Multi-Criterion Decision Making 
The second application study that we wish to present aims 

at highlighting how CIDEA can easily be used in the context of 
Multi-Criterion Decision Making (MCDM), and preference-
based optimal design. The study concerns the identification of 
suitable designs for an office façade having shading elements, 
in order to maximize visual comfort and minimize energy 
consumption. These two quantities form objective functions, 
and are calculated by means of simulation. We make use of the 
Radiance [32] and EnergyPlus [34] programs. The problem 
formulation is as follows: 

min(UDI,−E)  

There are four decision variables, namely  Window Width 
(WW), Window Height (WH), Shader Count (SC) and 
Overhand Depth (OD). The correspondence of the decision 
variables to the façade design is outlined in Fig. 7. 

It is well understood that the façade has a complex role in 
regulating heat exchange with the outside; through conductive, 
convective and radiative heat exchange. In this respect, the 

placement and size of exterior openings, as well as shading 
devices, is of great significance. 

At the same time, these factors play an important role in the 
composition of the buildings image, as they belong to it’s 
façade. As such, second-order criteria with respect to concrete 
object properties are at play.  

We use CIDEA to train a cognitive auto-associative model, 
in accordance to the method proposed in [35], [36], to enable 
preference-based decision support for optimal façade 
configurations. The reader is referred to the above-mentioned 
references for an elaborate treatment of the said method. In a 
nutshell, we wish to produce a predictive, auto-associative 
model that accepts a preference vector as an input, comprising 
of values in the decision variable space, and outputs an 
adjusted vector, again in decision variable space, that 
corresponds to a near-optimal or optimal solution, or best-
tradeoff in the Pareto sense. It is stressed here that the arbitrary 
preference vector introduced as an input to the model is highly 
unlikely to correspond to a near-optimal solution. The model is 
trained considering data identified from a Pareto front obtained 
using a stochastic optimization algorithm, in our case NSGA-
II. A diagram of the action of the cognitive model is available 
in Fig. 8. 

V. DISCUSSION 
Regarding the first application as described previously, it 

was first deemed necessary to identify a suitable set of hyper-
parameters for our predictive models. This procedure was 
performed by comparing two different models: A 
Backpropagation-trained Feed-Forward Network, and a RBF 
Network. The Coefficient of Determination (R2) of the best-
performing models on the DA dataset is available in Table II. 
For each model, two sets of models were compared, according 
to different parameter search strategies: Grid-based search and 
Random search. For each case, a total of 50 variants were 
comapred. The results show a clear advantage of RBFN in 
prediction performance. Grid search was able to identify better 
performing FFN models. 



Randomized 
Preference Vector RBF Reaction Vector Non-Dominated?

YESDA: 8.40%
E: 4187 kWh

DA: 41.02%
E: 3998 kWh

DA: 18.64%
E: 4176 kWh

DA: 62.45%
E: 4172 kWh

DA: 41.09%
E: 4121 kWh

DA: 60.50%
E: 4114 kWh

DA: 1.01%
E: 4014 kWh

DA: 46.17%
E: 4081 kWh

DA: 85.32%
E: 4917 kWh

DA: 74.10%
E: 4287 kWh

YES

YES

NO

NO

 

Fig. 9.  Several solutions and corresponding performance according to 
Daylight Autonomy (DA) and Total Energy consumption, resulting from 
the response of the cognitive RBF model, for different preference vectors. 
The far right column indicates whether the cognitive response is non-
dominated with respect to the input. 

 

TABLE II.  R SQUARED OF DIFFERENT PREDICTIVE MODELS ON THE DA 
DATASET OF APPLICATION A. , USING DIFFERENT HYPER-PARAMETER SEARCH 

METHODS 

Model / Search 
Method 

Parameters R2 

FFN / Grid # Iterations, 
# Samples / Iteration 

0.8097 
FFN / Random 0.7428 
RBF / Grid Error Threshold, 

Kernel Bandwidth (β) 
0.9164 

RBF / Random 0.9294 
 

Subsequently, the best model has been selected to model 
the objective functions for multi-objective optimization. An 
optimization run was performed using the NSGA-II algorithm. 
Finally, a sample of the solutions on the Pareto front was 
evaluated using the simulation model, instead of the 
metamodel.  

As to the use of CIDEA, this problem was implementable 
in a straightforward manner; firstly, through the use of the 
“Sampling” module, a dataset of DV values was generated. OF 
values for each point were sampled using the “External 
Process” module. Subsequently, the generated datasets were 
used with the built-in parameter search option of the 
“Predictive Model Training” module. Resulting surrogate 
models were used with the “Optimization” to derive the non-
dominated solutions. Simulation times for Radiance are 5.6 
minutes, and for evalglare 10 seconds, on average. The 
produced surrogate model evaluates in the range of a few tens 
of milliseconds (approximate). 

With respect to the second application, the HYPE 
algorithm was initially used in order to establish a Pareto front 
for the problem at hand. Function evaluation was performed 
using simulation interface DIVA for Rhino [37]. Data 
exchange between CIDEA and the Rhino 3D CAD program 
was established using a software adapter, as discussed in 
section 2. Subsequently, an RBF network was trained in an 
auto-associative manner, using a linear search to identify 
optimal value for the kernel bandwidth of the model. In this 
case, an RBF network that was trained with multi-output 
Orthogonal Least Squares was used. This is a similar approach 
as has been described by Çiftçioğlu and Bittermann [36]. For 
evaluating model performance, we did not use a least squares-
based performance metric, as it is not suitable for this task; 
rather, we made use of the IGD metric [26], and make a 
comparison between IGD values output from a sample of 
uniform random values in the range of the problem decision 
variables, and the response of the trained model, when 
presented with the randomized sample as an input. Results for 
two different RBF networks are available in Table IV. In 
addition, Fig. 9 provides the reaction obtained by the trained 
algorithm for a number of preference vector inputs. This 
application study is part of an ongoing project that is subject to 
publication.  

TABLE III.  PERFORMANCE OF TWO RBF NETWORKS WITH DIFFERING 
KERNEL BANDWODTHS, ON THE COGNITIVE DESIGN PROBLEM OF APPLICATION 

B. 

Bandwidth Regressor 
Count 

GD (random) GD (response) 

0.8 21 0.103 2.66 * 10-3 
3.0 9 0.092 5.75 * 10-3 

 

It should be mentioned that in both cases, CIDEA allowed 
carrying out tasks such as processing the input data, training 
and optimizing model performance, performing the 
optimization and analyzing and presenting the results, in a 
quick and efficient way. As such, it is the author’s belief that 
CIDEA can provide a benefit in decision making during the 
design process. 

VI. CONCLUSION 
In this paper, a decision-support tool, named CIDEA, with 

application in design for the built environment was presented. 
The tool adopts a flexible approach of organizing together 
different modules, each with a specialized functionality, to 
generate a workflow by mixing automation and interaction. 
The following are presented as contributions of the presented 
work: 

1. The tool includes instruments that help process data, 
create predictive models, make inference, perform 
optimization, and perform analysis on results, under 
one roof, allowing for immediate access and as such 
increased usability. 

2. The systems functionality is based on connecting 
different modules together into one or more Directed 
Graphs (an action termed referencing in the current 
work). Such a mode of operation allows for complex 
orchestration and for performing more complex 
tasks than the individual modules can perform. As 
such, non-experts may realize research-intensive 
applications using the proposed tool, in an intuitive 
way. 

3. The proposed tool relies on an Open-Source and high 
performance Machine Learning and Optimization 
library, and as such the algorithms in use can be 
easily controlled and validated. 



On the other hand, it is acknowledged as a limitation that a 
purely visual environment, such as in the presented work, may 
not offer the required flexibility for orchestrating and 
automating large scale, complex learning or optimization 
workflows. However, for such cases there exist specialized 
tools that are much more appropriate.  

We have evaluated the applicability of CIDEA in 
supporting evaluation and optimization tasks in two different 
design scenarios, involving sustainability and visual comfort-
related goals. It was deemed that, the proposed tool resulted in 
reduced time for performing tasks related with design decision 
support. It is thus the author’s belief that the proposed tool may 
introduce a better adoption of state of the art computational 
decision support methods in the field of architecture. 
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