

Delft University of Technology

A computational intelligence decision-support environment for architectural and building
design
CIDEA
Chatzikonstantinou, Ioannis

DOI
10.1109/CEC.2016.7744282
Publication date
2016
Document Version
Accepted author manuscript
Published in
Proceedings 2016 IEEE Congress on Evolutionary Computation (CEC)

Citation (APA)
Chatzikonstantinou, I. (2016). A computational intelligence decision-support environment for architectural
and building design: CIDEA. In Proceedings 2016 IEEE Congress on Evolutionary Computation (CEC) (pp.
3887-3894). IEEE. https://doi.org/10.1109/CEC.2016.7744282

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/CEC.2016.7744282
https://doi.org/10.1109/CEC.2016.7744282

A Computational Intelligence Decision-Support
Environment for Architectural and Building Design:

CIDEA

Ioannis Chatzikonstantinou
Faculty of Architecture, Yaşar University, Izmir, Turkey

Department of Building Technology, Faculty of Architecture, TU Delft, Delft, The Netherlands
i.chatzikonstantinou@yasar.edu.tr

Abstract—	 Environmentally friendly and comfortable
buildings are a much sought after goal in today’s architectural
practice. In order to improve energy consumption of buildings
without sacrificing indoor comfort, careful consideration of
design decisions is needed. Simulation tools provide a solution to
one aspect arising from this need, namely the requirement for
accurate quantitative results. On the other hand, the complexity
of the real-world design problems in question calls for decision
support tools that integrate, in addition to simulation,
optimization, analysis, and modeling. The aim of the paper is to
present ongoing work on the development of such a tool. The
focus of the tool is on abstraction of the technical complexity,
while maintaining a sufficient level of flexibility. The tool is
designed according to an integrated workflow beginning from
sampling, data analysis, model creation and testing, up until the
final analysis of the optimization results. We present the
architecture of the platform, as well as its application in two case
studies, one focusing on the design of an office tower, and one on
the design of a sustainable facade. Results from qualitative usage
cases indicate favorable performance in supporting decision-
making.

Keywords—	 Decision Support, Optimization, Surrogate
Modeling, Data Analysis, Architectural Design

I. INTRODUCTION

It is well established that the built environment profoundly
affects many aspects of our society, not the least of which are
related to sustainability and human comfort. This calls for an
informed decision making process, that is based on objective
figures regarding the various performance aspects of the built
environment. Moreover, this information needs to be made
available as early as possible in the design decision-making
process. Ideally, decision makers should be equipped with data
on design performance and potential of design alternatives
already from the conceptual design stage. Tools for this
purpose exist, but they are either too technical in nature, or
their capabilities are not in par with the state-of-the-art. The
present research is inspired by the need for a software tool that
may facilitate the application of computational decision
support methods in the fields of sustainable building design
and architecture.

The aim of this research, as such, is to produce a software
tool that i. offers state-of-the-art computational decision
support methods, focusing mainly on optimization, meta-

modeling and cognition, and, ii. abstracts away as much as
possible from the technical infrastructure from the end user, the
decision maker, allowing for high-level operations. We term
this tool, CIDEA.

 The paper is structured as follows: In section 2, a brief
background is presented, and popular tools are being outlined.
In section 3, the proposed tool is being presented in detail,
focusing on its software architecture, user interface,
functionality and extensibility. Section 4 discusses two
applications in the field of sustainable office design that have
been carried out in order to evaluate the tools effectiveness.
Section 5 provides a brief discussion on results from using the
tool, and section 6 concludes the study.

II. BACKGROUND

Simulation, while used extensively as a tool for supporting
decisions in architectural design, is only one part of decision-
making and can only provide information on solutions that
have already been established in the design process. On the
contrary, it is desired in many cases that computational
decision support systems offer advance information in the form
of alternative solutions and their performance. Going one step
further, the full range of optimal and near-optimal solutions
should be made available, and even further, decision maker
preferences need to be considered.

Most decision support software tools use in the
Architecture discipline focus mainly on the derivation and
presentation of performance results on a single design solution,
defined by the tool user. More advanced tools use techniques
that allow the discovery of design alternatives, and
performance evaluation thereof. However, these tools are
generally either complicated for the end user, or offer limited
functionality with respect to design discovery. Among varying
reported tools, some are based on the use of what is mentioned
as Parametric Analysis, which involves the perturbation of
design parameters and subsequent comparison of results. This
is the approach taken by the popular OpenStudio software and
jePlus [1], among others.

Tools that employ more advanced methods, such as
stochastic optimization, are often too specialized, or require
advanced technical knowledge. Furthermore, many of the tools
are software-specific. As such, collaboration between teams
often breaks down in the orchestration of different software

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.
Accepted Author Manuscript. Link to published article (IEEE): http://dx.doi.org/10.1109/CEC.2016.7744282

Module #1

Persistent Data
API Methods
GUI

References
Module #2

Module #1

Persistent Data
API Methods
GUI

References
Module #2

Module #1

Persistent Data
API Methods
GUI

References
Module #2

Module #1

Persistent Data
API Methods
GUI

References
Module #2

Model Views & GUIControllers

Program

Modules Pool Modules GUI

Fig. 2. The Software Architecture of CIDEA, with emphasis on the
interlinkable modules that make up the bulk of the functionality of the
tool.

Data Frame

Process I: Model Derivation

Module Pool

Process II. Optimization

Model Training

Predictive Model

Transform

Optimization

Fig. 3. Scenario involving generation of predictive model and use in
optimization. In process I. a data sample is transformed by a user-defined
function (Transform) and subsequently used in training (Model Training).
The resulting model is placed in the Module Pool for reuse. In process II.
an optimization process (Optimization) is communicating decision
variable, objective function and constraint values to the recently trained
predictive model (Predictive Model), through the same transformation
used during training (Transform).

packages. This turns out to be a significant obstacle during the
design process, due to the fact that designing takes place in a
time-constraint environment.

There have been several tools reported which make use of
optimization, among which Paragen [2], GENE_ARCH [3],
MOBO [4], ArDOT [5] as well as commercial packages such
as TRNSYS and ModeFRONTIER, among others. For a
comprehensive review on available tools, the reader is referred
to [6].

 The proposed tool was built to address mainly two issues,
as have been briefly outlined above: The first one is the relative
lack of software tools that include advanced, state-of-the-art
computational decision support implementations and are
addressed to non-expert users in the field. The second one is
the apparent fragmentation caused by platform-specific
decision-support tools, which, as mentioned above, increases
the technical complexity in the design process. CIDEA puts
forward a clean delineation of responsibilities, namely: the
concentration of problem-agnostic computational decision
support functionality, focusing on optimization and cognition,
and the exclusion of problem-specific functionality, which
should be taking place in specialized design packages. A
schematic demonstrating the framework of operation of
CIDEA is available in Fig. 1.

III. SOFTWARE ARCHITECTURE AND FUNCTIONALITY

A. Architecture
The software architecture of CIDEA is outlined in Fig. 2. A

fundamental view towards the tool’s architecture is that of a
series of modules that reside in a common environment. The
environment itself takes care of generic tasks, such as module
management and interaction. Each of the modules, on the other
hand, is a self-contained program, that carries out a specific
task or set of tasks, and provides a Graphical User Interface
(GUI) for the user to interact with, as well as exposes an
Application Programming Interface (API) to allow interaction
with other modules. The tasks of each module are performed
on one or more background threads, with periodic GUI
notifications, thus allowing the user to continue working while
a task is running. CIDEA and it’s modules follow the Model-
View-Controller (MVC) software architecture.

The modules may provide references to other modules, and
request data through the module API, optionally passing
arbitrary parameters in the form of key-value pairs, along with
the request. In essence, this allows the implicit creation of one
or more directed graphs within the application environment,

through recursive referencing of nodes. The operation, in this
case, is such that a node requests processed data from the
referenced nodes upstream, which, in turn do the same for their
own references, propagating the process until a node without
upstream references is found.

While this scheme can easily provide a fully automated
process, by relating all modules in a single undirected graph, in
practice only small groups of modules are usually referenced.
As will be seen later on, this provides a compromise between
two extremes: One is that of the user fully defining a priori the

Proposed Tool

Predictive Models
Optimization

Cognition
Analysis

Domain-Specific Software

Domain-Specific Modeling
Simulation
Visualization

Fig. 1. Delineation of functionality between the proposed tool, CIDEA
and domain-specific software packages.

Modules List

Module Category

Modules in Category

Module GUI

Fig. 4. The Graphical User Interface of the, CIDEA. On the left, a categorized list of active modules. On the right, the module-specific GUI.

 process to be followed, and then letting it run and eventually
altering it’s parameters; the other is that of the user performing
each step of the process manually.

CIDEA takes a middle road, in an attempt to eliminate
drawbacks of both extremes. Thus, a trivial data pre-processing
task can be easily automated through referencing modules
together, but at the same time, output of a critical process, such
as a predictive model hyperparameter optimization, can be
output as a separate module and examined by the user, before
being used in another process, such as surrogate-based
optimization. An example of such a process, involving
derivation of predictive model based on transformed data and
subsequent use in optimization, is presented graphically in Fig.
3.

CIDEA is based on the fundamental assumption of
separation between algorithm and design problem. As such, the
platform has been designed to be completely problem-agnostic
in all respects, both in terms of algorithms in use, as well as its
architecture and interface. This characteristic generates an
interesting question as to how integration with domain- and
problem-specific tools should occur. In this case, the decision
was to make use of a client-server architecture through which
the proposed tool may effectively communicate with software
used by decision makers. In our client-server model the client
is the tool itself, and the server is a small “adapter” program,
that is written as a plugin to domain-specific software. Its task
is to translate the standardized communication between CIDEA
and the domain-specific software.

During an experiment of an optimization task, the adapters
would be first set-up in one or more machines, running the
domain-specific software. Subsequently, CIDEA would
connect to the host and query required information. It should
be noted that this scheme gives itself very easily to parallel
processing, in contrast with configuration or file-based
schemes, which require extensive preparation for each
application, and demonstrate synchronization issues. The
connection protocol is HTTP, and the data exchange scheme is
JSON. So far, adapter server programs have been developed

for the Grasshopper™ parametric design program, associated
to the Rhino3d CAD software, and the Dynamo parametric
design software, associated to the Autodesk Revit™ CAD
program. A diagram of the inter-program communication is
available in Fig. 5.

B. Graphical User Interface (GUI)
CIDEA implements a GUI for interacting with the various

components, and visually setting up their references. The GUI
consists of a single window, with a categorical list of modules
that are included in a document, on the left of the window, and
a module-specific detail view on the right. The latter is
responsible for exposing configuration options, and visualizing
the progress of ongoing tasks.

Referencing of modules is performed by a single drag-and
drop operation: the user first selects the referencing module, so
that it’s configuration view shows up, and then drags the
referenced module from the list on the left, to a corresponding
placeholder on the module configuration screen. In this way,
the act of module referencing is performed in an intuitive way,
while reducing program complexity, as there are no individual
module lists to manage for every reference. A number of
snapshots of the GUI of CIDEA are available in Fig. 4.

Lastly, it should be mentioned that the proposed tool does
away completely with the management of any sort of
configuration files, which is a common shortfall of many of the
existing tools.

C. Functionality
In this section, we briefly touch on the algorithms that are

available as modules in CIDEA, and discuss the rationale
behind their selection and implementation.

a) Data Processing and Generation
CIDEA offers algorithms for generating pseudorandom and

quasi-random, low discrepancy, multi-dimensional sequences,
as well as sampling from existing data.

External Process
Module

Optimization
Module Sampling Module Other Modules

Proposed Tool

Software Packages

Multiple Client Instances - Distributed Processing

HTTP 1.1 Protocol

Grasshopper™

Adapter

Autodesk
Dynamo™

Adapter

Other Parametric /
CAD Platform

Adapter

Fig. 5. Communication diagram between the prroposed tool and CAD
and Parametric Design software packages. Communication happens in a
Distributed manner, using the HTTP 1.1 protocol The External Process
module can be referenced by other modules, and as such act as a delegate
for processes depending on external programs.

 Regarding basic pseudorandom generation, the tool
supports generating numbers in user defined ranges, according
to uniform and normal distributions (using the Box-Muller
transform). In addition to pseudorandom sequences, two types
of low-discrepancy sequences are supported. Low-discrepancy
sequences, also known as “quasi- random” sequences, are
numbers that are better equidistributed in a given volume than
pseudo-random numbers [7], [8]. Low discrepancy sequences
have been reported to offer advantages when used for meta-
model and surrogate training [9], [10]. The sequences
supported are Sobol sequence [8] and Halton sequence [11].
Finally, one may sample using random walks with uniform
random starting points, user defined step size and optional
restarts.

In addition, algorithms for sampling and partitioning
datasets are present, to facilitate preprocessing and testing.
Finally, corruption of existing dataset values according to a
probability, is available. This is especially useful for generating
data for training auto-associative models via methods similar to
those used for Denoising Auto-encoders, such as those
introduced in [12]. As will be seen later in the article, such
models are useful to capture latent distributions in datasets of
interest, and as such useful in building constraint-satisfaction
models that impose constraints in preference vectors.

Outputs from all sampling methods are made available as
datasets, to be used subsequently on other tasks, such as
sampling of objective function space via simulation (e.g. for
analysis or surrogate model training).

b) Predictive Modeling
CIDEA offers several algorithms to build predictive

models, as well as tools for cross-validating models and
parameter tuning. Currently, five training algorithms are
implemented; details of the algorithms are not given in this
study, for reasons of compactness, however the interested
reader is invited to find detailed descriptions in the referenced
studies. The implemented algorithms are as follows:

• Multilayer Perceptrons (MLP), trained using
Back-Propagation [13], [14]

• MLPs trained using Resilient-Back-Prop [15]

• Radial Basis Function (RBF) Networks trained
using the Orthogonal Least Squares (OLS)
Algorithm [16]–[18]

• RBF Networks trained using the OLS-PRESS
Algorithm [19]

• Support Vector Machine-based Regression, using
the Sequential Minimal Optimization Algorithm
[20]–[22]

For reasons of space efficiency we do not provide a
description of each algorithm here; the interested reader is
referred to the referred publications, which contain detailed
treatments of each case. Among many different predictive
algorithms, the above mentioned ones have been chosen
because of their reported popularity in surrogate modelling
[23]. All algorithms as they have been implemented, are
capable of multi-output predictions. The algorithms are part of
the YCML machine-learning framework1, and make use of the
fast matrix math implementations found in the BLAS and
LAPACK libraries for improving the efficiency of the
underlying matrix computations.

In training the algorithms, there are options for evaluating
their performance using cross-validation. Cross-validation
(CV) has been chosen over estimates of predictive performance
despite it’s increased computational cost, as it is a universal
approach to providing less biased estimates of a predictive
models performance. Two types of CV are available: k-Fold
and Monte Carlo. In k-Fold CV, the training sample is
partitioned in k folds; we produce k different models, trained
on k-1 folds, and test them on the remaining fold each time.
The prediction error is the mean of the errors on each
individual fold. In Monte Carlo CV, we perform n different
models, by splitting the training sample into two parts by a
factor p. The model error is the mean of each individual trained
model’s error.

Finally, CIDEA offers several methods for optimizing the
hyper-parameters of the predictive model. The user may
choose which parameters are to be optimized, and the
respective parameter domains. We implement several types of
parameter search and optimization: Grid-based search,
pseudorandom search, quasi-random search using two
sequences, Sobol [8] and Halton [11]. The tool identifies the
best performing model, as well as outputs a dataset with the
configurations and corresponding performances of each
instance that has been tested. Hyper-parameter search makes
use of model performance either on the training set, or using
the user-defined CV method, according to the results of which
the model is ultimately chosen.

c) Optimization and Analysis
CIDEA implements optimization algorithms with a focus

on multi-objectivity and stochastic optimization. Two

1 The YCML machine learning framework is an Open Source

(GPLv3) software library that is available online at the following address:
https://github.com/yconst/YCML . The framework is currently under
continued development, and will be subject to publication in the near future.

Fig. 6. The office space considered in the first application. It is a space of
variable dimensions, and variable orientation to the North. It consists of
two windows of variable dimensions, on each of two adjacent sides.
Within the space, a single point with coordinate and orientation is used to
measure illuminance and glare.

 algorithms are currently implemented, namely the well-known
NSGA-II [24], and the HYPE algorithm [25]. In addition to the
optimization algorithms themselves, there are tools that aid in
evaluating the algorithm performance. Currently, estimation of
Hypervolume, using a stochastic sampling algorithm, as
described in [25], as well as calculation of the Inverted
Generational Distance Metric [26] is implemented.

The implementation of optimization algorithms in CIDEA
follows a modular approach. To formulate and solve an
optimization problem, one selects an algorithm and references
one or more problem modules, which in turn define one or
more objective functions or constraints. As problem module
can be considered any module that accepts numerical data as
an input, and provides numerical data as output. As such, it is
possible to reference plain functions, predictive models, as well
as a mixture of the above.

It is worth mentioning that in the case of referencing a
predictive model as an objective function, we are practically
turning the predictive model into a surrogate model. As such,
the use of surrogate modeling in optimization is
straightforward, and does not introduce any new machinery or
user interaction.

D. Extensibility
CIDEA is build with extensibility in mind. An API is

exposed which allows the creation of new modules, with their
own logic, framework and library references, and user interface
elements. Through the API, the functionality of each module is
exposed to others, so that they may be combined together by
referencing. The most essential API functions serve goals as
outlined below:

• Being able to notify of what types of data the
module is able to process, or output,

• Being able to accept arbitrary data of the correct
type, and return the result,

• Being able to return persistent data (if any) of the
requested type,

• Being able to report it’s referenced modules.

The above functionality is essential for a module to be able
to be incorporated in an automated or semi-automated process
defined by the user.

IV. APPLICATIONS
Two applications in the field of building performance

analysis and optimization are reported. The purpose here is to
illustrate the tool’s functionality in a design environment,
through demonstrating advanced use-cases on research-based
design scenarios.

A. Surrogate Modeling for Visual Comfort Approximation
The first example aims to outline an application of CIDEA

in the development of a surrogate model for daylighting and
glare evaluation in an office space, and it’s subsequent use in
multi-objective optimization, in order to derive optimal
solutions with respect to those objectives. This application is
related to a previous publication on the same topic [27].
Specifically, the use of a problem definition interface, together
with the surrogate models, for easily defining the optimization
problem at hand, is outlined.

The problem at hand concerns the development of a
predictive model that can approximate the adequacy and
quality of daylight within an office space of variable
dimensions and window configurations. The inputs to the
predictive model are the dimensions, orientation and window
configurations of the office, as well as the coordinates, within
the office space, and direction of a sampling point
corresponding to viewer position, and are available in Table I.

TABLE I. INDEPENDENT VARIABLES FOR APPLICATION A.

Name Unit Range
Room Width m [4, 8]
Room Length m [4, 8]
Orientation rad [0, 2π]
Window 1 Width % [0, 100]
Window 1 Height m [1.5, 2.5]
Window 1 Position % [0, 100]
Window 2 Width % [0, 100]
Window 2 Height m [1.5, 2.5]
Window 2 Position % [1.5, 2.5]
Sampling Point X - [0, 1]
Sampling Point Y - [0, 1]

An instance of the space in question is available in Fig. 6.
The outputs are two: The Daylight Autonomy (DA) value [28],
[29] for the particular point, and the Daylight Glare Probability
(DGP) value [30], [31], for the point and direction in question.
DA and DGP are popular metrics that can be used to define the
visual comfort of a single point in an interior space. DA and
UDI are defined as follows:

DA,UDI = 1
h b(I(pi),B)
i=1

h

∑

Where I(x) is a function giving the illuminance at point p,
and b(x) a function that returns one if x is within bounds B, and

Fig. 8. Outline of the cognitive framework used in Application 2. One the
left, Objective Function space of a 2-objective problem. On the right,
decision variable space of the same problem, supposing 3 DVs for visual
clarity. Solution A is a non-dominated solution with undesirable features.
Solution B occurs through manipulation of features by the decision
maker. It satisfies designer preferences but is not non-dominated.
Solution C is a result of the cognitive system reaction to solution B, and is
both preferable and near-optimal, to the degree allowed by the problem
definition .

W
in

do
w

 H
ei

gh
t (

m
)

Window Width (%)
Overhang Depth (m)

Lamellas

D
is

t.
be

tw
ee

n
La

m
el

la
s (

m
)

Fig. 7. The openings on the façade of the second application, together
with the shading elements and corresponding decision variables.

 0 otherwise. The main difference between DA and UDI is how
B is defined. The reader is referred to the respective
publications above for more information and derivations of the
metrics in question. Calculation of DA was performed using
the Radiance program [32], and of DGP using the evalglare
program [33].

Subsequently, a multi-objective optimization scenario that
includes improvement of daylight conditions, namely
maximization of Daylight Autonomy and minimization of
Glare is considered, and approached using two types of
Evolutionary Algorithms: NSGA-II and HYPE. The objective
function formulation is as follows:

min(−DA,DGP)

Where DA and DGP correspond to the above defined
Daylight Autonomy and Daylight Glare Probability metrics,
and their values are obtained by means of the predictive
models discussed.

B. Cognitive Modeling for Sustainability in the context of
Multi-Criterion Decision Making
The second application study that we wish to present aims

at highlighting how CIDEA can easily be used in the context of
Multi-Criterion Decision Making (MCDM), and preference-
based optimal design. The study concerns the identification of
suitable designs for an office façade having shading elements,
in order to maximize visual comfort and minimize energy
consumption. These two quantities form objective functions,
and are calculated by means of simulation. We make use of the
Radiance [32] and EnergyPlus [34] programs. The problem
formulation is as follows:

min(UDI,−E)

There are four decision variables, namely Window Width
(WW), Window Height (WH), Shader Count (SC) and
Overhand Depth (OD). The correspondence of the decision
variables to the façade design is outlined in Fig. 7.

It is well understood that the façade has a complex role in
regulating heat exchange with the outside; through conductive,
convective and radiative heat exchange. In this respect, the

placement and size of exterior openings, as well as shading
devices, is of great significance.

At the same time, these factors play an important role in the
composition of the buildings image, as they belong to it’s
façade. As such, second-order criteria with respect to concrete
object properties are at play.

We use CIDEA to train a cognitive auto-associative model,
in accordance to the method proposed in [35], [36], to enable
preference-based decision support for optimal façade
configurations. The reader is referred to the above-mentioned
references for an elaborate treatment of the said method. In a
nutshell, we wish to produce a predictive, auto-associative
model that accepts a preference vector as an input, comprising
of values in the decision variable space, and outputs an
adjusted vector, again in decision variable space, that
corresponds to a near-optimal or optimal solution, or best-
tradeoff in the Pareto sense. It is stressed here that the arbitrary
preference vector introduced as an input to the model is highly
unlikely to correspond to a near-optimal solution. The model is
trained considering data identified from a Pareto front obtained
using a stochastic optimization algorithm, in our case NSGA-
II. A diagram of the action of the cognitive model is available
in Fig. 8.

V. DISCUSSION
Regarding the first application as described previously, it

was first deemed necessary to identify a suitable set of hyper-
parameters for our predictive models. This procedure was
performed by comparing two different models: A
Backpropagation-trained Feed-Forward Network, and a RBF
Network. The Coefficient of Determination (R2) of the best-
performing models on the DA dataset is available in Table II.
For each model, two sets of models were compared, according
to different parameter search strategies: Grid-based search and
Random search. For each case, a total of 50 variants were
comapred. The results show a clear advantage of RBFN in
prediction performance. Grid search was able to identify better
performing FFN models.

Randomized
Preference Vector RBF Reaction Vector Non-Dominated?

YESDA: 8.40%
E: 4187 kWh

DA: 41.02%
E: 3998 kWh

DA: 18.64%
E: 4176 kWh

DA: 62.45%
E: 4172 kWh

DA: 41.09%
E: 4121 kWh

DA: 60.50%
E: 4114 kWh

DA: 1.01%
E: 4014 kWh

DA: 46.17%
E: 4081 kWh

DA: 85.32%
E: 4917 kWh

DA: 74.10%
E: 4287 kWh

YES

YES

NO

NO

Fig. 9. Several solutions and corresponding performance according to
Daylight Autonomy (DA) and Total Energy consumption, resulting from
the response of the cognitive RBF model, for different preference vectors.
The far right column indicates whether the cognitive response is non-
dominated with respect to the input.

TABLE II. R SQUARED OF DIFFERENT PREDICTIVE MODELS ON THE DA
DATASET OF APPLICATION A. , USING DIFFERENT HYPER-PARAMETER SEARCH

METHODS

Model / Search
Method

Parameters R2

FFN / Grid # Iterations,
Samples / Iteration

0.8097
FFN / Random 0.7428
RBF / Grid Error Threshold,

Kernel Bandwidth (β)
0.9164

RBF / Random 0.9294

Subsequently, the best model has been selected to model
the objective functions for multi-objective optimization. An
optimization run was performed using the NSGA-II algorithm.
Finally, a sample of the solutions on the Pareto front was
evaluated using the simulation model, instead of the
metamodel.

As to the use of CIDEA, this problem was implementable
in a straightforward manner; firstly, through the use of the
“Sampling” module, a dataset of DV values was generated. OF
values for each point were sampled using the “External
Process” module. Subsequently, the generated datasets were
used with the built-in parameter search option of the
“Predictive Model Training” module. Resulting surrogate
models were used with the “Optimization” to derive the non-
dominated solutions. Simulation times for Radiance are 5.6
minutes, and for evalglare 10 seconds, on average. The
produced surrogate model evaluates in the range of a few tens
of milliseconds (approximate).

With respect to the second application, the HYPE
algorithm was initially used in order to establish a Pareto front
for the problem at hand. Function evaluation was performed
using simulation interface DIVA for Rhino [37]. Data
exchange between CIDEA and the Rhino 3D CAD program
was established using a software adapter, as discussed in
section 2. Subsequently, an RBF network was trained in an
auto-associative manner, using a linear search to identify
optimal value for the kernel bandwidth of the model. In this
case, an RBF network that was trained with multi-output
Orthogonal Least Squares was used. This is a similar approach
as has been described by Çiftçioğlu and Bittermann [36]. For
evaluating model performance, we did not use a least squares-
based performance metric, as it is not suitable for this task;
rather, we made use of the IGD metric [26], and make a
comparison between IGD values output from a sample of
uniform random values in the range of the problem decision
variables, and the response of the trained model, when
presented with the randomized sample as an input. Results for
two different RBF networks are available in Table IV. In
addition, Fig. 9 provides the reaction obtained by the trained
algorithm for a number of preference vector inputs. This
application study is part of an ongoing project that is subject to
publication.

TABLE III. PERFORMANCE OF TWO RBF NETWORKS WITH DIFFERING
KERNEL BANDWODTHS, ON THE COGNITIVE DESIGN PROBLEM OF APPLICATION

B.

Bandwidth Regressor
Count

GD (random) GD (response)

0.8 21 0.103 2.66 * 10-3
3.0 9 0.092 5.75 * 10-3

It should be mentioned that in both cases, CIDEA allowed
carrying out tasks such as processing the input data, training
and optimizing model performance, performing the
optimization and analyzing and presenting the results, in a
quick and efficient way. As such, it is the author’s belief that
CIDEA can provide a benefit in decision making during the
design process.

VI. CONCLUSION
In this paper, a decision-support tool, named CIDEA, with

application in design for the built environment was presented.
The tool adopts a flexible approach of organizing together
different modules, each with a specialized functionality, to
generate a workflow by mixing automation and interaction.
The following are presented as contributions of the presented
work:

1. The tool includes instruments that help process data,
create predictive models, make inference, perform
optimization, and perform analysis on results, under
one roof, allowing for immediate access and as such
increased usability.

2. The systems functionality is based on connecting
different modules together into one or more Directed
Graphs (an action termed referencing in the current
work). Such a mode of operation allows for complex
orchestration and for performing more complex
tasks than the individual modules can perform. As
such, non-experts may realize research-intensive
applications using the proposed tool, in an intuitive
way.

3. The proposed tool relies on an Open-Source and high
performance Machine Learning and Optimization
library, and as such the algorithms in use can be
easily controlled and validated.

On the other hand, it is acknowledged as a limitation that a
purely visual environment, such as in the presented work, may
not offer the required flexibility for orchestrating and
automating large scale, complex learning or optimization
workflows. However, for such cases there exist specialized
tools that are much more appropriate.

We have evaluated the applicability of CIDEA in
supporting evaluation and optimization tasks in two different
design scenarios, involving sustainability and visual comfort-
related goals. It was deemed that, the proposed tool resulted in
reduced time for performing tasks related with design decision
support. It is thus the author’s belief that the proposed tool may
introduce a better adoption of state of the art computational
decision support methods in the field of architecture.

ACKNOWLEDGMENT
I wish to thank my colleagues Dr. Onur Dursun and Berk

Ekici for providing valuable feedback throughout this work.

REFERENCES
[1] Y. Zhang and I. Korolija, “Performing complex parametric simulations

with jEPlus,” SET2010-9th Int. Conf. Sustain. Energ. Tech., 2010.
[2] M. Turrin, P. von Buelow, and R. Stouffs, “Design explorations of

performance driven geometry in architectural design using parametric
modeling and genetic algorithms,” Adv. Eng. Informatics, vol. 25, no. 4,
pp. 656–675, Oct. 2011.

[3] L. G. Caldas and L. K. Norford, “A design optimization tool based on a
genetic algorithm,” Autom. Constr., vol. 11, no. 2, pp. 173–184, Feb.
2002.

[4] M. Palonen, M. Hamdy, and A. Hasan, “MOBO A New Software for
Multi-Objective Building Performance Optimization,” 13th Conf. Int.
Build. Perform. Simul. Assoc., pp. 2567–2574, 2013.

[5] M. M. Mourshed, D. Kelliher, and M. Keane, “ArDOT: A Tool to
Optimise Environmental Design of Buildings,” IBPSA 8o Int. Conf., vol.
50, no. 43, pp. 919–926, 2003.

[6] A.-T. Nguyen, S. Reiter, and P. Rigo, “A review on simulation-based
optimization methods applied to building performance analysis,” Appl.
Energy, vol. 113, pp. 1043–1058, Jan. 2014.

[7] I. L. Dalal, D. Stefan, and J. Harwayne-Gidansky, “Low discrepancy
sequences for monte carlo simulations on reconfigurable platforms,”
Proc. Int. Conf. Appl. Syst. Archit. Process., pp. 108–113, 2008.

[8] I. M. Sobol’, “On the distribution of points in a cube and the
approximate evaluation of integrals,” USSR Comput. Math. Math. Phys.,
vol. 7, pp. 86–112, 1967.

[9] B. Iooss, L. Boussouf, V. Feuillard, and A. Marrel, “Numerical studies
of the metamodel fitting and validation processes,” Int. J. Adv. Syst.
Meas., vol. 3, pp. 11–21, 2010.

[10] J. Zhang, “Improving the Accuracy of Surrogate Models Using Inverse
Transform Sampling,” in 53rd AIAA/ASME/ASCE/AHS/ASC Structures,
Structural Dynamics and Materials Conference, 2012.

[11] J. H. Halton, “Algorithm 247: Radical-inverse quasi-random point
sequence,” Commun. ACM, vol. 7, no. June, pp. 701–702, 1964.

[12] P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol, “Extracting and
Composing Robust Features with Denoising Autoencoders,” pp. 1–16,
2008.

[13] D. Rumelhart, G. Hinton, and R. Williams, “Learning Internal
Representations by Error Propagation,” in Parallel distributed
processing: explorations in the microstructure of cognition, Vol. 1,
Cambridge, MA, USA: MIT Press, 1985, pp. 318–362.

[14] G. Hinton and G. Hinton, “A Practical Guide to Training Restricted
Boltzmann Machines” 2010.

[15] M. Riedmiller and H. Braun, “A direct adaptive method for faster
backpropagation learning: theRPROP algorithm,” IEEE Int. Conf.
Neural Networks, 1993.

[16] S. Chen, C. N. Cowan, and P. M. Grant, “Orthogonal least squares
learning algorithm for radial basis function networks.,” IEEE Trans.
Neural Netw., vol. 2, no. 2, pp. 302–9, Jan. 1991.

[17] S. Chen, P. Grant, and C. Cowan, “Orthogonal least-squares algorithm
for training multioutput radial basis function networks,” Radar Signal
Process. …, vol. 139, no. December, 1992.

[18] S. Chen, E. Chng, and K. Alkadhimi, “Regularized orthogonal least
squares algorithm for constructing radial basis function networks,” Int.
J. Control, no. 773565843, 1996.

[19] X. Hong, P. Sharkey, and K. Warwick, “Automatic nonlinear predictive
model-construction algorithm using forward regression and the PRESS
statistic,” IEEE Proc. - Control Theory Appl., vol. 150, no. 3, pp. 245–
254, May 2003.

[20] J. C. Platt, “Fast Training of Support Vector Machines Using Sequential
Minimal Optimization,” Adv. kernel methods, pp. 185 – 208, 1998.

[21] G. W. Flake and S. Lawrence, “Efficient SVM regression training with
SMO,” Mach. Learn., vol. 46, pp. 271–290, 2002.

[22] “CS 229, Autumn 2009: The Simplified SMO Algorithm,” Stanford
Lecture Notes. 2009.

[23] Y. Jin, “A comprehensive survey of fitness approximation in
evolutionary computation,” Soft Comput., vol. 9, no. 1, pp. 3–12, Oct.
2003.

[24] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol.
Comput., vol. 6, no. 2, pp. 182–197, Apr. 2002.

[25] J. Bader and E. Zitzler, “HypE: an algorithm for fast hypervolume-based
many-objective optimization.,” Evol. Comput., vol. 19, no. 1, pp. 45–76,
2011.

[26] Q. Zhang, A. Zhou, S. Zhao, P. N. Suganthan, and W. Liu,
“Multiobjective optimization Test Instances for the CEC 2009 Special
Session and Competition,” Report, pp. 1–30, 2009.

[27] I. Chatzikonstantinou and S. Sariyildiz, “Approximation of simulation-
derived visual comfort indicators in office spaces: a comparative study
in machine learning,” Archit. Sci. Rev., no. August 2015, pp. 1–16, Aug.
2015.

[28] C. F. Reinhart and O. Walkenhorst, “Validation of dynamic
RADIANCE-based daylight simulations for a test office with external
blinds,” Energy Build., vol. 33, no. 7, pp. 683–697, Sep. 2001.

[29] C. F. Reinhart, J. Mardaljevic, and Z. Rogers, “Dynamic Daylight
Performance Metrics for Sustainable Building Design,” Leukos, vol. 3,
no. 1, pp. 7–31, 2006.

[30] J. Wienold and J. Christoffersen, “Towards a new daylight glare rating,”
Lux Eur. Berlin, pp. 1–8, 2005.

[31] S. Kleindienst and M. Andersen, “The Adaptation of Daylight Glare
Probability to Dynamic Metrics in a Computational Setting,” Proc. Lux
Europa 2009 – 11th Europ. Light. Conf., pp. 3–10, 2009.

[32] G. Ward, “The RADIANCE lighting simulation and rendering system,”
in 21st annual conference on Computer Graphics and Interactive
Techniques, 1994.

[33] J. Wienold, “DYNAMIC DAYLIGHT GLARE EVALUATION,” Proc.
Build. Simul., pp. 944–951, 2009.

[34] B. D. B. Crawley and L. K. Lawrie, “EnergyPlus  : Energy Simulation
Program,” Ashrae, vol. 42, no. 4, pp. 49–56, 2000.

[35] Ö. Ciftcioglu and M. S. Bittermann, “Generic Cognitive Computing for
Cognition,” in Proceedings of the 2015 IEEE CEC, 2015, pp. 574–581.

[36] Ö. Ciftcioglu and M. S. Bittermann, “Architectural Design by Cognitive
Computing,” in Proceedings of the 2015 IEEE CEC, 2015, pp. 2295–
2302.

[37] Jakubiec JA, Reinhart CF. DIVA 2.0: Integrating Daylight and Thermal
Simulations using Rhinoceros 3D, Daysim and Energyplus. Proc. Build.
Simul. 2011 12th Conf. Int. Build. Perform. Simul. Assoc., Sydney:
2011, p. 2202–9..

